2 * linux/kernel/hrtimer.c
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
8 * High-resolution kernel timers
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
14 * These timers are currently used for:
18 * - precise in-kernel timing
20 * Started by: Thomas Gleixner and Ingo Molnar
23 * based on kernel/timer.c
25 * Help, testing, suggestions, bugfixes, improvements were
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
31 * For licencing details see kernel-base/COPYING
34 #include <linux/cpu.h>
35 #include <linux/irq.h>
36 #include <linux/module.h>
37 #include <linux/percpu.h>
38 #include <linux/hrtimer.h>
39 #include <linux/notifier.h>
40 #include <linux/syscalls.h>
41 #include <linux/kallsyms.h>
42 #include <linux/interrupt.h>
43 #include <linux/tick.h>
44 #include <linux/seq_file.h>
45 #include <linux/err.h>
46 #include <linux/debugobjects.h>
48 #include <asm/uaccess.h>
51 * ktime_get - get the monotonic time in ktime_t format
53 * returns the time in ktime_t format
55 ktime_t
ktime_get(void)
61 return timespec_to_ktime(now
);
63 EXPORT_SYMBOL_GPL(ktime_get
);
66 * ktime_get_real - get the real (wall-) time in ktime_t format
68 * returns the time in ktime_t format
70 ktime_t
ktime_get_real(void)
76 return timespec_to_ktime(now
);
79 EXPORT_SYMBOL_GPL(ktime_get_real
);
84 * Note: If we want to add new timer bases, we have to skip the two
85 * clock ids captured by the cpu-timers. We do this by holding empty
86 * entries rather than doing math adjustment of the clock ids.
87 * This ensures that we capture erroneous accesses to these clock ids
88 * rather than moving them into the range of valid clock id's.
90 DEFINE_PER_CPU(struct hrtimer_cpu_base
, hrtimer_bases
) =
96 .index
= CLOCK_REALTIME
,
97 .get_time
= &ktime_get_real
,
98 .resolution
= KTIME_LOW_RES
,
101 .index
= CLOCK_MONOTONIC
,
102 .get_time
= &ktime_get
,
103 .resolution
= KTIME_LOW_RES
,
109 * ktime_get_ts - get the monotonic clock in timespec format
110 * @ts: pointer to timespec variable
112 * The function calculates the monotonic clock from the realtime
113 * clock and the wall_to_monotonic offset and stores the result
114 * in normalized timespec format in the variable pointed to by @ts.
116 void ktime_get_ts(struct timespec
*ts
)
118 struct timespec tomono
;
122 seq
= read_seqbegin(&xtime_lock
);
124 tomono
= wall_to_monotonic
;
126 } while (read_seqretry(&xtime_lock
, seq
));
128 set_normalized_timespec(ts
, ts
->tv_sec
+ tomono
.tv_sec
,
129 ts
->tv_nsec
+ tomono
.tv_nsec
);
131 EXPORT_SYMBOL_GPL(ktime_get_ts
);
134 * Get the coarse grained time at the softirq based on xtime and
137 static void hrtimer_get_softirq_time(struct hrtimer_cpu_base
*base
)
139 ktime_t xtim
, tomono
;
140 struct timespec xts
, tom
;
144 seq
= read_seqbegin(&xtime_lock
);
145 xts
= current_kernel_time();
146 tom
= wall_to_monotonic
;
147 } while (read_seqretry(&xtime_lock
, seq
));
149 xtim
= timespec_to_ktime(xts
);
150 tomono
= timespec_to_ktime(tom
);
151 base
->clock_base
[CLOCK_REALTIME
].softirq_time
= xtim
;
152 base
->clock_base
[CLOCK_MONOTONIC
].softirq_time
=
153 ktime_add(xtim
, tomono
);
157 * Functions and macros which are different for UP/SMP systems are kept in a
163 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
164 * means that all timers which are tied to this base via timer->base are
165 * locked, and the base itself is locked too.
167 * So __run_timers/migrate_timers can safely modify all timers which could
168 * be found on the lists/queues.
170 * When the timer's base is locked, and the timer removed from list, it is
171 * possible to set timer->base = NULL and drop the lock: the timer remains
175 struct hrtimer_clock_base
*lock_hrtimer_base(const struct hrtimer
*timer
,
176 unsigned long *flags
)
178 struct hrtimer_clock_base
*base
;
182 if (likely(base
!= NULL
)) {
183 spin_lock_irqsave(&base
->cpu_base
->lock
, *flags
);
184 if (likely(base
== timer
->base
))
186 /* The timer has migrated to another CPU: */
187 spin_unlock_irqrestore(&base
->cpu_base
->lock
, *flags
);
194 * Switch the timer base to the current CPU when possible.
196 static inline struct hrtimer_clock_base
*
197 switch_hrtimer_base(struct hrtimer
*timer
, struct hrtimer_clock_base
*base
)
199 struct hrtimer_clock_base
*new_base
;
200 struct hrtimer_cpu_base
*new_cpu_base
;
202 new_cpu_base
= &__get_cpu_var(hrtimer_bases
);
203 new_base
= &new_cpu_base
->clock_base
[base
->index
];
205 if (base
!= new_base
) {
207 * We are trying to schedule the timer on the local CPU.
208 * However we can't change timer's base while it is running,
209 * so we keep it on the same CPU. No hassle vs. reprogramming
210 * the event source in the high resolution case. The softirq
211 * code will take care of this when the timer function has
212 * completed. There is no conflict as we hold the lock until
213 * the timer is enqueued.
215 if (unlikely(hrtimer_callback_running(timer
)))
218 /* See the comment in lock_timer_base() */
220 spin_unlock(&base
->cpu_base
->lock
);
221 spin_lock(&new_base
->cpu_base
->lock
);
222 timer
->base
= new_base
;
227 #else /* CONFIG_SMP */
229 static inline struct hrtimer_clock_base
*
230 lock_hrtimer_base(const struct hrtimer
*timer
, unsigned long *flags
)
232 struct hrtimer_clock_base
*base
= timer
->base
;
234 spin_lock_irqsave(&base
->cpu_base
->lock
, *flags
);
239 # define switch_hrtimer_base(t, b) (b)
241 #endif /* !CONFIG_SMP */
244 * Functions for the union type storage format of ktime_t which are
245 * too large for inlining:
247 #if BITS_PER_LONG < 64
248 # ifndef CONFIG_KTIME_SCALAR
250 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
252 * @nsec: the scalar nsec value to add
254 * Returns the sum of kt and nsec in ktime_t format
256 ktime_t
ktime_add_ns(const ktime_t kt
, u64 nsec
)
260 if (likely(nsec
< NSEC_PER_SEC
)) {
263 unsigned long rem
= do_div(nsec
, NSEC_PER_SEC
);
265 tmp
= ktime_set((long)nsec
, rem
);
268 return ktime_add(kt
, tmp
);
271 EXPORT_SYMBOL_GPL(ktime_add_ns
);
274 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
276 * @nsec: the scalar nsec value to subtract
278 * Returns the subtraction of @nsec from @kt in ktime_t format
280 ktime_t
ktime_sub_ns(const ktime_t kt
, u64 nsec
)
284 if (likely(nsec
< NSEC_PER_SEC
)) {
287 unsigned long rem
= do_div(nsec
, NSEC_PER_SEC
);
289 tmp
= ktime_set((long)nsec
, rem
);
292 return ktime_sub(kt
, tmp
);
295 EXPORT_SYMBOL_GPL(ktime_sub_ns
);
296 # endif /* !CONFIG_KTIME_SCALAR */
299 * Divide a ktime value by a nanosecond value
301 u64
ktime_divns(const ktime_t kt
, s64 div
)
306 dclc
= dns
= ktime_to_ns(kt
);
308 /* Make sure the divisor is less than 2^32: */
314 do_div(dclc
, (unsigned long) div
);
318 #endif /* BITS_PER_LONG >= 64 */
321 * Add two ktime values and do a safety check for overflow:
323 ktime_t
ktime_add_safe(const ktime_t lhs
, const ktime_t rhs
)
325 ktime_t res
= ktime_add(lhs
, rhs
);
328 * We use KTIME_SEC_MAX here, the maximum timeout which we can
329 * return to user space in a timespec:
331 if (res
.tv64
< 0 || res
.tv64
< lhs
.tv64
|| res
.tv64
< rhs
.tv64
)
332 res
= ktime_set(KTIME_SEC_MAX
, 0);
337 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
339 static struct debug_obj_descr hrtimer_debug_descr
;
342 * fixup_init is called when:
343 * - an active object is initialized
345 static int hrtimer_fixup_init(void *addr
, enum debug_obj_state state
)
347 struct hrtimer
*timer
= addr
;
350 case ODEBUG_STATE_ACTIVE
:
351 hrtimer_cancel(timer
);
352 debug_object_init(timer
, &hrtimer_debug_descr
);
360 * fixup_activate is called when:
361 * - an active object is activated
362 * - an unknown object is activated (might be a statically initialized object)
364 static int hrtimer_fixup_activate(void *addr
, enum debug_obj_state state
)
368 case ODEBUG_STATE_NOTAVAILABLE
:
372 case ODEBUG_STATE_ACTIVE
:
381 * fixup_free is called when:
382 * - an active object is freed
384 static int hrtimer_fixup_free(void *addr
, enum debug_obj_state state
)
386 struct hrtimer
*timer
= addr
;
389 case ODEBUG_STATE_ACTIVE
:
390 hrtimer_cancel(timer
);
391 debug_object_free(timer
, &hrtimer_debug_descr
);
398 static struct debug_obj_descr hrtimer_debug_descr
= {
400 .fixup_init
= hrtimer_fixup_init
,
401 .fixup_activate
= hrtimer_fixup_activate
,
402 .fixup_free
= hrtimer_fixup_free
,
405 static inline void debug_hrtimer_init(struct hrtimer
*timer
)
407 debug_object_init(timer
, &hrtimer_debug_descr
);
410 static inline void debug_hrtimer_activate(struct hrtimer
*timer
)
412 debug_object_activate(timer
, &hrtimer_debug_descr
);
415 static inline void debug_hrtimer_deactivate(struct hrtimer
*timer
)
417 debug_object_deactivate(timer
, &hrtimer_debug_descr
);
420 static inline void debug_hrtimer_free(struct hrtimer
*timer
)
422 debug_object_free(timer
, &hrtimer_debug_descr
);
425 static void __hrtimer_init(struct hrtimer
*timer
, clockid_t clock_id
,
426 enum hrtimer_mode mode
);
428 void hrtimer_init_on_stack(struct hrtimer
*timer
, clockid_t clock_id
,
429 enum hrtimer_mode mode
)
431 debug_object_init_on_stack(timer
, &hrtimer_debug_descr
);
432 __hrtimer_init(timer
, clock_id
, mode
);
435 void destroy_hrtimer_on_stack(struct hrtimer
*timer
)
437 debug_object_free(timer
, &hrtimer_debug_descr
);
441 static inline void debug_hrtimer_init(struct hrtimer
*timer
) { }
442 static inline void debug_hrtimer_activate(struct hrtimer
*timer
) { }
443 static inline void debug_hrtimer_deactivate(struct hrtimer
*timer
) { }
447 * Check, whether the timer is on the callback pending list
449 static inline int hrtimer_cb_pending(const struct hrtimer
*timer
)
451 return timer
->state
& HRTIMER_STATE_PENDING
;
455 * Remove a timer from the callback pending list
457 static inline void hrtimer_remove_cb_pending(struct hrtimer
*timer
)
459 list_del_init(&timer
->cb_entry
);
462 /* High resolution timer related functions */
463 #ifdef CONFIG_HIGH_RES_TIMERS
466 * High resolution timer enabled ?
468 static int hrtimer_hres_enabled __read_mostly
= 1;
471 * Enable / Disable high resolution mode
473 static int __init
setup_hrtimer_hres(char *str
)
475 if (!strcmp(str
, "off"))
476 hrtimer_hres_enabled
= 0;
477 else if (!strcmp(str
, "on"))
478 hrtimer_hres_enabled
= 1;
484 __setup("highres=", setup_hrtimer_hres
);
487 * hrtimer_high_res_enabled - query, if the highres mode is enabled
489 static inline int hrtimer_is_hres_enabled(void)
491 return hrtimer_hres_enabled
;
495 * Is the high resolution mode active ?
497 static inline int hrtimer_hres_active(void)
499 return __get_cpu_var(hrtimer_bases
).hres_active
;
503 * Reprogram the event source with checking both queues for the
505 * Called with interrupts disabled and base->lock held
507 static void hrtimer_force_reprogram(struct hrtimer_cpu_base
*cpu_base
)
510 struct hrtimer_clock_base
*base
= cpu_base
->clock_base
;
513 cpu_base
->expires_next
.tv64
= KTIME_MAX
;
515 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++, base
++) {
516 struct hrtimer
*timer
;
520 timer
= rb_entry(base
->first
, struct hrtimer
, node
);
521 expires
= ktime_sub(timer
->expires
, base
->offset
);
522 if (expires
.tv64
< cpu_base
->expires_next
.tv64
)
523 cpu_base
->expires_next
= expires
;
526 if (cpu_base
->expires_next
.tv64
!= KTIME_MAX
)
527 tick_program_event(cpu_base
->expires_next
, 1);
531 * Shared reprogramming for clock_realtime and clock_monotonic
533 * When a timer is enqueued and expires earlier than the already enqueued
534 * timers, we have to check, whether it expires earlier than the timer for
535 * which the clock event device was armed.
537 * Called with interrupts disabled and base->cpu_base.lock held
539 static int hrtimer_reprogram(struct hrtimer
*timer
,
540 struct hrtimer_clock_base
*base
)
542 ktime_t
*expires_next
= &__get_cpu_var(hrtimer_bases
).expires_next
;
543 ktime_t expires
= ktime_sub(timer
->expires
, base
->offset
);
546 WARN_ON_ONCE(timer
->expires
.tv64
< 0);
549 * When the callback is running, we do not reprogram the clock event
550 * device. The timer callback is either running on a different CPU or
551 * the callback is executed in the hrtimer_interrupt context. The
552 * reprogramming is handled either by the softirq, which called the
553 * callback or at the end of the hrtimer_interrupt.
555 if (hrtimer_callback_running(timer
))
559 * CLOCK_REALTIME timer might be requested with an absolute
560 * expiry time which is less than base->offset. Nothing wrong
561 * about that, just avoid to call into the tick code, which
562 * has now objections against negative expiry values.
564 if (expires
.tv64
< 0)
567 if (expires
.tv64
>= expires_next
->tv64
)
571 * Clockevents returns -ETIME, when the event was in the past.
573 res
= tick_program_event(expires
, 0);
574 if (!IS_ERR_VALUE(res
))
575 *expires_next
= expires
;
581 * Retrigger next event is called after clock was set
583 * Called with interrupts disabled via on_each_cpu()
585 static void retrigger_next_event(void *arg
)
587 struct hrtimer_cpu_base
*base
;
588 struct timespec realtime_offset
;
591 if (!hrtimer_hres_active())
595 seq
= read_seqbegin(&xtime_lock
);
596 set_normalized_timespec(&realtime_offset
,
597 -wall_to_monotonic
.tv_sec
,
598 -wall_to_monotonic
.tv_nsec
);
599 } while (read_seqretry(&xtime_lock
, seq
));
601 base
= &__get_cpu_var(hrtimer_bases
);
603 /* Adjust CLOCK_REALTIME offset */
604 spin_lock(&base
->lock
);
605 base
->clock_base
[CLOCK_REALTIME
].offset
=
606 timespec_to_ktime(realtime_offset
);
608 hrtimer_force_reprogram(base
);
609 spin_unlock(&base
->lock
);
613 * Clock realtime was set
615 * Change the offset of the realtime clock vs. the monotonic
618 * We might have to reprogram the high resolution timer interrupt. On
619 * SMP we call the architecture specific code to retrigger _all_ high
620 * resolution timer interrupts. On UP we just disable interrupts and
621 * call the high resolution interrupt code.
623 void clock_was_set(void)
625 /* Retrigger the CPU local events everywhere */
626 on_each_cpu(retrigger_next_event
, NULL
, 0, 1);
630 * During resume we might have to reprogram the high resolution timer
631 * interrupt (on the local CPU):
633 void hres_timers_resume(void)
635 WARN_ON_ONCE(num_online_cpus() > 1);
637 /* Retrigger the CPU local events: */
638 retrigger_next_event(NULL
);
642 * Initialize the high resolution related parts of cpu_base
644 static inline void hrtimer_init_hres(struct hrtimer_cpu_base
*base
)
646 base
->expires_next
.tv64
= KTIME_MAX
;
647 base
->hres_active
= 0;
651 * Initialize the high resolution related parts of a hrtimer
653 static inline void hrtimer_init_timer_hres(struct hrtimer
*timer
)
658 * When High resolution timers are active, try to reprogram. Note, that in case
659 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
660 * check happens. The timer gets enqueued into the rbtree. The reprogramming
661 * and expiry check is done in the hrtimer_interrupt or in the softirq.
663 static inline int hrtimer_enqueue_reprogram(struct hrtimer
*timer
,
664 struct hrtimer_clock_base
*base
)
666 if (base
->cpu_base
->hres_active
&& hrtimer_reprogram(timer
, base
)) {
668 /* Timer is expired, act upon the callback mode */
669 switch(timer
->cb_mode
) {
670 case HRTIMER_CB_IRQSAFE_NO_RESTART
:
671 debug_hrtimer_deactivate(timer
);
673 * We can call the callback from here. No restart
674 * happens, so no danger of recursion
676 BUG_ON(timer
->function(timer
) != HRTIMER_NORESTART
);
678 case HRTIMER_CB_IRQSAFE_NO_SOFTIRQ
:
680 * This is solely for the sched tick emulation with
681 * dynamic tick support to ensure that we do not
682 * restart the tick right on the edge and end up with
683 * the tick timer in the softirq ! The calling site
684 * takes care of this.
686 debug_hrtimer_deactivate(timer
);
688 case HRTIMER_CB_IRQSAFE
:
689 case HRTIMER_CB_SOFTIRQ
:
691 * Move everything else into the softirq pending list !
693 list_add_tail(&timer
->cb_entry
,
694 &base
->cpu_base
->cb_pending
);
695 timer
->state
= HRTIMER_STATE_PENDING
;
705 * Switch to high resolution mode
707 static int hrtimer_switch_to_hres(void)
709 int cpu
= smp_processor_id();
710 struct hrtimer_cpu_base
*base
= &per_cpu(hrtimer_bases
, cpu
);
713 if (base
->hres_active
)
716 local_irq_save(flags
);
718 if (tick_init_highres()) {
719 local_irq_restore(flags
);
720 printk(KERN_WARNING
"Could not switch to high resolution "
721 "mode on CPU %d\n", cpu
);
724 base
->hres_active
= 1;
725 base
->clock_base
[CLOCK_REALTIME
].resolution
= KTIME_HIGH_RES
;
726 base
->clock_base
[CLOCK_MONOTONIC
].resolution
= KTIME_HIGH_RES
;
728 tick_setup_sched_timer();
730 /* "Retrigger" the interrupt to get things going */
731 retrigger_next_event(NULL
);
732 local_irq_restore(flags
);
733 printk(KERN_DEBUG
"Switched to high resolution mode on CPU %d\n",
738 static inline void hrtimer_raise_softirq(void)
740 raise_softirq(HRTIMER_SOFTIRQ
);
745 static inline int hrtimer_hres_active(void) { return 0; }
746 static inline int hrtimer_is_hres_enabled(void) { return 0; }
747 static inline int hrtimer_switch_to_hres(void) { return 0; }
748 static inline void hrtimer_force_reprogram(struct hrtimer_cpu_base
*base
) { }
749 static inline int hrtimer_enqueue_reprogram(struct hrtimer
*timer
,
750 struct hrtimer_clock_base
*base
)
754 static inline void hrtimer_init_hres(struct hrtimer_cpu_base
*base
) { }
755 static inline void hrtimer_init_timer_hres(struct hrtimer
*timer
) { }
756 static inline int hrtimer_reprogram(struct hrtimer
*timer
,
757 struct hrtimer_clock_base
*base
)
761 static inline void hrtimer_raise_softirq(void) { }
763 #endif /* CONFIG_HIGH_RES_TIMERS */
765 #ifdef CONFIG_TIMER_STATS
766 void __timer_stats_hrtimer_set_start_info(struct hrtimer
*timer
, void *addr
)
768 if (timer
->start_site
)
771 timer
->start_site
= addr
;
772 memcpy(timer
->start_comm
, current
->comm
, TASK_COMM_LEN
);
773 timer
->start_pid
= current
->pid
;
778 * Counterpart to lock_hrtimer_base above:
781 void unlock_hrtimer_base(const struct hrtimer
*timer
, unsigned long *flags
)
783 spin_unlock_irqrestore(&timer
->base
->cpu_base
->lock
, *flags
);
787 * hrtimer_forward - forward the timer expiry
788 * @timer: hrtimer to forward
789 * @now: forward past this time
790 * @interval: the interval to forward
792 * Forward the timer expiry so it will expire in the future.
793 * Returns the number of overruns.
795 u64
hrtimer_forward(struct hrtimer
*timer
, ktime_t now
, ktime_t interval
)
800 delta
= ktime_sub(now
, timer
->expires
);
805 if (interval
.tv64
< timer
->base
->resolution
.tv64
)
806 interval
.tv64
= timer
->base
->resolution
.tv64
;
808 if (unlikely(delta
.tv64
>= interval
.tv64
)) {
809 s64 incr
= ktime_to_ns(interval
);
811 orun
= ktime_divns(delta
, incr
);
812 timer
->expires
= ktime_add_ns(timer
->expires
, incr
* orun
);
813 if (timer
->expires
.tv64
> now
.tv64
)
816 * This (and the ktime_add() below) is the
817 * correction for exact:
821 timer
->expires
= ktime_add_safe(timer
->expires
, interval
);
825 EXPORT_SYMBOL_GPL(hrtimer_forward
);
828 * enqueue_hrtimer - internal function to (re)start a timer
830 * The timer is inserted in expiry order. Insertion into the
831 * red black tree is O(log(n)). Must hold the base lock.
833 static void enqueue_hrtimer(struct hrtimer
*timer
,
834 struct hrtimer_clock_base
*base
, int reprogram
)
836 struct rb_node
**link
= &base
->active
.rb_node
;
837 struct rb_node
*parent
= NULL
;
838 struct hrtimer
*entry
;
841 debug_hrtimer_activate(timer
);
844 * Find the right place in the rbtree:
848 entry
= rb_entry(parent
, struct hrtimer
, node
);
850 * We dont care about collisions. Nodes with
851 * the same expiry time stay together.
853 if (timer
->expires
.tv64
< entry
->expires
.tv64
) {
854 link
= &(*link
)->rb_left
;
856 link
= &(*link
)->rb_right
;
862 * Insert the timer to the rbtree and check whether it
863 * replaces the first pending timer
867 * Reprogram the clock event device. When the timer is already
868 * expired hrtimer_enqueue_reprogram has either called the
869 * callback or added it to the pending list and raised the
872 * This is a NOP for !HIGHRES
874 if (reprogram
&& hrtimer_enqueue_reprogram(timer
, base
))
877 base
->first
= &timer
->node
;
880 rb_link_node(&timer
->node
, parent
, link
);
881 rb_insert_color(&timer
->node
, &base
->active
);
883 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
884 * state of a possibly running callback.
886 timer
->state
|= HRTIMER_STATE_ENQUEUED
;
890 * __remove_hrtimer - internal function to remove a timer
892 * Caller must hold the base lock.
894 * High resolution timer mode reprograms the clock event device when the
895 * timer is the one which expires next. The caller can disable this by setting
896 * reprogram to zero. This is useful, when the context does a reprogramming
897 * anyway (e.g. timer interrupt)
899 static void __remove_hrtimer(struct hrtimer
*timer
,
900 struct hrtimer_clock_base
*base
,
901 unsigned long newstate
, int reprogram
)
903 /* High res. callback list. NOP for !HIGHRES */
904 if (hrtimer_cb_pending(timer
))
905 hrtimer_remove_cb_pending(timer
);
908 * Remove the timer from the rbtree and replace the
909 * first entry pointer if necessary.
911 if (base
->first
== &timer
->node
) {
912 base
->first
= rb_next(&timer
->node
);
913 /* Reprogram the clock event device. if enabled */
914 if (reprogram
&& hrtimer_hres_active())
915 hrtimer_force_reprogram(base
->cpu_base
);
917 rb_erase(&timer
->node
, &base
->active
);
919 timer
->state
= newstate
;
923 * remove hrtimer, called with base lock held
926 remove_hrtimer(struct hrtimer
*timer
, struct hrtimer_clock_base
*base
)
928 if (hrtimer_is_queued(timer
)) {
932 * Remove the timer and force reprogramming when high
933 * resolution mode is active and the timer is on the current
934 * CPU. If we remove a timer on another CPU, reprogramming is
935 * skipped. The interrupt event on this CPU is fired and
936 * reprogramming happens in the interrupt handler. This is a
937 * rare case and less expensive than a smp call.
939 debug_hrtimer_deactivate(timer
);
940 timer_stats_hrtimer_clear_start_info(timer
);
941 reprogram
= base
->cpu_base
== &__get_cpu_var(hrtimer_bases
);
942 __remove_hrtimer(timer
, base
, HRTIMER_STATE_INACTIVE
,
950 * hrtimer_start - (re)start an relative timer on the current CPU
951 * @timer: the timer to be added
953 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
957 * 1 when the timer was active
960 hrtimer_start(struct hrtimer
*timer
, ktime_t tim
, const enum hrtimer_mode mode
)
962 struct hrtimer_clock_base
*base
, *new_base
;
966 base
= lock_hrtimer_base(timer
, &flags
);
968 /* Remove an active timer from the queue: */
969 ret
= remove_hrtimer(timer
, base
);
971 /* Switch the timer base, if necessary: */
972 new_base
= switch_hrtimer_base(timer
, base
);
974 if (mode
== HRTIMER_MODE_REL
) {
975 tim
= ktime_add_safe(tim
, new_base
->get_time());
977 * CONFIG_TIME_LOW_RES is a temporary way for architectures
978 * to signal that they simply return xtime in
979 * do_gettimeoffset(). In this case we want to round up by
980 * resolution when starting a relative timer, to avoid short
981 * timeouts. This will go away with the GTOD framework.
983 #ifdef CONFIG_TIME_LOW_RES
984 tim
= ktime_add_safe(tim
, base
->resolution
);
988 timer
->expires
= tim
;
990 timer_stats_hrtimer_set_start_info(timer
);
993 * Only allow reprogramming if the new base is on this CPU.
994 * (it might still be on another CPU if the timer was pending)
996 enqueue_hrtimer(timer
, new_base
,
997 new_base
->cpu_base
== &__get_cpu_var(hrtimer_bases
));
1000 * The timer may be expired and moved to the cb_pending
1001 * list. We can not raise the softirq with base lock held due
1002 * to a possible deadlock with runqueue lock.
1004 raise
= timer
->state
== HRTIMER_STATE_PENDING
;
1006 unlock_hrtimer_base(timer
, &flags
);
1009 hrtimer_raise_softirq();
1013 EXPORT_SYMBOL_GPL(hrtimer_start
);
1016 * hrtimer_try_to_cancel - try to deactivate a timer
1017 * @timer: hrtimer to stop
1020 * 0 when the timer was not active
1021 * 1 when the timer was active
1022 * -1 when the timer is currently excuting the callback function and
1025 int hrtimer_try_to_cancel(struct hrtimer
*timer
)
1027 struct hrtimer_clock_base
*base
;
1028 unsigned long flags
;
1031 base
= lock_hrtimer_base(timer
, &flags
);
1033 if (!hrtimer_callback_running(timer
))
1034 ret
= remove_hrtimer(timer
, base
);
1036 unlock_hrtimer_base(timer
, &flags
);
1041 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel
);
1044 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1045 * @timer: the timer to be cancelled
1048 * 0 when the timer was not active
1049 * 1 when the timer was active
1051 int hrtimer_cancel(struct hrtimer
*timer
)
1054 int ret
= hrtimer_try_to_cancel(timer
);
1061 EXPORT_SYMBOL_GPL(hrtimer_cancel
);
1064 * hrtimer_get_remaining - get remaining time for the timer
1065 * @timer: the timer to read
1067 ktime_t
hrtimer_get_remaining(const struct hrtimer
*timer
)
1069 struct hrtimer_clock_base
*base
;
1070 unsigned long flags
;
1073 base
= lock_hrtimer_base(timer
, &flags
);
1074 rem
= ktime_sub(timer
->expires
, base
->get_time());
1075 unlock_hrtimer_base(timer
, &flags
);
1079 EXPORT_SYMBOL_GPL(hrtimer_get_remaining
);
1081 #if defined(CONFIG_NO_IDLE_HZ) || defined(CONFIG_NO_HZ)
1083 * hrtimer_get_next_event - get the time until next expiry event
1085 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1088 ktime_t
hrtimer_get_next_event(void)
1090 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
1091 struct hrtimer_clock_base
*base
= cpu_base
->clock_base
;
1092 ktime_t delta
, mindelta
= { .tv64
= KTIME_MAX
};
1093 unsigned long flags
;
1096 spin_lock_irqsave(&cpu_base
->lock
, flags
);
1098 if (!hrtimer_hres_active()) {
1099 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++, base
++) {
1100 struct hrtimer
*timer
;
1105 timer
= rb_entry(base
->first
, struct hrtimer
, node
);
1106 delta
.tv64
= timer
->expires
.tv64
;
1107 delta
= ktime_sub(delta
, base
->get_time());
1108 if (delta
.tv64
< mindelta
.tv64
)
1109 mindelta
.tv64
= delta
.tv64
;
1113 spin_unlock_irqrestore(&cpu_base
->lock
, flags
);
1115 if (mindelta
.tv64
< 0)
1121 static void __hrtimer_init(struct hrtimer
*timer
, clockid_t clock_id
,
1122 enum hrtimer_mode mode
)
1124 struct hrtimer_cpu_base
*cpu_base
;
1126 memset(timer
, 0, sizeof(struct hrtimer
));
1128 cpu_base
= &__raw_get_cpu_var(hrtimer_bases
);
1130 if (clock_id
== CLOCK_REALTIME
&& mode
!= HRTIMER_MODE_ABS
)
1131 clock_id
= CLOCK_MONOTONIC
;
1133 timer
->base
= &cpu_base
->clock_base
[clock_id
];
1134 INIT_LIST_HEAD(&timer
->cb_entry
);
1135 hrtimer_init_timer_hres(timer
);
1137 #ifdef CONFIG_TIMER_STATS
1138 timer
->start_site
= NULL
;
1139 timer
->start_pid
= -1;
1140 memset(timer
->start_comm
, 0, TASK_COMM_LEN
);
1145 * hrtimer_init - initialize a timer to the given clock
1146 * @timer: the timer to be initialized
1147 * @clock_id: the clock to be used
1148 * @mode: timer mode abs/rel
1150 void hrtimer_init(struct hrtimer
*timer
, clockid_t clock_id
,
1151 enum hrtimer_mode mode
)
1153 debug_hrtimer_init(timer
);
1154 __hrtimer_init(timer
, clock_id
, mode
);
1156 EXPORT_SYMBOL_GPL(hrtimer_init
);
1159 * hrtimer_get_res - get the timer resolution for a clock
1160 * @which_clock: which clock to query
1161 * @tp: pointer to timespec variable to store the resolution
1163 * Store the resolution of the clock selected by @which_clock in the
1164 * variable pointed to by @tp.
1166 int hrtimer_get_res(const clockid_t which_clock
, struct timespec
*tp
)
1168 struct hrtimer_cpu_base
*cpu_base
;
1170 cpu_base
= &__raw_get_cpu_var(hrtimer_bases
);
1171 *tp
= ktime_to_timespec(cpu_base
->clock_base
[which_clock
].resolution
);
1175 EXPORT_SYMBOL_GPL(hrtimer_get_res
);
1177 static void run_hrtimer_pending(struct hrtimer_cpu_base
*cpu_base
)
1179 spin_lock_irq(&cpu_base
->lock
);
1181 while (!list_empty(&cpu_base
->cb_pending
)) {
1182 enum hrtimer_restart (*fn
)(struct hrtimer
*);
1183 struct hrtimer
*timer
;
1186 timer
= list_entry(cpu_base
->cb_pending
.next
,
1187 struct hrtimer
, cb_entry
);
1189 debug_hrtimer_deactivate(timer
);
1190 timer_stats_account_hrtimer(timer
);
1192 fn
= timer
->function
;
1193 __remove_hrtimer(timer
, timer
->base
, HRTIMER_STATE_CALLBACK
, 0);
1194 spin_unlock_irq(&cpu_base
->lock
);
1196 restart
= fn(timer
);
1198 spin_lock_irq(&cpu_base
->lock
);
1200 timer
->state
&= ~HRTIMER_STATE_CALLBACK
;
1201 if (restart
== HRTIMER_RESTART
) {
1202 BUG_ON(hrtimer_active(timer
));
1204 * Enqueue the timer, allow reprogramming of the event
1207 enqueue_hrtimer(timer
, timer
->base
, 1);
1208 } else if (hrtimer_active(timer
)) {
1210 * If the timer was rearmed on another CPU, reprogram
1213 struct hrtimer_clock_base
*base
= timer
->base
;
1215 if (base
->first
== &timer
->node
&&
1216 hrtimer_reprogram(timer
, base
)) {
1218 * Timer is expired. Thus move it from tree to
1219 * pending list again.
1221 __remove_hrtimer(timer
, base
,
1222 HRTIMER_STATE_PENDING
, 0);
1223 list_add_tail(&timer
->cb_entry
,
1224 &base
->cpu_base
->cb_pending
);
1228 spin_unlock_irq(&cpu_base
->lock
);
1231 static void __run_hrtimer(struct hrtimer
*timer
)
1233 struct hrtimer_clock_base
*base
= timer
->base
;
1234 struct hrtimer_cpu_base
*cpu_base
= base
->cpu_base
;
1235 enum hrtimer_restart (*fn
)(struct hrtimer
*);
1238 debug_hrtimer_deactivate(timer
);
1239 __remove_hrtimer(timer
, base
, HRTIMER_STATE_CALLBACK
, 0);
1240 timer_stats_account_hrtimer(timer
);
1242 fn
= timer
->function
;
1243 if (timer
->cb_mode
== HRTIMER_CB_IRQSAFE_NO_SOFTIRQ
) {
1245 * Used for scheduler timers, avoid lock inversion with
1246 * rq->lock and tasklist_lock.
1248 * These timers are required to deal with enqueue expiry
1249 * themselves and are not allowed to migrate.
1251 spin_unlock(&cpu_base
->lock
);
1252 restart
= fn(timer
);
1253 spin_lock(&cpu_base
->lock
);
1255 restart
= fn(timer
);
1258 * Note: We clear the CALLBACK bit after enqueue_hrtimer to avoid
1259 * reprogramming of the event hardware. This happens at the end of this
1262 if (restart
!= HRTIMER_NORESTART
) {
1263 BUG_ON(timer
->state
!= HRTIMER_STATE_CALLBACK
);
1264 enqueue_hrtimer(timer
, base
, 0);
1266 timer
->state
&= ~HRTIMER_STATE_CALLBACK
;
1269 #ifdef CONFIG_HIGH_RES_TIMERS
1272 * High resolution timer interrupt
1273 * Called with interrupts disabled
1275 void hrtimer_interrupt(struct clock_event_device
*dev
)
1277 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
1278 struct hrtimer_clock_base
*base
;
1279 ktime_t expires_next
, now
;
1282 BUG_ON(!cpu_base
->hres_active
);
1283 cpu_base
->nr_events
++;
1284 dev
->next_event
.tv64
= KTIME_MAX
;
1289 expires_next
.tv64
= KTIME_MAX
;
1291 base
= cpu_base
->clock_base
;
1293 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++) {
1295 struct rb_node
*node
;
1297 spin_lock(&cpu_base
->lock
);
1299 basenow
= ktime_add(now
, base
->offset
);
1301 while ((node
= base
->first
)) {
1302 struct hrtimer
*timer
;
1304 timer
= rb_entry(node
, struct hrtimer
, node
);
1306 if (basenow
.tv64
< timer
->expires
.tv64
) {
1309 expires
= ktime_sub(timer
->expires
,
1311 if (expires
.tv64
< expires_next
.tv64
)
1312 expires_next
= expires
;
1316 /* Move softirq callbacks to the pending list */
1317 if (timer
->cb_mode
== HRTIMER_CB_SOFTIRQ
) {
1318 __remove_hrtimer(timer
, base
,
1319 HRTIMER_STATE_PENDING
, 0);
1320 list_add_tail(&timer
->cb_entry
,
1321 &base
->cpu_base
->cb_pending
);
1326 __run_hrtimer(timer
);
1328 spin_unlock(&cpu_base
->lock
);
1332 cpu_base
->expires_next
= expires_next
;
1334 /* Reprogramming necessary ? */
1335 if (expires_next
.tv64
!= KTIME_MAX
) {
1336 if (tick_program_event(expires_next
, 0))
1340 /* Raise softirq ? */
1342 raise_softirq(HRTIMER_SOFTIRQ
);
1345 static void run_hrtimer_softirq(struct softirq_action
*h
)
1347 run_hrtimer_pending(&__get_cpu_var(hrtimer_bases
));
1350 #endif /* CONFIG_HIGH_RES_TIMERS */
1353 * Called from timer softirq every jiffy, expire hrtimers:
1355 * For HRT its the fall back code to run the softirq in the timer
1356 * softirq context in case the hrtimer initialization failed or has
1357 * not been done yet.
1359 void hrtimer_run_pending(void)
1361 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
1363 if (hrtimer_hres_active())
1367 * This _is_ ugly: We have to check in the softirq context,
1368 * whether we can switch to highres and / or nohz mode. The
1369 * clocksource switch happens in the timer interrupt with
1370 * xtime_lock held. Notification from there only sets the
1371 * check bit in the tick_oneshot code, otherwise we might
1372 * deadlock vs. xtime_lock.
1374 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1375 hrtimer_switch_to_hres();
1377 run_hrtimer_pending(cpu_base
);
1381 * Called from hardirq context every jiffy
1383 void hrtimer_run_queues(void)
1385 struct rb_node
*node
;
1386 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
1387 struct hrtimer_clock_base
*base
;
1388 int index
, gettime
= 1;
1390 if (hrtimer_hres_active())
1393 for (index
= 0; index
< HRTIMER_MAX_CLOCK_BASES
; index
++) {
1394 base
= &cpu_base
->clock_base
[index
];
1399 if (base
->get_softirq_time
)
1400 base
->softirq_time
= base
->get_softirq_time();
1402 hrtimer_get_softirq_time(cpu_base
);
1406 spin_lock(&cpu_base
->lock
);
1408 while ((node
= base
->first
)) {
1409 struct hrtimer
*timer
;
1411 timer
= rb_entry(node
, struct hrtimer
, node
);
1412 if (base
->softirq_time
.tv64
<= timer
->expires
.tv64
)
1415 if (timer
->cb_mode
== HRTIMER_CB_SOFTIRQ
) {
1416 __remove_hrtimer(timer
, base
,
1417 HRTIMER_STATE_PENDING
, 0);
1418 list_add_tail(&timer
->cb_entry
,
1419 &base
->cpu_base
->cb_pending
);
1423 __run_hrtimer(timer
);
1425 spin_unlock(&cpu_base
->lock
);
1430 * Sleep related functions:
1432 static enum hrtimer_restart
hrtimer_wakeup(struct hrtimer
*timer
)
1434 struct hrtimer_sleeper
*t
=
1435 container_of(timer
, struct hrtimer_sleeper
, timer
);
1436 struct task_struct
*task
= t
->task
;
1440 wake_up_process(task
);
1442 return HRTIMER_NORESTART
;
1445 void hrtimer_init_sleeper(struct hrtimer_sleeper
*sl
, struct task_struct
*task
)
1447 sl
->timer
.function
= hrtimer_wakeup
;
1449 #ifdef CONFIG_HIGH_RES_TIMERS
1450 sl
->timer
.cb_mode
= HRTIMER_CB_IRQSAFE_NO_SOFTIRQ
;
1454 static int __sched
do_nanosleep(struct hrtimer_sleeper
*t
, enum hrtimer_mode mode
)
1456 hrtimer_init_sleeper(t
, current
);
1459 set_current_state(TASK_INTERRUPTIBLE
);
1460 hrtimer_start(&t
->timer
, t
->timer
.expires
, mode
);
1461 if (!hrtimer_active(&t
->timer
))
1464 if (likely(t
->task
))
1467 hrtimer_cancel(&t
->timer
);
1468 mode
= HRTIMER_MODE_ABS
;
1470 } while (t
->task
&& !signal_pending(current
));
1472 __set_current_state(TASK_RUNNING
);
1474 return t
->task
== NULL
;
1477 static int update_rmtp(struct hrtimer
*timer
, struct timespec __user
*rmtp
)
1479 struct timespec rmt
;
1482 rem
= ktime_sub(timer
->expires
, timer
->base
->get_time());
1485 rmt
= ktime_to_timespec(rem
);
1487 if (copy_to_user(rmtp
, &rmt
, sizeof(*rmtp
)))
1493 long __sched
hrtimer_nanosleep_restart(struct restart_block
*restart
)
1495 struct hrtimer_sleeper t
;
1496 struct timespec __user
*rmtp
;
1499 hrtimer_init_on_stack(&t
.timer
, restart
->nanosleep
.index
,
1501 t
.timer
.expires
.tv64
= restart
->nanosleep
.expires
;
1503 if (do_nanosleep(&t
, HRTIMER_MODE_ABS
))
1506 rmtp
= restart
->nanosleep
.rmtp
;
1508 ret
= update_rmtp(&t
.timer
, rmtp
);
1513 /* The other values in restart are already filled in */
1514 ret
= -ERESTART_RESTARTBLOCK
;
1516 destroy_hrtimer_on_stack(&t
.timer
);
1520 long hrtimer_nanosleep(struct timespec
*rqtp
, struct timespec __user
*rmtp
,
1521 const enum hrtimer_mode mode
, const clockid_t clockid
)
1523 struct restart_block
*restart
;
1524 struct hrtimer_sleeper t
;
1527 hrtimer_init_on_stack(&t
.timer
, clockid
, mode
);
1528 t
.timer
.expires
= timespec_to_ktime(*rqtp
);
1529 if (do_nanosleep(&t
, mode
))
1532 /* Absolute timers do not update the rmtp value and restart: */
1533 if (mode
== HRTIMER_MODE_ABS
) {
1534 ret
= -ERESTARTNOHAND
;
1539 ret
= update_rmtp(&t
.timer
, rmtp
);
1544 restart
= ¤t_thread_info()->restart_block
;
1545 restart
->fn
= hrtimer_nanosleep_restart
;
1546 restart
->nanosleep
.index
= t
.timer
.base
->index
;
1547 restart
->nanosleep
.rmtp
= rmtp
;
1548 restart
->nanosleep
.expires
= t
.timer
.expires
.tv64
;
1550 ret
= -ERESTART_RESTARTBLOCK
;
1552 destroy_hrtimer_on_stack(&t
.timer
);
1557 sys_nanosleep(struct timespec __user
*rqtp
, struct timespec __user
*rmtp
)
1561 if (copy_from_user(&tu
, rqtp
, sizeof(tu
)))
1564 if (!timespec_valid(&tu
))
1567 return hrtimer_nanosleep(&tu
, rmtp
, HRTIMER_MODE_REL
, CLOCK_MONOTONIC
);
1571 * Functions related to boot-time initialization:
1573 static void __cpuinit
init_hrtimers_cpu(int cpu
)
1575 struct hrtimer_cpu_base
*cpu_base
= &per_cpu(hrtimer_bases
, cpu
);
1578 spin_lock_init(&cpu_base
->lock
);
1580 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++)
1581 cpu_base
->clock_base
[i
].cpu_base
= cpu_base
;
1583 INIT_LIST_HEAD(&cpu_base
->cb_pending
);
1584 hrtimer_init_hres(cpu_base
);
1587 #ifdef CONFIG_HOTPLUG_CPU
1589 static void migrate_hrtimer_list(struct hrtimer_clock_base
*old_base
,
1590 struct hrtimer_clock_base
*new_base
)
1592 struct hrtimer
*timer
;
1593 struct rb_node
*node
;
1595 while ((node
= rb_first(&old_base
->active
))) {
1596 timer
= rb_entry(node
, struct hrtimer
, node
);
1597 BUG_ON(hrtimer_callback_running(timer
));
1598 debug_hrtimer_deactivate(timer
);
1599 __remove_hrtimer(timer
, old_base
, HRTIMER_STATE_INACTIVE
, 0);
1600 timer
->base
= new_base
;
1602 * Enqueue the timer. Allow reprogramming of the event device
1604 enqueue_hrtimer(timer
, new_base
, 1);
1608 static void migrate_hrtimers(int cpu
)
1610 struct hrtimer_cpu_base
*old_base
, *new_base
;
1613 BUG_ON(cpu_online(cpu
));
1614 old_base
= &per_cpu(hrtimer_bases
, cpu
);
1615 new_base
= &get_cpu_var(hrtimer_bases
);
1617 tick_cancel_sched_timer(cpu
);
1619 local_irq_disable();
1620 spin_lock(&new_base
->lock
);
1621 spin_lock_nested(&old_base
->lock
, SINGLE_DEPTH_NESTING
);
1623 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++) {
1624 migrate_hrtimer_list(&old_base
->clock_base
[i
],
1625 &new_base
->clock_base
[i
]);
1628 spin_unlock(&old_base
->lock
);
1629 spin_unlock(&new_base
->lock
);
1631 put_cpu_var(hrtimer_bases
);
1633 #endif /* CONFIG_HOTPLUG_CPU */
1635 static int __cpuinit
hrtimer_cpu_notify(struct notifier_block
*self
,
1636 unsigned long action
, void *hcpu
)
1638 unsigned int cpu
= (long)hcpu
;
1642 case CPU_UP_PREPARE
:
1643 case CPU_UP_PREPARE_FROZEN
:
1644 init_hrtimers_cpu(cpu
);
1647 #ifdef CONFIG_HOTPLUG_CPU
1649 case CPU_DEAD_FROZEN
:
1650 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD
, &cpu
);
1651 migrate_hrtimers(cpu
);
1662 static struct notifier_block __cpuinitdata hrtimers_nb
= {
1663 .notifier_call
= hrtimer_cpu_notify
,
1666 void __init
hrtimers_init(void)
1668 hrtimer_cpu_notify(&hrtimers_nb
, (unsigned long)CPU_UP_PREPARE
,
1669 (void *)(long)smp_processor_id());
1670 register_cpu_notifier(&hrtimers_nb
);
1671 #ifdef CONFIG_HIGH_RES_TIMERS
1672 open_softirq(HRTIMER_SOFTIRQ
, run_hrtimer_softirq
, NULL
);