target: remove the unused SCF_* flags
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / target / target_core_transport.c
blob43fd2778d602a833fc5d93556c211385bfc2a1c4
1 /*******************************************************************************
2 * Filename: target_core_transport.c
4 * This file contains the Generic Target Engine Core.
6 * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7 * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8 * Copyright (c) 2007-2010 Rising Tide Systems
9 * Copyright (c) 2008-2010 Linux-iSCSI.org
11 * Nicholas A. Bellinger <nab@kernel.org>
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
27 ******************************************************************************/
29 #include <linux/version.h>
30 #include <linux/net.h>
31 #include <linux/delay.h>
32 #include <linux/string.h>
33 #include <linux/timer.h>
34 #include <linux/slab.h>
35 #include <linux/blkdev.h>
36 #include <linux/spinlock.h>
37 #include <linux/kthread.h>
38 #include <linux/in.h>
39 #include <linux/cdrom.h>
40 #include <asm/unaligned.h>
41 #include <net/sock.h>
42 #include <net/tcp.h>
43 #include <scsi/scsi.h>
44 #include <scsi/scsi_cmnd.h>
45 #include <scsi/scsi_tcq.h>
47 #include <target/target_core_base.h>
48 #include <target/target_core_device.h>
49 #include <target/target_core_tmr.h>
50 #include <target/target_core_tpg.h>
51 #include <target/target_core_transport.h>
52 #include <target/target_core_fabric_ops.h>
53 #include <target/target_core_configfs.h>
55 #include "target_core_alua.h"
56 #include "target_core_hba.h"
57 #include "target_core_pr.h"
58 #include "target_core_scdb.h"
59 #include "target_core_ua.h"
61 /* #define DEBUG_CDB_HANDLER */
62 #ifdef DEBUG_CDB_HANDLER
63 #define DEBUG_CDB_H(x...) printk(KERN_INFO x)
64 #else
65 #define DEBUG_CDB_H(x...)
66 #endif
68 /* #define DEBUG_CMD_MAP */
69 #ifdef DEBUG_CMD_MAP
70 #define DEBUG_CMD_M(x...) printk(KERN_INFO x)
71 #else
72 #define DEBUG_CMD_M(x...)
73 #endif
75 /* #define DEBUG_MEM_ALLOC */
76 #ifdef DEBUG_MEM_ALLOC
77 #define DEBUG_MEM(x...) printk(KERN_INFO x)
78 #else
79 #define DEBUG_MEM(x...)
80 #endif
82 /* #define DEBUG_MEM2_ALLOC */
83 #ifdef DEBUG_MEM2_ALLOC
84 #define DEBUG_MEM2(x...) printk(KERN_INFO x)
85 #else
86 #define DEBUG_MEM2(x...)
87 #endif
89 /* #define DEBUG_SG_CALC */
90 #ifdef DEBUG_SG_CALC
91 #define DEBUG_SC(x...) printk(KERN_INFO x)
92 #else
93 #define DEBUG_SC(x...)
94 #endif
96 /* #define DEBUG_SE_OBJ */
97 #ifdef DEBUG_SE_OBJ
98 #define DEBUG_SO(x...) printk(KERN_INFO x)
99 #else
100 #define DEBUG_SO(x...)
101 #endif
103 /* #define DEBUG_CMD_VOL */
104 #ifdef DEBUG_CMD_VOL
105 #define DEBUG_VOL(x...) printk(KERN_INFO x)
106 #else
107 #define DEBUG_VOL(x...)
108 #endif
110 /* #define DEBUG_CMD_STOP */
111 #ifdef DEBUG_CMD_STOP
112 #define DEBUG_CS(x...) printk(KERN_INFO x)
113 #else
114 #define DEBUG_CS(x...)
115 #endif
117 /* #define DEBUG_PASSTHROUGH */
118 #ifdef DEBUG_PASSTHROUGH
119 #define DEBUG_PT(x...) printk(KERN_INFO x)
120 #else
121 #define DEBUG_PT(x...)
122 #endif
124 /* #define DEBUG_TASK_STOP */
125 #ifdef DEBUG_TASK_STOP
126 #define DEBUG_TS(x...) printk(KERN_INFO x)
127 #else
128 #define DEBUG_TS(x...)
129 #endif
131 /* #define DEBUG_TRANSPORT_STOP */
132 #ifdef DEBUG_TRANSPORT_STOP
133 #define DEBUG_TRANSPORT_S(x...) printk(KERN_INFO x)
134 #else
135 #define DEBUG_TRANSPORT_S(x...)
136 #endif
138 /* #define DEBUG_TASK_FAILURE */
139 #ifdef DEBUG_TASK_FAILURE
140 #define DEBUG_TF(x...) printk(KERN_INFO x)
141 #else
142 #define DEBUG_TF(x...)
143 #endif
145 /* #define DEBUG_DEV_OFFLINE */
146 #ifdef DEBUG_DEV_OFFLINE
147 #define DEBUG_DO(x...) printk(KERN_INFO x)
148 #else
149 #define DEBUG_DO(x...)
150 #endif
152 /* #define DEBUG_TASK_STATE */
153 #ifdef DEBUG_TASK_STATE
154 #define DEBUG_TSTATE(x...) printk(KERN_INFO x)
155 #else
156 #define DEBUG_TSTATE(x...)
157 #endif
159 /* #define DEBUG_STATUS_THR */
160 #ifdef DEBUG_STATUS_THR
161 #define DEBUG_ST(x...) printk(KERN_INFO x)
162 #else
163 #define DEBUG_ST(x...)
164 #endif
166 /* #define DEBUG_TASK_TIMEOUT */
167 #ifdef DEBUG_TASK_TIMEOUT
168 #define DEBUG_TT(x...) printk(KERN_INFO x)
169 #else
170 #define DEBUG_TT(x...)
171 #endif
173 /* #define DEBUG_GENERIC_REQUEST_FAILURE */
174 #ifdef DEBUG_GENERIC_REQUEST_FAILURE
175 #define DEBUG_GRF(x...) printk(KERN_INFO x)
176 #else
177 #define DEBUG_GRF(x...)
178 #endif
180 /* #define DEBUG_SAM_TASK_ATTRS */
181 #ifdef DEBUG_SAM_TASK_ATTRS
182 #define DEBUG_STA(x...) printk(KERN_INFO x)
183 #else
184 #define DEBUG_STA(x...)
185 #endif
187 static int sub_api_initialized;
189 static struct kmem_cache *se_cmd_cache;
190 static struct kmem_cache *se_sess_cache;
191 struct kmem_cache *se_tmr_req_cache;
192 struct kmem_cache *se_ua_cache;
193 struct kmem_cache *se_mem_cache;
194 struct kmem_cache *t10_pr_reg_cache;
195 struct kmem_cache *t10_alua_lu_gp_cache;
196 struct kmem_cache *t10_alua_lu_gp_mem_cache;
197 struct kmem_cache *t10_alua_tg_pt_gp_cache;
198 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
200 /* Used for transport_dev_get_map_*() */
201 typedef int (*map_func_t)(struct se_task *, u32);
203 static int transport_generic_write_pending(struct se_cmd *);
204 static int transport_processing_thread(void *param);
205 static int __transport_execute_tasks(struct se_device *dev);
206 static void transport_complete_task_attr(struct se_cmd *cmd);
207 static void transport_direct_request_timeout(struct se_cmd *cmd);
208 static void transport_free_dev_tasks(struct se_cmd *cmd);
209 static u32 transport_allocate_tasks(struct se_cmd *cmd,
210 unsigned long long starting_lba, u32 sectors,
211 enum dma_data_direction data_direction,
212 struct list_head *mem_list, int set_counts);
213 static int transport_generic_get_mem(struct se_cmd *cmd, u32 length);
214 static int transport_generic_remove(struct se_cmd *cmd,
215 int release_to_pool, int session_reinstatement);
216 static int transport_cmd_get_valid_sectors(struct se_cmd *cmd);
217 static int transport_map_sg_to_mem(struct se_cmd *cmd,
218 struct list_head *se_mem_list, struct scatterlist *sgl);
219 static void transport_memcpy_se_mem_read_contig(unsigned char *dst,
220 struct list_head *se_mem_list, u32 len);
221 static void transport_release_fe_cmd(struct se_cmd *cmd);
222 static void transport_remove_cmd_from_queue(struct se_cmd *cmd,
223 struct se_queue_obj *qobj);
224 static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq);
225 static void transport_stop_all_task_timers(struct se_cmd *cmd);
227 int init_se_kmem_caches(void)
229 se_cmd_cache = kmem_cache_create("se_cmd_cache",
230 sizeof(struct se_cmd), __alignof__(struct se_cmd), 0, NULL);
231 if (!(se_cmd_cache)) {
232 printk(KERN_ERR "kmem_cache_create for struct se_cmd failed\n");
233 goto out;
235 se_tmr_req_cache = kmem_cache_create("se_tmr_cache",
236 sizeof(struct se_tmr_req), __alignof__(struct se_tmr_req),
237 0, NULL);
238 if (!(se_tmr_req_cache)) {
239 printk(KERN_ERR "kmem_cache_create() for struct se_tmr_req"
240 " failed\n");
241 goto out;
243 se_sess_cache = kmem_cache_create("se_sess_cache",
244 sizeof(struct se_session), __alignof__(struct se_session),
245 0, NULL);
246 if (!(se_sess_cache)) {
247 printk(KERN_ERR "kmem_cache_create() for struct se_session"
248 " failed\n");
249 goto out;
251 se_ua_cache = kmem_cache_create("se_ua_cache",
252 sizeof(struct se_ua), __alignof__(struct se_ua),
253 0, NULL);
254 if (!(se_ua_cache)) {
255 printk(KERN_ERR "kmem_cache_create() for struct se_ua failed\n");
256 goto out;
258 se_mem_cache = kmem_cache_create("se_mem_cache",
259 sizeof(struct se_mem), __alignof__(struct se_mem), 0, NULL);
260 if (!(se_mem_cache)) {
261 printk(KERN_ERR "kmem_cache_create() for struct se_mem failed\n");
262 goto out;
264 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
265 sizeof(struct t10_pr_registration),
266 __alignof__(struct t10_pr_registration), 0, NULL);
267 if (!(t10_pr_reg_cache)) {
268 printk(KERN_ERR "kmem_cache_create() for struct t10_pr_registration"
269 " failed\n");
270 goto out;
272 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
273 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
274 0, NULL);
275 if (!(t10_alua_lu_gp_cache)) {
276 printk(KERN_ERR "kmem_cache_create() for t10_alua_lu_gp_cache"
277 " failed\n");
278 goto out;
280 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
281 sizeof(struct t10_alua_lu_gp_member),
282 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
283 if (!(t10_alua_lu_gp_mem_cache)) {
284 printk(KERN_ERR "kmem_cache_create() for t10_alua_lu_gp_mem_"
285 "cache failed\n");
286 goto out;
288 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
289 sizeof(struct t10_alua_tg_pt_gp),
290 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
291 if (!(t10_alua_tg_pt_gp_cache)) {
292 printk(KERN_ERR "kmem_cache_create() for t10_alua_tg_pt_gp_"
293 "cache failed\n");
294 goto out;
296 t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
297 "t10_alua_tg_pt_gp_mem_cache",
298 sizeof(struct t10_alua_tg_pt_gp_member),
299 __alignof__(struct t10_alua_tg_pt_gp_member),
300 0, NULL);
301 if (!(t10_alua_tg_pt_gp_mem_cache)) {
302 printk(KERN_ERR "kmem_cache_create() for t10_alua_tg_pt_gp_"
303 "mem_t failed\n");
304 goto out;
307 return 0;
308 out:
309 if (se_cmd_cache)
310 kmem_cache_destroy(se_cmd_cache);
311 if (se_tmr_req_cache)
312 kmem_cache_destroy(se_tmr_req_cache);
313 if (se_sess_cache)
314 kmem_cache_destroy(se_sess_cache);
315 if (se_ua_cache)
316 kmem_cache_destroy(se_ua_cache);
317 if (se_mem_cache)
318 kmem_cache_destroy(se_mem_cache);
319 if (t10_pr_reg_cache)
320 kmem_cache_destroy(t10_pr_reg_cache);
321 if (t10_alua_lu_gp_cache)
322 kmem_cache_destroy(t10_alua_lu_gp_cache);
323 if (t10_alua_lu_gp_mem_cache)
324 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
325 if (t10_alua_tg_pt_gp_cache)
326 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
327 if (t10_alua_tg_pt_gp_mem_cache)
328 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
329 return -ENOMEM;
332 void release_se_kmem_caches(void)
334 kmem_cache_destroy(se_cmd_cache);
335 kmem_cache_destroy(se_tmr_req_cache);
336 kmem_cache_destroy(se_sess_cache);
337 kmem_cache_destroy(se_ua_cache);
338 kmem_cache_destroy(se_mem_cache);
339 kmem_cache_destroy(t10_pr_reg_cache);
340 kmem_cache_destroy(t10_alua_lu_gp_cache);
341 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
342 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
343 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
346 /* This code ensures unique mib indexes are handed out. */
347 static DEFINE_SPINLOCK(scsi_mib_index_lock);
348 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
351 * Allocate a new row index for the entry type specified
353 u32 scsi_get_new_index(scsi_index_t type)
355 u32 new_index;
357 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
359 spin_lock(&scsi_mib_index_lock);
360 new_index = ++scsi_mib_index[type];
361 spin_unlock(&scsi_mib_index_lock);
363 return new_index;
366 void transport_init_queue_obj(struct se_queue_obj *qobj)
368 atomic_set(&qobj->queue_cnt, 0);
369 INIT_LIST_HEAD(&qobj->qobj_list);
370 init_waitqueue_head(&qobj->thread_wq);
371 spin_lock_init(&qobj->cmd_queue_lock);
373 EXPORT_SYMBOL(transport_init_queue_obj);
375 static int transport_subsystem_reqmods(void)
377 int ret;
379 ret = request_module("target_core_iblock");
380 if (ret != 0)
381 printk(KERN_ERR "Unable to load target_core_iblock\n");
383 ret = request_module("target_core_file");
384 if (ret != 0)
385 printk(KERN_ERR "Unable to load target_core_file\n");
387 ret = request_module("target_core_pscsi");
388 if (ret != 0)
389 printk(KERN_ERR "Unable to load target_core_pscsi\n");
391 ret = request_module("target_core_stgt");
392 if (ret != 0)
393 printk(KERN_ERR "Unable to load target_core_stgt\n");
395 return 0;
398 int transport_subsystem_check_init(void)
400 int ret;
402 if (sub_api_initialized)
403 return 0;
405 * Request the loading of known TCM subsystem plugins..
407 ret = transport_subsystem_reqmods();
408 if (ret < 0)
409 return ret;
411 sub_api_initialized = 1;
412 return 0;
415 struct se_session *transport_init_session(void)
417 struct se_session *se_sess;
419 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
420 if (!(se_sess)) {
421 printk(KERN_ERR "Unable to allocate struct se_session from"
422 " se_sess_cache\n");
423 return ERR_PTR(-ENOMEM);
425 INIT_LIST_HEAD(&se_sess->sess_list);
426 INIT_LIST_HEAD(&se_sess->sess_acl_list);
428 return se_sess;
430 EXPORT_SYMBOL(transport_init_session);
433 * Called with spin_lock_bh(&struct se_portal_group->session_lock called.
435 void __transport_register_session(
436 struct se_portal_group *se_tpg,
437 struct se_node_acl *se_nacl,
438 struct se_session *se_sess,
439 void *fabric_sess_ptr)
441 unsigned char buf[PR_REG_ISID_LEN];
443 se_sess->se_tpg = se_tpg;
444 se_sess->fabric_sess_ptr = fabric_sess_ptr;
446 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
448 * Only set for struct se_session's that will actually be moving I/O.
449 * eg: *NOT* discovery sessions.
451 if (se_nacl) {
453 * If the fabric module supports an ISID based TransportID,
454 * save this value in binary from the fabric I_T Nexus now.
456 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
457 memset(&buf[0], 0, PR_REG_ISID_LEN);
458 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
459 &buf[0], PR_REG_ISID_LEN);
460 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
462 spin_lock_irq(&se_nacl->nacl_sess_lock);
464 * The se_nacl->nacl_sess pointer will be set to the
465 * last active I_T Nexus for each struct se_node_acl.
467 se_nacl->nacl_sess = se_sess;
469 list_add_tail(&se_sess->sess_acl_list,
470 &se_nacl->acl_sess_list);
471 spin_unlock_irq(&se_nacl->nacl_sess_lock);
473 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
475 printk(KERN_INFO "TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
476 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
478 EXPORT_SYMBOL(__transport_register_session);
480 void transport_register_session(
481 struct se_portal_group *se_tpg,
482 struct se_node_acl *se_nacl,
483 struct se_session *se_sess,
484 void *fabric_sess_ptr)
486 spin_lock_bh(&se_tpg->session_lock);
487 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
488 spin_unlock_bh(&se_tpg->session_lock);
490 EXPORT_SYMBOL(transport_register_session);
492 void transport_deregister_session_configfs(struct se_session *se_sess)
494 struct se_node_acl *se_nacl;
495 unsigned long flags;
497 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
499 se_nacl = se_sess->se_node_acl;
500 if ((se_nacl)) {
501 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
502 list_del(&se_sess->sess_acl_list);
504 * If the session list is empty, then clear the pointer.
505 * Otherwise, set the struct se_session pointer from the tail
506 * element of the per struct se_node_acl active session list.
508 if (list_empty(&se_nacl->acl_sess_list))
509 se_nacl->nacl_sess = NULL;
510 else {
511 se_nacl->nacl_sess = container_of(
512 se_nacl->acl_sess_list.prev,
513 struct se_session, sess_acl_list);
515 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
518 EXPORT_SYMBOL(transport_deregister_session_configfs);
520 void transport_free_session(struct se_session *se_sess)
522 kmem_cache_free(se_sess_cache, se_sess);
524 EXPORT_SYMBOL(transport_free_session);
526 void transport_deregister_session(struct se_session *se_sess)
528 struct se_portal_group *se_tpg = se_sess->se_tpg;
529 struct se_node_acl *se_nacl;
531 if (!(se_tpg)) {
532 transport_free_session(se_sess);
533 return;
536 spin_lock_bh(&se_tpg->session_lock);
537 list_del(&se_sess->sess_list);
538 se_sess->se_tpg = NULL;
539 se_sess->fabric_sess_ptr = NULL;
540 spin_unlock_bh(&se_tpg->session_lock);
543 * Determine if we need to do extra work for this initiator node's
544 * struct se_node_acl if it had been previously dynamically generated.
546 se_nacl = se_sess->se_node_acl;
547 if ((se_nacl)) {
548 spin_lock_bh(&se_tpg->acl_node_lock);
549 if (se_nacl->dynamic_node_acl) {
550 if (!(se_tpg->se_tpg_tfo->tpg_check_demo_mode_cache(
551 se_tpg))) {
552 list_del(&se_nacl->acl_list);
553 se_tpg->num_node_acls--;
554 spin_unlock_bh(&se_tpg->acl_node_lock);
556 core_tpg_wait_for_nacl_pr_ref(se_nacl);
557 core_free_device_list_for_node(se_nacl, se_tpg);
558 se_tpg->se_tpg_tfo->tpg_release_fabric_acl(se_tpg,
559 se_nacl);
560 spin_lock_bh(&se_tpg->acl_node_lock);
563 spin_unlock_bh(&se_tpg->acl_node_lock);
566 transport_free_session(se_sess);
568 printk(KERN_INFO "TARGET_CORE[%s]: Deregistered fabric_sess\n",
569 se_tpg->se_tpg_tfo->get_fabric_name());
571 EXPORT_SYMBOL(transport_deregister_session);
574 * Called with cmd->t_state_lock held.
576 static void transport_all_task_dev_remove_state(struct se_cmd *cmd)
578 struct se_device *dev;
579 struct se_task *task;
580 unsigned long flags;
582 list_for_each_entry(task, &cmd->t_task_list, t_list) {
583 dev = task->se_dev;
584 if (!(dev))
585 continue;
587 if (atomic_read(&task->task_active))
588 continue;
590 if (!(atomic_read(&task->task_state_active)))
591 continue;
593 spin_lock_irqsave(&dev->execute_task_lock, flags);
594 list_del(&task->t_state_list);
595 DEBUG_TSTATE("Removed ITT: 0x%08x dev: %p task[%p]\n",
596 cmd->se_tfo->tfo_get_task_tag(cmd), dev, task);
597 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
599 atomic_set(&task->task_state_active, 0);
600 atomic_dec(&cmd->t_task_cdbs_ex_left);
604 /* transport_cmd_check_stop():
606 * 'transport_off = 1' determines if t_transport_active should be cleared.
607 * 'transport_off = 2' determines if task_dev_state should be removed.
609 * A non-zero u8 t_state sets cmd->t_state.
610 * Returns 1 when command is stopped, else 0.
612 static int transport_cmd_check_stop(
613 struct se_cmd *cmd,
614 int transport_off,
615 u8 t_state)
617 unsigned long flags;
619 spin_lock_irqsave(&cmd->t_state_lock, flags);
621 * Determine if IOCTL context caller in requesting the stopping of this
622 * command for LUN shutdown purposes.
624 if (atomic_read(&cmd->transport_lun_stop)) {
625 DEBUG_CS("%s:%d atomic_read(&cmd->transport_lun_stop)"
626 " == TRUE for ITT: 0x%08x\n", __func__, __LINE__,
627 cmd->se_tfo->get_task_tag(cmd));
629 cmd->deferred_t_state = cmd->t_state;
630 cmd->t_state = TRANSPORT_DEFERRED_CMD;
631 atomic_set(&cmd->t_transport_active, 0);
632 if (transport_off == 2)
633 transport_all_task_dev_remove_state(cmd);
634 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
636 complete(&cmd->transport_lun_stop_comp);
637 return 1;
640 * Determine if frontend context caller is requesting the stopping of
641 * this command for frontend exceptions.
643 if (atomic_read(&cmd->t_transport_stop)) {
644 DEBUG_CS("%s:%d atomic_read(&cmd->t_transport_stop) =="
645 " TRUE for ITT: 0x%08x\n", __func__, __LINE__,
646 cmd->se_tfo->get_task_tag(cmd));
648 cmd->deferred_t_state = cmd->t_state;
649 cmd->t_state = TRANSPORT_DEFERRED_CMD;
650 if (transport_off == 2)
651 transport_all_task_dev_remove_state(cmd);
654 * Clear struct se_cmd->se_lun before the transport_off == 2 handoff
655 * to FE.
657 if (transport_off == 2)
658 cmd->se_lun = NULL;
659 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
661 complete(&cmd->t_transport_stop_comp);
662 return 1;
664 if (transport_off) {
665 atomic_set(&cmd->t_transport_active, 0);
666 if (transport_off == 2) {
667 transport_all_task_dev_remove_state(cmd);
669 * Clear struct se_cmd->se_lun before the transport_off == 2
670 * handoff to fabric module.
672 cmd->se_lun = NULL;
674 * Some fabric modules like tcm_loop can release
675 * their internally allocated I/O reference now and
676 * struct se_cmd now.
678 if (cmd->se_tfo->check_stop_free != NULL) {
679 spin_unlock_irqrestore(
680 &cmd->t_state_lock, flags);
682 cmd->se_tfo->check_stop_free(cmd);
683 return 1;
686 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
688 return 0;
689 } else if (t_state)
690 cmd->t_state = t_state;
691 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
693 return 0;
696 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
698 return transport_cmd_check_stop(cmd, 2, 0);
701 static void transport_lun_remove_cmd(struct se_cmd *cmd)
703 struct se_lun *lun = cmd->se_lun;
704 unsigned long flags;
706 if (!lun)
707 return;
709 spin_lock_irqsave(&cmd->t_state_lock, flags);
710 if (!(atomic_read(&cmd->transport_dev_active))) {
711 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
712 goto check_lun;
714 atomic_set(&cmd->transport_dev_active, 0);
715 transport_all_task_dev_remove_state(cmd);
716 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
719 check_lun:
720 spin_lock_irqsave(&lun->lun_cmd_lock, flags);
721 if (atomic_read(&cmd->transport_lun_active)) {
722 list_del(&cmd->se_lun_node);
723 atomic_set(&cmd->transport_lun_active, 0);
724 #if 0
725 printk(KERN_INFO "Removed ITT: 0x%08x from LUN LIST[%d]\n"
726 cmd->se_tfo->get_task_tag(cmd), lun->unpacked_lun);
727 #endif
729 spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
732 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
734 transport_remove_cmd_from_queue(cmd, &cmd->se_dev->dev_queue_obj);
735 transport_lun_remove_cmd(cmd);
737 if (transport_cmd_check_stop_to_fabric(cmd))
738 return;
739 if (remove)
740 transport_generic_remove(cmd, 0, 0);
743 void transport_cmd_finish_abort_tmr(struct se_cmd *cmd)
745 transport_remove_cmd_from_queue(cmd, &cmd->se_dev->dev_queue_obj);
747 if (transport_cmd_check_stop_to_fabric(cmd))
748 return;
750 transport_generic_remove(cmd, 0, 0);
753 static void transport_add_cmd_to_queue(
754 struct se_cmd *cmd,
755 int t_state)
757 struct se_device *dev = cmd->se_dev;
758 struct se_queue_obj *qobj = &dev->dev_queue_obj;
759 unsigned long flags;
761 INIT_LIST_HEAD(&cmd->se_queue_node);
763 if (t_state) {
764 spin_lock_irqsave(&cmd->t_state_lock, flags);
765 cmd->t_state = t_state;
766 atomic_set(&cmd->t_transport_active, 1);
767 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
770 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
771 list_add_tail(&cmd->se_queue_node, &qobj->qobj_list);
772 atomic_inc(&cmd->t_transport_queue_active);
773 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
775 atomic_inc(&qobj->queue_cnt);
776 wake_up_interruptible(&qobj->thread_wq);
779 static struct se_cmd *
780 transport_get_cmd_from_queue(struct se_queue_obj *qobj)
782 struct se_cmd *cmd;
783 unsigned long flags;
785 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
786 if (list_empty(&qobj->qobj_list)) {
787 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
788 return NULL;
790 cmd = list_first_entry(&qobj->qobj_list, struct se_cmd, se_queue_node);
792 atomic_dec(&cmd->t_transport_queue_active);
794 list_del(&cmd->se_queue_node);
795 atomic_dec(&qobj->queue_cnt);
796 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
798 return cmd;
801 static void transport_remove_cmd_from_queue(struct se_cmd *cmd,
802 struct se_queue_obj *qobj)
804 struct se_cmd *t;
805 unsigned long flags;
807 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
808 if (!(atomic_read(&cmd->t_transport_queue_active))) {
809 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
810 return;
813 list_for_each_entry(t, &qobj->qobj_list, se_queue_node)
814 if (t == cmd) {
815 atomic_dec(&cmd->t_transport_queue_active);
816 atomic_dec(&qobj->queue_cnt);
817 list_del(&cmd->se_queue_node);
818 break;
820 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
822 if (atomic_read(&cmd->t_transport_queue_active)) {
823 printk(KERN_ERR "ITT: 0x%08x t_transport_queue_active: %d\n",
824 cmd->se_tfo->get_task_tag(cmd),
825 atomic_read(&cmd->t_transport_queue_active));
830 * Completion function used by TCM subsystem plugins (such as FILEIO)
831 * for queueing up response from struct se_subsystem_api->do_task()
833 void transport_complete_sync_cache(struct se_cmd *cmd, int good)
835 struct se_task *task = list_entry(cmd->t_task_list.next,
836 struct se_task, t_list);
838 if (good) {
839 cmd->scsi_status = SAM_STAT_GOOD;
840 task->task_scsi_status = GOOD;
841 } else {
842 task->task_scsi_status = SAM_STAT_CHECK_CONDITION;
843 task->task_error_status = PYX_TRANSPORT_ILLEGAL_REQUEST;
844 task->task_se_cmd->transport_error_status =
845 PYX_TRANSPORT_ILLEGAL_REQUEST;
848 transport_complete_task(task, good);
850 EXPORT_SYMBOL(transport_complete_sync_cache);
852 /* transport_complete_task():
854 * Called from interrupt and non interrupt context depending
855 * on the transport plugin.
857 void transport_complete_task(struct se_task *task, int success)
859 struct se_cmd *cmd = task->task_se_cmd;
860 struct se_device *dev = task->se_dev;
861 int t_state;
862 unsigned long flags;
863 #if 0
864 printk(KERN_INFO "task: %p CDB: 0x%02x obj_ptr: %p\n", task,
865 cmd->t_task_cdb[0], dev);
866 #endif
867 if (dev)
868 atomic_inc(&dev->depth_left);
870 spin_lock_irqsave(&cmd->t_state_lock, flags);
871 atomic_set(&task->task_active, 0);
874 * See if any sense data exists, if so set the TASK_SENSE flag.
875 * Also check for any other post completion work that needs to be
876 * done by the plugins.
878 if (dev && dev->transport->transport_complete) {
879 if (dev->transport->transport_complete(task) != 0) {
880 cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
881 task->task_sense = 1;
882 success = 1;
887 * See if we are waiting for outstanding struct se_task
888 * to complete for an exception condition
890 if (atomic_read(&task->task_stop)) {
892 * Decrement cmd->t_se_count if this task had
893 * previously thrown its timeout exception handler.
895 if (atomic_read(&task->task_timeout)) {
896 atomic_dec(&cmd->t_se_count);
897 atomic_set(&task->task_timeout, 0);
899 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
901 complete(&task->task_stop_comp);
902 return;
905 * If the task's timeout handler has fired, use the t_task_cdbs_timeout
906 * left counter to determine when the struct se_cmd is ready to be queued to
907 * the processing thread.
909 if (atomic_read(&task->task_timeout)) {
910 if (!(atomic_dec_and_test(
911 &cmd->t_task_cdbs_timeout_left))) {
912 spin_unlock_irqrestore(&cmd->t_state_lock,
913 flags);
914 return;
916 t_state = TRANSPORT_COMPLETE_TIMEOUT;
917 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
919 transport_add_cmd_to_queue(cmd, t_state);
920 return;
922 atomic_dec(&cmd->t_task_cdbs_timeout_left);
925 * Decrement the outstanding t_task_cdbs_left count. The last
926 * struct se_task from struct se_cmd will complete itself into the
927 * device queue depending upon int success.
929 if (!(atomic_dec_and_test(&cmd->t_task_cdbs_left))) {
930 if (!success)
931 cmd->t_tasks_failed = 1;
933 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
934 return;
937 if (!success || cmd->t_tasks_failed) {
938 t_state = TRANSPORT_COMPLETE_FAILURE;
939 if (!task->task_error_status) {
940 task->task_error_status =
941 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
942 cmd->transport_error_status =
943 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
945 } else {
946 atomic_set(&cmd->t_transport_complete, 1);
947 t_state = TRANSPORT_COMPLETE_OK;
949 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
951 transport_add_cmd_to_queue(cmd, t_state);
953 EXPORT_SYMBOL(transport_complete_task);
956 * Called by transport_add_tasks_from_cmd() once a struct se_cmd's
957 * struct se_task list are ready to be added to the active execution list
958 * struct se_device
960 * Called with se_dev_t->execute_task_lock called.
962 static inline int transport_add_task_check_sam_attr(
963 struct se_task *task,
964 struct se_task *task_prev,
965 struct se_device *dev)
968 * No SAM Task attribute emulation enabled, add to tail of
969 * execution queue
971 if (dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) {
972 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
973 return 0;
976 * HEAD_OF_QUEUE attribute for received CDB, which means
977 * the first task that is associated with a struct se_cmd goes to
978 * head of the struct se_device->execute_task_list, and task_prev
979 * after that for each subsequent task
981 if (task->task_se_cmd->sam_task_attr == MSG_HEAD_TAG) {
982 list_add(&task->t_execute_list,
983 (task_prev != NULL) ?
984 &task_prev->t_execute_list :
985 &dev->execute_task_list);
987 DEBUG_STA("Set HEAD_OF_QUEUE for task CDB: 0x%02x"
988 " in execution queue\n",
989 T_TASK(task->task_se_cmd)->t_task_cdb[0]);
990 return 1;
993 * For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been
994 * transitioned from Dermant -> Active state, and are added to the end
995 * of the struct se_device->execute_task_list
997 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
998 return 0;
1001 /* __transport_add_task_to_execute_queue():
1003 * Called with se_dev_t->execute_task_lock called.
1005 static void __transport_add_task_to_execute_queue(
1006 struct se_task *task,
1007 struct se_task *task_prev,
1008 struct se_device *dev)
1010 int head_of_queue;
1012 head_of_queue = transport_add_task_check_sam_attr(task, task_prev, dev);
1013 atomic_inc(&dev->execute_tasks);
1015 if (atomic_read(&task->task_state_active))
1016 return;
1018 * Determine if this task needs to go to HEAD_OF_QUEUE for the
1019 * state list as well. Running with SAM Task Attribute emulation
1020 * will always return head_of_queue == 0 here
1022 if (head_of_queue)
1023 list_add(&task->t_state_list, (task_prev) ?
1024 &task_prev->t_state_list :
1025 &dev->state_task_list);
1026 else
1027 list_add_tail(&task->t_state_list, &dev->state_task_list);
1029 atomic_set(&task->task_state_active, 1);
1031 DEBUG_TSTATE("Added ITT: 0x%08x task[%p] to dev: %p\n",
1032 task->task_se_cmd->se_tfo->get_task_tag(task->task_se_cmd),
1033 task, dev);
1036 static void transport_add_tasks_to_state_queue(struct se_cmd *cmd)
1038 struct se_device *dev;
1039 struct se_task *task;
1040 unsigned long flags;
1042 spin_lock_irqsave(&cmd->t_state_lock, flags);
1043 list_for_each_entry(task, &cmd->t_task_list, t_list) {
1044 dev = task->se_dev;
1046 if (atomic_read(&task->task_state_active))
1047 continue;
1049 spin_lock(&dev->execute_task_lock);
1050 list_add_tail(&task->t_state_list, &dev->state_task_list);
1051 atomic_set(&task->task_state_active, 1);
1053 DEBUG_TSTATE("Added ITT: 0x%08x task[%p] to dev: %p\n",
1054 task->se_cmd->se_tfo->get_task_tag(
1055 task->task_se_cmd), task, dev);
1057 spin_unlock(&dev->execute_task_lock);
1059 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1062 static void transport_add_tasks_from_cmd(struct se_cmd *cmd)
1064 struct se_device *dev = cmd->se_dev;
1065 struct se_task *task, *task_prev = NULL;
1066 unsigned long flags;
1068 spin_lock_irqsave(&dev->execute_task_lock, flags);
1069 list_for_each_entry(task, &cmd->t_task_list, t_list) {
1070 if (atomic_read(&task->task_execute_queue))
1071 continue;
1073 * __transport_add_task_to_execute_queue() handles the
1074 * SAM Task Attribute emulation if enabled
1076 __transport_add_task_to_execute_queue(task, task_prev, dev);
1077 atomic_set(&task->task_execute_queue, 1);
1078 task_prev = task;
1080 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
1083 /* transport_remove_task_from_execute_queue():
1087 void transport_remove_task_from_execute_queue(
1088 struct se_task *task,
1089 struct se_device *dev)
1091 unsigned long flags;
1093 if (atomic_read(&task->task_execute_queue) == 0) {
1094 dump_stack();
1095 return;
1098 spin_lock_irqsave(&dev->execute_task_lock, flags);
1099 list_del(&task->t_execute_list);
1100 atomic_set(&task->task_execute_queue, 0);
1101 atomic_dec(&dev->execute_tasks);
1102 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
1105 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
1107 switch (cmd->data_direction) {
1108 case DMA_NONE:
1109 return "NONE";
1110 case DMA_FROM_DEVICE:
1111 return "READ";
1112 case DMA_TO_DEVICE:
1113 return "WRITE";
1114 case DMA_BIDIRECTIONAL:
1115 return "BIDI";
1116 default:
1117 break;
1120 return "UNKNOWN";
1123 void transport_dump_dev_state(
1124 struct se_device *dev,
1125 char *b,
1126 int *bl)
1128 *bl += sprintf(b + *bl, "Status: ");
1129 switch (dev->dev_status) {
1130 case TRANSPORT_DEVICE_ACTIVATED:
1131 *bl += sprintf(b + *bl, "ACTIVATED");
1132 break;
1133 case TRANSPORT_DEVICE_DEACTIVATED:
1134 *bl += sprintf(b + *bl, "DEACTIVATED");
1135 break;
1136 case TRANSPORT_DEVICE_SHUTDOWN:
1137 *bl += sprintf(b + *bl, "SHUTDOWN");
1138 break;
1139 case TRANSPORT_DEVICE_OFFLINE_ACTIVATED:
1140 case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED:
1141 *bl += sprintf(b + *bl, "OFFLINE");
1142 break;
1143 default:
1144 *bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status);
1145 break;
1148 *bl += sprintf(b + *bl, " Execute/Left/Max Queue Depth: %d/%d/%d",
1149 atomic_read(&dev->execute_tasks), atomic_read(&dev->depth_left),
1150 dev->queue_depth);
1151 *bl += sprintf(b + *bl, " SectorSize: %u MaxSectors: %u\n",
1152 dev->se_sub_dev->se_dev_attrib.block_size, dev->se_sub_dev->se_dev_attrib.max_sectors);
1153 *bl += sprintf(b + *bl, " ");
1156 /* transport_release_all_cmds():
1160 static void transport_release_all_cmds(struct se_device *dev)
1162 struct se_cmd *cmd, *tcmd;
1163 int bug_out = 0, t_state;
1164 unsigned long flags;
1166 spin_lock_irqsave(&dev->dev_queue_obj.cmd_queue_lock, flags);
1167 list_for_each_entry_safe(cmd, tcmd, &dev->dev_queue_obj.qobj_list,
1168 se_queue_node) {
1169 t_state = cmd->t_state;
1170 list_del(&cmd->se_queue_node);
1171 spin_unlock_irqrestore(&dev->dev_queue_obj.cmd_queue_lock,
1172 flags);
1174 printk(KERN_ERR "Releasing ITT: 0x%08x, i_state: %u,"
1175 " t_state: %u directly\n",
1176 cmd->se_tfo->get_task_tag(cmd),
1177 cmd->se_tfo->get_cmd_state(cmd), t_state);
1179 transport_release_fe_cmd(cmd);
1180 bug_out = 1;
1182 spin_lock_irqsave(&dev->dev_queue_obj.cmd_queue_lock, flags);
1184 spin_unlock_irqrestore(&dev->dev_queue_obj.cmd_queue_lock, flags);
1185 #if 0
1186 if (bug_out)
1187 BUG();
1188 #endif
1191 void transport_dump_vpd_proto_id(
1192 struct t10_vpd *vpd,
1193 unsigned char *p_buf,
1194 int p_buf_len)
1196 unsigned char buf[VPD_TMP_BUF_SIZE];
1197 int len;
1199 memset(buf, 0, VPD_TMP_BUF_SIZE);
1200 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
1202 switch (vpd->protocol_identifier) {
1203 case 0x00:
1204 sprintf(buf+len, "Fibre Channel\n");
1205 break;
1206 case 0x10:
1207 sprintf(buf+len, "Parallel SCSI\n");
1208 break;
1209 case 0x20:
1210 sprintf(buf+len, "SSA\n");
1211 break;
1212 case 0x30:
1213 sprintf(buf+len, "IEEE 1394\n");
1214 break;
1215 case 0x40:
1216 sprintf(buf+len, "SCSI Remote Direct Memory Access"
1217 " Protocol\n");
1218 break;
1219 case 0x50:
1220 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
1221 break;
1222 case 0x60:
1223 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
1224 break;
1225 case 0x70:
1226 sprintf(buf+len, "Automation/Drive Interface Transport"
1227 " Protocol\n");
1228 break;
1229 case 0x80:
1230 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
1231 break;
1232 default:
1233 sprintf(buf+len, "Unknown 0x%02x\n",
1234 vpd->protocol_identifier);
1235 break;
1238 if (p_buf)
1239 strncpy(p_buf, buf, p_buf_len);
1240 else
1241 printk(KERN_INFO "%s", buf);
1244 void
1245 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1248 * Check if the Protocol Identifier Valid (PIV) bit is set..
1250 * from spc3r23.pdf section 7.5.1
1252 if (page_83[1] & 0x80) {
1253 vpd->protocol_identifier = (page_83[0] & 0xf0);
1254 vpd->protocol_identifier_set = 1;
1255 transport_dump_vpd_proto_id(vpd, NULL, 0);
1258 EXPORT_SYMBOL(transport_set_vpd_proto_id);
1260 int transport_dump_vpd_assoc(
1261 struct t10_vpd *vpd,
1262 unsigned char *p_buf,
1263 int p_buf_len)
1265 unsigned char buf[VPD_TMP_BUF_SIZE];
1266 int ret = 0;
1267 int len;
1269 memset(buf, 0, VPD_TMP_BUF_SIZE);
1270 len = sprintf(buf, "T10 VPD Identifier Association: ");
1272 switch (vpd->association) {
1273 case 0x00:
1274 sprintf(buf+len, "addressed logical unit\n");
1275 break;
1276 case 0x10:
1277 sprintf(buf+len, "target port\n");
1278 break;
1279 case 0x20:
1280 sprintf(buf+len, "SCSI target device\n");
1281 break;
1282 default:
1283 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1284 ret = -EINVAL;
1285 break;
1288 if (p_buf)
1289 strncpy(p_buf, buf, p_buf_len);
1290 else
1291 printk("%s", buf);
1293 return ret;
1296 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1299 * The VPD identification association..
1301 * from spc3r23.pdf Section 7.6.3.1 Table 297
1303 vpd->association = (page_83[1] & 0x30);
1304 return transport_dump_vpd_assoc(vpd, NULL, 0);
1306 EXPORT_SYMBOL(transport_set_vpd_assoc);
1308 int transport_dump_vpd_ident_type(
1309 struct t10_vpd *vpd,
1310 unsigned char *p_buf,
1311 int p_buf_len)
1313 unsigned char buf[VPD_TMP_BUF_SIZE];
1314 int ret = 0;
1315 int len;
1317 memset(buf, 0, VPD_TMP_BUF_SIZE);
1318 len = sprintf(buf, "T10 VPD Identifier Type: ");
1320 switch (vpd->device_identifier_type) {
1321 case 0x00:
1322 sprintf(buf+len, "Vendor specific\n");
1323 break;
1324 case 0x01:
1325 sprintf(buf+len, "T10 Vendor ID based\n");
1326 break;
1327 case 0x02:
1328 sprintf(buf+len, "EUI-64 based\n");
1329 break;
1330 case 0x03:
1331 sprintf(buf+len, "NAA\n");
1332 break;
1333 case 0x04:
1334 sprintf(buf+len, "Relative target port identifier\n");
1335 break;
1336 case 0x08:
1337 sprintf(buf+len, "SCSI name string\n");
1338 break;
1339 default:
1340 sprintf(buf+len, "Unsupported: 0x%02x\n",
1341 vpd->device_identifier_type);
1342 ret = -EINVAL;
1343 break;
1346 if (p_buf) {
1347 if (p_buf_len < strlen(buf)+1)
1348 return -EINVAL;
1349 strncpy(p_buf, buf, p_buf_len);
1350 } else {
1351 printk("%s", buf);
1354 return ret;
1357 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1360 * The VPD identifier type..
1362 * from spc3r23.pdf Section 7.6.3.1 Table 298
1364 vpd->device_identifier_type = (page_83[1] & 0x0f);
1365 return transport_dump_vpd_ident_type(vpd, NULL, 0);
1367 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1369 int transport_dump_vpd_ident(
1370 struct t10_vpd *vpd,
1371 unsigned char *p_buf,
1372 int p_buf_len)
1374 unsigned char buf[VPD_TMP_BUF_SIZE];
1375 int ret = 0;
1377 memset(buf, 0, VPD_TMP_BUF_SIZE);
1379 switch (vpd->device_identifier_code_set) {
1380 case 0x01: /* Binary */
1381 sprintf(buf, "T10 VPD Binary Device Identifier: %s\n",
1382 &vpd->device_identifier[0]);
1383 break;
1384 case 0x02: /* ASCII */
1385 sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n",
1386 &vpd->device_identifier[0]);
1387 break;
1388 case 0x03: /* UTF-8 */
1389 sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n",
1390 &vpd->device_identifier[0]);
1391 break;
1392 default:
1393 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1394 " 0x%02x", vpd->device_identifier_code_set);
1395 ret = -EINVAL;
1396 break;
1399 if (p_buf)
1400 strncpy(p_buf, buf, p_buf_len);
1401 else
1402 printk("%s", buf);
1404 return ret;
1408 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1410 static const char hex_str[] = "0123456789abcdef";
1411 int j = 0, i = 4; /* offset to start of the identifer */
1414 * The VPD Code Set (encoding)
1416 * from spc3r23.pdf Section 7.6.3.1 Table 296
1418 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1419 switch (vpd->device_identifier_code_set) {
1420 case 0x01: /* Binary */
1421 vpd->device_identifier[j++] =
1422 hex_str[vpd->device_identifier_type];
1423 while (i < (4 + page_83[3])) {
1424 vpd->device_identifier[j++] =
1425 hex_str[(page_83[i] & 0xf0) >> 4];
1426 vpd->device_identifier[j++] =
1427 hex_str[page_83[i] & 0x0f];
1428 i++;
1430 break;
1431 case 0x02: /* ASCII */
1432 case 0x03: /* UTF-8 */
1433 while (i < (4 + page_83[3]))
1434 vpd->device_identifier[j++] = page_83[i++];
1435 break;
1436 default:
1437 break;
1440 return transport_dump_vpd_ident(vpd, NULL, 0);
1442 EXPORT_SYMBOL(transport_set_vpd_ident);
1444 static void core_setup_task_attr_emulation(struct se_device *dev)
1447 * If this device is from Target_Core_Mod/pSCSI, disable the
1448 * SAM Task Attribute emulation.
1450 * This is currently not available in upsream Linux/SCSI Target
1451 * mode code, and is assumed to be disabled while using TCM/pSCSI.
1453 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
1454 dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH;
1455 return;
1458 dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED;
1459 DEBUG_STA("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
1460 " device\n", dev->transport->name,
1461 dev->transport->get_device_rev(dev));
1464 static void scsi_dump_inquiry(struct se_device *dev)
1466 struct t10_wwn *wwn = &dev->se_sub_dev->t10_wwn;
1467 int i, device_type;
1469 * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1471 printk(" Vendor: ");
1472 for (i = 0; i < 8; i++)
1473 if (wwn->vendor[i] >= 0x20)
1474 printk("%c", wwn->vendor[i]);
1475 else
1476 printk(" ");
1478 printk(" Model: ");
1479 for (i = 0; i < 16; i++)
1480 if (wwn->model[i] >= 0x20)
1481 printk("%c", wwn->model[i]);
1482 else
1483 printk(" ");
1485 printk(" Revision: ");
1486 for (i = 0; i < 4; i++)
1487 if (wwn->revision[i] >= 0x20)
1488 printk("%c", wwn->revision[i]);
1489 else
1490 printk(" ");
1492 printk("\n");
1494 device_type = dev->transport->get_device_type(dev);
1495 printk(" Type: %s ", scsi_device_type(device_type));
1496 printk(" ANSI SCSI revision: %02x\n",
1497 dev->transport->get_device_rev(dev));
1500 struct se_device *transport_add_device_to_core_hba(
1501 struct se_hba *hba,
1502 struct se_subsystem_api *transport,
1503 struct se_subsystem_dev *se_dev,
1504 u32 device_flags,
1505 void *transport_dev,
1506 struct se_dev_limits *dev_limits,
1507 const char *inquiry_prod,
1508 const char *inquiry_rev)
1510 int force_pt;
1511 struct se_device *dev;
1513 dev = kzalloc(sizeof(struct se_device), GFP_KERNEL);
1514 if (!(dev)) {
1515 printk(KERN_ERR "Unable to allocate memory for se_dev_t\n");
1516 return NULL;
1519 transport_init_queue_obj(&dev->dev_queue_obj);
1520 dev->dev_flags = device_flags;
1521 dev->dev_status |= TRANSPORT_DEVICE_DEACTIVATED;
1522 dev->dev_ptr = transport_dev;
1523 dev->se_hba = hba;
1524 dev->se_sub_dev = se_dev;
1525 dev->transport = transport;
1526 atomic_set(&dev->active_cmds, 0);
1527 INIT_LIST_HEAD(&dev->dev_list);
1528 INIT_LIST_HEAD(&dev->dev_sep_list);
1529 INIT_LIST_HEAD(&dev->dev_tmr_list);
1530 INIT_LIST_HEAD(&dev->execute_task_list);
1531 INIT_LIST_HEAD(&dev->delayed_cmd_list);
1532 INIT_LIST_HEAD(&dev->ordered_cmd_list);
1533 INIT_LIST_HEAD(&dev->state_task_list);
1534 spin_lock_init(&dev->execute_task_lock);
1535 spin_lock_init(&dev->delayed_cmd_lock);
1536 spin_lock_init(&dev->ordered_cmd_lock);
1537 spin_lock_init(&dev->state_task_lock);
1538 spin_lock_init(&dev->dev_alua_lock);
1539 spin_lock_init(&dev->dev_reservation_lock);
1540 spin_lock_init(&dev->dev_status_lock);
1541 spin_lock_init(&dev->dev_status_thr_lock);
1542 spin_lock_init(&dev->se_port_lock);
1543 spin_lock_init(&dev->se_tmr_lock);
1545 dev->queue_depth = dev_limits->queue_depth;
1546 atomic_set(&dev->depth_left, dev->queue_depth);
1547 atomic_set(&dev->dev_ordered_id, 0);
1549 se_dev_set_default_attribs(dev, dev_limits);
1551 dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX);
1552 dev->creation_time = get_jiffies_64();
1553 spin_lock_init(&dev->stats_lock);
1555 spin_lock(&hba->device_lock);
1556 list_add_tail(&dev->dev_list, &hba->hba_dev_list);
1557 hba->dev_count++;
1558 spin_unlock(&hba->device_lock);
1560 * Setup the SAM Task Attribute emulation for struct se_device
1562 core_setup_task_attr_emulation(dev);
1564 * Force PR and ALUA passthrough emulation with internal object use.
1566 force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE);
1568 * Setup the Reservations infrastructure for struct se_device
1570 core_setup_reservations(dev, force_pt);
1572 * Setup the Asymmetric Logical Unit Assignment for struct se_device
1574 if (core_setup_alua(dev, force_pt) < 0)
1575 goto out;
1578 * Startup the struct se_device processing thread
1580 dev->process_thread = kthread_run(transport_processing_thread, dev,
1581 "LIO_%s", dev->transport->name);
1582 if (IS_ERR(dev->process_thread)) {
1583 printk(KERN_ERR "Unable to create kthread: LIO_%s\n",
1584 dev->transport->name);
1585 goto out;
1589 * Preload the initial INQUIRY const values if we are doing
1590 * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1591 * passthrough because this is being provided by the backend LLD.
1592 * This is required so that transport_get_inquiry() copies these
1593 * originals once back into DEV_T10_WWN(dev) for the virtual device
1594 * setup.
1596 if (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
1597 if (!inquiry_prod || !inquiry_rev) {
1598 printk(KERN_ERR "All non TCM/pSCSI plugins require"
1599 " INQUIRY consts\n");
1600 goto out;
1603 strncpy(&dev->se_sub_dev->t10_wwn.vendor[0], "LIO-ORG", 8);
1604 strncpy(&dev->se_sub_dev->t10_wwn.model[0], inquiry_prod, 16);
1605 strncpy(&dev->se_sub_dev->t10_wwn.revision[0], inquiry_rev, 4);
1607 scsi_dump_inquiry(dev);
1609 return dev;
1610 out:
1611 kthread_stop(dev->process_thread);
1613 spin_lock(&hba->device_lock);
1614 list_del(&dev->dev_list);
1615 hba->dev_count--;
1616 spin_unlock(&hba->device_lock);
1618 se_release_vpd_for_dev(dev);
1620 kfree(dev);
1622 return NULL;
1624 EXPORT_SYMBOL(transport_add_device_to_core_hba);
1626 /* transport_generic_prepare_cdb():
1628 * Since the Initiator sees iSCSI devices as LUNs, the SCSI CDB will
1629 * contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2.
1630 * The point of this is since we are mapping iSCSI LUNs to
1631 * SCSI Target IDs having a non-zero LUN in the CDB will throw the
1632 * devices and HBAs for a loop.
1634 static inline void transport_generic_prepare_cdb(
1635 unsigned char *cdb)
1637 switch (cdb[0]) {
1638 case READ_10: /* SBC - RDProtect */
1639 case READ_12: /* SBC - RDProtect */
1640 case READ_16: /* SBC - RDProtect */
1641 case SEND_DIAGNOSTIC: /* SPC - SELF-TEST Code */
1642 case VERIFY: /* SBC - VRProtect */
1643 case VERIFY_16: /* SBC - VRProtect */
1644 case WRITE_VERIFY: /* SBC - VRProtect */
1645 case WRITE_VERIFY_12: /* SBC - VRProtect */
1646 break;
1647 default:
1648 cdb[1] &= 0x1f; /* clear logical unit number */
1649 break;
1653 static struct se_task *
1654 transport_generic_get_task(struct se_cmd *cmd,
1655 enum dma_data_direction data_direction)
1657 struct se_task *task;
1658 struct se_device *dev = cmd->se_dev;
1659 unsigned long flags;
1661 task = dev->transport->alloc_task(cmd);
1662 if (!task) {
1663 printk(KERN_ERR "Unable to allocate struct se_task\n");
1664 return NULL;
1667 INIT_LIST_HEAD(&task->t_list);
1668 INIT_LIST_HEAD(&task->t_execute_list);
1669 INIT_LIST_HEAD(&task->t_state_list);
1670 init_completion(&task->task_stop_comp);
1671 task->task_se_cmd = cmd;
1672 task->se_dev = dev;
1673 task->task_data_direction = data_direction;
1675 spin_lock_irqsave(&cmd->t_state_lock, flags);
1676 list_add_tail(&task->t_list, &cmd->t_task_list);
1677 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1679 return task;
1682 static int transport_generic_cmd_sequencer(struct se_cmd *, unsigned char *);
1685 * Used by fabric modules containing a local struct se_cmd within their
1686 * fabric dependent per I/O descriptor.
1688 void transport_init_se_cmd(
1689 struct se_cmd *cmd,
1690 struct target_core_fabric_ops *tfo,
1691 struct se_session *se_sess,
1692 u32 data_length,
1693 int data_direction,
1694 int task_attr,
1695 unsigned char *sense_buffer)
1697 INIT_LIST_HEAD(&cmd->se_lun_node);
1698 INIT_LIST_HEAD(&cmd->se_delayed_node);
1699 INIT_LIST_HEAD(&cmd->se_ordered_node);
1701 INIT_LIST_HEAD(&cmd->t_mem_list);
1702 INIT_LIST_HEAD(&cmd->t_mem_bidi_list);
1703 INIT_LIST_HEAD(&cmd->t_task_list);
1704 init_completion(&cmd->transport_lun_fe_stop_comp);
1705 init_completion(&cmd->transport_lun_stop_comp);
1706 init_completion(&cmd->t_transport_stop_comp);
1707 spin_lock_init(&cmd->t_state_lock);
1708 atomic_set(&cmd->transport_dev_active, 1);
1710 cmd->se_tfo = tfo;
1711 cmd->se_sess = se_sess;
1712 cmd->data_length = data_length;
1713 cmd->data_direction = data_direction;
1714 cmd->sam_task_attr = task_attr;
1715 cmd->sense_buffer = sense_buffer;
1717 EXPORT_SYMBOL(transport_init_se_cmd);
1719 static int transport_check_alloc_task_attr(struct se_cmd *cmd)
1722 * Check if SAM Task Attribute emulation is enabled for this
1723 * struct se_device storage object
1725 if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1726 return 0;
1728 if (cmd->sam_task_attr == MSG_ACA_TAG) {
1729 DEBUG_STA("SAM Task Attribute ACA"
1730 " emulation is not supported\n");
1731 return -EINVAL;
1734 * Used to determine when ORDERED commands should go from
1735 * Dormant to Active status.
1737 cmd->se_ordered_id = atomic_inc_return(&cmd->se_dev->dev_ordered_id);
1738 smp_mb__after_atomic_inc();
1739 DEBUG_STA("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1740 cmd->se_ordered_id, cmd->sam_task_attr,
1741 TRANSPORT(cmd->se_dev)->name);
1742 return 0;
1745 void transport_free_se_cmd(
1746 struct se_cmd *se_cmd)
1748 if (se_cmd->se_tmr_req)
1749 core_tmr_release_req(se_cmd->se_tmr_req);
1751 * Check and free any extended CDB buffer that was allocated
1753 if (se_cmd->t_task_cdb != se_cmd->__t_task_cdb)
1754 kfree(se_cmd->t_task_cdb);
1756 EXPORT_SYMBOL(transport_free_se_cmd);
1758 static void transport_generic_wait_for_tasks(struct se_cmd *, int, int);
1760 /* transport_generic_allocate_tasks():
1762 * Called from fabric RX Thread.
1764 int transport_generic_allocate_tasks(
1765 struct se_cmd *cmd,
1766 unsigned char *cdb)
1768 int ret;
1770 transport_generic_prepare_cdb(cdb);
1773 * This is needed for early exceptions.
1775 cmd->transport_wait_for_tasks = &transport_generic_wait_for_tasks;
1778 * Ensure that the received CDB is less than the max (252 + 8) bytes
1779 * for VARIABLE_LENGTH_CMD
1781 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1782 printk(KERN_ERR "Received SCSI CDB with command_size: %d that"
1783 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1784 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1785 return -EINVAL;
1788 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1789 * allocate the additional extended CDB buffer now.. Otherwise
1790 * setup the pointer from __t_task_cdb to t_task_cdb.
1792 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1793 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1794 GFP_KERNEL);
1795 if (!(cmd->t_task_cdb)) {
1796 printk(KERN_ERR "Unable to allocate cmd->t_task_cdb"
1797 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1798 scsi_command_size(cdb),
1799 (unsigned long)sizeof(cmd->__t_task_cdb));
1800 return -ENOMEM;
1802 } else
1803 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1805 * Copy the original CDB into cmd->
1807 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1809 * Setup the received CDB based on SCSI defined opcodes and
1810 * perform unit attention, persistent reservations and ALUA
1811 * checks for virtual device backends. The cmd->t_task_cdb
1812 * pointer is expected to be setup before we reach this point.
1814 ret = transport_generic_cmd_sequencer(cmd, cdb);
1815 if (ret < 0)
1816 return ret;
1818 * Check for SAM Task Attribute Emulation
1820 if (transport_check_alloc_task_attr(cmd) < 0) {
1821 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1822 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1823 return -EINVAL;
1825 spin_lock(&cmd->se_lun->lun_sep_lock);
1826 if (cmd->se_lun->lun_sep)
1827 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1828 spin_unlock(&cmd->se_lun->lun_sep_lock);
1829 return 0;
1831 EXPORT_SYMBOL(transport_generic_allocate_tasks);
1834 * Used by fabric module frontends not defining a TFO->new_cmd_map()
1835 * to queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD statis
1837 int transport_generic_handle_cdb(
1838 struct se_cmd *cmd)
1840 if (!cmd->se_lun) {
1841 dump_stack();
1842 printk(KERN_ERR "cmd->se_lun is NULL\n");
1843 return -EINVAL;
1845 transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD);
1846 return 0;
1848 EXPORT_SYMBOL(transport_generic_handle_cdb);
1851 * Used by fabric module frontends defining a TFO->new_cmd_map() caller
1852 * to queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
1853 * complete setup in TCM process context w/ TFO->new_cmd_map().
1855 int transport_generic_handle_cdb_map(
1856 struct se_cmd *cmd)
1858 if (!cmd->se_lun) {
1859 dump_stack();
1860 printk(KERN_ERR "cmd->se_lun is NULL\n");
1861 return -EINVAL;
1864 transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD_MAP);
1865 return 0;
1867 EXPORT_SYMBOL(transport_generic_handle_cdb_map);
1869 /* transport_generic_handle_data():
1873 int transport_generic_handle_data(
1874 struct se_cmd *cmd)
1877 * For the software fabric case, then we assume the nexus is being
1878 * failed/shutdown when signals are pending from the kthread context
1879 * caller, so we return a failure. For the HW target mode case running
1880 * in interrupt code, the signal_pending() check is skipped.
1882 if (!in_interrupt() && signal_pending(current))
1883 return -EPERM;
1885 * If the received CDB has aleady been ABORTED by the generic
1886 * target engine, we now call transport_check_aborted_status()
1887 * to queue any delated TASK_ABORTED status for the received CDB to the
1888 * fabric module as we are expecting no further incoming DATA OUT
1889 * sequences at this point.
1891 if (transport_check_aborted_status(cmd, 1) != 0)
1892 return 0;
1894 transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_WRITE);
1895 return 0;
1897 EXPORT_SYMBOL(transport_generic_handle_data);
1899 /* transport_generic_handle_tmr():
1903 int transport_generic_handle_tmr(
1904 struct se_cmd *cmd)
1907 * This is needed for early exceptions.
1909 cmd->transport_wait_for_tasks = &transport_generic_wait_for_tasks;
1911 transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_TMR);
1912 return 0;
1914 EXPORT_SYMBOL(transport_generic_handle_tmr);
1916 void transport_generic_free_cmd_intr(
1917 struct se_cmd *cmd)
1919 transport_add_cmd_to_queue(cmd, TRANSPORT_FREE_CMD_INTR);
1921 EXPORT_SYMBOL(transport_generic_free_cmd_intr);
1923 static int transport_stop_tasks_for_cmd(struct se_cmd *cmd)
1925 struct se_task *task, *task_tmp;
1926 unsigned long flags;
1927 int ret = 0;
1929 DEBUG_TS("ITT[0x%08x] - Stopping tasks\n",
1930 cmd->se_tfo->get_task_tag(cmd));
1933 * No tasks remain in the execution queue
1935 spin_lock_irqsave(&cmd->t_state_lock, flags);
1936 list_for_each_entry_safe(task, task_tmp,
1937 &cmd->t_task_list, t_list) {
1938 DEBUG_TS("task_no[%d] - Processing task %p\n",
1939 task->task_no, task);
1941 * If the struct se_task has not been sent and is not active,
1942 * remove the struct se_task from the execution queue.
1944 if (!atomic_read(&task->task_sent) &&
1945 !atomic_read(&task->task_active)) {
1946 spin_unlock_irqrestore(&cmd->t_state_lock,
1947 flags);
1948 transport_remove_task_from_execute_queue(task,
1949 task->se_dev);
1951 DEBUG_TS("task_no[%d] - Removed from execute queue\n",
1952 task->task_no);
1953 spin_lock_irqsave(&cmd->t_state_lock, flags);
1954 continue;
1958 * If the struct se_task is active, sleep until it is returned
1959 * from the plugin.
1961 if (atomic_read(&task->task_active)) {
1962 atomic_set(&task->task_stop, 1);
1963 spin_unlock_irqrestore(&cmd->t_state_lock,
1964 flags);
1966 DEBUG_TS("task_no[%d] - Waiting to complete\n",
1967 task->task_no);
1968 wait_for_completion(&task->task_stop_comp);
1969 DEBUG_TS("task_no[%d] - Stopped successfully\n",
1970 task->task_no);
1972 spin_lock_irqsave(&cmd->t_state_lock, flags);
1973 atomic_dec(&cmd->t_task_cdbs_left);
1975 atomic_set(&task->task_active, 0);
1976 atomic_set(&task->task_stop, 0);
1977 } else {
1978 DEBUG_TS("task_no[%d] - Did nothing\n", task->task_no);
1979 ret++;
1982 __transport_stop_task_timer(task, &flags);
1984 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1986 return ret;
1990 * Handle SAM-esque emulation for generic transport request failures.
1992 static void transport_generic_request_failure(
1993 struct se_cmd *cmd,
1994 struct se_device *dev,
1995 int complete,
1996 int sc)
1998 DEBUG_GRF("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1999 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
2000 cmd->t_task_cdb[0]);
2001 DEBUG_GRF("-----[ i_state: %d t_state/def_t_state:"
2002 " %d/%d transport_error_status: %d\n",
2003 cmd->se_tfo->get_cmd_state(cmd),
2004 cmd->t_state, cmd->deferred_t_state,
2005 cmd->transport_error_status);
2006 DEBUG_GRF("-----[ t_task_cdbs: %d t_task_cdbs_left: %d"
2007 " t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --"
2008 " t_transport_active: %d t_transport_stop: %d"
2009 " t_transport_sent: %d\n", cmd->t_task_cdbs,
2010 atomic_read(&cmd->t_task_cdbs_left),
2011 atomic_read(&cmd->t_task_cdbs_sent),
2012 atomic_read(&cmd->t_task_cdbs_ex_left),
2013 atomic_read(&cmd->t_transport_active),
2014 atomic_read(&cmd->t_transport_stop),
2015 atomic_read(&cmd->t_transport_sent));
2017 transport_stop_all_task_timers(cmd);
2019 if (dev)
2020 atomic_inc(&dev->depth_left);
2022 * For SAM Task Attribute emulation for failed struct se_cmd
2024 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
2025 transport_complete_task_attr(cmd);
2027 if (complete) {
2028 transport_direct_request_timeout(cmd);
2029 cmd->transport_error_status = PYX_TRANSPORT_LU_COMM_FAILURE;
2032 switch (cmd->transport_error_status) {
2033 case PYX_TRANSPORT_UNKNOWN_SAM_OPCODE:
2034 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
2035 break;
2036 case PYX_TRANSPORT_REQ_TOO_MANY_SECTORS:
2037 cmd->scsi_sense_reason = TCM_SECTOR_COUNT_TOO_MANY;
2038 break;
2039 case PYX_TRANSPORT_INVALID_CDB_FIELD:
2040 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
2041 break;
2042 case PYX_TRANSPORT_INVALID_PARAMETER_LIST:
2043 cmd->scsi_sense_reason = TCM_INVALID_PARAMETER_LIST;
2044 break;
2045 case PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES:
2046 if (!sc)
2047 transport_new_cmd_failure(cmd);
2049 * Currently for PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES,
2050 * we force this session to fall back to session
2051 * recovery.
2053 cmd->se_tfo->fall_back_to_erl0(cmd->se_sess);
2054 cmd->se_tfo->stop_session(cmd->se_sess, 0, 0);
2056 goto check_stop;
2057 case PYX_TRANSPORT_LU_COMM_FAILURE:
2058 case PYX_TRANSPORT_ILLEGAL_REQUEST:
2059 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2060 break;
2061 case PYX_TRANSPORT_UNKNOWN_MODE_PAGE:
2062 cmd->scsi_sense_reason = TCM_UNKNOWN_MODE_PAGE;
2063 break;
2064 case PYX_TRANSPORT_WRITE_PROTECTED:
2065 cmd->scsi_sense_reason = TCM_WRITE_PROTECTED;
2066 break;
2067 case PYX_TRANSPORT_RESERVATION_CONFLICT:
2069 * No SENSE Data payload for this case, set SCSI Status
2070 * and queue the response to $FABRIC_MOD.
2072 * Uses linux/include/scsi/scsi.h SAM status codes defs
2074 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2076 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
2077 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
2078 * CONFLICT STATUS.
2080 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
2082 if (cmd->se_sess &&
2083 cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
2084 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
2085 cmd->orig_fe_lun, 0x2C,
2086 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
2088 cmd->se_tfo->queue_status(cmd);
2089 goto check_stop;
2090 case PYX_TRANSPORT_USE_SENSE_REASON:
2092 * struct se_cmd->scsi_sense_reason already set
2094 break;
2095 default:
2096 printk(KERN_ERR "Unknown transport error for CDB 0x%02x: %d\n",
2097 cmd->t_task_cdb[0],
2098 cmd->transport_error_status);
2099 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
2100 break;
2103 if (!sc)
2104 transport_new_cmd_failure(cmd);
2105 else
2106 transport_send_check_condition_and_sense(cmd,
2107 cmd->scsi_sense_reason, 0);
2108 check_stop:
2109 transport_lun_remove_cmd(cmd);
2110 if (!(transport_cmd_check_stop_to_fabric(cmd)))
2114 static void transport_direct_request_timeout(struct se_cmd *cmd)
2116 unsigned long flags;
2118 spin_lock_irqsave(&cmd->t_state_lock, flags);
2119 if (!(atomic_read(&cmd->t_transport_timeout))) {
2120 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2121 return;
2123 if (atomic_read(&cmd->t_task_cdbs_timeout_left)) {
2124 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2125 return;
2128 atomic_sub(atomic_read(&cmd->t_transport_timeout),
2129 &cmd->t_se_count);
2130 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2133 static void transport_generic_request_timeout(struct se_cmd *cmd)
2135 unsigned long flags;
2138 * Reset cmd->t_se_count to allow transport_generic_remove()
2139 * to allow last call to free memory resources.
2141 spin_lock_irqsave(&cmd->t_state_lock, flags);
2142 if (atomic_read(&cmd->t_transport_timeout) > 1) {
2143 int tmp = (atomic_read(&cmd->t_transport_timeout) - 1);
2145 atomic_sub(tmp, &cmd->t_se_count);
2147 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2149 transport_generic_remove(cmd, 0, 0);
2152 static int
2153 transport_generic_allocate_buf(struct se_cmd *cmd, u32 data_length)
2155 unsigned char *buf;
2157 buf = kzalloc(data_length, GFP_KERNEL);
2158 if (!(buf)) {
2159 printk(KERN_ERR "Unable to allocate memory for buffer\n");
2160 return -ENOMEM;
2163 cmd->t_tasks_se_num = 0;
2164 cmd->t_task_buf = buf;
2166 return 0;
2169 static inline u32 transport_lba_21(unsigned char *cdb)
2171 return ((cdb[1] & 0x1f) << 16) | (cdb[2] << 8) | cdb[3];
2174 static inline u32 transport_lba_32(unsigned char *cdb)
2176 return (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2179 static inline unsigned long long transport_lba_64(unsigned char *cdb)
2181 unsigned int __v1, __v2;
2183 __v1 = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2184 __v2 = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2186 return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2190 * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
2192 static inline unsigned long long transport_lba_64_ext(unsigned char *cdb)
2194 unsigned int __v1, __v2;
2196 __v1 = (cdb[12] << 24) | (cdb[13] << 16) | (cdb[14] << 8) | cdb[15];
2197 __v2 = (cdb[16] << 24) | (cdb[17] << 16) | (cdb[18] << 8) | cdb[19];
2199 return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2202 static void transport_set_supported_SAM_opcode(struct se_cmd *se_cmd)
2204 unsigned long flags;
2206 spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2207 se_cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
2208 spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2212 * Called from interrupt context.
2214 static void transport_task_timeout_handler(unsigned long data)
2216 struct se_task *task = (struct se_task *)data;
2217 struct se_cmd *cmd = task->task_se_cmd;
2218 unsigned long flags;
2220 DEBUG_TT("transport task timeout fired! task: %p cmd: %p\n", task, cmd);
2222 spin_lock_irqsave(&cmd->t_state_lock, flags);
2223 if (task->task_flags & TF_STOP) {
2224 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2225 return;
2227 task->task_flags &= ~TF_RUNNING;
2230 * Determine if transport_complete_task() has already been called.
2232 if (!(atomic_read(&task->task_active))) {
2233 DEBUG_TT("transport task: %p cmd: %p timeout task_active"
2234 " == 0\n", task, cmd);
2235 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2236 return;
2239 atomic_inc(&cmd->t_se_count);
2240 atomic_inc(&cmd->t_transport_timeout);
2241 cmd->t_tasks_failed = 1;
2243 atomic_set(&task->task_timeout, 1);
2244 task->task_error_status = PYX_TRANSPORT_TASK_TIMEOUT;
2245 task->task_scsi_status = 1;
2247 if (atomic_read(&task->task_stop)) {
2248 DEBUG_TT("transport task: %p cmd: %p timeout task_stop"
2249 " == 1\n", task, cmd);
2250 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2251 complete(&task->task_stop_comp);
2252 return;
2255 if (!(atomic_dec_and_test(&cmd->t_task_cdbs_left))) {
2256 DEBUG_TT("transport task: %p cmd: %p timeout non zero"
2257 " t_task_cdbs_left\n", task, cmd);
2258 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2259 return;
2261 DEBUG_TT("transport task: %p cmd: %p timeout ZERO t_task_cdbs_left\n",
2262 task, cmd);
2264 cmd->t_state = TRANSPORT_COMPLETE_FAILURE;
2265 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2267 transport_add_cmd_to_queue(cmd, TRANSPORT_COMPLETE_FAILURE);
2271 * Called with cmd->t_state_lock held.
2273 static void transport_start_task_timer(struct se_task *task)
2275 struct se_device *dev = task->se_dev;
2276 int timeout;
2278 if (task->task_flags & TF_RUNNING)
2279 return;
2281 * If the task_timeout is disabled, exit now.
2283 timeout = dev->se_sub_dev->se_dev_attrib.task_timeout;
2284 if (!(timeout))
2285 return;
2287 init_timer(&task->task_timer);
2288 task->task_timer.expires = (get_jiffies_64() + timeout * HZ);
2289 task->task_timer.data = (unsigned long) task;
2290 task->task_timer.function = transport_task_timeout_handler;
2292 task->task_flags |= TF_RUNNING;
2293 add_timer(&task->task_timer);
2294 #if 0
2295 printk(KERN_INFO "Starting task timer for cmd: %p task: %p seconds:"
2296 " %d\n", task->task_se_cmd, task, timeout);
2297 #endif
2301 * Called with spin_lock_irq(&cmd->t_state_lock) held.
2303 void __transport_stop_task_timer(struct se_task *task, unsigned long *flags)
2305 struct se_cmd *cmd = task->task_se_cmd;
2307 if (!(task->task_flags & TF_RUNNING))
2308 return;
2310 task->task_flags |= TF_STOP;
2311 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
2313 del_timer_sync(&task->task_timer);
2315 spin_lock_irqsave(&cmd->t_state_lock, *flags);
2316 task->task_flags &= ~TF_RUNNING;
2317 task->task_flags &= ~TF_STOP;
2320 static void transport_stop_all_task_timers(struct se_cmd *cmd)
2322 struct se_task *task = NULL, *task_tmp;
2323 unsigned long flags;
2325 spin_lock_irqsave(&cmd->t_state_lock, flags);
2326 list_for_each_entry_safe(task, task_tmp,
2327 &cmd->t_task_list, t_list)
2328 __transport_stop_task_timer(task, &flags);
2329 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2332 static inline int transport_tcq_window_closed(struct se_device *dev)
2334 if (dev->dev_tcq_window_closed++ <
2335 PYX_TRANSPORT_WINDOW_CLOSED_THRESHOLD) {
2336 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_SHORT);
2337 } else
2338 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_LONG);
2340 wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
2341 return 0;
2345 * Called from Fabric Module context from transport_execute_tasks()
2347 * The return of this function determins if the tasks from struct se_cmd
2348 * get added to the execution queue in transport_execute_tasks(),
2349 * or are added to the delayed or ordered lists here.
2351 static inline int transport_execute_task_attr(struct se_cmd *cmd)
2353 if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
2354 return 1;
2356 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
2357 * to allow the passed struct se_cmd list of tasks to the front of the list.
2359 if (cmd->sam_task_attr == MSG_HEAD_TAG) {
2360 atomic_inc(&cmd->se_dev->dev_hoq_count);
2361 smp_mb__after_atomic_inc();
2362 DEBUG_STA("Added HEAD_OF_QUEUE for CDB:"
2363 " 0x%02x, se_ordered_id: %u\n",
2364 cmd->_task_cdb[0],
2365 cmd->se_ordered_id);
2366 return 1;
2367 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
2368 spin_lock(&cmd->se_dev->ordered_cmd_lock);
2369 list_add_tail(&cmd->se_ordered_node,
2370 &cmd->se_dev->ordered_cmd_list);
2371 spin_unlock(&cmd->se_dev->ordered_cmd_lock);
2373 atomic_inc(&cmd->se_dev->dev_ordered_sync);
2374 smp_mb__after_atomic_inc();
2376 DEBUG_STA("Added ORDERED for CDB: 0x%02x to ordered"
2377 " list, se_ordered_id: %u\n",
2378 cmd->t_task_cdb[0],
2379 cmd->se_ordered_id);
2381 * Add ORDERED command to tail of execution queue if
2382 * no other older commands exist that need to be
2383 * completed first.
2385 if (!(atomic_read(&cmd->se_dev->simple_cmds)))
2386 return 1;
2387 } else {
2389 * For SIMPLE and UNTAGGED Task Attribute commands
2391 atomic_inc(&cmd->se_dev->simple_cmds);
2392 smp_mb__after_atomic_inc();
2395 * Otherwise if one or more outstanding ORDERED task attribute exist,
2396 * add the dormant task(s) built for the passed struct se_cmd to the
2397 * execution queue and become in Active state for this struct se_device.
2399 if (atomic_read(&cmd->se_dev->dev_ordered_sync) != 0) {
2401 * Otherwise, add cmd w/ tasks to delayed cmd queue that
2402 * will be drained upon completion of HEAD_OF_QUEUE task.
2404 spin_lock(&cmd->se_dev->delayed_cmd_lock);
2405 cmd->se_cmd_flags |= SCF_DELAYED_CMD_FROM_SAM_ATTR;
2406 list_add_tail(&cmd->se_delayed_node,
2407 &cmd->se_dev->delayed_cmd_list);
2408 spin_unlock(&cmd->se_dev->delayed_cmd_lock);
2410 DEBUG_STA("Added CDB: 0x%02x Task Attr: 0x%02x to"
2411 " delayed CMD list, se_ordered_id: %u\n",
2412 cmd->t_task_cdb[0], cmd->sam_task_attr,
2413 cmd->se_ordered_id);
2415 * Return zero to let transport_execute_tasks() know
2416 * not to add the delayed tasks to the execution list.
2418 return 0;
2421 * Otherwise, no ORDERED task attributes exist..
2423 return 1;
2427 * Called from fabric module context in transport_generic_new_cmd() and
2428 * transport_generic_process_write()
2430 static int transport_execute_tasks(struct se_cmd *cmd)
2432 int add_tasks;
2434 if (se_dev_check_online(cmd->se_orig_obj_ptr) != 0) {
2435 cmd->transport_error_status = PYX_TRANSPORT_LU_COMM_FAILURE;
2436 transport_generic_request_failure(cmd, NULL, 0, 1);
2437 return 0;
2441 * Call transport_cmd_check_stop() to see if a fabric exception
2442 * has occurred that prevents execution.
2444 if (!(transport_cmd_check_stop(cmd, 0, TRANSPORT_PROCESSING))) {
2446 * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
2447 * attribute for the tasks of the received struct se_cmd CDB
2449 add_tasks = transport_execute_task_attr(cmd);
2450 if (!add_tasks)
2451 goto execute_tasks;
2453 * This calls transport_add_tasks_from_cmd() to handle
2454 * HEAD_OF_QUEUE ordering for SAM Task Attribute emulation
2455 * (if enabled) in __transport_add_task_to_execute_queue() and
2456 * transport_add_task_check_sam_attr().
2458 transport_add_tasks_from_cmd(cmd);
2461 * Kick the execution queue for the cmd associated struct se_device
2462 * storage object.
2464 execute_tasks:
2465 __transport_execute_tasks(cmd->se_dev);
2466 return 0;
2470 * Called to check struct se_device tcq depth window, and once open pull struct se_task
2471 * from struct se_device->execute_task_list and
2473 * Called from transport_processing_thread()
2475 static int __transport_execute_tasks(struct se_device *dev)
2477 int error;
2478 struct se_cmd *cmd = NULL;
2479 struct se_task *task = NULL;
2480 unsigned long flags;
2483 * Check if there is enough room in the device and HBA queue to send
2484 * struct se_tasks to the selected transport.
2486 check_depth:
2487 if (!atomic_read(&dev->depth_left))
2488 return transport_tcq_window_closed(dev);
2490 dev->dev_tcq_window_closed = 0;
2492 spin_lock_irq(&dev->execute_task_lock);
2493 if (list_empty(&dev->execute_task_list)) {
2494 spin_unlock_irq(&dev->execute_task_lock);
2495 return 0;
2497 task = list_first_entry(&dev->execute_task_list,
2498 struct se_task, t_execute_list);
2499 list_del(&task->t_execute_list);
2500 atomic_set(&task->task_execute_queue, 0);
2501 atomic_dec(&dev->execute_tasks);
2502 spin_unlock_irq(&dev->execute_task_lock);
2504 atomic_dec(&dev->depth_left);
2506 cmd = task->task_se_cmd;
2508 spin_lock_irqsave(&cmd->t_state_lock, flags);
2509 atomic_set(&task->task_active, 1);
2510 atomic_set(&task->task_sent, 1);
2511 atomic_inc(&cmd->t_task_cdbs_sent);
2513 if (atomic_read(&cmd->t_task_cdbs_sent) ==
2514 cmd->t_task_list_num)
2515 atomic_set(&cmd->transport_sent, 1);
2517 transport_start_task_timer(task);
2518 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2520 * The struct se_cmd->transport_emulate_cdb() function pointer is used
2521 * to grab REPORT_LUNS and other CDBs we want to handle before they hit the
2522 * struct se_subsystem_api->do_task() caller below.
2524 if (cmd->transport_emulate_cdb) {
2525 error = cmd->transport_emulate_cdb(cmd);
2526 if (error != 0) {
2527 cmd->transport_error_status = error;
2528 atomic_set(&task->task_active, 0);
2529 atomic_set(&cmd->transport_sent, 0);
2530 transport_stop_tasks_for_cmd(cmd);
2531 transport_generic_request_failure(cmd, dev, 0, 1);
2532 goto check_depth;
2535 * Handle the successful completion for transport_emulate_cdb()
2536 * for synchronous operation, following SCF_EMULATE_CDB_ASYNC
2537 * Otherwise the caller is expected to complete the task with
2538 * proper status.
2540 if (!(cmd->se_cmd_flags & SCF_EMULATE_CDB_ASYNC)) {
2541 cmd->scsi_status = SAM_STAT_GOOD;
2542 task->task_scsi_status = GOOD;
2543 transport_complete_task(task, 1);
2545 } else {
2547 * Currently for all virtual TCM plugins including IBLOCK, FILEIO and
2548 * RAMDISK we use the internal transport_emulate_control_cdb() logic
2549 * with struct se_subsystem_api callers for the primary SPC-3 TYPE_DISK
2550 * LUN emulation code.
2552 * For TCM/pSCSI and all other SCF_SCSI_DATA_SG_IO_CDB I/O tasks we
2553 * call ->do_task() directly and let the underlying TCM subsystem plugin
2554 * code handle the CDB emulation.
2556 if ((dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) &&
2557 (!(task->task_se_cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)))
2558 error = transport_emulate_control_cdb(task);
2559 else
2560 error = dev->transport->do_task(task);
2562 if (error != 0) {
2563 cmd->transport_error_status = error;
2564 atomic_set(&task->task_active, 0);
2565 atomic_set(&cmd->transport_sent, 0);
2566 transport_stop_tasks_for_cmd(cmd);
2567 transport_generic_request_failure(cmd, dev, 0, 1);
2571 goto check_depth;
2573 return 0;
2576 void transport_new_cmd_failure(struct se_cmd *se_cmd)
2578 unsigned long flags;
2580 * Any unsolicited data will get dumped for failed command inside of
2581 * the fabric plugin
2583 spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2584 se_cmd->se_cmd_flags |= SCF_SE_CMD_FAILED;
2585 se_cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2586 spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2589 static void transport_nop_wait_for_tasks(struct se_cmd *, int, int);
2591 static inline u32 transport_get_sectors_6(
2592 unsigned char *cdb,
2593 struct se_cmd *cmd,
2594 int *ret)
2596 struct se_device *dev = cmd->se_dev;
2599 * Assume TYPE_DISK for non struct se_device objects.
2600 * Use 8-bit sector value.
2602 if (!dev)
2603 goto type_disk;
2606 * Use 24-bit allocation length for TYPE_TAPE.
2608 if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2609 return (u32)(cdb[2] << 16) + (cdb[3] << 8) + cdb[4];
2612 * Everything else assume TYPE_DISK Sector CDB location.
2613 * Use 8-bit sector value.
2615 type_disk:
2616 return (u32)cdb[4];
2619 static inline u32 transport_get_sectors_10(
2620 unsigned char *cdb,
2621 struct se_cmd *cmd,
2622 int *ret)
2624 struct se_device *dev = cmd->se_dev;
2627 * Assume TYPE_DISK for non struct se_device objects.
2628 * Use 16-bit sector value.
2630 if (!dev)
2631 goto type_disk;
2634 * XXX_10 is not defined in SSC, throw an exception
2636 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2637 *ret = -EINVAL;
2638 return 0;
2642 * Everything else assume TYPE_DISK Sector CDB location.
2643 * Use 16-bit sector value.
2645 type_disk:
2646 return (u32)(cdb[7] << 8) + cdb[8];
2649 static inline u32 transport_get_sectors_12(
2650 unsigned char *cdb,
2651 struct se_cmd *cmd,
2652 int *ret)
2654 struct se_device *dev = cmd->se_dev;
2657 * Assume TYPE_DISK for non struct se_device objects.
2658 * Use 32-bit sector value.
2660 if (!dev)
2661 goto type_disk;
2664 * XXX_12 is not defined in SSC, throw an exception
2666 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2667 *ret = -EINVAL;
2668 return 0;
2672 * Everything else assume TYPE_DISK Sector CDB location.
2673 * Use 32-bit sector value.
2675 type_disk:
2676 return (u32)(cdb[6] << 24) + (cdb[7] << 16) + (cdb[8] << 8) + cdb[9];
2679 static inline u32 transport_get_sectors_16(
2680 unsigned char *cdb,
2681 struct se_cmd *cmd,
2682 int *ret)
2684 struct se_device *dev = cmd->se_dev;
2687 * Assume TYPE_DISK for non struct se_device objects.
2688 * Use 32-bit sector value.
2690 if (!dev)
2691 goto type_disk;
2694 * Use 24-bit allocation length for TYPE_TAPE.
2696 if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2697 return (u32)(cdb[12] << 16) + (cdb[13] << 8) + cdb[14];
2699 type_disk:
2700 return (u32)(cdb[10] << 24) + (cdb[11] << 16) +
2701 (cdb[12] << 8) + cdb[13];
2705 * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
2707 static inline u32 transport_get_sectors_32(
2708 unsigned char *cdb,
2709 struct se_cmd *cmd,
2710 int *ret)
2713 * Assume TYPE_DISK for non struct se_device objects.
2714 * Use 32-bit sector value.
2716 return (u32)(cdb[28] << 24) + (cdb[29] << 16) +
2717 (cdb[30] << 8) + cdb[31];
2721 static inline u32 transport_get_size(
2722 u32 sectors,
2723 unsigned char *cdb,
2724 struct se_cmd *cmd)
2726 struct se_device *dev = cmd->se_dev;
2728 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2729 if (cdb[1] & 1) { /* sectors */
2730 return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2731 } else /* bytes */
2732 return sectors;
2734 #if 0
2735 printk(KERN_INFO "Returning block_size: %u, sectors: %u == %u for"
2736 " %s object\n", dev->se_sub_dev->se_dev_attrib.block_size, sectors,
2737 dev->se_sub_dev->se_dev_attrib.block_size * sectors,
2738 dev->transport->name);
2739 #endif
2740 return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2743 unsigned char transport_asciihex_to_binaryhex(unsigned char val[2])
2745 unsigned char result = 0;
2747 * MSB
2749 if ((val[0] >= 'a') && (val[0] <= 'f'))
2750 result = ((val[0] - 'a' + 10) & 0xf) << 4;
2751 else
2752 if ((val[0] >= 'A') && (val[0] <= 'F'))
2753 result = ((val[0] - 'A' + 10) & 0xf) << 4;
2754 else /* digit */
2755 result = ((val[0] - '0') & 0xf) << 4;
2757 * LSB
2759 if ((val[1] >= 'a') && (val[1] <= 'f'))
2760 result |= ((val[1] - 'a' + 10) & 0xf);
2761 else
2762 if ((val[1] >= 'A') && (val[1] <= 'F'))
2763 result |= ((val[1] - 'A' + 10) & 0xf);
2764 else /* digit */
2765 result |= ((val[1] - '0') & 0xf);
2767 return result;
2769 EXPORT_SYMBOL(transport_asciihex_to_binaryhex);
2771 static void transport_xor_callback(struct se_cmd *cmd)
2773 unsigned char *buf, *addr;
2774 struct se_mem *se_mem;
2775 unsigned int offset;
2776 int i;
2778 * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
2780 * 1) read the specified logical block(s);
2781 * 2) transfer logical blocks from the data-out buffer;
2782 * 3) XOR the logical blocks transferred from the data-out buffer with
2783 * the logical blocks read, storing the resulting XOR data in a buffer;
2784 * 4) if the DISABLE WRITE bit is set to zero, then write the logical
2785 * blocks transferred from the data-out buffer; and
2786 * 5) transfer the resulting XOR data to the data-in buffer.
2788 buf = kmalloc(cmd->data_length, GFP_KERNEL);
2789 if (!(buf)) {
2790 printk(KERN_ERR "Unable to allocate xor_callback buf\n");
2791 return;
2794 * Copy the scatterlist WRITE buffer located at cmd->t_mem_list
2795 * into the locally allocated *buf
2797 transport_memcpy_se_mem_read_contig(buf, &cmd->t_mem_list,
2798 cmd->data_length);
2800 * Now perform the XOR against the BIDI read memory located at
2801 * cmd->t_mem_bidi_list
2804 offset = 0;
2805 list_for_each_entry(se_mem, &cmd->t_mem_bidi_list, se_list) {
2806 addr = (unsigned char *)kmap_atomic(se_mem->se_page, KM_USER0);
2807 if (!(addr))
2808 goto out;
2810 for (i = 0; i < se_mem->se_len; i++)
2811 *(addr + se_mem->se_off + i) ^= *(buf + offset + i);
2813 offset += se_mem->se_len;
2814 kunmap_atomic(addr, KM_USER0);
2816 out:
2817 kfree(buf);
2821 * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
2823 static int transport_get_sense_data(struct se_cmd *cmd)
2825 unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL;
2826 struct se_device *dev;
2827 struct se_task *task = NULL, *task_tmp;
2828 unsigned long flags;
2829 u32 offset = 0;
2831 WARN_ON(!cmd->se_lun);
2833 spin_lock_irqsave(&cmd->t_state_lock, flags);
2834 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2835 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2836 return 0;
2839 list_for_each_entry_safe(task, task_tmp,
2840 &cmd->t_task_list, t_list) {
2842 if (!task->task_sense)
2843 continue;
2845 dev = task->se_dev;
2846 if (!(dev))
2847 continue;
2849 if (!dev->transport->get_sense_buffer) {
2850 printk(KERN_ERR "dev->transport->get_sense_buffer"
2851 " is NULL\n");
2852 continue;
2855 sense_buffer = dev->transport->get_sense_buffer(task);
2856 if (!(sense_buffer)) {
2857 printk(KERN_ERR "ITT[0x%08x]_TASK[%d]: Unable to locate"
2858 " sense buffer for task with sense\n",
2859 cmd->se_tfo->get_task_tag(cmd), task->task_no);
2860 continue;
2862 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2864 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
2865 TRANSPORT_SENSE_BUFFER);
2867 memcpy(&buffer[offset], sense_buffer,
2868 TRANSPORT_SENSE_BUFFER);
2869 cmd->scsi_status = task->task_scsi_status;
2870 /* Automatically padded */
2871 cmd->scsi_sense_length =
2872 (TRANSPORT_SENSE_BUFFER + offset);
2874 printk(KERN_INFO "HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x"
2875 " and sense\n",
2876 dev->se_hba->hba_id, dev->transport->name,
2877 cmd->scsi_status);
2878 return 0;
2880 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2882 return -1;
2885 static int transport_allocate_resources(struct se_cmd *cmd)
2887 u32 length = cmd->data_length;
2889 if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) ||
2890 (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB))
2891 return transport_generic_get_mem(cmd, length);
2892 else if (cmd->se_cmd_flags & SCF_SCSI_CONTROL_NONSG_IO_CDB)
2893 return transport_generic_allocate_buf(cmd, length);
2894 else
2895 return 0;
2898 static int
2899 transport_handle_reservation_conflict(struct se_cmd *cmd)
2901 cmd->transport_wait_for_tasks = &transport_nop_wait_for_tasks;
2902 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2903 cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT;
2904 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2906 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
2907 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
2908 * CONFLICT STATUS.
2910 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
2912 if (cmd->se_sess &&
2913 cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
2914 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
2915 cmd->orig_fe_lun, 0x2C,
2916 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
2917 return -EINVAL;
2920 /* transport_generic_cmd_sequencer():
2922 * Generic Command Sequencer that should work for most DAS transport
2923 * drivers.
2925 * Called from transport_generic_allocate_tasks() in the $FABRIC_MOD
2926 * RX Thread.
2928 * FIXME: Need to support other SCSI OPCODES where as well.
2930 static int transport_generic_cmd_sequencer(
2931 struct se_cmd *cmd,
2932 unsigned char *cdb)
2934 struct se_device *dev = cmd->se_dev;
2935 struct se_subsystem_dev *su_dev = dev->se_sub_dev;
2936 int ret = 0, sector_ret = 0, passthrough;
2937 u32 sectors = 0, size = 0, pr_reg_type = 0;
2938 u16 service_action;
2939 u8 alua_ascq = 0;
2941 * Check for an existing UNIT ATTENTION condition
2943 if (core_scsi3_ua_check(cmd, cdb) < 0) {
2944 cmd->transport_wait_for_tasks =
2945 &transport_nop_wait_for_tasks;
2946 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2947 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION;
2948 return -EINVAL;
2951 * Check status of Asymmetric Logical Unit Assignment port
2953 ret = su_dev->t10_alua.alua_state_check(cmd, cdb, &alua_ascq);
2954 if (ret != 0) {
2955 cmd->transport_wait_for_tasks = &transport_nop_wait_for_tasks;
2957 * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
2958 * The ALUA additional sense code qualifier (ASCQ) is determined
2959 * by the ALUA primary or secondary access state..
2961 if (ret > 0) {
2962 #if 0
2963 printk(KERN_INFO "[%s]: ALUA TG Port not available,"
2964 " SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n",
2965 cmd->se_tfo->get_fabric_name(), alua_ascq);
2966 #endif
2967 transport_set_sense_codes(cmd, 0x04, alua_ascq);
2968 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2969 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY;
2970 return -EINVAL;
2972 goto out_invalid_cdb_field;
2975 * Check status for SPC-3 Persistent Reservations
2977 if (su_dev->t10_pr.pr_ops.t10_reservation_check(cmd, &pr_reg_type) != 0) {
2978 if (su_dev->t10_pr.pr_ops.t10_seq_non_holder(
2979 cmd, cdb, pr_reg_type) != 0)
2980 return transport_handle_reservation_conflict(cmd);
2982 * This means the CDB is allowed for the SCSI Initiator port
2983 * when said port is *NOT* holding the legacy SPC-2 or
2984 * SPC-3 Persistent Reservation.
2988 switch (cdb[0]) {
2989 case READ_6:
2990 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2991 if (sector_ret)
2992 goto out_unsupported_cdb;
2993 size = transport_get_size(sectors, cdb, cmd);
2994 cmd->transport_split_cdb = &split_cdb_XX_6;
2995 cmd->t_task_lba = transport_lba_21(cdb);
2996 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2997 break;
2998 case READ_10:
2999 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3000 if (sector_ret)
3001 goto out_unsupported_cdb;
3002 size = transport_get_size(sectors, cdb, cmd);
3003 cmd->transport_split_cdb = &split_cdb_XX_10;
3004 cmd->t_task_lba = transport_lba_32(cdb);
3005 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3006 break;
3007 case READ_12:
3008 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
3009 if (sector_ret)
3010 goto out_unsupported_cdb;
3011 size = transport_get_size(sectors, cdb, cmd);
3012 cmd->transport_split_cdb = &split_cdb_XX_12;
3013 cmd->t_task_lba = transport_lba_32(cdb);
3014 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3015 break;
3016 case READ_16:
3017 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3018 if (sector_ret)
3019 goto out_unsupported_cdb;
3020 size = transport_get_size(sectors, cdb, cmd);
3021 cmd->transport_split_cdb = &split_cdb_XX_16;
3022 cmd->t_task_lba = transport_lba_64(cdb);
3023 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3024 break;
3025 case WRITE_6:
3026 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
3027 if (sector_ret)
3028 goto out_unsupported_cdb;
3029 size = transport_get_size(sectors, cdb, cmd);
3030 cmd->transport_split_cdb = &split_cdb_XX_6;
3031 cmd->t_task_lba = transport_lba_21(cdb);
3032 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3033 break;
3034 case WRITE_10:
3035 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3036 if (sector_ret)
3037 goto out_unsupported_cdb;
3038 size = transport_get_size(sectors, cdb, cmd);
3039 cmd->transport_split_cdb = &split_cdb_XX_10;
3040 cmd->t_task_lba = transport_lba_32(cdb);
3041 cmd->t_tasks_fua = (cdb[1] & 0x8);
3042 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3043 break;
3044 case WRITE_12:
3045 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
3046 if (sector_ret)
3047 goto out_unsupported_cdb;
3048 size = transport_get_size(sectors, cdb, cmd);
3049 cmd->transport_split_cdb = &split_cdb_XX_12;
3050 cmd->t_task_lba = transport_lba_32(cdb);
3051 cmd->t_tasks_fua = (cdb[1] & 0x8);
3052 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3053 break;
3054 case WRITE_16:
3055 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3056 if (sector_ret)
3057 goto out_unsupported_cdb;
3058 size = transport_get_size(sectors, cdb, cmd);
3059 cmd->transport_split_cdb = &split_cdb_XX_16;
3060 cmd->t_task_lba = transport_lba_64(cdb);
3061 cmd->t_tasks_fua = (cdb[1] & 0x8);
3062 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3063 break;
3064 case XDWRITEREAD_10:
3065 if ((cmd->data_direction != DMA_TO_DEVICE) ||
3066 !(cmd->t_tasks_bidi))
3067 goto out_invalid_cdb_field;
3068 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3069 if (sector_ret)
3070 goto out_unsupported_cdb;
3071 size = transport_get_size(sectors, cdb, cmd);
3072 cmd->transport_split_cdb = &split_cdb_XX_10;
3073 cmd->t_task_lba = transport_lba_32(cdb);
3074 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3075 passthrough = (dev->transport->transport_type ==
3076 TRANSPORT_PLUGIN_PHBA_PDEV);
3078 * Skip the remaining assignments for TCM/PSCSI passthrough
3080 if (passthrough)
3081 break;
3083 * Setup BIDI XOR callback to be run during transport_generic_complete_ok()
3085 cmd->transport_complete_callback = &transport_xor_callback;
3086 cmd->t_tasks_fua = (cdb[1] & 0x8);
3087 break;
3088 case VARIABLE_LENGTH_CMD:
3089 service_action = get_unaligned_be16(&cdb[8]);
3091 * Determine if this is TCM/PSCSI device and we should disable
3092 * internal emulation for this CDB.
3094 passthrough = (dev->transport->transport_type ==
3095 TRANSPORT_PLUGIN_PHBA_PDEV);
3097 switch (service_action) {
3098 case XDWRITEREAD_32:
3099 sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
3100 if (sector_ret)
3101 goto out_unsupported_cdb;
3102 size = transport_get_size(sectors, cdb, cmd);
3104 * Use WRITE_32 and READ_32 opcodes for the emulated
3105 * XDWRITE_READ_32 logic.
3107 cmd->transport_split_cdb = &split_cdb_XX_32;
3108 cmd->t_task_lba = transport_lba_64_ext(cdb);
3109 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3112 * Skip the remaining assignments for TCM/PSCSI passthrough
3114 if (passthrough)
3115 break;
3118 * Setup BIDI XOR callback to be run during
3119 * transport_generic_complete_ok()
3121 cmd->transport_complete_callback = &transport_xor_callback;
3122 cmd->t_tasks_fua = (cdb[10] & 0x8);
3123 break;
3124 case WRITE_SAME_32:
3125 sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
3126 if (sector_ret)
3127 goto out_unsupported_cdb;
3129 if (sectors != 0)
3130 size = transport_get_size(sectors, cdb, cmd);
3131 else
3132 size = dev->se_sub_dev->se_dev_attrib.block_size;
3134 cmd->t_task_lba = get_unaligned_be64(&cdb[12]);
3135 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3138 * Skip the remaining assignments for TCM/PSCSI passthrough
3140 if (passthrough)
3141 break;
3143 if ((cdb[10] & 0x04) || (cdb[10] & 0x02)) {
3144 printk(KERN_ERR "WRITE_SAME PBDATA and LBDATA"
3145 " bits not supported for Block Discard"
3146 " Emulation\n");
3147 goto out_invalid_cdb_field;
3150 * Currently for the emulated case we only accept
3151 * tpws with the UNMAP=1 bit set.
3153 if (!(cdb[10] & 0x08)) {
3154 printk(KERN_ERR "WRITE_SAME w/o UNMAP bit not"
3155 " supported for Block Discard Emulation\n");
3156 goto out_invalid_cdb_field;
3158 break;
3159 default:
3160 printk(KERN_ERR "VARIABLE_LENGTH_CMD service action"
3161 " 0x%04x not supported\n", service_action);
3162 goto out_unsupported_cdb;
3164 break;
3165 case MAINTENANCE_IN:
3166 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
3167 /* MAINTENANCE_IN from SCC-2 */
3169 * Check for emulated MI_REPORT_TARGET_PGS.
3171 if (cdb[1] == MI_REPORT_TARGET_PGS) {
3172 cmd->transport_emulate_cdb =
3173 (su_dev->t10_alua.alua_type ==
3174 SPC3_ALUA_EMULATED) ?
3175 core_emulate_report_target_port_groups :
3176 NULL;
3178 size = (cdb[6] << 24) | (cdb[7] << 16) |
3179 (cdb[8] << 8) | cdb[9];
3180 } else {
3181 /* GPCMD_SEND_KEY from multi media commands */
3182 size = (cdb[8] << 8) + cdb[9];
3184 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3185 break;
3186 case MODE_SELECT:
3187 size = cdb[4];
3188 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3189 break;
3190 case MODE_SELECT_10:
3191 size = (cdb[7] << 8) + cdb[8];
3192 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3193 break;
3194 case MODE_SENSE:
3195 size = cdb[4];
3196 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3197 break;
3198 case MODE_SENSE_10:
3199 case GPCMD_READ_BUFFER_CAPACITY:
3200 case GPCMD_SEND_OPC:
3201 case LOG_SELECT:
3202 case LOG_SENSE:
3203 size = (cdb[7] << 8) + cdb[8];
3204 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3205 break;
3206 case READ_BLOCK_LIMITS:
3207 size = READ_BLOCK_LEN;
3208 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3209 break;
3210 case GPCMD_GET_CONFIGURATION:
3211 case GPCMD_READ_FORMAT_CAPACITIES:
3212 case GPCMD_READ_DISC_INFO:
3213 case GPCMD_READ_TRACK_RZONE_INFO:
3214 size = (cdb[7] << 8) + cdb[8];
3215 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3216 break;
3217 case PERSISTENT_RESERVE_IN:
3218 case PERSISTENT_RESERVE_OUT:
3219 cmd->transport_emulate_cdb =
3220 (su_dev->t10_pr.res_type ==
3221 SPC3_PERSISTENT_RESERVATIONS) ?
3222 core_scsi3_emulate_pr : NULL;
3223 size = (cdb[7] << 8) + cdb[8];
3224 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3225 break;
3226 case GPCMD_MECHANISM_STATUS:
3227 case GPCMD_READ_DVD_STRUCTURE:
3228 size = (cdb[8] << 8) + cdb[9];
3229 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3230 break;
3231 case READ_POSITION:
3232 size = READ_POSITION_LEN;
3233 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3234 break;
3235 case MAINTENANCE_OUT:
3236 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
3237 /* MAINTENANCE_OUT from SCC-2
3239 * Check for emulated MO_SET_TARGET_PGS.
3241 if (cdb[1] == MO_SET_TARGET_PGS) {
3242 cmd->transport_emulate_cdb =
3243 (su_dev->t10_alua.alua_type ==
3244 SPC3_ALUA_EMULATED) ?
3245 core_emulate_set_target_port_groups :
3246 NULL;
3249 size = (cdb[6] << 24) | (cdb[7] << 16) |
3250 (cdb[8] << 8) | cdb[9];
3251 } else {
3252 /* GPCMD_REPORT_KEY from multi media commands */
3253 size = (cdb[8] << 8) + cdb[9];
3255 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3256 break;
3257 case INQUIRY:
3258 size = (cdb[3] << 8) + cdb[4];
3260 * Do implict HEAD_OF_QUEUE processing for INQUIRY.
3261 * See spc4r17 section 5.3
3263 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3264 cmd->sam_task_attr = MSG_HEAD_TAG;
3265 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3266 break;
3267 case READ_BUFFER:
3268 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3269 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3270 break;
3271 case READ_CAPACITY:
3272 size = READ_CAP_LEN;
3273 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3274 break;
3275 case READ_MEDIA_SERIAL_NUMBER:
3276 case SECURITY_PROTOCOL_IN:
3277 case SECURITY_PROTOCOL_OUT:
3278 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3279 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3280 break;
3281 case SERVICE_ACTION_IN:
3282 case ACCESS_CONTROL_IN:
3283 case ACCESS_CONTROL_OUT:
3284 case EXTENDED_COPY:
3285 case READ_ATTRIBUTE:
3286 case RECEIVE_COPY_RESULTS:
3287 case WRITE_ATTRIBUTE:
3288 size = (cdb[10] << 24) | (cdb[11] << 16) |
3289 (cdb[12] << 8) | cdb[13];
3290 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3291 break;
3292 case RECEIVE_DIAGNOSTIC:
3293 case SEND_DIAGNOSTIC:
3294 size = (cdb[3] << 8) | cdb[4];
3295 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3296 break;
3297 /* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */
3298 #if 0
3299 case GPCMD_READ_CD:
3300 sectors = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3301 size = (2336 * sectors);
3302 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3303 break;
3304 #endif
3305 case READ_TOC:
3306 size = cdb[8];
3307 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3308 break;
3309 case REQUEST_SENSE:
3310 size = cdb[4];
3311 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3312 break;
3313 case READ_ELEMENT_STATUS:
3314 size = 65536 * cdb[7] + 256 * cdb[8] + cdb[9];
3315 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3316 break;
3317 case WRITE_BUFFER:
3318 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3319 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3320 break;
3321 case RESERVE:
3322 case RESERVE_10:
3324 * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
3325 * Assume the passthrough or $FABRIC_MOD will tell us about it.
3327 if (cdb[0] == RESERVE_10)
3328 size = (cdb[7] << 8) | cdb[8];
3329 else
3330 size = cmd->data_length;
3333 * Setup the legacy emulated handler for SPC-2 and
3334 * >= SPC-3 compatible reservation handling (CRH=1)
3335 * Otherwise, we assume the underlying SCSI logic is
3336 * is running in SPC_PASSTHROUGH, and wants reservations
3337 * emulation disabled.
3339 cmd->transport_emulate_cdb =
3340 (su_dev->t10_pr.res_type !=
3341 SPC_PASSTHROUGH) ?
3342 core_scsi2_emulate_crh : NULL;
3343 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3344 break;
3345 case RELEASE:
3346 case RELEASE_10:
3348 * The SPC-2 RELEASE does not contain a size in the SCSI CDB.
3349 * Assume the passthrough or $FABRIC_MOD will tell us about it.
3351 if (cdb[0] == RELEASE_10)
3352 size = (cdb[7] << 8) | cdb[8];
3353 else
3354 size = cmd->data_length;
3356 cmd->transport_emulate_cdb =
3357 (su_dev->t10_pr.res_type !=
3358 SPC_PASSTHROUGH) ?
3359 core_scsi2_emulate_crh : NULL;
3360 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3361 break;
3362 case SYNCHRONIZE_CACHE:
3363 case 0x91: /* SYNCHRONIZE_CACHE_16: */
3365 * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE
3367 if (cdb[0] == SYNCHRONIZE_CACHE) {
3368 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3369 cmd->t_task_lba = transport_lba_32(cdb);
3370 } else {
3371 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3372 cmd->t_task_lba = transport_lba_64(cdb);
3374 if (sector_ret)
3375 goto out_unsupported_cdb;
3377 size = transport_get_size(sectors, cdb, cmd);
3378 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3381 * For TCM/pSCSI passthrough, skip cmd->transport_emulate_cdb()
3383 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
3384 break;
3386 * Set SCF_EMULATE_CDB_ASYNC to ensure asynchronous operation
3387 * for SYNCHRONIZE_CACHE* Immed=1 case in __transport_execute_tasks()
3389 cmd->se_cmd_flags |= SCF_EMULATE_CDB_ASYNC;
3391 * Check to ensure that LBA + Range does not exceed past end of
3392 * device.
3394 if (!transport_cmd_get_valid_sectors(cmd))
3395 goto out_invalid_cdb_field;
3396 break;
3397 case UNMAP:
3398 size = get_unaligned_be16(&cdb[7]);
3399 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3400 break;
3401 case WRITE_SAME_16:
3402 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3403 if (sector_ret)
3404 goto out_unsupported_cdb;
3406 if (sectors != 0)
3407 size = transport_get_size(sectors, cdb, cmd);
3408 else
3409 size = dev->se_sub_dev->se_dev_attrib.block_size;
3411 cmd->t_task_lba = get_unaligned_be16(&cdb[2]);
3412 passthrough = (dev->transport->transport_type ==
3413 TRANSPORT_PLUGIN_PHBA_PDEV);
3415 * Determine if the received WRITE_SAME_16 is used to for direct
3416 * passthrough into Linux/SCSI with struct request via TCM/pSCSI
3417 * or we are signaling the use of internal WRITE_SAME + UNMAP=1
3418 * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK and
3419 * TCM/FILEIO subsystem plugin backstores.
3421 if (!(passthrough)) {
3422 if ((cdb[1] & 0x04) || (cdb[1] & 0x02)) {
3423 printk(KERN_ERR "WRITE_SAME PBDATA and LBDATA"
3424 " bits not supported for Block Discard"
3425 " Emulation\n");
3426 goto out_invalid_cdb_field;
3429 * Currently for the emulated case we only accept
3430 * tpws with the UNMAP=1 bit set.
3432 if (!(cdb[1] & 0x08)) {
3433 printk(KERN_ERR "WRITE_SAME w/o UNMAP bit not "
3434 " supported for Block Discard Emulation\n");
3435 goto out_invalid_cdb_field;
3438 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3439 break;
3440 case ALLOW_MEDIUM_REMOVAL:
3441 case GPCMD_CLOSE_TRACK:
3442 case ERASE:
3443 case INITIALIZE_ELEMENT_STATUS:
3444 case GPCMD_LOAD_UNLOAD:
3445 case REZERO_UNIT:
3446 case SEEK_10:
3447 case GPCMD_SET_SPEED:
3448 case SPACE:
3449 case START_STOP:
3450 case TEST_UNIT_READY:
3451 case VERIFY:
3452 case WRITE_FILEMARKS:
3453 case MOVE_MEDIUM:
3454 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3455 break;
3456 case REPORT_LUNS:
3457 cmd->transport_emulate_cdb =
3458 transport_core_report_lun_response;
3459 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3461 * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS
3462 * See spc4r17 section 5.3
3464 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3465 cmd->sam_task_attr = MSG_HEAD_TAG;
3466 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3467 break;
3468 default:
3469 printk(KERN_WARNING "TARGET_CORE[%s]: Unsupported SCSI Opcode"
3470 " 0x%02x, sending CHECK_CONDITION.\n",
3471 cmd->se_tfo->get_fabric_name(), cdb[0]);
3472 cmd->transport_wait_for_tasks = &transport_nop_wait_for_tasks;
3473 goto out_unsupported_cdb;
3476 if (size != cmd->data_length) {
3477 printk(KERN_WARNING "TARGET_CORE[%s]: Expected Transfer Length:"
3478 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
3479 " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
3480 cmd->data_length, size, cdb[0]);
3482 cmd->cmd_spdtl = size;
3484 if (cmd->data_direction == DMA_TO_DEVICE) {
3485 printk(KERN_ERR "Rejecting underflow/overflow"
3486 " WRITE data\n");
3487 goto out_invalid_cdb_field;
3490 * Reject READ_* or WRITE_* with overflow/underflow for
3491 * type SCF_SCSI_DATA_SG_IO_CDB.
3493 if (!(ret) && (dev->se_sub_dev->se_dev_attrib.block_size != 512)) {
3494 printk(KERN_ERR "Failing OVERFLOW/UNDERFLOW for LBA op"
3495 " CDB on non 512-byte sector setup subsystem"
3496 " plugin: %s\n", dev->transport->name);
3497 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
3498 goto out_invalid_cdb_field;
3501 if (size > cmd->data_length) {
3502 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
3503 cmd->residual_count = (size - cmd->data_length);
3504 } else {
3505 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
3506 cmd->residual_count = (cmd->data_length - size);
3508 cmd->data_length = size;
3511 transport_set_supported_SAM_opcode(cmd);
3512 return ret;
3514 out_unsupported_cdb:
3515 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3516 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
3517 return -EINVAL;
3518 out_invalid_cdb_field:
3519 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3520 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3521 return -EINVAL;
3524 static inline void transport_release_tasks(struct se_cmd *);
3526 static void transport_memcpy_se_mem_read_contig(
3527 unsigned char *dst,
3528 struct list_head *se_mem_list,
3529 u32 tot_len)
3531 struct se_mem *se_mem;
3532 void *src;
3533 u32 length;
3535 list_for_each_entry(se_mem, se_mem_list, se_list) {
3536 length = min_t(u32, se_mem->se_len, tot_len);
3537 src = page_address(se_mem->se_page) + se_mem->se_off;
3538 memcpy(dst, src, length);
3539 tot_len -= length;
3540 if (!tot_len)
3541 break;
3542 dst += length;
3547 * Called from transport_generic_complete_ok() and
3548 * transport_generic_request_failure() to determine which dormant/delayed
3549 * and ordered cmds need to have their tasks added to the execution queue.
3551 static void transport_complete_task_attr(struct se_cmd *cmd)
3553 struct se_device *dev = cmd->se_dev;
3554 struct se_cmd *cmd_p, *cmd_tmp;
3555 int new_active_tasks = 0;
3557 if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
3558 atomic_dec(&dev->simple_cmds);
3559 smp_mb__after_atomic_dec();
3560 dev->dev_cur_ordered_id++;
3561 DEBUG_STA("Incremented dev->dev_cur_ordered_id: %u for"
3562 " SIMPLE: %u\n", dev->dev_cur_ordered_id,
3563 cmd->se_ordered_id);
3564 } else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
3565 atomic_dec(&dev->dev_hoq_count);
3566 smp_mb__after_atomic_dec();
3567 dev->dev_cur_ordered_id++;
3568 DEBUG_STA("Incremented dev_cur_ordered_id: %u for"
3569 " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
3570 cmd->se_ordered_id);
3571 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
3572 spin_lock(&dev->ordered_cmd_lock);
3573 list_del(&cmd->se_ordered_node);
3574 atomic_dec(&dev->dev_ordered_sync);
3575 smp_mb__after_atomic_dec();
3576 spin_unlock(&dev->ordered_cmd_lock);
3578 dev->dev_cur_ordered_id++;
3579 DEBUG_STA("Incremented dev_cur_ordered_id: %u for ORDERED:"
3580 " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
3583 * Process all commands up to the last received
3584 * ORDERED task attribute which requires another blocking
3585 * boundary
3587 spin_lock(&dev->delayed_cmd_lock);
3588 list_for_each_entry_safe(cmd_p, cmd_tmp,
3589 &dev->delayed_cmd_list, se_delayed_node) {
3591 list_del(&cmd_p->se_delayed_node);
3592 spin_unlock(&dev->delayed_cmd_lock);
3594 DEBUG_STA("Calling add_tasks() for"
3595 " cmd_p: 0x%02x Task Attr: 0x%02x"
3596 " Dormant -> Active, se_ordered_id: %u\n",
3597 T_TASK(cmd_p)->t_task_cdb[0],
3598 cmd_p->sam_task_attr, cmd_p->se_ordered_id);
3600 transport_add_tasks_from_cmd(cmd_p);
3601 new_active_tasks++;
3603 spin_lock(&dev->delayed_cmd_lock);
3604 if (cmd_p->sam_task_attr == MSG_ORDERED_TAG)
3605 break;
3607 spin_unlock(&dev->delayed_cmd_lock);
3609 * If new tasks have become active, wake up the transport thread
3610 * to do the processing of the Active tasks.
3612 if (new_active_tasks != 0)
3613 wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
3616 static void transport_generic_complete_ok(struct se_cmd *cmd)
3618 int reason = 0;
3620 * Check if we need to move delayed/dormant tasks from cmds on the
3621 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
3622 * Attribute.
3624 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3625 transport_complete_task_attr(cmd);
3627 * Check if we need to retrieve a sense buffer from
3628 * the struct se_cmd in question.
3630 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3631 if (transport_get_sense_data(cmd) < 0)
3632 reason = TCM_NON_EXISTENT_LUN;
3635 * Only set when an struct se_task->task_scsi_status returned
3636 * a non GOOD status.
3638 if (cmd->scsi_status) {
3639 transport_send_check_condition_and_sense(
3640 cmd, reason, 1);
3641 transport_lun_remove_cmd(cmd);
3642 transport_cmd_check_stop_to_fabric(cmd);
3643 return;
3647 * Check for a callback, used by amongst other things
3648 * XDWRITE_READ_10 emulation.
3650 if (cmd->transport_complete_callback)
3651 cmd->transport_complete_callback(cmd);
3653 switch (cmd->data_direction) {
3654 case DMA_FROM_DEVICE:
3655 spin_lock(&cmd->se_lun->lun_sep_lock);
3656 if (cmd->se_lun->lun_sep) {
3657 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3658 cmd->data_length;
3660 spin_unlock(&cmd->se_lun->lun_sep_lock);
3662 * If enabled by TCM fabric module pre-registered SGL
3663 * memory, perform the memcpy() from the TCM internal
3664 * contiguous buffer back to the original SGL.
3666 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_CONTIG_TO_SG)
3667 sg_copy_from_buffer(cmd->t_task_pt_sgl,
3668 cmd->t_task_pt_sgl_num,
3669 cmd->t_task_buf,
3670 cmd->data_length);
3672 cmd->se_tfo->queue_data_in(cmd);
3673 break;
3674 case DMA_TO_DEVICE:
3675 spin_lock(&cmd->se_lun->lun_sep_lock);
3676 if (cmd->se_lun->lun_sep) {
3677 cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
3678 cmd->data_length;
3680 spin_unlock(&cmd->se_lun->lun_sep_lock);
3682 * Check if we need to send READ payload for BIDI-COMMAND
3684 if (!list_empty(&cmd->t_mem_bidi_list)) {
3685 spin_lock(&cmd->se_lun->lun_sep_lock);
3686 if (cmd->se_lun->lun_sep) {
3687 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3688 cmd->data_length;
3690 spin_unlock(&cmd->se_lun->lun_sep_lock);
3691 cmd->se_tfo->queue_data_in(cmd);
3692 break;
3694 /* Fall through for DMA_TO_DEVICE */
3695 case DMA_NONE:
3696 cmd->se_tfo->queue_status(cmd);
3697 break;
3698 default:
3699 break;
3702 transport_lun_remove_cmd(cmd);
3703 transport_cmd_check_stop_to_fabric(cmd);
3706 static void transport_free_dev_tasks(struct se_cmd *cmd)
3708 struct se_task *task, *task_tmp;
3709 unsigned long flags;
3711 spin_lock_irqsave(&cmd->t_state_lock, flags);
3712 list_for_each_entry_safe(task, task_tmp,
3713 &cmd->t_task_list, t_list) {
3714 if (atomic_read(&task->task_active))
3715 continue;
3717 kfree(task->task_sg_bidi);
3718 kfree(task->task_sg);
3720 list_del(&task->t_list);
3722 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3723 if (task->se_dev)
3724 task->se_dev->transport->free_task(task);
3725 else
3726 printk(KERN_ERR "task[%u] - task->se_dev is NULL\n",
3727 task->task_no);
3728 spin_lock_irqsave(&cmd->t_state_lock, flags);
3730 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3733 static inline void transport_free_pages(struct se_cmd *cmd)
3735 struct se_mem *se_mem, *se_mem_tmp;
3736 int free_page = 1;
3738 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
3739 free_page = 0;
3740 if (cmd->se_dev->transport->do_se_mem_map)
3741 free_page = 0;
3743 if (cmd->t_task_buf) {
3744 kfree(cmd->t_task_buf);
3745 cmd->t_task_buf = NULL;
3746 return;
3749 list_for_each_entry_safe(se_mem, se_mem_tmp,
3750 &cmd->t_mem_list, se_list) {
3752 * We only release call __free_page(struct se_mem->se_page) when
3753 * SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC is NOT in use,
3755 if (free_page)
3756 __free_page(se_mem->se_page);
3758 list_del(&se_mem->se_list);
3759 kmem_cache_free(se_mem_cache, se_mem);
3761 cmd->t_tasks_se_num = 0;
3763 list_for_each_entry_safe(se_mem, se_mem_tmp,
3764 &cmd->t_mem_bidi_list, se_list) {
3766 * We only release call __free_page(struct se_mem->se_page) when
3767 * SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC is NOT in use,
3769 if (free_page)
3770 __free_page(se_mem->se_page);
3772 list_del(&se_mem->se_list);
3773 kmem_cache_free(se_mem_cache, se_mem);
3775 cmd->t_tasks_se_bidi_num = 0;
3778 static inline void transport_release_tasks(struct se_cmd *cmd)
3780 transport_free_dev_tasks(cmd);
3783 static inline int transport_dec_and_check(struct se_cmd *cmd)
3785 unsigned long flags;
3787 spin_lock_irqsave(&cmd->t_state_lock, flags);
3788 if (atomic_read(&cmd->t_fe_count)) {
3789 if (!(atomic_dec_and_test(&cmd->t_fe_count))) {
3790 spin_unlock_irqrestore(&cmd->t_state_lock,
3791 flags);
3792 return 1;
3796 if (atomic_read(&cmd->t_se_count)) {
3797 if (!(atomic_dec_and_test(&cmd->t_se_count))) {
3798 spin_unlock_irqrestore(&cmd->t_state_lock,
3799 flags);
3800 return 1;
3803 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3805 return 0;
3808 static void transport_release_fe_cmd(struct se_cmd *cmd)
3810 unsigned long flags;
3812 if (transport_dec_and_check(cmd))
3813 return;
3815 spin_lock_irqsave(&cmd->t_state_lock, flags);
3816 if (!(atomic_read(&cmd->transport_dev_active))) {
3817 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3818 goto free_pages;
3820 atomic_set(&cmd->transport_dev_active, 0);
3821 transport_all_task_dev_remove_state(cmd);
3822 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3824 transport_release_tasks(cmd);
3825 free_pages:
3826 transport_free_pages(cmd);
3827 transport_free_se_cmd(cmd);
3828 cmd->se_tfo->release_cmd_direct(cmd);
3831 static int transport_generic_remove(
3832 struct se_cmd *cmd,
3833 int release_to_pool,
3834 int session_reinstatement)
3836 unsigned long flags;
3838 if (transport_dec_and_check(cmd)) {
3839 if (session_reinstatement) {
3840 spin_lock_irqsave(&cmd->t_state_lock, flags);
3841 transport_all_task_dev_remove_state(cmd);
3842 spin_unlock_irqrestore(&cmd->t_state_lock,
3843 flags);
3845 return 1;
3848 spin_lock_irqsave(&cmd->t_state_lock, flags);
3849 if (!(atomic_read(&cmd->transport_dev_active))) {
3850 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3851 goto free_pages;
3853 atomic_set(&cmd->transport_dev_active, 0);
3854 transport_all_task_dev_remove_state(cmd);
3855 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3857 transport_release_tasks(cmd);
3859 free_pages:
3860 transport_free_pages(cmd);
3862 if (release_to_pool) {
3863 transport_release_cmd_to_pool(cmd);
3864 } else {
3865 transport_free_se_cmd(cmd);
3866 cmd->se_tfo->release_cmd_direct(cmd);
3869 return 0;
3873 * transport_generic_map_mem_to_cmd - Perform SGL -> struct se_mem map
3874 * @cmd: Associated se_cmd descriptor
3875 * @mem: SGL style memory for TCM WRITE / READ
3876 * @sg_mem_num: Number of SGL elements
3877 * @mem_bidi_in: SGL style memory for TCM BIDI READ
3878 * @sg_mem_bidi_num: Number of BIDI READ SGL elements
3880 * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
3881 * of parameters.
3883 int transport_generic_map_mem_to_cmd(
3884 struct se_cmd *cmd,
3885 struct scatterlist *sgl,
3886 u32 sgl_count,
3887 struct scatterlist *sgl_bidi,
3888 u32 sgl_bidi_count)
3890 int ret;
3892 if (!sgl || !sgl_count)
3893 return 0;
3896 * Convert sgls (sgl, sgl_bidi) to list of se_mems
3898 if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) ||
3899 (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB)) {
3901 * For CDB using TCM struct se_mem linked list scatterlist memory
3902 * processed into a TCM struct se_subsystem_dev, we do the mapping
3903 * from the passed physical memory to struct se_mem->se_page here.
3905 ret = transport_map_sg_to_mem(cmd, &cmd->t_mem_list, sgl);
3906 if (ret < 0)
3907 return -ENOMEM;
3909 cmd->t_tasks_se_num = ret;
3911 * Setup BIDI READ list of struct se_mem elements
3913 if (sgl_bidi && sgl_bidi_count) {
3914 ret = transport_map_sg_to_mem(cmd, &cmd->t_mem_bidi_list, sgl_bidi);
3915 if (ret < 0)
3916 return -ENOMEM;
3918 cmd->t_tasks_se_bidi_num = ret;
3920 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
3922 } else if (cmd->se_cmd_flags & SCF_SCSI_CONTROL_NONSG_IO_CDB) {
3923 if (sgl_bidi || sgl_bidi_count) {
3924 printk(KERN_ERR "BIDI-Commands not supported using "
3925 "SCF_SCSI_CONTROL_NONSG_IO_CDB\n");
3926 return -ENOSYS;
3929 * For incoming CDBs using a contiguous buffer internal with TCM,
3930 * save the passed struct scatterlist memory. After TCM storage object
3931 * processing has completed for this struct se_cmd, TCM core will call
3932 * transport_memcpy_[write,read]_contig() as necessary from
3933 * transport_generic_complete_ok() and transport_write_pending() in order
3934 * to copy the TCM buffer to/from the original passed *mem in SGL ->
3935 * struct scatterlist format.
3937 cmd->se_cmd_flags |= SCF_PASSTHROUGH_CONTIG_TO_SG;
3938 cmd->t_task_pt_sgl = sgl;
3939 cmd->t_task_pt_sgl_num = sgl_count;
3942 return 0;
3944 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd);
3947 static inline long long transport_dev_end_lba(struct se_device *dev)
3949 return dev->transport->get_blocks(dev) + 1;
3952 static int transport_cmd_get_valid_sectors(struct se_cmd *cmd)
3954 struct se_device *dev = cmd->se_dev;
3955 u32 sectors;
3957 if (dev->transport->get_device_type(dev) != TYPE_DISK)
3958 return 0;
3960 sectors = (cmd->data_length / dev->se_sub_dev->se_dev_attrib.block_size);
3962 if ((cmd->t_task_lba + sectors) >
3963 transport_dev_end_lba(dev)) {
3964 printk(KERN_ERR "LBA: %llu Sectors: %u exceeds"
3965 " transport_dev_end_lba(): %llu\n",
3966 cmd->t_task_lba, sectors,
3967 transport_dev_end_lba(dev));
3968 return 0;
3971 return sectors;
3974 static int transport_new_cmd_obj(struct se_cmd *cmd)
3976 struct se_device *dev = cmd->se_dev;
3977 u32 task_cdbs;
3978 u32 rc;
3980 if (!(cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)) {
3981 task_cdbs = 1;
3982 cmd->t_task_list_num = 1;
3983 } else {
3984 int set_counts = 1;
3987 * Setup any BIDI READ tasks and memory from
3988 * cmd->t_mem_bidi_list so the READ struct se_tasks
3989 * are queued first for the non pSCSI passthrough case.
3991 if (!list_empty(&cmd->t_mem_bidi_list) &&
3992 (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV)) {
3993 rc = transport_allocate_tasks(cmd,
3994 cmd->t_task_lba,
3995 transport_cmd_get_valid_sectors(cmd),
3996 DMA_FROM_DEVICE, &cmd->t_mem_bidi_list,
3997 set_counts);
3998 if (!(rc)) {
3999 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
4000 cmd->scsi_sense_reason =
4001 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
4002 return PYX_TRANSPORT_LU_COMM_FAILURE;
4004 set_counts = 0;
4007 * Setup the tasks and memory from cmd->t_mem_list
4008 * Note for BIDI transfers this will contain the WRITE payload
4010 task_cdbs = transport_allocate_tasks(cmd,
4011 cmd->t_task_lba,
4012 transport_cmd_get_valid_sectors(cmd),
4013 cmd->data_direction, &cmd->t_mem_list,
4014 set_counts);
4015 if (!(task_cdbs)) {
4016 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
4017 cmd->scsi_sense_reason =
4018 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
4019 return PYX_TRANSPORT_LU_COMM_FAILURE;
4021 cmd->t_task_list_num = task_cdbs;
4023 #if 0
4024 printk(KERN_INFO "data_length: %u, LBA: %llu t_tasks_sectors:"
4025 " %u, t_task_cdbs: %u\n", obj_ptr, cmd->data_length,
4026 cmd->t_task_lba, cmd->t_tasks_sectors,
4027 cmd->t_task_cdbs);
4028 #endif
4031 atomic_set(&cmd->t_task_cdbs_left, task_cdbs);
4032 atomic_set(&cmd->t_task_cdbs_ex_left, task_cdbs);
4033 atomic_set(&cmd->t_task_cdbs_timeout_left, task_cdbs);
4034 return 0;
4037 static int
4038 transport_generic_get_mem(struct se_cmd *cmd, u32 length)
4040 struct se_mem *se_mem;
4043 * If the device uses memory mapping this is enough.
4045 if (cmd->se_dev->transport->do_se_mem_map)
4046 return 0;
4048 while (length) {
4049 se_mem = kmem_cache_zalloc(se_mem_cache, GFP_KERNEL);
4050 if (!(se_mem)) {
4051 printk(KERN_ERR "Unable to allocate struct se_mem\n");
4052 goto out;
4055 /* #warning FIXME Allocate contigous pages for struct se_mem elements */
4056 se_mem->se_page = alloc_pages(GFP_KERNEL | __GFP_ZERO, 0);
4057 if (!(se_mem->se_page)) {
4058 printk(KERN_ERR "alloc_pages() failed\n");
4059 goto out;
4062 INIT_LIST_HEAD(&se_mem->se_list);
4063 se_mem->se_len = min_t(u32, length, PAGE_SIZE);
4064 list_add_tail(&se_mem->se_list, &cmd->t_mem_list);
4065 cmd->t_tasks_se_num++;
4067 DEBUG_MEM("Allocated struct se_mem page(%p) Length(%u)"
4068 " Offset(%u)\n", se_mem->se_page, se_mem->se_len,
4069 se_mem->se_off);
4071 length -= se_mem->se_len;
4074 DEBUG_MEM("Allocated total struct se_mem elements(%u)\n",
4075 cmd->t_tasks_se_num);
4077 return 0;
4078 out:
4079 if (se_mem)
4080 __free_pages(se_mem->se_page, 0);
4081 kmem_cache_free(se_mem_cache, se_mem);
4082 return -ENOMEM;
4085 int transport_init_task_sg(
4086 struct se_task *task,
4087 struct se_mem *in_se_mem,
4088 u32 task_offset)
4090 struct se_cmd *se_cmd = task->task_se_cmd;
4091 struct se_device *se_dev = se_cmd->se_dev;
4092 struct se_mem *se_mem = in_se_mem;
4093 struct target_core_fabric_ops *tfo = se_cmd->se_tfo;
4094 u32 sg_length, task_size = task->task_size, task_sg_num_padded;
4096 while (task_size != 0) {
4097 DEBUG_SC("se_mem->se_page(%p) se_mem->se_len(%u)"
4098 " se_mem->se_off(%u) task_offset(%u)\n",
4099 se_mem->se_page, se_mem->se_len,
4100 se_mem->se_off, task_offset);
4102 if (task_offset == 0) {
4103 if (task_size >= se_mem->se_len) {
4104 sg_length = se_mem->se_len;
4106 if (!(list_is_last(&se_mem->se_list,
4107 &se_cmd->t_mem_list)))
4108 se_mem = list_entry(se_mem->se_list.next,
4109 struct se_mem, se_list);
4110 } else {
4111 sg_length = task_size;
4112 task_size -= sg_length;
4113 goto next;
4116 DEBUG_SC("sg_length(%u) task_size(%u)\n",
4117 sg_length, task_size);
4118 } else {
4119 if ((se_mem->se_len - task_offset) > task_size) {
4120 sg_length = task_size;
4121 task_size -= sg_length;
4122 goto next;
4123 } else {
4124 sg_length = (se_mem->se_len - task_offset);
4126 if (!(list_is_last(&se_mem->se_list,
4127 &se_cmd->t_mem_list)))
4128 se_mem = list_entry(se_mem->se_list.next,
4129 struct se_mem, se_list);
4132 DEBUG_SC("sg_length(%u) task_size(%u)\n",
4133 sg_length, task_size);
4135 task_offset = 0;
4137 task_size -= sg_length;
4138 next:
4139 DEBUG_SC("task[%u] - Reducing task_size to(%u)\n",
4140 task->task_no, task_size);
4142 task->task_sg_num++;
4145 * Check if the fabric module driver is requesting that all
4146 * struct se_task->task_sg[] be chained together.. If so,
4147 * then allocate an extra padding SG entry for linking and
4148 * marking the end of the chained SGL.
4150 if (tfo->task_sg_chaining) {
4151 task_sg_num_padded = (task->task_sg_num + 1);
4152 task->task_padded_sg = 1;
4153 } else
4154 task_sg_num_padded = task->task_sg_num;
4156 task->task_sg = kzalloc(task_sg_num_padded *
4157 sizeof(struct scatterlist), GFP_KERNEL);
4158 if (!(task->task_sg)) {
4159 printk(KERN_ERR "Unable to allocate memory for"
4160 " task->task_sg\n");
4161 return -ENOMEM;
4163 sg_init_table(&task->task_sg[0], task_sg_num_padded);
4165 * Setup task->task_sg_bidi for SCSI READ payload for
4166 * TCM/pSCSI passthrough if present for BIDI-COMMAND
4168 if (!list_empty(&se_cmd->t_mem_bidi_list) &&
4169 (se_dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)) {
4170 task->task_sg_bidi = kzalloc(task_sg_num_padded *
4171 sizeof(struct scatterlist), GFP_KERNEL);
4172 if (!(task->task_sg_bidi)) {
4173 kfree(task->task_sg);
4174 task->task_sg = NULL;
4175 printk(KERN_ERR "Unable to allocate memory for"
4176 " task->task_sg_bidi\n");
4177 return -ENOMEM;
4179 sg_init_table(&task->task_sg_bidi[0], task_sg_num_padded);
4182 * For the chaining case, setup the proper end of SGL for the
4183 * initial submission struct task into struct se_subsystem_api.
4184 * This will be cleared later by transport_do_task_sg_chain()
4186 if (task->task_padded_sg) {
4187 sg_mark_end(&task->task_sg[task->task_sg_num - 1]);
4189 * Added the 'if' check before marking end of bi-directional
4190 * scatterlist (which gets created only in case of request
4191 * (RD + WR).
4193 if (task->task_sg_bidi)
4194 sg_mark_end(&task->task_sg_bidi[task->task_sg_num - 1]);
4197 DEBUG_SC("Successfully allocated task->task_sg_num(%u),"
4198 " task_sg_num_padded(%u)\n", task->task_sg_num,
4199 task_sg_num_padded);
4201 return task->task_sg_num;
4204 /* Reduce sectors if they are too long for the device */
4205 static inline sector_t transport_limit_task_sectors(
4206 struct se_device *dev,
4207 unsigned long long lba,
4208 sector_t sectors)
4210 sectors = min_t(sector_t, sectors, dev->se_sub_dev->se_dev_attrib.max_sectors);
4212 if (dev->transport->get_device_type(dev) == TYPE_DISK)
4213 if ((lba + sectors) > transport_dev_end_lba(dev))
4214 sectors = ((transport_dev_end_lba(dev) - lba) + 1);
4216 return sectors;
4220 * Convert a sgl into a linked list of se_mems.
4222 static int transport_map_sg_to_mem(
4223 struct se_cmd *cmd,
4224 struct list_head *se_mem_list,
4225 struct scatterlist *sg)
4227 struct se_mem *se_mem;
4228 u32 cmd_size = cmd->data_length;
4229 int sg_count = 0;
4231 WARN_ON(!sg);
4233 while (cmd_size) {
4235 * NOTE: it is safe to return -ENOMEM at any time in creating this
4236 * list because transport_free_pages() will eventually be called, and is
4237 * smart enough to deallocate all list items for sg and sg_bidi lists.
4239 se_mem = kmem_cache_zalloc(se_mem_cache, GFP_KERNEL);
4240 if (!(se_mem)) {
4241 printk(KERN_ERR "Unable to allocate struct se_mem\n");
4242 return -ENOMEM;
4244 INIT_LIST_HEAD(&se_mem->se_list);
4245 DEBUG_MEM("sg_to_mem: Starting loop with cmd_size: %u"
4246 " sg_page: %p offset: %d length: %d\n", cmd_size,
4247 sg_page(sg), sg->offset, sg->length);
4249 se_mem->se_page = sg_page(sg);
4250 se_mem->se_off = sg->offset;
4252 if (cmd_size > sg->length) {
4253 se_mem->se_len = sg->length;
4254 sg = sg_next(sg);
4255 } else
4256 se_mem->se_len = cmd_size;
4258 cmd_size -= se_mem->se_len;
4259 sg_count++;
4261 DEBUG_MEM("sg_to_mem: sg_count: %u cmd_size: %u\n",
4262 sg_count, cmd_size);
4263 DEBUG_MEM("sg_to_mem: Final se_page: %p se_off: %d se_len: %d\n",
4264 se_mem->se_page, se_mem->se_off, se_mem->se_len);
4266 list_add_tail(&se_mem->se_list, se_mem_list);
4269 DEBUG_MEM("task[0] - Mapped(%u) struct scatterlist segments\n", sg_count);
4271 return sg_count;
4274 /* transport_map_mem_to_sg():
4278 int transport_map_mem_to_sg(
4279 struct se_task *task,
4280 struct list_head *se_mem_list,
4281 struct scatterlist *sg,
4282 struct se_mem *in_se_mem,
4283 struct se_mem **out_se_mem,
4284 u32 *se_mem_cnt,
4285 u32 *task_offset)
4287 struct se_cmd *se_cmd = task->task_se_cmd;
4288 struct se_mem *se_mem = in_se_mem;
4289 u32 task_size = task->task_size, sg_no = 0;
4291 if (!sg) {
4292 printk(KERN_ERR "Unable to locate valid struct"
4293 " scatterlist pointer\n");
4294 return -EINVAL;
4297 while (task_size != 0) {
4299 * Setup the contiguous array of scatterlists for
4300 * this struct se_task.
4302 sg_assign_page(sg, se_mem->se_page);
4304 if (*task_offset == 0) {
4305 sg->offset = se_mem->se_off;
4307 if (task_size >= se_mem->se_len) {
4308 sg->length = se_mem->se_len;
4310 if (!(list_is_last(&se_mem->se_list,
4311 &se_cmd->t_mem_list))) {
4312 se_mem = list_entry(se_mem->se_list.next,
4313 struct se_mem, se_list);
4314 (*se_mem_cnt)++;
4316 } else {
4317 sg->length = task_size;
4319 * Determine if we need to calculate an offset
4320 * into the struct se_mem on the next go around..
4322 task_size -= sg->length;
4323 if (!(task_size))
4324 *task_offset = sg->length;
4326 goto next;
4329 } else {
4330 sg->offset = (*task_offset + se_mem->se_off);
4332 if ((se_mem->se_len - *task_offset) > task_size) {
4333 sg->length = task_size;
4335 * Determine if we need to calculate an offset
4336 * into the struct se_mem on the next go around..
4338 task_size -= sg->length;
4339 if (!(task_size))
4340 *task_offset += sg->length;
4342 goto next;
4343 } else {
4344 sg->length = (se_mem->se_len - *task_offset);
4346 if (!(list_is_last(&se_mem->se_list,
4347 &se_cmd->t_mem_list))) {
4348 se_mem = list_entry(se_mem->se_list.next,
4349 struct se_mem, se_list);
4350 (*se_mem_cnt)++;
4354 *task_offset = 0;
4356 task_size -= sg->length;
4357 next:
4358 DEBUG_MEM("task[%u] mem_to_sg - sg[%u](%p)(%u)(%u) - Reducing"
4359 " task_size to(%u), task_offset: %u\n", task->task_no, sg_no,
4360 sg_page(sg), sg->length, sg->offset, task_size, *task_offset);
4362 sg_no++;
4363 if (!(task_size))
4364 break;
4366 sg = sg_next(sg);
4368 if (task_size > se_cmd->data_length)
4369 BUG();
4371 *out_se_mem = se_mem;
4373 DEBUG_MEM("task[%u] - Mapped(%u) struct se_mem segments to total(%u)"
4374 " SGs\n", task->task_no, *se_mem_cnt, sg_no);
4376 return 0;
4380 * This function can be used by HW target mode drivers to create a linked
4381 * scatterlist from all contiguously allocated struct se_task->task_sg[].
4382 * This is intended to be called during the completion path by TCM Core
4383 * when struct target_core_fabric_ops->check_task_sg_chaining is enabled.
4385 void transport_do_task_sg_chain(struct se_cmd *cmd)
4387 struct scatterlist *sg_head = NULL, *sg_link = NULL, *sg_first = NULL;
4388 struct scatterlist *sg_head_cur = NULL, *sg_link_cur = NULL;
4389 struct scatterlist *sg, *sg_end = NULL, *sg_end_cur = NULL;
4390 struct se_task *task;
4391 struct target_core_fabric_ops *tfo = cmd->se_tfo;
4392 u32 task_sg_num = 0, sg_count = 0;
4393 int i;
4395 if (tfo->task_sg_chaining == 0) {
4396 printk(KERN_ERR "task_sg_chaining is diabled for fabric module:"
4397 " %s\n", tfo->get_fabric_name());
4398 dump_stack();
4399 return;
4402 * Walk the struct se_task list and setup scatterlist chains
4403 * for each contiguously allocated struct se_task->task_sg[].
4405 list_for_each_entry(task, &cmd->t_task_list, t_list) {
4406 if (!(task->task_sg) || !(task->task_padded_sg))
4407 continue;
4409 if (sg_head && sg_link) {
4410 sg_head_cur = &task->task_sg[0];
4411 sg_link_cur = &task->task_sg[task->task_sg_num];
4413 * Either add chain or mark end of scatterlist
4415 if (!(list_is_last(&task->t_list,
4416 &cmd->t_task_list))) {
4418 * Clear existing SGL termination bit set in
4419 * transport_init_task_sg(), see sg_mark_end()
4421 sg_end_cur = &task->task_sg[task->task_sg_num - 1];
4422 sg_end_cur->page_link &= ~0x02;
4424 sg_chain(sg_head, task_sg_num, sg_head_cur);
4425 sg_count += task->task_sg_num;
4426 task_sg_num = (task->task_sg_num + 1);
4427 } else {
4428 sg_chain(sg_head, task_sg_num, sg_head_cur);
4429 sg_count += task->task_sg_num;
4430 task_sg_num = task->task_sg_num;
4433 sg_head = sg_head_cur;
4434 sg_link = sg_link_cur;
4435 continue;
4437 sg_head = sg_first = &task->task_sg[0];
4438 sg_link = &task->task_sg[task->task_sg_num];
4440 * Check for single task..
4442 if (!(list_is_last(&task->t_list, &cmd->t_task_list))) {
4444 * Clear existing SGL termination bit set in
4445 * transport_init_task_sg(), see sg_mark_end()
4447 sg_end = &task->task_sg[task->task_sg_num - 1];
4448 sg_end->page_link &= ~0x02;
4449 sg_count += task->task_sg_num;
4450 task_sg_num = (task->task_sg_num + 1);
4451 } else {
4452 sg_count += task->task_sg_num;
4453 task_sg_num = task->task_sg_num;
4457 * Setup the starting pointer and total t_tasks_sg_linked_no including
4458 * padding SGs for linking and to mark the end.
4460 cmd->t_tasks_sg_chained = sg_first;
4461 cmd->t_tasks_sg_chained_no = sg_count;
4463 DEBUG_CMD_M("Setup cmd: %p cmd->t_tasks_sg_chained: %p and"
4464 " t_tasks_sg_chained_no: %u\n", cmd, cmd->t_tasks_sg_chained,
4465 cmd->t_tasks_sg_chained_no);
4467 for_each_sg(cmd->t_tasks_sg_chained, sg,
4468 cmd->t_tasks_sg_chained_no, i) {
4470 DEBUG_CMD_M("SG[%d]: %p page: %p length: %d offset: %d\n",
4471 i, sg, sg_page(sg), sg->length, sg->offset);
4472 if (sg_is_chain(sg))
4473 DEBUG_CMD_M("SG: %p sg_is_chain=1\n", sg);
4474 if (sg_is_last(sg))
4475 DEBUG_CMD_M("SG: %p sg_is_last=1\n", sg);
4478 EXPORT_SYMBOL(transport_do_task_sg_chain);
4480 static int transport_do_se_mem_map(
4481 struct se_device *dev,
4482 struct se_task *task,
4483 struct list_head *se_mem_list,
4484 void *in_mem,
4485 struct se_mem *in_se_mem,
4486 struct se_mem **out_se_mem,
4487 u32 *se_mem_cnt,
4488 u32 *task_offset_in)
4490 u32 task_offset = *task_offset_in;
4491 int ret = 0;
4493 * se_subsystem_api_t->do_se_mem_map is used when internal allocation
4494 * has been done by the transport plugin.
4496 if (dev->transport->do_se_mem_map) {
4497 ret = dev->transport->do_se_mem_map(task, se_mem_list,
4498 in_mem, in_se_mem, out_se_mem, se_mem_cnt,
4499 task_offset_in);
4500 if (ret == 0)
4501 task->task_se_cmd->t_tasks_se_num += *se_mem_cnt;
4503 return ret;
4506 BUG_ON(list_empty(se_mem_list));
4508 * This is the normal path for all normal non BIDI and BIDI-COMMAND
4509 * WRITE payloads.. If we need to do BIDI READ passthrough for
4510 * TCM/pSCSI the first call to transport_do_se_mem_map ->
4511 * transport_init_task_sg() -> transport_map_mem_to_sg() will do the
4512 * allocation for task->task_sg_bidi, and the subsequent call to
4513 * transport_do_se_mem_map() from transport_generic_get_cdb_count()
4515 if (!(task->task_sg_bidi)) {
4517 * Assume default that transport plugin speaks preallocated
4518 * scatterlists.
4520 ret = transport_init_task_sg(task, in_se_mem, task_offset);
4521 if (ret <= 0)
4522 return ret;
4524 * struct se_task->task_sg now contains the struct scatterlist array.
4526 return transport_map_mem_to_sg(task, se_mem_list, task->task_sg,
4527 in_se_mem, out_se_mem, se_mem_cnt,
4528 task_offset_in);
4531 * Handle the se_mem_list -> struct task->task_sg_bidi
4532 * memory map for the extra BIDI READ payload
4534 return transport_map_mem_to_sg(task, se_mem_list, task->task_sg_bidi,
4535 in_se_mem, out_se_mem, se_mem_cnt,
4536 task_offset_in);
4540 * Break up cmd into chunks transport can handle
4542 static u32 transport_allocate_tasks(
4543 struct se_cmd *cmd,
4544 unsigned long long lba,
4545 u32 sectors,
4546 enum dma_data_direction data_direction,
4547 struct list_head *mem_list,
4548 int set_counts)
4550 unsigned char *cdb = NULL;
4551 struct se_task *task;
4552 struct se_mem *se_mem = NULL;
4553 struct se_mem *se_mem_lout = NULL;
4554 struct se_mem *se_mem_bidi = NULL;
4555 struct se_mem *se_mem_bidi_lout = NULL;
4556 struct se_device *dev = cmd->se_dev;
4557 int ret;
4558 u32 task_offset_in = 0;
4559 u32 se_mem_cnt = 0;
4560 u32 se_mem_bidi_cnt = 0;
4561 u32 task_cdbs = 0;
4563 BUG_ON(!mem_list);
4565 * While using RAMDISK_DR backstores is the only case where
4566 * mem_list will ever be empty at this point.
4568 if (!(list_empty(mem_list)))
4569 se_mem = list_first_entry(mem_list, struct se_mem, se_list);
4571 * Check for extra se_mem_bidi mapping for BIDI-COMMANDs to
4572 * struct se_task->task_sg_bidi for TCM/pSCSI passthrough operation
4574 if (!list_empty(&cmd->t_mem_bidi_list) &&
4575 (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV))
4576 se_mem_bidi = list_first_entry(&cmd->t_mem_bidi_list,
4577 struct se_mem, se_list);
4579 while (sectors) {
4580 sector_t limited_sectors;
4582 DEBUG_VOL("ITT[0x%08x] LBA(%llu) SectorsLeft(%u) EOBJ(%llu)\n",
4583 cmd->se_tfo->get_task_tag(cmd), lba, sectors,
4584 transport_dev_end_lba(dev));
4586 limited_sectors = transport_limit_task_sectors(dev, lba, sectors);
4587 if (!limited_sectors)
4588 break;
4590 task = transport_generic_get_task(cmd, data_direction);
4591 if (!task)
4592 goto out;
4594 task->task_lba = lba;
4595 task->task_sectors = limited_sectors;
4596 lba += task->task_sectors;
4597 sectors -= task->task_sectors;
4598 task->task_size = (task->task_sectors *
4599 dev->se_sub_dev->se_dev_attrib.block_size);
4601 cdb = dev->transport->get_cdb(task);
4602 /* Should be part of task, can't fail */
4603 BUG_ON(!cdb);
4605 memcpy(cdb, cmd->t_task_cdb,
4606 scsi_command_size(cmd->t_task_cdb));
4608 /* Update new cdb with updated lba/sectors */
4609 cmd->transport_split_cdb(task->task_lba,
4610 &task->task_sectors, cdb);
4613 * Perform the SE OBJ plugin and/or Transport plugin specific
4614 * mapping for cmd->t_mem_list. And setup the
4615 * task->task_sg and if necessary task->task_sg_bidi
4617 ret = transport_do_se_mem_map(dev, task, mem_list,
4618 NULL, se_mem, &se_mem_lout, &se_mem_cnt,
4619 &task_offset_in);
4620 if (ret < 0)
4621 goto out;
4623 se_mem = se_mem_lout;
4625 * Setup the cmd->t_mem_bidi_list -> task->task_sg_bidi
4626 * mapping for SCSI READ for BIDI-COMMAND passthrough with TCM/pSCSI
4628 * Note that the first call to transport_do_se_mem_map() above will
4629 * allocate struct se_task->task_sg_bidi in transport_do_se_mem_map()
4630 * -> transport_init_task_sg(), and the second here will do the
4631 * mapping for SCSI READ for BIDI-COMMAND passthrough with TCM/pSCSI.
4633 if (task->task_sg_bidi != NULL) {
4634 ret = transport_do_se_mem_map(dev, task,
4635 &cmd->t_mem_bidi_list, NULL,
4636 se_mem_bidi, &se_mem_bidi_lout, &se_mem_bidi_cnt,
4637 &task_offset_in);
4638 if (ret < 0)
4639 goto out;
4641 se_mem_bidi = se_mem_bidi_lout;
4643 task_cdbs++;
4645 DEBUG_VOL("Incremented task_cdbs(%u) task->task_sg_num(%u)\n",
4646 task_cdbs, task->task_sg_num);
4649 if (set_counts) {
4650 atomic_inc(&cmd->t_fe_count);
4651 atomic_inc(&cmd->t_se_count);
4654 DEBUG_VOL("ITT[0x%08x] total %s cdbs(%u)\n",
4655 cmd->se_tfo->get_task_tag(cmd), (data_direction == DMA_TO_DEVICE)
4656 ? "DMA_TO_DEVICE" : "DMA_FROM_DEVICE", task_cdbs);
4658 return task_cdbs;
4659 out:
4660 return 0;
4663 static int
4664 transport_map_control_cmd_to_task(struct se_cmd *cmd)
4666 struct se_device *dev = cmd->se_dev;
4667 unsigned char *cdb;
4668 struct se_task *task;
4669 int ret;
4671 task = transport_generic_get_task(cmd, cmd->data_direction);
4672 if (!task)
4673 return PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES;
4675 cdb = dev->transport->get_cdb(task);
4676 BUG_ON(!cdb);
4677 memcpy(cdb, cmd->t_task_cdb,
4678 scsi_command_size(cmd->t_task_cdb));
4680 task->task_size = cmd->data_length;
4681 task->task_sg_num =
4682 (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) ? 1 : 0;
4684 atomic_inc(&cmd->t_fe_count);
4685 atomic_inc(&cmd->t_se_count);
4687 if (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) {
4688 struct se_mem *se_mem = NULL, *se_mem_lout = NULL;
4689 u32 se_mem_cnt = 0, task_offset = 0;
4691 if (!list_empty(&cmd->t_mem_list))
4692 se_mem = list_first_entry(&cmd->t_mem_list,
4693 struct se_mem, se_list);
4695 ret = transport_do_se_mem_map(dev, task,
4696 &cmd->t_mem_list, NULL, se_mem,
4697 &se_mem_lout, &se_mem_cnt, &task_offset);
4698 if (ret < 0)
4699 return PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES;
4701 if (dev->transport->map_task_SG)
4702 return dev->transport->map_task_SG(task);
4703 return 0;
4704 } else if (cmd->se_cmd_flags & SCF_SCSI_CONTROL_NONSG_IO_CDB) {
4705 if (dev->transport->map_task_non_SG)
4706 return dev->transport->map_task_non_SG(task);
4707 return 0;
4708 } else if (cmd->se_cmd_flags & SCF_SCSI_NON_DATA_CDB) {
4709 if (dev->transport->cdb_none)
4710 return dev->transport->cdb_none(task);
4711 return 0;
4712 } else {
4713 BUG();
4714 return PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES;
4718 /* transport_generic_new_cmd(): Called from transport_processing_thread()
4720 * Allocate storage transport resources from a set of values predefined
4721 * by transport_generic_cmd_sequencer() from the iSCSI Target RX process.
4722 * Any non zero return here is treated as an "out of resource' op here.
4725 * Generate struct se_task(s) and/or their payloads for this CDB.
4727 int transport_generic_new_cmd(struct se_cmd *cmd)
4729 struct se_task *task;
4730 struct se_device *dev = cmd->se_dev;
4731 int ret = 0;
4734 * Determine is the TCM fabric module has already allocated physical
4735 * memory, and is directly calling transport_generic_map_mem_to_cmd()
4736 * to setup beforehand the linked list of physical memory at
4737 * cmd->t_mem_list of struct se_mem->se_page
4739 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)) {
4740 ret = transport_allocate_resources(cmd);
4741 if (ret < 0)
4742 return ret;
4745 ret = transport_new_cmd_obj(cmd);
4746 if (ret < 0)
4747 return ret;
4749 if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) {
4750 list_for_each_entry(task, &cmd->t_task_list, t_list) {
4751 if (atomic_read(&task->task_sent))
4752 continue;
4753 if (!dev->transport->map_task_SG)
4754 continue;
4756 ret = dev->transport->map_task_SG(task);
4757 if (ret < 0)
4758 return ret;
4760 } else {
4761 ret = transport_map_control_cmd_to_task(cmd);
4762 if (ret < 0)
4763 return ret;
4767 * For WRITEs, let the fabric know its buffer is ready..
4768 * This WRITE struct se_cmd (and all of its associated struct se_task's)
4769 * will be added to the struct se_device execution queue after its WRITE
4770 * data has arrived. (ie: It gets handled by the transport processing
4771 * thread a second time)
4773 if (cmd->data_direction == DMA_TO_DEVICE) {
4774 transport_add_tasks_to_state_queue(cmd);
4775 return transport_generic_write_pending(cmd);
4778 * Everything else but a WRITE, add the struct se_cmd's struct se_task's
4779 * to the execution queue.
4781 transport_execute_tasks(cmd);
4782 return 0;
4784 EXPORT_SYMBOL(transport_generic_new_cmd);
4786 /* transport_generic_process_write():
4790 void transport_generic_process_write(struct se_cmd *cmd)
4792 #if 0
4794 * Copy SCSI Presented DTL sector(s) from received buffers allocated to
4795 * original EDTL
4797 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
4798 if (!cmd->t_tasks_se_num) {
4799 unsigned char *dst, *buf =
4800 (unsigned char *)cmd->t_task_buf;
4802 dst = kzalloc(cmd->cmd_spdtl), GFP_KERNEL);
4803 if (!(dst)) {
4804 printk(KERN_ERR "Unable to allocate memory for"
4805 " WRITE underflow\n");
4806 transport_generic_request_failure(cmd, NULL,
4807 PYX_TRANSPORT_REQ_TOO_MANY_SECTORS, 1);
4808 return;
4810 memcpy(dst, buf, cmd->cmd_spdtl);
4812 kfree(cmd->t_task_buf);
4813 cmd->t_task_buf = dst;
4814 } else {
4815 struct scatterlist *sg =
4816 (struct scatterlist *sg)cmd->t_task_buf;
4817 struct scatterlist *orig_sg;
4819 orig_sg = kzalloc(sizeof(struct scatterlist) *
4820 cmd->t_tasks_se_num,
4821 GFP_KERNEL))) {
4822 if (!(orig_sg)) {
4823 printk(KERN_ERR "Unable to allocate memory"
4824 " for WRITE underflow\n");
4825 transport_generic_request_failure(cmd, NULL,
4826 PYX_TRANSPORT_REQ_TOO_MANY_SECTORS, 1);
4827 return;
4830 memcpy(orig_sg, cmd->t_task_buf,
4831 sizeof(struct scatterlist) *
4832 cmd->t_tasks_se_num);
4834 cmd->data_length = cmd->cmd_spdtl;
4836 * FIXME, clear out original struct se_task and state
4837 * information.
4839 if (transport_generic_new_cmd(cmd) < 0) {
4840 transport_generic_request_failure(cmd, NULL,
4841 PYX_TRANSPORT_REQ_TOO_MANY_SECTORS, 1);
4842 kfree(orig_sg);
4843 return;
4846 transport_memcpy_write_sg(cmd, orig_sg);
4849 #endif
4850 transport_execute_tasks(cmd);
4852 EXPORT_SYMBOL(transport_generic_process_write);
4854 /* transport_generic_write_pending():
4858 static int transport_generic_write_pending(struct se_cmd *cmd)
4860 unsigned long flags;
4861 int ret;
4863 spin_lock_irqsave(&cmd->t_state_lock, flags);
4864 cmd->t_state = TRANSPORT_WRITE_PENDING;
4865 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4867 * For the TCM control CDBs using a contiguous buffer, do the memcpy
4868 * from the passed Linux/SCSI struct scatterlist located at
4869 * se_cmd->t_task_pt_sgl to the contiguous buffer at
4870 * se_cmd->t_task_buf.
4872 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_CONTIG_TO_SG)
4873 sg_copy_to_buffer(cmd->t_task_pt_sgl,
4874 cmd->t_task_pt_sgl_num,
4875 cmd->t_task_buf,
4876 cmd->data_length);
4878 * Clear the se_cmd for WRITE_PENDING status in order to set
4879 * cmd->t_transport_active=0 so that transport_generic_handle_data
4880 * can be called from HW target mode interrupt code. This is safe
4881 * to be called with transport_off=1 before the cmd->se_tfo->write_pending
4882 * because the se_cmd->se_lun pointer is not being cleared.
4884 transport_cmd_check_stop(cmd, 1, 0);
4887 * Call the fabric write_pending function here to let the
4888 * frontend know that WRITE buffers are ready.
4890 ret = cmd->se_tfo->write_pending(cmd);
4891 if (ret < 0)
4892 return ret;
4894 return PYX_TRANSPORT_WRITE_PENDING;
4897 /* transport_release_cmd_to_pool():
4901 void transport_release_cmd_to_pool(struct se_cmd *cmd)
4903 BUG_ON(!cmd->se_tfo);
4905 transport_free_se_cmd(cmd);
4906 cmd->se_tfo->release_cmd_to_pool(cmd);
4908 EXPORT_SYMBOL(transport_release_cmd_to_pool);
4910 /* transport_generic_free_cmd():
4912 * Called from processing frontend to release storage engine resources
4914 void transport_generic_free_cmd(
4915 struct se_cmd *cmd,
4916 int wait_for_tasks,
4917 int release_to_pool,
4918 int session_reinstatement)
4920 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD))
4921 transport_release_cmd_to_pool(cmd);
4922 else {
4923 core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd);
4925 if (cmd->se_lun) {
4926 #if 0
4927 printk(KERN_INFO "cmd: %p ITT: 0x%08x contains"
4928 " cmd->se_lun\n", cmd,
4929 cmd->se_tfo->get_task_tag(cmd));
4930 #endif
4931 transport_lun_remove_cmd(cmd);
4934 if (wait_for_tasks && cmd->transport_wait_for_tasks)
4935 cmd->transport_wait_for_tasks(cmd, 0, 0);
4937 transport_free_dev_tasks(cmd);
4939 transport_generic_remove(cmd, release_to_pool,
4940 session_reinstatement);
4943 EXPORT_SYMBOL(transport_generic_free_cmd);
4945 static void transport_nop_wait_for_tasks(
4946 struct se_cmd *cmd,
4947 int remove_cmd,
4948 int session_reinstatement)
4950 return;
4953 /* transport_lun_wait_for_tasks():
4955 * Called from ConfigFS context to stop the passed struct se_cmd to allow
4956 * an struct se_lun to be successfully shutdown.
4958 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
4960 unsigned long flags;
4961 int ret;
4963 * If the frontend has already requested this struct se_cmd to
4964 * be stopped, we can safely ignore this struct se_cmd.
4966 spin_lock_irqsave(&cmd->t_state_lock, flags);
4967 if (atomic_read(&cmd->t_transport_stop)) {
4968 atomic_set(&cmd->transport_lun_stop, 0);
4969 DEBUG_TRANSPORT_S("ConfigFS ITT[0x%08x] - t_transport_stop =="
4970 " TRUE, skipping\n", cmd->se_tfo->get_task_tag(cmd));
4971 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4972 transport_cmd_check_stop(cmd, 1, 0);
4973 return -EPERM;
4975 atomic_set(&cmd->transport_lun_fe_stop, 1);
4976 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4978 wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4980 ret = transport_stop_tasks_for_cmd(cmd);
4982 DEBUG_TRANSPORT_S("ConfigFS: cmd: %p t_task_cdbs: %d stop tasks ret:"
4983 " %d\n", cmd, cmd->t_task_cdbs, ret);
4984 if (!ret) {
4985 DEBUG_TRANSPORT_S("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
4986 cmd->se_tfo->get_task_tag(cmd));
4987 wait_for_completion(&cmd->transport_lun_stop_comp);
4988 DEBUG_TRANSPORT_S("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
4989 cmd->se_tfo->get_task_tag(cmd));
4991 transport_remove_cmd_from_queue(cmd, &cmd->se_dev->dev_queue_obj);
4993 return 0;
4996 /* #define DEBUG_CLEAR_LUN */
4997 #ifdef DEBUG_CLEAR_LUN
4998 #define DEBUG_CLEAR_L(x...) printk(KERN_INFO x)
4999 #else
5000 #define DEBUG_CLEAR_L(x...)
5001 #endif
5003 static void __transport_clear_lun_from_sessions(struct se_lun *lun)
5005 struct se_cmd *cmd = NULL;
5006 unsigned long lun_flags, cmd_flags;
5008 * Do exception processing and return CHECK_CONDITION status to the
5009 * Initiator Port.
5011 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
5012 while (!list_empty(&lun->lun_cmd_list)) {
5013 cmd = list_first_entry(&lun->lun_cmd_list,
5014 struct se_cmd, se_lun_node);
5015 list_del(&cmd->se_lun_node);
5017 atomic_set(&cmd->transport_lun_active, 0);
5019 * This will notify iscsi_target_transport.c:
5020 * transport_cmd_check_stop() that a LUN shutdown is in
5021 * progress for the iscsi_cmd_t.
5023 spin_lock(&cmd->t_state_lock);
5024 DEBUG_CLEAR_L("SE_LUN[%d] - Setting cmd->transport"
5025 "_lun_stop for ITT: 0x%08x\n",
5026 cmd->se_lun->unpacked_lun,
5027 cmd->se_tfo->get_task_tag(cmd));
5028 atomic_set(&cmd->transport_lun_stop, 1);
5029 spin_unlock(&cmd->t_state_lock);
5031 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
5033 if (!(cmd->se_lun)) {
5034 printk(KERN_ERR "ITT: 0x%08x, [i,t]_state: %u/%u\n",
5035 cmd->se_tfo->get_task_tag(cmd),
5036 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
5037 BUG();
5040 * If the Storage engine still owns the iscsi_cmd_t, determine
5041 * and/or stop its context.
5043 DEBUG_CLEAR_L("SE_LUN[%d] - ITT: 0x%08x before transport"
5044 "_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun,
5045 cmd->se_tfo->get_task_tag(cmd));
5047 if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) {
5048 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
5049 continue;
5052 DEBUG_CLEAR_L("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
5053 "_wait_for_tasks(): SUCCESS\n",
5054 cmd->se_lun->unpacked_lun,
5055 cmd->se_tfo->get_task_tag(cmd));
5057 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
5058 if (!(atomic_read(&cmd->transport_dev_active))) {
5059 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
5060 goto check_cond;
5062 atomic_set(&cmd->transport_dev_active, 0);
5063 transport_all_task_dev_remove_state(cmd);
5064 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
5066 transport_free_dev_tasks(cmd);
5068 * The Storage engine stopped this struct se_cmd before it was
5069 * send to the fabric frontend for delivery back to the
5070 * Initiator Node. Return this SCSI CDB back with an
5071 * CHECK_CONDITION status.
5073 check_cond:
5074 transport_send_check_condition_and_sense(cmd,
5075 TCM_NON_EXISTENT_LUN, 0);
5077 * If the fabric frontend is waiting for this iscsi_cmd_t to
5078 * be released, notify the waiting thread now that LU has
5079 * finished accessing it.
5081 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
5082 if (atomic_read(&cmd->transport_lun_fe_stop)) {
5083 DEBUG_CLEAR_L("SE_LUN[%d] - Detected FE stop for"
5084 " struct se_cmd: %p ITT: 0x%08x\n",
5085 lun->unpacked_lun,
5086 cmd, cmd->se_tfo->get_task_tag(cmd));
5088 spin_unlock_irqrestore(&cmd->t_state_lock,
5089 cmd_flags);
5090 transport_cmd_check_stop(cmd, 1, 0);
5091 complete(&cmd->transport_lun_fe_stop_comp);
5092 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
5093 continue;
5095 DEBUG_CLEAR_L("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
5096 lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd));
5098 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
5099 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
5101 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
5104 static int transport_clear_lun_thread(void *p)
5106 struct se_lun *lun = (struct se_lun *)p;
5108 __transport_clear_lun_from_sessions(lun);
5109 complete(&lun->lun_shutdown_comp);
5111 return 0;
5114 int transport_clear_lun_from_sessions(struct se_lun *lun)
5116 struct task_struct *kt;
5118 kt = kthread_run(transport_clear_lun_thread, lun,
5119 "tcm_cl_%u", lun->unpacked_lun);
5120 if (IS_ERR(kt)) {
5121 printk(KERN_ERR "Unable to start clear_lun thread\n");
5122 return PTR_ERR(kt);
5124 wait_for_completion(&lun->lun_shutdown_comp);
5126 return 0;
5129 /* transport_generic_wait_for_tasks():
5131 * Called from frontend or passthrough context to wait for storage engine
5132 * to pause and/or release frontend generated struct se_cmd.
5134 static void transport_generic_wait_for_tasks(
5135 struct se_cmd *cmd,
5136 int remove_cmd,
5137 int session_reinstatement)
5139 unsigned long flags;
5141 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && !(cmd->se_tmr_req))
5142 return;
5144 spin_lock_irqsave(&cmd->t_state_lock, flags);
5146 * If we are already stopped due to an external event (ie: LUN shutdown)
5147 * sleep until the connection can have the passed struct se_cmd back.
5148 * The cmd->transport_lun_stopped_sem will be upped by
5149 * transport_clear_lun_from_sessions() once the ConfigFS context caller
5150 * has completed its operation on the struct se_cmd.
5152 if (atomic_read(&cmd->transport_lun_stop)) {
5154 DEBUG_TRANSPORT_S("wait_for_tasks: Stopping"
5155 " wait_for_completion(&cmd->t_tasktransport_lun_fe"
5156 "_stop_comp); for ITT: 0x%08x\n",
5157 cmd->se_tfo->get_task_tag(cmd));
5159 * There is a special case for WRITES where a FE exception +
5160 * LUN shutdown means ConfigFS context is still sleeping on
5161 * transport_lun_stop_comp in transport_lun_wait_for_tasks().
5162 * We go ahead and up transport_lun_stop_comp just to be sure
5163 * here.
5165 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
5166 complete(&cmd->transport_lun_stop_comp);
5167 wait_for_completion(&cmd->transport_lun_fe_stop_comp);
5168 spin_lock_irqsave(&cmd->t_state_lock, flags);
5170 transport_all_task_dev_remove_state(cmd);
5172 * At this point, the frontend who was the originator of this
5173 * struct se_cmd, now owns the structure and can be released through
5174 * normal means below.
5176 DEBUG_TRANSPORT_S("wait_for_tasks: Stopped"
5177 " wait_for_completion(&cmd->t_tasktransport_lun_fe_"
5178 "stop_comp); for ITT: 0x%08x\n",
5179 cmd->se_tfo->get_task_tag(cmd));
5181 atomic_set(&cmd->transport_lun_stop, 0);
5183 if (!atomic_read(&cmd->t_transport_active) ||
5184 atomic_read(&cmd->t_transport_aborted))
5185 goto remove;
5187 atomic_set(&cmd->t_transport_stop, 1);
5189 DEBUG_TRANSPORT_S("wait_for_tasks: Stopping %p ITT: 0x%08x"
5190 " i_state: %d, t_state/def_t_state: %d/%d, t_transport_stop"
5191 " = TRUE\n", cmd, cmd->se_tfo->get_task_tag(cmd),
5192 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state,
5193 cmd->deferred_t_state);
5195 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
5197 wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
5199 wait_for_completion(&cmd->t_transport_stop_comp);
5201 spin_lock_irqsave(&cmd->t_state_lock, flags);
5202 atomic_set(&cmd->t_transport_active, 0);
5203 atomic_set(&cmd->t_transport_stop, 0);
5205 DEBUG_TRANSPORT_S("wait_for_tasks: Stopped wait_for_compltion("
5206 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
5207 cmd->se_tfo->get_task_tag(cmd));
5208 remove:
5209 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
5210 if (!remove_cmd)
5211 return;
5213 transport_generic_free_cmd(cmd, 0, 0, session_reinstatement);
5216 static int transport_get_sense_codes(
5217 struct se_cmd *cmd,
5218 u8 *asc,
5219 u8 *ascq)
5221 *asc = cmd->scsi_asc;
5222 *ascq = cmd->scsi_ascq;
5224 return 0;
5227 static int transport_set_sense_codes(
5228 struct se_cmd *cmd,
5229 u8 asc,
5230 u8 ascq)
5232 cmd->scsi_asc = asc;
5233 cmd->scsi_ascq = ascq;
5235 return 0;
5238 int transport_send_check_condition_and_sense(
5239 struct se_cmd *cmd,
5240 u8 reason,
5241 int from_transport)
5243 unsigned char *buffer = cmd->sense_buffer;
5244 unsigned long flags;
5245 int offset;
5246 u8 asc = 0, ascq = 0;
5248 spin_lock_irqsave(&cmd->t_state_lock, flags);
5249 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
5250 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
5251 return 0;
5253 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
5254 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
5256 if (!reason && from_transport)
5257 goto after_reason;
5259 if (!from_transport)
5260 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
5262 * Data Segment and SenseLength of the fabric response PDU.
5264 * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
5265 * from include/scsi/scsi_cmnd.h
5267 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
5268 TRANSPORT_SENSE_BUFFER);
5270 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses
5271 * SENSE KEY values from include/scsi/scsi.h
5273 switch (reason) {
5274 case TCM_NON_EXISTENT_LUN:
5275 case TCM_UNSUPPORTED_SCSI_OPCODE:
5276 case TCM_SECTOR_COUNT_TOO_MANY:
5277 /* CURRENT ERROR */
5278 buffer[offset] = 0x70;
5279 /* ILLEGAL REQUEST */
5280 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
5281 /* INVALID COMMAND OPERATION CODE */
5282 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20;
5283 break;
5284 case TCM_UNKNOWN_MODE_PAGE:
5285 /* CURRENT ERROR */
5286 buffer[offset] = 0x70;
5287 /* ILLEGAL REQUEST */
5288 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
5289 /* INVALID FIELD IN CDB */
5290 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
5291 break;
5292 case TCM_CHECK_CONDITION_ABORT_CMD:
5293 /* CURRENT ERROR */
5294 buffer[offset] = 0x70;
5295 /* ABORTED COMMAND */
5296 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
5297 /* BUS DEVICE RESET FUNCTION OCCURRED */
5298 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29;
5299 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03;
5300 break;
5301 case TCM_INCORRECT_AMOUNT_OF_DATA:
5302 /* CURRENT ERROR */
5303 buffer[offset] = 0x70;
5304 /* ABORTED COMMAND */
5305 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
5306 /* WRITE ERROR */
5307 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
5308 /* NOT ENOUGH UNSOLICITED DATA */
5309 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d;
5310 break;
5311 case TCM_INVALID_CDB_FIELD:
5312 /* CURRENT ERROR */
5313 buffer[offset] = 0x70;
5314 /* ABORTED COMMAND */
5315 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
5316 /* INVALID FIELD IN CDB */
5317 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
5318 break;
5319 case TCM_INVALID_PARAMETER_LIST:
5320 /* CURRENT ERROR */
5321 buffer[offset] = 0x70;
5322 /* ABORTED COMMAND */
5323 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
5324 /* INVALID FIELD IN PARAMETER LIST */
5325 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26;
5326 break;
5327 case TCM_UNEXPECTED_UNSOLICITED_DATA:
5328 /* CURRENT ERROR */
5329 buffer[offset] = 0x70;
5330 /* ABORTED COMMAND */
5331 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
5332 /* WRITE ERROR */
5333 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
5334 /* UNEXPECTED_UNSOLICITED_DATA */
5335 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c;
5336 break;
5337 case TCM_SERVICE_CRC_ERROR:
5338 /* CURRENT ERROR */
5339 buffer[offset] = 0x70;
5340 /* ABORTED COMMAND */
5341 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
5342 /* PROTOCOL SERVICE CRC ERROR */
5343 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47;
5344 /* N/A */
5345 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05;
5346 break;
5347 case TCM_SNACK_REJECTED:
5348 /* CURRENT ERROR */
5349 buffer[offset] = 0x70;
5350 /* ABORTED COMMAND */
5351 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
5352 /* READ ERROR */
5353 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11;
5354 /* FAILED RETRANSMISSION REQUEST */
5355 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13;
5356 break;
5357 case TCM_WRITE_PROTECTED:
5358 /* CURRENT ERROR */
5359 buffer[offset] = 0x70;
5360 /* DATA PROTECT */
5361 buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
5362 /* WRITE PROTECTED */
5363 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27;
5364 break;
5365 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
5366 /* CURRENT ERROR */
5367 buffer[offset] = 0x70;
5368 /* UNIT ATTENTION */
5369 buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
5370 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
5371 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
5372 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
5373 break;
5374 case TCM_CHECK_CONDITION_NOT_READY:
5375 /* CURRENT ERROR */
5376 buffer[offset] = 0x70;
5377 /* Not Ready */
5378 buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY;
5379 transport_get_sense_codes(cmd, &asc, &ascq);
5380 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
5381 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
5382 break;
5383 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
5384 default:
5385 /* CURRENT ERROR */
5386 buffer[offset] = 0x70;
5387 /* ILLEGAL REQUEST */
5388 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
5389 /* LOGICAL UNIT COMMUNICATION FAILURE */
5390 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x80;
5391 break;
5394 * This code uses linux/include/scsi/scsi.h SAM status codes!
5396 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
5398 * Automatically padded, this value is encoded in the fabric's
5399 * data_length response PDU containing the SCSI defined sense data.
5401 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER + offset;
5403 after_reason:
5404 cmd->se_tfo->queue_status(cmd);
5405 return 0;
5407 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
5409 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
5411 int ret = 0;
5413 if (atomic_read(&cmd->t_transport_aborted) != 0) {
5414 if (!(send_status) ||
5415 (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
5416 return 1;
5417 #if 0
5418 printk(KERN_INFO "Sending delayed SAM_STAT_TASK_ABORTED"
5419 " status for CDB: 0x%02x ITT: 0x%08x\n",
5420 cmd->t_task_cdb[0],
5421 cmd->se_tfo->get_task_tag(cmd));
5422 #endif
5423 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
5424 cmd->se_tfo->queue_status(cmd);
5425 ret = 1;
5427 return ret;
5429 EXPORT_SYMBOL(transport_check_aborted_status);
5431 void transport_send_task_abort(struct se_cmd *cmd)
5434 * If there are still expected incoming fabric WRITEs, we wait
5435 * until until they have completed before sending a TASK_ABORTED
5436 * response. This response with TASK_ABORTED status will be
5437 * queued back to fabric module by transport_check_aborted_status().
5439 if (cmd->data_direction == DMA_TO_DEVICE) {
5440 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
5441 atomic_inc(&cmd->t_transport_aborted);
5442 smp_mb__after_atomic_inc();
5443 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
5444 transport_new_cmd_failure(cmd);
5445 return;
5448 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
5449 #if 0
5450 printk(KERN_INFO "Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
5451 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
5452 cmd->se_tfo->get_task_tag(cmd));
5453 #endif
5454 cmd->se_tfo->queue_status(cmd);
5457 /* transport_generic_do_tmr():
5461 int transport_generic_do_tmr(struct se_cmd *cmd)
5463 struct se_device *dev = cmd->se_dev;
5464 struct se_tmr_req *tmr = cmd->se_tmr_req;
5465 int ret;
5467 switch (tmr->function) {
5468 case TMR_ABORT_TASK:
5469 tmr->response = TMR_FUNCTION_REJECTED;
5470 break;
5471 case TMR_ABORT_TASK_SET:
5472 case TMR_CLEAR_ACA:
5473 case TMR_CLEAR_TASK_SET:
5474 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
5475 break;
5476 case TMR_LUN_RESET:
5477 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
5478 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
5479 TMR_FUNCTION_REJECTED;
5480 break;
5481 case TMR_TARGET_WARM_RESET:
5482 tmr->response = TMR_FUNCTION_REJECTED;
5483 break;
5484 case TMR_TARGET_COLD_RESET:
5485 tmr->response = TMR_FUNCTION_REJECTED;
5486 break;
5487 default:
5488 printk(KERN_ERR "Uknown TMR function: 0x%02x.\n",
5489 tmr->function);
5490 tmr->response = TMR_FUNCTION_REJECTED;
5491 break;
5494 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
5495 cmd->se_tfo->queue_tm_rsp(cmd);
5497 transport_cmd_check_stop(cmd, 2, 0);
5498 return 0;
5502 * Called with spin_lock_irq(&dev->execute_task_lock); held
5505 static struct se_task *
5506 transport_get_task_from_state_list(struct se_device *dev)
5508 struct se_task *task;
5510 if (list_empty(&dev->state_task_list))
5511 return NULL;
5513 list_for_each_entry(task, &dev->state_task_list, t_state_list)
5514 break;
5516 list_del(&task->t_state_list);
5517 atomic_set(&task->task_state_active, 0);
5519 return task;
5522 static void transport_processing_shutdown(struct se_device *dev)
5524 struct se_cmd *cmd;
5525 struct se_task *task;
5526 unsigned long flags;
5528 * Empty the struct se_device's struct se_task state list.
5530 spin_lock_irqsave(&dev->execute_task_lock, flags);
5531 while ((task = transport_get_task_from_state_list(dev))) {
5532 if (!task->task_se_cmd) {
5533 printk(KERN_ERR "task->task_se_cmd is NULL!\n");
5534 continue;
5536 cmd = task->task_se_cmd;
5538 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
5540 spin_lock_irqsave(&cmd->t_state_lock, flags);
5542 DEBUG_DO("PT: cmd: %p task: %p ITT/CmdSN: 0x%08x/0x%08x,"
5543 " i_state/def_i_state: %d/%d, t_state/def_t_state:"
5544 " %d/%d cdb: 0x%02x\n", cmd, task,
5545 cmd->se_tfo->get_task_tag(cmd), cmd->cmd_sn,
5546 cmd->se_tfo->get_cmd_state(cmd), cmd->deferred_i_state,
5547 cmd->t_state, cmd->deferred_t_state,
5548 cmd->t_task_cdb[0]);
5549 DEBUG_DO("PT: ITT[0x%08x] - t_task_cdbs: %d t_task_cdbs_left:"
5550 " %d t_task_cdbs_sent: %d -- t_transport_active: %d"
5551 " t_transport_stop: %d t_transport_sent: %d\n",
5552 cmd->se_tfo->get_task_tag(cmd),
5553 cmd->t_task_cdbs,
5554 atomic_read(&cmd->t_task_cdbs_left),
5555 atomic_read(&cmd->t_task_cdbs_sent),
5556 atomic_read(&cmd->t_transport_active),
5557 atomic_read(&cmd->t_transport_stop),
5558 atomic_read(&cmd->t_transport_sent));
5560 if (atomic_read(&task->task_active)) {
5561 atomic_set(&task->task_stop, 1);
5562 spin_unlock_irqrestore(
5563 &cmd->t_state_lock, flags);
5565 DEBUG_DO("Waiting for task: %p to shutdown for dev:"
5566 " %p\n", task, dev);
5567 wait_for_completion(&task->task_stop_comp);
5568 DEBUG_DO("Completed task: %p shutdown for dev: %p\n",
5569 task, dev);
5571 spin_lock_irqsave(&cmd->t_state_lock, flags);
5572 atomic_dec(&cmd->t_task_cdbs_left);
5574 atomic_set(&task->task_active, 0);
5575 atomic_set(&task->task_stop, 0);
5576 } else {
5577 if (atomic_read(&task->task_execute_queue) != 0)
5578 transport_remove_task_from_execute_queue(task, dev);
5580 __transport_stop_task_timer(task, &flags);
5582 if (!(atomic_dec_and_test(&cmd->t_task_cdbs_ex_left))) {
5583 spin_unlock_irqrestore(
5584 &cmd->t_state_lock, flags);
5586 DEBUG_DO("Skipping task: %p, dev: %p for"
5587 " t_task_cdbs_ex_left: %d\n", task, dev,
5588 atomic_read(&cmd->t_task_cdbs_ex_left));
5590 spin_lock_irqsave(&dev->execute_task_lock, flags);
5591 continue;
5594 if (atomic_read(&cmd->t_transport_active)) {
5595 DEBUG_DO("got t_transport_active = 1 for task: %p, dev:"
5596 " %p\n", task, dev);
5598 if (atomic_read(&cmd->t_fe_count)) {
5599 spin_unlock_irqrestore(
5600 &cmd->t_state_lock, flags);
5601 transport_send_check_condition_and_sense(
5602 cmd, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE,
5604 transport_remove_cmd_from_queue(cmd,
5605 &cmd->se_dev->dev_queue_obj);
5607 transport_lun_remove_cmd(cmd);
5608 transport_cmd_check_stop(cmd, 1, 0);
5609 } else {
5610 spin_unlock_irqrestore(
5611 &cmd->t_state_lock, flags);
5613 transport_remove_cmd_from_queue(cmd,
5614 &cmd->se_dev->dev_queue_obj);
5616 transport_lun_remove_cmd(cmd);
5618 if (transport_cmd_check_stop(cmd, 1, 0))
5619 transport_generic_remove(cmd, 0, 0);
5622 spin_lock_irqsave(&dev->execute_task_lock, flags);
5623 continue;
5625 DEBUG_DO("Got t_transport_active = 0 for task: %p, dev: %p\n",
5626 task, dev);
5628 if (atomic_read(&cmd->t_fe_count)) {
5629 spin_unlock_irqrestore(
5630 &cmd->t_state_lock, flags);
5631 transport_send_check_condition_and_sense(cmd,
5632 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE, 0);
5633 transport_remove_cmd_from_queue(cmd,
5634 &cmd->se_dev->dev_queue_obj);
5636 transport_lun_remove_cmd(cmd);
5637 transport_cmd_check_stop(cmd, 1, 0);
5638 } else {
5639 spin_unlock_irqrestore(
5640 &cmd->t_state_lock, flags);
5642 transport_remove_cmd_from_queue(cmd,
5643 &cmd->se_dev->dev_queue_obj);
5644 transport_lun_remove_cmd(cmd);
5646 if (transport_cmd_check_stop(cmd, 1, 0))
5647 transport_generic_remove(cmd, 0, 0);
5650 spin_lock_irqsave(&dev->execute_task_lock, flags);
5652 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
5654 * Empty the struct se_device's struct se_cmd list.
5656 while ((cmd = transport_get_cmd_from_queue(&dev->dev_queue_obj))) {
5658 DEBUG_DO("From Device Queue: cmd: %p t_state: %d\n",
5659 cmd, cmd->t_state);
5661 if (atomic_read(&cmd->t_fe_count)) {
5662 transport_send_check_condition_and_sense(cmd,
5663 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE, 0);
5665 transport_lun_remove_cmd(cmd);
5666 transport_cmd_check_stop(cmd, 1, 0);
5667 } else {
5668 transport_lun_remove_cmd(cmd);
5669 if (transport_cmd_check_stop(cmd, 1, 0))
5670 transport_generic_remove(cmd, 0, 0);
5675 /* transport_processing_thread():
5679 static int transport_processing_thread(void *param)
5681 int ret;
5682 struct se_cmd *cmd;
5683 struct se_device *dev = (struct se_device *) param;
5685 set_user_nice(current, -20);
5687 while (!kthread_should_stop()) {
5688 ret = wait_event_interruptible(dev->dev_queue_obj.thread_wq,
5689 atomic_read(&dev->dev_queue_obj.queue_cnt) ||
5690 kthread_should_stop());
5691 if (ret < 0)
5692 goto out;
5694 spin_lock_irq(&dev->dev_status_lock);
5695 if (dev->dev_status & TRANSPORT_DEVICE_SHUTDOWN) {
5696 spin_unlock_irq(&dev->dev_status_lock);
5697 transport_processing_shutdown(dev);
5698 continue;
5700 spin_unlock_irq(&dev->dev_status_lock);
5702 get_cmd:
5703 __transport_execute_tasks(dev);
5705 cmd = transport_get_cmd_from_queue(&dev->dev_queue_obj);
5706 if (!cmd)
5707 continue;
5709 switch (cmd->t_state) {
5710 case TRANSPORT_NEW_CMD_MAP:
5711 if (!(cmd->se_tfo->new_cmd_map)) {
5712 printk(KERN_ERR "cmd->se_tfo->new_cmd_map is"
5713 " NULL for TRANSPORT_NEW_CMD_MAP\n");
5714 BUG();
5716 ret = cmd->se_tfo->new_cmd_map(cmd);
5717 if (ret < 0) {
5718 cmd->transport_error_status = ret;
5719 transport_generic_request_failure(cmd, NULL,
5720 0, (cmd->data_direction !=
5721 DMA_TO_DEVICE));
5722 break;
5724 /* Fall through */
5725 case TRANSPORT_NEW_CMD:
5726 ret = transport_generic_new_cmd(cmd);
5727 if (ret < 0) {
5728 cmd->transport_error_status = ret;
5729 transport_generic_request_failure(cmd, NULL,
5730 0, (cmd->data_direction !=
5731 DMA_TO_DEVICE));
5733 break;
5734 case TRANSPORT_PROCESS_WRITE:
5735 transport_generic_process_write(cmd);
5736 break;
5737 case TRANSPORT_COMPLETE_OK:
5738 transport_stop_all_task_timers(cmd);
5739 transport_generic_complete_ok(cmd);
5740 break;
5741 case TRANSPORT_REMOVE:
5742 transport_generic_remove(cmd, 1, 0);
5743 break;
5744 case TRANSPORT_FREE_CMD_INTR:
5745 transport_generic_free_cmd(cmd, 0, 1, 0);
5746 break;
5747 case TRANSPORT_PROCESS_TMR:
5748 transport_generic_do_tmr(cmd);
5749 break;
5750 case TRANSPORT_COMPLETE_FAILURE:
5751 transport_generic_request_failure(cmd, NULL, 1, 1);
5752 break;
5753 case TRANSPORT_COMPLETE_TIMEOUT:
5754 transport_stop_all_task_timers(cmd);
5755 transport_generic_request_timeout(cmd);
5756 break;
5757 default:
5758 printk(KERN_ERR "Unknown t_state: %d deferred_t_state:"
5759 " %d for ITT: 0x%08x i_state: %d on SE LUN:"
5760 " %u\n", cmd->t_state, cmd->deferred_t_state,
5761 cmd->se_tfo->get_task_tag(cmd),
5762 cmd->se_tfo->get_cmd_state(cmd),
5763 cmd->se_lun->unpacked_lun);
5764 BUG();
5767 goto get_cmd;
5770 out:
5771 transport_release_all_cmds(dev);
5772 dev->process_thread = NULL;
5773 return 0;