2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/jiffies.h>
13 #include <linux/rbtree.h>
14 #include <linux/ioprio.h>
15 #include <linux/blktrace_api.h>
16 #include "blk-cgroup.h"
21 /* max queue in one round of service */
22 static const int cfq_quantum
= 4;
23 static const int cfq_fifo_expire
[2] = { HZ
/ 4, HZ
/ 8 };
24 /* maximum backwards seek, in KiB */
25 static const int cfq_back_max
= 16 * 1024;
26 /* penalty of a backwards seek */
27 static const int cfq_back_penalty
= 2;
28 static const int cfq_slice_sync
= HZ
/ 10;
29 static int cfq_slice_async
= HZ
/ 25;
30 static const int cfq_slice_async_rq
= 2;
31 static int cfq_slice_idle
= HZ
/ 125;
32 static const int cfq_target_latency
= HZ
* 3/10; /* 300 ms */
33 static const int cfq_hist_divisor
= 4;
36 * offset from end of service tree
38 #define CFQ_IDLE_DELAY (HZ / 5)
41 * below this threshold, we consider thinktime immediate
43 #define CFQ_MIN_TT (2)
45 #define CFQ_SLICE_SCALE (5)
46 #define CFQ_HW_QUEUE_MIN (5)
47 #define CFQ_SERVICE_SHIFT 12
49 #define CFQQ_SEEK_THR 8 * 1024
50 #define CFQQ_SEEKY(cfqq) ((cfqq)->seek_mean > CFQQ_SEEK_THR)
53 ((struct cfq_io_context *) (rq)->elevator_private)
54 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
56 static struct kmem_cache
*cfq_pool
;
57 static struct kmem_cache
*cfq_ioc_pool
;
59 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count
);
60 static struct completion
*ioc_gone
;
61 static DEFINE_SPINLOCK(ioc_gone_lock
);
63 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
64 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
65 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
67 #define sample_valid(samples) ((samples) > 80)
68 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
71 * Most of our rbtree usage is for sorting with min extraction, so
72 * if we cache the leftmost node we don't have to walk down the tree
73 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
74 * move this into the elevator for the rq sorting as well.
81 struct rb_node
*active
;
82 unsigned total_weight
;
84 #define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, 0, 0, }
87 * Per process-grouping structure
92 /* various state flags, see below */
95 struct cfq_data
*cfqd
;
96 /* service_tree member */
97 struct rb_node rb_node
;
98 /* service_tree key */
100 /* prio tree member */
101 struct rb_node p_node
;
102 /* prio tree root we belong to, if any */
103 struct rb_root
*p_root
;
104 /* sorted list of pending requests */
105 struct rb_root sort_list
;
106 /* if fifo isn't expired, next request to serve */
107 struct request
*next_rq
;
108 /* requests queued in sort_list */
110 /* currently allocated requests */
112 /* fifo list of requests in sort_list */
113 struct list_head fifo
;
115 /* time when queue got scheduled in to dispatch first request. */
116 unsigned long dispatch_start
;
117 unsigned int allocated_slice
;
118 /* time when first request from queue completed and slice started. */
119 unsigned long slice_start
;
120 unsigned long slice_end
;
122 unsigned int slice_dispatch
;
124 /* pending metadata requests */
126 /* number of requests that are on the dispatch list or inside driver */
129 /* io prio of this group */
130 unsigned short ioprio
, org_ioprio
;
131 unsigned short ioprio_class
, org_ioprio_class
;
133 unsigned int seek_samples
;
136 sector_t last_request_pos
;
140 struct cfq_rb_root
*service_tree
;
141 struct cfq_queue
*new_cfqq
;
142 struct cfq_group
*cfqg
;
143 struct cfq_group
*orig_cfqg
;
144 /* Sectors dispatched in current dispatch round */
145 unsigned long nr_sectors
;
149 * First index in the service_trees.
150 * IDLE is handled separately, so it has negative index
159 * Second index in the service_trees.
163 SYNC_NOIDLE_WORKLOAD
= 1,
167 /* This is per cgroup per device grouping structure */
169 /* group service_tree member */
170 struct rb_node rb_node
;
172 /* group service_tree key */
177 /* number of cfqq currently on this group */
180 /* Per group busy queus average. Useful for workload slice calc. */
181 unsigned int busy_queues_avg
[2];
183 * rr lists of queues with requests, onle rr for each priority class.
184 * Counts are embedded in the cfq_rb_root
186 struct cfq_rb_root service_trees
[2][3];
187 struct cfq_rb_root service_tree_idle
;
189 unsigned long saved_workload_slice
;
190 enum wl_type_t saved_workload
;
191 enum wl_prio_t saved_serving_prio
;
192 struct blkio_group blkg
;
193 #ifdef CONFIG_CFQ_GROUP_IOSCHED
194 struct hlist_node cfqd_node
;
200 * Per block device queue structure
203 struct request_queue
*queue
;
204 /* Root service tree for cfq_groups */
205 struct cfq_rb_root grp_service_tree
;
206 struct cfq_group root_group
;
209 * The priority currently being served
211 enum wl_prio_t serving_prio
;
212 enum wl_type_t serving_type
;
213 unsigned long workload_expires
;
214 struct cfq_group
*serving_group
;
215 bool noidle_tree_requires_idle
;
218 * Each priority tree is sorted by next_request position. These
219 * trees are used when determining if two or more queues are
220 * interleaving requests (see cfq_close_cooperator).
222 struct rb_root prio_trees
[CFQ_PRIO_LISTS
];
224 unsigned int busy_queues
;
230 * queue-depth detection
236 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
237 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
240 int hw_tag_est_depth
;
241 unsigned int hw_tag_samples
;
244 * idle window management
246 struct timer_list idle_slice_timer
;
247 struct work_struct unplug_work
;
249 struct cfq_queue
*active_queue
;
250 struct cfq_io_context
*active_cic
;
253 * async queue for each priority case
255 struct cfq_queue
*async_cfqq
[2][IOPRIO_BE_NR
];
256 struct cfq_queue
*async_idle_cfqq
;
258 sector_t last_position
;
261 * tunables, see top of file
263 unsigned int cfq_quantum
;
264 unsigned int cfq_fifo_expire
[2];
265 unsigned int cfq_back_penalty
;
266 unsigned int cfq_back_max
;
267 unsigned int cfq_slice
[2];
268 unsigned int cfq_slice_async_rq
;
269 unsigned int cfq_slice_idle
;
270 unsigned int cfq_latency
;
271 unsigned int cfq_group_isolation
;
273 struct list_head cic_list
;
276 * Fallback dummy cfqq for extreme OOM conditions
278 struct cfq_queue oom_cfqq
;
280 unsigned long last_delayed_sync
;
282 /* List of cfq groups being managed on this device*/
283 struct hlist_head cfqg_list
;
287 static struct cfq_group
*cfq_get_next_cfqg(struct cfq_data
*cfqd
);
289 static struct cfq_rb_root
*service_tree_for(struct cfq_group
*cfqg
,
296 if (prio
== IDLE_WORKLOAD
)
297 return &cfqg
->service_tree_idle
;
299 return &cfqg
->service_trees
[prio
][type
];
302 enum cfqq_state_flags
{
303 CFQ_CFQQ_FLAG_on_rr
= 0, /* on round-robin busy list */
304 CFQ_CFQQ_FLAG_wait_request
, /* waiting for a request */
305 CFQ_CFQQ_FLAG_must_dispatch
, /* must be allowed a dispatch */
306 CFQ_CFQQ_FLAG_must_alloc_slice
, /* per-slice must_alloc flag */
307 CFQ_CFQQ_FLAG_fifo_expire
, /* FIFO checked in this slice */
308 CFQ_CFQQ_FLAG_idle_window
, /* slice idling enabled */
309 CFQ_CFQQ_FLAG_prio_changed
, /* task priority has changed */
310 CFQ_CFQQ_FLAG_slice_new
, /* no requests dispatched in slice */
311 CFQ_CFQQ_FLAG_sync
, /* synchronous queue */
312 CFQ_CFQQ_FLAG_coop
, /* cfqq is shared */
313 CFQ_CFQQ_FLAG_split_coop
, /* shared cfqq will be splitted */
314 CFQ_CFQQ_FLAG_deep
, /* sync cfqq experienced large depth */
315 CFQ_CFQQ_FLAG_wait_busy
, /* Waiting for next request */
318 #define CFQ_CFQQ_FNS(name) \
319 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
321 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
323 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
325 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
327 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
329 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
333 CFQ_CFQQ_FNS(wait_request
);
334 CFQ_CFQQ_FNS(must_dispatch
);
335 CFQ_CFQQ_FNS(must_alloc_slice
);
336 CFQ_CFQQ_FNS(fifo_expire
);
337 CFQ_CFQQ_FNS(idle_window
);
338 CFQ_CFQQ_FNS(prio_changed
);
339 CFQ_CFQQ_FNS(slice_new
);
342 CFQ_CFQQ_FNS(split_coop
);
344 CFQ_CFQQ_FNS(wait_busy
);
347 #ifdef CONFIG_DEBUG_CFQ_IOSCHED
348 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
349 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
350 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
351 blkg_path(&(cfqq)->cfqg->blkg), ##args);
353 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
354 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
355 blkg_path(&(cfqg)->blkg), ##args); \
358 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
359 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
360 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
362 #define cfq_log(cfqd, fmt, args...) \
363 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
365 /* Traverses through cfq group service trees */
366 #define for_each_cfqg_st(cfqg, i, j, st) \
367 for (i = 0; i <= IDLE_WORKLOAD; i++) \
368 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
369 : &cfqg->service_tree_idle; \
370 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
371 (i == IDLE_WORKLOAD && j == 0); \
372 j++, st = i < IDLE_WORKLOAD ? \
373 &cfqg->service_trees[i][j]: NULL) \
376 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
378 if (cfq_class_idle(cfqq
))
379 return IDLE_WORKLOAD
;
380 if (cfq_class_rt(cfqq
))
386 static enum wl_type_t
cfqq_type(struct cfq_queue
*cfqq
)
388 if (!cfq_cfqq_sync(cfqq
))
389 return ASYNC_WORKLOAD
;
390 if (!cfq_cfqq_idle_window(cfqq
))
391 return SYNC_NOIDLE_WORKLOAD
;
392 return SYNC_WORKLOAD
;
395 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl
,
396 struct cfq_data
*cfqd
,
397 struct cfq_group
*cfqg
)
399 if (wl
== IDLE_WORKLOAD
)
400 return cfqg
->service_tree_idle
.count
;
402 return cfqg
->service_trees
[wl
][ASYNC_WORKLOAD
].count
403 + cfqg
->service_trees
[wl
][SYNC_NOIDLE_WORKLOAD
].count
404 + cfqg
->service_trees
[wl
][SYNC_WORKLOAD
].count
;
407 static inline int cfqg_busy_async_queues(struct cfq_data
*cfqd
,
408 struct cfq_group
*cfqg
)
410 return cfqg
->service_trees
[RT_WORKLOAD
][ASYNC_WORKLOAD
].count
411 + cfqg
->service_trees
[BE_WORKLOAD
][ASYNC_WORKLOAD
].count
;
414 static void cfq_dispatch_insert(struct request_queue
*, struct request
*);
415 static struct cfq_queue
*cfq_get_queue(struct cfq_data
*, bool,
416 struct io_context
*, gfp_t
);
417 static struct cfq_io_context
*cfq_cic_lookup(struct cfq_data
*,
418 struct io_context
*);
420 static inline int rq_in_driver(struct cfq_data
*cfqd
)
422 return cfqd
->rq_in_driver
[0] + cfqd
->rq_in_driver
[1];
425 static inline struct cfq_queue
*cic_to_cfqq(struct cfq_io_context
*cic
,
428 return cic
->cfqq
[is_sync
];
431 static inline void cic_set_cfqq(struct cfq_io_context
*cic
,
432 struct cfq_queue
*cfqq
, bool is_sync
)
434 cic
->cfqq
[is_sync
] = cfqq
;
438 * We regard a request as SYNC, if it's either a read or has the SYNC bit
439 * set (in which case it could also be direct WRITE).
441 static inline bool cfq_bio_sync(struct bio
*bio
)
443 return bio_data_dir(bio
) == READ
|| bio_rw_flagged(bio
, BIO_RW_SYNCIO
);
447 * scheduler run of queue, if there are requests pending and no one in the
448 * driver that will restart queueing
450 static inline void cfq_schedule_dispatch(struct cfq_data
*cfqd
)
452 if (cfqd
->busy_queues
) {
453 cfq_log(cfqd
, "schedule dispatch");
454 kblockd_schedule_work(cfqd
->queue
, &cfqd
->unplug_work
);
458 static int cfq_queue_empty(struct request_queue
*q
)
460 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
462 return !cfqd
->rq_queued
;
466 * Scale schedule slice based on io priority. Use the sync time slice only
467 * if a queue is marked sync and has sync io queued. A sync queue with async
468 * io only, should not get full sync slice length.
470 static inline int cfq_prio_slice(struct cfq_data
*cfqd
, bool sync
,
473 const int base_slice
= cfqd
->cfq_slice
[sync
];
475 WARN_ON(prio
>= IOPRIO_BE_NR
);
477 return base_slice
+ (base_slice
/CFQ_SLICE_SCALE
* (4 - prio
));
481 cfq_prio_to_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
483 return cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
);
486 static inline u64
cfq_scale_slice(unsigned long delta
, struct cfq_group
*cfqg
)
488 u64 d
= delta
<< CFQ_SERVICE_SHIFT
;
490 d
= d
* BLKIO_WEIGHT_DEFAULT
;
491 do_div(d
, cfqg
->weight
);
495 static inline u64
max_vdisktime(u64 min_vdisktime
, u64 vdisktime
)
497 s64 delta
= (s64
)(vdisktime
- min_vdisktime
);
499 min_vdisktime
= vdisktime
;
501 return min_vdisktime
;
504 static inline u64
min_vdisktime(u64 min_vdisktime
, u64 vdisktime
)
506 s64 delta
= (s64
)(vdisktime
- min_vdisktime
);
508 min_vdisktime
= vdisktime
;
510 return min_vdisktime
;
513 static void update_min_vdisktime(struct cfq_rb_root
*st
)
515 u64 vdisktime
= st
->min_vdisktime
;
516 struct cfq_group
*cfqg
;
519 cfqg
= rb_entry_cfqg(st
->active
);
520 vdisktime
= cfqg
->vdisktime
;
524 cfqg
= rb_entry_cfqg(st
->left
);
525 vdisktime
= min_vdisktime(vdisktime
, cfqg
->vdisktime
);
528 st
->min_vdisktime
= max_vdisktime(st
->min_vdisktime
, vdisktime
);
532 * get averaged number of queues of RT/BE priority.
533 * average is updated, with a formula that gives more weight to higher numbers,
534 * to quickly follows sudden increases and decrease slowly
537 static inline unsigned cfq_group_get_avg_queues(struct cfq_data
*cfqd
,
538 struct cfq_group
*cfqg
, bool rt
)
540 unsigned min_q
, max_q
;
541 unsigned mult
= cfq_hist_divisor
- 1;
542 unsigned round
= cfq_hist_divisor
/ 2;
543 unsigned busy
= cfq_group_busy_queues_wl(rt
, cfqd
, cfqg
);
545 min_q
= min(cfqg
->busy_queues_avg
[rt
], busy
);
546 max_q
= max(cfqg
->busy_queues_avg
[rt
], busy
);
547 cfqg
->busy_queues_avg
[rt
] = (mult
* max_q
+ min_q
+ round
) /
549 return cfqg
->busy_queues_avg
[rt
];
552 static inline unsigned
553 cfq_group_slice(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
555 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
557 return cfq_target_latency
* cfqg
->weight
/ st
->total_weight
;
561 cfq_set_prio_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
563 unsigned slice
= cfq_prio_to_slice(cfqd
, cfqq
);
564 if (cfqd
->cfq_latency
) {
566 * interested queues (we consider only the ones with the same
567 * priority class in the cfq group)
569 unsigned iq
= cfq_group_get_avg_queues(cfqd
, cfqq
->cfqg
,
571 unsigned sync_slice
= cfqd
->cfq_slice
[1];
572 unsigned expect_latency
= sync_slice
* iq
;
573 unsigned group_slice
= cfq_group_slice(cfqd
, cfqq
->cfqg
);
575 if (expect_latency
> group_slice
) {
576 unsigned base_low_slice
= 2 * cfqd
->cfq_slice_idle
;
577 /* scale low_slice according to IO priority
578 * and sync vs async */
580 min(slice
, base_low_slice
* slice
/ sync_slice
);
581 /* the adapted slice value is scaled to fit all iqs
582 * into the target latency */
583 slice
= max(slice
* group_slice
/ expect_latency
,
587 cfqq
->slice_start
= jiffies
;
588 cfqq
->slice_end
= jiffies
+ slice
;
589 cfqq
->allocated_slice
= slice
;
590 cfq_log_cfqq(cfqd
, cfqq
, "set_slice=%lu", cfqq
->slice_end
- jiffies
);
594 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
595 * isn't valid until the first request from the dispatch is activated
596 * and the slice time set.
598 static inline bool cfq_slice_used(struct cfq_queue
*cfqq
)
600 if (cfq_cfqq_slice_new(cfqq
))
602 if (time_before(jiffies
, cfqq
->slice_end
))
609 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
610 * We choose the request that is closest to the head right now. Distance
611 * behind the head is penalized and only allowed to a certain extent.
613 static struct request
*
614 cfq_choose_req(struct cfq_data
*cfqd
, struct request
*rq1
, struct request
*rq2
, sector_t last
)
616 sector_t s1
, s2
, d1
= 0, d2
= 0;
617 unsigned long back_max
;
618 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
619 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
620 unsigned wrap
= 0; /* bit mask: requests behind the disk head? */
622 if (rq1
== NULL
|| rq1
== rq2
)
627 if (rq_is_sync(rq1
) && !rq_is_sync(rq2
))
629 else if (rq_is_sync(rq2
) && !rq_is_sync(rq1
))
631 if (rq_is_meta(rq1
) && !rq_is_meta(rq2
))
633 else if (rq_is_meta(rq2
) && !rq_is_meta(rq1
))
636 s1
= blk_rq_pos(rq1
);
637 s2
= blk_rq_pos(rq2
);
640 * by definition, 1KiB is 2 sectors
642 back_max
= cfqd
->cfq_back_max
* 2;
645 * Strict one way elevator _except_ in the case where we allow
646 * short backward seeks which are biased as twice the cost of a
647 * similar forward seek.
651 else if (s1
+ back_max
>= last
)
652 d1
= (last
- s1
) * cfqd
->cfq_back_penalty
;
654 wrap
|= CFQ_RQ1_WRAP
;
658 else if (s2
+ back_max
>= last
)
659 d2
= (last
- s2
) * cfqd
->cfq_back_penalty
;
661 wrap
|= CFQ_RQ2_WRAP
;
663 /* Found required data */
666 * By doing switch() on the bit mask "wrap" we avoid having to
667 * check two variables for all permutations: --> faster!
670 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
686 case (CFQ_RQ1_WRAP
|CFQ_RQ2_WRAP
): /* both rqs wrapped */
689 * Since both rqs are wrapped,
690 * start with the one that's further behind head
691 * (--> only *one* back seek required),
692 * since back seek takes more time than forward.
702 * The below is leftmost cache rbtree addon
704 static struct cfq_queue
*cfq_rb_first(struct cfq_rb_root
*root
)
706 /* Service tree is empty */
711 root
->left
= rb_first(&root
->rb
);
714 return rb_entry(root
->left
, struct cfq_queue
, rb_node
);
719 static struct cfq_group
*cfq_rb_first_group(struct cfq_rb_root
*root
)
722 root
->left
= rb_first(&root
->rb
);
725 return rb_entry_cfqg(root
->left
);
730 static void rb_erase_init(struct rb_node
*n
, struct rb_root
*root
)
736 static void cfq_rb_erase(struct rb_node
*n
, struct cfq_rb_root
*root
)
740 rb_erase_init(n
, &root
->rb
);
745 * would be nice to take fifo expire time into account as well
747 static struct request
*
748 cfq_find_next_rq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
749 struct request
*last
)
751 struct rb_node
*rbnext
= rb_next(&last
->rb_node
);
752 struct rb_node
*rbprev
= rb_prev(&last
->rb_node
);
753 struct request
*next
= NULL
, *prev
= NULL
;
755 BUG_ON(RB_EMPTY_NODE(&last
->rb_node
));
758 prev
= rb_entry_rq(rbprev
);
761 next
= rb_entry_rq(rbnext
);
763 rbnext
= rb_first(&cfqq
->sort_list
);
764 if (rbnext
&& rbnext
!= &last
->rb_node
)
765 next
= rb_entry_rq(rbnext
);
768 return cfq_choose_req(cfqd
, next
, prev
, blk_rq_pos(last
));
771 static unsigned long cfq_slice_offset(struct cfq_data
*cfqd
,
772 struct cfq_queue
*cfqq
)
775 * just an approximation, should be ok.
777 return (cfqq
->cfqg
->nr_cfqq
- 1) * (cfq_prio_slice(cfqd
, 1, 0) -
778 cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
));
782 cfqg_key(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
784 return cfqg
->vdisktime
- st
->min_vdisktime
;
788 __cfq_group_service_tree_add(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
790 struct rb_node
**node
= &st
->rb
.rb_node
;
791 struct rb_node
*parent
= NULL
;
792 struct cfq_group
*__cfqg
;
793 s64 key
= cfqg_key(st
, cfqg
);
796 while (*node
!= NULL
) {
798 __cfqg
= rb_entry_cfqg(parent
);
800 if (key
< cfqg_key(st
, __cfqg
))
801 node
= &parent
->rb_left
;
803 node
= &parent
->rb_right
;
809 st
->left
= &cfqg
->rb_node
;
811 rb_link_node(&cfqg
->rb_node
, parent
, node
);
812 rb_insert_color(&cfqg
->rb_node
, &st
->rb
);
816 cfq_group_service_tree_add(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
818 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
819 struct cfq_group
*__cfqg
;
827 * Currently put the group at the end. Later implement something
828 * so that groups get lesser vtime based on their weights, so that
829 * if group does not loose all if it was not continously backlogged.
831 n
= rb_last(&st
->rb
);
833 __cfqg
= rb_entry_cfqg(n
);
834 cfqg
->vdisktime
= __cfqg
->vdisktime
+ CFQ_IDLE_DELAY
;
836 cfqg
->vdisktime
= st
->min_vdisktime
;
838 __cfq_group_service_tree_add(st
, cfqg
);
840 st
->total_weight
+= cfqg
->weight
;
844 cfq_group_service_tree_del(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
846 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
848 if (st
->active
== &cfqg
->rb_node
)
851 BUG_ON(cfqg
->nr_cfqq
< 1);
854 /* If there are other cfq queues under this group, don't delete it */
858 cfq_log_cfqg(cfqd
, cfqg
, "del_from_rr group");
860 st
->total_weight
-= cfqg
->weight
;
861 if (!RB_EMPTY_NODE(&cfqg
->rb_node
))
862 cfq_rb_erase(&cfqg
->rb_node
, st
);
863 cfqg
->saved_workload_slice
= 0;
864 blkiocg_update_blkio_group_dequeue_stats(&cfqg
->blkg
, 1);
867 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue
*cfqq
)
869 unsigned int slice_used
;
872 * Queue got expired before even a single request completed or
873 * got expired immediately after first request completion.
875 if (!cfqq
->slice_start
|| cfqq
->slice_start
== jiffies
) {
877 * Also charge the seek time incurred to the group, otherwise
878 * if there are mutiple queues in the group, each can dispatch
879 * a single request on seeky media and cause lots of seek time
880 * and group will never know it.
882 slice_used
= max_t(unsigned, (jiffies
- cfqq
->dispatch_start
),
885 slice_used
= jiffies
- cfqq
->slice_start
;
886 if (slice_used
> cfqq
->allocated_slice
)
887 slice_used
= cfqq
->allocated_slice
;
890 cfq_log_cfqq(cfqq
->cfqd
, cfqq
, "sl_used=%u sect=%lu", slice_used
,
895 static void cfq_group_served(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
,
896 struct cfq_queue
*cfqq
)
898 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
899 unsigned int used_sl
, charge_sl
;
900 int nr_sync
= cfqg
->nr_cfqq
- cfqg_busy_async_queues(cfqd
, cfqg
)
901 - cfqg
->service_tree_idle
.count
;
904 used_sl
= charge_sl
= cfq_cfqq_slice_usage(cfqq
);
906 if (!cfq_cfqq_sync(cfqq
) && !nr_sync
)
907 charge_sl
= cfqq
->allocated_slice
;
909 /* Can't update vdisktime while group is on service tree */
910 cfq_rb_erase(&cfqg
->rb_node
, st
);
911 cfqg
->vdisktime
+= cfq_scale_slice(charge_sl
, cfqg
);
912 __cfq_group_service_tree_add(st
, cfqg
);
914 /* This group is being expired. Save the context */
915 if (time_after(cfqd
->workload_expires
, jiffies
)) {
916 cfqg
->saved_workload_slice
= cfqd
->workload_expires
918 cfqg
->saved_workload
= cfqd
->serving_type
;
919 cfqg
->saved_serving_prio
= cfqd
->serving_prio
;
921 cfqg
->saved_workload_slice
= 0;
923 cfq_log_cfqg(cfqd
, cfqg
, "served: vt=%llu min_vt=%llu", cfqg
->vdisktime
,
925 blkiocg_update_blkio_group_stats(&cfqg
->blkg
, used_sl
,
929 #ifdef CONFIG_CFQ_GROUP_IOSCHED
930 static inline struct cfq_group
*cfqg_of_blkg(struct blkio_group
*blkg
)
933 return container_of(blkg
, struct cfq_group
, blkg
);
938 cfq_update_blkio_group_weight(struct blkio_group
*blkg
, unsigned int weight
)
940 cfqg_of_blkg(blkg
)->weight
= weight
;
943 static struct cfq_group
*
944 cfq_find_alloc_cfqg(struct cfq_data
*cfqd
, struct cgroup
*cgroup
, int create
)
946 struct blkio_cgroup
*blkcg
= cgroup_to_blkio_cgroup(cgroup
);
947 struct cfq_group
*cfqg
= NULL
;
950 struct cfq_rb_root
*st
;
951 struct backing_dev_info
*bdi
= &cfqd
->queue
->backing_dev_info
;
952 unsigned int major
, minor
;
954 /* Do we need to take this reference */
955 if (!blkiocg_css_tryget(blkcg
))
958 cfqg
= cfqg_of_blkg(blkiocg_lookup_group(blkcg
, key
));
962 cfqg
= kzalloc_node(sizeof(*cfqg
), GFP_ATOMIC
, cfqd
->queue
->node
);
966 cfqg
->weight
= blkcg
->weight
;
967 for_each_cfqg_st(cfqg
, i
, j
, st
)
969 RB_CLEAR_NODE(&cfqg
->rb_node
);
972 * Take the initial reference that will be released on destroy
973 * This can be thought of a joint reference by cgroup and
974 * elevator which will be dropped by either elevator exit
975 * or cgroup deletion path depending on who is exiting first.
977 atomic_set(&cfqg
->ref
, 1);
979 /* Add group onto cgroup list */
980 sscanf(dev_name(bdi
->dev
), "%u:%u", &major
, &minor
);
981 blkiocg_add_blkio_group(blkcg
, &cfqg
->blkg
, (void *)cfqd
,
982 MKDEV(major
, minor
));
984 /* Add group on cfqd list */
985 hlist_add_head(&cfqg
->cfqd_node
, &cfqd
->cfqg_list
);
988 blkiocg_css_put(blkcg
);
993 * Search for the cfq group current task belongs to. If create = 1, then also
994 * create the cfq group if it does not exist. request_queue lock must be held.
996 static struct cfq_group
*cfq_get_cfqg(struct cfq_data
*cfqd
, int create
)
998 struct cgroup
*cgroup
;
999 struct cfq_group
*cfqg
= NULL
;
1002 cgroup
= task_cgroup(current
, blkio_subsys_id
);
1003 cfqg
= cfq_find_alloc_cfqg(cfqd
, cgroup
, create
);
1004 if (!cfqg
&& create
)
1005 cfqg
= &cfqd
->root_group
;
1010 static void cfq_link_cfqq_cfqg(struct cfq_queue
*cfqq
, struct cfq_group
*cfqg
)
1012 /* Currently, all async queues are mapped to root group */
1013 if (!cfq_cfqq_sync(cfqq
))
1014 cfqg
= &cfqq
->cfqd
->root_group
;
1017 /* cfqq reference on cfqg */
1018 atomic_inc(&cfqq
->cfqg
->ref
);
1021 static void cfq_put_cfqg(struct cfq_group
*cfqg
)
1023 struct cfq_rb_root
*st
;
1026 BUG_ON(atomic_read(&cfqg
->ref
) <= 0);
1027 if (!atomic_dec_and_test(&cfqg
->ref
))
1029 for_each_cfqg_st(cfqg
, i
, j
, st
)
1030 BUG_ON(!RB_EMPTY_ROOT(&st
->rb
) || st
->active
!= NULL
);
1034 static void cfq_destroy_cfqg(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
1036 /* Something wrong if we are trying to remove same group twice */
1037 BUG_ON(hlist_unhashed(&cfqg
->cfqd_node
));
1039 hlist_del_init(&cfqg
->cfqd_node
);
1042 * Put the reference taken at the time of creation so that when all
1043 * queues are gone, group can be destroyed.
1048 static void cfq_release_cfq_groups(struct cfq_data
*cfqd
)
1050 struct hlist_node
*pos
, *n
;
1051 struct cfq_group
*cfqg
;
1053 hlist_for_each_entry_safe(cfqg
, pos
, n
, &cfqd
->cfqg_list
, cfqd_node
) {
1055 * If cgroup removal path got to blk_group first and removed
1056 * it from cgroup list, then it will take care of destroying
1059 if (!blkiocg_del_blkio_group(&cfqg
->blkg
))
1060 cfq_destroy_cfqg(cfqd
, cfqg
);
1065 * Blk cgroup controller notification saying that blkio_group object is being
1066 * delinked as associated cgroup object is going away. That also means that
1067 * no new IO will come in this group. So get rid of this group as soon as
1068 * any pending IO in the group is finished.
1070 * This function is called under rcu_read_lock(). key is the rcu protected
1071 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1074 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1075 * it should not be NULL as even if elevator was exiting, cgroup deltion
1076 * path got to it first.
1078 void cfq_unlink_blkio_group(void *key
, struct blkio_group
*blkg
)
1080 unsigned long flags
;
1081 struct cfq_data
*cfqd
= key
;
1083 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
1084 cfq_destroy_cfqg(cfqd
, cfqg_of_blkg(blkg
));
1085 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
1088 #else /* GROUP_IOSCHED */
1089 static struct cfq_group
*cfq_get_cfqg(struct cfq_data
*cfqd
, int create
)
1091 return &cfqd
->root_group
;
1094 cfq_link_cfqq_cfqg(struct cfq_queue
*cfqq
, struct cfq_group
*cfqg
) {
1098 static void cfq_release_cfq_groups(struct cfq_data
*cfqd
) {}
1099 static inline void cfq_put_cfqg(struct cfq_group
*cfqg
) {}
1101 #endif /* GROUP_IOSCHED */
1104 * The cfqd->service_trees holds all pending cfq_queue's that have
1105 * requests waiting to be processed. It is sorted in the order that
1106 * we will service the queues.
1108 static void cfq_service_tree_add(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1111 struct rb_node
**p
, *parent
;
1112 struct cfq_queue
*__cfqq
;
1113 unsigned long rb_key
;
1114 struct cfq_rb_root
*service_tree
;
1117 int group_changed
= 0;
1119 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1120 if (!cfqd
->cfq_group_isolation
1121 && cfqq_type(cfqq
) == SYNC_NOIDLE_WORKLOAD
1122 && cfqq
->cfqg
&& cfqq
->cfqg
!= &cfqd
->root_group
) {
1123 /* Move this cfq to root group */
1124 cfq_log_cfqq(cfqd
, cfqq
, "moving to root group");
1125 if (!RB_EMPTY_NODE(&cfqq
->rb_node
))
1126 cfq_group_service_tree_del(cfqd
, cfqq
->cfqg
);
1127 cfqq
->orig_cfqg
= cfqq
->cfqg
;
1128 cfqq
->cfqg
= &cfqd
->root_group
;
1129 atomic_inc(&cfqd
->root_group
.ref
);
1131 } else if (!cfqd
->cfq_group_isolation
1132 && cfqq_type(cfqq
) == SYNC_WORKLOAD
&& cfqq
->orig_cfqg
) {
1133 /* cfqq is sequential now needs to go to its original group */
1134 BUG_ON(cfqq
->cfqg
!= &cfqd
->root_group
);
1135 if (!RB_EMPTY_NODE(&cfqq
->rb_node
))
1136 cfq_group_service_tree_del(cfqd
, cfqq
->cfqg
);
1137 cfq_put_cfqg(cfqq
->cfqg
);
1138 cfqq
->cfqg
= cfqq
->orig_cfqg
;
1139 cfqq
->orig_cfqg
= NULL
;
1141 cfq_log_cfqq(cfqd
, cfqq
, "moved to origin group");
1145 service_tree
= service_tree_for(cfqq
->cfqg
, cfqq_prio(cfqq
),
1147 if (cfq_class_idle(cfqq
)) {
1148 rb_key
= CFQ_IDLE_DELAY
;
1149 parent
= rb_last(&service_tree
->rb
);
1150 if (parent
&& parent
!= &cfqq
->rb_node
) {
1151 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
1152 rb_key
+= __cfqq
->rb_key
;
1155 } else if (!add_front
) {
1157 * Get our rb key offset. Subtract any residual slice
1158 * value carried from last service. A negative resid
1159 * count indicates slice overrun, and this should position
1160 * the next service time further away in the tree.
1162 rb_key
= cfq_slice_offset(cfqd
, cfqq
) + jiffies
;
1163 rb_key
-= cfqq
->slice_resid
;
1164 cfqq
->slice_resid
= 0;
1167 __cfqq
= cfq_rb_first(service_tree
);
1168 rb_key
+= __cfqq
? __cfqq
->rb_key
: jiffies
;
1171 if (!RB_EMPTY_NODE(&cfqq
->rb_node
)) {
1174 * same position, nothing more to do
1176 if (rb_key
== cfqq
->rb_key
&&
1177 cfqq
->service_tree
== service_tree
)
1180 cfq_rb_erase(&cfqq
->rb_node
, cfqq
->service_tree
);
1181 cfqq
->service_tree
= NULL
;
1186 cfqq
->service_tree
= service_tree
;
1187 p
= &service_tree
->rb
.rb_node
;
1192 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
1195 * sort by key, that represents service time.
1197 if (time_before(rb_key
, __cfqq
->rb_key
))
1200 n
= &(*p
)->rb_right
;
1208 service_tree
->left
= &cfqq
->rb_node
;
1210 cfqq
->rb_key
= rb_key
;
1211 rb_link_node(&cfqq
->rb_node
, parent
, p
);
1212 rb_insert_color(&cfqq
->rb_node
, &service_tree
->rb
);
1213 service_tree
->count
++;
1214 if ((add_front
|| !new_cfqq
) && !group_changed
)
1216 cfq_group_service_tree_add(cfqd
, cfqq
->cfqg
);
1219 static struct cfq_queue
*
1220 cfq_prio_tree_lookup(struct cfq_data
*cfqd
, struct rb_root
*root
,
1221 sector_t sector
, struct rb_node
**ret_parent
,
1222 struct rb_node
***rb_link
)
1224 struct rb_node
**p
, *parent
;
1225 struct cfq_queue
*cfqq
= NULL
;
1233 cfqq
= rb_entry(parent
, struct cfq_queue
, p_node
);
1236 * Sort strictly based on sector. Smallest to the left,
1237 * largest to the right.
1239 if (sector
> blk_rq_pos(cfqq
->next_rq
))
1240 n
= &(*p
)->rb_right
;
1241 else if (sector
< blk_rq_pos(cfqq
->next_rq
))
1249 *ret_parent
= parent
;
1255 static void cfq_prio_tree_add(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1257 struct rb_node
**p
, *parent
;
1258 struct cfq_queue
*__cfqq
;
1261 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
1262 cfqq
->p_root
= NULL
;
1265 if (cfq_class_idle(cfqq
))
1270 cfqq
->p_root
= &cfqd
->prio_trees
[cfqq
->org_ioprio
];
1271 __cfqq
= cfq_prio_tree_lookup(cfqd
, cfqq
->p_root
,
1272 blk_rq_pos(cfqq
->next_rq
), &parent
, &p
);
1274 rb_link_node(&cfqq
->p_node
, parent
, p
);
1275 rb_insert_color(&cfqq
->p_node
, cfqq
->p_root
);
1277 cfqq
->p_root
= NULL
;
1281 * Update cfqq's position in the service tree.
1283 static void cfq_resort_rr_list(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1286 * Resorting requires the cfqq to be on the RR list already.
1288 if (cfq_cfqq_on_rr(cfqq
)) {
1289 cfq_service_tree_add(cfqd
, cfqq
, 0);
1290 cfq_prio_tree_add(cfqd
, cfqq
);
1295 * add to busy list of queues for service, trying to be fair in ordering
1296 * the pending list according to last request service
1298 static void cfq_add_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1300 cfq_log_cfqq(cfqd
, cfqq
, "add_to_rr");
1301 BUG_ON(cfq_cfqq_on_rr(cfqq
));
1302 cfq_mark_cfqq_on_rr(cfqq
);
1303 cfqd
->busy_queues
++;
1305 cfq_resort_rr_list(cfqd
, cfqq
);
1309 * Called when the cfqq no longer has requests pending, remove it from
1312 static void cfq_del_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1314 cfq_log_cfqq(cfqd
, cfqq
, "del_from_rr");
1315 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
1316 cfq_clear_cfqq_on_rr(cfqq
);
1318 if (!RB_EMPTY_NODE(&cfqq
->rb_node
)) {
1319 cfq_rb_erase(&cfqq
->rb_node
, cfqq
->service_tree
);
1320 cfqq
->service_tree
= NULL
;
1323 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
1324 cfqq
->p_root
= NULL
;
1327 cfq_group_service_tree_del(cfqd
, cfqq
->cfqg
);
1328 BUG_ON(!cfqd
->busy_queues
);
1329 cfqd
->busy_queues
--;
1333 * rb tree support functions
1335 static void cfq_del_rq_rb(struct request
*rq
)
1337 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1338 const int sync
= rq_is_sync(rq
);
1340 BUG_ON(!cfqq
->queued
[sync
]);
1341 cfqq
->queued
[sync
]--;
1343 elv_rb_del(&cfqq
->sort_list
, rq
);
1345 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
)) {
1347 * Queue will be deleted from service tree when we actually
1348 * expire it later. Right now just remove it from prio tree
1352 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
1353 cfqq
->p_root
= NULL
;
1358 static void cfq_add_rq_rb(struct request
*rq
)
1360 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1361 struct cfq_data
*cfqd
= cfqq
->cfqd
;
1362 struct request
*__alias
, *prev
;
1364 cfqq
->queued
[rq_is_sync(rq
)]++;
1367 * looks a little odd, but the first insert might return an alias.
1368 * if that happens, put the alias on the dispatch list
1370 while ((__alias
= elv_rb_add(&cfqq
->sort_list
, rq
)) != NULL
)
1371 cfq_dispatch_insert(cfqd
->queue
, __alias
);
1373 if (!cfq_cfqq_on_rr(cfqq
))
1374 cfq_add_cfqq_rr(cfqd
, cfqq
);
1377 * check if this request is a better next-serve candidate
1379 prev
= cfqq
->next_rq
;
1380 cfqq
->next_rq
= cfq_choose_req(cfqd
, cfqq
->next_rq
, rq
, cfqd
->last_position
);
1383 * adjust priority tree position, if ->next_rq changes
1385 if (prev
!= cfqq
->next_rq
)
1386 cfq_prio_tree_add(cfqd
, cfqq
);
1388 BUG_ON(!cfqq
->next_rq
);
1391 static void cfq_reposition_rq_rb(struct cfq_queue
*cfqq
, struct request
*rq
)
1393 elv_rb_del(&cfqq
->sort_list
, rq
);
1394 cfqq
->queued
[rq_is_sync(rq
)]--;
1398 static struct request
*
1399 cfq_find_rq_fmerge(struct cfq_data
*cfqd
, struct bio
*bio
)
1401 struct task_struct
*tsk
= current
;
1402 struct cfq_io_context
*cic
;
1403 struct cfq_queue
*cfqq
;
1405 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
1409 cfqq
= cic_to_cfqq(cic
, cfq_bio_sync(bio
));
1411 sector_t sector
= bio
->bi_sector
+ bio_sectors(bio
);
1413 return elv_rb_find(&cfqq
->sort_list
, sector
);
1419 static void cfq_activate_request(struct request_queue
*q
, struct request
*rq
)
1421 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1423 cfqd
->rq_in_driver
[rq_is_sync(rq
)]++;
1424 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "activate rq, drv=%d",
1425 rq_in_driver(cfqd
));
1427 cfqd
->last_position
= blk_rq_pos(rq
) + blk_rq_sectors(rq
);
1430 static void cfq_deactivate_request(struct request_queue
*q
, struct request
*rq
)
1432 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1433 const int sync
= rq_is_sync(rq
);
1435 WARN_ON(!cfqd
->rq_in_driver
[sync
]);
1436 cfqd
->rq_in_driver
[sync
]--;
1437 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "deactivate rq, drv=%d",
1438 rq_in_driver(cfqd
));
1441 static void cfq_remove_request(struct request
*rq
)
1443 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1445 if (cfqq
->next_rq
== rq
)
1446 cfqq
->next_rq
= cfq_find_next_rq(cfqq
->cfqd
, cfqq
, rq
);
1448 list_del_init(&rq
->queuelist
);
1451 cfqq
->cfqd
->rq_queued
--;
1452 if (rq_is_meta(rq
)) {
1453 WARN_ON(!cfqq
->meta_pending
);
1454 cfqq
->meta_pending
--;
1458 static int cfq_merge(struct request_queue
*q
, struct request
**req
,
1461 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1462 struct request
*__rq
;
1464 __rq
= cfq_find_rq_fmerge(cfqd
, bio
);
1465 if (__rq
&& elv_rq_merge_ok(__rq
, bio
)) {
1467 return ELEVATOR_FRONT_MERGE
;
1470 return ELEVATOR_NO_MERGE
;
1473 static void cfq_merged_request(struct request_queue
*q
, struct request
*req
,
1476 if (type
== ELEVATOR_FRONT_MERGE
) {
1477 struct cfq_queue
*cfqq
= RQ_CFQQ(req
);
1479 cfq_reposition_rq_rb(cfqq
, req
);
1484 cfq_merged_requests(struct request_queue
*q
, struct request
*rq
,
1485 struct request
*next
)
1487 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1489 * reposition in fifo if next is older than rq
1491 if (!list_empty(&rq
->queuelist
) && !list_empty(&next
->queuelist
) &&
1492 time_before(rq_fifo_time(next
), rq_fifo_time(rq
))) {
1493 list_move(&rq
->queuelist
, &next
->queuelist
);
1494 rq_set_fifo_time(rq
, rq_fifo_time(next
));
1497 if (cfqq
->next_rq
== next
)
1499 cfq_remove_request(next
);
1502 static int cfq_allow_merge(struct request_queue
*q
, struct request
*rq
,
1505 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1506 struct cfq_io_context
*cic
;
1507 struct cfq_queue
*cfqq
;
1510 * Disallow merge of a sync bio into an async request.
1512 if (cfq_bio_sync(bio
) && !rq_is_sync(rq
))
1516 * Lookup the cfqq that this bio will be queued with. Allow
1517 * merge only if rq is queued there.
1519 cic
= cfq_cic_lookup(cfqd
, current
->io_context
);
1523 cfqq
= cic_to_cfqq(cic
, cfq_bio_sync(bio
));
1524 return cfqq
== RQ_CFQQ(rq
);
1527 static void __cfq_set_active_queue(struct cfq_data
*cfqd
,
1528 struct cfq_queue
*cfqq
)
1531 cfq_log_cfqq(cfqd
, cfqq
, "set_active");
1532 cfqq
->slice_start
= 0;
1533 cfqq
->dispatch_start
= jiffies
;
1534 cfqq
->allocated_slice
= 0;
1535 cfqq
->slice_end
= 0;
1536 cfqq
->slice_dispatch
= 0;
1537 cfqq
->nr_sectors
= 0;
1539 cfq_clear_cfqq_wait_request(cfqq
);
1540 cfq_clear_cfqq_must_dispatch(cfqq
);
1541 cfq_clear_cfqq_must_alloc_slice(cfqq
);
1542 cfq_clear_cfqq_fifo_expire(cfqq
);
1543 cfq_mark_cfqq_slice_new(cfqq
);
1545 del_timer(&cfqd
->idle_slice_timer
);
1548 cfqd
->active_queue
= cfqq
;
1552 * current cfqq expired its slice (or was too idle), select new one
1555 __cfq_slice_expired(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1558 cfq_log_cfqq(cfqd
, cfqq
, "slice expired t=%d", timed_out
);
1560 if (cfq_cfqq_wait_request(cfqq
))
1561 del_timer(&cfqd
->idle_slice_timer
);
1563 cfq_clear_cfqq_wait_request(cfqq
);
1564 cfq_clear_cfqq_wait_busy(cfqq
);
1567 * If this cfqq is shared between multiple processes, check to
1568 * make sure that those processes are still issuing I/Os within
1569 * the mean seek distance. If not, it may be time to break the
1570 * queues apart again.
1572 if (cfq_cfqq_coop(cfqq
) && CFQQ_SEEKY(cfqq
))
1573 cfq_mark_cfqq_split_coop(cfqq
);
1576 * store what was left of this slice, if the queue idled/timed out
1578 if (timed_out
&& !cfq_cfqq_slice_new(cfqq
)) {
1579 cfqq
->slice_resid
= cfqq
->slice_end
- jiffies
;
1580 cfq_log_cfqq(cfqd
, cfqq
, "resid=%ld", cfqq
->slice_resid
);
1583 cfq_group_served(cfqd
, cfqq
->cfqg
, cfqq
);
1585 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
))
1586 cfq_del_cfqq_rr(cfqd
, cfqq
);
1588 cfq_resort_rr_list(cfqd
, cfqq
);
1590 if (cfqq
== cfqd
->active_queue
)
1591 cfqd
->active_queue
= NULL
;
1593 if (&cfqq
->cfqg
->rb_node
== cfqd
->grp_service_tree
.active
)
1594 cfqd
->grp_service_tree
.active
= NULL
;
1596 if (cfqd
->active_cic
) {
1597 put_io_context(cfqd
->active_cic
->ioc
);
1598 cfqd
->active_cic
= NULL
;
1602 static inline void cfq_slice_expired(struct cfq_data
*cfqd
, bool timed_out
)
1604 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
1607 __cfq_slice_expired(cfqd
, cfqq
, timed_out
);
1611 * Get next queue for service. Unless we have a queue preemption,
1612 * we'll simply select the first cfqq in the service tree.
1614 static struct cfq_queue
*cfq_get_next_queue(struct cfq_data
*cfqd
)
1616 struct cfq_rb_root
*service_tree
=
1617 service_tree_for(cfqd
->serving_group
, cfqd
->serving_prio
,
1618 cfqd
->serving_type
);
1620 if (!cfqd
->rq_queued
)
1623 /* There is nothing to dispatch */
1626 if (RB_EMPTY_ROOT(&service_tree
->rb
))
1628 return cfq_rb_first(service_tree
);
1631 static struct cfq_queue
*cfq_get_next_queue_forced(struct cfq_data
*cfqd
)
1633 struct cfq_group
*cfqg
;
1634 struct cfq_queue
*cfqq
;
1636 struct cfq_rb_root
*st
;
1638 if (!cfqd
->rq_queued
)
1641 cfqg
= cfq_get_next_cfqg(cfqd
);
1645 for_each_cfqg_st(cfqg
, i
, j
, st
)
1646 if ((cfqq
= cfq_rb_first(st
)) != NULL
)
1652 * Get and set a new active queue for service.
1654 static struct cfq_queue
*cfq_set_active_queue(struct cfq_data
*cfqd
,
1655 struct cfq_queue
*cfqq
)
1658 cfqq
= cfq_get_next_queue(cfqd
);
1660 __cfq_set_active_queue(cfqd
, cfqq
);
1664 static inline sector_t
cfq_dist_from_last(struct cfq_data
*cfqd
,
1667 if (blk_rq_pos(rq
) >= cfqd
->last_position
)
1668 return blk_rq_pos(rq
) - cfqd
->last_position
;
1670 return cfqd
->last_position
- blk_rq_pos(rq
);
1673 static inline int cfq_rq_close(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1674 struct request
*rq
, bool for_preempt
)
1676 sector_t sdist
= cfqq
->seek_mean
;
1678 if (!sample_valid(cfqq
->seek_samples
))
1679 sdist
= CFQQ_SEEK_THR
;
1681 /* if seek_mean is big, using it as close criteria is meaningless */
1682 if (sdist
> CFQQ_SEEK_THR
&& !for_preempt
)
1683 sdist
= CFQQ_SEEK_THR
;
1685 return cfq_dist_from_last(cfqd
, rq
) <= sdist
;
1688 static struct cfq_queue
*cfqq_close(struct cfq_data
*cfqd
,
1689 struct cfq_queue
*cur_cfqq
)
1691 struct rb_root
*root
= &cfqd
->prio_trees
[cur_cfqq
->org_ioprio
];
1692 struct rb_node
*parent
, *node
;
1693 struct cfq_queue
*__cfqq
;
1694 sector_t sector
= cfqd
->last_position
;
1696 if (RB_EMPTY_ROOT(root
))
1700 * First, if we find a request starting at the end of the last
1701 * request, choose it.
1703 __cfqq
= cfq_prio_tree_lookup(cfqd
, root
, sector
, &parent
, NULL
);
1708 * If the exact sector wasn't found, the parent of the NULL leaf
1709 * will contain the closest sector.
1711 __cfqq
= rb_entry(parent
, struct cfq_queue
, p_node
);
1712 if (cfq_rq_close(cfqd
, cur_cfqq
, __cfqq
->next_rq
, false))
1715 if (blk_rq_pos(__cfqq
->next_rq
) < sector
)
1716 node
= rb_next(&__cfqq
->p_node
);
1718 node
= rb_prev(&__cfqq
->p_node
);
1722 __cfqq
= rb_entry(node
, struct cfq_queue
, p_node
);
1723 if (cfq_rq_close(cfqd
, cur_cfqq
, __cfqq
->next_rq
, false))
1731 * cur_cfqq - passed in so that we don't decide that the current queue is
1732 * closely cooperating with itself.
1734 * So, basically we're assuming that that cur_cfqq has dispatched at least
1735 * one request, and that cfqd->last_position reflects a position on the disk
1736 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1739 static struct cfq_queue
*cfq_close_cooperator(struct cfq_data
*cfqd
,
1740 struct cfq_queue
*cur_cfqq
)
1742 struct cfq_queue
*cfqq
;
1744 if (!cfq_cfqq_sync(cur_cfqq
))
1746 if (CFQQ_SEEKY(cur_cfqq
))
1750 * Don't search priority tree if it's the only queue in the group.
1752 if (cur_cfqq
->cfqg
->nr_cfqq
== 1)
1756 * We should notice if some of the queues are cooperating, eg
1757 * working closely on the same area of the disk. In that case,
1758 * we can group them together and don't waste time idling.
1760 cfqq
= cfqq_close(cfqd
, cur_cfqq
);
1764 /* If new queue belongs to different cfq_group, don't choose it */
1765 if (cur_cfqq
->cfqg
!= cfqq
->cfqg
)
1769 * It only makes sense to merge sync queues.
1771 if (!cfq_cfqq_sync(cfqq
))
1773 if (CFQQ_SEEKY(cfqq
))
1777 * Do not merge queues of different priority classes
1779 if (cfq_class_rt(cfqq
) != cfq_class_rt(cur_cfqq
))
1786 * Determine whether we should enforce idle window for this queue.
1789 static bool cfq_should_idle(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1791 enum wl_prio_t prio
= cfqq_prio(cfqq
);
1792 struct cfq_rb_root
*service_tree
= cfqq
->service_tree
;
1794 BUG_ON(!service_tree
);
1795 BUG_ON(!service_tree
->count
);
1797 /* We never do for idle class queues. */
1798 if (prio
== IDLE_WORKLOAD
)
1801 /* We do for queues that were marked with idle window flag. */
1802 if (cfq_cfqq_idle_window(cfqq
) &&
1803 !(blk_queue_nonrot(cfqd
->queue
) && cfqd
->hw_tag
))
1807 * Otherwise, we do only if they are the last ones
1808 * in their service tree.
1810 return service_tree
->count
== 1 && cfq_cfqq_sync(cfqq
);
1813 static void cfq_arm_slice_timer(struct cfq_data
*cfqd
)
1815 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
1816 struct cfq_io_context
*cic
;
1820 * SSD device without seek penalty, disable idling. But only do so
1821 * for devices that support queuing, otherwise we still have a problem
1822 * with sync vs async workloads.
1824 if (blk_queue_nonrot(cfqd
->queue
) && cfqd
->hw_tag
)
1827 WARN_ON(!RB_EMPTY_ROOT(&cfqq
->sort_list
));
1828 WARN_ON(cfq_cfqq_slice_new(cfqq
));
1831 * idle is disabled, either manually or by past process history
1833 if (!cfqd
->cfq_slice_idle
|| !cfq_should_idle(cfqd
, cfqq
))
1837 * still active requests from this queue, don't idle
1839 if (cfqq
->dispatched
)
1843 * task has exited, don't wait
1845 cic
= cfqd
->active_cic
;
1846 if (!cic
|| !atomic_read(&cic
->ioc
->nr_tasks
))
1850 * If our average think time is larger than the remaining time
1851 * slice, then don't idle. This avoids overrunning the allotted
1854 if (sample_valid(cic
->ttime_samples
) &&
1855 (cfqq
->slice_end
- jiffies
< cic
->ttime_mean
))
1858 cfq_mark_cfqq_wait_request(cfqq
);
1860 sl
= cfqd
->cfq_slice_idle
;
1862 mod_timer(&cfqd
->idle_slice_timer
, jiffies
+ sl
);
1863 cfq_log_cfqq(cfqd
, cfqq
, "arm_idle: %lu", sl
);
1867 * Move request from internal lists to the request queue dispatch list.
1869 static void cfq_dispatch_insert(struct request_queue
*q
, struct request
*rq
)
1871 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1872 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1874 cfq_log_cfqq(cfqd
, cfqq
, "dispatch_insert");
1876 cfqq
->next_rq
= cfq_find_next_rq(cfqd
, cfqq
, rq
);
1877 cfq_remove_request(rq
);
1879 elv_dispatch_sort(q
, rq
);
1881 if (cfq_cfqq_sync(cfqq
))
1882 cfqd
->sync_flight
++;
1883 cfqq
->nr_sectors
+= blk_rq_sectors(rq
);
1887 * return expired entry, or NULL to just start from scratch in rbtree
1889 static struct request
*cfq_check_fifo(struct cfq_queue
*cfqq
)
1891 struct request
*rq
= NULL
;
1893 if (cfq_cfqq_fifo_expire(cfqq
))
1896 cfq_mark_cfqq_fifo_expire(cfqq
);
1898 if (list_empty(&cfqq
->fifo
))
1901 rq
= rq_entry_fifo(cfqq
->fifo
.next
);
1902 if (time_before(jiffies
, rq_fifo_time(rq
)))
1905 cfq_log_cfqq(cfqq
->cfqd
, cfqq
, "fifo=%p", rq
);
1910 cfq_prio_to_maxrq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1912 const int base_rq
= cfqd
->cfq_slice_async_rq
;
1914 WARN_ON(cfqq
->ioprio
>= IOPRIO_BE_NR
);
1916 return 2 * (base_rq
+ base_rq
* (CFQ_PRIO_LISTS
- 1 - cfqq
->ioprio
));
1920 * Must be called with the queue_lock held.
1922 static int cfqq_process_refs(struct cfq_queue
*cfqq
)
1924 int process_refs
, io_refs
;
1926 io_refs
= cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
];
1927 process_refs
= atomic_read(&cfqq
->ref
) - io_refs
;
1928 BUG_ON(process_refs
< 0);
1929 return process_refs
;
1932 static void cfq_setup_merge(struct cfq_queue
*cfqq
, struct cfq_queue
*new_cfqq
)
1934 int process_refs
, new_process_refs
;
1935 struct cfq_queue
*__cfqq
;
1937 /* Avoid a circular list and skip interim queue merges */
1938 while ((__cfqq
= new_cfqq
->new_cfqq
)) {
1944 process_refs
= cfqq_process_refs(cfqq
);
1946 * If the process for the cfqq has gone away, there is no
1947 * sense in merging the queues.
1949 if (process_refs
== 0)
1953 * Merge in the direction of the lesser amount of work.
1955 new_process_refs
= cfqq_process_refs(new_cfqq
);
1956 if (new_process_refs
>= process_refs
) {
1957 cfqq
->new_cfqq
= new_cfqq
;
1958 atomic_add(process_refs
, &new_cfqq
->ref
);
1960 new_cfqq
->new_cfqq
= cfqq
;
1961 atomic_add(new_process_refs
, &cfqq
->ref
);
1965 static enum wl_type_t
cfq_choose_wl(struct cfq_data
*cfqd
,
1966 struct cfq_group
*cfqg
, enum wl_prio_t prio
)
1968 struct cfq_queue
*queue
;
1970 bool key_valid
= false;
1971 unsigned long lowest_key
= 0;
1972 enum wl_type_t cur_best
= SYNC_NOIDLE_WORKLOAD
;
1974 for (i
= 0; i
<= SYNC_WORKLOAD
; ++i
) {
1975 /* select the one with lowest rb_key */
1976 queue
= cfq_rb_first(service_tree_for(cfqg
, prio
, i
));
1978 (!key_valid
|| time_before(queue
->rb_key
, lowest_key
))) {
1979 lowest_key
= queue
->rb_key
;
1988 static void choose_service_tree(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
1992 struct cfq_rb_root
*st
;
1993 unsigned group_slice
;
1996 cfqd
->serving_prio
= IDLE_WORKLOAD
;
1997 cfqd
->workload_expires
= jiffies
+ 1;
2001 /* Choose next priority. RT > BE > IDLE */
2002 if (cfq_group_busy_queues_wl(RT_WORKLOAD
, cfqd
, cfqg
))
2003 cfqd
->serving_prio
= RT_WORKLOAD
;
2004 else if (cfq_group_busy_queues_wl(BE_WORKLOAD
, cfqd
, cfqg
))
2005 cfqd
->serving_prio
= BE_WORKLOAD
;
2007 cfqd
->serving_prio
= IDLE_WORKLOAD
;
2008 cfqd
->workload_expires
= jiffies
+ 1;
2013 * For RT and BE, we have to choose also the type
2014 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2017 st
= service_tree_for(cfqg
, cfqd
->serving_prio
, cfqd
->serving_type
);
2021 * check workload expiration, and that we still have other queues ready
2023 if (count
&& !time_after(jiffies
, cfqd
->workload_expires
))
2026 /* otherwise select new workload type */
2027 cfqd
->serving_type
=
2028 cfq_choose_wl(cfqd
, cfqg
, cfqd
->serving_prio
);
2029 st
= service_tree_for(cfqg
, cfqd
->serving_prio
, cfqd
->serving_type
);
2033 * the workload slice is computed as a fraction of target latency
2034 * proportional to the number of queues in that workload, over
2035 * all the queues in the same priority class
2037 group_slice
= cfq_group_slice(cfqd
, cfqg
);
2039 slice
= group_slice
* count
/
2040 max_t(unsigned, cfqg
->busy_queues_avg
[cfqd
->serving_prio
],
2041 cfq_group_busy_queues_wl(cfqd
->serving_prio
, cfqd
, cfqg
));
2043 if (cfqd
->serving_type
== ASYNC_WORKLOAD
) {
2047 * Async queues are currently system wide. Just taking
2048 * proportion of queues with-in same group will lead to higher
2049 * async ratio system wide as generally root group is going
2050 * to have higher weight. A more accurate thing would be to
2051 * calculate system wide asnc/sync ratio.
2053 tmp
= cfq_target_latency
* cfqg_busy_async_queues(cfqd
, cfqg
);
2054 tmp
= tmp
/cfqd
->busy_queues
;
2055 slice
= min_t(unsigned, slice
, tmp
);
2057 /* async workload slice is scaled down according to
2058 * the sync/async slice ratio. */
2059 slice
= slice
* cfqd
->cfq_slice
[0] / cfqd
->cfq_slice
[1];
2061 /* sync workload slice is at least 2 * cfq_slice_idle */
2062 slice
= max(slice
, 2 * cfqd
->cfq_slice_idle
);
2064 slice
= max_t(unsigned, slice
, CFQ_MIN_TT
);
2065 cfqd
->workload_expires
= jiffies
+ slice
;
2066 cfqd
->noidle_tree_requires_idle
= false;
2069 static struct cfq_group
*cfq_get_next_cfqg(struct cfq_data
*cfqd
)
2071 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
2072 struct cfq_group
*cfqg
;
2074 if (RB_EMPTY_ROOT(&st
->rb
))
2076 cfqg
= cfq_rb_first_group(st
);
2077 st
->active
= &cfqg
->rb_node
;
2078 update_min_vdisktime(st
);
2082 static void cfq_choose_cfqg(struct cfq_data
*cfqd
)
2084 struct cfq_group
*cfqg
= cfq_get_next_cfqg(cfqd
);
2086 cfqd
->serving_group
= cfqg
;
2088 /* Restore the workload type data */
2089 if (cfqg
->saved_workload_slice
) {
2090 cfqd
->workload_expires
= jiffies
+ cfqg
->saved_workload_slice
;
2091 cfqd
->serving_type
= cfqg
->saved_workload
;
2092 cfqd
->serving_prio
= cfqg
->saved_serving_prio
;
2094 cfqd
->workload_expires
= jiffies
- 1;
2096 choose_service_tree(cfqd
, cfqg
);
2100 * Select a queue for service. If we have a current active queue,
2101 * check whether to continue servicing it, or retrieve and set a new one.
2103 static struct cfq_queue
*cfq_select_queue(struct cfq_data
*cfqd
)
2105 struct cfq_queue
*cfqq
, *new_cfqq
= NULL
;
2107 cfqq
= cfqd
->active_queue
;
2111 if (!cfqd
->rq_queued
)
2115 * We were waiting for group to get backlogged. Expire the queue
2117 if (cfq_cfqq_wait_busy(cfqq
) && !RB_EMPTY_ROOT(&cfqq
->sort_list
))
2121 * The active queue has run out of time, expire it and select new.
2123 if (cfq_slice_used(cfqq
) && !cfq_cfqq_must_dispatch(cfqq
)) {
2125 * If slice had not expired at the completion of last request
2126 * we might not have turned on wait_busy flag. Don't expire
2127 * the queue yet. Allow the group to get backlogged.
2129 * The very fact that we have used the slice, that means we
2130 * have been idling all along on this queue and it should be
2131 * ok to wait for this request to complete.
2133 if (cfqq
->cfqg
->nr_cfqq
== 1 && RB_EMPTY_ROOT(&cfqq
->sort_list
)
2134 && cfqq
->dispatched
&& cfq_should_idle(cfqd
, cfqq
)) {
2142 * The active queue has requests and isn't expired, allow it to
2145 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
2149 * If another queue has a request waiting within our mean seek
2150 * distance, let it run. The expire code will check for close
2151 * cooperators and put the close queue at the front of the service
2152 * tree. If possible, merge the expiring queue with the new cfqq.
2154 new_cfqq
= cfq_close_cooperator(cfqd
, cfqq
);
2156 if (!cfqq
->new_cfqq
)
2157 cfq_setup_merge(cfqq
, new_cfqq
);
2162 * No requests pending. If the active queue still has requests in
2163 * flight or is idling for a new request, allow either of these
2164 * conditions to happen (or time out) before selecting a new queue.
2166 if (timer_pending(&cfqd
->idle_slice_timer
) ||
2167 (cfqq
->dispatched
&& cfq_should_idle(cfqd
, cfqq
))) {
2173 cfq_slice_expired(cfqd
, 0);
2176 * Current queue expired. Check if we have to switch to a new
2180 cfq_choose_cfqg(cfqd
);
2182 cfqq
= cfq_set_active_queue(cfqd
, new_cfqq
);
2187 static int __cfq_forced_dispatch_cfqq(struct cfq_queue
*cfqq
)
2191 while (cfqq
->next_rq
) {
2192 cfq_dispatch_insert(cfqq
->cfqd
->queue
, cfqq
->next_rq
);
2196 BUG_ON(!list_empty(&cfqq
->fifo
));
2198 /* By default cfqq is not expired if it is empty. Do it explicitly */
2199 __cfq_slice_expired(cfqq
->cfqd
, cfqq
, 0);
2204 * Drain our current requests. Used for barriers and when switching
2205 * io schedulers on-the-fly.
2207 static int cfq_forced_dispatch(struct cfq_data
*cfqd
)
2209 struct cfq_queue
*cfqq
;
2212 while ((cfqq
= cfq_get_next_queue_forced(cfqd
)) != NULL
)
2213 dispatched
+= __cfq_forced_dispatch_cfqq(cfqq
);
2215 cfq_slice_expired(cfqd
, 0);
2216 BUG_ON(cfqd
->busy_queues
);
2218 cfq_log(cfqd
, "forced_dispatch=%d", dispatched
);
2222 static bool cfq_may_dispatch(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2224 unsigned int max_dispatch
;
2227 * Drain async requests before we start sync IO
2229 if (cfq_should_idle(cfqd
, cfqq
) && cfqd
->rq_in_driver
[BLK_RW_ASYNC
])
2233 * If this is an async queue and we have sync IO in flight, let it wait
2235 if (cfqd
->sync_flight
&& !cfq_cfqq_sync(cfqq
))
2238 max_dispatch
= cfqd
->cfq_quantum
;
2239 if (cfq_class_idle(cfqq
))
2243 * Does this cfqq already have too much IO in flight?
2245 if (cfqq
->dispatched
>= max_dispatch
) {
2247 * idle queue must always only have a single IO in flight
2249 if (cfq_class_idle(cfqq
))
2253 * We have other queues, don't allow more IO from this one
2255 if (cfqd
->busy_queues
> 1)
2259 * Sole queue user, no limit
2265 * Async queues must wait a bit before being allowed dispatch.
2266 * We also ramp up the dispatch depth gradually for async IO,
2267 * based on the last sync IO we serviced
2269 if (!cfq_cfqq_sync(cfqq
) && cfqd
->cfq_latency
) {
2270 unsigned long last_sync
= jiffies
- cfqd
->last_delayed_sync
;
2273 depth
= last_sync
/ cfqd
->cfq_slice
[1];
2274 if (!depth
&& !cfqq
->dispatched
)
2276 if (depth
< max_dispatch
)
2277 max_dispatch
= depth
;
2281 * If we're below the current max, allow a dispatch
2283 return cfqq
->dispatched
< max_dispatch
;
2287 * Dispatch a request from cfqq, moving them to the request queue
2290 static bool cfq_dispatch_request(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2294 BUG_ON(RB_EMPTY_ROOT(&cfqq
->sort_list
));
2296 if (!cfq_may_dispatch(cfqd
, cfqq
))
2300 * follow expired path, else get first next available
2302 rq
= cfq_check_fifo(cfqq
);
2307 * insert request into driver dispatch list
2309 cfq_dispatch_insert(cfqd
->queue
, rq
);
2311 if (!cfqd
->active_cic
) {
2312 struct cfq_io_context
*cic
= RQ_CIC(rq
);
2314 atomic_long_inc(&cic
->ioc
->refcount
);
2315 cfqd
->active_cic
= cic
;
2322 * Find the cfqq that we need to service and move a request from that to the
2325 static int cfq_dispatch_requests(struct request_queue
*q
, int force
)
2327 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2328 struct cfq_queue
*cfqq
;
2330 if (!cfqd
->busy_queues
)
2333 if (unlikely(force
))
2334 return cfq_forced_dispatch(cfqd
);
2336 cfqq
= cfq_select_queue(cfqd
);
2341 * Dispatch a request from this cfqq, if it is allowed
2343 if (!cfq_dispatch_request(cfqd
, cfqq
))
2346 cfqq
->slice_dispatch
++;
2347 cfq_clear_cfqq_must_dispatch(cfqq
);
2350 * expire an async queue immediately if it has used up its slice. idle
2351 * queue always expire after 1 dispatch round.
2353 if (cfqd
->busy_queues
> 1 && ((!cfq_cfqq_sync(cfqq
) &&
2354 cfqq
->slice_dispatch
>= cfq_prio_to_maxrq(cfqd
, cfqq
)) ||
2355 cfq_class_idle(cfqq
))) {
2356 cfqq
->slice_end
= jiffies
+ 1;
2357 cfq_slice_expired(cfqd
, 0);
2360 cfq_log_cfqq(cfqd
, cfqq
, "dispatched a request");
2365 * task holds one reference to the queue, dropped when task exits. each rq
2366 * in-flight on this queue also holds a reference, dropped when rq is freed.
2368 * Each cfq queue took a reference on the parent group. Drop it now.
2369 * queue lock must be held here.
2371 static void cfq_put_queue(struct cfq_queue
*cfqq
)
2373 struct cfq_data
*cfqd
= cfqq
->cfqd
;
2374 struct cfq_group
*cfqg
, *orig_cfqg
;
2376 BUG_ON(atomic_read(&cfqq
->ref
) <= 0);
2378 if (!atomic_dec_and_test(&cfqq
->ref
))
2381 cfq_log_cfqq(cfqd
, cfqq
, "put_queue");
2382 BUG_ON(rb_first(&cfqq
->sort_list
));
2383 BUG_ON(cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
]);
2385 orig_cfqg
= cfqq
->orig_cfqg
;
2387 if (unlikely(cfqd
->active_queue
== cfqq
)) {
2388 __cfq_slice_expired(cfqd
, cfqq
, 0);
2389 cfq_schedule_dispatch(cfqd
);
2392 BUG_ON(cfq_cfqq_on_rr(cfqq
));
2393 kmem_cache_free(cfq_pool
, cfqq
);
2396 cfq_put_cfqg(orig_cfqg
);
2400 * Must always be called with the rcu_read_lock() held
2403 __call_for_each_cic(struct io_context
*ioc
,
2404 void (*func
)(struct io_context
*, struct cfq_io_context
*))
2406 struct cfq_io_context
*cic
;
2407 struct hlist_node
*n
;
2409 hlist_for_each_entry_rcu(cic
, n
, &ioc
->cic_list
, cic_list
)
2414 * Call func for each cic attached to this ioc.
2417 call_for_each_cic(struct io_context
*ioc
,
2418 void (*func
)(struct io_context
*, struct cfq_io_context
*))
2421 __call_for_each_cic(ioc
, func
);
2425 static void cfq_cic_free_rcu(struct rcu_head
*head
)
2427 struct cfq_io_context
*cic
;
2429 cic
= container_of(head
, struct cfq_io_context
, rcu_head
);
2431 kmem_cache_free(cfq_ioc_pool
, cic
);
2432 elv_ioc_count_dec(cfq_ioc_count
);
2436 * CFQ scheduler is exiting, grab exit lock and check
2437 * the pending io context count. If it hits zero,
2438 * complete ioc_gone and set it back to NULL
2440 spin_lock(&ioc_gone_lock
);
2441 if (ioc_gone
&& !elv_ioc_count_read(cfq_ioc_count
)) {
2445 spin_unlock(&ioc_gone_lock
);
2449 static void cfq_cic_free(struct cfq_io_context
*cic
)
2451 call_rcu(&cic
->rcu_head
, cfq_cic_free_rcu
);
2454 static void cic_free_func(struct io_context
*ioc
, struct cfq_io_context
*cic
)
2456 unsigned long flags
;
2458 BUG_ON(!cic
->dead_key
);
2460 spin_lock_irqsave(&ioc
->lock
, flags
);
2461 radix_tree_delete(&ioc
->radix_root
, cic
->dead_key
);
2462 hlist_del_rcu(&cic
->cic_list
);
2463 spin_unlock_irqrestore(&ioc
->lock
, flags
);
2469 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2470 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2471 * and ->trim() which is called with the task lock held
2473 static void cfq_free_io_context(struct io_context
*ioc
)
2476 * ioc->refcount is zero here, or we are called from elv_unregister(),
2477 * so no more cic's are allowed to be linked into this ioc. So it
2478 * should be ok to iterate over the known list, we will see all cic's
2479 * since no new ones are added.
2481 __call_for_each_cic(ioc
, cic_free_func
);
2484 static void cfq_exit_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2486 struct cfq_queue
*__cfqq
, *next
;
2488 if (unlikely(cfqq
== cfqd
->active_queue
)) {
2489 __cfq_slice_expired(cfqd
, cfqq
, 0);
2490 cfq_schedule_dispatch(cfqd
);
2494 * If this queue was scheduled to merge with another queue, be
2495 * sure to drop the reference taken on that queue (and others in
2496 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2498 __cfqq
= cfqq
->new_cfqq
;
2500 if (__cfqq
== cfqq
) {
2501 WARN(1, "cfqq->new_cfqq loop detected\n");
2504 next
= __cfqq
->new_cfqq
;
2505 cfq_put_queue(__cfqq
);
2509 cfq_put_queue(cfqq
);
2512 static void __cfq_exit_single_io_context(struct cfq_data
*cfqd
,
2513 struct cfq_io_context
*cic
)
2515 struct io_context
*ioc
= cic
->ioc
;
2517 list_del_init(&cic
->queue_list
);
2520 * Make sure key == NULL is seen for dead queues
2523 cic
->dead_key
= (unsigned long) cic
->key
;
2526 if (ioc
->ioc_data
== cic
)
2527 rcu_assign_pointer(ioc
->ioc_data
, NULL
);
2529 if (cic
->cfqq
[BLK_RW_ASYNC
]) {
2530 cfq_exit_cfqq(cfqd
, cic
->cfqq
[BLK_RW_ASYNC
]);
2531 cic
->cfqq
[BLK_RW_ASYNC
] = NULL
;
2534 if (cic
->cfqq
[BLK_RW_SYNC
]) {
2535 cfq_exit_cfqq(cfqd
, cic
->cfqq
[BLK_RW_SYNC
]);
2536 cic
->cfqq
[BLK_RW_SYNC
] = NULL
;
2540 static void cfq_exit_single_io_context(struct io_context
*ioc
,
2541 struct cfq_io_context
*cic
)
2543 struct cfq_data
*cfqd
= cic
->key
;
2546 struct request_queue
*q
= cfqd
->queue
;
2547 unsigned long flags
;
2549 spin_lock_irqsave(q
->queue_lock
, flags
);
2552 * Ensure we get a fresh copy of the ->key to prevent
2553 * race between exiting task and queue
2555 smp_read_barrier_depends();
2557 __cfq_exit_single_io_context(cfqd
, cic
);
2559 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2564 * The process that ioc belongs to has exited, we need to clean up
2565 * and put the internal structures we have that belongs to that process.
2567 static void cfq_exit_io_context(struct io_context
*ioc
)
2569 call_for_each_cic(ioc
, cfq_exit_single_io_context
);
2572 static struct cfq_io_context
*
2573 cfq_alloc_io_context(struct cfq_data
*cfqd
, gfp_t gfp_mask
)
2575 struct cfq_io_context
*cic
;
2577 cic
= kmem_cache_alloc_node(cfq_ioc_pool
, gfp_mask
| __GFP_ZERO
,
2580 cic
->last_end_request
= jiffies
;
2581 INIT_LIST_HEAD(&cic
->queue_list
);
2582 INIT_HLIST_NODE(&cic
->cic_list
);
2583 cic
->dtor
= cfq_free_io_context
;
2584 cic
->exit
= cfq_exit_io_context
;
2585 elv_ioc_count_inc(cfq_ioc_count
);
2591 static void cfq_init_prio_data(struct cfq_queue
*cfqq
, struct io_context
*ioc
)
2593 struct task_struct
*tsk
= current
;
2596 if (!cfq_cfqq_prio_changed(cfqq
))
2599 ioprio_class
= IOPRIO_PRIO_CLASS(ioc
->ioprio
);
2600 switch (ioprio_class
) {
2602 printk(KERN_ERR
"cfq: bad prio %x\n", ioprio_class
);
2603 case IOPRIO_CLASS_NONE
:
2605 * no prio set, inherit CPU scheduling settings
2607 cfqq
->ioprio
= task_nice_ioprio(tsk
);
2608 cfqq
->ioprio_class
= task_nice_ioclass(tsk
);
2610 case IOPRIO_CLASS_RT
:
2611 cfqq
->ioprio
= task_ioprio(ioc
);
2612 cfqq
->ioprio_class
= IOPRIO_CLASS_RT
;
2614 case IOPRIO_CLASS_BE
:
2615 cfqq
->ioprio
= task_ioprio(ioc
);
2616 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
2618 case IOPRIO_CLASS_IDLE
:
2619 cfqq
->ioprio_class
= IOPRIO_CLASS_IDLE
;
2621 cfq_clear_cfqq_idle_window(cfqq
);
2626 * keep track of original prio settings in case we have to temporarily
2627 * elevate the priority of this queue
2629 cfqq
->org_ioprio
= cfqq
->ioprio
;
2630 cfqq
->org_ioprio_class
= cfqq
->ioprio_class
;
2631 cfq_clear_cfqq_prio_changed(cfqq
);
2634 static void changed_ioprio(struct io_context
*ioc
, struct cfq_io_context
*cic
)
2636 struct cfq_data
*cfqd
= cic
->key
;
2637 struct cfq_queue
*cfqq
;
2638 unsigned long flags
;
2640 if (unlikely(!cfqd
))
2643 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
2645 cfqq
= cic
->cfqq
[BLK_RW_ASYNC
];
2647 struct cfq_queue
*new_cfqq
;
2648 new_cfqq
= cfq_get_queue(cfqd
, BLK_RW_ASYNC
, cic
->ioc
,
2651 cic
->cfqq
[BLK_RW_ASYNC
] = new_cfqq
;
2652 cfq_put_queue(cfqq
);
2656 cfqq
= cic
->cfqq
[BLK_RW_SYNC
];
2658 cfq_mark_cfqq_prio_changed(cfqq
);
2660 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
2663 static void cfq_ioc_set_ioprio(struct io_context
*ioc
)
2665 call_for_each_cic(ioc
, changed_ioprio
);
2666 ioc
->ioprio_changed
= 0;
2669 static void cfq_init_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
2670 pid_t pid
, bool is_sync
)
2672 RB_CLEAR_NODE(&cfqq
->rb_node
);
2673 RB_CLEAR_NODE(&cfqq
->p_node
);
2674 INIT_LIST_HEAD(&cfqq
->fifo
);
2676 atomic_set(&cfqq
->ref
, 0);
2679 cfq_mark_cfqq_prio_changed(cfqq
);
2682 if (!cfq_class_idle(cfqq
))
2683 cfq_mark_cfqq_idle_window(cfqq
);
2684 cfq_mark_cfqq_sync(cfqq
);
2689 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2690 static void changed_cgroup(struct io_context
*ioc
, struct cfq_io_context
*cic
)
2692 struct cfq_queue
*sync_cfqq
= cic_to_cfqq(cic
, 1);
2693 struct cfq_data
*cfqd
= cic
->key
;
2694 unsigned long flags
;
2695 struct request_queue
*q
;
2697 if (unlikely(!cfqd
))
2702 spin_lock_irqsave(q
->queue_lock
, flags
);
2706 * Drop reference to sync queue. A new sync queue will be
2707 * assigned in new group upon arrival of a fresh request.
2709 cfq_log_cfqq(cfqd
, sync_cfqq
, "changed cgroup");
2710 cic_set_cfqq(cic
, NULL
, 1);
2711 cfq_put_queue(sync_cfqq
);
2714 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2717 static void cfq_ioc_set_cgroup(struct io_context
*ioc
)
2719 call_for_each_cic(ioc
, changed_cgroup
);
2720 ioc
->cgroup_changed
= 0;
2722 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
2724 static struct cfq_queue
*
2725 cfq_find_alloc_queue(struct cfq_data
*cfqd
, bool is_sync
,
2726 struct io_context
*ioc
, gfp_t gfp_mask
)
2728 struct cfq_queue
*cfqq
, *new_cfqq
= NULL
;
2729 struct cfq_io_context
*cic
;
2730 struct cfq_group
*cfqg
;
2733 cfqg
= cfq_get_cfqg(cfqd
, 1);
2734 cic
= cfq_cic_lookup(cfqd
, ioc
);
2735 /* cic always exists here */
2736 cfqq
= cic_to_cfqq(cic
, is_sync
);
2739 * Always try a new alloc if we fell back to the OOM cfqq
2740 * originally, since it should just be a temporary situation.
2742 if (!cfqq
|| cfqq
== &cfqd
->oom_cfqq
) {
2747 } else if (gfp_mask
& __GFP_WAIT
) {
2748 spin_unlock_irq(cfqd
->queue
->queue_lock
);
2749 new_cfqq
= kmem_cache_alloc_node(cfq_pool
,
2750 gfp_mask
| __GFP_ZERO
,
2752 spin_lock_irq(cfqd
->queue
->queue_lock
);
2756 cfqq
= kmem_cache_alloc_node(cfq_pool
,
2757 gfp_mask
| __GFP_ZERO
,
2762 cfq_init_cfqq(cfqd
, cfqq
, current
->pid
, is_sync
);
2763 cfq_init_prio_data(cfqq
, ioc
);
2764 cfq_link_cfqq_cfqg(cfqq
, cfqg
);
2765 cfq_log_cfqq(cfqd
, cfqq
, "alloced");
2767 cfqq
= &cfqd
->oom_cfqq
;
2771 kmem_cache_free(cfq_pool
, new_cfqq
);
2776 static struct cfq_queue
**
2777 cfq_async_queue_prio(struct cfq_data
*cfqd
, int ioprio_class
, int ioprio
)
2779 switch (ioprio_class
) {
2780 case IOPRIO_CLASS_RT
:
2781 return &cfqd
->async_cfqq
[0][ioprio
];
2782 case IOPRIO_CLASS_BE
:
2783 return &cfqd
->async_cfqq
[1][ioprio
];
2784 case IOPRIO_CLASS_IDLE
:
2785 return &cfqd
->async_idle_cfqq
;
2791 static struct cfq_queue
*
2792 cfq_get_queue(struct cfq_data
*cfqd
, bool is_sync
, struct io_context
*ioc
,
2795 const int ioprio
= task_ioprio(ioc
);
2796 const int ioprio_class
= task_ioprio_class(ioc
);
2797 struct cfq_queue
**async_cfqq
= NULL
;
2798 struct cfq_queue
*cfqq
= NULL
;
2801 async_cfqq
= cfq_async_queue_prio(cfqd
, ioprio_class
, ioprio
);
2806 cfqq
= cfq_find_alloc_queue(cfqd
, is_sync
, ioc
, gfp_mask
);
2809 * pin the queue now that it's allocated, scheduler exit will prune it
2811 if (!is_sync
&& !(*async_cfqq
)) {
2812 atomic_inc(&cfqq
->ref
);
2816 atomic_inc(&cfqq
->ref
);
2821 * We drop cfq io contexts lazily, so we may find a dead one.
2824 cfq_drop_dead_cic(struct cfq_data
*cfqd
, struct io_context
*ioc
,
2825 struct cfq_io_context
*cic
)
2827 unsigned long flags
;
2829 WARN_ON(!list_empty(&cic
->queue_list
));
2831 spin_lock_irqsave(&ioc
->lock
, flags
);
2833 BUG_ON(ioc
->ioc_data
== cic
);
2835 radix_tree_delete(&ioc
->radix_root
, (unsigned long) cfqd
);
2836 hlist_del_rcu(&cic
->cic_list
);
2837 spin_unlock_irqrestore(&ioc
->lock
, flags
);
2842 static struct cfq_io_context
*
2843 cfq_cic_lookup(struct cfq_data
*cfqd
, struct io_context
*ioc
)
2845 struct cfq_io_context
*cic
;
2846 unsigned long flags
;
2855 * we maintain a last-hit cache, to avoid browsing over the tree
2857 cic
= rcu_dereference(ioc
->ioc_data
);
2858 if (cic
&& cic
->key
== cfqd
) {
2864 cic
= radix_tree_lookup(&ioc
->radix_root
, (unsigned long) cfqd
);
2868 /* ->key must be copied to avoid race with cfq_exit_queue() */
2871 cfq_drop_dead_cic(cfqd
, ioc
, cic
);
2876 spin_lock_irqsave(&ioc
->lock
, flags
);
2877 rcu_assign_pointer(ioc
->ioc_data
, cic
);
2878 spin_unlock_irqrestore(&ioc
->lock
, flags
);
2886 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2887 * the process specific cfq io context when entered from the block layer.
2888 * Also adds the cic to a per-cfqd list, used when this queue is removed.
2890 static int cfq_cic_link(struct cfq_data
*cfqd
, struct io_context
*ioc
,
2891 struct cfq_io_context
*cic
, gfp_t gfp_mask
)
2893 unsigned long flags
;
2896 ret
= radix_tree_preload(gfp_mask
);
2901 spin_lock_irqsave(&ioc
->lock
, flags
);
2902 ret
= radix_tree_insert(&ioc
->radix_root
,
2903 (unsigned long) cfqd
, cic
);
2905 hlist_add_head_rcu(&cic
->cic_list
, &ioc
->cic_list
);
2906 spin_unlock_irqrestore(&ioc
->lock
, flags
);
2908 radix_tree_preload_end();
2911 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
2912 list_add(&cic
->queue_list
, &cfqd
->cic_list
);
2913 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
2918 printk(KERN_ERR
"cfq: cic link failed!\n");
2924 * Setup general io context and cfq io context. There can be several cfq
2925 * io contexts per general io context, if this process is doing io to more
2926 * than one device managed by cfq.
2928 static struct cfq_io_context
*
2929 cfq_get_io_context(struct cfq_data
*cfqd
, gfp_t gfp_mask
)
2931 struct io_context
*ioc
= NULL
;
2932 struct cfq_io_context
*cic
;
2934 might_sleep_if(gfp_mask
& __GFP_WAIT
);
2936 ioc
= get_io_context(gfp_mask
, cfqd
->queue
->node
);
2940 cic
= cfq_cic_lookup(cfqd
, ioc
);
2944 cic
= cfq_alloc_io_context(cfqd
, gfp_mask
);
2948 if (cfq_cic_link(cfqd
, ioc
, cic
, gfp_mask
))
2952 smp_read_barrier_depends();
2953 if (unlikely(ioc
->ioprio_changed
))
2954 cfq_ioc_set_ioprio(ioc
);
2956 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2957 if (unlikely(ioc
->cgroup_changed
))
2958 cfq_ioc_set_cgroup(ioc
);
2964 put_io_context(ioc
);
2969 cfq_update_io_thinktime(struct cfq_data
*cfqd
, struct cfq_io_context
*cic
)
2971 unsigned long elapsed
= jiffies
- cic
->last_end_request
;
2972 unsigned long ttime
= min(elapsed
, 2UL * cfqd
->cfq_slice_idle
);
2974 cic
->ttime_samples
= (7*cic
->ttime_samples
+ 256) / 8;
2975 cic
->ttime_total
= (7*cic
->ttime_total
+ 256*ttime
) / 8;
2976 cic
->ttime_mean
= (cic
->ttime_total
+ 128) / cic
->ttime_samples
;
2980 cfq_update_io_seektime(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
2986 if (!cfqq
->last_request_pos
)
2988 else if (cfqq
->last_request_pos
< blk_rq_pos(rq
))
2989 sdist
= blk_rq_pos(rq
) - cfqq
->last_request_pos
;
2991 sdist
= cfqq
->last_request_pos
- blk_rq_pos(rq
);
2994 * Don't allow the seek distance to get too large from the
2995 * odd fragment, pagein, etc
2997 if (cfqq
->seek_samples
<= 60) /* second&third seek */
2998 sdist
= min(sdist
, (cfqq
->seek_mean
* 4) + 2*1024*1024);
3000 sdist
= min(sdist
, (cfqq
->seek_mean
* 4) + 2*1024*64);
3002 cfqq
->seek_samples
= (7*cfqq
->seek_samples
+ 256) / 8;
3003 cfqq
->seek_total
= (7*cfqq
->seek_total
+ (u64
)256*sdist
) / 8;
3004 total
= cfqq
->seek_total
+ (cfqq
->seek_samples
/2);
3005 do_div(total
, cfqq
->seek_samples
);
3006 cfqq
->seek_mean
= (sector_t
)total
;
3010 * Disable idle window if the process thinks too long or seeks so much that
3014 cfq_update_idle_window(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3015 struct cfq_io_context
*cic
)
3017 int old_idle
, enable_idle
;
3020 * Don't idle for async or idle io prio class
3022 if (!cfq_cfqq_sync(cfqq
) || cfq_class_idle(cfqq
))
3025 enable_idle
= old_idle
= cfq_cfqq_idle_window(cfqq
);
3027 if (cfqq
->queued
[0] + cfqq
->queued
[1] >= 4)
3028 cfq_mark_cfqq_deep(cfqq
);
3030 if (!atomic_read(&cic
->ioc
->nr_tasks
) || !cfqd
->cfq_slice_idle
||
3031 (!cfq_cfqq_deep(cfqq
) && sample_valid(cfqq
->seek_samples
)
3032 && CFQQ_SEEKY(cfqq
)))
3034 else if (sample_valid(cic
->ttime_samples
)) {
3035 if (cic
->ttime_mean
> cfqd
->cfq_slice_idle
)
3041 if (old_idle
!= enable_idle
) {
3042 cfq_log_cfqq(cfqd
, cfqq
, "idle=%d", enable_idle
);
3044 cfq_mark_cfqq_idle_window(cfqq
);
3046 cfq_clear_cfqq_idle_window(cfqq
);
3051 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3052 * no or if we aren't sure, a 1 will cause a preempt.
3055 cfq_should_preempt(struct cfq_data
*cfqd
, struct cfq_queue
*new_cfqq
,
3058 struct cfq_queue
*cfqq
;
3060 cfqq
= cfqd
->active_queue
;
3064 if (cfq_class_idle(new_cfqq
))
3067 if (cfq_class_idle(cfqq
))
3071 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3073 if (cfq_class_rt(cfqq
) && !cfq_class_rt(new_cfqq
))
3077 * if the new request is sync, but the currently running queue is
3078 * not, let the sync request have priority.
3080 if (rq_is_sync(rq
) && !cfq_cfqq_sync(cfqq
))
3083 if (new_cfqq
->cfqg
!= cfqq
->cfqg
)
3086 if (cfq_slice_used(cfqq
))
3089 /* Allow preemption only if we are idling on sync-noidle tree */
3090 if (cfqd
->serving_type
== SYNC_NOIDLE_WORKLOAD
&&
3091 cfqq_type(new_cfqq
) == SYNC_NOIDLE_WORKLOAD
&&
3092 new_cfqq
->service_tree
->count
== 2 &&
3093 RB_EMPTY_ROOT(&cfqq
->sort_list
))
3097 * So both queues are sync. Let the new request get disk time if
3098 * it's a metadata request and the current queue is doing regular IO.
3100 if (rq_is_meta(rq
) && !cfqq
->meta_pending
)
3104 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3106 if (cfq_class_rt(new_cfqq
) && !cfq_class_rt(cfqq
))
3109 if (!cfqd
->active_cic
|| !cfq_cfqq_wait_request(cfqq
))
3113 * if this request is as-good as one we would expect from the
3114 * current cfqq, let it preempt
3116 if (cfq_rq_close(cfqd
, cfqq
, rq
, true))
3123 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3124 * let it have half of its nominal slice.
3126 static void cfq_preempt_queue(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
3128 cfq_log_cfqq(cfqd
, cfqq
, "preempt");
3129 cfq_slice_expired(cfqd
, 1);
3132 * Put the new queue at the front of the of the current list,
3133 * so we know that it will be selected next.
3135 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
3137 cfq_service_tree_add(cfqd
, cfqq
, 1);
3139 cfqq
->slice_end
= 0;
3140 cfq_mark_cfqq_slice_new(cfqq
);
3144 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3145 * something we should do about it
3148 cfq_rq_enqueued(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3151 struct cfq_io_context
*cic
= RQ_CIC(rq
);
3155 cfqq
->meta_pending
++;
3157 cfq_update_io_thinktime(cfqd
, cic
);
3158 cfq_update_io_seektime(cfqd
, cfqq
, rq
);
3159 cfq_update_idle_window(cfqd
, cfqq
, cic
);
3161 cfqq
->last_request_pos
= blk_rq_pos(rq
) + blk_rq_sectors(rq
);
3163 if (cfqq
== cfqd
->active_queue
) {
3165 * Remember that we saw a request from this process, but
3166 * don't start queuing just yet. Otherwise we risk seeing lots
3167 * of tiny requests, because we disrupt the normal plugging
3168 * and merging. If the request is already larger than a single
3169 * page, let it rip immediately. For that case we assume that
3170 * merging is already done. Ditto for a busy system that
3171 * has other work pending, don't risk delaying until the
3172 * idle timer unplug to continue working.
3174 if (cfq_cfqq_wait_request(cfqq
)) {
3175 if (blk_rq_bytes(rq
) > PAGE_CACHE_SIZE
||
3176 cfqd
->busy_queues
> 1) {
3177 del_timer(&cfqd
->idle_slice_timer
);
3178 cfq_clear_cfqq_wait_request(cfqq
);
3179 __blk_run_queue(cfqd
->queue
);
3181 cfq_mark_cfqq_must_dispatch(cfqq
);
3183 } else if (cfq_should_preempt(cfqd
, cfqq
, rq
)) {
3185 * not the active queue - expire current slice if it is
3186 * idle and has expired it's mean thinktime or this new queue
3187 * has some old slice time left and is of higher priority or
3188 * this new queue is RT and the current one is BE
3190 cfq_preempt_queue(cfqd
, cfqq
);
3191 __blk_run_queue(cfqd
->queue
);
3195 static void cfq_insert_request(struct request_queue
*q
, struct request
*rq
)
3197 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
3198 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
3200 cfq_log_cfqq(cfqd
, cfqq
, "insert_request");
3201 cfq_init_prio_data(cfqq
, RQ_CIC(rq
)->ioc
);
3203 rq_set_fifo_time(rq
, jiffies
+ cfqd
->cfq_fifo_expire
[rq_is_sync(rq
)]);
3204 list_add_tail(&rq
->queuelist
, &cfqq
->fifo
);
3207 cfq_rq_enqueued(cfqd
, cfqq
, rq
);
3211 * Update hw_tag based on peak queue depth over 50 samples under
3214 static void cfq_update_hw_tag(struct cfq_data
*cfqd
)
3216 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
3218 if (rq_in_driver(cfqd
) > cfqd
->hw_tag_est_depth
)
3219 cfqd
->hw_tag_est_depth
= rq_in_driver(cfqd
);
3221 if (cfqd
->hw_tag
== 1)
3224 if (cfqd
->rq_queued
<= CFQ_HW_QUEUE_MIN
&&
3225 rq_in_driver(cfqd
) <= CFQ_HW_QUEUE_MIN
)
3229 * If active queue hasn't enough requests and can idle, cfq might not
3230 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3233 if (cfqq
&& cfq_cfqq_idle_window(cfqq
) &&
3234 cfqq
->dispatched
+ cfqq
->queued
[0] + cfqq
->queued
[1] <
3235 CFQ_HW_QUEUE_MIN
&& rq_in_driver(cfqd
) < CFQ_HW_QUEUE_MIN
)
3238 if (cfqd
->hw_tag_samples
++ < 50)
3241 if (cfqd
->hw_tag_est_depth
>= CFQ_HW_QUEUE_MIN
)
3247 static bool cfq_should_wait_busy(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
3249 struct cfq_io_context
*cic
= cfqd
->active_cic
;
3251 /* If there are other queues in the group, don't wait */
3252 if (cfqq
->cfqg
->nr_cfqq
> 1)
3255 if (cfq_slice_used(cfqq
))
3258 /* if slice left is less than think time, wait busy */
3259 if (cic
&& sample_valid(cic
->ttime_samples
)
3260 && (cfqq
->slice_end
- jiffies
< cic
->ttime_mean
))
3264 * If think times is less than a jiffy than ttime_mean=0 and above
3265 * will not be true. It might happen that slice has not expired yet
3266 * but will expire soon (4-5 ns) during select_queue(). To cover the
3267 * case where think time is less than a jiffy, mark the queue wait
3268 * busy if only 1 jiffy is left in the slice.
3270 if (cfqq
->slice_end
- jiffies
== 1)
3276 static void cfq_completed_request(struct request_queue
*q
, struct request
*rq
)
3278 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
3279 struct cfq_data
*cfqd
= cfqq
->cfqd
;
3280 const int sync
= rq_is_sync(rq
);
3284 cfq_log_cfqq(cfqd
, cfqq
, "complete rqnoidle %d", !!rq_noidle(rq
));
3286 cfq_update_hw_tag(cfqd
);
3288 WARN_ON(!cfqd
->rq_in_driver
[sync
]);
3289 WARN_ON(!cfqq
->dispatched
);
3290 cfqd
->rq_in_driver
[sync
]--;
3293 if (cfq_cfqq_sync(cfqq
))
3294 cfqd
->sync_flight
--;
3297 RQ_CIC(rq
)->last_end_request
= now
;
3298 if (!time_after(rq
->start_time
+ cfqd
->cfq_fifo_expire
[1], now
))
3299 cfqd
->last_delayed_sync
= now
;
3303 * If this is the active queue, check if it needs to be expired,
3304 * or if we want to idle in case it has no pending requests.
3306 if (cfqd
->active_queue
== cfqq
) {
3307 const bool cfqq_empty
= RB_EMPTY_ROOT(&cfqq
->sort_list
);
3309 if (cfq_cfqq_slice_new(cfqq
)) {
3310 cfq_set_prio_slice(cfqd
, cfqq
);
3311 cfq_clear_cfqq_slice_new(cfqq
);
3315 * Should we wait for next request to come in before we expire
3318 if (cfq_should_wait_busy(cfqd
, cfqq
)) {
3319 cfqq
->slice_end
= jiffies
+ cfqd
->cfq_slice_idle
;
3320 cfq_mark_cfqq_wait_busy(cfqq
);
3324 * Idling is not enabled on:
3326 * - idle-priority queues
3328 * - queues with still some requests queued
3329 * - when there is a close cooperator
3331 if (cfq_slice_used(cfqq
) || cfq_class_idle(cfqq
))
3332 cfq_slice_expired(cfqd
, 1);
3333 else if (sync
&& cfqq_empty
&&
3334 !cfq_close_cooperator(cfqd
, cfqq
)) {
3335 cfqd
->noidle_tree_requires_idle
|= !rq_noidle(rq
);
3337 * Idling is enabled for SYNC_WORKLOAD.
3338 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
3339 * only if we processed at least one !rq_noidle request
3341 if (cfqd
->serving_type
== SYNC_WORKLOAD
3342 || cfqd
->noidle_tree_requires_idle
3343 || cfqq
->cfqg
->nr_cfqq
== 1)
3344 cfq_arm_slice_timer(cfqd
);
3348 if (!rq_in_driver(cfqd
))
3349 cfq_schedule_dispatch(cfqd
);
3353 * we temporarily boost lower priority queues if they are holding fs exclusive
3354 * resources. they are boosted to normal prio (CLASS_BE/4)
3356 static void cfq_prio_boost(struct cfq_queue
*cfqq
)
3358 if (has_fs_excl()) {
3360 * boost idle prio on transactions that would lock out other
3361 * users of the filesystem
3363 if (cfq_class_idle(cfqq
))
3364 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
3365 if (cfqq
->ioprio
> IOPRIO_NORM
)
3366 cfqq
->ioprio
= IOPRIO_NORM
;
3369 * unboost the queue (if needed)
3371 cfqq
->ioprio_class
= cfqq
->org_ioprio_class
;
3372 cfqq
->ioprio
= cfqq
->org_ioprio
;
3376 static inline int __cfq_may_queue(struct cfq_queue
*cfqq
)
3378 if (cfq_cfqq_wait_request(cfqq
) && !cfq_cfqq_must_alloc_slice(cfqq
)) {
3379 cfq_mark_cfqq_must_alloc_slice(cfqq
);
3380 return ELV_MQUEUE_MUST
;
3383 return ELV_MQUEUE_MAY
;
3386 static int cfq_may_queue(struct request_queue
*q
, int rw
)
3388 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
3389 struct task_struct
*tsk
= current
;
3390 struct cfq_io_context
*cic
;
3391 struct cfq_queue
*cfqq
;
3394 * don't force setup of a queue from here, as a call to may_queue
3395 * does not necessarily imply that a request actually will be queued.
3396 * so just lookup a possibly existing queue, or return 'may queue'
3399 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
3401 return ELV_MQUEUE_MAY
;
3403 cfqq
= cic_to_cfqq(cic
, rw_is_sync(rw
));
3405 cfq_init_prio_data(cfqq
, cic
->ioc
);
3406 cfq_prio_boost(cfqq
);
3408 return __cfq_may_queue(cfqq
);
3411 return ELV_MQUEUE_MAY
;
3415 * queue lock held here
3417 static void cfq_put_request(struct request
*rq
)
3419 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
3422 const int rw
= rq_data_dir(rq
);
3424 BUG_ON(!cfqq
->allocated
[rw
]);
3425 cfqq
->allocated
[rw
]--;
3427 put_io_context(RQ_CIC(rq
)->ioc
);
3429 rq
->elevator_private
= NULL
;
3430 rq
->elevator_private2
= NULL
;
3432 cfq_put_queue(cfqq
);
3436 static struct cfq_queue
*
3437 cfq_merge_cfqqs(struct cfq_data
*cfqd
, struct cfq_io_context
*cic
,
3438 struct cfq_queue
*cfqq
)
3440 cfq_log_cfqq(cfqd
, cfqq
, "merging with queue %p", cfqq
->new_cfqq
);
3441 cic_set_cfqq(cic
, cfqq
->new_cfqq
, 1);
3442 cfq_mark_cfqq_coop(cfqq
->new_cfqq
);
3443 cfq_put_queue(cfqq
);
3444 return cic_to_cfqq(cic
, 1);
3448 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3449 * was the last process referring to said cfqq.
3451 static struct cfq_queue
*
3452 split_cfqq(struct cfq_io_context
*cic
, struct cfq_queue
*cfqq
)
3454 if (cfqq_process_refs(cfqq
) == 1) {
3455 cfqq
->pid
= current
->pid
;
3456 cfq_clear_cfqq_coop(cfqq
);
3457 cfq_clear_cfqq_split_coop(cfqq
);
3461 cic_set_cfqq(cic
, NULL
, 1);
3462 cfq_put_queue(cfqq
);
3466 * Allocate cfq data structures associated with this request.
3469 cfq_set_request(struct request_queue
*q
, struct request
*rq
, gfp_t gfp_mask
)
3471 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
3472 struct cfq_io_context
*cic
;
3473 const int rw
= rq_data_dir(rq
);
3474 const bool is_sync
= rq_is_sync(rq
);
3475 struct cfq_queue
*cfqq
;
3476 unsigned long flags
;
3478 might_sleep_if(gfp_mask
& __GFP_WAIT
);
3480 cic
= cfq_get_io_context(cfqd
, gfp_mask
);
3482 spin_lock_irqsave(q
->queue_lock
, flags
);
3488 cfqq
= cic_to_cfqq(cic
, is_sync
);
3489 if (!cfqq
|| cfqq
== &cfqd
->oom_cfqq
) {
3490 cfqq
= cfq_get_queue(cfqd
, is_sync
, cic
->ioc
, gfp_mask
);
3491 cic_set_cfqq(cic
, cfqq
, is_sync
);
3494 * If the queue was seeky for too long, break it apart.
3496 if (cfq_cfqq_coop(cfqq
) && cfq_cfqq_split_coop(cfqq
)) {
3497 cfq_log_cfqq(cfqd
, cfqq
, "breaking apart cfqq");
3498 cfqq
= split_cfqq(cic
, cfqq
);
3504 * Check to see if this queue is scheduled to merge with
3505 * another, closely cooperating queue. The merging of
3506 * queues happens here as it must be done in process context.
3507 * The reference on new_cfqq was taken in merge_cfqqs.
3510 cfqq
= cfq_merge_cfqqs(cfqd
, cic
, cfqq
);
3513 cfqq
->allocated
[rw
]++;
3514 atomic_inc(&cfqq
->ref
);
3516 spin_unlock_irqrestore(q
->queue_lock
, flags
);
3518 rq
->elevator_private
= cic
;
3519 rq
->elevator_private2
= cfqq
;
3524 put_io_context(cic
->ioc
);
3526 cfq_schedule_dispatch(cfqd
);
3527 spin_unlock_irqrestore(q
->queue_lock
, flags
);
3528 cfq_log(cfqd
, "set_request fail");
3532 static void cfq_kick_queue(struct work_struct
*work
)
3534 struct cfq_data
*cfqd
=
3535 container_of(work
, struct cfq_data
, unplug_work
);
3536 struct request_queue
*q
= cfqd
->queue
;
3538 spin_lock_irq(q
->queue_lock
);
3539 __blk_run_queue(cfqd
->queue
);
3540 spin_unlock_irq(q
->queue_lock
);
3544 * Timer running if the active_queue is currently idling inside its time slice
3546 static void cfq_idle_slice_timer(unsigned long data
)
3548 struct cfq_data
*cfqd
= (struct cfq_data
*) data
;
3549 struct cfq_queue
*cfqq
;
3550 unsigned long flags
;
3553 cfq_log(cfqd
, "idle timer fired");
3555 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
3557 cfqq
= cfqd
->active_queue
;
3562 * We saw a request before the queue expired, let it through
3564 if (cfq_cfqq_must_dispatch(cfqq
))
3570 if (cfq_slice_used(cfqq
))
3574 * only expire and reinvoke request handler, if there are
3575 * other queues with pending requests
3577 if (!cfqd
->busy_queues
)
3581 * not expired and it has a request pending, let it dispatch
3583 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
3587 * Queue depth flag is reset only when the idle didn't succeed
3589 cfq_clear_cfqq_deep(cfqq
);
3592 cfq_slice_expired(cfqd
, timed_out
);
3594 cfq_schedule_dispatch(cfqd
);
3596 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
3599 static void cfq_shutdown_timer_wq(struct cfq_data
*cfqd
)
3601 del_timer_sync(&cfqd
->idle_slice_timer
);
3602 cancel_work_sync(&cfqd
->unplug_work
);
3605 static void cfq_put_async_queues(struct cfq_data
*cfqd
)
3609 for (i
= 0; i
< IOPRIO_BE_NR
; i
++) {
3610 if (cfqd
->async_cfqq
[0][i
])
3611 cfq_put_queue(cfqd
->async_cfqq
[0][i
]);
3612 if (cfqd
->async_cfqq
[1][i
])
3613 cfq_put_queue(cfqd
->async_cfqq
[1][i
]);
3616 if (cfqd
->async_idle_cfqq
)
3617 cfq_put_queue(cfqd
->async_idle_cfqq
);
3620 static void cfq_cfqd_free(struct rcu_head
*head
)
3622 kfree(container_of(head
, struct cfq_data
, rcu
));
3625 static void cfq_exit_queue(struct elevator_queue
*e
)
3627 struct cfq_data
*cfqd
= e
->elevator_data
;
3628 struct request_queue
*q
= cfqd
->queue
;
3630 cfq_shutdown_timer_wq(cfqd
);
3632 spin_lock_irq(q
->queue_lock
);
3634 if (cfqd
->active_queue
)
3635 __cfq_slice_expired(cfqd
, cfqd
->active_queue
, 0);
3637 while (!list_empty(&cfqd
->cic_list
)) {
3638 struct cfq_io_context
*cic
= list_entry(cfqd
->cic_list
.next
,
3639 struct cfq_io_context
,
3642 __cfq_exit_single_io_context(cfqd
, cic
);
3645 cfq_put_async_queues(cfqd
);
3646 cfq_release_cfq_groups(cfqd
);
3647 blkiocg_del_blkio_group(&cfqd
->root_group
.blkg
);
3649 spin_unlock_irq(q
->queue_lock
);
3651 cfq_shutdown_timer_wq(cfqd
);
3653 /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
3654 call_rcu(&cfqd
->rcu
, cfq_cfqd_free
);
3657 static void *cfq_init_queue(struct request_queue
*q
)
3659 struct cfq_data
*cfqd
;
3661 struct cfq_group
*cfqg
;
3662 struct cfq_rb_root
*st
;
3664 cfqd
= kmalloc_node(sizeof(*cfqd
), GFP_KERNEL
| __GFP_ZERO
, q
->node
);
3668 /* Init root service tree */
3669 cfqd
->grp_service_tree
= CFQ_RB_ROOT
;
3671 /* Init root group */
3672 cfqg
= &cfqd
->root_group
;
3673 for_each_cfqg_st(cfqg
, i
, j
, st
)
3675 RB_CLEAR_NODE(&cfqg
->rb_node
);
3677 /* Give preference to root group over other groups */
3678 cfqg
->weight
= 2*BLKIO_WEIGHT_DEFAULT
;
3680 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3682 * Take a reference to root group which we never drop. This is just
3683 * to make sure that cfq_put_cfqg() does not try to kfree root group
3685 atomic_set(&cfqg
->ref
, 1);
3686 blkiocg_add_blkio_group(&blkio_root_cgroup
, &cfqg
->blkg
, (void *)cfqd
,
3690 * Not strictly needed (since RB_ROOT just clears the node and we
3691 * zeroed cfqd on alloc), but better be safe in case someone decides
3692 * to add magic to the rb code
3694 for (i
= 0; i
< CFQ_PRIO_LISTS
; i
++)
3695 cfqd
->prio_trees
[i
] = RB_ROOT
;
3698 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3699 * Grab a permanent reference to it, so that the normal code flow
3700 * will not attempt to free it.
3702 cfq_init_cfqq(cfqd
, &cfqd
->oom_cfqq
, 1, 0);
3703 atomic_inc(&cfqd
->oom_cfqq
.ref
);
3704 cfq_link_cfqq_cfqg(&cfqd
->oom_cfqq
, &cfqd
->root_group
);
3706 INIT_LIST_HEAD(&cfqd
->cic_list
);
3710 init_timer(&cfqd
->idle_slice_timer
);
3711 cfqd
->idle_slice_timer
.function
= cfq_idle_slice_timer
;
3712 cfqd
->idle_slice_timer
.data
= (unsigned long) cfqd
;
3714 INIT_WORK(&cfqd
->unplug_work
, cfq_kick_queue
);
3716 cfqd
->cfq_quantum
= cfq_quantum
;
3717 cfqd
->cfq_fifo_expire
[0] = cfq_fifo_expire
[0];
3718 cfqd
->cfq_fifo_expire
[1] = cfq_fifo_expire
[1];
3719 cfqd
->cfq_back_max
= cfq_back_max
;
3720 cfqd
->cfq_back_penalty
= cfq_back_penalty
;
3721 cfqd
->cfq_slice
[0] = cfq_slice_async
;
3722 cfqd
->cfq_slice
[1] = cfq_slice_sync
;
3723 cfqd
->cfq_slice_async_rq
= cfq_slice_async_rq
;
3724 cfqd
->cfq_slice_idle
= cfq_slice_idle
;
3725 cfqd
->cfq_latency
= 1;
3726 cfqd
->cfq_group_isolation
= 0;
3729 * we optimistically start assuming sync ops weren't delayed in last
3730 * second, in order to have larger depth for async operations.
3732 cfqd
->last_delayed_sync
= jiffies
- HZ
;
3733 INIT_RCU_HEAD(&cfqd
->rcu
);
3737 static void cfq_slab_kill(void)
3740 * Caller already ensured that pending RCU callbacks are completed,
3741 * so we should have no busy allocations at this point.
3744 kmem_cache_destroy(cfq_pool
);
3746 kmem_cache_destroy(cfq_ioc_pool
);
3749 static int __init
cfq_slab_setup(void)
3751 cfq_pool
= KMEM_CACHE(cfq_queue
, 0);
3755 cfq_ioc_pool
= KMEM_CACHE(cfq_io_context
, 0);
3766 * sysfs parts below -->
3769 cfq_var_show(unsigned int var
, char *page
)
3771 return sprintf(page
, "%d\n", var
);
3775 cfq_var_store(unsigned int *var
, const char *page
, size_t count
)
3777 char *p
= (char *) page
;
3779 *var
= simple_strtoul(p
, &p
, 10);
3783 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
3784 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
3786 struct cfq_data *cfqd = e->elevator_data; \
3787 unsigned int __data = __VAR; \
3789 __data = jiffies_to_msecs(__data); \
3790 return cfq_var_show(__data, (page)); \
3792 SHOW_FUNCTION(cfq_quantum_show
, cfqd
->cfq_quantum
, 0);
3793 SHOW_FUNCTION(cfq_fifo_expire_sync_show
, cfqd
->cfq_fifo_expire
[1], 1);
3794 SHOW_FUNCTION(cfq_fifo_expire_async_show
, cfqd
->cfq_fifo_expire
[0], 1);
3795 SHOW_FUNCTION(cfq_back_seek_max_show
, cfqd
->cfq_back_max
, 0);
3796 SHOW_FUNCTION(cfq_back_seek_penalty_show
, cfqd
->cfq_back_penalty
, 0);
3797 SHOW_FUNCTION(cfq_slice_idle_show
, cfqd
->cfq_slice_idle
, 1);
3798 SHOW_FUNCTION(cfq_slice_sync_show
, cfqd
->cfq_slice
[1], 1);
3799 SHOW_FUNCTION(cfq_slice_async_show
, cfqd
->cfq_slice
[0], 1);
3800 SHOW_FUNCTION(cfq_slice_async_rq_show
, cfqd
->cfq_slice_async_rq
, 0);
3801 SHOW_FUNCTION(cfq_low_latency_show
, cfqd
->cfq_latency
, 0);
3802 SHOW_FUNCTION(cfq_group_isolation_show
, cfqd
->cfq_group_isolation
, 0);
3803 #undef SHOW_FUNCTION
3805 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
3806 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
3808 struct cfq_data *cfqd = e->elevator_data; \
3809 unsigned int __data; \
3810 int ret = cfq_var_store(&__data, (page), count); \
3811 if (__data < (MIN)) \
3813 else if (__data > (MAX)) \
3816 *(__PTR) = msecs_to_jiffies(__data); \
3818 *(__PTR) = __data; \
3821 STORE_FUNCTION(cfq_quantum_store
, &cfqd
->cfq_quantum
, 1, UINT_MAX
, 0);
3822 STORE_FUNCTION(cfq_fifo_expire_sync_store
, &cfqd
->cfq_fifo_expire
[1], 1,
3824 STORE_FUNCTION(cfq_fifo_expire_async_store
, &cfqd
->cfq_fifo_expire
[0], 1,
3826 STORE_FUNCTION(cfq_back_seek_max_store
, &cfqd
->cfq_back_max
, 0, UINT_MAX
, 0);
3827 STORE_FUNCTION(cfq_back_seek_penalty_store
, &cfqd
->cfq_back_penalty
, 1,
3829 STORE_FUNCTION(cfq_slice_idle_store
, &cfqd
->cfq_slice_idle
, 0, UINT_MAX
, 1);
3830 STORE_FUNCTION(cfq_slice_sync_store
, &cfqd
->cfq_slice
[1], 1, UINT_MAX
, 1);
3831 STORE_FUNCTION(cfq_slice_async_store
, &cfqd
->cfq_slice
[0], 1, UINT_MAX
, 1);
3832 STORE_FUNCTION(cfq_slice_async_rq_store
, &cfqd
->cfq_slice_async_rq
, 1,
3834 STORE_FUNCTION(cfq_low_latency_store
, &cfqd
->cfq_latency
, 0, 1, 0);
3835 STORE_FUNCTION(cfq_group_isolation_store
, &cfqd
->cfq_group_isolation
, 0, 1, 0);
3836 #undef STORE_FUNCTION
3838 #define CFQ_ATTR(name) \
3839 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3841 static struct elv_fs_entry cfq_attrs
[] = {
3843 CFQ_ATTR(fifo_expire_sync
),
3844 CFQ_ATTR(fifo_expire_async
),
3845 CFQ_ATTR(back_seek_max
),
3846 CFQ_ATTR(back_seek_penalty
),
3847 CFQ_ATTR(slice_sync
),
3848 CFQ_ATTR(slice_async
),
3849 CFQ_ATTR(slice_async_rq
),
3850 CFQ_ATTR(slice_idle
),
3851 CFQ_ATTR(low_latency
),
3852 CFQ_ATTR(group_isolation
),
3856 static struct elevator_type iosched_cfq
= {
3858 .elevator_merge_fn
= cfq_merge
,
3859 .elevator_merged_fn
= cfq_merged_request
,
3860 .elevator_merge_req_fn
= cfq_merged_requests
,
3861 .elevator_allow_merge_fn
= cfq_allow_merge
,
3862 .elevator_dispatch_fn
= cfq_dispatch_requests
,
3863 .elevator_add_req_fn
= cfq_insert_request
,
3864 .elevator_activate_req_fn
= cfq_activate_request
,
3865 .elevator_deactivate_req_fn
= cfq_deactivate_request
,
3866 .elevator_queue_empty_fn
= cfq_queue_empty
,
3867 .elevator_completed_req_fn
= cfq_completed_request
,
3868 .elevator_former_req_fn
= elv_rb_former_request
,
3869 .elevator_latter_req_fn
= elv_rb_latter_request
,
3870 .elevator_set_req_fn
= cfq_set_request
,
3871 .elevator_put_req_fn
= cfq_put_request
,
3872 .elevator_may_queue_fn
= cfq_may_queue
,
3873 .elevator_init_fn
= cfq_init_queue
,
3874 .elevator_exit_fn
= cfq_exit_queue
,
3875 .trim
= cfq_free_io_context
,
3877 .elevator_attrs
= cfq_attrs
,
3878 .elevator_name
= "cfq",
3879 .elevator_owner
= THIS_MODULE
,
3882 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3883 static struct blkio_policy_type blkio_policy_cfq
= {
3885 .blkio_unlink_group_fn
= cfq_unlink_blkio_group
,
3886 .blkio_update_group_weight_fn
= cfq_update_blkio_group_weight
,
3890 static struct blkio_policy_type blkio_policy_cfq
;
3893 static int __init
cfq_init(void)
3896 * could be 0 on HZ < 1000 setups
3898 if (!cfq_slice_async
)
3899 cfq_slice_async
= 1;
3900 if (!cfq_slice_idle
)
3903 if (cfq_slab_setup())
3906 elv_register(&iosched_cfq
);
3907 blkio_policy_register(&blkio_policy_cfq
);
3912 static void __exit
cfq_exit(void)
3914 DECLARE_COMPLETION_ONSTACK(all_gone
);
3915 blkio_policy_unregister(&blkio_policy_cfq
);
3916 elv_unregister(&iosched_cfq
);
3917 ioc_gone
= &all_gone
;
3918 /* ioc_gone's update must be visible before reading ioc_count */
3922 * this also protects us from entering cfq_slab_kill() with
3923 * pending RCU callbacks
3925 if (elv_ioc_count_read(cfq_ioc_count
))
3926 wait_for_completion(&all_gone
);
3930 module_init(cfq_init
);
3931 module_exit(cfq_exit
);
3933 MODULE_AUTHOR("Jens Axboe");
3934 MODULE_LICENSE("GPL");
3935 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");