hwmon: (pmbus) Drop check for PMBus revision register in probe function
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / atm / ambassador.c
bloba5fcb1eb862f256f05f87dceb09f7cfc3d1779d8
1 /*
2 Madge Ambassador ATM Adapter driver.
3 Copyright (C) 1995-1999 Madge Networks Ltd.
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 The GNU GPL is contained in /usr/doc/copyright/GPL on a Debian
20 system and in the file COPYING in the Linux kernel source.
23 /* * dedicated to the memory of Graham Gordon 1971-1998 * */
25 #include <linux/module.h>
26 #include <linux/types.h>
27 #include <linux/pci.h>
28 #include <linux/kernel.h>
29 #include <linux/init.h>
30 #include <linux/ioport.h>
31 #include <linux/atmdev.h>
32 #include <linux/delay.h>
33 #include <linux/interrupt.h>
34 #include <linux/poison.h>
35 #include <linux/bitrev.h>
36 #include <linux/mutex.h>
37 #include <linux/firmware.h>
38 #include <linux/ihex.h>
39 #include <linux/slab.h>
41 #include <asm/atomic.h>
42 #include <asm/io.h>
43 #include <asm/byteorder.h>
45 #include "ambassador.h"
47 #define maintainer_string "Giuliano Procida at Madge Networks <gprocida@madge.com>"
48 #define description_string "Madge ATM Ambassador driver"
49 #define version_string "1.2.4"
51 static inline void __init show_version (void) {
52 printk ("%s version %s\n", description_string, version_string);
57 Theory of Operation
59 I Hardware, detection, initialisation and shutdown.
61 1. Supported Hardware
63 This driver is for the PCI ATMizer-based Ambassador card (except
64 very early versions). It is not suitable for the similar EISA "TR7"
65 card. Commercially, both cards are known as Collage Server ATM
66 adapters.
68 The loader supports image transfer to the card, image start and few
69 other miscellaneous commands.
71 Only AAL5 is supported with vpi = 0 and vci in the range 0 to 1023.
73 The cards are big-endian.
75 2. Detection
77 Standard PCI stuff, the early cards are detected and rejected.
79 3. Initialisation
81 The cards are reset and the self-test results are checked. The
82 microcode image is then transferred and started. This waits for a
83 pointer to a descriptor containing details of the host-based queues
84 and buffers and various parameters etc. Once they are processed
85 normal operations may begin. The BIA is read using a microcode
86 command.
88 4. Shutdown
90 This may be accomplished either by a card reset or via the microcode
91 shutdown command. Further investigation required.
93 5. Persistent state
95 The card reset does not affect PCI configuration (good) or the
96 contents of several other "shared run-time registers" (bad) which
97 include doorbell and interrupt control as well as EEPROM and PCI
98 control. The driver must be careful when modifying these registers
99 not to touch bits it does not use and to undo any changes at exit.
101 II Driver software
103 0. Generalities
105 The adapter is quite intelligent (fast) and has a simple interface
106 (few features). VPI is always zero, 1024 VCIs are supported. There
107 is limited cell rate support. UBR channels can be capped and ABR
108 (explicit rate, but not EFCI) is supported. There is no CBR or VBR
109 support.
111 1. Driver <-> Adapter Communication
113 Apart from the basic loader commands, the driver communicates
114 through three entities: the command queue (CQ), the transmit queue
115 pair (TXQ) and the receive queue pairs (RXQ). These three entities
116 are set up by the host and passed to the microcode just after it has
117 been started.
119 All queues are host-based circular queues. They are contiguous and
120 (due to hardware limitations) have some restrictions as to their
121 locations in (bus) memory. They are of the "full means the same as
122 empty so don't do that" variety since the adapter uses pointers
123 internally.
125 The queue pairs work as follows: one queue is for supply to the
126 adapter, items in it are pending and are owned by the adapter; the
127 other is the queue for return from the adapter, items in it have
128 been dealt with by the adapter. The host adds items to the supply
129 (TX descriptors and free RX buffer descriptors) and removes items
130 from the return (TX and RX completions). The adapter deals with out
131 of order completions.
133 Interrupts (card to host) and the doorbell (host to card) are used
134 for signalling.
136 1. CQ
138 This is to communicate "open VC", "close VC", "get stats" etc. to
139 the adapter. At most one command is retired every millisecond by the
140 card. There is no out of order completion or notification. The
141 driver needs to check the return code of the command, waiting as
142 appropriate.
144 2. TXQ
146 TX supply items are of variable length (scatter gather support) and
147 so the queue items are (more or less) pointers to the real thing.
148 Each TX supply item contains a unique, host-supplied handle (the skb
149 bus address seems most sensible as this works for Alphas as well,
150 there is no need to do any endian conversions on the handles).
152 TX return items consist of just the handles above.
154 3. RXQ (up to 4 of these with different lengths and buffer sizes)
156 RX supply items consist of a unique, host-supplied handle (the skb
157 bus address again) and a pointer to the buffer data area.
159 RX return items consist of the handle above, the VC, length and a
160 status word. This just screams "oh so easy" doesn't it?
162 Note on RX pool sizes:
164 Each pool should have enough buffers to handle a back-to-back stream
165 of minimum sized frames on a single VC. For example:
167 frame spacing = 3us (about right)
169 delay = IRQ lat + RX handling + RX buffer replenish = 20 (us) (a guess)
171 min number of buffers for one VC = 1 + delay/spacing (buffers)
173 delay/spacing = latency = (20+2)/3 = 7 (buffers) (rounding up)
175 The 20us delay assumes that there is no need to sleep; if we need to
176 sleep to get buffers we are going to drop frames anyway.
178 In fact, each pool should have enough buffers to support the
179 simultaneous reassembly of a separate frame on each VC and cope with
180 the case in which frames complete in round robin cell fashion on
181 each VC.
183 Only one frame can complete at each cell arrival, so if "n" VCs are
184 open, the worst case is to have them all complete frames together
185 followed by all starting new frames together.
187 desired number of buffers = n + delay/spacing
189 These are the extreme requirements, however, they are "n+k" for some
190 "k" so we have only the constant to choose. This is the argument
191 rx_lats which current defaults to 7.
193 Actually, "n ? n+k : 0" is better and this is what is implemented,
194 subject to the limit given by the pool size.
196 4. Driver locking
198 Simple spinlocks are used around the TX and RX queue mechanisms.
199 Anyone with a faster, working method is welcome to implement it.
201 The adapter command queue is protected with a spinlock. We always
202 wait for commands to complete.
204 A more complex form of locking is used around parts of the VC open
205 and close functions. There are three reasons for a lock: 1. we need
206 to do atomic rate reservation and release (not used yet), 2. Opening
207 sometimes involves two adapter commands which must not be separated
208 by another command on the same VC, 3. the changes to RX pool size
209 must be atomic. The lock needs to work over context switches, so we
210 use a semaphore.
212 III Hardware Features and Microcode Bugs
214 1. Byte Ordering
216 *%^"$&%^$*&^"$(%^$#&^%$(&#%$*(&^#%!"!"!*!
218 2. Memory access
220 All structures that are not accessed using DMA must be 4-byte
221 aligned (not a problem) and must not cross 4MB boundaries.
223 There is a DMA memory hole at E0000000-E00000FF (groan).
225 TX fragments (DMA read) must not cross 4MB boundaries (would be 16MB
226 but for a hardware bug).
228 RX buffers (DMA write) must not cross 16MB boundaries and must
229 include spare trailing bytes up to the next 4-byte boundary; they
230 will be written with rubbish.
232 The PLX likes to prefetch; if reading up to 4 u32 past the end of
233 each TX fragment is not a problem, then TX can be made to go a
234 little faster by passing a flag at init that disables a prefetch
235 workaround. We do not pass this flag. (new microcode only)
237 Now we:
238 . Note that alloc_skb rounds up size to a 16byte boundary.
239 . Ensure all areas do not traverse 4MB boundaries.
240 . Ensure all areas do not start at a E00000xx bus address.
241 (I cannot be certain, but this may always hold with Linux)
242 . Make all failures cause a loud message.
243 . Discard non-conforming SKBs (causes TX failure or RX fill delay).
244 . Discard non-conforming TX fragment descriptors (the TX fails).
245 In the future we could:
246 . Allow RX areas that traverse 4MB (but not 16MB) boundaries.
247 . Segment TX areas into some/more fragments, when necessary.
248 . Relax checks for non-DMA items (ignore hole).
249 . Give scatter-gather (iovec) requirements using ???. (?)
251 3. VC close is broken (only for new microcode)
253 The VC close adapter microcode command fails to do anything if any
254 frames have been received on the VC but none have been transmitted.
255 Frames continue to be reassembled and passed (with IRQ) to the
256 driver.
258 IV To Do List
260 . Fix bugs!
262 . Timer code may be broken.
264 . Deal with buggy VC close (somehow) in microcode 12.
266 . Handle interrupted and/or non-blocking writes - is this a job for
267 the protocol layer?
269 . Add code to break up TX fragments when they span 4MB boundaries.
271 . Add SUNI phy layer (need to know where SUNI lives on card).
273 . Implement a tx_alloc fn to (a) satisfy TX alignment etc. and (b)
274 leave extra headroom space for Ambassador TX descriptors.
276 . Understand these elements of struct atm_vcc: recvq (proto?),
277 sleep, callback, listenq, backlog_quota, reply and user_back.
279 . Adjust TX/RX skb allocation to favour IP with LANE/CLIP (configurable).
281 . Impose a TX-pending limit (2?) on each VC, help avoid TX q overflow.
283 . Decide whether RX buffer recycling is or can be made completely safe;
284 turn it back on. It looks like Werner is going to axe this.
286 . Implement QoS changes on open VCs (involves extracting parts of VC open
287 and close into separate functions and using them to make changes).
289 . Hack on command queue so that someone can issue multiple commands and wait
290 on the last one (OR only "no-op" or "wait" commands are waited for).
292 . Eliminate need for while-schedule around do_command.
296 static void do_housekeeping (unsigned long arg);
297 /********** globals **********/
299 static unsigned short debug = 0;
300 static unsigned int cmds = 8;
301 static unsigned int txs = 32;
302 static unsigned int rxs[NUM_RX_POOLS] = { 64, 64, 64, 64 };
303 static unsigned int rxs_bs[NUM_RX_POOLS] = { 4080, 12240, 36720, 65535 };
304 static unsigned int rx_lats = 7;
305 static unsigned char pci_lat = 0;
307 static const unsigned long onegigmask = -1 << 30;
309 /********** access to adapter **********/
311 static inline void wr_plain (const amb_dev * dev, size_t addr, u32 data) {
312 PRINTD (DBG_FLOW|DBG_REGS, "wr: %08zx <- %08x", addr, data);
313 #ifdef AMB_MMIO
314 dev->membase[addr / sizeof(u32)] = data;
315 #else
316 outl (data, dev->iobase + addr);
317 #endif
320 static inline u32 rd_plain (const amb_dev * dev, size_t addr) {
321 #ifdef AMB_MMIO
322 u32 data = dev->membase[addr / sizeof(u32)];
323 #else
324 u32 data = inl (dev->iobase + addr);
325 #endif
326 PRINTD (DBG_FLOW|DBG_REGS, "rd: %08zx -> %08x", addr, data);
327 return data;
330 static inline void wr_mem (const amb_dev * dev, size_t addr, u32 data) {
331 __be32 be = cpu_to_be32 (data);
332 PRINTD (DBG_FLOW|DBG_REGS, "wr: %08zx <- %08x b[%08x]", addr, data, be);
333 #ifdef AMB_MMIO
334 dev->membase[addr / sizeof(u32)] = be;
335 #else
336 outl (be, dev->iobase + addr);
337 #endif
340 static inline u32 rd_mem (const amb_dev * dev, size_t addr) {
341 #ifdef AMB_MMIO
342 __be32 be = dev->membase[addr / sizeof(u32)];
343 #else
344 __be32 be = inl (dev->iobase + addr);
345 #endif
346 u32 data = be32_to_cpu (be);
347 PRINTD (DBG_FLOW|DBG_REGS, "rd: %08zx -> %08x b[%08x]", addr, data, be);
348 return data;
351 /********** dump routines **********/
353 static inline void dump_registers (const amb_dev * dev) {
354 #ifdef DEBUG_AMBASSADOR
355 if (debug & DBG_REGS) {
356 size_t i;
357 PRINTD (DBG_REGS, "reading PLX control: ");
358 for (i = 0x00; i < 0x30; i += sizeof(u32))
359 rd_mem (dev, i);
360 PRINTD (DBG_REGS, "reading mailboxes: ");
361 for (i = 0x40; i < 0x60; i += sizeof(u32))
362 rd_mem (dev, i);
363 PRINTD (DBG_REGS, "reading doorb irqev irqen reset:");
364 for (i = 0x60; i < 0x70; i += sizeof(u32))
365 rd_mem (dev, i);
367 #else
368 (void) dev;
369 #endif
370 return;
373 static inline void dump_loader_block (volatile loader_block * lb) {
374 #ifdef DEBUG_AMBASSADOR
375 unsigned int i;
376 PRINTDB (DBG_LOAD, "lb @ %p; res: %d, cmd: %d, pay:",
377 lb, be32_to_cpu (lb->result), be32_to_cpu (lb->command));
378 for (i = 0; i < MAX_COMMAND_DATA; ++i)
379 PRINTDM (DBG_LOAD, " %08x", be32_to_cpu (lb->payload.data[i]));
380 PRINTDE (DBG_LOAD, ", vld: %08x", be32_to_cpu (lb->valid));
381 #else
382 (void) lb;
383 #endif
384 return;
387 static inline void dump_command (command * cmd) {
388 #ifdef DEBUG_AMBASSADOR
389 unsigned int i;
390 PRINTDB (DBG_CMD, "cmd @ %p, req: %08x, pars:",
391 cmd, /*be32_to_cpu*/ (cmd->request));
392 for (i = 0; i < 3; ++i)
393 PRINTDM (DBG_CMD, " %08x", /*be32_to_cpu*/ (cmd->args.par[i]));
394 PRINTDE (DBG_CMD, "");
395 #else
396 (void) cmd;
397 #endif
398 return;
401 static inline void dump_skb (char * prefix, unsigned int vc, struct sk_buff * skb) {
402 #ifdef DEBUG_AMBASSADOR
403 unsigned int i;
404 unsigned char * data = skb->data;
405 PRINTDB (DBG_DATA, "%s(%u) ", prefix, vc);
406 for (i=0; i<skb->len && i < 256;i++)
407 PRINTDM (DBG_DATA, "%02x ", data[i]);
408 PRINTDE (DBG_DATA,"");
409 #else
410 (void) prefix;
411 (void) vc;
412 (void) skb;
413 #endif
414 return;
417 /********** check memory areas for use by Ambassador **********/
419 /* see limitations under Hardware Features */
421 static int check_area (void * start, size_t length) {
422 // assumes length > 0
423 const u32 fourmegmask = -1 << 22;
424 const u32 twofivesixmask = -1 << 8;
425 const u32 starthole = 0xE0000000;
426 u32 startaddress = virt_to_bus (start);
427 u32 lastaddress = startaddress+length-1;
428 if ((startaddress ^ lastaddress) & fourmegmask ||
429 (startaddress & twofivesixmask) == starthole) {
430 PRINTK (KERN_ERR, "check_area failure: [%x,%x] - mail maintainer!",
431 startaddress, lastaddress);
432 return -1;
433 } else {
434 return 0;
438 /********** free an skb (as per ATM device driver documentation) **********/
440 static void amb_kfree_skb (struct sk_buff * skb) {
441 if (ATM_SKB(skb)->vcc->pop) {
442 ATM_SKB(skb)->vcc->pop (ATM_SKB(skb)->vcc, skb);
443 } else {
444 dev_kfree_skb_any (skb);
448 /********** TX completion **********/
450 static void tx_complete (amb_dev * dev, tx_out * tx) {
451 tx_simple * tx_descr = bus_to_virt (tx->handle);
452 struct sk_buff * skb = tx_descr->skb;
454 PRINTD (DBG_FLOW|DBG_TX, "tx_complete %p %p", dev, tx);
456 // VC layer stats
457 atomic_inc(&ATM_SKB(skb)->vcc->stats->tx);
459 // free the descriptor
460 kfree (tx_descr);
462 // free the skb
463 amb_kfree_skb (skb);
465 dev->stats.tx_ok++;
466 return;
469 /********** RX completion **********/
471 static void rx_complete (amb_dev * dev, rx_out * rx) {
472 struct sk_buff * skb = bus_to_virt (rx->handle);
473 u16 vc = be16_to_cpu (rx->vc);
474 // unused: u16 lec_id = be16_to_cpu (rx->lec_id);
475 u16 status = be16_to_cpu (rx->status);
476 u16 rx_len = be16_to_cpu (rx->length);
478 PRINTD (DBG_FLOW|DBG_RX, "rx_complete %p %p (len=%hu)", dev, rx, rx_len);
480 // XXX move this in and add to VC stats ???
481 if (!status) {
482 struct atm_vcc * atm_vcc = dev->rxer[vc];
483 dev->stats.rx.ok++;
485 if (atm_vcc) {
487 if (rx_len <= atm_vcc->qos.rxtp.max_sdu) {
489 if (atm_charge (atm_vcc, skb->truesize)) {
491 // prepare socket buffer
492 ATM_SKB(skb)->vcc = atm_vcc;
493 skb_put (skb, rx_len);
495 dump_skb ("<<<", vc, skb);
497 // VC layer stats
498 atomic_inc(&atm_vcc->stats->rx);
499 __net_timestamp(skb);
500 // end of our responsibility
501 atm_vcc->push (atm_vcc, skb);
502 return;
504 } else {
505 // someone fix this (message), please!
506 PRINTD (DBG_INFO|DBG_RX, "dropped thanks to atm_charge (vc %hu, truesize %u)", vc, skb->truesize);
507 // drop stats incremented in atm_charge
510 } else {
511 PRINTK (KERN_INFO, "dropped over-size frame");
512 // should we count this?
513 atomic_inc(&atm_vcc->stats->rx_drop);
516 } else {
517 PRINTD (DBG_WARN|DBG_RX, "got frame but RX closed for channel %hu", vc);
518 // this is an adapter bug, only in new version of microcode
521 } else {
522 dev->stats.rx.error++;
523 if (status & CRC_ERR)
524 dev->stats.rx.badcrc++;
525 if (status & LEN_ERR)
526 dev->stats.rx.toolong++;
527 if (status & ABORT_ERR)
528 dev->stats.rx.aborted++;
529 if (status & UNUSED_ERR)
530 dev->stats.rx.unused++;
533 dev_kfree_skb_any (skb);
534 return;
539 Note on queue handling.
541 Here "give" and "take" refer to queue entries and a queue (pair)
542 rather than frames to or from the host or adapter. Empty frame
543 buffers are given to the RX queue pair and returned unused or
544 containing RX frames. TX frames (well, pointers to TX fragment
545 lists) are given to the TX queue pair, completions are returned.
549 /********** command queue **********/
551 // I really don't like this, but it's the best I can do at the moment
553 // also, the callers are responsible for byte order as the microcode
554 // sometimes does 16-bit accesses (yuk yuk yuk)
556 static int command_do (amb_dev * dev, command * cmd) {
557 amb_cq * cq = &dev->cq;
558 volatile amb_cq_ptrs * ptrs = &cq->ptrs;
559 command * my_slot;
561 PRINTD (DBG_FLOW|DBG_CMD, "command_do %p", dev);
563 if (test_bit (dead, &dev->flags))
564 return 0;
566 spin_lock (&cq->lock);
568 // if not full...
569 if (cq->pending < cq->maximum) {
570 // remember my slot for later
571 my_slot = ptrs->in;
572 PRINTD (DBG_CMD, "command in slot %p", my_slot);
574 dump_command (cmd);
576 // copy command in
577 *ptrs->in = *cmd;
578 cq->pending++;
579 ptrs->in = NEXTQ (ptrs->in, ptrs->start, ptrs->limit);
581 // mail the command
582 wr_mem (dev, offsetof(amb_mem, mb.adapter.cmd_address), virt_to_bus (ptrs->in));
584 if (cq->pending > cq->high)
585 cq->high = cq->pending;
586 spin_unlock (&cq->lock);
588 // these comments were in a while-loop before, msleep removes the loop
589 // go to sleep
590 // PRINTD (DBG_CMD, "wait: sleeping %lu for command", timeout);
591 msleep(cq->pending);
593 // wait for my slot to be reached (all waiters are here or above, until...)
594 while (ptrs->out != my_slot) {
595 PRINTD (DBG_CMD, "wait: command slot (now at %p)", ptrs->out);
596 set_current_state(TASK_UNINTERRUPTIBLE);
597 schedule();
600 // wait on my slot (... one gets to its slot, and... )
601 while (ptrs->out->request != cpu_to_be32 (SRB_COMPLETE)) {
602 PRINTD (DBG_CMD, "wait: command slot completion");
603 set_current_state(TASK_UNINTERRUPTIBLE);
604 schedule();
607 PRINTD (DBG_CMD, "command complete");
608 // update queue (... moves the queue along to the next slot)
609 spin_lock (&cq->lock);
610 cq->pending--;
611 // copy command out
612 *cmd = *ptrs->out;
613 ptrs->out = NEXTQ (ptrs->out, ptrs->start, ptrs->limit);
614 spin_unlock (&cq->lock);
616 return 0;
617 } else {
618 cq->filled++;
619 spin_unlock (&cq->lock);
620 return -EAGAIN;
625 /********** TX queue pair **********/
627 static int tx_give (amb_dev * dev, tx_in * tx) {
628 amb_txq * txq = &dev->txq;
629 unsigned long flags;
631 PRINTD (DBG_FLOW|DBG_TX, "tx_give %p", dev);
633 if (test_bit (dead, &dev->flags))
634 return 0;
636 spin_lock_irqsave (&txq->lock, flags);
638 if (txq->pending < txq->maximum) {
639 PRINTD (DBG_TX, "TX in slot %p", txq->in.ptr);
641 *txq->in.ptr = *tx;
642 txq->pending++;
643 txq->in.ptr = NEXTQ (txq->in.ptr, txq->in.start, txq->in.limit);
644 // hand over the TX and ring the bell
645 wr_mem (dev, offsetof(amb_mem, mb.adapter.tx_address), virt_to_bus (txq->in.ptr));
646 wr_mem (dev, offsetof(amb_mem, doorbell), TX_FRAME);
648 if (txq->pending > txq->high)
649 txq->high = txq->pending;
650 spin_unlock_irqrestore (&txq->lock, flags);
651 return 0;
652 } else {
653 txq->filled++;
654 spin_unlock_irqrestore (&txq->lock, flags);
655 return -EAGAIN;
659 static int tx_take (amb_dev * dev) {
660 amb_txq * txq = &dev->txq;
661 unsigned long flags;
663 PRINTD (DBG_FLOW|DBG_TX, "tx_take %p", dev);
665 spin_lock_irqsave (&txq->lock, flags);
667 if (txq->pending && txq->out.ptr->handle) {
668 // deal with TX completion
669 tx_complete (dev, txq->out.ptr);
670 // mark unused again
671 txq->out.ptr->handle = 0;
672 // remove item
673 txq->pending--;
674 txq->out.ptr = NEXTQ (txq->out.ptr, txq->out.start, txq->out.limit);
676 spin_unlock_irqrestore (&txq->lock, flags);
677 return 0;
678 } else {
680 spin_unlock_irqrestore (&txq->lock, flags);
681 return -1;
685 /********** RX queue pairs **********/
687 static int rx_give (amb_dev * dev, rx_in * rx, unsigned char pool) {
688 amb_rxq * rxq = &dev->rxq[pool];
689 unsigned long flags;
691 PRINTD (DBG_FLOW|DBG_RX, "rx_give %p[%hu]", dev, pool);
693 spin_lock_irqsave (&rxq->lock, flags);
695 if (rxq->pending < rxq->maximum) {
696 PRINTD (DBG_RX, "RX in slot %p", rxq->in.ptr);
698 *rxq->in.ptr = *rx;
699 rxq->pending++;
700 rxq->in.ptr = NEXTQ (rxq->in.ptr, rxq->in.start, rxq->in.limit);
701 // hand over the RX buffer
702 wr_mem (dev, offsetof(amb_mem, mb.adapter.rx_address[pool]), virt_to_bus (rxq->in.ptr));
704 spin_unlock_irqrestore (&rxq->lock, flags);
705 return 0;
706 } else {
707 spin_unlock_irqrestore (&rxq->lock, flags);
708 return -1;
712 static int rx_take (amb_dev * dev, unsigned char pool) {
713 amb_rxq * rxq = &dev->rxq[pool];
714 unsigned long flags;
716 PRINTD (DBG_FLOW|DBG_RX, "rx_take %p[%hu]", dev, pool);
718 spin_lock_irqsave (&rxq->lock, flags);
720 if (rxq->pending && (rxq->out.ptr->status || rxq->out.ptr->length)) {
721 // deal with RX completion
722 rx_complete (dev, rxq->out.ptr);
723 // mark unused again
724 rxq->out.ptr->status = 0;
725 rxq->out.ptr->length = 0;
726 // remove item
727 rxq->pending--;
728 rxq->out.ptr = NEXTQ (rxq->out.ptr, rxq->out.start, rxq->out.limit);
730 if (rxq->pending < rxq->low)
731 rxq->low = rxq->pending;
732 spin_unlock_irqrestore (&rxq->lock, flags);
733 return 0;
734 } else {
735 if (!rxq->pending && rxq->buffers_wanted)
736 rxq->emptied++;
737 spin_unlock_irqrestore (&rxq->lock, flags);
738 return -1;
742 /********** RX Pool handling **********/
744 /* pre: buffers_wanted = 0, post: pending = 0 */
745 static void drain_rx_pool (amb_dev * dev, unsigned char pool) {
746 amb_rxq * rxq = &dev->rxq[pool];
748 PRINTD (DBG_FLOW|DBG_POOL, "drain_rx_pool %p %hu", dev, pool);
750 if (test_bit (dead, &dev->flags))
751 return;
753 /* we are not quite like the fill pool routines as we cannot just
754 remove one buffer, we have to remove all of them, but we might as
755 well pretend... */
756 if (rxq->pending > rxq->buffers_wanted) {
757 command cmd;
758 cmd.request = cpu_to_be32 (SRB_FLUSH_BUFFER_Q);
759 cmd.args.flush.flags = cpu_to_be32 (pool << SRB_POOL_SHIFT);
760 while (command_do (dev, &cmd))
761 schedule();
762 /* the pool may also be emptied via the interrupt handler */
763 while (rxq->pending > rxq->buffers_wanted)
764 if (rx_take (dev, pool))
765 schedule();
768 return;
771 static void drain_rx_pools (amb_dev * dev) {
772 unsigned char pool;
774 PRINTD (DBG_FLOW|DBG_POOL, "drain_rx_pools %p", dev);
776 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
777 drain_rx_pool (dev, pool);
780 static void fill_rx_pool (amb_dev * dev, unsigned char pool,
781 gfp_t priority)
783 rx_in rx;
784 amb_rxq * rxq;
786 PRINTD (DBG_FLOW|DBG_POOL, "fill_rx_pool %p %hu %x", dev, pool, priority);
788 if (test_bit (dead, &dev->flags))
789 return;
791 rxq = &dev->rxq[pool];
792 while (rxq->pending < rxq->maximum && rxq->pending < rxq->buffers_wanted) {
794 struct sk_buff * skb = alloc_skb (rxq->buffer_size, priority);
795 if (!skb) {
796 PRINTD (DBG_SKB|DBG_POOL, "failed to allocate skb for RX pool %hu", pool);
797 return;
799 if (check_area (skb->data, skb->truesize)) {
800 dev_kfree_skb_any (skb);
801 return;
803 // cast needed as there is no %? for pointer differences
804 PRINTD (DBG_SKB, "allocated skb at %p, head %p, area %li",
805 skb, skb->head, (long) (skb_end_pointer(skb) - skb->head));
806 rx.handle = virt_to_bus (skb);
807 rx.host_address = cpu_to_be32 (virt_to_bus (skb->data));
808 if (rx_give (dev, &rx, pool))
809 dev_kfree_skb_any (skb);
813 return;
816 // top up all RX pools (can also be called as a bottom half)
817 static void fill_rx_pools (amb_dev * dev) {
818 unsigned char pool;
820 PRINTD (DBG_FLOW|DBG_POOL, "fill_rx_pools %p", dev);
822 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
823 fill_rx_pool (dev, pool, GFP_ATOMIC);
825 return;
828 /********** enable host interrupts **********/
830 static void interrupts_on (amb_dev * dev) {
831 wr_plain (dev, offsetof(amb_mem, interrupt_control),
832 rd_plain (dev, offsetof(amb_mem, interrupt_control))
833 | AMB_INTERRUPT_BITS);
836 /********** disable host interrupts **********/
838 static void interrupts_off (amb_dev * dev) {
839 wr_plain (dev, offsetof(amb_mem, interrupt_control),
840 rd_plain (dev, offsetof(amb_mem, interrupt_control))
841 &~ AMB_INTERRUPT_BITS);
844 /********** interrupt handling **********/
846 static irqreturn_t interrupt_handler(int irq, void *dev_id) {
847 amb_dev * dev = dev_id;
849 PRINTD (DBG_IRQ|DBG_FLOW, "interrupt_handler: %p", dev_id);
852 u32 interrupt = rd_plain (dev, offsetof(amb_mem, interrupt));
854 // for us or someone else sharing the same interrupt
855 if (!interrupt) {
856 PRINTD (DBG_IRQ, "irq not for me: %d", irq);
857 return IRQ_NONE;
860 // definitely for us
861 PRINTD (DBG_IRQ, "FYI: interrupt was %08x", interrupt);
862 wr_plain (dev, offsetof(amb_mem, interrupt), -1);
866 unsigned int irq_work = 0;
867 unsigned char pool;
868 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
869 while (!rx_take (dev, pool))
870 ++irq_work;
871 while (!tx_take (dev))
872 ++irq_work;
874 if (irq_work) {
875 #ifdef FILL_RX_POOLS_IN_BH
876 schedule_work (&dev->bh);
877 #else
878 fill_rx_pools (dev);
879 #endif
881 PRINTD (DBG_IRQ, "work done: %u", irq_work);
882 } else {
883 PRINTD (DBG_IRQ|DBG_WARN, "no work done");
887 PRINTD (DBG_IRQ|DBG_FLOW, "interrupt_handler done: %p", dev_id);
888 return IRQ_HANDLED;
891 /********** make rate (not quite as much fun as Horizon) **********/
893 static int make_rate (unsigned int rate, rounding r,
894 u16 * bits, unsigned int * actual) {
895 unsigned char exp = -1; // hush gcc
896 unsigned int man = -1; // hush gcc
898 PRINTD (DBG_FLOW|DBG_QOS, "make_rate %u", rate);
900 // rates in cells per second, ITU format (nasty 16-bit floating-point)
901 // given 5-bit e and 9-bit m:
902 // rate = EITHER (1+m/2^9)*2^e OR 0
903 // bits = EITHER 1<<14 | e<<9 | m OR 0
904 // (bit 15 is "reserved", bit 14 "non-zero")
905 // smallest rate is 0 (special representation)
906 // largest rate is (1+511/512)*2^31 = 4290772992 (< 2^32-1)
907 // smallest non-zero rate is (1+0/512)*2^0 = 1 (> 0)
908 // simple algorithm:
909 // find position of top bit, this gives e
910 // remove top bit and shift (rounding if feeling clever) by 9-e
912 // ucode bug: please don't set bit 14! so 0 rate not representable
914 if (rate > 0xffc00000U) {
915 // larger than largest representable rate
917 if (r == round_up) {
918 return -EINVAL;
919 } else {
920 exp = 31;
921 man = 511;
924 } else if (rate) {
925 // representable rate
927 exp = 31;
928 man = rate;
930 // invariant: rate = man*2^(exp-31)
931 while (!(man & (1<<31))) {
932 exp = exp - 1;
933 man = man<<1;
936 // man has top bit set
937 // rate = (2^31+(man-2^31))*2^(exp-31)
938 // rate = (1+(man-2^31)/2^31)*2^exp
939 man = man<<1;
940 man &= 0xffffffffU; // a nop on 32-bit systems
941 // rate = (1+man/2^32)*2^exp
943 // exp is in the range 0 to 31, man is in the range 0 to 2^32-1
944 // time to lose significance... we want m in the range 0 to 2^9-1
945 // rounding presents a minor problem... we first decide which way
946 // we are rounding (based on given rounding direction and possibly
947 // the bits of the mantissa that are to be discarded).
949 switch (r) {
950 case round_down: {
951 // just truncate
952 man = man>>(32-9);
953 break;
955 case round_up: {
956 // check all bits that we are discarding
957 if (man & (~0U>>9)) {
958 man = (man>>(32-9)) + 1;
959 if (man == (1<<9)) {
960 // no need to check for round up outside of range
961 man = 0;
962 exp += 1;
964 } else {
965 man = (man>>(32-9));
967 break;
969 case round_nearest: {
970 // check msb that we are discarding
971 if (man & (1<<(32-9-1))) {
972 man = (man>>(32-9)) + 1;
973 if (man == (1<<9)) {
974 // no need to check for round up outside of range
975 man = 0;
976 exp += 1;
978 } else {
979 man = (man>>(32-9));
981 break;
985 } else {
986 // zero rate - not representable
988 if (r == round_down) {
989 return -EINVAL;
990 } else {
991 exp = 0;
992 man = 0;
997 PRINTD (DBG_QOS, "rate: man=%u, exp=%hu", man, exp);
999 if (bits)
1000 *bits = /* (1<<14) | */ (exp<<9) | man;
1002 if (actual)
1003 *actual = (exp >= 9)
1004 ? (1 << exp) + (man << (exp-9))
1005 : (1 << exp) + ((man + (1<<(9-exp-1))) >> (9-exp));
1007 return 0;
1010 /********** Linux ATM Operations **********/
1012 // some are not yet implemented while others do not make sense for
1013 // this device
1015 /********** Open a VC **********/
1017 static int amb_open (struct atm_vcc * atm_vcc)
1019 int error;
1021 struct atm_qos * qos;
1022 struct atm_trafprm * txtp;
1023 struct atm_trafprm * rxtp;
1024 u16 tx_rate_bits = -1; // hush gcc
1025 u16 tx_vc_bits = -1; // hush gcc
1026 u16 tx_frame_bits = -1; // hush gcc
1028 amb_dev * dev = AMB_DEV(atm_vcc->dev);
1029 amb_vcc * vcc;
1030 unsigned char pool = -1; // hush gcc
1031 short vpi = atm_vcc->vpi;
1032 int vci = atm_vcc->vci;
1034 PRINTD (DBG_FLOW|DBG_VCC, "amb_open %x %x", vpi, vci);
1036 #ifdef ATM_VPI_UNSPEC
1037 // UNSPEC is deprecated, remove this code eventually
1038 if (vpi == ATM_VPI_UNSPEC || vci == ATM_VCI_UNSPEC) {
1039 PRINTK (KERN_WARNING, "rejecting open with unspecified VPI/VCI (deprecated)");
1040 return -EINVAL;
1042 #endif
1044 if (!(0 <= vpi && vpi < (1<<NUM_VPI_BITS) &&
1045 0 <= vci && vci < (1<<NUM_VCI_BITS))) {
1046 PRINTD (DBG_WARN|DBG_VCC, "VPI/VCI out of range: %hd/%d", vpi, vci);
1047 return -EINVAL;
1050 qos = &atm_vcc->qos;
1052 if (qos->aal != ATM_AAL5) {
1053 PRINTD (DBG_QOS, "AAL not supported");
1054 return -EINVAL;
1057 // traffic parameters
1059 PRINTD (DBG_QOS, "TX:");
1060 txtp = &qos->txtp;
1061 if (txtp->traffic_class != ATM_NONE) {
1062 switch (txtp->traffic_class) {
1063 case ATM_UBR: {
1064 // we take "the PCR" as a rate-cap
1065 int pcr = atm_pcr_goal (txtp);
1066 if (!pcr) {
1067 // no rate cap
1068 tx_rate_bits = 0;
1069 tx_vc_bits = TX_UBR;
1070 tx_frame_bits = TX_FRAME_NOTCAP;
1071 } else {
1072 rounding r;
1073 if (pcr < 0) {
1074 r = round_down;
1075 pcr = -pcr;
1076 } else {
1077 r = round_up;
1079 error = make_rate (pcr, r, &tx_rate_bits, NULL);
1080 if (error)
1081 return error;
1082 tx_vc_bits = TX_UBR_CAPPED;
1083 tx_frame_bits = TX_FRAME_CAPPED;
1085 break;
1087 #if 0
1088 case ATM_ABR: {
1089 pcr = atm_pcr_goal (txtp);
1090 PRINTD (DBG_QOS, "pcr goal = %d", pcr);
1091 break;
1093 #endif
1094 default: {
1095 // PRINTD (DBG_QOS, "request for non-UBR/ABR denied");
1096 PRINTD (DBG_QOS, "request for non-UBR denied");
1097 return -EINVAL;
1100 PRINTD (DBG_QOS, "tx_rate_bits=%hx, tx_vc_bits=%hx",
1101 tx_rate_bits, tx_vc_bits);
1104 PRINTD (DBG_QOS, "RX:");
1105 rxtp = &qos->rxtp;
1106 if (rxtp->traffic_class == ATM_NONE) {
1107 // do nothing
1108 } else {
1109 // choose an RX pool (arranged in increasing size)
1110 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
1111 if ((unsigned int) rxtp->max_sdu <= dev->rxq[pool].buffer_size) {
1112 PRINTD (DBG_VCC|DBG_QOS|DBG_POOL, "chose pool %hu (max_sdu %u <= %u)",
1113 pool, rxtp->max_sdu, dev->rxq[pool].buffer_size);
1114 break;
1116 if (pool == NUM_RX_POOLS) {
1117 PRINTD (DBG_WARN|DBG_VCC|DBG_QOS|DBG_POOL,
1118 "no pool suitable for VC (RX max_sdu %d is too large)",
1119 rxtp->max_sdu);
1120 return -EINVAL;
1123 switch (rxtp->traffic_class) {
1124 case ATM_UBR: {
1125 break;
1127 #if 0
1128 case ATM_ABR: {
1129 pcr = atm_pcr_goal (rxtp);
1130 PRINTD (DBG_QOS, "pcr goal = %d", pcr);
1131 break;
1133 #endif
1134 default: {
1135 // PRINTD (DBG_QOS, "request for non-UBR/ABR denied");
1136 PRINTD (DBG_QOS, "request for non-UBR denied");
1137 return -EINVAL;
1142 // get space for our vcc stuff
1143 vcc = kmalloc (sizeof(amb_vcc), GFP_KERNEL);
1144 if (!vcc) {
1145 PRINTK (KERN_ERR, "out of memory!");
1146 return -ENOMEM;
1148 atm_vcc->dev_data = (void *) vcc;
1150 // no failures beyond this point
1152 // we are not really "immediately before allocating the connection
1153 // identifier in hardware", but it will just have to do!
1154 set_bit(ATM_VF_ADDR,&atm_vcc->flags);
1156 if (txtp->traffic_class != ATM_NONE) {
1157 command cmd;
1159 vcc->tx_frame_bits = tx_frame_bits;
1161 mutex_lock(&dev->vcc_sf);
1162 if (dev->rxer[vci]) {
1163 // RXer on the channel already, just modify rate...
1164 cmd.request = cpu_to_be32 (SRB_MODIFY_VC_RATE);
1165 cmd.args.modify_rate.vc = cpu_to_be32 (vci); // vpi 0
1166 cmd.args.modify_rate.rate = cpu_to_be32 (tx_rate_bits << SRB_RATE_SHIFT);
1167 while (command_do (dev, &cmd))
1168 schedule();
1169 // ... and TX flags, preserving the RX pool
1170 cmd.request = cpu_to_be32 (SRB_MODIFY_VC_FLAGS);
1171 cmd.args.modify_flags.vc = cpu_to_be32 (vci); // vpi 0
1172 cmd.args.modify_flags.flags = cpu_to_be32
1173 ( (AMB_VCC(dev->rxer[vci])->rx_info.pool << SRB_POOL_SHIFT)
1174 | (tx_vc_bits << SRB_FLAGS_SHIFT) );
1175 while (command_do (dev, &cmd))
1176 schedule();
1177 } else {
1178 // no RXer on the channel, just open (with pool zero)
1179 cmd.request = cpu_to_be32 (SRB_OPEN_VC);
1180 cmd.args.open.vc = cpu_to_be32 (vci); // vpi 0
1181 cmd.args.open.flags = cpu_to_be32 (tx_vc_bits << SRB_FLAGS_SHIFT);
1182 cmd.args.open.rate = cpu_to_be32 (tx_rate_bits << SRB_RATE_SHIFT);
1183 while (command_do (dev, &cmd))
1184 schedule();
1186 dev->txer[vci].tx_present = 1;
1187 mutex_unlock(&dev->vcc_sf);
1190 if (rxtp->traffic_class != ATM_NONE) {
1191 command cmd;
1193 vcc->rx_info.pool = pool;
1195 mutex_lock(&dev->vcc_sf);
1196 /* grow RX buffer pool */
1197 if (!dev->rxq[pool].buffers_wanted)
1198 dev->rxq[pool].buffers_wanted = rx_lats;
1199 dev->rxq[pool].buffers_wanted += 1;
1200 fill_rx_pool (dev, pool, GFP_KERNEL);
1202 if (dev->txer[vci].tx_present) {
1203 // TXer on the channel already
1204 // switch (from pool zero) to this pool, preserving the TX bits
1205 cmd.request = cpu_to_be32 (SRB_MODIFY_VC_FLAGS);
1206 cmd.args.modify_flags.vc = cpu_to_be32 (vci); // vpi 0
1207 cmd.args.modify_flags.flags = cpu_to_be32
1208 ( (pool << SRB_POOL_SHIFT)
1209 | (dev->txer[vci].tx_vc_bits << SRB_FLAGS_SHIFT) );
1210 } else {
1211 // no TXer on the channel, open the VC (with no rate info)
1212 cmd.request = cpu_to_be32 (SRB_OPEN_VC);
1213 cmd.args.open.vc = cpu_to_be32 (vci); // vpi 0
1214 cmd.args.open.flags = cpu_to_be32 (pool << SRB_POOL_SHIFT);
1215 cmd.args.open.rate = cpu_to_be32 (0);
1217 while (command_do (dev, &cmd))
1218 schedule();
1219 // this link allows RX frames through
1220 dev->rxer[vci] = atm_vcc;
1221 mutex_unlock(&dev->vcc_sf);
1224 // indicate readiness
1225 set_bit(ATM_VF_READY,&atm_vcc->flags);
1227 return 0;
1230 /********** Close a VC **********/
1232 static void amb_close (struct atm_vcc * atm_vcc) {
1233 amb_dev * dev = AMB_DEV (atm_vcc->dev);
1234 amb_vcc * vcc = AMB_VCC (atm_vcc);
1235 u16 vci = atm_vcc->vci;
1237 PRINTD (DBG_VCC|DBG_FLOW, "amb_close");
1239 // indicate unreadiness
1240 clear_bit(ATM_VF_READY,&atm_vcc->flags);
1242 // disable TXing
1243 if (atm_vcc->qos.txtp.traffic_class != ATM_NONE) {
1244 command cmd;
1246 mutex_lock(&dev->vcc_sf);
1247 if (dev->rxer[vci]) {
1248 // RXer still on the channel, just modify rate... XXX not really needed
1249 cmd.request = cpu_to_be32 (SRB_MODIFY_VC_RATE);
1250 cmd.args.modify_rate.vc = cpu_to_be32 (vci); // vpi 0
1251 cmd.args.modify_rate.rate = cpu_to_be32 (0);
1252 // ... and clear TX rate flags (XXX to stop RM cell output?), preserving RX pool
1253 } else {
1254 // no RXer on the channel, close channel
1255 cmd.request = cpu_to_be32 (SRB_CLOSE_VC);
1256 cmd.args.close.vc = cpu_to_be32 (vci); // vpi 0
1258 dev->txer[vci].tx_present = 0;
1259 while (command_do (dev, &cmd))
1260 schedule();
1261 mutex_unlock(&dev->vcc_sf);
1264 // disable RXing
1265 if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) {
1266 command cmd;
1268 // this is (the?) one reason why we need the amb_vcc struct
1269 unsigned char pool = vcc->rx_info.pool;
1271 mutex_lock(&dev->vcc_sf);
1272 if (dev->txer[vci].tx_present) {
1273 // TXer still on the channel, just go to pool zero XXX not really needed
1274 cmd.request = cpu_to_be32 (SRB_MODIFY_VC_FLAGS);
1275 cmd.args.modify_flags.vc = cpu_to_be32 (vci); // vpi 0
1276 cmd.args.modify_flags.flags = cpu_to_be32
1277 (dev->txer[vci].tx_vc_bits << SRB_FLAGS_SHIFT);
1278 } else {
1279 // no TXer on the channel, close the VC
1280 cmd.request = cpu_to_be32 (SRB_CLOSE_VC);
1281 cmd.args.close.vc = cpu_to_be32 (vci); // vpi 0
1283 // forget the rxer - no more skbs will be pushed
1284 if (atm_vcc != dev->rxer[vci])
1285 PRINTK (KERN_ERR, "%s vcc=%p rxer[vci]=%p",
1286 "arghhh! we're going to die!",
1287 vcc, dev->rxer[vci]);
1288 dev->rxer[vci] = NULL;
1289 while (command_do (dev, &cmd))
1290 schedule();
1292 /* shrink RX buffer pool */
1293 dev->rxq[pool].buffers_wanted -= 1;
1294 if (dev->rxq[pool].buffers_wanted == rx_lats) {
1295 dev->rxq[pool].buffers_wanted = 0;
1296 drain_rx_pool (dev, pool);
1298 mutex_unlock(&dev->vcc_sf);
1301 // free our structure
1302 kfree (vcc);
1304 // say the VPI/VCI is free again
1305 clear_bit(ATM_VF_ADDR,&atm_vcc->flags);
1307 return;
1310 /********** Send **********/
1312 static int amb_send (struct atm_vcc * atm_vcc, struct sk_buff * skb) {
1313 amb_dev * dev = AMB_DEV(atm_vcc->dev);
1314 amb_vcc * vcc = AMB_VCC(atm_vcc);
1315 u16 vc = atm_vcc->vci;
1316 unsigned int tx_len = skb->len;
1317 unsigned char * tx_data = skb->data;
1318 tx_simple * tx_descr;
1319 tx_in tx;
1321 if (test_bit (dead, &dev->flags))
1322 return -EIO;
1324 PRINTD (DBG_FLOW|DBG_TX, "amb_send vc %x data %p len %u",
1325 vc, tx_data, tx_len);
1327 dump_skb (">>>", vc, skb);
1329 if (!dev->txer[vc].tx_present) {
1330 PRINTK (KERN_ERR, "attempt to send on RX-only VC %x", vc);
1331 return -EBADFD;
1334 // this is a driver private field so we have to set it ourselves,
1335 // despite the fact that we are _required_ to use it to check for a
1336 // pop function
1337 ATM_SKB(skb)->vcc = atm_vcc;
1339 if (skb->len > (size_t) atm_vcc->qos.txtp.max_sdu) {
1340 PRINTK (KERN_ERR, "sk_buff length greater than agreed max_sdu, dropping...");
1341 return -EIO;
1344 if (check_area (skb->data, skb->len)) {
1345 atomic_inc(&atm_vcc->stats->tx_err);
1346 return -ENOMEM; // ?
1349 // allocate memory for fragments
1350 tx_descr = kmalloc (sizeof(tx_simple), GFP_KERNEL);
1351 if (!tx_descr) {
1352 PRINTK (KERN_ERR, "could not allocate TX descriptor");
1353 return -ENOMEM;
1355 if (check_area (tx_descr, sizeof(tx_simple))) {
1356 kfree (tx_descr);
1357 return -ENOMEM;
1359 PRINTD (DBG_TX, "fragment list allocated at %p", tx_descr);
1361 tx_descr->skb = skb;
1363 tx_descr->tx_frag.bytes = cpu_to_be32 (tx_len);
1364 tx_descr->tx_frag.address = cpu_to_be32 (virt_to_bus (tx_data));
1366 tx_descr->tx_frag_end.handle = virt_to_bus (tx_descr);
1367 tx_descr->tx_frag_end.vc = 0;
1368 tx_descr->tx_frag_end.next_descriptor_length = 0;
1369 tx_descr->tx_frag_end.next_descriptor = 0;
1370 #ifdef AMB_NEW_MICROCODE
1371 tx_descr->tx_frag_end.cpcs_uu = 0;
1372 tx_descr->tx_frag_end.cpi = 0;
1373 tx_descr->tx_frag_end.pad = 0;
1374 #endif
1376 tx.vc = cpu_to_be16 (vcc->tx_frame_bits | vc);
1377 tx.tx_descr_length = cpu_to_be16 (sizeof(tx_frag)+sizeof(tx_frag_end));
1378 tx.tx_descr_addr = cpu_to_be32 (virt_to_bus (&tx_descr->tx_frag));
1380 while (tx_give (dev, &tx))
1381 schedule();
1382 return 0;
1385 /********** Change QoS on a VC **********/
1387 // int amb_change_qos (struct atm_vcc * atm_vcc, struct atm_qos * qos, int flags);
1389 /********** Free RX Socket Buffer **********/
1391 #if 0
1392 static void amb_free_rx_skb (struct atm_vcc * atm_vcc, struct sk_buff * skb) {
1393 amb_dev * dev = AMB_DEV (atm_vcc->dev);
1394 amb_vcc * vcc = AMB_VCC (atm_vcc);
1395 unsigned char pool = vcc->rx_info.pool;
1396 rx_in rx;
1398 // This may be unsafe for various reasons that I cannot really guess
1399 // at. However, I note that the ATM layer calls kfree_skb rather
1400 // than dev_kfree_skb at this point so we are least covered as far
1401 // as buffer locking goes. There may be bugs if pcap clones RX skbs.
1403 PRINTD (DBG_FLOW|DBG_SKB, "amb_rx_free skb %p (atm_vcc %p, vcc %p)",
1404 skb, atm_vcc, vcc);
1406 rx.handle = virt_to_bus (skb);
1407 rx.host_address = cpu_to_be32 (virt_to_bus (skb->data));
1409 skb->data = skb->head;
1410 skb->tail = skb->head;
1411 skb->len = 0;
1413 if (!rx_give (dev, &rx, pool)) {
1414 // success
1415 PRINTD (DBG_SKB|DBG_POOL, "recycled skb for pool %hu", pool);
1416 return;
1419 // just do what the ATM layer would have done
1420 dev_kfree_skb_any (skb);
1422 return;
1424 #endif
1426 /********** Proc File Output **********/
1428 static int amb_proc_read (struct atm_dev * atm_dev, loff_t * pos, char * page) {
1429 amb_dev * dev = AMB_DEV (atm_dev);
1430 int left = *pos;
1431 unsigned char pool;
1433 PRINTD (DBG_FLOW, "amb_proc_read");
1435 /* more diagnostics here? */
1437 if (!left--) {
1438 amb_stats * s = &dev->stats;
1439 return sprintf (page,
1440 "frames: TX OK %lu, RX OK %lu, RX bad %lu "
1441 "(CRC %lu, long %lu, aborted %lu, unused %lu).\n",
1442 s->tx_ok, s->rx.ok, s->rx.error,
1443 s->rx.badcrc, s->rx.toolong,
1444 s->rx.aborted, s->rx.unused);
1447 if (!left--) {
1448 amb_cq * c = &dev->cq;
1449 return sprintf (page, "cmd queue [cur/hi/max]: %u/%u/%u. ",
1450 c->pending, c->high, c->maximum);
1453 if (!left--) {
1454 amb_txq * t = &dev->txq;
1455 return sprintf (page, "TX queue [cur/max high full]: %u/%u %u %u.\n",
1456 t->pending, t->maximum, t->high, t->filled);
1459 if (!left--) {
1460 unsigned int count = sprintf (page, "RX queues [cur/max/req low empty]:");
1461 for (pool = 0; pool < NUM_RX_POOLS; ++pool) {
1462 amb_rxq * r = &dev->rxq[pool];
1463 count += sprintf (page+count, " %u/%u/%u %u %u",
1464 r->pending, r->maximum, r->buffers_wanted, r->low, r->emptied);
1466 count += sprintf (page+count, ".\n");
1467 return count;
1470 if (!left--) {
1471 unsigned int count = sprintf (page, "RX buffer sizes:");
1472 for (pool = 0; pool < NUM_RX_POOLS; ++pool) {
1473 amb_rxq * r = &dev->rxq[pool];
1474 count += sprintf (page+count, " %u", r->buffer_size);
1476 count += sprintf (page+count, ".\n");
1477 return count;
1480 #if 0
1481 if (!left--) {
1482 // suni block etc?
1484 #endif
1486 return 0;
1489 /********** Operation Structure **********/
1491 static const struct atmdev_ops amb_ops = {
1492 .open = amb_open,
1493 .close = amb_close,
1494 .send = amb_send,
1495 .proc_read = amb_proc_read,
1496 .owner = THIS_MODULE,
1499 /********** housekeeping **********/
1500 static void do_housekeeping (unsigned long arg) {
1501 amb_dev * dev = (amb_dev *) arg;
1503 // could collect device-specific (not driver/atm-linux) stats here
1505 // last resort refill once every ten seconds
1506 fill_rx_pools (dev);
1507 mod_timer(&dev->housekeeping, jiffies + 10*HZ);
1509 return;
1512 /********** creation of communication queues **********/
1514 static int __devinit create_queues (amb_dev * dev, unsigned int cmds,
1515 unsigned int txs, unsigned int * rxs,
1516 unsigned int * rx_buffer_sizes) {
1517 unsigned char pool;
1518 size_t total = 0;
1519 void * memory;
1520 void * limit;
1522 PRINTD (DBG_FLOW, "create_queues %p", dev);
1524 total += cmds * sizeof(command);
1526 total += txs * (sizeof(tx_in) + sizeof(tx_out));
1528 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
1529 total += rxs[pool] * (sizeof(rx_in) + sizeof(rx_out));
1531 memory = kmalloc (total, GFP_KERNEL);
1532 if (!memory) {
1533 PRINTK (KERN_ERR, "could not allocate queues");
1534 return -ENOMEM;
1536 if (check_area (memory, total)) {
1537 PRINTK (KERN_ERR, "queues allocated in nasty area");
1538 kfree (memory);
1539 return -ENOMEM;
1542 limit = memory + total;
1543 PRINTD (DBG_INIT, "queues from %p to %p", memory, limit);
1545 PRINTD (DBG_CMD, "command queue at %p", memory);
1548 command * cmd = memory;
1549 amb_cq * cq = &dev->cq;
1551 cq->pending = 0;
1552 cq->high = 0;
1553 cq->maximum = cmds - 1;
1555 cq->ptrs.start = cmd;
1556 cq->ptrs.in = cmd;
1557 cq->ptrs.out = cmd;
1558 cq->ptrs.limit = cmd + cmds;
1560 memory = cq->ptrs.limit;
1563 PRINTD (DBG_TX, "TX queue pair at %p", memory);
1566 tx_in * in = memory;
1567 tx_out * out;
1568 amb_txq * txq = &dev->txq;
1570 txq->pending = 0;
1571 txq->high = 0;
1572 txq->filled = 0;
1573 txq->maximum = txs - 1;
1575 txq->in.start = in;
1576 txq->in.ptr = in;
1577 txq->in.limit = in + txs;
1579 memory = txq->in.limit;
1580 out = memory;
1582 txq->out.start = out;
1583 txq->out.ptr = out;
1584 txq->out.limit = out + txs;
1586 memory = txq->out.limit;
1589 PRINTD (DBG_RX, "RX queue pairs at %p", memory);
1591 for (pool = 0; pool < NUM_RX_POOLS; ++pool) {
1592 rx_in * in = memory;
1593 rx_out * out;
1594 amb_rxq * rxq = &dev->rxq[pool];
1596 rxq->buffer_size = rx_buffer_sizes[pool];
1597 rxq->buffers_wanted = 0;
1599 rxq->pending = 0;
1600 rxq->low = rxs[pool] - 1;
1601 rxq->emptied = 0;
1602 rxq->maximum = rxs[pool] - 1;
1604 rxq->in.start = in;
1605 rxq->in.ptr = in;
1606 rxq->in.limit = in + rxs[pool];
1608 memory = rxq->in.limit;
1609 out = memory;
1611 rxq->out.start = out;
1612 rxq->out.ptr = out;
1613 rxq->out.limit = out + rxs[pool];
1615 memory = rxq->out.limit;
1618 if (memory == limit) {
1619 return 0;
1620 } else {
1621 PRINTK (KERN_ERR, "bad queue alloc %p != %p (tell maintainer)", memory, limit);
1622 kfree (limit - total);
1623 return -ENOMEM;
1628 /********** destruction of communication queues **********/
1630 static void destroy_queues (amb_dev * dev) {
1631 // all queues assumed empty
1632 void * memory = dev->cq.ptrs.start;
1633 // includes txq.in, txq.out, rxq[].in and rxq[].out
1635 PRINTD (DBG_FLOW, "destroy_queues %p", dev);
1637 PRINTD (DBG_INIT, "freeing queues at %p", memory);
1638 kfree (memory);
1640 return;
1643 /********** basic loader commands and error handling **********/
1644 // centisecond timeouts - guessing away here
1645 static unsigned int command_timeouts [] = {
1646 [host_memory_test] = 15,
1647 [read_adapter_memory] = 2,
1648 [write_adapter_memory] = 2,
1649 [adapter_start] = 50,
1650 [get_version_number] = 10,
1651 [interrupt_host] = 1,
1652 [flash_erase_sector] = 1,
1653 [adap_download_block] = 1,
1654 [adap_erase_flash] = 1,
1655 [adap_run_in_iram] = 1,
1656 [adap_end_download] = 1
1660 static unsigned int command_successes [] = {
1661 [host_memory_test] = COMMAND_PASSED_TEST,
1662 [read_adapter_memory] = COMMAND_READ_DATA_OK,
1663 [write_adapter_memory] = COMMAND_WRITE_DATA_OK,
1664 [adapter_start] = COMMAND_COMPLETE,
1665 [get_version_number] = COMMAND_COMPLETE,
1666 [interrupt_host] = COMMAND_COMPLETE,
1667 [flash_erase_sector] = COMMAND_COMPLETE,
1668 [adap_download_block] = COMMAND_COMPLETE,
1669 [adap_erase_flash] = COMMAND_COMPLETE,
1670 [adap_run_in_iram] = COMMAND_COMPLETE,
1671 [adap_end_download] = COMMAND_COMPLETE
1674 static int decode_loader_result (loader_command cmd, u32 result)
1676 int res;
1677 const char *msg;
1679 if (result == command_successes[cmd])
1680 return 0;
1682 switch (result) {
1683 case BAD_COMMAND:
1684 res = -EINVAL;
1685 msg = "bad command";
1686 break;
1687 case COMMAND_IN_PROGRESS:
1688 res = -ETIMEDOUT;
1689 msg = "command in progress";
1690 break;
1691 case COMMAND_PASSED_TEST:
1692 res = 0;
1693 msg = "command passed test";
1694 break;
1695 case COMMAND_FAILED_TEST:
1696 res = -EIO;
1697 msg = "command failed test";
1698 break;
1699 case COMMAND_READ_DATA_OK:
1700 res = 0;
1701 msg = "command read data ok";
1702 break;
1703 case COMMAND_READ_BAD_ADDRESS:
1704 res = -EINVAL;
1705 msg = "command read bad address";
1706 break;
1707 case COMMAND_WRITE_DATA_OK:
1708 res = 0;
1709 msg = "command write data ok";
1710 break;
1711 case COMMAND_WRITE_BAD_ADDRESS:
1712 res = -EINVAL;
1713 msg = "command write bad address";
1714 break;
1715 case COMMAND_WRITE_FLASH_FAILURE:
1716 res = -EIO;
1717 msg = "command write flash failure";
1718 break;
1719 case COMMAND_COMPLETE:
1720 res = 0;
1721 msg = "command complete";
1722 break;
1723 case COMMAND_FLASH_ERASE_FAILURE:
1724 res = -EIO;
1725 msg = "command flash erase failure";
1726 break;
1727 case COMMAND_WRITE_BAD_DATA:
1728 res = -EINVAL;
1729 msg = "command write bad data";
1730 break;
1731 default:
1732 res = -EINVAL;
1733 msg = "unknown error";
1734 PRINTD (DBG_LOAD|DBG_ERR,
1735 "decode_loader_result got %d=%x !",
1736 result, result);
1737 break;
1740 PRINTK (KERN_ERR, "%s", msg);
1741 return res;
1744 static int __devinit do_loader_command (volatile loader_block * lb,
1745 const amb_dev * dev, loader_command cmd) {
1747 unsigned long timeout;
1749 PRINTD (DBG_FLOW|DBG_LOAD, "do_loader_command");
1751 /* do a command
1753 Set the return value to zero, set the command type and set the
1754 valid entry to the right magic value. The payload is already
1755 correctly byte-ordered so we leave it alone. Hit the doorbell
1756 with the bus address of this structure.
1760 lb->result = 0;
1761 lb->command = cpu_to_be32 (cmd);
1762 lb->valid = cpu_to_be32 (DMA_VALID);
1763 // dump_registers (dev);
1764 // dump_loader_block (lb);
1765 wr_mem (dev, offsetof(amb_mem, doorbell), virt_to_bus (lb) & ~onegigmask);
1767 timeout = command_timeouts[cmd] * 10;
1769 while (!lb->result || lb->result == cpu_to_be32 (COMMAND_IN_PROGRESS))
1770 if (timeout) {
1771 timeout = msleep_interruptible(timeout);
1772 } else {
1773 PRINTD (DBG_LOAD|DBG_ERR, "command %d timed out", cmd);
1774 dump_registers (dev);
1775 dump_loader_block (lb);
1776 return -ETIMEDOUT;
1779 if (cmd == adapter_start) {
1780 // wait for start command to acknowledge...
1781 timeout = 100;
1782 while (rd_plain (dev, offsetof(amb_mem, doorbell)))
1783 if (timeout) {
1784 timeout = msleep_interruptible(timeout);
1785 } else {
1786 PRINTD (DBG_LOAD|DBG_ERR, "start command did not clear doorbell, res=%08x",
1787 be32_to_cpu (lb->result));
1788 dump_registers (dev);
1789 return -ETIMEDOUT;
1791 return 0;
1792 } else {
1793 return decode_loader_result (cmd, be32_to_cpu (lb->result));
1798 /* loader: determine loader version */
1800 static int __devinit get_loader_version (loader_block * lb,
1801 const amb_dev * dev, u32 * version) {
1802 int res;
1804 PRINTD (DBG_FLOW|DBG_LOAD, "get_loader_version");
1806 res = do_loader_command (lb, dev, get_version_number);
1807 if (res)
1808 return res;
1809 if (version)
1810 *version = be32_to_cpu (lb->payload.version);
1811 return 0;
1814 /* loader: write memory data blocks */
1816 static int __devinit loader_write (loader_block* lb,
1817 const amb_dev *dev,
1818 const struct ihex_binrec *rec) {
1819 transfer_block * tb = &lb->payload.transfer;
1821 PRINTD (DBG_FLOW|DBG_LOAD, "loader_write");
1823 tb->address = rec->addr;
1824 tb->count = cpu_to_be32(be16_to_cpu(rec->len) / 4);
1825 memcpy(tb->data, rec->data, be16_to_cpu(rec->len));
1826 return do_loader_command (lb, dev, write_adapter_memory);
1829 /* loader: verify memory data blocks */
1831 static int __devinit loader_verify (loader_block * lb,
1832 const amb_dev *dev,
1833 const struct ihex_binrec *rec) {
1834 transfer_block * tb = &lb->payload.transfer;
1835 int res;
1837 PRINTD (DBG_FLOW|DBG_LOAD, "loader_verify");
1839 tb->address = rec->addr;
1840 tb->count = cpu_to_be32(be16_to_cpu(rec->len) / 4);
1841 res = do_loader_command (lb, dev, read_adapter_memory);
1842 if (!res && memcmp(tb->data, rec->data, be16_to_cpu(rec->len)))
1843 res = -EINVAL;
1844 return res;
1847 /* loader: start microcode */
1849 static int __devinit loader_start (loader_block * lb,
1850 const amb_dev * dev, u32 address) {
1851 PRINTD (DBG_FLOW|DBG_LOAD, "loader_start");
1853 lb->payload.start = cpu_to_be32 (address);
1854 return do_loader_command (lb, dev, adapter_start);
1857 /********** reset card **********/
1859 static inline void sf (const char * msg)
1861 PRINTK (KERN_ERR, "self-test failed: %s", msg);
1864 static int amb_reset (amb_dev * dev, int diags) {
1865 u32 word;
1867 PRINTD (DBG_FLOW|DBG_LOAD, "amb_reset");
1869 word = rd_plain (dev, offsetof(amb_mem, reset_control));
1870 // put card into reset state
1871 wr_plain (dev, offsetof(amb_mem, reset_control), word | AMB_RESET_BITS);
1872 // wait a short while
1873 udelay (10);
1874 #if 1
1875 // put card into known good state
1876 wr_plain (dev, offsetof(amb_mem, interrupt_control), AMB_DOORBELL_BITS);
1877 // clear all interrupts just in case
1878 wr_plain (dev, offsetof(amb_mem, interrupt), -1);
1879 #endif
1880 // clear self-test done flag
1881 wr_plain (dev, offsetof(amb_mem, mb.loader.ready), 0);
1882 // take card out of reset state
1883 wr_plain (dev, offsetof(amb_mem, reset_control), word &~ AMB_RESET_BITS);
1885 if (diags) {
1886 unsigned long timeout;
1887 // 4.2 second wait
1888 msleep(4200);
1889 // half second time-out
1890 timeout = 500;
1891 while (!rd_plain (dev, offsetof(amb_mem, mb.loader.ready)))
1892 if (timeout) {
1893 timeout = msleep_interruptible(timeout);
1894 } else {
1895 PRINTD (DBG_LOAD|DBG_ERR, "reset timed out");
1896 return -ETIMEDOUT;
1899 // get results of self-test
1900 // XXX double check byte-order
1901 word = rd_mem (dev, offsetof(amb_mem, mb.loader.result));
1902 if (word & SELF_TEST_FAILURE) {
1903 if (word & GPINT_TST_FAILURE)
1904 sf ("interrupt");
1905 if (word & SUNI_DATA_PATTERN_FAILURE)
1906 sf ("SUNI data pattern");
1907 if (word & SUNI_DATA_BITS_FAILURE)
1908 sf ("SUNI data bits");
1909 if (word & SUNI_UTOPIA_FAILURE)
1910 sf ("SUNI UTOPIA interface");
1911 if (word & SUNI_FIFO_FAILURE)
1912 sf ("SUNI cell buffer FIFO");
1913 if (word & SRAM_FAILURE)
1914 sf ("bad SRAM");
1915 // better return value?
1916 return -EIO;
1920 return 0;
1923 /********** transfer and start the microcode **********/
1925 static int __devinit ucode_init (loader_block * lb, amb_dev * dev) {
1926 const struct firmware *fw;
1927 unsigned long start_address;
1928 const struct ihex_binrec *rec;
1929 const char *errmsg = 0;
1930 int res;
1932 res = request_ihex_firmware(&fw, "atmsar11.fw", &dev->pci_dev->dev);
1933 if (res) {
1934 PRINTK (KERN_ERR, "Cannot load microcode data");
1935 return res;
1938 /* First record contains just the start address */
1939 rec = (const struct ihex_binrec *)fw->data;
1940 if (be16_to_cpu(rec->len) != sizeof(__be32) || be32_to_cpu(rec->addr)) {
1941 errmsg = "no start record";
1942 goto fail;
1944 start_address = be32_to_cpup((__be32 *)rec->data);
1946 rec = ihex_next_binrec(rec);
1948 PRINTD (DBG_FLOW|DBG_LOAD, "ucode_init");
1950 while (rec) {
1951 PRINTD (DBG_LOAD, "starting region (%x, %u)", be32_to_cpu(rec->addr),
1952 be16_to_cpu(rec->len));
1953 if (be16_to_cpu(rec->len) > 4 * MAX_TRANSFER_DATA) {
1954 errmsg = "record too long";
1955 goto fail;
1957 if (be16_to_cpu(rec->len) & 3) {
1958 errmsg = "odd number of bytes";
1959 goto fail;
1961 res = loader_write(lb, dev, rec);
1962 if (res)
1963 break;
1965 res = loader_verify(lb, dev, rec);
1966 if (res)
1967 break;
1969 release_firmware(fw);
1970 if (!res)
1971 res = loader_start(lb, dev, start_address);
1973 return res;
1974 fail:
1975 release_firmware(fw);
1976 PRINTK(KERN_ERR, "Bad microcode data (%s)", errmsg);
1977 return -EINVAL;
1980 /********** give adapter parameters **********/
1982 static inline __be32 bus_addr(void * addr) {
1983 return cpu_to_be32 (virt_to_bus (addr));
1986 static int __devinit amb_talk (amb_dev * dev) {
1987 adap_talk_block a;
1988 unsigned char pool;
1989 unsigned long timeout;
1991 PRINTD (DBG_FLOW, "amb_talk %p", dev);
1993 a.command_start = bus_addr (dev->cq.ptrs.start);
1994 a.command_end = bus_addr (dev->cq.ptrs.limit);
1995 a.tx_start = bus_addr (dev->txq.in.start);
1996 a.tx_end = bus_addr (dev->txq.in.limit);
1997 a.txcom_start = bus_addr (dev->txq.out.start);
1998 a.txcom_end = bus_addr (dev->txq.out.limit);
2000 for (pool = 0; pool < NUM_RX_POOLS; ++pool) {
2001 // the other "a" items are set up by the adapter
2002 a.rec_struct[pool].buffer_start = bus_addr (dev->rxq[pool].in.start);
2003 a.rec_struct[pool].buffer_end = bus_addr (dev->rxq[pool].in.limit);
2004 a.rec_struct[pool].rx_start = bus_addr (dev->rxq[pool].out.start);
2005 a.rec_struct[pool].rx_end = bus_addr (dev->rxq[pool].out.limit);
2006 a.rec_struct[pool].buffer_size = cpu_to_be32 (dev->rxq[pool].buffer_size);
2009 #ifdef AMB_NEW_MICROCODE
2010 // disable fast PLX prefetching
2011 a.init_flags = 0;
2012 #endif
2014 // pass the structure
2015 wr_mem (dev, offsetof(amb_mem, doorbell), virt_to_bus (&a));
2017 // 2.2 second wait (must not touch doorbell during 2 second DMA test)
2018 msleep(2200);
2019 // give the adapter another half second?
2020 timeout = 500;
2021 while (rd_plain (dev, offsetof(amb_mem, doorbell)))
2022 if (timeout) {
2023 timeout = msleep_interruptible(timeout);
2024 } else {
2025 PRINTD (DBG_INIT|DBG_ERR, "adapter init timed out");
2026 return -ETIMEDOUT;
2029 return 0;
2032 // get microcode version
2033 static void __devinit amb_ucode_version (amb_dev * dev) {
2034 u32 major;
2035 u32 minor;
2036 command cmd;
2037 cmd.request = cpu_to_be32 (SRB_GET_VERSION);
2038 while (command_do (dev, &cmd)) {
2039 set_current_state(TASK_UNINTERRUPTIBLE);
2040 schedule();
2042 major = be32_to_cpu (cmd.args.version.major);
2043 minor = be32_to_cpu (cmd.args.version.minor);
2044 PRINTK (KERN_INFO, "microcode version is %u.%u", major, minor);
2047 // get end station address
2048 static void __devinit amb_esi (amb_dev * dev, u8 * esi) {
2049 u32 lower4;
2050 u16 upper2;
2051 command cmd;
2053 cmd.request = cpu_to_be32 (SRB_GET_BIA);
2054 while (command_do (dev, &cmd)) {
2055 set_current_state(TASK_UNINTERRUPTIBLE);
2056 schedule();
2058 lower4 = be32_to_cpu (cmd.args.bia.lower4);
2059 upper2 = be32_to_cpu (cmd.args.bia.upper2);
2060 PRINTD (DBG_LOAD, "BIA: lower4: %08x, upper2 %04x", lower4, upper2);
2062 if (esi) {
2063 unsigned int i;
2065 PRINTDB (DBG_INIT, "ESI:");
2066 for (i = 0; i < ESI_LEN; ++i) {
2067 if (i < 4)
2068 esi[i] = bitrev8(lower4>>(8*i));
2069 else
2070 esi[i] = bitrev8(upper2>>(8*(i-4)));
2071 PRINTDM (DBG_INIT, " %02x", esi[i]);
2074 PRINTDE (DBG_INIT, "");
2077 return;
2080 static void fixup_plx_window (amb_dev *dev, loader_block *lb)
2082 // fix up the PLX-mapped window base address to match the block
2083 unsigned long blb;
2084 u32 mapreg;
2085 blb = virt_to_bus(lb);
2086 // the kernel stack had better not ever cross a 1Gb boundary!
2087 mapreg = rd_plain (dev, offsetof(amb_mem, stuff[10]));
2088 mapreg &= ~onegigmask;
2089 mapreg |= blb & onegigmask;
2090 wr_plain (dev, offsetof(amb_mem, stuff[10]), mapreg);
2091 return;
2094 static int __devinit amb_init (amb_dev * dev)
2096 loader_block lb;
2098 u32 version;
2100 if (amb_reset (dev, 1)) {
2101 PRINTK (KERN_ERR, "card reset failed!");
2102 } else {
2103 fixup_plx_window (dev, &lb);
2105 if (get_loader_version (&lb, dev, &version)) {
2106 PRINTK (KERN_INFO, "failed to get loader version");
2107 } else {
2108 PRINTK (KERN_INFO, "loader version is %08x", version);
2110 if (ucode_init (&lb, dev)) {
2111 PRINTK (KERN_ERR, "microcode failure");
2112 } else if (create_queues (dev, cmds, txs, rxs, rxs_bs)) {
2113 PRINTK (KERN_ERR, "failed to get memory for queues");
2114 } else {
2116 if (amb_talk (dev)) {
2117 PRINTK (KERN_ERR, "adapter did not accept queues");
2118 } else {
2120 amb_ucode_version (dev);
2121 return 0;
2123 } /* amb_talk */
2125 destroy_queues (dev);
2126 } /* create_queues, ucode_init */
2128 amb_reset (dev, 0);
2129 } /* get_loader_version */
2131 } /* amb_reset */
2133 return -EINVAL;
2136 static void setup_dev(amb_dev *dev, struct pci_dev *pci_dev)
2138 unsigned char pool;
2140 // set up known dev items straight away
2141 dev->pci_dev = pci_dev;
2142 pci_set_drvdata(pci_dev, dev);
2144 dev->iobase = pci_resource_start (pci_dev, 1);
2145 dev->irq = pci_dev->irq;
2146 dev->membase = bus_to_virt(pci_resource_start(pci_dev, 0));
2148 // flags (currently only dead)
2149 dev->flags = 0;
2151 // Allocate cell rates (fibre)
2152 // ATM_OC3_PCR = 1555200000/8/270*260/53 - 29/53
2153 // to be really pedantic, this should be ATM_OC3c_PCR
2154 dev->tx_avail = ATM_OC3_PCR;
2155 dev->rx_avail = ATM_OC3_PCR;
2157 #ifdef FILL_RX_POOLS_IN_BH
2158 // initialise bottom half
2159 INIT_WORK(&dev->bh, (void (*)(void *)) fill_rx_pools, dev);
2160 #endif
2162 // semaphore for txer/rxer modifications - we cannot use a
2163 // spinlock as the critical region needs to switch processes
2164 mutex_init(&dev->vcc_sf);
2165 // queue manipulation spinlocks; we want atomic reads and
2166 // writes to the queue descriptors (handles IRQ and SMP)
2167 // consider replacing "int pending" -> "atomic_t available"
2168 // => problem related to who gets to move queue pointers
2169 spin_lock_init (&dev->cq.lock);
2170 spin_lock_init (&dev->txq.lock);
2171 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
2172 spin_lock_init (&dev->rxq[pool].lock);
2175 static void setup_pci_dev(struct pci_dev *pci_dev)
2177 unsigned char lat;
2179 // enable bus master accesses
2180 pci_set_master(pci_dev);
2182 // frobnicate latency (upwards, usually)
2183 pci_read_config_byte (pci_dev, PCI_LATENCY_TIMER, &lat);
2185 if (!pci_lat)
2186 pci_lat = (lat < MIN_PCI_LATENCY) ? MIN_PCI_LATENCY : lat;
2188 if (lat != pci_lat) {
2189 PRINTK (KERN_INFO, "Changing PCI latency timer from %hu to %hu",
2190 lat, pci_lat);
2191 pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, pci_lat);
2195 static int __devinit amb_probe(struct pci_dev *pci_dev, const struct pci_device_id *pci_ent)
2197 amb_dev * dev;
2198 int err;
2199 unsigned int irq;
2201 err = pci_enable_device(pci_dev);
2202 if (err < 0) {
2203 PRINTK (KERN_ERR, "skipped broken (PLX rev 2) card");
2204 goto out;
2207 // read resources from PCI configuration space
2208 irq = pci_dev->irq;
2210 if (pci_dev->device == PCI_DEVICE_ID_MADGE_AMBASSADOR_BAD) {
2211 PRINTK (KERN_ERR, "skipped broken (PLX rev 2) card");
2212 err = -EINVAL;
2213 goto out_disable;
2216 PRINTD (DBG_INFO, "found Madge ATM adapter (amb) at"
2217 " IO %llx, IRQ %u, MEM %p",
2218 (unsigned long long)pci_resource_start(pci_dev, 1),
2219 irq, bus_to_virt(pci_resource_start(pci_dev, 0)));
2221 // check IO region
2222 err = pci_request_region(pci_dev, 1, DEV_LABEL);
2223 if (err < 0) {
2224 PRINTK (KERN_ERR, "IO range already in use!");
2225 goto out_disable;
2228 dev = kzalloc(sizeof(amb_dev), GFP_KERNEL);
2229 if (!dev) {
2230 PRINTK (KERN_ERR, "out of memory!");
2231 err = -ENOMEM;
2232 goto out_release;
2235 setup_dev(dev, pci_dev);
2237 err = amb_init(dev);
2238 if (err < 0) {
2239 PRINTK (KERN_ERR, "adapter initialisation failure");
2240 goto out_free;
2243 setup_pci_dev(pci_dev);
2245 // grab (but share) IRQ and install handler
2246 err = request_irq(irq, interrupt_handler, IRQF_SHARED, DEV_LABEL, dev);
2247 if (err < 0) {
2248 PRINTK (KERN_ERR, "request IRQ failed!");
2249 goto out_reset;
2252 dev->atm_dev = atm_dev_register (DEV_LABEL, &pci_dev->dev, &amb_ops, -1,
2253 NULL);
2254 if (!dev->atm_dev) {
2255 PRINTD (DBG_ERR, "failed to register Madge ATM adapter");
2256 err = -EINVAL;
2257 goto out_free_irq;
2260 PRINTD (DBG_INFO, "registered Madge ATM adapter (no. %d) (%p) at %p",
2261 dev->atm_dev->number, dev, dev->atm_dev);
2262 dev->atm_dev->dev_data = (void *) dev;
2264 // register our address
2265 amb_esi (dev, dev->atm_dev->esi);
2267 // 0 bits for vpi, 10 bits for vci
2268 dev->atm_dev->ci_range.vpi_bits = NUM_VPI_BITS;
2269 dev->atm_dev->ci_range.vci_bits = NUM_VCI_BITS;
2271 init_timer(&dev->housekeeping);
2272 dev->housekeeping.function = do_housekeeping;
2273 dev->housekeeping.data = (unsigned long) dev;
2274 mod_timer(&dev->housekeeping, jiffies);
2276 // enable host interrupts
2277 interrupts_on (dev);
2279 out:
2280 return err;
2282 out_free_irq:
2283 free_irq(irq, dev);
2284 out_reset:
2285 amb_reset(dev, 0);
2286 out_free:
2287 kfree(dev);
2288 out_release:
2289 pci_release_region(pci_dev, 1);
2290 out_disable:
2291 pci_disable_device(pci_dev);
2292 goto out;
2296 static void __devexit amb_remove_one(struct pci_dev *pci_dev)
2298 struct amb_dev *dev;
2300 dev = pci_get_drvdata(pci_dev);
2302 PRINTD(DBG_INFO|DBG_INIT, "closing %p (atm_dev = %p)", dev, dev->atm_dev);
2303 del_timer_sync(&dev->housekeeping);
2304 // the drain should not be necessary
2305 drain_rx_pools(dev);
2306 interrupts_off(dev);
2307 amb_reset(dev, 0);
2308 free_irq(dev->irq, dev);
2309 pci_disable_device(pci_dev);
2310 destroy_queues(dev);
2311 atm_dev_deregister(dev->atm_dev);
2312 kfree(dev);
2313 pci_release_region(pci_dev, 1);
2316 static void __init amb_check_args (void) {
2317 unsigned char pool;
2318 unsigned int max_rx_size;
2320 #ifdef DEBUG_AMBASSADOR
2321 PRINTK (KERN_NOTICE, "debug bitmap is %hx", debug &= DBG_MASK);
2322 #else
2323 if (debug)
2324 PRINTK (KERN_NOTICE, "no debugging support");
2325 #endif
2327 if (cmds < MIN_QUEUE_SIZE)
2328 PRINTK (KERN_NOTICE, "cmds has been raised to %u",
2329 cmds = MIN_QUEUE_SIZE);
2331 if (txs < MIN_QUEUE_SIZE)
2332 PRINTK (KERN_NOTICE, "txs has been raised to %u",
2333 txs = MIN_QUEUE_SIZE);
2335 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
2336 if (rxs[pool] < MIN_QUEUE_SIZE)
2337 PRINTK (KERN_NOTICE, "rxs[%hu] has been raised to %u",
2338 pool, rxs[pool] = MIN_QUEUE_SIZE);
2340 // buffers sizes should be greater than zero and strictly increasing
2341 max_rx_size = 0;
2342 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
2343 if (rxs_bs[pool] <= max_rx_size)
2344 PRINTK (KERN_NOTICE, "useless pool (rxs_bs[%hu] = %u)",
2345 pool, rxs_bs[pool]);
2346 else
2347 max_rx_size = rxs_bs[pool];
2349 if (rx_lats < MIN_RX_BUFFERS)
2350 PRINTK (KERN_NOTICE, "rx_lats has been raised to %u",
2351 rx_lats = MIN_RX_BUFFERS);
2353 return;
2356 /********** module stuff **********/
2358 MODULE_AUTHOR(maintainer_string);
2359 MODULE_DESCRIPTION(description_string);
2360 MODULE_LICENSE("GPL");
2361 MODULE_FIRMWARE("atmsar11.fw");
2362 module_param(debug, ushort, 0644);
2363 module_param(cmds, uint, 0);
2364 module_param(txs, uint, 0);
2365 module_param_array(rxs, uint, NULL, 0);
2366 module_param_array(rxs_bs, uint, NULL, 0);
2367 module_param(rx_lats, uint, 0);
2368 module_param(pci_lat, byte, 0);
2369 MODULE_PARM_DESC(debug, "debug bitmap, see .h file");
2370 MODULE_PARM_DESC(cmds, "number of command queue entries");
2371 MODULE_PARM_DESC(txs, "number of TX queue entries");
2372 MODULE_PARM_DESC(rxs, "number of RX queue entries [" __MODULE_STRING(NUM_RX_POOLS) "]");
2373 MODULE_PARM_DESC(rxs_bs, "size of RX buffers [" __MODULE_STRING(NUM_RX_POOLS) "]");
2374 MODULE_PARM_DESC(rx_lats, "number of extra buffers to cope with RX latencies");
2375 MODULE_PARM_DESC(pci_lat, "PCI latency in bus cycles");
2377 /********** module entry **********/
2379 static struct pci_device_id amb_pci_tbl[] = {
2380 { PCI_VDEVICE(MADGE, PCI_DEVICE_ID_MADGE_AMBASSADOR), 0 },
2381 { PCI_VDEVICE(MADGE, PCI_DEVICE_ID_MADGE_AMBASSADOR_BAD), 0 },
2382 { 0, }
2385 MODULE_DEVICE_TABLE(pci, amb_pci_tbl);
2387 static struct pci_driver amb_driver = {
2388 .name = "amb",
2389 .probe = amb_probe,
2390 .remove = __devexit_p(amb_remove_one),
2391 .id_table = amb_pci_tbl,
2394 static int __init amb_module_init (void)
2396 PRINTD (DBG_FLOW|DBG_INIT, "init_module");
2398 // sanity check - cast needed as printk does not support %Zu
2399 if (sizeof(amb_mem) != 4*16 + 4*12) {
2400 PRINTK (KERN_ERR, "Fix amb_mem (is %lu words).",
2401 (unsigned long) sizeof(amb_mem));
2402 return -ENOMEM;
2405 show_version();
2407 amb_check_args();
2409 // get the juice
2410 return pci_register_driver(&amb_driver);
2413 /********** module exit **********/
2415 static void __exit amb_module_exit (void)
2417 PRINTD (DBG_FLOW|DBG_INIT, "cleanup_module");
2419 pci_unregister_driver(&amb_driver);
2422 module_init(amb_module_init);
2423 module_exit(amb_module_exit);