[S390] Add architecture code for unmapping crashkernel memory
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / memcontrol.c
blob3508777837c70824a946e931f7cf7fa7b1424399
1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/mutex.h>
37 #include <linux/rbtree.h>
38 #include <linux/slab.h>
39 #include <linux/swap.h>
40 #include <linux/swapops.h>
41 #include <linux/spinlock.h>
42 #include <linux/eventfd.h>
43 #include <linux/sort.h>
44 #include <linux/fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/vmalloc.h>
47 #include <linux/mm_inline.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/cpu.h>
50 #include <linux/oom.h>
51 #include "internal.h"
53 #include <asm/uaccess.h>
55 #include <trace/events/vmscan.h>
57 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
58 #define MEM_CGROUP_RECLAIM_RETRIES 5
59 struct mem_cgroup *root_mem_cgroup __read_mostly;
61 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
62 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63 int do_swap_account __read_mostly;
65 /* for remember boot option*/
66 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
67 static int really_do_swap_account __initdata = 1;
68 #else
69 static int really_do_swap_account __initdata = 0;
70 #endif
72 #else
73 #define do_swap_account (0)
74 #endif
78 * Statistics for memory cgroup.
80 enum mem_cgroup_stat_index {
82 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
84 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
85 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
86 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
87 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
88 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
89 MEM_CGROUP_ON_MOVE, /* someone is moving account between groups */
90 MEM_CGROUP_STAT_NSTATS,
93 enum mem_cgroup_events_index {
94 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
95 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
96 MEM_CGROUP_EVENTS_COUNT, /* # of pages paged in/out */
97 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
98 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
99 MEM_CGROUP_EVENTS_NSTATS,
102 * Per memcg event counter is incremented at every pagein/pageout. With THP,
103 * it will be incremated by the number of pages. This counter is used for
104 * for trigger some periodic events. This is straightforward and better
105 * than using jiffies etc. to handle periodic memcg event.
107 enum mem_cgroup_events_target {
108 MEM_CGROUP_TARGET_THRESH,
109 MEM_CGROUP_TARGET_SOFTLIMIT,
110 MEM_CGROUP_TARGET_NUMAINFO,
111 MEM_CGROUP_NTARGETS,
113 #define THRESHOLDS_EVENTS_TARGET (128)
114 #define SOFTLIMIT_EVENTS_TARGET (1024)
115 #define NUMAINFO_EVENTS_TARGET (1024)
117 struct mem_cgroup_stat_cpu {
118 long count[MEM_CGROUP_STAT_NSTATS];
119 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
120 unsigned long targets[MEM_CGROUP_NTARGETS];
124 * per-zone information in memory controller.
126 struct mem_cgroup_per_zone {
128 * spin_lock to protect the per cgroup LRU
130 struct list_head lists[NR_LRU_LISTS];
131 unsigned long count[NR_LRU_LISTS];
133 struct zone_reclaim_stat reclaim_stat;
134 struct rb_node tree_node; /* RB tree node */
135 unsigned long long usage_in_excess;/* Set to the value by which */
136 /* the soft limit is exceeded*/
137 bool on_tree;
138 struct mem_cgroup *mem; /* Back pointer, we cannot */
139 /* use container_of */
141 /* Macro for accessing counter */
142 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
144 struct mem_cgroup_per_node {
145 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
148 struct mem_cgroup_lru_info {
149 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
153 * Cgroups above their limits are maintained in a RB-Tree, independent of
154 * their hierarchy representation
157 struct mem_cgroup_tree_per_zone {
158 struct rb_root rb_root;
159 spinlock_t lock;
162 struct mem_cgroup_tree_per_node {
163 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
166 struct mem_cgroup_tree {
167 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
170 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
172 struct mem_cgroup_threshold {
173 struct eventfd_ctx *eventfd;
174 u64 threshold;
177 /* For threshold */
178 struct mem_cgroup_threshold_ary {
179 /* An array index points to threshold just below usage. */
180 int current_threshold;
181 /* Size of entries[] */
182 unsigned int size;
183 /* Array of thresholds */
184 struct mem_cgroup_threshold entries[0];
187 struct mem_cgroup_thresholds {
188 /* Primary thresholds array */
189 struct mem_cgroup_threshold_ary *primary;
191 * Spare threshold array.
192 * This is needed to make mem_cgroup_unregister_event() "never fail".
193 * It must be able to store at least primary->size - 1 entries.
195 struct mem_cgroup_threshold_ary *spare;
198 /* for OOM */
199 struct mem_cgroup_eventfd_list {
200 struct list_head list;
201 struct eventfd_ctx *eventfd;
204 static void mem_cgroup_threshold(struct mem_cgroup *mem);
205 static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
208 * The memory controller data structure. The memory controller controls both
209 * page cache and RSS per cgroup. We would eventually like to provide
210 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
211 * to help the administrator determine what knobs to tune.
213 * TODO: Add a water mark for the memory controller. Reclaim will begin when
214 * we hit the water mark. May be even add a low water mark, such that
215 * no reclaim occurs from a cgroup at it's low water mark, this is
216 * a feature that will be implemented much later in the future.
218 struct mem_cgroup {
219 struct cgroup_subsys_state css;
221 * the counter to account for memory usage
223 struct res_counter res;
225 * the counter to account for mem+swap usage.
227 struct res_counter memsw;
229 * Per cgroup active and inactive list, similar to the
230 * per zone LRU lists.
232 struct mem_cgroup_lru_info info;
234 * While reclaiming in a hierarchy, we cache the last child we
235 * reclaimed from.
237 int last_scanned_child;
238 int last_scanned_node;
239 #if MAX_NUMNODES > 1
240 nodemask_t scan_nodes;
241 atomic_t numainfo_events;
242 atomic_t numainfo_updating;
243 #endif
245 * Should the accounting and control be hierarchical, per subtree?
247 bool use_hierarchy;
249 bool oom_lock;
250 atomic_t under_oom;
252 atomic_t refcnt;
254 int swappiness;
255 /* OOM-Killer disable */
256 int oom_kill_disable;
258 /* set when res.limit == memsw.limit */
259 bool memsw_is_minimum;
261 /* protect arrays of thresholds */
262 struct mutex thresholds_lock;
264 /* thresholds for memory usage. RCU-protected */
265 struct mem_cgroup_thresholds thresholds;
267 /* thresholds for mem+swap usage. RCU-protected */
268 struct mem_cgroup_thresholds memsw_thresholds;
270 /* For oom notifier event fd */
271 struct list_head oom_notify;
274 * Should we move charges of a task when a task is moved into this
275 * mem_cgroup ? And what type of charges should we move ?
277 unsigned long move_charge_at_immigrate;
279 * percpu counter.
281 struct mem_cgroup_stat_cpu *stat;
283 * used when a cpu is offlined or other synchronizations
284 * See mem_cgroup_read_stat().
286 struct mem_cgroup_stat_cpu nocpu_base;
287 spinlock_t pcp_counter_lock;
290 /* Stuffs for move charges at task migration. */
292 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
293 * left-shifted bitmap of these types.
295 enum move_type {
296 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
297 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
298 NR_MOVE_TYPE,
301 /* "mc" and its members are protected by cgroup_mutex */
302 static struct move_charge_struct {
303 spinlock_t lock; /* for from, to */
304 struct mem_cgroup *from;
305 struct mem_cgroup *to;
306 unsigned long precharge;
307 unsigned long moved_charge;
308 unsigned long moved_swap;
309 struct task_struct *moving_task; /* a task moving charges */
310 wait_queue_head_t waitq; /* a waitq for other context */
311 } mc = {
312 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
313 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
316 static bool move_anon(void)
318 return test_bit(MOVE_CHARGE_TYPE_ANON,
319 &mc.to->move_charge_at_immigrate);
322 static bool move_file(void)
324 return test_bit(MOVE_CHARGE_TYPE_FILE,
325 &mc.to->move_charge_at_immigrate);
329 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
330 * limit reclaim to prevent infinite loops, if they ever occur.
332 #define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
333 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
335 enum charge_type {
336 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
337 MEM_CGROUP_CHARGE_TYPE_MAPPED,
338 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
339 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
340 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
341 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
342 NR_CHARGE_TYPE,
345 /* for encoding cft->private value on file */
346 #define _MEM (0)
347 #define _MEMSWAP (1)
348 #define _OOM_TYPE (2)
349 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
350 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
351 #define MEMFILE_ATTR(val) ((val) & 0xffff)
352 /* Used for OOM nofiier */
353 #define OOM_CONTROL (0)
356 * Reclaim flags for mem_cgroup_hierarchical_reclaim
358 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
359 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
360 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
361 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
362 #define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
363 #define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
365 static void mem_cgroup_get(struct mem_cgroup *mem);
366 static void mem_cgroup_put(struct mem_cgroup *mem);
367 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
368 static void drain_all_stock_async(struct mem_cgroup *mem);
370 static struct mem_cgroup_per_zone *
371 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
373 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
376 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
378 return &mem->css;
381 static struct mem_cgroup_per_zone *
382 page_cgroup_zoneinfo(struct mem_cgroup *mem, struct page *page)
384 int nid = page_to_nid(page);
385 int zid = page_zonenum(page);
387 return mem_cgroup_zoneinfo(mem, nid, zid);
390 static struct mem_cgroup_tree_per_zone *
391 soft_limit_tree_node_zone(int nid, int zid)
393 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
396 static struct mem_cgroup_tree_per_zone *
397 soft_limit_tree_from_page(struct page *page)
399 int nid = page_to_nid(page);
400 int zid = page_zonenum(page);
402 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
405 static void
406 __mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
407 struct mem_cgroup_per_zone *mz,
408 struct mem_cgroup_tree_per_zone *mctz,
409 unsigned long long new_usage_in_excess)
411 struct rb_node **p = &mctz->rb_root.rb_node;
412 struct rb_node *parent = NULL;
413 struct mem_cgroup_per_zone *mz_node;
415 if (mz->on_tree)
416 return;
418 mz->usage_in_excess = new_usage_in_excess;
419 if (!mz->usage_in_excess)
420 return;
421 while (*p) {
422 parent = *p;
423 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
424 tree_node);
425 if (mz->usage_in_excess < mz_node->usage_in_excess)
426 p = &(*p)->rb_left;
428 * We can't avoid mem cgroups that are over their soft
429 * limit by the same amount
431 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
432 p = &(*p)->rb_right;
434 rb_link_node(&mz->tree_node, parent, p);
435 rb_insert_color(&mz->tree_node, &mctz->rb_root);
436 mz->on_tree = true;
439 static void
440 __mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
441 struct mem_cgroup_per_zone *mz,
442 struct mem_cgroup_tree_per_zone *mctz)
444 if (!mz->on_tree)
445 return;
446 rb_erase(&mz->tree_node, &mctz->rb_root);
447 mz->on_tree = false;
450 static void
451 mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
452 struct mem_cgroup_per_zone *mz,
453 struct mem_cgroup_tree_per_zone *mctz)
455 spin_lock(&mctz->lock);
456 __mem_cgroup_remove_exceeded(mem, mz, mctz);
457 spin_unlock(&mctz->lock);
461 static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
463 unsigned long long excess;
464 struct mem_cgroup_per_zone *mz;
465 struct mem_cgroup_tree_per_zone *mctz;
466 int nid = page_to_nid(page);
467 int zid = page_zonenum(page);
468 mctz = soft_limit_tree_from_page(page);
471 * Necessary to update all ancestors when hierarchy is used.
472 * because their event counter is not touched.
474 for (; mem; mem = parent_mem_cgroup(mem)) {
475 mz = mem_cgroup_zoneinfo(mem, nid, zid);
476 excess = res_counter_soft_limit_excess(&mem->res);
478 * We have to update the tree if mz is on RB-tree or
479 * mem is over its softlimit.
481 if (excess || mz->on_tree) {
482 spin_lock(&mctz->lock);
483 /* if on-tree, remove it */
484 if (mz->on_tree)
485 __mem_cgroup_remove_exceeded(mem, mz, mctz);
487 * Insert again. mz->usage_in_excess will be updated.
488 * If excess is 0, no tree ops.
490 __mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
491 spin_unlock(&mctz->lock);
496 static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
498 int node, zone;
499 struct mem_cgroup_per_zone *mz;
500 struct mem_cgroup_tree_per_zone *mctz;
502 for_each_node_state(node, N_POSSIBLE) {
503 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
504 mz = mem_cgroup_zoneinfo(mem, node, zone);
505 mctz = soft_limit_tree_node_zone(node, zone);
506 mem_cgroup_remove_exceeded(mem, mz, mctz);
511 static struct mem_cgroup_per_zone *
512 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
514 struct rb_node *rightmost = NULL;
515 struct mem_cgroup_per_zone *mz;
517 retry:
518 mz = NULL;
519 rightmost = rb_last(&mctz->rb_root);
520 if (!rightmost)
521 goto done; /* Nothing to reclaim from */
523 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
525 * Remove the node now but someone else can add it back,
526 * we will to add it back at the end of reclaim to its correct
527 * position in the tree.
529 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
530 if (!res_counter_soft_limit_excess(&mz->mem->res) ||
531 !css_tryget(&mz->mem->css))
532 goto retry;
533 done:
534 return mz;
537 static struct mem_cgroup_per_zone *
538 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
540 struct mem_cgroup_per_zone *mz;
542 spin_lock(&mctz->lock);
543 mz = __mem_cgroup_largest_soft_limit_node(mctz);
544 spin_unlock(&mctz->lock);
545 return mz;
549 * Implementation Note: reading percpu statistics for memcg.
551 * Both of vmstat[] and percpu_counter has threshold and do periodic
552 * synchronization to implement "quick" read. There are trade-off between
553 * reading cost and precision of value. Then, we may have a chance to implement
554 * a periodic synchronizion of counter in memcg's counter.
556 * But this _read() function is used for user interface now. The user accounts
557 * memory usage by memory cgroup and he _always_ requires exact value because
558 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
559 * have to visit all online cpus and make sum. So, for now, unnecessary
560 * synchronization is not implemented. (just implemented for cpu hotplug)
562 * If there are kernel internal actions which can make use of some not-exact
563 * value, and reading all cpu value can be performance bottleneck in some
564 * common workload, threashold and synchonization as vmstat[] should be
565 * implemented.
567 static long mem_cgroup_read_stat(struct mem_cgroup *mem,
568 enum mem_cgroup_stat_index idx)
570 long val = 0;
571 int cpu;
573 get_online_cpus();
574 for_each_online_cpu(cpu)
575 val += per_cpu(mem->stat->count[idx], cpu);
576 #ifdef CONFIG_HOTPLUG_CPU
577 spin_lock(&mem->pcp_counter_lock);
578 val += mem->nocpu_base.count[idx];
579 spin_unlock(&mem->pcp_counter_lock);
580 #endif
581 put_online_cpus();
582 return val;
585 static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
586 bool charge)
588 int val = (charge) ? 1 : -1;
589 this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
592 void mem_cgroup_pgfault(struct mem_cgroup *mem, int val)
594 this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGFAULT], val);
597 void mem_cgroup_pgmajfault(struct mem_cgroup *mem, int val)
599 this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT], val);
602 static unsigned long mem_cgroup_read_events(struct mem_cgroup *mem,
603 enum mem_cgroup_events_index idx)
605 unsigned long val = 0;
606 int cpu;
608 for_each_online_cpu(cpu)
609 val += per_cpu(mem->stat->events[idx], cpu);
610 #ifdef CONFIG_HOTPLUG_CPU
611 spin_lock(&mem->pcp_counter_lock);
612 val += mem->nocpu_base.events[idx];
613 spin_unlock(&mem->pcp_counter_lock);
614 #endif
615 return val;
618 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
619 bool file, int nr_pages)
621 preempt_disable();
623 if (file)
624 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
625 else
626 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
628 /* pagein of a big page is an event. So, ignore page size */
629 if (nr_pages > 0)
630 __this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
631 else {
632 __this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
633 nr_pages = -nr_pages; /* for event */
636 __this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
638 preempt_enable();
641 unsigned long
642 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *mem, int nid, int zid,
643 unsigned int lru_mask)
645 struct mem_cgroup_per_zone *mz;
646 enum lru_list l;
647 unsigned long ret = 0;
649 mz = mem_cgroup_zoneinfo(mem, nid, zid);
651 for_each_lru(l) {
652 if (BIT(l) & lru_mask)
653 ret += MEM_CGROUP_ZSTAT(mz, l);
655 return ret;
658 static unsigned long
659 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *mem,
660 int nid, unsigned int lru_mask)
662 u64 total = 0;
663 int zid;
665 for (zid = 0; zid < MAX_NR_ZONES; zid++)
666 total += mem_cgroup_zone_nr_lru_pages(mem, nid, zid, lru_mask);
668 return total;
671 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *mem,
672 unsigned int lru_mask)
674 int nid;
675 u64 total = 0;
677 for_each_node_state(nid, N_HIGH_MEMORY)
678 total += mem_cgroup_node_nr_lru_pages(mem, nid, lru_mask);
679 return total;
682 static bool __memcg_event_check(struct mem_cgroup *mem, int target)
684 unsigned long val, next;
686 val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
687 next = this_cpu_read(mem->stat->targets[target]);
688 /* from time_after() in jiffies.h */
689 return ((long)next - (long)val < 0);
692 static void __mem_cgroup_target_update(struct mem_cgroup *mem, int target)
694 unsigned long val, next;
696 val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
698 switch (target) {
699 case MEM_CGROUP_TARGET_THRESH:
700 next = val + THRESHOLDS_EVENTS_TARGET;
701 break;
702 case MEM_CGROUP_TARGET_SOFTLIMIT:
703 next = val + SOFTLIMIT_EVENTS_TARGET;
704 break;
705 case MEM_CGROUP_TARGET_NUMAINFO:
706 next = val + NUMAINFO_EVENTS_TARGET;
707 break;
708 default:
709 return;
712 this_cpu_write(mem->stat->targets[target], next);
716 * Check events in order.
719 static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
721 /* threshold event is triggered in finer grain than soft limit */
722 if (unlikely(__memcg_event_check(mem, MEM_CGROUP_TARGET_THRESH))) {
723 mem_cgroup_threshold(mem);
724 __mem_cgroup_target_update(mem, MEM_CGROUP_TARGET_THRESH);
725 if (unlikely(__memcg_event_check(mem,
726 MEM_CGROUP_TARGET_SOFTLIMIT))) {
727 mem_cgroup_update_tree(mem, page);
728 __mem_cgroup_target_update(mem,
729 MEM_CGROUP_TARGET_SOFTLIMIT);
731 #if MAX_NUMNODES > 1
732 if (unlikely(__memcg_event_check(mem,
733 MEM_CGROUP_TARGET_NUMAINFO))) {
734 atomic_inc(&mem->numainfo_events);
735 __mem_cgroup_target_update(mem,
736 MEM_CGROUP_TARGET_NUMAINFO);
738 #endif
742 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
744 return container_of(cgroup_subsys_state(cont,
745 mem_cgroup_subsys_id), struct mem_cgroup,
746 css);
749 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
752 * mm_update_next_owner() may clear mm->owner to NULL
753 * if it races with swapoff, page migration, etc.
754 * So this can be called with p == NULL.
756 if (unlikely(!p))
757 return NULL;
759 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
760 struct mem_cgroup, css);
763 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
765 struct mem_cgroup *mem = NULL;
767 if (!mm)
768 return NULL;
770 * Because we have no locks, mm->owner's may be being moved to other
771 * cgroup. We use css_tryget() here even if this looks
772 * pessimistic (rather than adding locks here).
774 rcu_read_lock();
775 do {
776 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
777 if (unlikely(!mem))
778 break;
779 } while (!css_tryget(&mem->css));
780 rcu_read_unlock();
781 return mem;
784 /* The caller has to guarantee "mem" exists before calling this */
785 static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
787 struct cgroup_subsys_state *css;
788 int found;
790 if (!mem) /* ROOT cgroup has the smallest ID */
791 return root_mem_cgroup; /*css_put/get against root is ignored*/
792 if (!mem->use_hierarchy) {
793 if (css_tryget(&mem->css))
794 return mem;
795 return NULL;
797 rcu_read_lock();
799 * searching a memory cgroup which has the smallest ID under given
800 * ROOT cgroup. (ID >= 1)
802 css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
803 if (css && css_tryget(css))
804 mem = container_of(css, struct mem_cgroup, css);
805 else
806 mem = NULL;
807 rcu_read_unlock();
808 return mem;
811 static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
812 struct mem_cgroup *root,
813 bool cond)
815 int nextid = css_id(&iter->css) + 1;
816 int found;
817 int hierarchy_used;
818 struct cgroup_subsys_state *css;
820 hierarchy_used = iter->use_hierarchy;
822 css_put(&iter->css);
823 /* If no ROOT, walk all, ignore hierarchy */
824 if (!cond || (root && !hierarchy_used))
825 return NULL;
827 if (!root)
828 root = root_mem_cgroup;
830 do {
831 iter = NULL;
832 rcu_read_lock();
834 css = css_get_next(&mem_cgroup_subsys, nextid,
835 &root->css, &found);
836 if (css && css_tryget(css))
837 iter = container_of(css, struct mem_cgroup, css);
838 rcu_read_unlock();
839 /* If css is NULL, no more cgroups will be found */
840 nextid = found + 1;
841 } while (css && !iter);
843 return iter;
846 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
847 * be careful that "break" loop is not allowed. We have reference count.
848 * Instead of that modify "cond" to be false and "continue" to exit the loop.
850 #define for_each_mem_cgroup_tree_cond(iter, root, cond) \
851 for (iter = mem_cgroup_start_loop(root);\
852 iter != NULL;\
853 iter = mem_cgroup_get_next(iter, root, cond))
855 #define for_each_mem_cgroup_tree(iter, root) \
856 for_each_mem_cgroup_tree_cond(iter, root, true)
858 #define for_each_mem_cgroup_all(iter) \
859 for_each_mem_cgroup_tree_cond(iter, NULL, true)
862 static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
864 return (mem == root_mem_cgroup);
867 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
869 struct mem_cgroup *mem;
871 if (!mm)
872 return;
874 rcu_read_lock();
875 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
876 if (unlikely(!mem))
877 goto out;
879 switch (idx) {
880 case PGMAJFAULT:
881 mem_cgroup_pgmajfault(mem, 1);
882 break;
883 case PGFAULT:
884 mem_cgroup_pgfault(mem, 1);
885 break;
886 default:
887 BUG();
889 out:
890 rcu_read_unlock();
892 EXPORT_SYMBOL(mem_cgroup_count_vm_event);
895 * Following LRU functions are allowed to be used without PCG_LOCK.
896 * Operations are called by routine of global LRU independently from memcg.
897 * What we have to take care of here is validness of pc->mem_cgroup.
899 * Changes to pc->mem_cgroup happens when
900 * 1. charge
901 * 2. moving account
902 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
903 * It is added to LRU before charge.
904 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
905 * When moving account, the page is not on LRU. It's isolated.
908 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
910 struct page_cgroup *pc;
911 struct mem_cgroup_per_zone *mz;
913 if (mem_cgroup_disabled())
914 return;
915 pc = lookup_page_cgroup(page);
916 /* can happen while we handle swapcache. */
917 if (!TestClearPageCgroupAcctLRU(pc))
918 return;
919 VM_BUG_ON(!pc->mem_cgroup);
921 * We don't check PCG_USED bit. It's cleared when the "page" is finally
922 * removed from global LRU.
924 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
925 /* huge page split is done under lru_lock. so, we have no races. */
926 MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
927 if (mem_cgroup_is_root(pc->mem_cgroup))
928 return;
929 VM_BUG_ON(list_empty(&pc->lru));
930 list_del_init(&pc->lru);
933 void mem_cgroup_del_lru(struct page *page)
935 mem_cgroup_del_lru_list(page, page_lru(page));
939 * Writeback is about to end against a page which has been marked for immediate
940 * reclaim. If it still appears to be reclaimable, move it to the tail of the
941 * inactive list.
943 void mem_cgroup_rotate_reclaimable_page(struct page *page)
945 struct mem_cgroup_per_zone *mz;
946 struct page_cgroup *pc;
947 enum lru_list lru = page_lru(page);
949 if (mem_cgroup_disabled())
950 return;
952 pc = lookup_page_cgroup(page);
953 /* unused or root page is not rotated. */
954 if (!PageCgroupUsed(pc))
955 return;
956 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
957 smp_rmb();
958 if (mem_cgroup_is_root(pc->mem_cgroup))
959 return;
960 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
961 list_move_tail(&pc->lru, &mz->lists[lru]);
964 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
966 struct mem_cgroup_per_zone *mz;
967 struct page_cgroup *pc;
969 if (mem_cgroup_disabled())
970 return;
972 pc = lookup_page_cgroup(page);
973 /* unused or root page is not rotated. */
974 if (!PageCgroupUsed(pc))
975 return;
976 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
977 smp_rmb();
978 if (mem_cgroup_is_root(pc->mem_cgroup))
979 return;
980 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
981 list_move(&pc->lru, &mz->lists[lru]);
984 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
986 struct page_cgroup *pc;
987 struct mem_cgroup_per_zone *mz;
989 if (mem_cgroup_disabled())
990 return;
991 pc = lookup_page_cgroup(page);
992 VM_BUG_ON(PageCgroupAcctLRU(pc));
993 if (!PageCgroupUsed(pc))
994 return;
995 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
996 smp_rmb();
997 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
998 /* huge page split is done under lru_lock. so, we have no races. */
999 MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
1000 SetPageCgroupAcctLRU(pc);
1001 if (mem_cgroup_is_root(pc->mem_cgroup))
1002 return;
1003 list_add(&pc->lru, &mz->lists[lru]);
1007 * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
1008 * while it's linked to lru because the page may be reused after it's fully
1009 * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
1010 * It's done under lock_page and expected that zone->lru_lock isnever held.
1012 static void mem_cgroup_lru_del_before_commit(struct page *page)
1014 unsigned long flags;
1015 struct zone *zone = page_zone(page);
1016 struct page_cgroup *pc = lookup_page_cgroup(page);
1019 * Doing this check without taking ->lru_lock seems wrong but this
1020 * is safe. Because if page_cgroup's USED bit is unset, the page
1021 * will not be added to any memcg's LRU. If page_cgroup's USED bit is
1022 * set, the commit after this will fail, anyway.
1023 * This all charge/uncharge is done under some mutual execustion.
1024 * So, we don't need to taking care of changes in USED bit.
1026 if (likely(!PageLRU(page)))
1027 return;
1029 spin_lock_irqsave(&zone->lru_lock, flags);
1031 * Forget old LRU when this page_cgroup is *not* used. This Used bit
1032 * is guarded by lock_page() because the page is SwapCache.
1034 if (!PageCgroupUsed(pc))
1035 mem_cgroup_del_lru_list(page, page_lru(page));
1036 spin_unlock_irqrestore(&zone->lru_lock, flags);
1039 static void mem_cgroup_lru_add_after_commit(struct page *page)
1041 unsigned long flags;
1042 struct zone *zone = page_zone(page);
1043 struct page_cgroup *pc = lookup_page_cgroup(page);
1045 /* taking care of that the page is added to LRU while we commit it */
1046 if (likely(!PageLRU(page)))
1047 return;
1048 spin_lock_irqsave(&zone->lru_lock, flags);
1049 /* link when the page is linked to LRU but page_cgroup isn't */
1050 if (PageLRU(page) && !PageCgroupAcctLRU(pc))
1051 mem_cgroup_add_lru_list(page, page_lru(page));
1052 spin_unlock_irqrestore(&zone->lru_lock, flags);
1056 void mem_cgroup_move_lists(struct page *page,
1057 enum lru_list from, enum lru_list to)
1059 if (mem_cgroup_disabled())
1060 return;
1061 mem_cgroup_del_lru_list(page, from);
1062 mem_cgroup_add_lru_list(page, to);
1066 * Checks whether given mem is same or in the root_mem's
1067 * hierarchy subtree
1069 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_mem,
1070 struct mem_cgroup *mem)
1072 if (root_mem != mem) {
1073 return (root_mem->use_hierarchy &&
1074 css_is_ancestor(&mem->css, &root_mem->css));
1077 return true;
1080 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
1082 int ret;
1083 struct mem_cgroup *curr = NULL;
1084 struct task_struct *p;
1086 p = find_lock_task_mm(task);
1087 if (!p)
1088 return 0;
1089 curr = try_get_mem_cgroup_from_mm(p->mm);
1090 task_unlock(p);
1091 if (!curr)
1092 return 0;
1094 * We should check use_hierarchy of "mem" not "curr". Because checking
1095 * use_hierarchy of "curr" here make this function true if hierarchy is
1096 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
1097 * hierarchy(even if use_hierarchy is disabled in "mem").
1099 ret = mem_cgroup_same_or_subtree(mem, curr);
1100 css_put(&curr->css);
1101 return ret;
1104 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
1106 unsigned long active;
1107 unsigned long inactive;
1108 unsigned long gb;
1109 unsigned long inactive_ratio;
1111 inactive = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
1112 active = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
1114 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1115 if (gb)
1116 inactive_ratio = int_sqrt(10 * gb);
1117 else
1118 inactive_ratio = 1;
1120 if (present_pages) {
1121 present_pages[0] = inactive;
1122 present_pages[1] = active;
1125 return inactive_ratio;
1128 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
1130 unsigned long active;
1131 unsigned long inactive;
1132 unsigned long present_pages[2];
1133 unsigned long inactive_ratio;
1135 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
1137 inactive = present_pages[0];
1138 active = present_pages[1];
1140 if (inactive * inactive_ratio < active)
1141 return 1;
1143 return 0;
1146 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
1148 unsigned long active;
1149 unsigned long inactive;
1151 inactive = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
1152 active = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
1154 return (active > inactive);
1157 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1158 struct zone *zone)
1160 int nid = zone_to_nid(zone);
1161 int zid = zone_idx(zone);
1162 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1164 return &mz->reclaim_stat;
1167 struct zone_reclaim_stat *
1168 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1170 struct page_cgroup *pc;
1171 struct mem_cgroup_per_zone *mz;
1173 if (mem_cgroup_disabled())
1174 return NULL;
1176 pc = lookup_page_cgroup(page);
1177 if (!PageCgroupUsed(pc))
1178 return NULL;
1179 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1180 smp_rmb();
1181 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1182 return &mz->reclaim_stat;
1185 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1186 struct list_head *dst,
1187 unsigned long *scanned, int order,
1188 int mode, struct zone *z,
1189 struct mem_cgroup *mem_cont,
1190 int active, int file)
1192 unsigned long nr_taken = 0;
1193 struct page *page;
1194 unsigned long scan;
1195 LIST_HEAD(pc_list);
1196 struct list_head *src;
1197 struct page_cgroup *pc, *tmp;
1198 int nid = zone_to_nid(z);
1199 int zid = zone_idx(z);
1200 struct mem_cgroup_per_zone *mz;
1201 int lru = LRU_FILE * file + active;
1202 int ret;
1204 BUG_ON(!mem_cont);
1205 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1206 src = &mz->lists[lru];
1208 scan = 0;
1209 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
1210 if (scan >= nr_to_scan)
1211 break;
1213 if (unlikely(!PageCgroupUsed(pc)))
1214 continue;
1216 page = lookup_cgroup_page(pc);
1218 if (unlikely(!PageLRU(page)))
1219 continue;
1221 scan++;
1222 ret = __isolate_lru_page(page, mode, file);
1223 switch (ret) {
1224 case 0:
1225 list_move(&page->lru, dst);
1226 mem_cgroup_del_lru(page);
1227 nr_taken += hpage_nr_pages(page);
1228 break;
1229 case -EBUSY:
1230 /* we don't affect global LRU but rotate in our LRU */
1231 mem_cgroup_rotate_lru_list(page, page_lru(page));
1232 break;
1233 default:
1234 break;
1238 *scanned = scan;
1240 trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1241 0, 0, 0, mode);
1243 return nr_taken;
1246 #define mem_cgroup_from_res_counter(counter, member) \
1247 container_of(counter, struct mem_cgroup, member)
1250 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1251 * @mem: the memory cgroup
1253 * Returns the maximum amount of memory @mem can be charged with, in
1254 * pages.
1256 static unsigned long mem_cgroup_margin(struct mem_cgroup *mem)
1258 unsigned long long margin;
1260 margin = res_counter_margin(&mem->res);
1261 if (do_swap_account)
1262 margin = min(margin, res_counter_margin(&mem->memsw));
1263 return margin >> PAGE_SHIFT;
1266 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1268 struct cgroup *cgrp = memcg->css.cgroup;
1270 /* root ? */
1271 if (cgrp->parent == NULL)
1272 return vm_swappiness;
1274 return memcg->swappiness;
1277 static void mem_cgroup_start_move(struct mem_cgroup *mem)
1279 int cpu;
1281 get_online_cpus();
1282 spin_lock(&mem->pcp_counter_lock);
1283 for_each_online_cpu(cpu)
1284 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1285 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1286 spin_unlock(&mem->pcp_counter_lock);
1287 put_online_cpus();
1289 synchronize_rcu();
1292 static void mem_cgroup_end_move(struct mem_cgroup *mem)
1294 int cpu;
1296 if (!mem)
1297 return;
1298 get_online_cpus();
1299 spin_lock(&mem->pcp_counter_lock);
1300 for_each_online_cpu(cpu)
1301 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1302 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1303 spin_unlock(&mem->pcp_counter_lock);
1304 put_online_cpus();
1307 * 2 routines for checking "mem" is under move_account() or not.
1309 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1310 * for avoiding race in accounting. If true,
1311 * pc->mem_cgroup may be overwritten.
1313 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1314 * under hierarchy of moving cgroups. This is for
1315 * waiting at hith-memory prressure caused by "move".
1318 static bool mem_cgroup_stealed(struct mem_cgroup *mem)
1320 VM_BUG_ON(!rcu_read_lock_held());
1321 return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1324 static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1326 struct mem_cgroup *from;
1327 struct mem_cgroup *to;
1328 bool ret = false;
1330 * Unlike task_move routines, we access mc.to, mc.from not under
1331 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1333 spin_lock(&mc.lock);
1334 from = mc.from;
1335 to = mc.to;
1336 if (!from)
1337 goto unlock;
1339 ret = mem_cgroup_same_or_subtree(mem, from)
1340 || mem_cgroup_same_or_subtree(mem, to);
1341 unlock:
1342 spin_unlock(&mc.lock);
1343 return ret;
1346 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1348 if (mc.moving_task && current != mc.moving_task) {
1349 if (mem_cgroup_under_move(mem)) {
1350 DEFINE_WAIT(wait);
1351 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1352 /* moving charge context might have finished. */
1353 if (mc.moving_task)
1354 schedule();
1355 finish_wait(&mc.waitq, &wait);
1356 return true;
1359 return false;
1363 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1364 * @memcg: The memory cgroup that went over limit
1365 * @p: Task that is going to be killed
1367 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1368 * enabled
1370 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1372 struct cgroup *task_cgrp;
1373 struct cgroup *mem_cgrp;
1375 * Need a buffer in BSS, can't rely on allocations. The code relies
1376 * on the assumption that OOM is serialized for memory controller.
1377 * If this assumption is broken, revisit this code.
1379 static char memcg_name[PATH_MAX];
1380 int ret;
1382 if (!memcg || !p)
1383 return;
1386 rcu_read_lock();
1388 mem_cgrp = memcg->css.cgroup;
1389 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1391 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1392 if (ret < 0) {
1394 * Unfortunately, we are unable to convert to a useful name
1395 * But we'll still print out the usage information
1397 rcu_read_unlock();
1398 goto done;
1400 rcu_read_unlock();
1402 printk(KERN_INFO "Task in %s killed", memcg_name);
1404 rcu_read_lock();
1405 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1406 if (ret < 0) {
1407 rcu_read_unlock();
1408 goto done;
1410 rcu_read_unlock();
1413 * Continues from above, so we don't need an KERN_ level
1415 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1416 done:
1418 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1419 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1420 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1421 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1422 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1423 "failcnt %llu\n",
1424 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1425 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1426 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1430 * This function returns the number of memcg under hierarchy tree. Returns
1431 * 1(self count) if no children.
1433 static int mem_cgroup_count_children(struct mem_cgroup *mem)
1435 int num = 0;
1436 struct mem_cgroup *iter;
1438 for_each_mem_cgroup_tree(iter, mem)
1439 num++;
1440 return num;
1444 * Return the memory (and swap, if configured) limit for a memcg.
1446 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1448 u64 limit;
1449 u64 memsw;
1451 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1452 limit += total_swap_pages << PAGE_SHIFT;
1454 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1456 * If memsw is finite and limits the amount of swap space available
1457 * to this memcg, return that limit.
1459 return min(limit, memsw);
1463 * Visit the first child (need not be the first child as per the ordering
1464 * of the cgroup list, since we track last_scanned_child) of @mem and use
1465 * that to reclaim free pages from.
1467 static struct mem_cgroup *
1468 mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1470 struct mem_cgroup *ret = NULL;
1471 struct cgroup_subsys_state *css;
1472 int nextid, found;
1474 if (!root_mem->use_hierarchy) {
1475 css_get(&root_mem->css);
1476 ret = root_mem;
1479 while (!ret) {
1480 rcu_read_lock();
1481 nextid = root_mem->last_scanned_child + 1;
1482 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1483 &found);
1484 if (css && css_tryget(css))
1485 ret = container_of(css, struct mem_cgroup, css);
1487 rcu_read_unlock();
1488 /* Updates scanning parameter */
1489 if (!css) {
1490 /* this means start scan from ID:1 */
1491 root_mem->last_scanned_child = 0;
1492 } else
1493 root_mem->last_scanned_child = found;
1496 return ret;
1500 * test_mem_cgroup_node_reclaimable
1501 * @mem: the target memcg
1502 * @nid: the node ID to be checked.
1503 * @noswap : specify true here if the user wants flle only information.
1505 * This function returns whether the specified memcg contains any
1506 * reclaimable pages on a node. Returns true if there are any reclaimable
1507 * pages in the node.
1509 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *mem,
1510 int nid, bool noswap)
1512 if (mem_cgroup_node_nr_lru_pages(mem, nid, LRU_ALL_FILE))
1513 return true;
1514 if (noswap || !total_swap_pages)
1515 return false;
1516 if (mem_cgroup_node_nr_lru_pages(mem, nid, LRU_ALL_ANON))
1517 return true;
1518 return false;
1521 #if MAX_NUMNODES > 1
1524 * Always updating the nodemask is not very good - even if we have an empty
1525 * list or the wrong list here, we can start from some node and traverse all
1526 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1529 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *mem)
1531 int nid;
1533 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1534 * pagein/pageout changes since the last update.
1536 if (!atomic_read(&mem->numainfo_events))
1537 return;
1538 if (atomic_inc_return(&mem->numainfo_updating) > 1)
1539 return;
1541 /* make a nodemask where this memcg uses memory from */
1542 mem->scan_nodes = node_states[N_HIGH_MEMORY];
1544 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1546 if (!test_mem_cgroup_node_reclaimable(mem, nid, false))
1547 node_clear(nid, mem->scan_nodes);
1550 atomic_set(&mem->numainfo_events, 0);
1551 atomic_set(&mem->numainfo_updating, 0);
1555 * Selecting a node where we start reclaim from. Because what we need is just
1556 * reducing usage counter, start from anywhere is O,K. Considering
1557 * memory reclaim from current node, there are pros. and cons.
1559 * Freeing memory from current node means freeing memory from a node which
1560 * we'll use or we've used. So, it may make LRU bad. And if several threads
1561 * hit limits, it will see a contention on a node. But freeing from remote
1562 * node means more costs for memory reclaim because of memory latency.
1564 * Now, we use round-robin. Better algorithm is welcomed.
1566 int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
1568 int node;
1570 mem_cgroup_may_update_nodemask(mem);
1571 node = mem->last_scanned_node;
1573 node = next_node(node, mem->scan_nodes);
1574 if (node == MAX_NUMNODES)
1575 node = first_node(mem->scan_nodes);
1577 * We call this when we hit limit, not when pages are added to LRU.
1578 * No LRU may hold pages because all pages are UNEVICTABLE or
1579 * memcg is too small and all pages are not on LRU. In that case,
1580 * we use curret node.
1582 if (unlikely(node == MAX_NUMNODES))
1583 node = numa_node_id();
1585 mem->last_scanned_node = node;
1586 return node;
1590 * Check all nodes whether it contains reclaimable pages or not.
1591 * For quick scan, we make use of scan_nodes. This will allow us to skip
1592 * unused nodes. But scan_nodes is lazily updated and may not cotain
1593 * enough new information. We need to do double check.
1595 bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap)
1597 int nid;
1600 * quick check...making use of scan_node.
1601 * We can skip unused nodes.
1603 if (!nodes_empty(mem->scan_nodes)) {
1604 for (nid = first_node(mem->scan_nodes);
1605 nid < MAX_NUMNODES;
1606 nid = next_node(nid, mem->scan_nodes)) {
1608 if (test_mem_cgroup_node_reclaimable(mem, nid, noswap))
1609 return true;
1613 * Check rest of nodes.
1615 for_each_node_state(nid, N_HIGH_MEMORY) {
1616 if (node_isset(nid, mem->scan_nodes))
1617 continue;
1618 if (test_mem_cgroup_node_reclaimable(mem, nid, noswap))
1619 return true;
1621 return false;
1624 #else
1625 int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
1627 return 0;
1630 bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap)
1632 return test_mem_cgroup_node_reclaimable(mem, 0, noswap);
1634 #endif
1637 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1638 * we reclaimed from, so that we don't end up penalizing one child extensively
1639 * based on its position in the children list.
1641 * root_mem is the original ancestor that we've been reclaim from.
1643 * We give up and return to the caller when we visit root_mem twice.
1644 * (other groups can be removed while we're walking....)
1646 * If shrink==true, for avoiding to free too much, this returns immedieately.
1648 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1649 struct zone *zone,
1650 gfp_t gfp_mask,
1651 unsigned long reclaim_options,
1652 unsigned long *total_scanned)
1654 struct mem_cgroup *victim;
1655 int ret, total = 0;
1656 int loop = 0;
1657 bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1658 bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1659 bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1660 unsigned long excess;
1661 unsigned long nr_scanned;
1663 excess = res_counter_soft_limit_excess(&root_mem->res) >> PAGE_SHIFT;
1665 /* If memsw_is_minimum==1, swap-out is of-no-use. */
1666 if (!check_soft && !shrink && root_mem->memsw_is_minimum)
1667 noswap = true;
1669 while (1) {
1670 victim = mem_cgroup_select_victim(root_mem);
1671 if (victim == root_mem) {
1672 loop++;
1674 * We are not draining per cpu cached charges during
1675 * soft limit reclaim because global reclaim doesn't
1676 * care about charges. It tries to free some memory and
1677 * charges will not give any.
1679 if (!check_soft && loop >= 1)
1680 drain_all_stock_async(root_mem);
1681 if (loop >= 2) {
1683 * If we have not been able to reclaim
1684 * anything, it might because there are
1685 * no reclaimable pages under this hierarchy
1687 if (!check_soft || !total) {
1688 css_put(&victim->css);
1689 break;
1692 * We want to do more targeted reclaim.
1693 * excess >> 2 is not to excessive so as to
1694 * reclaim too much, nor too less that we keep
1695 * coming back to reclaim from this cgroup
1697 if (total >= (excess >> 2) ||
1698 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1699 css_put(&victim->css);
1700 break;
1704 if (!mem_cgroup_reclaimable(victim, noswap)) {
1705 /* this cgroup's local usage == 0 */
1706 css_put(&victim->css);
1707 continue;
1709 /* we use swappiness of local cgroup */
1710 if (check_soft) {
1711 ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1712 noswap, zone, &nr_scanned);
1713 *total_scanned += nr_scanned;
1714 } else
1715 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1716 noswap);
1717 css_put(&victim->css);
1719 * At shrinking usage, we can't check we should stop here or
1720 * reclaim more. It's depends on callers. last_scanned_child
1721 * will work enough for keeping fairness under tree.
1723 if (shrink)
1724 return ret;
1725 total += ret;
1726 if (check_soft) {
1727 if (!res_counter_soft_limit_excess(&root_mem->res))
1728 return total;
1729 } else if (mem_cgroup_margin(root_mem))
1730 return total;
1732 return total;
1736 * Check OOM-Killer is already running under our hierarchy.
1737 * If someone is running, return false.
1738 * Has to be called with memcg_oom_lock
1740 static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1742 struct mem_cgroup *iter, *failed = NULL;
1743 bool cond = true;
1745 for_each_mem_cgroup_tree_cond(iter, mem, cond) {
1746 if (iter->oom_lock) {
1748 * this subtree of our hierarchy is already locked
1749 * so we cannot give a lock.
1751 failed = iter;
1752 cond = false;
1753 } else
1754 iter->oom_lock = true;
1757 if (!failed)
1758 return true;
1761 * OK, we failed to lock the whole subtree so we have to clean up
1762 * what we set up to the failing subtree
1764 cond = true;
1765 for_each_mem_cgroup_tree_cond(iter, mem, cond) {
1766 if (iter == failed) {
1767 cond = false;
1768 continue;
1770 iter->oom_lock = false;
1772 return false;
1776 * Has to be called with memcg_oom_lock
1778 static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1780 struct mem_cgroup *iter;
1782 for_each_mem_cgroup_tree(iter, mem)
1783 iter->oom_lock = false;
1784 return 0;
1787 static void mem_cgroup_mark_under_oom(struct mem_cgroup *mem)
1789 struct mem_cgroup *iter;
1791 for_each_mem_cgroup_tree(iter, mem)
1792 atomic_inc(&iter->under_oom);
1795 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *mem)
1797 struct mem_cgroup *iter;
1800 * When a new child is created while the hierarchy is under oom,
1801 * mem_cgroup_oom_lock() may not be called. We have to use
1802 * atomic_add_unless() here.
1804 for_each_mem_cgroup_tree(iter, mem)
1805 atomic_add_unless(&iter->under_oom, -1, 0);
1808 static DEFINE_SPINLOCK(memcg_oom_lock);
1809 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1811 struct oom_wait_info {
1812 struct mem_cgroup *mem;
1813 wait_queue_t wait;
1816 static int memcg_oom_wake_function(wait_queue_t *wait,
1817 unsigned mode, int sync, void *arg)
1819 struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg,
1820 *oom_wait_mem;
1821 struct oom_wait_info *oom_wait_info;
1823 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1824 oom_wait_mem = oom_wait_info->mem;
1827 * Both of oom_wait_info->mem and wake_mem are stable under us.
1828 * Then we can use css_is_ancestor without taking care of RCU.
1830 if (!mem_cgroup_same_or_subtree(oom_wait_mem, wake_mem)
1831 && !mem_cgroup_same_or_subtree(wake_mem, oom_wait_mem))
1832 return 0;
1833 return autoremove_wake_function(wait, mode, sync, arg);
1836 static void memcg_wakeup_oom(struct mem_cgroup *mem)
1838 /* for filtering, pass "mem" as argument. */
1839 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1842 static void memcg_oom_recover(struct mem_cgroup *mem)
1844 if (mem && atomic_read(&mem->under_oom))
1845 memcg_wakeup_oom(mem);
1849 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1851 bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1853 struct oom_wait_info owait;
1854 bool locked, need_to_kill;
1856 owait.mem = mem;
1857 owait.wait.flags = 0;
1858 owait.wait.func = memcg_oom_wake_function;
1859 owait.wait.private = current;
1860 INIT_LIST_HEAD(&owait.wait.task_list);
1861 need_to_kill = true;
1862 mem_cgroup_mark_under_oom(mem);
1864 /* At first, try to OOM lock hierarchy under mem.*/
1865 spin_lock(&memcg_oom_lock);
1866 locked = mem_cgroup_oom_lock(mem);
1868 * Even if signal_pending(), we can't quit charge() loop without
1869 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1870 * under OOM is always welcomed, use TASK_KILLABLE here.
1872 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1873 if (!locked || mem->oom_kill_disable)
1874 need_to_kill = false;
1875 if (locked)
1876 mem_cgroup_oom_notify(mem);
1877 spin_unlock(&memcg_oom_lock);
1879 if (need_to_kill) {
1880 finish_wait(&memcg_oom_waitq, &owait.wait);
1881 mem_cgroup_out_of_memory(mem, mask);
1882 } else {
1883 schedule();
1884 finish_wait(&memcg_oom_waitq, &owait.wait);
1886 spin_lock(&memcg_oom_lock);
1887 if (locked)
1888 mem_cgroup_oom_unlock(mem);
1889 memcg_wakeup_oom(mem);
1890 spin_unlock(&memcg_oom_lock);
1892 mem_cgroup_unmark_under_oom(mem);
1894 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1895 return false;
1896 /* Give chance to dying process */
1897 schedule_timeout(1);
1898 return true;
1902 * Currently used to update mapped file statistics, but the routine can be
1903 * generalized to update other statistics as well.
1905 * Notes: Race condition
1907 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1908 * it tends to be costly. But considering some conditions, we doesn't need
1909 * to do so _always_.
1911 * Considering "charge", lock_page_cgroup() is not required because all
1912 * file-stat operations happen after a page is attached to radix-tree. There
1913 * are no race with "charge".
1915 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1916 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1917 * if there are race with "uncharge". Statistics itself is properly handled
1918 * by flags.
1920 * Considering "move", this is an only case we see a race. To make the race
1921 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1922 * possibility of race condition. If there is, we take a lock.
1925 void mem_cgroup_update_page_stat(struct page *page,
1926 enum mem_cgroup_page_stat_item idx, int val)
1928 struct mem_cgroup *mem;
1929 struct page_cgroup *pc = lookup_page_cgroup(page);
1930 bool need_unlock = false;
1931 unsigned long uninitialized_var(flags);
1933 if (unlikely(!pc))
1934 return;
1936 rcu_read_lock();
1937 mem = pc->mem_cgroup;
1938 if (unlikely(!mem || !PageCgroupUsed(pc)))
1939 goto out;
1940 /* pc->mem_cgroup is unstable ? */
1941 if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
1942 /* take a lock against to access pc->mem_cgroup */
1943 move_lock_page_cgroup(pc, &flags);
1944 need_unlock = true;
1945 mem = pc->mem_cgroup;
1946 if (!mem || !PageCgroupUsed(pc))
1947 goto out;
1950 switch (idx) {
1951 case MEMCG_NR_FILE_MAPPED:
1952 if (val > 0)
1953 SetPageCgroupFileMapped(pc);
1954 else if (!page_mapped(page))
1955 ClearPageCgroupFileMapped(pc);
1956 idx = MEM_CGROUP_STAT_FILE_MAPPED;
1957 break;
1958 default:
1959 BUG();
1962 this_cpu_add(mem->stat->count[idx], val);
1964 out:
1965 if (unlikely(need_unlock))
1966 move_unlock_page_cgroup(pc, &flags);
1967 rcu_read_unlock();
1968 return;
1970 EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1973 * size of first charge trial. "32" comes from vmscan.c's magic value.
1974 * TODO: maybe necessary to use big numbers in big irons.
1976 #define CHARGE_BATCH 32U
1977 struct memcg_stock_pcp {
1978 struct mem_cgroup *cached; /* this never be root cgroup */
1979 unsigned int nr_pages;
1980 struct work_struct work;
1981 unsigned long flags;
1982 #define FLUSHING_CACHED_CHARGE (0)
1984 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1985 static DEFINE_MUTEX(percpu_charge_mutex);
1988 * Try to consume stocked charge on this cpu. If success, one page is consumed
1989 * from local stock and true is returned. If the stock is 0 or charges from a
1990 * cgroup which is not current target, returns false. This stock will be
1991 * refilled.
1993 static bool consume_stock(struct mem_cgroup *mem)
1995 struct memcg_stock_pcp *stock;
1996 bool ret = true;
1998 stock = &get_cpu_var(memcg_stock);
1999 if (mem == stock->cached && stock->nr_pages)
2000 stock->nr_pages--;
2001 else /* need to call res_counter_charge */
2002 ret = false;
2003 put_cpu_var(memcg_stock);
2004 return ret;
2008 * Returns stocks cached in percpu to res_counter and reset cached information.
2010 static void drain_stock(struct memcg_stock_pcp *stock)
2012 struct mem_cgroup *old = stock->cached;
2014 if (stock->nr_pages) {
2015 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2017 res_counter_uncharge(&old->res, bytes);
2018 if (do_swap_account)
2019 res_counter_uncharge(&old->memsw, bytes);
2020 stock->nr_pages = 0;
2022 stock->cached = NULL;
2026 * This must be called under preempt disabled or must be called by
2027 * a thread which is pinned to local cpu.
2029 static void drain_local_stock(struct work_struct *dummy)
2031 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2032 drain_stock(stock);
2033 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2037 * Cache charges(val) which is from res_counter, to local per_cpu area.
2038 * This will be consumed by consume_stock() function, later.
2040 static void refill_stock(struct mem_cgroup *mem, unsigned int nr_pages)
2042 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2044 if (stock->cached != mem) { /* reset if necessary */
2045 drain_stock(stock);
2046 stock->cached = mem;
2048 stock->nr_pages += nr_pages;
2049 put_cpu_var(memcg_stock);
2053 * Drains all per-CPU charge caches for given root_mem resp. subtree
2054 * of the hierarchy under it. sync flag says whether we should block
2055 * until the work is done.
2057 static void drain_all_stock(struct mem_cgroup *root_mem, bool sync)
2059 int cpu, curcpu;
2061 /* Notify other cpus that system-wide "drain" is running */
2062 get_online_cpus();
2063 curcpu = get_cpu();
2064 for_each_online_cpu(cpu) {
2065 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2066 struct mem_cgroup *mem;
2068 mem = stock->cached;
2069 if (!mem || !stock->nr_pages)
2070 continue;
2071 if (!mem_cgroup_same_or_subtree(root_mem, mem))
2072 continue;
2073 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2074 if (cpu == curcpu)
2075 drain_local_stock(&stock->work);
2076 else
2077 schedule_work_on(cpu, &stock->work);
2080 put_cpu();
2082 if (!sync)
2083 goto out;
2085 for_each_online_cpu(cpu) {
2086 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2087 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2088 flush_work(&stock->work);
2090 out:
2091 put_online_cpus();
2095 * Tries to drain stocked charges in other cpus. This function is asynchronous
2096 * and just put a work per cpu for draining localy on each cpu. Caller can
2097 * expects some charges will be back to res_counter later but cannot wait for
2098 * it.
2100 static void drain_all_stock_async(struct mem_cgroup *root_mem)
2103 * If someone calls draining, avoid adding more kworker runs.
2105 if (!mutex_trylock(&percpu_charge_mutex))
2106 return;
2107 drain_all_stock(root_mem, false);
2108 mutex_unlock(&percpu_charge_mutex);
2111 /* This is a synchronous drain interface. */
2112 static void drain_all_stock_sync(struct mem_cgroup *root_mem)
2114 /* called when force_empty is called */
2115 mutex_lock(&percpu_charge_mutex);
2116 drain_all_stock(root_mem, true);
2117 mutex_unlock(&percpu_charge_mutex);
2121 * This function drains percpu counter value from DEAD cpu and
2122 * move it to local cpu. Note that this function can be preempted.
2124 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
2126 int i;
2128 spin_lock(&mem->pcp_counter_lock);
2129 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2130 long x = per_cpu(mem->stat->count[i], cpu);
2132 per_cpu(mem->stat->count[i], cpu) = 0;
2133 mem->nocpu_base.count[i] += x;
2135 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2136 unsigned long x = per_cpu(mem->stat->events[i], cpu);
2138 per_cpu(mem->stat->events[i], cpu) = 0;
2139 mem->nocpu_base.events[i] += x;
2141 /* need to clear ON_MOVE value, works as a kind of lock. */
2142 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
2143 spin_unlock(&mem->pcp_counter_lock);
2146 static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
2148 int idx = MEM_CGROUP_ON_MOVE;
2150 spin_lock(&mem->pcp_counter_lock);
2151 per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
2152 spin_unlock(&mem->pcp_counter_lock);
2155 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2156 unsigned long action,
2157 void *hcpu)
2159 int cpu = (unsigned long)hcpu;
2160 struct memcg_stock_pcp *stock;
2161 struct mem_cgroup *iter;
2163 if ((action == CPU_ONLINE)) {
2164 for_each_mem_cgroup_all(iter)
2165 synchronize_mem_cgroup_on_move(iter, cpu);
2166 return NOTIFY_OK;
2169 if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2170 return NOTIFY_OK;
2172 for_each_mem_cgroup_all(iter)
2173 mem_cgroup_drain_pcp_counter(iter, cpu);
2175 stock = &per_cpu(memcg_stock, cpu);
2176 drain_stock(stock);
2177 return NOTIFY_OK;
2181 /* See __mem_cgroup_try_charge() for details */
2182 enum {
2183 CHARGE_OK, /* success */
2184 CHARGE_RETRY, /* need to retry but retry is not bad */
2185 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2186 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2187 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2190 static int mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
2191 unsigned int nr_pages, bool oom_check)
2193 unsigned long csize = nr_pages * PAGE_SIZE;
2194 struct mem_cgroup *mem_over_limit;
2195 struct res_counter *fail_res;
2196 unsigned long flags = 0;
2197 int ret;
2199 ret = res_counter_charge(&mem->res, csize, &fail_res);
2201 if (likely(!ret)) {
2202 if (!do_swap_account)
2203 return CHARGE_OK;
2204 ret = res_counter_charge(&mem->memsw, csize, &fail_res);
2205 if (likely(!ret))
2206 return CHARGE_OK;
2208 res_counter_uncharge(&mem->res, csize);
2209 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2210 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2211 } else
2212 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2214 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2215 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2217 * Never reclaim on behalf of optional batching, retry with a
2218 * single page instead.
2220 if (nr_pages == CHARGE_BATCH)
2221 return CHARGE_RETRY;
2223 if (!(gfp_mask & __GFP_WAIT))
2224 return CHARGE_WOULDBLOCK;
2226 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
2227 gfp_mask, flags, NULL);
2228 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2229 return CHARGE_RETRY;
2231 * Even though the limit is exceeded at this point, reclaim
2232 * may have been able to free some pages. Retry the charge
2233 * before killing the task.
2235 * Only for regular pages, though: huge pages are rather
2236 * unlikely to succeed so close to the limit, and we fall back
2237 * to regular pages anyway in case of failure.
2239 if (nr_pages == 1 && ret)
2240 return CHARGE_RETRY;
2243 * At task move, charge accounts can be doubly counted. So, it's
2244 * better to wait until the end of task_move if something is going on.
2246 if (mem_cgroup_wait_acct_move(mem_over_limit))
2247 return CHARGE_RETRY;
2249 /* If we don't need to call oom-killer at el, return immediately */
2250 if (!oom_check)
2251 return CHARGE_NOMEM;
2252 /* check OOM */
2253 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
2254 return CHARGE_OOM_DIE;
2256 return CHARGE_RETRY;
2260 * Unlike exported interface, "oom" parameter is added. if oom==true,
2261 * oom-killer can be invoked.
2263 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2264 gfp_t gfp_mask,
2265 unsigned int nr_pages,
2266 struct mem_cgroup **memcg,
2267 bool oom)
2269 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2270 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2271 struct mem_cgroup *mem = NULL;
2272 int ret;
2275 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2276 * in system level. So, allow to go ahead dying process in addition to
2277 * MEMDIE process.
2279 if (unlikely(test_thread_flag(TIF_MEMDIE)
2280 || fatal_signal_pending(current)))
2281 goto bypass;
2284 * We always charge the cgroup the mm_struct belongs to.
2285 * The mm_struct's mem_cgroup changes on task migration if the
2286 * thread group leader migrates. It's possible that mm is not
2287 * set, if so charge the init_mm (happens for pagecache usage).
2289 if (!*memcg && !mm)
2290 goto bypass;
2291 again:
2292 if (*memcg) { /* css should be a valid one */
2293 mem = *memcg;
2294 VM_BUG_ON(css_is_removed(&mem->css));
2295 if (mem_cgroup_is_root(mem))
2296 goto done;
2297 if (nr_pages == 1 && consume_stock(mem))
2298 goto done;
2299 css_get(&mem->css);
2300 } else {
2301 struct task_struct *p;
2303 rcu_read_lock();
2304 p = rcu_dereference(mm->owner);
2306 * Because we don't have task_lock(), "p" can exit.
2307 * In that case, "mem" can point to root or p can be NULL with
2308 * race with swapoff. Then, we have small risk of mis-accouning.
2309 * But such kind of mis-account by race always happens because
2310 * we don't have cgroup_mutex(). It's overkill and we allo that
2311 * small race, here.
2312 * (*) swapoff at el will charge against mm-struct not against
2313 * task-struct. So, mm->owner can be NULL.
2315 mem = mem_cgroup_from_task(p);
2316 if (!mem || mem_cgroup_is_root(mem)) {
2317 rcu_read_unlock();
2318 goto done;
2320 if (nr_pages == 1 && consume_stock(mem)) {
2322 * It seems dagerous to access memcg without css_get().
2323 * But considering how consume_stok works, it's not
2324 * necessary. If consume_stock success, some charges
2325 * from this memcg are cached on this cpu. So, we
2326 * don't need to call css_get()/css_tryget() before
2327 * calling consume_stock().
2329 rcu_read_unlock();
2330 goto done;
2332 /* after here, we may be blocked. we need to get refcnt */
2333 if (!css_tryget(&mem->css)) {
2334 rcu_read_unlock();
2335 goto again;
2337 rcu_read_unlock();
2340 do {
2341 bool oom_check;
2343 /* If killed, bypass charge */
2344 if (fatal_signal_pending(current)) {
2345 css_put(&mem->css);
2346 goto bypass;
2349 oom_check = false;
2350 if (oom && !nr_oom_retries) {
2351 oom_check = true;
2352 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2355 ret = mem_cgroup_do_charge(mem, gfp_mask, batch, oom_check);
2356 switch (ret) {
2357 case CHARGE_OK:
2358 break;
2359 case CHARGE_RETRY: /* not in OOM situation but retry */
2360 batch = nr_pages;
2361 css_put(&mem->css);
2362 mem = NULL;
2363 goto again;
2364 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2365 css_put(&mem->css);
2366 goto nomem;
2367 case CHARGE_NOMEM: /* OOM routine works */
2368 if (!oom) {
2369 css_put(&mem->css);
2370 goto nomem;
2372 /* If oom, we never return -ENOMEM */
2373 nr_oom_retries--;
2374 break;
2375 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2376 css_put(&mem->css);
2377 goto bypass;
2379 } while (ret != CHARGE_OK);
2381 if (batch > nr_pages)
2382 refill_stock(mem, batch - nr_pages);
2383 css_put(&mem->css);
2384 done:
2385 *memcg = mem;
2386 return 0;
2387 nomem:
2388 *memcg = NULL;
2389 return -ENOMEM;
2390 bypass:
2391 *memcg = NULL;
2392 return 0;
2396 * Somemtimes we have to undo a charge we got by try_charge().
2397 * This function is for that and do uncharge, put css's refcnt.
2398 * gotten by try_charge().
2400 static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2401 unsigned int nr_pages)
2403 if (!mem_cgroup_is_root(mem)) {
2404 unsigned long bytes = nr_pages * PAGE_SIZE;
2406 res_counter_uncharge(&mem->res, bytes);
2407 if (do_swap_account)
2408 res_counter_uncharge(&mem->memsw, bytes);
2413 * A helper function to get mem_cgroup from ID. must be called under
2414 * rcu_read_lock(). The caller must check css_is_removed() or some if
2415 * it's concern. (dropping refcnt from swap can be called against removed
2416 * memcg.)
2418 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2420 struct cgroup_subsys_state *css;
2422 /* ID 0 is unused ID */
2423 if (!id)
2424 return NULL;
2425 css = css_lookup(&mem_cgroup_subsys, id);
2426 if (!css)
2427 return NULL;
2428 return container_of(css, struct mem_cgroup, css);
2431 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2433 struct mem_cgroup *mem = NULL;
2434 struct page_cgroup *pc;
2435 unsigned short id;
2436 swp_entry_t ent;
2438 VM_BUG_ON(!PageLocked(page));
2440 pc = lookup_page_cgroup(page);
2441 lock_page_cgroup(pc);
2442 if (PageCgroupUsed(pc)) {
2443 mem = pc->mem_cgroup;
2444 if (mem && !css_tryget(&mem->css))
2445 mem = NULL;
2446 } else if (PageSwapCache(page)) {
2447 ent.val = page_private(page);
2448 id = lookup_swap_cgroup(ent);
2449 rcu_read_lock();
2450 mem = mem_cgroup_lookup(id);
2451 if (mem && !css_tryget(&mem->css))
2452 mem = NULL;
2453 rcu_read_unlock();
2455 unlock_page_cgroup(pc);
2456 return mem;
2459 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2460 struct page *page,
2461 unsigned int nr_pages,
2462 struct page_cgroup *pc,
2463 enum charge_type ctype)
2465 lock_page_cgroup(pc);
2466 if (unlikely(PageCgroupUsed(pc))) {
2467 unlock_page_cgroup(pc);
2468 __mem_cgroup_cancel_charge(mem, nr_pages);
2469 return;
2472 * we don't need page_cgroup_lock about tail pages, becase they are not
2473 * accessed by any other context at this point.
2475 pc->mem_cgroup = mem;
2477 * We access a page_cgroup asynchronously without lock_page_cgroup().
2478 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2479 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2480 * before USED bit, we need memory barrier here.
2481 * See mem_cgroup_add_lru_list(), etc.
2483 smp_wmb();
2484 switch (ctype) {
2485 case MEM_CGROUP_CHARGE_TYPE_CACHE:
2486 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2487 SetPageCgroupCache(pc);
2488 SetPageCgroupUsed(pc);
2489 break;
2490 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2491 ClearPageCgroupCache(pc);
2492 SetPageCgroupUsed(pc);
2493 break;
2494 default:
2495 break;
2498 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
2499 unlock_page_cgroup(pc);
2501 * "charge_statistics" updated event counter. Then, check it.
2502 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2503 * if they exceeds softlimit.
2505 memcg_check_events(mem, page);
2508 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2510 #define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2511 (1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2513 * Because tail pages are not marked as "used", set it. We're under
2514 * zone->lru_lock, 'splitting on pmd' and compund_lock.
2516 void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
2518 struct page_cgroup *head_pc = lookup_page_cgroup(head);
2519 struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
2520 unsigned long flags;
2522 if (mem_cgroup_disabled())
2523 return;
2525 * We have no races with charge/uncharge but will have races with
2526 * page state accounting.
2528 move_lock_page_cgroup(head_pc, &flags);
2530 tail_pc->mem_cgroup = head_pc->mem_cgroup;
2531 smp_wmb(); /* see __commit_charge() */
2532 if (PageCgroupAcctLRU(head_pc)) {
2533 enum lru_list lru;
2534 struct mem_cgroup_per_zone *mz;
2537 * LRU flags cannot be copied because we need to add tail
2538 *.page to LRU by generic call and our hook will be called.
2539 * We hold lru_lock, then, reduce counter directly.
2541 lru = page_lru(head);
2542 mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2543 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
2545 tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2546 move_unlock_page_cgroup(head_pc, &flags);
2548 #endif
2551 * mem_cgroup_move_account - move account of the page
2552 * @page: the page
2553 * @nr_pages: number of regular pages (>1 for huge pages)
2554 * @pc: page_cgroup of the page.
2555 * @from: mem_cgroup which the page is moved from.
2556 * @to: mem_cgroup which the page is moved to. @from != @to.
2557 * @uncharge: whether we should call uncharge and css_put against @from.
2559 * The caller must confirm following.
2560 * - page is not on LRU (isolate_page() is useful.)
2561 * - compound_lock is held when nr_pages > 1
2563 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2564 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2565 * true, this function does "uncharge" from old cgroup, but it doesn't if
2566 * @uncharge is false, so a caller should do "uncharge".
2568 static int mem_cgroup_move_account(struct page *page,
2569 unsigned int nr_pages,
2570 struct page_cgroup *pc,
2571 struct mem_cgroup *from,
2572 struct mem_cgroup *to,
2573 bool uncharge)
2575 unsigned long flags;
2576 int ret;
2578 VM_BUG_ON(from == to);
2579 VM_BUG_ON(PageLRU(page));
2581 * The page is isolated from LRU. So, collapse function
2582 * will not handle this page. But page splitting can happen.
2583 * Do this check under compound_page_lock(). The caller should
2584 * hold it.
2586 ret = -EBUSY;
2587 if (nr_pages > 1 && !PageTransHuge(page))
2588 goto out;
2590 lock_page_cgroup(pc);
2592 ret = -EINVAL;
2593 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2594 goto unlock;
2596 move_lock_page_cgroup(pc, &flags);
2598 if (PageCgroupFileMapped(pc)) {
2599 /* Update mapped_file data for mem_cgroup */
2600 preempt_disable();
2601 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2602 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2603 preempt_enable();
2605 mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2606 if (uncharge)
2607 /* This is not "cancel", but cancel_charge does all we need. */
2608 __mem_cgroup_cancel_charge(from, nr_pages);
2610 /* caller should have done css_get */
2611 pc->mem_cgroup = to;
2612 mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2614 * We charges against "to" which may not have any tasks. Then, "to"
2615 * can be under rmdir(). But in current implementation, caller of
2616 * this function is just force_empty() and move charge, so it's
2617 * guaranteed that "to" is never removed. So, we don't check rmdir
2618 * status here.
2620 move_unlock_page_cgroup(pc, &flags);
2621 ret = 0;
2622 unlock:
2623 unlock_page_cgroup(pc);
2625 * check events
2627 memcg_check_events(to, page);
2628 memcg_check_events(from, page);
2629 out:
2630 return ret;
2634 * move charges to its parent.
2637 static int mem_cgroup_move_parent(struct page *page,
2638 struct page_cgroup *pc,
2639 struct mem_cgroup *child,
2640 gfp_t gfp_mask)
2642 struct cgroup *cg = child->css.cgroup;
2643 struct cgroup *pcg = cg->parent;
2644 struct mem_cgroup *parent;
2645 unsigned int nr_pages;
2646 unsigned long uninitialized_var(flags);
2647 int ret;
2649 /* Is ROOT ? */
2650 if (!pcg)
2651 return -EINVAL;
2653 ret = -EBUSY;
2654 if (!get_page_unless_zero(page))
2655 goto out;
2656 if (isolate_lru_page(page))
2657 goto put;
2659 nr_pages = hpage_nr_pages(page);
2661 parent = mem_cgroup_from_cont(pcg);
2662 ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2663 if (ret || !parent)
2664 goto put_back;
2666 if (nr_pages > 1)
2667 flags = compound_lock_irqsave(page);
2669 ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2670 if (ret)
2671 __mem_cgroup_cancel_charge(parent, nr_pages);
2673 if (nr_pages > 1)
2674 compound_unlock_irqrestore(page, flags);
2675 put_back:
2676 putback_lru_page(page);
2677 put:
2678 put_page(page);
2679 out:
2680 return ret;
2684 * Charge the memory controller for page usage.
2685 * Return
2686 * 0 if the charge was successful
2687 * < 0 if the cgroup is over its limit
2689 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2690 gfp_t gfp_mask, enum charge_type ctype)
2692 struct mem_cgroup *mem = NULL;
2693 unsigned int nr_pages = 1;
2694 struct page_cgroup *pc;
2695 bool oom = true;
2696 int ret;
2698 if (PageTransHuge(page)) {
2699 nr_pages <<= compound_order(page);
2700 VM_BUG_ON(!PageTransHuge(page));
2702 * Never OOM-kill a process for a huge page. The
2703 * fault handler will fall back to regular pages.
2705 oom = false;
2708 pc = lookup_page_cgroup(page);
2709 BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
2711 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &mem, oom);
2712 if (ret || !mem)
2713 return ret;
2715 __mem_cgroup_commit_charge(mem, page, nr_pages, pc, ctype);
2716 return 0;
2719 int mem_cgroup_newpage_charge(struct page *page,
2720 struct mm_struct *mm, gfp_t gfp_mask)
2722 if (mem_cgroup_disabled())
2723 return 0;
2725 * If already mapped, we don't have to account.
2726 * If page cache, page->mapping has address_space.
2727 * But page->mapping may have out-of-use anon_vma pointer,
2728 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2729 * is NULL.
2731 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2732 return 0;
2733 if (unlikely(!mm))
2734 mm = &init_mm;
2735 return mem_cgroup_charge_common(page, mm, gfp_mask,
2736 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2739 static void
2740 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2741 enum charge_type ctype);
2743 static void
2744 __mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *mem,
2745 enum charge_type ctype)
2747 struct page_cgroup *pc = lookup_page_cgroup(page);
2749 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
2750 * is already on LRU. It means the page may on some other page_cgroup's
2751 * LRU. Take care of it.
2753 mem_cgroup_lru_del_before_commit(page);
2754 __mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
2755 mem_cgroup_lru_add_after_commit(page);
2756 return;
2759 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2760 gfp_t gfp_mask)
2762 struct mem_cgroup *mem = NULL;
2763 int ret;
2765 if (mem_cgroup_disabled())
2766 return 0;
2767 if (PageCompound(page))
2768 return 0;
2770 if (unlikely(!mm))
2771 mm = &init_mm;
2773 if (page_is_file_cache(page)) {
2774 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &mem, true);
2775 if (ret || !mem)
2776 return ret;
2779 * FUSE reuses pages without going through the final
2780 * put that would remove them from the LRU list, make
2781 * sure that they get relinked properly.
2783 __mem_cgroup_commit_charge_lrucare(page, mem,
2784 MEM_CGROUP_CHARGE_TYPE_CACHE);
2785 return ret;
2787 /* shmem */
2788 if (PageSwapCache(page)) {
2789 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2790 if (!ret)
2791 __mem_cgroup_commit_charge_swapin(page, mem,
2792 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2793 } else
2794 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2795 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2797 return ret;
2801 * While swap-in, try_charge -> commit or cancel, the page is locked.
2802 * And when try_charge() successfully returns, one refcnt to memcg without
2803 * struct page_cgroup is acquired. This refcnt will be consumed by
2804 * "commit()" or removed by "cancel()"
2806 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2807 struct page *page,
2808 gfp_t mask, struct mem_cgroup **ptr)
2810 struct mem_cgroup *mem;
2811 int ret;
2813 *ptr = NULL;
2815 if (mem_cgroup_disabled())
2816 return 0;
2818 if (!do_swap_account)
2819 goto charge_cur_mm;
2821 * A racing thread's fault, or swapoff, may have already updated
2822 * the pte, and even removed page from swap cache: in those cases
2823 * do_swap_page()'s pte_same() test will fail; but there's also a
2824 * KSM case which does need to charge the page.
2826 if (!PageSwapCache(page))
2827 goto charge_cur_mm;
2828 mem = try_get_mem_cgroup_from_page(page);
2829 if (!mem)
2830 goto charge_cur_mm;
2831 *ptr = mem;
2832 ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true);
2833 css_put(&mem->css);
2834 return ret;
2835 charge_cur_mm:
2836 if (unlikely(!mm))
2837 mm = &init_mm;
2838 return __mem_cgroup_try_charge(mm, mask, 1, ptr, true);
2841 static void
2842 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2843 enum charge_type ctype)
2845 if (mem_cgroup_disabled())
2846 return;
2847 if (!ptr)
2848 return;
2849 cgroup_exclude_rmdir(&ptr->css);
2851 __mem_cgroup_commit_charge_lrucare(page, ptr, ctype);
2853 * Now swap is on-memory. This means this page may be
2854 * counted both as mem and swap....double count.
2855 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2856 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2857 * may call delete_from_swap_cache() before reach here.
2859 if (do_swap_account && PageSwapCache(page)) {
2860 swp_entry_t ent = {.val = page_private(page)};
2861 unsigned short id;
2862 struct mem_cgroup *memcg;
2864 id = swap_cgroup_record(ent, 0);
2865 rcu_read_lock();
2866 memcg = mem_cgroup_lookup(id);
2867 if (memcg) {
2869 * This recorded memcg can be obsolete one. So, avoid
2870 * calling css_tryget
2872 if (!mem_cgroup_is_root(memcg))
2873 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2874 mem_cgroup_swap_statistics(memcg, false);
2875 mem_cgroup_put(memcg);
2877 rcu_read_unlock();
2880 * At swapin, we may charge account against cgroup which has no tasks.
2881 * So, rmdir()->pre_destroy() can be called while we do this charge.
2882 * In that case, we need to call pre_destroy() again. check it here.
2884 cgroup_release_and_wakeup_rmdir(&ptr->css);
2887 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2889 __mem_cgroup_commit_charge_swapin(page, ptr,
2890 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2893 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2895 if (mem_cgroup_disabled())
2896 return;
2897 if (!mem)
2898 return;
2899 __mem_cgroup_cancel_charge(mem, 1);
2902 static void mem_cgroup_do_uncharge(struct mem_cgroup *mem,
2903 unsigned int nr_pages,
2904 const enum charge_type ctype)
2906 struct memcg_batch_info *batch = NULL;
2907 bool uncharge_memsw = true;
2909 /* If swapout, usage of swap doesn't decrease */
2910 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2911 uncharge_memsw = false;
2913 batch = &current->memcg_batch;
2915 * In usual, we do css_get() when we remember memcg pointer.
2916 * But in this case, we keep res->usage until end of a series of
2917 * uncharges. Then, it's ok to ignore memcg's refcnt.
2919 if (!batch->memcg)
2920 batch->memcg = mem;
2922 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2923 * In those cases, all pages freed continuously can be expected to be in
2924 * the same cgroup and we have chance to coalesce uncharges.
2925 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2926 * because we want to do uncharge as soon as possible.
2929 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2930 goto direct_uncharge;
2932 if (nr_pages > 1)
2933 goto direct_uncharge;
2936 * In typical case, batch->memcg == mem. This means we can
2937 * merge a series of uncharges to an uncharge of res_counter.
2938 * If not, we uncharge res_counter ony by one.
2940 if (batch->memcg != mem)
2941 goto direct_uncharge;
2942 /* remember freed charge and uncharge it later */
2943 batch->nr_pages++;
2944 if (uncharge_memsw)
2945 batch->memsw_nr_pages++;
2946 return;
2947 direct_uncharge:
2948 res_counter_uncharge(&mem->res, nr_pages * PAGE_SIZE);
2949 if (uncharge_memsw)
2950 res_counter_uncharge(&mem->memsw, nr_pages * PAGE_SIZE);
2951 if (unlikely(batch->memcg != mem))
2952 memcg_oom_recover(mem);
2953 return;
2957 * uncharge if !page_mapped(page)
2959 static struct mem_cgroup *
2960 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2962 struct mem_cgroup *mem = NULL;
2963 unsigned int nr_pages = 1;
2964 struct page_cgroup *pc;
2966 if (mem_cgroup_disabled())
2967 return NULL;
2969 if (PageSwapCache(page))
2970 return NULL;
2972 if (PageTransHuge(page)) {
2973 nr_pages <<= compound_order(page);
2974 VM_BUG_ON(!PageTransHuge(page));
2977 * Check if our page_cgroup is valid
2979 pc = lookup_page_cgroup(page);
2980 if (unlikely(!pc || !PageCgroupUsed(pc)))
2981 return NULL;
2983 lock_page_cgroup(pc);
2985 mem = pc->mem_cgroup;
2987 if (!PageCgroupUsed(pc))
2988 goto unlock_out;
2990 switch (ctype) {
2991 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2992 case MEM_CGROUP_CHARGE_TYPE_DROP:
2993 /* See mem_cgroup_prepare_migration() */
2994 if (page_mapped(page) || PageCgroupMigration(pc))
2995 goto unlock_out;
2996 break;
2997 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2998 if (!PageAnon(page)) { /* Shared memory */
2999 if (page->mapping && !page_is_file_cache(page))
3000 goto unlock_out;
3001 } else if (page_mapped(page)) /* Anon */
3002 goto unlock_out;
3003 break;
3004 default:
3005 break;
3008 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -nr_pages);
3010 ClearPageCgroupUsed(pc);
3012 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3013 * freed from LRU. This is safe because uncharged page is expected not
3014 * to be reused (freed soon). Exception is SwapCache, it's handled by
3015 * special functions.
3018 unlock_page_cgroup(pc);
3020 * even after unlock, we have mem->res.usage here and this memcg
3021 * will never be freed.
3023 memcg_check_events(mem, page);
3024 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3025 mem_cgroup_swap_statistics(mem, true);
3026 mem_cgroup_get(mem);
3028 if (!mem_cgroup_is_root(mem))
3029 mem_cgroup_do_uncharge(mem, nr_pages, ctype);
3031 return mem;
3033 unlock_out:
3034 unlock_page_cgroup(pc);
3035 return NULL;
3038 void mem_cgroup_uncharge_page(struct page *page)
3040 /* early check. */
3041 if (page_mapped(page))
3042 return;
3043 if (page->mapping && !PageAnon(page))
3044 return;
3045 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
3048 void mem_cgroup_uncharge_cache_page(struct page *page)
3050 VM_BUG_ON(page_mapped(page));
3051 VM_BUG_ON(page->mapping);
3052 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3056 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3057 * In that cases, pages are freed continuously and we can expect pages
3058 * are in the same memcg. All these calls itself limits the number of
3059 * pages freed at once, then uncharge_start/end() is called properly.
3060 * This may be called prural(2) times in a context,
3063 void mem_cgroup_uncharge_start(void)
3065 current->memcg_batch.do_batch++;
3066 /* We can do nest. */
3067 if (current->memcg_batch.do_batch == 1) {
3068 current->memcg_batch.memcg = NULL;
3069 current->memcg_batch.nr_pages = 0;
3070 current->memcg_batch.memsw_nr_pages = 0;
3074 void mem_cgroup_uncharge_end(void)
3076 struct memcg_batch_info *batch = &current->memcg_batch;
3078 if (!batch->do_batch)
3079 return;
3081 batch->do_batch--;
3082 if (batch->do_batch) /* If stacked, do nothing. */
3083 return;
3085 if (!batch->memcg)
3086 return;
3088 * This "batch->memcg" is valid without any css_get/put etc...
3089 * bacause we hide charges behind us.
3091 if (batch->nr_pages)
3092 res_counter_uncharge(&batch->memcg->res,
3093 batch->nr_pages * PAGE_SIZE);
3094 if (batch->memsw_nr_pages)
3095 res_counter_uncharge(&batch->memcg->memsw,
3096 batch->memsw_nr_pages * PAGE_SIZE);
3097 memcg_oom_recover(batch->memcg);
3098 /* forget this pointer (for sanity check) */
3099 batch->memcg = NULL;
3102 #ifdef CONFIG_SWAP
3104 * called after __delete_from_swap_cache() and drop "page" account.
3105 * memcg information is recorded to swap_cgroup of "ent"
3107 void
3108 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3110 struct mem_cgroup *memcg;
3111 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3113 if (!swapout) /* this was a swap cache but the swap is unused ! */
3114 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3116 memcg = __mem_cgroup_uncharge_common(page, ctype);
3119 * record memcg information, if swapout && memcg != NULL,
3120 * mem_cgroup_get() was called in uncharge().
3122 if (do_swap_account && swapout && memcg)
3123 swap_cgroup_record(ent, css_id(&memcg->css));
3125 #endif
3127 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3129 * called from swap_entry_free(). remove record in swap_cgroup and
3130 * uncharge "memsw" account.
3132 void mem_cgroup_uncharge_swap(swp_entry_t ent)
3134 struct mem_cgroup *memcg;
3135 unsigned short id;
3137 if (!do_swap_account)
3138 return;
3140 id = swap_cgroup_record(ent, 0);
3141 rcu_read_lock();
3142 memcg = mem_cgroup_lookup(id);
3143 if (memcg) {
3145 * We uncharge this because swap is freed.
3146 * This memcg can be obsolete one. We avoid calling css_tryget
3148 if (!mem_cgroup_is_root(memcg))
3149 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3150 mem_cgroup_swap_statistics(memcg, false);
3151 mem_cgroup_put(memcg);
3153 rcu_read_unlock();
3157 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3158 * @entry: swap entry to be moved
3159 * @from: mem_cgroup which the entry is moved from
3160 * @to: mem_cgroup which the entry is moved to
3161 * @need_fixup: whether we should fixup res_counters and refcounts.
3163 * It succeeds only when the swap_cgroup's record for this entry is the same
3164 * as the mem_cgroup's id of @from.
3166 * Returns 0 on success, -EINVAL on failure.
3168 * The caller must have charged to @to, IOW, called res_counter_charge() about
3169 * both res and memsw, and called css_get().
3171 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3172 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3174 unsigned short old_id, new_id;
3176 old_id = css_id(&from->css);
3177 new_id = css_id(&to->css);
3179 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3180 mem_cgroup_swap_statistics(from, false);
3181 mem_cgroup_swap_statistics(to, true);
3183 * This function is only called from task migration context now.
3184 * It postpones res_counter and refcount handling till the end
3185 * of task migration(mem_cgroup_clear_mc()) for performance
3186 * improvement. But we cannot postpone mem_cgroup_get(to)
3187 * because if the process that has been moved to @to does
3188 * swap-in, the refcount of @to might be decreased to 0.
3190 mem_cgroup_get(to);
3191 if (need_fixup) {
3192 if (!mem_cgroup_is_root(from))
3193 res_counter_uncharge(&from->memsw, PAGE_SIZE);
3194 mem_cgroup_put(from);
3196 * we charged both to->res and to->memsw, so we should
3197 * uncharge to->res.
3199 if (!mem_cgroup_is_root(to))
3200 res_counter_uncharge(&to->res, PAGE_SIZE);
3202 return 0;
3204 return -EINVAL;
3206 #else
3207 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3208 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3210 return -EINVAL;
3212 #endif
3215 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3216 * page belongs to.
3218 int mem_cgroup_prepare_migration(struct page *page,
3219 struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
3221 struct mem_cgroup *mem = NULL;
3222 struct page_cgroup *pc;
3223 enum charge_type ctype;
3224 int ret = 0;
3226 *ptr = NULL;
3228 VM_BUG_ON(PageTransHuge(page));
3229 if (mem_cgroup_disabled())
3230 return 0;
3232 pc = lookup_page_cgroup(page);
3233 lock_page_cgroup(pc);
3234 if (PageCgroupUsed(pc)) {
3235 mem = pc->mem_cgroup;
3236 css_get(&mem->css);
3238 * At migrating an anonymous page, its mapcount goes down
3239 * to 0 and uncharge() will be called. But, even if it's fully
3240 * unmapped, migration may fail and this page has to be
3241 * charged again. We set MIGRATION flag here and delay uncharge
3242 * until end_migration() is called
3244 * Corner Case Thinking
3245 * A)
3246 * When the old page was mapped as Anon and it's unmap-and-freed
3247 * while migration was ongoing.
3248 * If unmap finds the old page, uncharge() of it will be delayed
3249 * until end_migration(). If unmap finds a new page, it's
3250 * uncharged when it make mapcount to be 1->0. If unmap code
3251 * finds swap_migration_entry, the new page will not be mapped
3252 * and end_migration() will find it(mapcount==0).
3254 * B)
3255 * When the old page was mapped but migraion fails, the kernel
3256 * remaps it. A charge for it is kept by MIGRATION flag even
3257 * if mapcount goes down to 0. We can do remap successfully
3258 * without charging it again.
3260 * C)
3261 * The "old" page is under lock_page() until the end of
3262 * migration, so, the old page itself will not be swapped-out.
3263 * If the new page is swapped out before end_migraton, our
3264 * hook to usual swap-out path will catch the event.
3266 if (PageAnon(page))
3267 SetPageCgroupMigration(pc);
3269 unlock_page_cgroup(pc);
3271 * If the page is not charged at this point,
3272 * we return here.
3274 if (!mem)
3275 return 0;
3277 *ptr = mem;
3278 ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false);
3279 css_put(&mem->css);/* drop extra refcnt */
3280 if (ret || *ptr == NULL) {
3281 if (PageAnon(page)) {
3282 lock_page_cgroup(pc);
3283 ClearPageCgroupMigration(pc);
3284 unlock_page_cgroup(pc);
3286 * The old page may be fully unmapped while we kept it.
3288 mem_cgroup_uncharge_page(page);
3290 return -ENOMEM;
3293 * We charge new page before it's used/mapped. So, even if unlock_page()
3294 * is called before end_migration, we can catch all events on this new
3295 * page. In the case new page is migrated but not remapped, new page's
3296 * mapcount will be finally 0 and we call uncharge in end_migration().
3298 pc = lookup_page_cgroup(newpage);
3299 if (PageAnon(page))
3300 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3301 else if (page_is_file_cache(page))
3302 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3303 else
3304 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3305 __mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
3306 return ret;
3309 /* remove redundant charge if migration failed*/
3310 void mem_cgroup_end_migration(struct mem_cgroup *mem,
3311 struct page *oldpage, struct page *newpage, bool migration_ok)
3313 struct page *used, *unused;
3314 struct page_cgroup *pc;
3316 if (!mem)
3317 return;
3318 /* blocks rmdir() */
3319 cgroup_exclude_rmdir(&mem->css);
3320 if (!migration_ok) {
3321 used = oldpage;
3322 unused = newpage;
3323 } else {
3324 used = newpage;
3325 unused = oldpage;
3328 * We disallowed uncharge of pages under migration because mapcount
3329 * of the page goes down to zero, temporarly.
3330 * Clear the flag and check the page should be charged.
3332 pc = lookup_page_cgroup(oldpage);
3333 lock_page_cgroup(pc);
3334 ClearPageCgroupMigration(pc);
3335 unlock_page_cgroup(pc);
3337 __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3340 * If a page is a file cache, radix-tree replacement is very atomic
3341 * and we can skip this check. When it was an Anon page, its mapcount
3342 * goes down to 0. But because we added MIGRATION flage, it's not
3343 * uncharged yet. There are several case but page->mapcount check
3344 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3345 * check. (see prepare_charge() also)
3347 if (PageAnon(used))
3348 mem_cgroup_uncharge_page(used);
3350 * At migration, we may charge account against cgroup which has no
3351 * tasks.
3352 * So, rmdir()->pre_destroy() can be called while we do this charge.
3353 * In that case, we need to call pre_destroy() again. check it here.
3355 cgroup_release_and_wakeup_rmdir(&mem->css);
3358 #ifdef CONFIG_DEBUG_VM
3359 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3361 struct page_cgroup *pc;
3363 pc = lookup_page_cgroup(page);
3364 if (likely(pc) && PageCgroupUsed(pc))
3365 return pc;
3366 return NULL;
3369 bool mem_cgroup_bad_page_check(struct page *page)
3371 if (mem_cgroup_disabled())
3372 return false;
3374 return lookup_page_cgroup_used(page) != NULL;
3377 void mem_cgroup_print_bad_page(struct page *page)
3379 struct page_cgroup *pc;
3381 pc = lookup_page_cgroup_used(page);
3382 if (pc) {
3383 int ret = -1;
3384 char *path;
3386 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3387 pc, pc->flags, pc->mem_cgroup);
3389 path = kmalloc(PATH_MAX, GFP_KERNEL);
3390 if (path) {
3391 rcu_read_lock();
3392 ret = cgroup_path(pc->mem_cgroup->css.cgroup,
3393 path, PATH_MAX);
3394 rcu_read_unlock();
3397 printk(KERN_CONT "(%s)\n",
3398 (ret < 0) ? "cannot get the path" : path);
3399 kfree(path);
3402 #endif
3404 static DEFINE_MUTEX(set_limit_mutex);
3406 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3407 unsigned long long val)
3409 int retry_count;
3410 u64 memswlimit, memlimit;
3411 int ret = 0;
3412 int children = mem_cgroup_count_children(memcg);
3413 u64 curusage, oldusage;
3414 int enlarge;
3417 * For keeping hierarchical_reclaim simple, how long we should retry
3418 * is depends on callers. We set our retry-count to be function
3419 * of # of children which we should visit in this loop.
3421 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3423 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3425 enlarge = 0;
3426 while (retry_count) {
3427 if (signal_pending(current)) {
3428 ret = -EINTR;
3429 break;
3432 * Rather than hide all in some function, I do this in
3433 * open coded manner. You see what this really does.
3434 * We have to guarantee mem->res.limit < mem->memsw.limit.
3436 mutex_lock(&set_limit_mutex);
3437 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3438 if (memswlimit < val) {
3439 ret = -EINVAL;
3440 mutex_unlock(&set_limit_mutex);
3441 break;
3444 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3445 if (memlimit < val)
3446 enlarge = 1;
3448 ret = res_counter_set_limit(&memcg->res, val);
3449 if (!ret) {
3450 if (memswlimit == val)
3451 memcg->memsw_is_minimum = true;
3452 else
3453 memcg->memsw_is_minimum = false;
3455 mutex_unlock(&set_limit_mutex);
3457 if (!ret)
3458 break;
3460 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3461 MEM_CGROUP_RECLAIM_SHRINK,
3462 NULL);
3463 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3464 /* Usage is reduced ? */
3465 if (curusage >= oldusage)
3466 retry_count--;
3467 else
3468 oldusage = curusage;
3470 if (!ret && enlarge)
3471 memcg_oom_recover(memcg);
3473 return ret;
3476 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3477 unsigned long long val)
3479 int retry_count;
3480 u64 memlimit, memswlimit, oldusage, curusage;
3481 int children = mem_cgroup_count_children(memcg);
3482 int ret = -EBUSY;
3483 int enlarge = 0;
3485 /* see mem_cgroup_resize_res_limit */
3486 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3487 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3488 while (retry_count) {
3489 if (signal_pending(current)) {
3490 ret = -EINTR;
3491 break;
3494 * Rather than hide all in some function, I do this in
3495 * open coded manner. You see what this really does.
3496 * We have to guarantee mem->res.limit < mem->memsw.limit.
3498 mutex_lock(&set_limit_mutex);
3499 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3500 if (memlimit > val) {
3501 ret = -EINVAL;
3502 mutex_unlock(&set_limit_mutex);
3503 break;
3505 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3506 if (memswlimit < val)
3507 enlarge = 1;
3508 ret = res_counter_set_limit(&memcg->memsw, val);
3509 if (!ret) {
3510 if (memlimit == val)
3511 memcg->memsw_is_minimum = true;
3512 else
3513 memcg->memsw_is_minimum = false;
3515 mutex_unlock(&set_limit_mutex);
3517 if (!ret)
3518 break;
3520 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3521 MEM_CGROUP_RECLAIM_NOSWAP |
3522 MEM_CGROUP_RECLAIM_SHRINK,
3523 NULL);
3524 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3525 /* Usage is reduced ? */
3526 if (curusage >= oldusage)
3527 retry_count--;
3528 else
3529 oldusage = curusage;
3531 if (!ret && enlarge)
3532 memcg_oom_recover(memcg);
3533 return ret;
3536 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3537 gfp_t gfp_mask,
3538 unsigned long *total_scanned)
3540 unsigned long nr_reclaimed = 0;
3541 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3542 unsigned long reclaimed;
3543 int loop = 0;
3544 struct mem_cgroup_tree_per_zone *mctz;
3545 unsigned long long excess;
3546 unsigned long nr_scanned;
3548 if (order > 0)
3549 return 0;
3551 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3553 * This loop can run a while, specially if mem_cgroup's continuously
3554 * keep exceeding their soft limit and putting the system under
3555 * pressure
3557 do {
3558 if (next_mz)
3559 mz = next_mz;
3560 else
3561 mz = mem_cgroup_largest_soft_limit_node(mctz);
3562 if (!mz)
3563 break;
3565 nr_scanned = 0;
3566 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3567 gfp_mask,
3568 MEM_CGROUP_RECLAIM_SOFT,
3569 &nr_scanned);
3570 nr_reclaimed += reclaimed;
3571 *total_scanned += nr_scanned;
3572 spin_lock(&mctz->lock);
3575 * If we failed to reclaim anything from this memory cgroup
3576 * it is time to move on to the next cgroup
3578 next_mz = NULL;
3579 if (!reclaimed) {
3580 do {
3582 * Loop until we find yet another one.
3584 * By the time we get the soft_limit lock
3585 * again, someone might have aded the
3586 * group back on the RB tree. Iterate to
3587 * make sure we get a different mem.
3588 * mem_cgroup_largest_soft_limit_node returns
3589 * NULL if no other cgroup is present on
3590 * the tree
3592 next_mz =
3593 __mem_cgroup_largest_soft_limit_node(mctz);
3594 if (next_mz == mz)
3595 css_put(&next_mz->mem->css);
3596 else /* next_mz == NULL or other memcg */
3597 break;
3598 } while (1);
3600 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3601 excess = res_counter_soft_limit_excess(&mz->mem->res);
3603 * One school of thought says that we should not add
3604 * back the node to the tree if reclaim returns 0.
3605 * But our reclaim could return 0, simply because due
3606 * to priority we are exposing a smaller subset of
3607 * memory to reclaim from. Consider this as a longer
3608 * term TODO.
3610 /* If excess == 0, no tree ops */
3611 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3612 spin_unlock(&mctz->lock);
3613 css_put(&mz->mem->css);
3614 loop++;
3616 * Could not reclaim anything and there are no more
3617 * mem cgroups to try or we seem to be looping without
3618 * reclaiming anything.
3620 if (!nr_reclaimed &&
3621 (next_mz == NULL ||
3622 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3623 break;
3624 } while (!nr_reclaimed);
3625 if (next_mz)
3626 css_put(&next_mz->mem->css);
3627 return nr_reclaimed;
3631 * This routine traverse page_cgroup in given list and drop them all.
3632 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3634 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
3635 int node, int zid, enum lru_list lru)
3637 struct zone *zone;
3638 struct mem_cgroup_per_zone *mz;
3639 struct page_cgroup *pc, *busy;
3640 unsigned long flags, loop;
3641 struct list_head *list;
3642 int ret = 0;
3644 zone = &NODE_DATA(node)->node_zones[zid];
3645 mz = mem_cgroup_zoneinfo(mem, node, zid);
3646 list = &mz->lists[lru];
3648 loop = MEM_CGROUP_ZSTAT(mz, lru);
3649 /* give some margin against EBUSY etc...*/
3650 loop += 256;
3651 busy = NULL;
3652 while (loop--) {
3653 struct page *page;
3655 ret = 0;
3656 spin_lock_irqsave(&zone->lru_lock, flags);
3657 if (list_empty(list)) {
3658 spin_unlock_irqrestore(&zone->lru_lock, flags);
3659 break;
3661 pc = list_entry(list->prev, struct page_cgroup, lru);
3662 if (busy == pc) {
3663 list_move(&pc->lru, list);
3664 busy = NULL;
3665 spin_unlock_irqrestore(&zone->lru_lock, flags);
3666 continue;
3668 spin_unlock_irqrestore(&zone->lru_lock, flags);
3670 page = lookup_cgroup_page(pc);
3672 ret = mem_cgroup_move_parent(page, pc, mem, GFP_KERNEL);
3673 if (ret == -ENOMEM)
3674 break;
3676 if (ret == -EBUSY || ret == -EINVAL) {
3677 /* found lock contention or "pc" is obsolete. */
3678 busy = pc;
3679 cond_resched();
3680 } else
3681 busy = NULL;
3684 if (!ret && !list_empty(list))
3685 return -EBUSY;
3686 return ret;
3690 * make mem_cgroup's charge to be 0 if there is no task.
3691 * This enables deleting this mem_cgroup.
3693 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3695 int ret;
3696 int node, zid, shrink;
3697 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3698 struct cgroup *cgrp = mem->css.cgroup;
3700 css_get(&mem->css);
3702 shrink = 0;
3703 /* should free all ? */
3704 if (free_all)
3705 goto try_to_free;
3706 move_account:
3707 do {
3708 ret = -EBUSY;
3709 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3710 goto out;
3711 ret = -EINTR;
3712 if (signal_pending(current))
3713 goto out;
3714 /* This is for making all *used* pages to be on LRU. */
3715 lru_add_drain_all();
3716 drain_all_stock_sync(mem);
3717 ret = 0;
3718 mem_cgroup_start_move(mem);
3719 for_each_node_state(node, N_HIGH_MEMORY) {
3720 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3721 enum lru_list l;
3722 for_each_lru(l) {
3723 ret = mem_cgroup_force_empty_list(mem,
3724 node, zid, l);
3725 if (ret)
3726 break;
3729 if (ret)
3730 break;
3732 mem_cgroup_end_move(mem);
3733 memcg_oom_recover(mem);
3734 /* it seems parent cgroup doesn't have enough mem */
3735 if (ret == -ENOMEM)
3736 goto try_to_free;
3737 cond_resched();
3738 /* "ret" should also be checked to ensure all lists are empty. */
3739 } while (mem->res.usage > 0 || ret);
3740 out:
3741 css_put(&mem->css);
3742 return ret;
3744 try_to_free:
3745 /* returns EBUSY if there is a task or if we come here twice. */
3746 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3747 ret = -EBUSY;
3748 goto out;
3750 /* we call try-to-free pages for make this cgroup empty */
3751 lru_add_drain_all();
3752 /* try to free all pages in this cgroup */
3753 shrink = 1;
3754 while (nr_retries && mem->res.usage > 0) {
3755 int progress;
3757 if (signal_pending(current)) {
3758 ret = -EINTR;
3759 goto out;
3761 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3762 false);
3763 if (!progress) {
3764 nr_retries--;
3765 /* maybe some writeback is necessary */
3766 congestion_wait(BLK_RW_ASYNC, HZ/10);
3770 lru_add_drain();
3771 /* try move_account...there may be some *locked* pages. */
3772 goto move_account;
3775 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3777 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3781 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3783 return mem_cgroup_from_cont(cont)->use_hierarchy;
3786 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3787 u64 val)
3789 int retval = 0;
3790 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3791 struct cgroup *parent = cont->parent;
3792 struct mem_cgroup *parent_mem = NULL;
3794 if (parent)
3795 parent_mem = mem_cgroup_from_cont(parent);
3797 cgroup_lock();
3799 * If parent's use_hierarchy is set, we can't make any modifications
3800 * in the child subtrees. If it is unset, then the change can
3801 * occur, provided the current cgroup has no children.
3803 * For the root cgroup, parent_mem is NULL, we allow value to be
3804 * set if there are no children.
3806 if ((!parent_mem || !parent_mem->use_hierarchy) &&
3807 (val == 1 || val == 0)) {
3808 if (list_empty(&cont->children))
3809 mem->use_hierarchy = val;
3810 else
3811 retval = -EBUSY;
3812 } else
3813 retval = -EINVAL;
3814 cgroup_unlock();
3816 return retval;
3820 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *mem,
3821 enum mem_cgroup_stat_index idx)
3823 struct mem_cgroup *iter;
3824 long val = 0;
3826 /* Per-cpu values can be negative, use a signed accumulator */
3827 for_each_mem_cgroup_tree(iter, mem)
3828 val += mem_cgroup_read_stat(iter, idx);
3830 if (val < 0) /* race ? */
3831 val = 0;
3832 return val;
3835 static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3837 u64 val;
3839 if (!mem_cgroup_is_root(mem)) {
3840 if (!swap)
3841 return res_counter_read_u64(&mem->res, RES_USAGE);
3842 else
3843 return res_counter_read_u64(&mem->memsw, RES_USAGE);
3846 val = mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_CACHE);
3847 val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_RSS);
3849 if (swap)
3850 val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3852 return val << PAGE_SHIFT;
3855 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3857 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3858 u64 val;
3859 int type, name;
3861 type = MEMFILE_TYPE(cft->private);
3862 name = MEMFILE_ATTR(cft->private);
3863 switch (type) {
3864 case _MEM:
3865 if (name == RES_USAGE)
3866 val = mem_cgroup_usage(mem, false);
3867 else
3868 val = res_counter_read_u64(&mem->res, name);
3869 break;
3870 case _MEMSWAP:
3871 if (name == RES_USAGE)
3872 val = mem_cgroup_usage(mem, true);
3873 else
3874 val = res_counter_read_u64(&mem->memsw, name);
3875 break;
3876 default:
3877 BUG();
3878 break;
3880 return val;
3883 * The user of this function is...
3884 * RES_LIMIT.
3886 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3887 const char *buffer)
3889 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3890 int type, name;
3891 unsigned long long val;
3892 int ret;
3894 type = MEMFILE_TYPE(cft->private);
3895 name = MEMFILE_ATTR(cft->private);
3896 switch (name) {
3897 case RES_LIMIT:
3898 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3899 ret = -EINVAL;
3900 break;
3902 /* This function does all necessary parse...reuse it */
3903 ret = res_counter_memparse_write_strategy(buffer, &val);
3904 if (ret)
3905 break;
3906 if (type == _MEM)
3907 ret = mem_cgroup_resize_limit(memcg, val);
3908 else
3909 ret = mem_cgroup_resize_memsw_limit(memcg, val);
3910 break;
3911 case RES_SOFT_LIMIT:
3912 ret = res_counter_memparse_write_strategy(buffer, &val);
3913 if (ret)
3914 break;
3916 * For memsw, soft limits are hard to implement in terms
3917 * of semantics, for now, we support soft limits for
3918 * control without swap
3920 if (type == _MEM)
3921 ret = res_counter_set_soft_limit(&memcg->res, val);
3922 else
3923 ret = -EINVAL;
3924 break;
3925 default:
3926 ret = -EINVAL; /* should be BUG() ? */
3927 break;
3929 return ret;
3932 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3933 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3935 struct cgroup *cgroup;
3936 unsigned long long min_limit, min_memsw_limit, tmp;
3938 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3939 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3940 cgroup = memcg->css.cgroup;
3941 if (!memcg->use_hierarchy)
3942 goto out;
3944 while (cgroup->parent) {
3945 cgroup = cgroup->parent;
3946 memcg = mem_cgroup_from_cont(cgroup);
3947 if (!memcg->use_hierarchy)
3948 break;
3949 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3950 min_limit = min(min_limit, tmp);
3951 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3952 min_memsw_limit = min(min_memsw_limit, tmp);
3954 out:
3955 *mem_limit = min_limit;
3956 *memsw_limit = min_memsw_limit;
3957 return;
3960 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3962 struct mem_cgroup *mem;
3963 int type, name;
3965 mem = mem_cgroup_from_cont(cont);
3966 type = MEMFILE_TYPE(event);
3967 name = MEMFILE_ATTR(event);
3968 switch (name) {
3969 case RES_MAX_USAGE:
3970 if (type == _MEM)
3971 res_counter_reset_max(&mem->res);
3972 else
3973 res_counter_reset_max(&mem->memsw);
3974 break;
3975 case RES_FAILCNT:
3976 if (type == _MEM)
3977 res_counter_reset_failcnt(&mem->res);
3978 else
3979 res_counter_reset_failcnt(&mem->memsw);
3980 break;
3983 return 0;
3986 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3987 struct cftype *cft)
3989 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3992 #ifdef CONFIG_MMU
3993 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3994 struct cftype *cft, u64 val)
3996 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3998 if (val >= (1 << NR_MOVE_TYPE))
3999 return -EINVAL;
4001 * We check this value several times in both in can_attach() and
4002 * attach(), so we need cgroup lock to prevent this value from being
4003 * inconsistent.
4005 cgroup_lock();
4006 mem->move_charge_at_immigrate = val;
4007 cgroup_unlock();
4009 return 0;
4011 #else
4012 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4013 struct cftype *cft, u64 val)
4015 return -ENOSYS;
4017 #endif
4020 /* For read statistics */
4021 enum {
4022 MCS_CACHE,
4023 MCS_RSS,
4024 MCS_FILE_MAPPED,
4025 MCS_PGPGIN,
4026 MCS_PGPGOUT,
4027 MCS_SWAP,
4028 MCS_PGFAULT,
4029 MCS_PGMAJFAULT,
4030 MCS_INACTIVE_ANON,
4031 MCS_ACTIVE_ANON,
4032 MCS_INACTIVE_FILE,
4033 MCS_ACTIVE_FILE,
4034 MCS_UNEVICTABLE,
4035 NR_MCS_STAT,
4038 struct mcs_total_stat {
4039 s64 stat[NR_MCS_STAT];
4042 struct {
4043 char *local_name;
4044 char *total_name;
4045 } memcg_stat_strings[NR_MCS_STAT] = {
4046 {"cache", "total_cache"},
4047 {"rss", "total_rss"},
4048 {"mapped_file", "total_mapped_file"},
4049 {"pgpgin", "total_pgpgin"},
4050 {"pgpgout", "total_pgpgout"},
4051 {"swap", "total_swap"},
4052 {"pgfault", "total_pgfault"},
4053 {"pgmajfault", "total_pgmajfault"},
4054 {"inactive_anon", "total_inactive_anon"},
4055 {"active_anon", "total_active_anon"},
4056 {"inactive_file", "total_inactive_file"},
4057 {"active_file", "total_active_file"},
4058 {"unevictable", "total_unevictable"}
4062 static void
4063 mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
4065 s64 val;
4067 /* per cpu stat */
4068 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
4069 s->stat[MCS_CACHE] += val * PAGE_SIZE;
4070 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
4071 s->stat[MCS_RSS] += val * PAGE_SIZE;
4072 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
4073 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4074 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGIN);
4075 s->stat[MCS_PGPGIN] += val;
4076 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGOUT);
4077 s->stat[MCS_PGPGOUT] += val;
4078 if (do_swap_account) {
4079 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
4080 s->stat[MCS_SWAP] += val * PAGE_SIZE;
4082 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGFAULT);
4083 s->stat[MCS_PGFAULT] += val;
4084 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGMAJFAULT);
4085 s->stat[MCS_PGMAJFAULT] += val;
4087 /* per zone stat */
4088 val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_INACTIVE_ANON));
4089 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4090 val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_ACTIVE_ANON));
4091 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4092 val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_INACTIVE_FILE));
4093 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4094 val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_ACTIVE_FILE));
4095 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4096 val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_UNEVICTABLE));
4097 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
4100 static void
4101 mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
4103 struct mem_cgroup *iter;
4105 for_each_mem_cgroup_tree(iter, mem)
4106 mem_cgroup_get_local_stat(iter, s);
4109 #ifdef CONFIG_NUMA
4110 static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4112 int nid;
4113 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4114 unsigned long node_nr;
4115 struct cgroup *cont = m->private;
4116 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4118 total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
4119 seq_printf(m, "total=%lu", total_nr);
4120 for_each_node_state(nid, N_HIGH_MEMORY) {
4121 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
4122 seq_printf(m, " N%d=%lu", nid, node_nr);
4124 seq_putc(m, '\n');
4126 file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
4127 seq_printf(m, "file=%lu", file_nr);
4128 for_each_node_state(nid, N_HIGH_MEMORY) {
4129 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4130 LRU_ALL_FILE);
4131 seq_printf(m, " N%d=%lu", nid, node_nr);
4133 seq_putc(m, '\n');
4135 anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
4136 seq_printf(m, "anon=%lu", anon_nr);
4137 for_each_node_state(nid, N_HIGH_MEMORY) {
4138 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4139 LRU_ALL_ANON);
4140 seq_printf(m, " N%d=%lu", nid, node_nr);
4142 seq_putc(m, '\n');
4144 unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
4145 seq_printf(m, "unevictable=%lu", unevictable_nr);
4146 for_each_node_state(nid, N_HIGH_MEMORY) {
4147 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4148 BIT(LRU_UNEVICTABLE));
4149 seq_printf(m, " N%d=%lu", nid, node_nr);
4151 seq_putc(m, '\n');
4152 return 0;
4154 #endif /* CONFIG_NUMA */
4156 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4157 struct cgroup_map_cb *cb)
4159 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4160 struct mcs_total_stat mystat;
4161 int i;
4163 memset(&mystat, 0, sizeof(mystat));
4164 mem_cgroup_get_local_stat(mem_cont, &mystat);
4167 for (i = 0; i < NR_MCS_STAT; i++) {
4168 if (i == MCS_SWAP && !do_swap_account)
4169 continue;
4170 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4173 /* Hierarchical information */
4175 unsigned long long limit, memsw_limit;
4176 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
4177 cb->fill(cb, "hierarchical_memory_limit", limit);
4178 if (do_swap_account)
4179 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4182 memset(&mystat, 0, sizeof(mystat));
4183 mem_cgroup_get_total_stat(mem_cont, &mystat);
4184 for (i = 0; i < NR_MCS_STAT; i++) {
4185 if (i == MCS_SWAP && !do_swap_account)
4186 continue;
4187 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4190 #ifdef CONFIG_DEBUG_VM
4191 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
4194 int nid, zid;
4195 struct mem_cgroup_per_zone *mz;
4196 unsigned long recent_rotated[2] = {0, 0};
4197 unsigned long recent_scanned[2] = {0, 0};
4199 for_each_online_node(nid)
4200 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4201 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
4203 recent_rotated[0] +=
4204 mz->reclaim_stat.recent_rotated[0];
4205 recent_rotated[1] +=
4206 mz->reclaim_stat.recent_rotated[1];
4207 recent_scanned[0] +=
4208 mz->reclaim_stat.recent_scanned[0];
4209 recent_scanned[1] +=
4210 mz->reclaim_stat.recent_scanned[1];
4212 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4213 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4214 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4215 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4217 #endif
4219 return 0;
4222 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4224 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4226 return mem_cgroup_swappiness(memcg);
4229 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4230 u64 val)
4232 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4233 struct mem_cgroup *parent;
4235 if (val > 100)
4236 return -EINVAL;
4238 if (cgrp->parent == NULL)
4239 return -EINVAL;
4241 parent = mem_cgroup_from_cont(cgrp->parent);
4243 cgroup_lock();
4245 /* If under hierarchy, only empty-root can set this value */
4246 if ((parent->use_hierarchy) ||
4247 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4248 cgroup_unlock();
4249 return -EINVAL;
4252 memcg->swappiness = val;
4254 cgroup_unlock();
4256 return 0;
4259 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4261 struct mem_cgroup_threshold_ary *t;
4262 u64 usage;
4263 int i;
4265 rcu_read_lock();
4266 if (!swap)
4267 t = rcu_dereference(memcg->thresholds.primary);
4268 else
4269 t = rcu_dereference(memcg->memsw_thresholds.primary);
4271 if (!t)
4272 goto unlock;
4274 usage = mem_cgroup_usage(memcg, swap);
4277 * current_threshold points to threshold just below usage.
4278 * If it's not true, a threshold was crossed after last
4279 * call of __mem_cgroup_threshold().
4281 i = t->current_threshold;
4284 * Iterate backward over array of thresholds starting from
4285 * current_threshold and check if a threshold is crossed.
4286 * If none of thresholds below usage is crossed, we read
4287 * only one element of the array here.
4289 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4290 eventfd_signal(t->entries[i].eventfd, 1);
4292 /* i = current_threshold + 1 */
4293 i++;
4296 * Iterate forward over array of thresholds starting from
4297 * current_threshold+1 and check if a threshold is crossed.
4298 * If none of thresholds above usage is crossed, we read
4299 * only one element of the array here.
4301 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4302 eventfd_signal(t->entries[i].eventfd, 1);
4304 /* Update current_threshold */
4305 t->current_threshold = i - 1;
4306 unlock:
4307 rcu_read_unlock();
4310 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4312 while (memcg) {
4313 __mem_cgroup_threshold(memcg, false);
4314 if (do_swap_account)
4315 __mem_cgroup_threshold(memcg, true);
4317 memcg = parent_mem_cgroup(memcg);
4321 static int compare_thresholds(const void *a, const void *b)
4323 const struct mem_cgroup_threshold *_a = a;
4324 const struct mem_cgroup_threshold *_b = b;
4326 return _a->threshold - _b->threshold;
4329 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
4331 struct mem_cgroup_eventfd_list *ev;
4333 list_for_each_entry(ev, &mem->oom_notify, list)
4334 eventfd_signal(ev->eventfd, 1);
4335 return 0;
4338 static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
4340 struct mem_cgroup *iter;
4342 for_each_mem_cgroup_tree(iter, mem)
4343 mem_cgroup_oom_notify_cb(iter);
4346 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4347 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4349 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4350 struct mem_cgroup_thresholds *thresholds;
4351 struct mem_cgroup_threshold_ary *new;
4352 int type = MEMFILE_TYPE(cft->private);
4353 u64 threshold, usage;
4354 int i, size, ret;
4356 ret = res_counter_memparse_write_strategy(args, &threshold);
4357 if (ret)
4358 return ret;
4360 mutex_lock(&memcg->thresholds_lock);
4362 if (type == _MEM)
4363 thresholds = &memcg->thresholds;
4364 else if (type == _MEMSWAP)
4365 thresholds = &memcg->memsw_thresholds;
4366 else
4367 BUG();
4369 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4371 /* Check if a threshold crossed before adding a new one */
4372 if (thresholds->primary)
4373 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4375 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4377 /* Allocate memory for new array of thresholds */
4378 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4379 GFP_KERNEL);
4380 if (!new) {
4381 ret = -ENOMEM;
4382 goto unlock;
4384 new->size = size;
4386 /* Copy thresholds (if any) to new array */
4387 if (thresholds->primary) {
4388 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4389 sizeof(struct mem_cgroup_threshold));
4392 /* Add new threshold */
4393 new->entries[size - 1].eventfd = eventfd;
4394 new->entries[size - 1].threshold = threshold;
4396 /* Sort thresholds. Registering of new threshold isn't time-critical */
4397 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4398 compare_thresholds, NULL);
4400 /* Find current threshold */
4401 new->current_threshold = -1;
4402 for (i = 0; i < size; i++) {
4403 if (new->entries[i].threshold < usage) {
4405 * new->current_threshold will not be used until
4406 * rcu_assign_pointer(), so it's safe to increment
4407 * it here.
4409 ++new->current_threshold;
4413 /* Free old spare buffer and save old primary buffer as spare */
4414 kfree(thresholds->spare);
4415 thresholds->spare = thresholds->primary;
4417 rcu_assign_pointer(thresholds->primary, new);
4419 /* To be sure that nobody uses thresholds */
4420 synchronize_rcu();
4422 unlock:
4423 mutex_unlock(&memcg->thresholds_lock);
4425 return ret;
4428 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4429 struct cftype *cft, struct eventfd_ctx *eventfd)
4431 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4432 struct mem_cgroup_thresholds *thresholds;
4433 struct mem_cgroup_threshold_ary *new;
4434 int type = MEMFILE_TYPE(cft->private);
4435 u64 usage;
4436 int i, j, size;
4438 mutex_lock(&memcg->thresholds_lock);
4439 if (type == _MEM)
4440 thresholds = &memcg->thresholds;
4441 else if (type == _MEMSWAP)
4442 thresholds = &memcg->memsw_thresholds;
4443 else
4444 BUG();
4447 * Something went wrong if we trying to unregister a threshold
4448 * if we don't have thresholds
4450 BUG_ON(!thresholds);
4452 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4454 /* Check if a threshold crossed before removing */
4455 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4457 /* Calculate new number of threshold */
4458 size = 0;
4459 for (i = 0; i < thresholds->primary->size; i++) {
4460 if (thresholds->primary->entries[i].eventfd != eventfd)
4461 size++;
4464 new = thresholds->spare;
4466 /* Set thresholds array to NULL if we don't have thresholds */
4467 if (!size) {
4468 kfree(new);
4469 new = NULL;
4470 goto swap_buffers;
4473 new->size = size;
4475 /* Copy thresholds and find current threshold */
4476 new->current_threshold = -1;
4477 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4478 if (thresholds->primary->entries[i].eventfd == eventfd)
4479 continue;
4481 new->entries[j] = thresholds->primary->entries[i];
4482 if (new->entries[j].threshold < usage) {
4484 * new->current_threshold will not be used
4485 * until rcu_assign_pointer(), so it's safe to increment
4486 * it here.
4488 ++new->current_threshold;
4490 j++;
4493 swap_buffers:
4494 /* Swap primary and spare array */
4495 thresholds->spare = thresholds->primary;
4496 rcu_assign_pointer(thresholds->primary, new);
4498 /* To be sure that nobody uses thresholds */
4499 synchronize_rcu();
4501 mutex_unlock(&memcg->thresholds_lock);
4504 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4505 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4507 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4508 struct mem_cgroup_eventfd_list *event;
4509 int type = MEMFILE_TYPE(cft->private);
4511 BUG_ON(type != _OOM_TYPE);
4512 event = kmalloc(sizeof(*event), GFP_KERNEL);
4513 if (!event)
4514 return -ENOMEM;
4516 spin_lock(&memcg_oom_lock);
4518 event->eventfd = eventfd;
4519 list_add(&event->list, &memcg->oom_notify);
4521 /* already in OOM ? */
4522 if (atomic_read(&memcg->under_oom))
4523 eventfd_signal(eventfd, 1);
4524 spin_unlock(&memcg_oom_lock);
4526 return 0;
4529 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4530 struct cftype *cft, struct eventfd_ctx *eventfd)
4532 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4533 struct mem_cgroup_eventfd_list *ev, *tmp;
4534 int type = MEMFILE_TYPE(cft->private);
4536 BUG_ON(type != _OOM_TYPE);
4538 spin_lock(&memcg_oom_lock);
4540 list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
4541 if (ev->eventfd == eventfd) {
4542 list_del(&ev->list);
4543 kfree(ev);
4547 spin_unlock(&memcg_oom_lock);
4550 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4551 struct cftype *cft, struct cgroup_map_cb *cb)
4553 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4555 cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
4557 if (atomic_read(&mem->under_oom))
4558 cb->fill(cb, "under_oom", 1);
4559 else
4560 cb->fill(cb, "under_oom", 0);
4561 return 0;
4564 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4565 struct cftype *cft, u64 val)
4567 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4568 struct mem_cgroup *parent;
4570 /* cannot set to root cgroup and only 0 and 1 are allowed */
4571 if (!cgrp->parent || !((val == 0) || (val == 1)))
4572 return -EINVAL;
4574 parent = mem_cgroup_from_cont(cgrp->parent);
4576 cgroup_lock();
4577 /* oom-kill-disable is a flag for subhierarchy. */
4578 if ((parent->use_hierarchy) ||
4579 (mem->use_hierarchy && !list_empty(&cgrp->children))) {
4580 cgroup_unlock();
4581 return -EINVAL;
4583 mem->oom_kill_disable = val;
4584 if (!val)
4585 memcg_oom_recover(mem);
4586 cgroup_unlock();
4587 return 0;
4590 #ifdef CONFIG_NUMA
4591 static const struct file_operations mem_control_numa_stat_file_operations = {
4592 .read = seq_read,
4593 .llseek = seq_lseek,
4594 .release = single_release,
4597 static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4599 struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
4601 file->f_op = &mem_control_numa_stat_file_operations;
4602 return single_open(file, mem_control_numa_stat_show, cont);
4604 #endif /* CONFIG_NUMA */
4606 static struct cftype mem_cgroup_files[] = {
4608 .name = "usage_in_bytes",
4609 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4610 .read_u64 = mem_cgroup_read,
4611 .register_event = mem_cgroup_usage_register_event,
4612 .unregister_event = mem_cgroup_usage_unregister_event,
4615 .name = "max_usage_in_bytes",
4616 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4617 .trigger = mem_cgroup_reset,
4618 .read_u64 = mem_cgroup_read,
4621 .name = "limit_in_bytes",
4622 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4623 .write_string = mem_cgroup_write,
4624 .read_u64 = mem_cgroup_read,
4627 .name = "soft_limit_in_bytes",
4628 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4629 .write_string = mem_cgroup_write,
4630 .read_u64 = mem_cgroup_read,
4633 .name = "failcnt",
4634 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4635 .trigger = mem_cgroup_reset,
4636 .read_u64 = mem_cgroup_read,
4639 .name = "stat",
4640 .read_map = mem_control_stat_show,
4643 .name = "force_empty",
4644 .trigger = mem_cgroup_force_empty_write,
4647 .name = "use_hierarchy",
4648 .write_u64 = mem_cgroup_hierarchy_write,
4649 .read_u64 = mem_cgroup_hierarchy_read,
4652 .name = "swappiness",
4653 .read_u64 = mem_cgroup_swappiness_read,
4654 .write_u64 = mem_cgroup_swappiness_write,
4657 .name = "move_charge_at_immigrate",
4658 .read_u64 = mem_cgroup_move_charge_read,
4659 .write_u64 = mem_cgroup_move_charge_write,
4662 .name = "oom_control",
4663 .read_map = mem_cgroup_oom_control_read,
4664 .write_u64 = mem_cgroup_oom_control_write,
4665 .register_event = mem_cgroup_oom_register_event,
4666 .unregister_event = mem_cgroup_oom_unregister_event,
4667 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4669 #ifdef CONFIG_NUMA
4671 .name = "numa_stat",
4672 .open = mem_control_numa_stat_open,
4673 .mode = S_IRUGO,
4675 #endif
4678 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4679 static struct cftype memsw_cgroup_files[] = {
4681 .name = "memsw.usage_in_bytes",
4682 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4683 .read_u64 = mem_cgroup_read,
4684 .register_event = mem_cgroup_usage_register_event,
4685 .unregister_event = mem_cgroup_usage_unregister_event,
4688 .name = "memsw.max_usage_in_bytes",
4689 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4690 .trigger = mem_cgroup_reset,
4691 .read_u64 = mem_cgroup_read,
4694 .name = "memsw.limit_in_bytes",
4695 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4696 .write_string = mem_cgroup_write,
4697 .read_u64 = mem_cgroup_read,
4700 .name = "memsw.failcnt",
4701 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4702 .trigger = mem_cgroup_reset,
4703 .read_u64 = mem_cgroup_read,
4707 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4709 if (!do_swap_account)
4710 return 0;
4711 return cgroup_add_files(cont, ss, memsw_cgroup_files,
4712 ARRAY_SIZE(memsw_cgroup_files));
4714 #else
4715 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4717 return 0;
4719 #endif
4721 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4723 struct mem_cgroup_per_node *pn;
4724 struct mem_cgroup_per_zone *mz;
4725 enum lru_list l;
4726 int zone, tmp = node;
4728 * This routine is called against possible nodes.
4729 * But it's BUG to call kmalloc() against offline node.
4731 * TODO: this routine can waste much memory for nodes which will
4732 * never be onlined. It's better to use memory hotplug callback
4733 * function.
4735 if (!node_state(node, N_NORMAL_MEMORY))
4736 tmp = -1;
4737 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4738 if (!pn)
4739 return 1;
4741 mem->info.nodeinfo[node] = pn;
4742 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4743 mz = &pn->zoneinfo[zone];
4744 for_each_lru(l)
4745 INIT_LIST_HEAD(&mz->lists[l]);
4746 mz->usage_in_excess = 0;
4747 mz->on_tree = false;
4748 mz->mem = mem;
4750 return 0;
4753 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4755 kfree(mem->info.nodeinfo[node]);
4758 static struct mem_cgroup *mem_cgroup_alloc(void)
4760 struct mem_cgroup *mem;
4761 int size = sizeof(struct mem_cgroup);
4763 /* Can be very big if MAX_NUMNODES is very big */
4764 if (size < PAGE_SIZE)
4765 mem = kzalloc(size, GFP_KERNEL);
4766 else
4767 mem = vzalloc(size);
4769 if (!mem)
4770 return NULL;
4772 mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4773 if (!mem->stat)
4774 goto out_free;
4775 spin_lock_init(&mem->pcp_counter_lock);
4776 return mem;
4778 out_free:
4779 if (size < PAGE_SIZE)
4780 kfree(mem);
4781 else
4782 vfree(mem);
4783 return NULL;
4787 * At destroying mem_cgroup, references from swap_cgroup can remain.
4788 * (scanning all at force_empty is too costly...)
4790 * Instead of clearing all references at force_empty, we remember
4791 * the number of reference from swap_cgroup and free mem_cgroup when
4792 * it goes down to 0.
4794 * Removal of cgroup itself succeeds regardless of refs from swap.
4797 static void __mem_cgroup_free(struct mem_cgroup *mem)
4799 int node;
4801 mem_cgroup_remove_from_trees(mem);
4802 free_css_id(&mem_cgroup_subsys, &mem->css);
4804 for_each_node_state(node, N_POSSIBLE)
4805 free_mem_cgroup_per_zone_info(mem, node);
4807 free_percpu(mem->stat);
4808 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4809 kfree(mem);
4810 else
4811 vfree(mem);
4814 static void mem_cgroup_get(struct mem_cgroup *mem)
4816 atomic_inc(&mem->refcnt);
4819 static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4821 if (atomic_sub_and_test(count, &mem->refcnt)) {
4822 struct mem_cgroup *parent = parent_mem_cgroup(mem);
4823 __mem_cgroup_free(mem);
4824 if (parent)
4825 mem_cgroup_put(parent);
4829 static void mem_cgroup_put(struct mem_cgroup *mem)
4831 __mem_cgroup_put(mem, 1);
4835 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4837 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
4839 if (!mem->res.parent)
4840 return NULL;
4841 return mem_cgroup_from_res_counter(mem->res.parent, res);
4844 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4845 static void __init enable_swap_cgroup(void)
4847 if (!mem_cgroup_disabled() && really_do_swap_account)
4848 do_swap_account = 1;
4850 #else
4851 static void __init enable_swap_cgroup(void)
4854 #endif
4856 static int mem_cgroup_soft_limit_tree_init(void)
4858 struct mem_cgroup_tree_per_node *rtpn;
4859 struct mem_cgroup_tree_per_zone *rtpz;
4860 int tmp, node, zone;
4862 for_each_node_state(node, N_POSSIBLE) {
4863 tmp = node;
4864 if (!node_state(node, N_NORMAL_MEMORY))
4865 tmp = -1;
4866 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4867 if (!rtpn)
4868 return 1;
4870 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4872 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4873 rtpz = &rtpn->rb_tree_per_zone[zone];
4874 rtpz->rb_root = RB_ROOT;
4875 spin_lock_init(&rtpz->lock);
4878 return 0;
4881 static struct cgroup_subsys_state * __ref
4882 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4884 struct mem_cgroup *mem, *parent;
4885 long error = -ENOMEM;
4886 int node;
4888 mem = mem_cgroup_alloc();
4889 if (!mem)
4890 return ERR_PTR(error);
4892 for_each_node_state(node, N_POSSIBLE)
4893 if (alloc_mem_cgroup_per_zone_info(mem, node))
4894 goto free_out;
4896 /* root ? */
4897 if (cont->parent == NULL) {
4898 int cpu;
4899 enable_swap_cgroup();
4900 parent = NULL;
4901 root_mem_cgroup = mem;
4902 if (mem_cgroup_soft_limit_tree_init())
4903 goto free_out;
4904 for_each_possible_cpu(cpu) {
4905 struct memcg_stock_pcp *stock =
4906 &per_cpu(memcg_stock, cpu);
4907 INIT_WORK(&stock->work, drain_local_stock);
4909 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4910 } else {
4911 parent = mem_cgroup_from_cont(cont->parent);
4912 mem->use_hierarchy = parent->use_hierarchy;
4913 mem->oom_kill_disable = parent->oom_kill_disable;
4916 if (parent && parent->use_hierarchy) {
4917 res_counter_init(&mem->res, &parent->res);
4918 res_counter_init(&mem->memsw, &parent->memsw);
4920 * We increment refcnt of the parent to ensure that we can
4921 * safely access it on res_counter_charge/uncharge.
4922 * This refcnt will be decremented when freeing this
4923 * mem_cgroup(see mem_cgroup_put).
4925 mem_cgroup_get(parent);
4926 } else {
4927 res_counter_init(&mem->res, NULL);
4928 res_counter_init(&mem->memsw, NULL);
4930 mem->last_scanned_child = 0;
4931 mem->last_scanned_node = MAX_NUMNODES;
4932 INIT_LIST_HEAD(&mem->oom_notify);
4934 if (parent)
4935 mem->swappiness = mem_cgroup_swappiness(parent);
4936 atomic_set(&mem->refcnt, 1);
4937 mem->move_charge_at_immigrate = 0;
4938 mutex_init(&mem->thresholds_lock);
4939 return &mem->css;
4940 free_out:
4941 __mem_cgroup_free(mem);
4942 root_mem_cgroup = NULL;
4943 return ERR_PTR(error);
4946 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4947 struct cgroup *cont)
4949 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4951 return mem_cgroup_force_empty(mem, false);
4954 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4955 struct cgroup *cont)
4957 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4959 mem_cgroup_put(mem);
4962 static int mem_cgroup_populate(struct cgroup_subsys *ss,
4963 struct cgroup *cont)
4965 int ret;
4967 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4968 ARRAY_SIZE(mem_cgroup_files));
4970 if (!ret)
4971 ret = register_memsw_files(cont, ss);
4972 return ret;
4975 #ifdef CONFIG_MMU
4976 /* Handlers for move charge at task migration. */
4977 #define PRECHARGE_COUNT_AT_ONCE 256
4978 static int mem_cgroup_do_precharge(unsigned long count)
4980 int ret = 0;
4981 int batch_count = PRECHARGE_COUNT_AT_ONCE;
4982 struct mem_cgroup *mem = mc.to;
4984 if (mem_cgroup_is_root(mem)) {
4985 mc.precharge += count;
4986 /* we don't need css_get for root */
4987 return ret;
4989 /* try to charge at once */
4990 if (count > 1) {
4991 struct res_counter *dummy;
4993 * "mem" cannot be under rmdir() because we've already checked
4994 * by cgroup_lock_live_cgroup() that it is not removed and we
4995 * are still under the same cgroup_mutex. So we can postpone
4996 * css_get().
4998 if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
4999 goto one_by_one;
5000 if (do_swap_account && res_counter_charge(&mem->memsw,
5001 PAGE_SIZE * count, &dummy)) {
5002 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
5003 goto one_by_one;
5005 mc.precharge += count;
5006 return ret;
5008 one_by_one:
5009 /* fall back to one by one charge */
5010 while (count--) {
5011 if (signal_pending(current)) {
5012 ret = -EINTR;
5013 break;
5015 if (!batch_count--) {
5016 batch_count = PRECHARGE_COUNT_AT_ONCE;
5017 cond_resched();
5019 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, 1, &mem, false);
5020 if (ret || !mem)
5021 /* mem_cgroup_clear_mc() will do uncharge later */
5022 return -ENOMEM;
5023 mc.precharge++;
5025 return ret;
5029 * is_target_pte_for_mc - check a pte whether it is valid for move charge
5030 * @vma: the vma the pte to be checked belongs
5031 * @addr: the address corresponding to the pte to be checked
5032 * @ptent: the pte to be checked
5033 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5035 * Returns
5036 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5037 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5038 * move charge. if @target is not NULL, the page is stored in target->page
5039 * with extra refcnt got(Callers should handle it).
5040 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5041 * target for charge migration. if @target is not NULL, the entry is stored
5042 * in target->ent.
5044 * Called with pte lock held.
5046 union mc_target {
5047 struct page *page;
5048 swp_entry_t ent;
5051 enum mc_target_type {
5052 MC_TARGET_NONE, /* not used */
5053 MC_TARGET_PAGE,
5054 MC_TARGET_SWAP,
5057 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5058 unsigned long addr, pte_t ptent)
5060 struct page *page = vm_normal_page(vma, addr, ptent);
5062 if (!page || !page_mapped(page))
5063 return NULL;
5064 if (PageAnon(page)) {
5065 /* we don't move shared anon */
5066 if (!move_anon() || page_mapcount(page) > 2)
5067 return NULL;
5068 } else if (!move_file())
5069 /* we ignore mapcount for file pages */
5070 return NULL;
5071 if (!get_page_unless_zero(page))
5072 return NULL;
5074 return page;
5077 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5078 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5080 int usage_count;
5081 struct page *page = NULL;
5082 swp_entry_t ent = pte_to_swp_entry(ptent);
5084 if (!move_anon() || non_swap_entry(ent))
5085 return NULL;
5086 usage_count = mem_cgroup_count_swap_user(ent, &page);
5087 if (usage_count > 1) { /* we don't move shared anon */
5088 if (page)
5089 put_page(page);
5090 return NULL;
5092 if (do_swap_account)
5093 entry->val = ent.val;
5095 return page;
5098 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5099 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5101 struct page *page = NULL;
5102 struct inode *inode;
5103 struct address_space *mapping;
5104 pgoff_t pgoff;
5106 if (!vma->vm_file) /* anonymous vma */
5107 return NULL;
5108 if (!move_file())
5109 return NULL;
5111 inode = vma->vm_file->f_path.dentry->d_inode;
5112 mapping = vma->vm_file->f_mapping;
5113 if (pte_none(ptent))
5114 pgoff = linear_page_index(vma, addr);
5115 else /* pte_file(ptent) is true */
5116 pgoff = pte_to_pgoff(ptent);
5118 /* page is moved even if it's not RSS of this task(page-faulted). */
5119 page = find_get_page(mapping, pgoff);
5121 #ifdef CONFIG_SWAP
5122 /* shmem/tmpfs may report page out on swap: account for that too. */
5123 if (radix_tree_exceptional_entry(page)) {
5124 swp_entry_t swap = radix_to_swp_entry(page);
5125 if (do_swap_account)
5126 *entry = swap;
5127 page = find_get_page(&swapper_space, swap.val);
5129 #endif
5130 return page;
5133 static int is_target_pte_for_mc(struct vm_area_struct *vma,
5134 unsigned long addr, pte_t ptent, union mc_target *target)
5136 struct page *page = NULL;
5137 struct page_cgroup *pc;
5138 int ret = 0;
5139 swp_entry_t ent = { .val = 0 };
5141 if (pte_present(ptent))
5142 page = mc_handle_present_pte(vma, addr, ptent);
5143 else if (is_swap_pte(ptent))
5144 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5145 else if (pte_none(ptent) || pte_file(ptent))
5146 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5148 if (!page && !ent.val)
5149 return 0;
5150 if (page) {
5151 pc = lookup_page_cgroup(page);
5153 * Do only loose check w/o page_cgroup lock.
5154 * mem_cgroup_move_account() checks the pc is valid or not under
5155 * the lock.
5157 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5158 ret = MC_TARGET_PAGE;
5159 if (target)
5160 target->page = page;
5162 if (!ret || !target)
5163 put_page(page);
5165 /* There is a swap entry and a page doesn't exist or isn't charged */
5166 if (ent.val && !ret &&
5167 css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
5168 ret = MC_TARGET_SWAP;
5169 if (target)
5170 target->ent = ent;
5172 return ret;
5175 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5176 unsigned long addr, unsigned long end,
5177 struct mm_walk *walk)
5179 struct vm_area_struct *vma = walk->private;
5180 pte_t *pte;
5181 spinlock_t *ptl;
5183 split_huge_page_pmd(walk->mm, pmd);
5185 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5186 for (; addr != end; pte++, addr += PAGE_SIZE)
5187 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
5188 mc.precharge++; /* increment precharge temporarily */
5189 pte_unmap_unlock(pte - 1, ptl);
5190 cond_resched();
5192 return 0;
5195 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5197 unsigned long precharge;
5198 struct vm_area_struct *vma;
5200 down_read(&mm->mmap_sem);
5201 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5202 struct mm_walk mem_cgroup_count_precharge_walk = {
5203 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5204 .mm = mm,
5205 .private = vma,
5207 if (is_vm_hugetlb_page(vma))
5208 continue;
5209 walk_page_range(vma->vm_start, vma->vm_end,
5210 &mem_cgroup_count_precharge_walk);
5212 up_read(&mm->mmap_sem);
5214 precharge = mc.precharge;
5215 mc.precharge = 0;
5217 return precharge;
5220 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5222 unsigned long precharge = mem_cgroup_count_precharge(mm);
5224 VM_BUG_ON(mc.moving_task);
5225 mc.moving_task = current;
5226 return mem_cgroup_do_precharge(precharge);
5229 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5230 static void __mem_cgroup_clear_mc(void)
5232 struct mem_cgroup *from = mc.from;
5233 struct mem_cgroup *to = mc.to;
5235 /* we must uncharge all the leftover precharges from mc.to */
5236 if (mc.precharge) {
5237 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5238 mc.precharge = 0;
5241 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5242 * we must uncharge here.
5244 if (mc.moved_charge) {
5245 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5246 mc.moved_charge = 0;
5248 /* we must fixup refcnts and charges */
5249 if (mc.moved_swap) {
5250 /* uncharge swap account from the old cgroup */
5251 if (!mem_cgroup_is_root(mc.from))
5252 res_counter_uncharge(&mc.from->memsw,
5253 PAGE_SIZE * mc.moved_swap);
5254 __mem_cgroup_put(mc.from, mc.moved_swap);
5256 if (!mem_cgroup_is_root(mc.to)) {
5258 * we charged both to->res and to->memsw, so we should
5259 * uncharge to->res.
5261 res_counter_uncharge(&mc.to->res,
5262 PAGE_SIZE * mc.moved_swap);
5264 /* we've already done mem_cgroup_get(mc.to) */
5265 mc.moved_swap = 0;
5267 memcg_oom_recover(from);
5268 memcg_oom_recover(to);
5269 wake_up_all(&mc.waitq);
5272 static void mem_cgroup_clear_mc(void)
5274 struct mem_cgroup *from = mc.from;
5277 * we must clear moving_task before waking up waiters at the end of
5278 * task migration.
5280 mc.moving_task = NULL;
5281 __mem_cgroup_clear_mc();
5282 spin_lock(&mc.lock);
5283 mc.from = NULL;
5284 mc.to = NULL;
5285 spin_unlock(&mc.lock);
5286 mem_cgroup_end_move(from);
5289 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5290 struct cgroup *cgroup,
5291 struct task_struct *p)
5293 int ret = 0;
5294 struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
5296 if (mem->move_charge_at_immigrate) {
5297 struct mm_struct *mm;
5298 struct mem_cgroup *from = mem_cgroup_from_task(p);
5300 VM_BUG_ON(from == mem);
5302 mm = get_task_mm(p);
5303 if (!mm)
5304 return 0;
5305 /* We move charges only when we move a owner of the mm */
5306 if (mm->owner == p) {
5307 VM_BUG_ON(mc.from);
5308 VM_BUG_ON(mc.to);
5309 VM_BUG_ON(mc.precharge);
5310 VM_BUG_ON(mc.moved_charge);
5311 VM_BUG_ON(mc.moved_swap);
5312 mem_cgroup_start_move(from);
5313 spin_lock(&mc.lock);
5314 mc.from = from;
5315 mc.to = mem;
5316 spin_unlock(&mc.lock);
5317 /* We set mc.moving_task later */
5319 ret = mem_cgroup_precharge_mc(mm);
5320 if (ret)
5321 mem_cgroup_clear_mc();
5323 mmput(mm);
5325 return ret;
5328 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5329 struct cgroup *cgroup,
5330 struct task_struct *p)
5332 mem_cgroup_clear_mc();
5335 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5336 unsigned long addr, unsigned long end,
5337 struct mm_walk *walk)
5339 int ret = 0;
5340 struct vm_area_struct *vma = walk->private;
5341 pte_t *pte;
5342 spinlock_t *ptl;
5344 split_huge_page_pmd(walk->mm, pmd);
5345 retry:
5346 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5347 for (; addr != end; addr += PAGE_SIZE) {
5348 pte_t ptent = *(pte++);
5349 union mc_target target;
5350 int type;
5351 struct page *page;
5352 struct page_cgroup *pc;
5353 swp_entry_t ent;
5355 if (!mc.precharge)
5356 break;
5358 type = is_target_pte_for_mc(vma, addr, ptent, &target);
5359 switch (type) {
5360 case MC_TARGET_PAGE:
5361 page = target.page;
5362 if (isolate_lru_page(page))
5363 goto put;
5364 pc = lookup_page_cgroup(page);
5365 if (!mem_cgroup_move_account(page, 1, pc,
5366 mc.from, mc.to, false)) {
5367 mc.precharge--;
5368 /* we uncharge from mc.from later. */
5369 mc.moved_charge++;
5371 putback_lru_page(page);
5372 put: /* is_target_pte_for_mc() gets the page */
5373 put_page(page);
5374 break;
5375 case MC_TARGET_SWAP:
5376 ent = target.ent;
5377 if (!mem_cgroup_move_swap_account(ent,
5378 mc.from, mc.to, false)) {
5379 mc.precharge--;
5380 /* we fixup refcnts and charges later. */
5381 mc.moved_swap++;
5383 break;
5384 default:
5385 break;
5388 pte_unmap_unlock(pte - 1, ptl);
5389 cond_resched();
5391 if (addr != end) {
5393 * We have consumed all precharges we got in can_attach().
5394 * We try charge one by one, but don't do any additional
5395 * charges to mc.to if we have failed in charge once in attach()
5396 * phase.
5398 ret = mem_cgroup_do_precharge(1);
5399 if (!ret)
5400 goto retry;
5403 return ret;
5406 static void mem_cgroup_move_charge(struct mm_struct *mm)
5408 struct vm_area_struct *vma;
5410 lru_add_drain_all();
5411 retry:
5412 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5414 * Someone who are holding the mmap_sem might be waiting in
5415 * waitq. So we cancel all extra charges, wake up all waiters,
5416 * and retry. Because we cancel precharges, we might not be able
5417 * to move enough charges, but moving charge is a best-effort
5418 * feature anyway, so it wouldn't be a big problem.
5420 __mem_cgroup_clear_mc();
5421 cond_resched();
5422 goto retry;
5424 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5425 int ret;
5426 struct mm_walk mem_cgroup_move_charge_walk = {
5427 .pmd_entry = mem_cgroup_move_charge_pte_range,
5428 .mm = mm,
5429 .private = vma,
5431 if (is_vm_hugetlb_page(vma))
5432 continue;
5433 ret = walk_page_range(vma->vm_start, vma->vm_end,
5434 &mem_cgroup_move_charge_walk);
5435 if (ret)
5437 * means we have consumed all precharges and failed in
5438 * doing additional charge. Just abandon here.
5440 break;
5442 up_read(&mm->mmap_sem);
5445 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5446 struct cgroup *cont,
5447 struct cgroup *old_cont,
5448 struct task_struct *p)
5450 struct mm_struct *mm = get_task_mm(p);
5452 if (mm) {
5453 if (mc.to)
5454 mem_cgroup_move_charge(mm);
5455 put_swap_token(mm);
5456 mmput(mm);
5458 if (mc.to)
5459 mem_cgroup_clear_mc();
5461 #else /* !CONFIG_MMU */
5462 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5463 struct cgroup *cgroup,
5464 struct task_struct *p)
5466 return 0;
5468 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5469 struct cgroup *cgroup,
5470 struct task_struct *p)
5473 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5474 struct cgroup *cont,
5475 struct cgroup *old_cont,
5476 struct task_struct *p)
5479 #endif
5481 struct cgroup_subsys mem_cgroup_subsys = {
5482 .name = "memory",
5483 .subsys_id = mem_cgroup_subsys_id,
5484 .create = mem_cgroup_create,
5485 .pre_destroy = mem_cgroup_pre_destroy,
5486 .destroy = mem_cgroup_destroy,
5487 .populate = mem_cgroup_populate,
5488 .can_attach = mem_cgroup_can_attach,
5489 .cancel_attach = mem_cgroup_cancel_attach,
5490 .attach = mem_cgroup_move_task,
5491 .early_init = 0,
5492 .use_id = 1,
5495 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5496 static int __init enable_swap_account(char *s)
5498 /* consider enabled if no parameter or 1 is given */
5499 if (!strcmp(s, "1"))
5500 really_do_swap_account = 1;
5501 else if (!strcmp(s, "0"))
5502 really_do_swap_account = 0;
5503 return 1;
5505 __setup("swapaccount=", enable_swap_account);
5507 #endif