2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/jiffies.h>
13 #include <linux/rbtree.h>
14 #include <linux/ioprio.h>
15 #include <linux/blktrace_api.h>
16 #include "blk-cgroup.h"
21 /* max queue in one round of service */
22 static const int cfq_quantum
= 4;
23 static const int cfq_fifo_expire
[2] = { HZ
/ 4, HZ
/ 8 };
24 /* maximum backwards seek, in KiB */
25 static const int cfq_back_max
= 16 * 1024;
26 /* penalty of a backwards seek */
27 static const int cfq_back_penalty
= 2;
28 static const int cfq_slice_sync
= HZ
/ 10;
29 static int cfq_slice_async
= HZ
/ 25;
30 static const int cfq_slice_async_rq
= 2;
31 static int cfq_slice_idle
= HZ
/ 125;
32 static const int cfq_target_latency
= HZ
* 3/10; /* 300 ms */
33 static const int cfq_hist_divisor
= 4;
36 * offset from end of service tree
38 #define CFQ_IDLE_DELAY (HZ / 5)
41 * below this threshold, we consider thinktime immediate
43 #define CFQ_MIN_TT (2)
45 #define CFQ_SLICE_SCALE (5)
46 #define CFQ_HW_QUEUE_MIN (5)
47 #define CFQ_SERVICE_SHIFT 12
49 #define CFQQ_SEEK_THR 8 * 1024
50 #define CFQQ_SEEKY(cfqq) ((cfqq)->seek_mean > CFQQ_SEEK_THR)
53 ((struct cfq_io_context *) (rq)->elevator_private)
54 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
56 static struct kmem_cache
*cfq_pool
;
57 static struct kmem_cache
*cfq_ioc_pool
;
59 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count
);
60 static struct completion
*ioc_gone
;
61 static DEFINE_SPINLOCK(ioc_gone_lock
);
63 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
64 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
65 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
67 #define sample_valid(samples) ((samples) > 80)
68 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
71 * Most of our rbtree usage is for sorting with min extraction, so
72 * if we cache the leftmost node we don't have to walk down the tree
73 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
74 * move this into the elevator for the rq sorting as well.
81 struct rb_node
*active
;
82 unsigned total_weight
;
84 #define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, 0, 0, }
87 * Per process-grouping structure
92 /* various state flags, see below */
95 struct cfq_data
*cfqd
;
96 /* service_tree member */
97 struct rb_node rb_node
;
98 /* service_tree key */
100 /* prio tree member */
101 struct rb_node p_node
;
102 /* prio tree root we belong to, if any */
103 struct rb_root
*p_root
;
104 /* sorted list of pending requests */
105 struct rb_root sort_list
;
106 /* if fifo isn't expired, next request to serve */
107 struct request
*next_rq
;
108 /* requests queued in sort_list */
110 /* currently allocated requests */
112 /* fifo list of requests in sort_list */
113 struct list_head fifo
;
115 /* time when queue got scheduled in to dispatch first request. */
116 unsigned long dispatch_start
;
117 unsigned int allocated_slice
;
118 /* time when first request from queue completed and slice started. */
119 unsigned long slice_start
;
120 unsigned long slice_end
;
122 unsigned int slice_dispatch
;
124 /* pending metadata requests */
126 /* number of requests that are on the dispatch list or inside driver */
129 /* io prio of this group */
130 unsigned short ioprio
, org_ioprio
;
131 unsigned short ioprio_class
, org_ioprio_class
;
133 unsigned int seek_samples
;
136 sector_t last_request_pos
;
140 struct cfq_rb_root
*service_tree
;
141 struct cfq_queue
*new_cfqq
;
142 struct cfq_group
*cfqg
;
143 struct cfq_group
*orig_cfqg
;
144 /* Sectors dispatched in current dispatch round */
145 unsigned long nr_sectors
;
149 * First index in the service_trees.
150 * IDLE is handled separately, so it has negative index
159 * Second index in the service_trees.
163 SYNC_NOIDLE_WORKLOAD
= 1,
167 /* This is per cgroup per device grouping structure */
169 /* group service_tree member */
170 struct rb_node rb_node
;
172 /* group service_tree key */
177 /* number of cfqq currently on this group */
180 /* Per group busy queus average. Useful for workload slice calc. */
181 unsigned int busy_queues_avg
[2];
183 * rr lists of queues with requests, onle rr for each priority class.
184 * Counts are embedded in the cfq_rb_root
186 struct cfq_rb_root service_trees
[2][3];
187 struct cfq_rb_root service_tree_idle
;
189 unsigned long saved_workload_slice
;
190 enum wl_type_t saved_workload
;
191 enum wl_prio_t saved_serving_prio
;
192 struct blkio_group blkg
;
193 #ifdef CONFIG_CFQ_GROUP_IOSCHED
194 struct hlist_node cfqd_node
;
200 * Per block device queue structure
203 struct request_queue
*queue
;
204 /* Root service tree for cfq_groups */
205 struct cfq_rb_root grp_service_tree
;
206 struct cfq_group root_group
;
209 * The priority currently being served
211 enum wl_prio_t serving_prio
;
212 enum wl_type_t serving_type
;
213 unsigned long workload_expires
;
214 struct cfq_group
*serving_group
;
215 bool noidle_tree_requires_idle
;
218 * Each priority tree is sorted by next_request position. These
219 * trees are used when determining if two or more queues are
220 * interleaving requests (see cfq_close_cooperator).
222 struct rb_root prio_trees
[CFQ_PRIO_LISTS
];
224 unsigned int busy_queues
;
230 * queue-depth detection
236 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
237 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
240 int hw_tag_est_depth
;
241 unsigned int hw_tag_samples
;
244 * idle window management
246 struct timer_list idle_slice_timer
;
247 struct work_struct unplug_work
;
249 struct cfq_queue
*active_queue
;
250 struct cfq_io_context
*active_cic
;
253 * async queue for each priority case
255 struct cfq_queue
*async_cfqq
[2][IOPRIO_BE_NR
];
256 struct cfq_queue
*async_idle_cfqq
;
258 sector_t last_position
;
261 * tunables, see top of file
263 unsigned int cfq_quantum
;
264 unsigned int cfq_fifo_expire
[2];
265 unsigned int cfq_back_penalty
;
266 unsigned int cfq_back_max
;
267 unsigned int cfq_slice
[2];
268 unsigned int cfq_slice_async_rq
;
269 unsigned int cfq_slice_idle
;
270 unsigned int cfq_latency
;
271 unsigned int cfq_group_isolation
;
273 struct list_head cic_list
;
276 * Fallback dummy cfqq for extreme OOM conditions
278 struct cfq_queue oom_cfqq
;
280 unsigned long last_delayed_sync
;
282 /* List of cfq groups being managed on this device*/
283 struct hlist_head cfqg_list
;
287 static struct cfq_group
*cfq_get_next_cfqg(struct cfq_data
*cfqd
);
289 static struct cfq_rb_root
*service_tree_for(struct cfq_group
*cfqg
,
296 if (prio
== IDLE_WORKLOAD
)
297 return &cfqg
->service_tree_idle
;
299 return &cfqg
->service_trees
[prio
][type
];
302 enum cfqq_state_flags
{
303 CFQ_CFQQ_FLAG_on_rr
= 0, /* on round-robin busy list */
304 CFQ_CFQQ_FLAG_wait_request
, /* waiting for a request */
305 CFQ_CFQQ_FLAG_must_dispatch
, /* must be allowed a dispatch */
306 CFQ_CFQQ_FLAG_must_alloc_slice
, /* per-slice must_alloc flag */
307 CFQ_CFQQ_FLAG_fifo_expire
, /* FIFO checked in this slice */
308 CFQ_CFQQ_FLAG_idle_window
, /* slice idling enabled */
309 CFQ_CFQQ_FLAG_prio_changed
, /* task priority has changed */
310 CFQ_CFQQ_FLAG_slice_new
, /* no requests dispatched in slice */
311 CFQ_CFQQ_FLAG_sync
, /* synchronous queue */
312 CFQ_CFQQ_FLAG_coop
, /* cfqq is shared */
313 CFQ_CFQQ_FLAG_split_coop
, /* shared cfqq will be splitted */
314 CFQ_CFQQ_FLAG_deep
, /* sync cfqq experienced large depth */
315 CFQ_CFQQ_FLAG_wait_busy
, /* Waiting for next request */
318 #define CFQ_CFQQ_FNS(name) \
319 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
321 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
323 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
325 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
327 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
329 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
333 CFQ_CFQQ_FNS(wait_request
);
334 CFQ_CFQQ_FNS(must_dispatch
);
335 CFQ_CFQQ_FNS(must_alloc_slice
);
336 CFQ_CFQQ_FNS(fifo_expire
);
337 CFQ_CFQQ_FNS(idle_window
);
338 CFQ_CFQQ_FNS(prio_changed
);
339 CFQ_CFQQ_FNS(slice_new
);
342 CFQ_CFQQ_FNS(split_coop
);
344 CFQ_CFQQ_FNS(wait_busy
);
347 #ifdef CONFIG_DEBUG_CFQ_IOSCHED
348 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
349 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
350 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
351 blkg_path(&(cfqq)->cfqg->blkg), ##args);
353 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
354 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
355 blkg_path(&(cfqg)->blkg), ##args); \
358 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
359 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
360 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
362 #define cfq_log(cfqd, fmt, args...) \
363 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
365 /* Traverses through cfq group service trees */
366 #define for_each_cfqg_st(cfqg, i, j, st) \
367 for (i = 0; i <= IDLE_WORKLOAD; i++) \
368 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
369 : &cfqg->service_tree_idle; \
370 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
371 (i == IDLE_WORKLOAD && j == 0); \
372 j++, st = i < IDLE_WORKLOAD ? \
373 &cfqg->service_trees[i][j]: NULL) \
376 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
378 if (cfq_class_idle(cfqq
))
379 return IDLE_WORKLOAD
;
380 if (cfq_class_rt(cfqq
))
386 static enum wl_type_t
cfqq_type(struct cfq_queue
*cfqq
)
388 if (!cfq_cfqq_sync(cfqq
))
389 return ASYNC_WORKLOAD
;
390 if (!cfq_cfqq_idle_window(cfqq
))
391 return SYNC_NOIDLE_WORKLOAD
;
392 return SYNC_WORKLOAD
;
395 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl
,
396 struct cfq_data
*cfqd
,
397 struct cfq_group
*cfqg
)
399 if (wl
== IDLE_WORKLOAD
)
400 return cfqg
->service_tree_idle
.count
;
402 return cfqg
->service_trees
[wl
][ASYNC_WORKLOAD
].count
403 + cfqg
->service_trees
[wl
][SYNC_NOIDLE_WORKLOAD
].count
404 + cfqg
->service_trees
[wl
][SYNC_WORKLOAD
].count
;
407 static inline int cfqg_busy_async_queues(struct cfq_data
*cfqd
,
408 struct cfq_group
*cfqg
)
410 return cfqg
->service_trees
[RT_WORKLOAD
][ASYNC_WORKLOAD
].count
411 + cfqg
->service_trees
[BE_WORKLOAD
][ASYNC_WORKLOAD
].count
;
414 static void cfq_dispatch_insert(struct request_queue
*, struct request
*);
415 static struct cfq_queue
*cfq_get_queue(struct cfq_data
*, bool,
416 struct io_context
*, gfp_t
);
417 static struct cfq_io_context
*cfq_cic_lookup(struct cfq_data
*,
418 struct io_context
*);
420 static inline int rq_in_driver(struct cfq_data
*cfqd
)
422 return cfqd
->rq_in_driver
[0] + cfqd
->rq_in_driver
[1];
425 static inline struct cfq_queue
*cic_to_cfqq(struct cfq_io_context
*cic
,
428 return cic
->cfqq
[is_sync
];
431 static inline void cic_set_cfqq(struct cfq_io_context
*cic
,
432 struct cfq_queue
*cfqq
, bool is_sync
)
434 cic
->cfqq
[is_sync
] = cfqq
;
438 * We regard a request as SYNC, if it's either a read or has the SYNC bit
439 * set (in which case it could also be direct WRITE).
441 static inline bool cfq_bio_sync(struct bio
*bio
)
443 return bio_data_dir(bio
) == READ
|| bio_rw_flagged(bio
, BIO_RW_SYNCIO
);
447 * scheduler run of queue, if there are requests pending and no one in the
448 * driver that will restart queueing
450 static inline void cfq_schedule_dispatch(struct cfq_data
*cfqd
)
452 if (cfqd
->busy_queues
) {
453 cfq_log(cfqd
, "schedule dispatch");
454 kblockd_schedule_work(cfqd
->queue
, &cfqd
->unplug_work
);
458 static int cfq_queue_empty(struct request_queue
*q
)
460 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
462 return !cfqd
->rq_queued
;
466 * Scale schedule slice based on io priority. Use the sync time slice only
467 * if a queue is marked sync and has sync io queued. A sync queue with async
468 * io only, should not get full sync slice length.
470 static inline int cfq_prio_slice(struct cfq_data
*cfqd
, bool sync
,
473 const int base_slice
= cfqd
->cfq_slice
[sync
];
475 WARN_ON(prio
>= IOPRIO_BE_NR
);
477 return base_slice
+ (base_slice
/CFQ_SLICE_SCALE
* (4 - prio
));
481 cfq_prio_to_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
483 return cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
);
486 static inline u64
cfq_scale_slice(unsigned long delta
, struct cfq_group
*cfqg
)
488 u64 d
= delta
<< CFQ_SERVICE_SHIFT
;
490 d
= d
* BLKIO_WEIGHT_DEFAULT
;
491 do_div(d
, cfqg
->weight
);
495 static inline u64
max_vdisktime(u64 min_vdisktime
, u64 vdisktime
)
497 s64 delta
= (s64
)(vdisktime
- min_vdisktime
);
499 min_vdisktime
= vdisktime
;
501 return min_vdisktime
;
504 static inline u64
min_vdisktime(u64 min_vdisktime
, u64 vdisktime
)
506 s64 delta
= (s64
)(vdisktime
- min_vdisktime
);
508 min_vdisktime
= vdisktime
;
510 return min_vdisktime
;
513 static void update_min_vdisktime(struct cfq_rb_root
*st
)
515 u64 vdisktime
= st
->min_vdisktime
;
516 struct cfq_group
*cfqg
;
519 cfqg
= rb_entry_cfqg(st
->active
);
520 vdisktime
= cfqg
->vdisktime
;
524 cfqg
= rb_entry_cfqg(st
->left
);
525 vdisktime
= min_vdisktime(vdisktime
, cfqg
->vdisktime
);
528 st
->min_vdisktime
= max_vdisktime(st
->min_vdisktime
, vdisktime
);
532 * get averaged number of queues of RT/BE priority.
533 * average is updated, with a formula that gives more weight to higher numbers,
534 * to quickly follows sudden increases and decrease slowly
537 static inline unsigned cfq_group_get_avg_queues(struct cfq_data
*cfqd
,
538 struct cfq_group
*cfqg
, bool rt
)
540 unsigned min_q
, max_q
;
541 unsigned mult
= cfq_hist_divisor
- 1;
542 unsigned round
= cfq_hist_divisor
/ 2;
543 unsigned busy
= cfq_group_busy_queues_wl(rt
, cfqd
, cfqg
);
545 min_q
= min(cfqg
->busy_queues_avg
[rt
], busy
);
546 max_q
= max(cfqg
->busy_queues_avg
[rt
], busy
);
547 cfqg
->busy_queues_avg
[rt
] = (mult
* max_q
+ min_q
+ round
) /
549 return cfqg
->busy_queues_avg
[rt
];
552 static inline unsigned
553 cfq_group_slice(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
555 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
557 return cfq_target_latency
* cfqg
->weight
/ st
->total_weight
;
561 cfq_set_prio_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
563 unsigned slice
= cfq_prio_to_slice(cfqd
, cfqq
);
564 if (cfqd
->cfq_latency
) {
566 * interested queues (we consider only the ones with the same
567 * priority class in the cfq group)
569 unsigned iq
= cfq_group_get_avg_queues(cfqd
, cfqq
->cfqg
,
571 unsigned sync_slice
= cfqd
->cfq_slice
[1];
572 unsigned expect_latency
= sync_slice
* iq
;
573 unsigned group_slice
= cfq_group_slice(cfqd
, cfqq
->cfqg
);
575 if (expect_latency
> group_slice
) {
576 unsigned base_low_slice
= 2 * cfqd
->cfq_slice_idle
;
577 /* scale low_slice according to IO priority
578 * and sync vs async */
580 min(slice
, base_low_slice
* slice
/ sync_slice
);
581 /* the adapted slice value is scaled to fit all iqs
582 * into the target latency */
583 slice
= max(slice
* group_slice
/ expect_latency
,
587 cfqq
->slice_start
= jiffies
;
588 cfqq
->slice_end
= jiffies
+ slice
;
589 cfqq
->allocated_slice
= slice
;
590 cfq_log_cfqq(cfqd
, cfqq
, "set_slice=%lu", cfqq
->slice_end
- jiffies
);
594 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
595 * isn't valid until the first request from the dispatch is activated
596 * and the slice time set.
598 static inline bool cfq_slice_used(struct cfq_queue
*cfqq
)
600 if (cfq_cfqq_slice_new(cfqq
))
602 if (time_before(jiffies
, cfqq
->slice_end
))
609 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
610 * We choose the request that is closest to the head right now. Distance
611 * behind the head is penalized and only allowed to a certain extent.
613 static struct request
*
614 cfq_choose_req(struct cfq_data
*cfqd
, struct request
*rq1
, struct request
*rq2
, sector_t last
)
616 sector_t s1
, s2
, d1
= 0, d2
= 0;
617 unsigned long back_max
;
618 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
619 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
620 unsigned wrap
= 0; /* bit mask: requests behind the disk head? */
622 if (rq1
== NULL
|| rq1
== rq2
)
627 if (rq_is_sync(rq1
) && !rq_is_sync(rq2
))
629 else if (rq_is_sync(rq2
) && !rq_is_sync(rq1
))
631 if (rq_is_meta(rq1
) && !rq_is_meta(rq2
))
633 else if (rq_is_meta(rq2
) && !rq_is_meta(rq1
))
636 s1
= blk_rq_pos(rq1
);
637 s2
= blk_rq_pos(rq2
);
640 * by definition, 1KiB is 2 sectors
642 back_max
= cfqd
->cfq_back_max
* 2;
645 * Strict one way elevator _except_ in the case where we allow
646 * short backward seeks which are biased as twice the cost of a
647 * similar forward seek.
651 else if (s1
+ back_max
>= last
)
652 d1
= (last
- s1
) * cfqd
->cfq_back_penalty
;
654 wrap
|= CFQ_RQ1_WRAP
;
658 else if (s2
+ back_max
>= last
)
659 d2
= (last
- s2
) * cfqd
->cfq_back_penalty
;
661 wrap
|= CFQ_RQ2_WRAP
;
663 /* Found required data */
666 * By doing switch() on the bit mask "wrap" we avoid having to
667 * check two variables for all permutations: --> faster!
670 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
686 case (CFQ_RQ1_WRAP
|CFQ_RQ2_WRAP
): /* both rqs wrapped */
689 * Since both rqs are wrapped,
690 * start with the one that's further behind head
691 * (--> only *one* back seek required),
692 * since back seek takes more time than forward.
702 * The below is leftmost cache rbtree addon
704 static struct cfq_queue
*cfq_rb_first(struct cfq_rb_root
*root
)
706 /* Service tree is empty */
711 root
->left
= rb_first(&root
->rb
);
714 return rb_entry(root
->left
, struct cfq_queue
, rb_node
);
719 static struct cfq_group
*cfq_rb_first_group(struct cfq_rb_root
*root
)
722 root
->left
= rb_first(&root
->rb
);
725 return rb_entry_cfqg(root
->left
);
730 static void rb_erase_init(struct rb_node
*n
, struct rb_root
*root
)
736 static void cfq_rb_erase(struct rb_node
*n
, struct cfq_rb_root
*root
)
740 rb_erase_init(n
, &root
->rb
);
745 * would be nice to take fifo expire time into account as well
747 static struct request
*
748 cfq_find_next_rq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
749 struct request
*last
)
751 struct rb_node
*rbnext
= rb_next(&last
->rb_node
);
752 struct rb_node
*rbprev
= rb_prev(&last
->rb_node
);
753 struct request
*next
= NULL
, *prev
= NULL
;
755 BUG_ON(RB_EMPTY_NODE(&last
->rb_node
));
758 prev
= rb_entry_rq(rbprev
);
761 next
= rb_entry_rq(rbnext
);
763 rbnext
= rb_first(&cfqq
->sort_list
);
764 if (rbnext
&& rbnext
!= &last
->rb_node
)
765 next
= rb_entry_rq(rbnext
);
768 return cfq_choose_req(cfqd
, next
, prev
, blk_rq_pos(last
));
771 static unsigned long cfq_slice_offset(struct cfq_data
*cfqd
,
772 struct cfq_queue
*cfqq
)
775 * just an approximation, should be ok.
777 return (cfqq
->cfqg
->nr_cfqq
- 1) * (cfq_prio_slice(cfqd
, 1, 0) -
778 cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
));
782 cfqg_key(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
784 return cfqg
->vdisktime
- st
->min_vdisktime
;
788 __cfq_group_service_tree_add(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
790 struct rb_node
**node
= &st
->rb
.rb_node
;
791 struct rb_node
*parent
= NULL
;
792 struct cfq_group
*__cfqg
;
793 s64 key
= cfqg_key(st
, cfqg
);
796 while (*node
!= NULL
) {
798 __cfqg
= rb_entry_cfqg(parent
);
800 if (key
< cfqg_key(st
, __cfqg
))
801 node
= &parent
->rb_left
;
803 node
= &parent
->rb_right
;
809 st
->left
= &cfqg
->rb_node
;
811 rb_link_node(&cfqg
->rb_node
, parent
, node
);
812 rb_insert_color(&cfqg
->rb_node
, &st
->rb
);
816 cfq_group_service_tree_add(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
818 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
819 struct cfq_group
*__cfqg
;
827 * Currently put the group at the end. Later implement something
828 * so that groups get lesser vtime based on their weights, so that
829 * if group does not loose all if it was not continously backlogged.
831 n
= rb_last(&st
->rb
);
833 __cfqg
= rb_entry_cfqg(n
);
834 cfqg
->vdisktime
= __cfqg
->vdisktime
+ CFQ_IDLE_DELAY
;
836 cfqg
->vdisktime
= st
->min_vdisktime
;
838 __cfq_group_service_tree_add(st
, cfqg
);
840 st
->total_weight
+= cfqg
->weight
;
844 cfq_group_service_tree_del(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
846 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
848 if (st
->active
== &cfqg
->rb_node
)
851 BUG_ON(cfqg
->nr_cfqq
< 1);
854 /* If there are other cfq queues under this group, don't delete it */
858 cfq_log_cfqg(cfqd
, cfqg
, "del_from_rr group");
860 st
->total_weight
-= cfqg
->weight
;
861 if (!RB_EMPTY_NODE(&cfqg
->rb_node
))
862 cfq_rb_erase(&cfqg
->rb_node
, st
);
863 cfqg
->saved_workload_slice
= 0;
864 blkiocg_update_blkio_group_dequeue_stats(&cfqg
->blkg
, 1);
867 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue
*cfqq
)
869 unsigned int slice_used
;
872 * Queue got expired before even a single request completed or
873 * got expired immediately after first request completion.
875 if (!cfqq
->slice_start
|| cfqq
->slice_start
== jiffies
) {
877 * Also charge the seek time incurred to the group, otherwise
878 * if there are mutiple queues in the group, each can dispatch
879 * a single request on seeky media and cause lots of seek time
880 * and group will never know it.
882 slice_used
= max_t(unsigned, (jiffies
- cfqq
->dispatch_start
),
885 slice_used
= jiffies
- cfqq
->slice_start
;
886 if (slice_used
> cfqq
->allocated_slice
)
887 slice_used
= cfqq
->allocated_slice
;
890 cfq_log_cfqq(cfqq
->cfqd
, cfqq
, "sl_used=%u sect=%lu", slice_used
,
895 static void cfq_group_served(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
,
896 struct cfq_queue
*cfqq
)
898 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
899 unsigned int used_sl
, charge_sl
;
900 int nr_sync
= cfqg
->nr_cfqq
- cfqg_busy_async_queues(cfqd
, cfqg
)
901 - cfqg
->service_tree_idle
.count
;
904 used_sl
= charge_sl
= cfq_cfqq_slice_usage(cfqq
);
906 if (!cfq_cfqq_sync(cfqq
) && !nr_sync
)
907 charge_sl
= cfqq
->allocated_slice
;
909 /* Can't update vdisktime while group is on service tree */
910 cfq_rb_erase(&cfqg
->rb_node
, st
);
911 cfqg
->vdisktime
+= cfq_scale_slice(charge_sl
, cfqg
);
912 __cfq_group_service_tree_add(st
, cfqg
);
914 /* This group is being expired. Save the context */
915 if (time_after(cfqd
->workload_expires
, jiffies
)) {
916 cfqg
->saved_workload_slice
= cfqd
->workload_expires
918 cfqg
->saved_workload
= cfqd
->serving_type
;
919 cfqg
->saved_serving_prio
= cfqd
->serving_prio
;
921 cfqg
->saved_workload_slice
= 0;
923 cfq_log_cfqg(cfqd
, cfqg
, "served: vt=%llu min_vt=%llu", cfqg
->vdisktime
,
925 blkiocg_update_blkio_group_stats(&cfqg
->blkg
, used_sl
,
929 #ifdef CONFIG_CFQ_GROUP_IOSCHED
930 static inline struct cfq_group
*cfqg_of_blkg(struct blkio_group
*blkg
)
933 return container_of(blkg
, struct cfq_group
, blkg
);
938 cfq_update_blkio_group_weight(struct blkio_group
*blkg
, unsigned int weight
)
940 cfqg_of_blkg(blkg
)->weight
= weight
;
943 static struct cfq_group
*
944 cfq_find_alloc_cfqg(struct cfq_data
*cfqd
, struct cgroup
*cgroup
, int create
)
946 struct blkio_cgroup
*blkcg
= cgroup_to_blkio_cgroup(cgroup
);
947 struct cfq_group
*cfqg
= NULL
;
950 struct cfq_rb_root
*st
;
951 struct backing_dev_info
*bdi
= &cfqd
->queue
->backing_dev_info
;
952 unsigned int major
, minor
;
954 /* Do we need to take this reference */
955 if (!blkiocg_css_tryget(blkcg
))
958 cfqg
= cfqg_of_blkg(blkiocg_lookup_group(blkcg
, key
));
962 cfqg
= kzalloc_node(sizeof(*cfqg
), GFP_ATOMIC
, cfqd
->queue
->node
);
966 cfqg
->weight
= blkcg
->weight
;
967 for_each_cfqg_st(cfqg
, i
, j
, st
)
969 RB_CLEAR_NODE(&cfqg
->rb_node
);
972 * Take the initial reference that will be released on destroy
973 * This can be thought of a joint reference by cgroup and
974 * elevator which will be dropped by either elevator exit
975 * or cgroup deletion path depending on who is exiting first.
977 atomic_set(&cfqg
->ref
, 1);
979 /* Add group onto cgroup list */
980 sscanf(dev_name(bdi
->dev
), "%u:%u", &major
, &minor
);
981 blkiocg_add_blkio_group(blkcg
, &cfqg
->blkg
, (void *)cfqd
,
982 MKDEV(major
, minor
));
984 /* Add group on cfqd list */
985 hlist_add_head(&cfqg
->cfqd_node
, &cfqd
->cfqg_list
);
988 blkiocg_css_put(blkcg
);
993 * Search for the cfq group current task belongs to. If create = 1, then also
994 * create the cfq group if it does not exist. request_queue lock must be held.
996 static struct cfq_group
*cfq_get_cfqg(struct cfq_data
*cfqd
, int create
)
998 struct cgroup
*cgroup
;
999 struct cfq_group
*cfqg
= NULL
;
1002 cgroup
= task_cgroup(current
, blkio_subsys_id
);
1003 cfqg
= cfq_find_alloc_cfqg(cfqd
, cgroup
, create
);
1004 if (!cfqg
&& create
)
1005 cfqg
= &cfqd
->root_group
;
1010 static void cfq_link_cfqq_cfqg(struct cfq_queue
*cfqq
, struct cfq_group
*cfqg
)
1012 /* Currently, all async queues are mapped to root group */
1013 if (!cfq_cfqq_sync(cfqq
))
1014 cfqg
= &cfqq
->cfqd
->root_group
;
1017 /* cfqq reference on cfqg */
1018 atomic_inc(&cfqq
->cfqg
->ref
);
1021 static void cfq_put_cfqg(struct cfq_group
*cfqg
)
1023 struct cfq_rb_root
*st
;
1026 BUG_ON(atomic_read(&cfqg
->ref
) <= 0);
1027 if (!atomic_dec_and_test(&cfqg
->ref
))
1029 for_each_cfqg_st(cfqg
, i
, j
, st
)
1030 BUG_ON(!RB_EMPTY_ROOT(&st
->rb
) || st
->active
!= NULL
);
1034 static void cfq_destroy_cfqg(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
1036 /* Something wrong if we are trying to remove same group twice */
1037 BUG_ON(hlist_unhashed(&cfqg
->cfqd_node
));
1039 hlist_del_init(&cfqg
->cfqd_node
);
1042 * Put the reference taken at the time of creation so that when all
1043 * queues are gone, group can be destroyed.
1048 static void cfq_release_cfq_groups(struct cfq_data
*cfqd
)
1050 struct hlist_node
*pos
, *n
;
1051 struct cfq_group
*cfqg
;
1053 hlist_for_each_entry_safe(cfqg
, pos
, n
, &cfqd
->cfqg_list
, cfqd_node
) {
1055 * If cgroup removal path got to blk_group first and removed
1056 * it from cgroup list, then it will take care of destroying
1059 if (!blkiocg_del_blkio_group(&cfqg
->blkg
))
1060 cfq_destroy_cfqg(cfqd
, cfqg
);
1065 * Blk cgroup controller notification saying that blkio_group object is being
1066 * delinked as associated cgroup object is going away. That also means that
1067 * no new IO will come in this group. So get rid of this group as soon as
1068 * any pending IO in the group is finished.
1070 * This function is called under rcu_read_lock(). key is the rcu protected
1071 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1074 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1075 * it should not be NULL as even if elevator was exiting, cgroup deltion
1076 * path got to it first.
1078 void cfq_unlink_blkio_group(void *key
, struct blkio_group
*blkg
)
1080 unsigned long flags
;
1081 struct cfq_data
*cfqd
= key
;
1083 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
1084 cfq_destroy_cfqg(cfqd
, cfqg_of_blkg(blkg
));
1085 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
1088 #else /* GROUP_IOSCHED */
1089 static struct cfq_group
*cfq_get_cfqg(struct cfq_data
*cfqd
, int create
)
1091 return &cfqd
->root_group
;
1094 cfq_link_cfqq_cfqg(struct cfq_queue
*cfqq
, struct cfq_group
*cfqg
) {
1098 static void cfq_release_cfq_groups(struct cfq_data
*cfqd
) {}
1099 static inline void cfq_put_cfqg(struct cfq_group
*cfqg
) {}
1101 #endif /* GROUP_IOSCHED */
1104 * The cfqd->service_trees holds all pending cfq_queue's that have
1105 * requests waiting to be processed. It is sorted in the order that
1106 * we will service the queues.
1108 static void cfq_service_tree_add(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1111 struct rb_node
**p
, *parent
;
1112 struct cfq_queue
*__cfqq
;
1113 unsigned long rb_key
;
1114 struct cfq_rb_root
*service_tree
;
1117 int group_changed
= 0;
1119 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1120 if (!cfqd
->cfq_group_isolation
1121 && cfqq_type(cfqq
) == SYNC_NOIDLE_WORKLOAD
1122 && cfqq
->cfqg
&& cfqq
->cfqg
!= &cfqd
->root_group
) {
1123 /* Move this cfq to root group */
1124 cfq_log_cfqq(cfqd
, cfqq
, "moving to root group");
1125 if (!RB_EMPTY_NODE(&cfqq
->rb_node
))
1126 cfq_group_service_tree_del(cfqd
, cfqq
->cfqg
);
1127 cfqq
->orig_cfqg
= cfqq
->cfqg
;
1128 cfqq
->cfqg
= &cfqd
->root_group
;
1129 atomic_inc(&cfqd
->root_group
.ref
);
1131 } else if (!cfqd
->cfq_group_isolation
1132 && cfqq_type(cfqq
) == SYNC_WORKLOAD
&& cfqq
->orig_cfqg
) {
1133 /* cfqq is sequential now needs to go to its original group */
1134 BUG_ON(cfqq
->cfqg
!= &cfqd
->root_group
);
1135 if (!RB_EMPTY_NODE(&cfqq
->rb_node
))
1136 cfq_group_service_tree_del(cfqd
, cfqq
->cfqg
);
1137 cfq_put_cfqg(cfqq
->cfqg
);
1138 cfqq
->cfqg
= cfqq
->orig_cfqg
;
1139 cfqq
->orig_cfqg
= NULL
;
1141 cfq_log_cfqq(cfqd
, cfqq
, "moved to origin group");
1145 service_tree
= service_tree_for(cfqq
->cfqg
, cfqq_prio(cfqq
),
1147 if (cfq_class_idle(cfqq
)) {
1148 rb_key
= CFQ_IDLE_DELAY
;
1149 parent
= rb_last(&service_tree
->rb
);
1150 if (parent
&& parent
!= &cfqq
->rb_node
) {
1151 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
1152 rb_key
+= __cfqq
->rb_key
;
1155 } else if (!add_front
) {
1157 * Get our rb key offset. Subtract any residual slice
1158 * value carried from last service. A negative resid
1159 * count indicates slice overrun, and this should position
1160 * the next service time further away in the tree.
1162 rb_key
= cfq_slice_offset(cfqd
, cfqq
) + jiffies
;
1163 rb_key
-= cfqq
->slice_resid
;
1164 cfqq
->slice_resid
= 0;
1167 __cfqq
= cfq_rb_first(service_tree
);
1168 rb_key
+= __cfqq
? __cfqq
->rb_key
: jiffies
;
1171 if (!RB_EMPTY_NODE(&cfqq
->rb_node
)) {
1174 * same position, nothing more to do
1176 if (rb_key
== cfqq
->rb_key
&&
1177 cfqq
->service_tree
== service_tree
)
1180 cfq_rb_erase(&cfqq
->rb_node
, cfqq
->service_tree
);
1181 cfqq
->service_tree
= NULL
;
1186 cfqq
->service_tree
= service_tree
;
1187 p
= &service_tree
->rb
.rb_node
;
1192 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
1195 * sort by key, that represents service time.
1197 if (time_before(rb_key
, __cfqq
->rb_key
))
1200 n
= &(*p
)->rb_right
;
1208 service_tree
->left
= &cfqq
->rb_node
;
1210 cfqq
->rb_key
= rb_key
;
1211 rb_link_node(&cfqq
->rb_node
, parent
, p
);
1212 rb_insert_color(&cfqq
->rb_node
, &service_tree
->rb
);
1213 service_tree
->count
++;
1214 if ((add_front
|| !new_cfqq
) && !group_changed
)
1216 cfq_group_service_tree_add(cfqd
, cfqq
->cfqg
);
1219 static struct cfq_queue
*
1220 cfq_prio_tree_lookup(struct cfq_data
*cfqd
, struct rb_root
*root
,
1221 sector_t sector
, struct rb_node
**ret_parent
,
1222 struct rb_node
***rb_link
)
1224 struct rb_node
**p
, *parent
;
1225 struct cfq_queue
*cfqq
= NULL
;
1233 cfqq
= rb_entry(parent
, struct cfq_queue
, p_node
);
1236 * Sort strictly based on sector. Smallest to the left,
1237 * largest to the right.
1239 if (sector
> blk_rq_pos(cfqq
->next_rq
))
1240 n
= &(*p
)->rb_right
;
1241 else if (sector
< blk_rq_pos(cfqq
->next_rq
))
1249 *ret_parent
= parent
;
1255 static void cfq_prio_tree_add(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1257 struct rb_node
**p
, *parent
;
1258 struct cfq_queue
*__cfqq
;
1261 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
1262 cfqq
->p_root
= NULL
;
1265 if (cfq_class_idle(cfqq
))
1270 cfqq
->p_root
= &cfqd
->prio_trees
[cfqq
->org_ioprio
];
1271 __cfqq
= cfq_prio_tree_lookup(cfqd
, cfqq
->p_root
,
1272 blk_rq_pos(cfqq
->next_rq
), &parent
, &p
);
1274 rb_link_node(&cfqq
->p_node
, parent
, p
);
1275 rb_insert_color(&cfqq
->p_node
, cfqq
->p_root
);
1277 cfqq
->p_root
= NULL
;
1281 * Update cfqq's position in the service tree.
1283 static void cfq_resort_rr_list(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1286 * Resorting requires the cfqq to be on the RR list already.
1288 if (cfq_cfqq_on_rr(cfqq
)) {
1289 cfq_service_tree_add(cfqd
, cfqq
, 0);
1290 cfq_prio_tree_add(cfqd
, cfqq
);
1295 * add to busy list of queues for service, trying to be fair in ordering
1296 * the pending list according to last request service
1298 static void cfq_add_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1300 cfq_log_cfqq(cfqd
, cfqq
, "add_to_rr");
1301 BUG_ON(cfq_cfqq_on_rr(cfqq
));
1302 cfq_mark_cfqq_on_rr(cfqq
);
1303 cfqd
->busy_queues
++;
1305 cfq_resort_rr_list(cfqd
, cfqq
);
1309 * Called when the cfqq no longer has requests pending, remove it from
1312 static void cfq_del_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1314 cfq_log_cfqq(cfqd
, cfqq
, "del_from_rr");
1315 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
1316 cfq_clear_cfqq_on_rr(cfqq
);
1318 if (!RB_EMPTY_NODE(&cfqq
->rb_node
)) {
1319 cfq_rb_erase(&cfqq
->rb_node
, cfqq
->service_tree
);
1320 cfqq
->service_tree
= NULL
;
1323 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
1324 cfqq
->p_root
= NULL
;
1327 cfq_group_service_tree_del(cfqd
, cfqq
->cfqg
);
1328 BUG_ON(!cfqd
->busy_queues
);
1329 cfqd
->busy_queues
--;
1333 * rb tree support functions
1335 static void cfq_del_rq_rb(struct request
*rq
)
1337 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1338 const int sync
= rq_is_sync(rq
);
1340 BUG_ON(!cfqq
->queued
[sync
]);
1341 cfqq
->queued
[sync
]--;
1343 elv_rb_del(&cfqq
->sort_list
, rq
);
1345 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
)) {
1347 * Queue will be deleted from service tree when we actually
1348 * expire it later. Right now just remove it from prio tree
1352 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
1353 cfqq
->p_root
= NULL
;
1358 static void cfq_add_rq_rb(struct request
*rq
)
1360 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1361 struct cfq_data
*cfqd
= cfqq
->cfqd
;
1362 struct request
*__alias
, *prev
;
1364 cfqq
->queued
[rq_is_sync(rq
)]++;
1367 * looks a little odd, but the first insert might return an alias.
1368 * if that happens, put the alias on the dispatch list
1370 while ((__alias
= elv_rb_add(&cfqq
->sort_list
, rq
)) != NULL
)
1371 cfq_dispatch_insert(cfqd
->queue
, __alias
);
1373 if (!cfq_cfqq_on_rr(cfqq
))
1374 cfq_add_cfqq_rr(cfqd
, cfqq
);
1377 * check if this request is a better next-serve candidate
1379 prev
= cfqq
->next_rq
;
1380 cfqq
->next_rq
= cfq_choose_req(cfqd
, cfqq
->next_rq
, rq
, cfqd
->last_position
);
1383 * adjust priority tree position, if ->next_rq changes
1385 if (prev
!= cfqq
->next_rq
)
1386 cfq_prio_tree_add(cfqd
, cfqq
);
1388 BUG_ON(!cfqq
->next_rq
);
1391 static void cfq_reposition_rq_rb(struct cfq_queue
*cfqq
, struct request
*rq
)
1393 elv_rb_del(&cfqq
->sort_list
, rq
);
1394 cfqq
->queued
[rq_is_sync(rq
)]--;
1398 static struct request
*
1399 cfq_find_rq_fmerge(struct cfq_data
*cfqd
, struct bio
*bio
)
1401 struct task_struct
*tsk
= current
;
1402 struct cfq_io_context
*cic
;
1403 struct cfq_queue
*cfqq
;
1405 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
1409 cfqq
= cic_to_cfqq(cic
, cfq_bio_sync(bio
));
1411 sector_t sector
= bio
->bi_sector
+ bio_sectors(bio
);
1413 return elv_rb_find(&cfqq
->sort_list
, sector
);
1419 static void cfq_activate_request(struct request_queue
*q
, struct request
*rq
)
1421 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1423 cfqd
->rq_in_driver
[rq_is_sync(rq
)]++;
1424 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "activate rq, drv=%d",
1425 rq_in_driver(cfqd
));
1427 cfqd
->last_position
= blk_rq_pos(rq
) + blk_rq_sectors(rq
);
1430 static void cfq_deactivate_request(struct request_queue
*q
, struct request
*rq
)
1432 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1433 const int sync
= rq_is_sync(rq
);
1435 WARN_ON(!cfqd
->rq_in_driver
[sync
]);
1436 cfqd
->rq_in_driver
[sync
]--;
1437 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "deactivate rq, drv=%d",
1438 rq_in_driver(cfqd
));
1441 static void cfq_remove_request(struct request
*rq
)
1443 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1445 if (cfqq
->next_rq
== rq
)
1446 cfqq
->next_rq
= cfq_find_next_rq(cfqq
->cfqd
, cfqq
, rq
);
1448 list_del_init(&rq
->queuelist
);
1451 cfqq
->cfqd
->rq_queued
--;
1452 if (rq_is_meta(rq
)) {
1453 WARN_ON(!cfqq
->meta_pending
);
1454 cfqq
->meta_pending
--;
1458 static int cfq_merge(struct request_queue
*q
, struct request
**req
,
1461 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1462 struct request
*__rq
;
1464 __rq
= cfq_find_rq_fmerge(cfqd
, bio
);
1465 if (__rq
&& elv_rq_merge_ok(__rq
, bio
)) {
1467 return ELEVATOR_FRONT_MERGE
;
1470 return ELEVATOR_NO_MERGE
;
1473 static void cfq_merged_request(struct request_queue
*q
, struct request
*req
,
1476 if (type
== ELEVATOR_FRONT_MERGE
) {
1477 struct cfq_queue
*cfqq
= RQ_CFQQ(req
);
1479 cfq_reposition_rq_rb(cfqq
, req
);
1484 cfq_merged_requests(struct request_queue
*q
, struct request
*rq
,
1485 struct request
*next
)
1487 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1489 * reposition in fifo if next is older than rq
1491 if (!list_empty(&rq
->queuelist
) && !list_empty(&next
->queuelist
) &&
1492 time_before(rq_fifo_time(next
), rq_fifo_time(rq
))) {
1493 list_move(&rq
->queuelist
, &next
->queuelist
);
1494 rq_set_fifo_time(rq
, rq_fifo_time(next
));
1497 if (cfqq
->next_rq
== next
)
1499 cfq_remove_request(next
);
1502 static int cfq_allow_merge(struct request_queue
*q
, struct request
*rq
,
1505 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1506 struct cfq_io_context
*cic
;
1507 struct cfq_queue
*cfqq
;
1510 * Disallow merge of a sync bio into an async request.
1512 if (cfq_bio_sync(bio
) && !rq_is_sync(rq
))
1516 * Lookup the cfqq that this bio will be queued with. Allow
1517 * merge only if rq is queued there.
1519 cic
= cfq_cic_lookup(cfqd
, current
->io_context
);
1523 cfqq
= cic_to_cfqq(cic
, cfq_bio_sync(bio
));
1524 return cfqq
== RQ_CFQQ(rq
);
1527 static void __cfq_set_active_queue(struct cfq_data
*cfqd
,
1528 struct cfq_queue
*cfqq
)
1531 cfq_log_cfqq(cfqd
, cfqq
, "set_active");
1532 cfqq
->slice_start
= 0;
1533 cfqq
->dispatch_start
= jiffies
;
1534 cfqq
->allocated_slice
= 0;
1535 cfqq
->slice_end
= 0;
1536 cfqq
->slice_dispatch
= 0;
1537 cfqq
->nr_sectors
= 0;
1539 cfq_clear_cfqq_wait_request(cfqq
);
1540 cfq_clear_cfqq_must_dispatch(cfqq
);
1541 cfq_clear_cfqq_must_alloc_slice(cfqq
);
1542 cfq_clear_cfqq_fifo_expire(cfqq
);
1543 cfq_mark_cfqq_slice_new(cfqq
);
1545 del_timer(&cfqd
->idle_slice_timer
);
1548 cfqd
->active_queue
= cfqq
;
1552 * current cfqq expired its slice (or was too idle), select new one
1555 __cfq_slice_expired(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1558 cfq_log_cfqq(cfqd
, cfqq
, "slice expired t=%d", timed_out
);
1560 if (cfq_cfqq_wait_request(cfqq
))
1561 del_timer(&cfqd
->idle_slice_timer
);
1563 cfq_clear_cfqq_wait_request(cfqq
);
1564 cfq_clear_cfqq_wait_busy(cfqq
);
1567 * If this cfqq is shared between multiple processes, check to
1568 * make sure that those processes are still issuing I/Os within
1569 * the mean seek distance. If not, it may be time to break the
1570 * queues apart again.
1572 if (cfq_cfqq_coop(cfqq
) && CFQQ_SEEKY(cfqq
))
1573 cfq_mark_cfqq_split_coop(cfqq
);
1576 * store what was left of this slice, if the queue idled/timed out
1578 if (timed_out
&& !cfq_cfqq_slice_new(cfqq
)) {
1579 cfqq
->slice_resid
= cfqq
->slice_end
- jiffies
;
1580 cfq_log_cfqq(cfqd
, cfqq
, "resid=%ld", cfqq
->slice_resid
);
1583 cfq_group_served(cfqd
, cfqq
->cfqg
, cfqq
);
1585 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
))
1586 cfq_del_cfqq_rr(cfqd
, cfqq
);
1588 cfq_resort_rr_list(cfqd
, cfqq
);
1590 if (cfqq
== cfqd
->active_queue
)
1591 cfqd
->active_queue
= NULL
;
1593 if (&cfqq
->cfqg
->rb_node
== cfqd
->grp_service_tree
.active
)
1594 cfqd
->grp_service_tree
.active
= NULL
;
1596 if (cfqd
->active_cic
) {
1597 put_io_context(cfqd
->active_cic
->ioc
);
1598 cfqd
->active_cic
= NULL
;
1602 static inline void cfq_slice_expired(struct cfq_data
*cfqd
, bool timed_out
)
1604 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
1607 __cfq_slice_expired(cfqd
, cfqq
, timed_out
);
1611 * Get next queue for service. Unless we have a queue preemption,
1612 * we'll simply select the first cfqq in the service tree.
1614 static struct cfq_queue
*cfq_get_next_queue(struct cfq_data
*cfqd
)
1616 struct cfq_rb_root
*service_tree
=
1617 service_tree_for(cfqd
->serving_group
, cfqd
->serving_prio
,
1618 cfqd
->serving_type
);
1620 if (!cfqd
->rq_queued
)
1623 /* There is nothing to dispatch */
1626 if (RB_EMPTY_ROOT(&service_tree
->rb
))
1628 return cfq_rb_first(service_tree
);
1631 static struct cfq_queue
*cfq_get_next_queue_forced(struct cfq_data
*cfqd
)
1633 struct cfq_group
*cfqg
;
1634 struct cfq_queue
*cfqq
;
1636 struct cfq_rb_root
*st
;
1638 if (!cfqd
->rq_queued
)
1641 cfqg
= cfq_get_next_cfqg(cfqd
);
1645 for_each_cfqg_st(cfqg
, i
, j
, st
)
1646 if ((cfqq
= cfq_rb_first(st
)) != NULL
)
1652 * Get and set a new active queue for service.
1654 static struct cfq_queue
*cfq_set_active_queue(struct cfq_data
*cfqd
,
1655 struct cfq_queue
*cfqq
)
1658 cfqq
= cfq_get_next_queue(cfqd
);
1660 __cfq_set_active_queue(cfqd
, cfqq
);
1664 static inline sector_t
cfq_dist_from_last(struct cfq_data
*cfqd
,
1667 if (blk_rq_pos(rq
) >= cfqd
->last_position
)
1668 return blk_rq_pos(rq
) - cfqd
->last_position
;
1670 return cfqd
->last_position
- blk_rq_pos(rq
);
1673 static inline int cfq_rq_close(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1674 struct request
*rq
, bool for_preempt
)
1676 sector_t sdist
= cfqq
->seek_mean
;
1678 if (!sample_valid(cfqq
->seek_samples
))
1679 sdist
= CFQQ_SEEK_THR
;
1681 /* if seek_mean is big, using it as close criteria is meaningless */
1682 if (sdist
> CFQQ_SEEK_THR
&& !for_preempt
)
1683 sdist
= CFQQ_SEEK_THR
;
1685 return cfq_dist_from_last(cfqd
, rq
) <= sdist
;
1688 static struct cfq_queue
*cfqq_close(struct cfq_data
*cfqd
,
1689 struct cfq_queue
*cur_cfqq
)
1691 struct rb_root
*root
= &cfqd
->prio_trees
[cur_cfqq
->org_ioprio
];
1692 struct rb_node
*parent
, *node
;
1693 struct cfq_queue
*__cfqq
;
1694 sector_t sector
= cfqd
->last_position
;
1696 if (RB_EMPTY_ROOT(root
))
1700 * First, if we find a request starting at the end of the last
1701 * request, choose it.
1703 __cfqq
= cfq_prio_tree_lookup(cfqd
, root
, sector
, &parent
, NULL
);
1708 * If the exact sector wasn't found, the parent of the NULL leaf
1709 * will contain the closest sector.
1711 __cfqq
= rb_entry(parent
, struct cfq_queue
, p_node
);
1712 if (cfq_rq_close(cfqd
, cur_cfqq
, __cfqq
->next_rq
, false))
1715 if (blk_rq_pos(__cfqq
->next_rq
) < sector
)
1716 node
= rb_next(&__cfqq
->p_node
);
1718 node
= rb_prev(&__cfqq
->p_node
);
1722 __cfqq
= rb_entry(node
, struct cfq_queue
, p_node
);
1723 if (cfq_rq_close(cfqd
, cur_cfqq
, __cfqq
->next_rq
, false))
1731 * cur_cfqq - passed in so that we don't decide that the current queue is
1732 * closely cooperating with itself.
1734 * So, basically we're assuming that that cur_cfqq has dispatched at least
1735 * one request, and that cfqd->last_position reflects a position on the disk
1736 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1739 static struct cfq_queue
*cfq_close_cooperator(struct cfq_data
*cfqd
,
1740 struct cfq_queue
*cur_cfqq
)
1742 struct cfq_queue
*cfqq
;
1744 if (!cfq_cfqq_sync(cur_cfqq
))
1746 if (CFQQ_SEEKY(cur_cfqq
))
1750 * Don't search priority tree if it's the only queue in the group.
1752 if (cur_cfqq
->cfqg
->nr_cfqq
== 1)
1756 * We should notice if some of the queues are cooperating, eg
1757 * working closely on the same area of the disk. In that case,
1758 * we can group them together and don't waste time idling.
1760 cfqq
= cfqq_close(cfqd
, cur_cfqq
);
1764 /* If new queue belongs to different cfq_group, don't choose it */
1765 if (cur_cfqq
->cfqg
!= cfqq
->cfqg
)
1769 * It only makes sense to merge sync queues.
1771 if (!cfq_cfqq_sync(cfqq
))
1773 if (CFQQ_SEEKY(cfqq
))
1777 * Do not merge queues of different priority classes
1779 if (cfq_class_rt(cfqq
) != cfq_class_rt(cur_cfqq
))
1786 * Determine whether we should enforce idle window for this queue.
1789 static bool cfq_should_idle(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1791 enum wl_prio_t prio
= cfqq_prio(cfqq
);
1792 struct cfq_rb_root
*service_tree
= cfqq
->service_tree
;
1794 BUG_ON(!service_tree
);
1795 BUG_ON(!service_tree
->count
);
1797 /* We never do for idle class queues. */
1798 if (prio
== IDLE_WORKLOAD
)
1801 /* We do for queues that were marked with idle window flag. */
1802 if (cfq_cfqq_idle_window(cfqq
) &&
1803 !(blk_queue_nonrot(cfqd
->queue
) && cfqd
->hw_tag
))
1807 * Otherwise, we do only if they are the last ones
1808 * in their service tree.
1810 return service_tree
->count
== 1 && cfq_cfqq_sync(cfqq
);
1813 static void cfq_arm_slice_timer(struct cfq_data
*cfqd
)
1815 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
1816 struct cfq_io_context
*cic
;
1820 * SSD device without seek penalty, disable idling. But only do so
1821 * for devices that support queuing, otherwise we still have a problem
1822 * with sync vs async workloads.
1824 if (blk_queue_nonrot(cfqd
->queue
) && cfqd
->hw_tag
)
1827 WARN_ON(!RB_EMPTY_ROOT(&cfqq
->sort_list
));
1828 WARN_ON(cfq_cfqq_slice_new(cfqq
));
1831 * idle is disabled, either manually or by past process history
1833 if (!cfqd
->cfq_slice_idle
|| !cfq_should_idle(cfqd
, cfqq
))
1837 * still active requests from this queue, don't idle
1839 if (cfqq
->dispatched
)
1843 * task has exited, don't wait
1845 cic
= cfqd
->active_cic
;
1846 if (!cic
|| !atomic_read(&cic
->ioc
->nr_tasks
))
1850 * If our average think time is larger than the remaining time
1851 * slice, then don't idle. This avoids overrunning the allotted
1854 if (sample_valid(cic
->ttime_samples
) &&
1855 (cfqq
->slice_end
- jiffies
< cic
->ttime_mean
))
1858 cfq_mark_cfqq_wait_request(cfqq
);
1860 sl
= cfqd
->cfq_slice_idle
;
1862 mod_timer(&cfqd
->idle_slice_timer
, jiffies
+ sl
);
1863 cfq_log_cfqq(cfqd
, cfqq
, "arm_idle: %lu", sl
);
1867 * Move request from internal lists to the request queue dispatch list.
1869 static void cfq_dispatch_insert(struct request_queue
*q
, struct request
*rq
)
1871 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1872 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1874 cfq_log_cfqq(cfqd
, cfqq
, "dispatch_insert");
1876 cfqq
->next_rq
= cfq_find_next_rq(cfqd
, cfqq
, rq
);
1877 cfq_remove_request(rq
);
1879 elv_dispatch_sort(q
, rq
);
1881 if (cfq_cfqq_sync(cfqq
))
1882 cfqd
->sync_flight
++;
1883 cfqq
->nr_sectors
+= blk_rq_sectors(rq
);
1887 * return expired entry, or NULL to just start from scratch in rbtree
1889 static struct request
*cfq_check_fifo(struct cfq_queue
*cfqq
)
1891 struct request
*rq
= NULL
;
1893 if (cfq_cfqq_fifo_expire(cfqq
))
1896 cfq_mark_cfqq_fifo_expire(cfqq
);
1898 if (list_empty(&cfqq
->fifo
))
1901 rq
= rq_entry_fifo(cfqq
->fifo
.next
);
1902 if (time_before(jiffies
, rq_fifo_time(rq
)))
1905 cfq_log_cfqq(cfqq
->cfqd
, cfqq
, "fifo=%p", rq
);
1910 cfq_prio_to_maxrq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1912 const int base_rq
= cfqd
->cfq_slice_async_rq
;
1914 WARN_ON(cfqq
->ioprio
>= IOPRIO_BE_NR
);
1916 return 2 * (base_rq
+ base_rq
* (CFQ_PRIO_LISTS
- 1 - cfqq
->ioprio
));
1920 * Must be called with the queue_lock held.
1922 static int cfqq_process_refs(struct cfq_queue
*cfqq
)
1924 int process_refs
, io_refs
;
1926 io_refs
= cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
];
1927 process_refs
= atomic_read(&cfqq
->ref
) - io_refs
;
1928 BUG_ON(process_refs
< 0);
1929 return process_refs
;
1932 static void cfq_setup_merge(struct cfq_queue
*cfqq
, struct cfq_queue
*new_cfqq
)
1934 int process_refs
, new_process_refs
;
1935 struct cfq_queue
*__cfqq
;
1938 * If there are no process references on the new_cfqq, then it is
1939 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
1940 * chain may have dropped their last reference (not just their
1941 * last process reference).
1943 if (!cfqq_process_refs(new_cfqq
))
1946 /* Avoid a circular list and skip interim queue merges */
1947 while ((__cfqq
= new_cfqq
->new_cfqq
)) {
1953 process_refs
= cfqq_process_refs(cfqq
);
1954 new_process_refs
= cfqq_process_refs(new_cfqq
);
1956 * If the process for the cfqq has gone away, there is no
1957 * sense in merging the queues.
1959 if (process_refs
== 0 || new_process_refs
== 0)
1963 * Merge in the direction of the lesser amount of work.
1965 if (new_process_refs
>= process_refs
) {
1966 cfqq
->new_cfqq
= new_cfqq
;
1967 atomic_add(process_refs
, &new_cfqq
->ref
);
1969 new_cfqq
->new_cfqq
= cfqq
;
1970 atomic_add(new_process_refs
, &cfqq
->ref
);
1974 static enum wl_type_t
cfq_choose_wl(struct cfq_data
*cfqd
,
1975 struct cfq_group
*cfqg
, enum wl_prio_t prio
)
1977 struct cfq_queue
*queue
;
1979 bool key_valid
= false;
1980 unsigned long lowest_key
= 0;
1981 enum wl_type_t cur_best
= SYNC_NOIDLE_WORKLOAD
;
1983 for (i
= 0; i
<= SYNC_WORKLOAD
; ++i
) {
1984 /* select the one with lowest rb_key */
1985 queue
= cfq_rb_first(service_tree_for(cfqg
, prio
, i
));
1987 (!key_valid
|| time_before(queue
->rb_key
, lowest_key
))) {
1988 lowest_key
= queue
->rb_key
;
1997 static void choose_service_tree(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
2001 struct cfq_rb_root
*st
;
2002 unsigned group_slice
;
2005 cfqd
->serving_prio
= IDLE_WORKLOAD
;
2006 cfqd
->workload_expires
= jiffies
+ 1;
2010 /* Choose next priority. RT > BE > IDLE */
2011 if (cfq_group_busy_queues_wl(RT_WORKLOAD
, cfqd
, cfqg
))
2012 cfqd
->serving_prio
= RT_WORKLOAD
;
2013 else if (cfq_group_busy_queues_wl(BE_WORKLOAD
, cfqd
, cfqg
))
2014 cfqd
->serving_prio
= BE_WORKLOAD
;
2016 cfqd
->serving_prio
= IDLE_WORKLOAD
;
2017 cfqd
->workload_expires
= jiffies
+ 1;
2022 * For RT and BE, we have to choose also the type
2023 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2026 st
= service_tree_for(cfqg
, cfqd
->serving_prio
, cfqd
->serving_type
);
2030 * check workload expiration, and that we still have other queues ready
2032 if (count
&& !time_after(jiffies
, cfqd
->workload_expires
))
2035 /* otherwise select new workload type */
2036 cfqd
->serving_type
=
2037 cfq_choose_wl(cfqd
, cfqg
, cfqd
->serving_prio
);
2038 st
= service_tree_for(cfqg
, cfqd
->serving_prio
, cfqd
->serving_type
);
2042 * the workload slice is computed as a fraction of target latency
2043 * proportional to the number of queues in that workload, over
2044 * all the queues in the same priority class
2046 group_slice
= cfq_group_slice(cfqd
, cfqg
);
2048 slice
= group_slice
* count
/
2049 max_t(unsigned, cfqg
->busy_queues_avg
[cfqd
->serving_prio
],
2050 cfq_group_busy_queues_wl(cfqd
->serving_prio
, cfqd
, cfqg
));
2052 if (cfqd
->serving_type
== ASYNC_WORKLOAD
) {
2056 * Async queues are currently system wide. Just taking
2057 * proportion of queues with-in same group will lead to higher
2058 * async ratio system wide as generally root group is going
2059 * to have higher weight. A more accurate thing would be to
2060 * calculate system wide asnc/sync ratio.
2062 tmp
= cfq_target_latency
* cfqg_busy_async_queues(cfqd
, cfqg
);
2063 tmp
= tmp
/cfqd
->busy_queues
;
2064 slice
= min_t(unsigned, slice
, tmp
);
2066 /* async workload slice is scaled down according to
2067 * the sync/async slice ratio. */
2068 slice
= slice
* cfqd
->cfq_slice
[0] / cfqd
->cfq_slice
[1];
2070 /* sync workload slice is at least 2 * cfq_slice_idle */
2071 slice
= max(slice
, 2 * cfqd
->cfq_slice_idle
);
2073 slice
= max_t(unsigned, slice
, CFQ_MIN_TT
);
2074 cfqd
->workload_expires
= jiffies
+ slice
;
2075 cfqd
->noidle_tree_requires_idle
= false;
2078 static struct cfq_group
*cfq_get_next_cfqg(struct cfq_data
*cfqd
)
2080 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
2081 struct cfq_group
*cfqg
;
2083 if (RB_EMPTY_ROOT(&st
->rb
))
2085 cfqg
= cfq_rb_first_group(st
);
2086 st
->active
= &cfqg
->rb_node
;
2087 update_min_vdisktime(st
);
2091 static void cfq_choose_cfqg(struct cfq_data
*cfqd
)
2093 struct cfq_group
*cfqg
= cfq_get_next_cfqg(cfqd
);
2095 cfqd
->serving_group
= cfqg
;
2097 /* Restore the workload type data */
2098 if (cfqg
->saved_workload_slice
) {
2099 cfqd
->workload_expires
= jiffies
+ cfqg
->saved_workload_slice
;
2100 cfqd
->serving_type
= cfqg
->saved_workload
;
2101 cfqd
->serving_prio
= cfqg
->saved_serving_prio
;
2103 cfqd
->workload_expires
= jiffies
- 1;
2105 choose_service_tree(cfqd
, cfqg
);
2109 * Select a queue for service. If we have a current active queue,
2110 * check whether to continue servicing it, or retrieve and set a new one.
2112 static struct cfq_queue
*cfq_select_queue(struct cfq_data
*cfqd
)
2114 struct cfq_queue
*cfqq
, *new_cfqq
= NULL
;
2116 cfqq
= cfqd
->active_queue
;
2120 if (!cfqd
->rq_queued
)
2124 * We were waiting for group to get backlogged. Expire the queue
2126 if (cfq_cfqq_wait_busy(cfqq
) && !RB_EMPTY_ROOT(&cfqq
->sort_list
))
2130 * The active queue has run out of time, expire it and select new.
2132 if (cfq_slice_used(cfqq
) && !cfq_cfqq_must_dispatch(cfqq
)) {
2134 * If slice had not expired at the completion of last request
2135 * we might not have turned on wait_busy flag. Don't expire
2136 * the queue yet. Allow the group to get backlogged.
2138 * The very fact that we have used the slice, that means we
2139 * have been idling all along on this queue and it should be
2140 * ok to wait for this request to complete.
2142 if (cfqq
->cfqg
->nr_cfqq
== 1 && RB_EMPTY_ROOT(&cfqq
->sort_list
)
2143 && cfqq
->dispatched
&& cfq_should_idle(cfqd
, cfqq
)) {
2151 * The active queue has requests and isn't expired, allow it to
2154 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
2158 * If another queue has a request waiting within our mean seek
2159 * distance, let it run. The expire code will check for close
2160 * cooperators and put the close queue at the front of the service
2161 * tree. If possible, merge the expiring queue with the new cfqq.
2163 new_cfqq
= cfq_close_cooperator(cfqd
, cfqq
);
2165 if (!cfqq
->new_cfqq
)
2166 cfq_setup_merge(cfqq
, new_cfqq
);
2171 * No requests pending. If the active queue still has requests in
2172 * flight or is idling for a new request, allow either of these
2173 * conditions to happen (or time out) before selecting a new queue.
2175 if (timer_pending(&cfqd
->idle_slice_timer
) ||
2176 (cfqq
->dispatched
&& cfq_should_idle(cfqd
, cfqq
))) {
2182 cfq_slice_expired(cfqd
, 0);
2185 * Current queue expired. Check if we have to switch to a new
2189 cfq_choose_cfqg(cfqd
);
2191 cfqq
= cfq_set_active_queue(cfqd
, new_cfqq
);
2196 static int __cfq_forced_dispatch_cfqq(struct cfq_queue
*cfqq
)
2200 while (cfqq
->next_rq
) {
2201 cfq_dispatch_insert(cfqq
->cfqd
->queue
, cfqq
->next_rq
);
2205 BUG_ON(!list_empty(&cfqq
->fifo
));
2207 /* By default cfqq is not expired if it is empty. Do it explicitly */
2208 __cfq_slice_expired(cfqq
->cfqd
, cfqq
, 0);
2213 * Drain our current requests. Used for barriers and when switching
2214 * io schedulers on-the-fly.
2216 static int cfq_forced_dispatch(struct cfq_data
*cfqd
)
2218 struct cfq_queue
*cfqq
;
2221 while ((cfqq
= cfq_get_next_queue_forced(cfqd
)) != NULL
)
2222 dispatched
+= __cfq_forced_dispatch_cfqq(cfqq
);
2224 cfq_slice_expired(cfqd
, 0);
2225 BUG_ON(cfqd
->busy_queues
);
2227 cfq_log(cfqd
, "forced_dispatch=%d", dispatched
);
2231 static bool cfq_may_dispatch(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2233 unsigned int max_dispatch
;
2236 * Drain async requests before we start sync IO
2238 if (cfq_should_idle(cfqd
, cfqq
) && cfqd
->rq_in_driver
[BLK_RW_ASYNC
])
2242 * If this is an async queue and we have sync IO in flight, let it wait
2244 if (cfqd
->sync_flight
&& !cfq_cfqq_sync(cfqq
))
2247 max_dispatch
= cfqd
->cfq_quantum
;
2248 if (cfq_class_idle(cfqq
))
2252 * Does this cfqq already have too much IO in flight?
2254 if (cfqq
->dispatched
>= max_dispatch
) {
2256 * idle queue must always only have a single IO in flight
2258 if (cfq_class_idle(cfqq
))
2262 * We have other queues, don't allow more IO from this one
2264 if (cfqd
->busy_queues
> 1)
2268 * Sole queue user, no limit
2274 * Async queues must wait a bit before being allowed dispatch.
2275 * We also ramp up the dispatch depth gradually for async IO,
2276 * based on the last sync IO we serviced
2278 if (!cfq_cfqq_sync(cfqq
) && cfqd
->cfq_latency
) {
2279 unsigned long last_sync
= jiffies
- cfqd
->last_delayed_sync
;
2282 depth
= last_sync
/ cfqd
->cfq_slice
[1];
2283 if (!depth
&& !cfqq
->dispatched
)
2285 if (depth
< max_dispatch
)
2286 max_dispatch
= depth
;
2290 * If we're below the current max, allow a dispatch
2292 return cfqq
->dispatched
< max_dispatch
;
2296 * Dispatch a request from cfqq, moving them to the request queue
2299 static bool cfq_dispatch_request(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2303 BUG_ON(RB_EMPTY_ROOT(&cfqq
->sort_list
));
2305 if (!cfq_may_dispatch(cfqd
, cfqq
))
2309 * follow expired path, else get first next available
2311 rq
= cfq_check_fifo(cfqq
);
2316 * insert request into driver dispatch list
2318 cfq_dispatch_insert(cfqd
->queue
, rq
);
2320 if (!cfqd
->active_cic
) {
2321 struct cfq_io_context
*cic
= RQ_CIC(rq
);
2323 atomic_long_inc(&cic
->ioc
->refcount
);
2324 cfqd
->active_cic
= cic
;
2331 * Find the cfqq that we need to service and move a request from that to the
2334 static int cfq_dispatch_requests(struct request_queue
*q
, int force
)
2336 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2337 struct cfq_queue
*cfqq
;
2339 if (!cfqd
->busy_queues
)
2342 if (unlikely(force
))
2343 return cfq_forced_dispatch(cfqd
);
2345 cfqq
= cfq_select_queue(cfqd
);
2350 * Dispatch a request from this cfqq, if it is allowed
2352 if (!cfq_dispatch_request(cfqd
, cfqq
))
2355 cfqq
->slice_dispatch
++;
2356 cfq_clear_cfqq_must_dispatch(cfqq
);
2359 * expire an async queue immediately if it has used up its slice. idle
2360 * queue always expire after 1 dispatch round.
2362 if (cfqd
->busy_queues
> 1 && ((!cfq_cfqq_sync(cfqq
) &&
2363 cfqq
->slice_dispatch
>= cfq_prio_to_maxrq(cfqd
, cfqq
)) ||
2364 cfq_class_idle(cfqq
))) {
2365 cfqq
->slice_end
= jiffies
+ 1;
2366 cfq_slice_expired(cfqd
, 0);
2369 cfq_log_cfqq(cfqd
, cfqq
, "dispatched a request");
2374 * task holds one reference to the queue, dropped when task exits. each rq
2375 * in-flight on this queue also holds a reference, dropped when rq is freed.
2377 * Each cfq queue took a reference on the parent group. Drop it now.
2378 * queue lock must be held here.
2380 static void cfq_put_queue(struct cfq_queue
*cfqq
)
2382 struct cfq_data
*cfqd
= cfqq
->cfqd
;
2383 struct cfq_group
*cfqg
, *orig_cfqg
;
2385 BUG_ON(atomic_read(&cfqq
->ref
) <= 0);
2387 if (!atomic_dec_and_test(&cfqq
->ref
))
2390 cfq_log_cfqq(cfqd
, cfqq
, "put_queue");
2391 BUG_ON(rb_first(&cfqq
->sort_list
));
2392 BUG_ON(cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
]);
2394 orig_cfqg
= cfqq
->orig_cfqg
;
2396 if (unlikely(cfqd
->active_queue
== cfqq
)) {
2397 __cfq_slice_expired(cfqd
, cfqq
, 0);
2398 cfq_schedule_dispatch(cfqd
);
2401 BUG_ON(cfq_cfqq_on_rr(cfqq
));
2402 kmem_cache_free(cfq_pool
, cfqq
);
2405 cfq_put_cfqg(orig_cfqg
);
2409 * Must always be called with the rcu_read_lock() held
2412 __call_for_each_cic(struct io_context
*ioc
,
2413 void (*func
)(struct io_context
*, struct cfq_io_context
*))
2415 struct cfq_io_context
*cic
;
2416 struct hlist_node
*n
;
2418 hlist_for_each_entry_rcu(cic
, n
, &ioc
->cic_list
, cic_list
)
2423 * Call func for each cic attached to this ioc.
2426 call_for_each_cic(struct io_context
*ioc
,
2427 void (*func
)(struct io_context
*, struct cfq_io_context
*))
2430 __call_for_each_cic(ioc
, func
);
2434 static void cfq_cic_free_rcu(struct rcu_head
*head
)
2436 struct cfq_io_context
*cic
;
2438 cic
= container_of(head
, struct cfq_io_context
, rcu_head
);
2440 kmem_cache_free(cfq_ioc_pool
, cic
);
2441 elv_ioc_count_dec(cfq_ioc_count
);
2445 * CFQ scheduler is exiting, grab exit lock and check
2446 * the pending io context count. If it hits zero,
2447 * complete ioc_gone and set it back to NULL
2449 spin_lock(&ioc_gone_lock
);
2450 if (ioc_gone
&& !elv_ioc_count_read(cfq_ioc_count
)) {
2454 spin_unlock(&ioc_gone_lock
);
2458 static void cfq_cic_free(struct cfq_io_context
*cic
)
2460 call_rcu(&cic
->rcu_head
, cfq_cic_free_rcu
);
2463 static void cic_free_func(struct io_context
*ioc
, struct cfq_io_context
*cic
)
2465 unsigned long flags
;
2467 BUG_ON(!cic
->dead_key
);
2469 spin_lock_irqsave(&ioc
->lock
, flags
);
2470 radix_tree_delete(&ioc
->radix_root
, cic
->dead_key
);
2471 hlist_del_rcu(&cic
->cic_list
);
2472 spin_unlock_irqrestore(&ioc
->lock
, flags
);
2478 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2479 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2480 * and ->trim() which is called with the task lock held
2482 static void cfq_free_io_context(struct io_context
*ioc
)
2485 * ioc->refcount is zero here, or we are called from elv_unregister(),
2486 * so no more cic's are allowed to be linked into this ioc. So it
2487 * should be ok to iterate over the known list, we will see all cic's
2488 * since no new ones are added.
2490 __call_for_each_cic(ioc
, cic_free_func
);
2493 static void cfq_put_cooperator(struct cfq_queue
*cfqq
)
2495 struct cfq_queue
*__cfqq
, *next
;
2498 * If this queue was scheduled to merge with another queue, be
2499 * sure to drop the reference taken on that queue (and others in
2500 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2502 __cfqq
= cfqq
->new_cfqq
;
2504 if (__cfqq
== cfqq
) {
2505 WARN(1, "cfqq->new_cfqq loop detected\n");
2508 next
= __cfqq
->new_cfqq
;
2509 cfq_put_queue(__cfqq
);
2514 static void cfq_exit_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2516 if (unlikely(cfqq
== cfqd
->active_queue
)) {
2517 __cfq_slice_expired(cfqd
, cfqq
, 0);
2518 cfq_schedule_dispatch(cfqd
);
2521 cfq_put_cooperator(cfqq
);
2523 cfq_put_queue(cfqq
);
2526 static void __cfq_exit_single_io_context(struct cfq_data
*cfqd
,
2527 struct cfq_io_context
*cic
)
2529 struct io_context
*ioc
= cic
->ioc
;
2531 list_del_init(&cic
->queue_list
);
2534 * Make sure key == NULL is seen for dead queues
2537 cic
->dead_key
= (unsigned long) cic
->key
;
2540 if (ioc
->ioc_data
== cic
)
2541 rcu_assign_pointer(ioc
->ioc_data
, NULL
);
2543 if (cic
->cfqq
[BLK_RW_ASYNC
]) {
2544 cfq_exit_cfqq(cfqd
, cic
->cfqq
[BLK_RW_ASYNC
]);
2545 cic
->cfqq
[BLK_RW_ASYNC
] = NULL
;
2548 if (cic
->cfqq
[BLK_RW_SYNC
]) {
2549 cfq_exit_cfqq(cfqd
, cic
->cfqq
[BLK_RW_SYNC
]);
2550 cic
->cfqq
[BLK_RW_SYNC
] = NULL
;
2554 static void cfq_exit_single_io_context(struct io_context
*ioc
,
2555 struct cfq_io_context
*cic
)
2557 struct cfq_data
*cfqd
= cic
->key
;
2560 struct request_queue
*q
= cfqd
->queue
;
2561 unsigned long flags
;
2563 spin_lock_irqsave(q
->queue_lock
, flags
);
2566 * Ensure we get a fresh copy of the ->key to prevent
2567 * race between exiting task and queue
2569 smp_read_barrier_depends();
2571 __cfq_exit_single_io_context(cfqd
, cic
);
2573 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2578 * The process that ioc belongs to has exited, we need to clean up
2579 * and put the internal structures we have that belongs to that process.
2581 static void cfq_exit_io_context(struct io_context
*ioc
)
2583 call_for_each_cic(ioc
, cfq_exit_single_io_context
);
2586 static struct cfq_io_context
*
2587 cfq_alloc_io_context(struct cfq_data
*cfqd
, gfp_t gfp_mask
)
2589 struct cfq_io_context
*cic
;
2591 cic
= kmem_cache_alloc_node(cfq_ioc_pool
, gfp_mask
| __GFP_ZERO
,
2594 cic
->last_end_request
= jiffies
;
2595 INIT_LIST_HEAD(&cic
->queue_list
);
2596 INIT_HLIST_NODE(&cic
->cic_list
);
2597 cic
->dtor
= cfq_free_io_context
;
2598 cic
->exit
= cfq_exit_io_context
;
2599 elv_ioc_count_inc(cfq_ioc_count
);
2605 static void cfq_init_prio_data(struct cfq_queue
*cfqq
, struct io_context
*ioc
)
2607 struct task_struct
*tsk
= current
;
2610 if (!cfq_cfqq_prio_changed(cfqq
))
2613 ioprio_class
= IOPRIO_PRIO_CLASS(ioc
->ioprio
);
2614 switch (ioprio_class
) {
2616 printk(KERN_ERR
"cfq: bad prio %x\n", ioprio_class
);
2617 case IOPRIO_CLASS_NONE
:
2619 * no prio set, inherit CPU scheduling settings
2621 cfqq
->ioprio
= task_nice_ioprio(tsk
);
2622 cfqq
->ioprio_class
= task_nice_ioclass(tsk
);
2624 case IOPRIO_CLASS_RT
:
2625 cfqq
->ioprio
= task_ioprio(ioc
);
2626 cfqq
->ioprio_class
= IOPRIO_CLASS_RT
;
2628 case IOPRIO_CLASS_BE
:
2629 cfqq
->ioprio
= task_ioprio(ioc
);
2630 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
2632 case IOPRIO_CLASS_IDLE
:
2633 cfqq
->ioprio_class
= IOPRIO_CLASS_IDLE
;
2635 cfq_clear_cfqq_idle_window(cfqq
);
2640 * keep track of original prio settings in case we have to temporarily
2641 * elevate the priority of this queue
2643 cfqq
->org_ioprio
= cfqq
->ioprio
;
2644 cfqq
->org_ioprio_class
= cfqq
->ioprio_class
;
2645 cfq_clear_cfqq_prio_changed(cfqq
);
2648 static void changed_ioprio(struct io_context
*ioc
, struct cfq_io_context
*cic
)
2650 struct cfq_data
*cfqd
= cic
->key
;
2651 struct cfq_queue
*cfqq
;
2652 unsigned long flags
;
2654 if (unlikely(!cfqd
))
2657 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
2659 cfqq
= cic
->cfqq
[BLK_RW_ASYNC
];
2661 struct cfq_queue
*new_cfqq
;
2662 new_cfqq
= cfq_get_queue(cfqd
, BLK_RW_ASYNC
, cic
->ioc
,
2665 cic
->cfqq
[BLK_RW_ASYNC
] = new_cfqq
;
2666 cfq_put_queue(cfqq
);
2670 cfqq
= cic
->cfqq
[BLK_RW_SYNC
];
2672 cfq_mark_cfqq_prio_changed(cfqq
);
2674 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
2677 static void cfq_ioc_set_ioprio(struct io_context
*ioc
)
2679 call_for_each_cic(ioc
, changed_ioprio
);
2680 ioc
->ioprio_changed
= 0;
2683 static void cfq_init_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
2684 pid_t pid
, bool is_sync
)
2686 RB_CLEAR_NODE(&cfqq
->rb_node
);
2687 RB_CLEAR_NODE(&cfqq
->p_node
);
2688 INIT_LIST_HEAD(&cfqq
->fifo
);
2690 atomic_set(&cfqq
->ref
, 0);
2693 cfq_mark_cfqq_prio_changed(cfqq
);
2696 if (!cfq_class_idle(cfqq
))
2697 cfq_mark_cfqq_idle_window(cfqq
);
2698 cfq_mark_cfqq_sync(cfqq
);
2703 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2704 static void changed_cgroup(struct io_context
*ioc
, struct cfq_io_context
*cic
)
2706 struct cfq_queue
*sync_cfqq
= cic_to_cfqq(cic
, 1);
2707 struct cfq_data
*cfqd
= cic
->key
;
2708 unsigned long flags
;
2709 struct request_queue
*q
;
2711 if (unlikely(!cfqd
))
2716 spin_lock_irqsave(q
->queue_lock
, flags
);
2720 * Drop reference to sync queue. A new sync queue will be
2721 * assigned in new group upon arrival of a fresh request.
2723 cfq_log_cfqq(cfqd
, sync_cfqq
, "changed cgroup");
2724 cic_set_cfqq(cic
, NULL
, 1);
2725 cfq_put_queue(sync_cfqq
);
2728 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2731 static void cfq_ioc_set_cgroup(struct io_context
*ioc
)
2733 call_for_each_cic(ioc
, changed_cgroup
);
2734 ioc
->cgroup_changed
= 0;
2736 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
2738 static struct cfq_queue
*
2739 cfq_find_alloc_queue(struct cfq_data
*cfqd
, bool is_sync
,
2740 struct io_context
*ioc
, gfp_t gfp_mask
)
2742 struct cfq_queue
*cfqq
, *new_cfqq
= NULL
;
2743 struct cfq_io_context
*cic
;
2744 struct cfq_group
*cfqg
;
2747 cfqg
= cfq_get_cfqg(cfqd
, 1);
2748 cic
= cfq_cic_lookup(cfqd
, ioc
);
2749 /* cic always exists here */
2750 cfqq
= cic_to_cfqq(cic
, is_sync
);
2753 * Always try a new alloc if we fell back to the OOM cfqq
2754 * originally, since it should just be a temporary situation.
2756 if (!cfqq
|| cfqq
== &cfqd
->oom_cfqq
) {
2761 } else if (gfp_mask
& __GFP_WAIT
) {
2762 spin_unlock_irq(cfqd
->queue
->queue_lock
);
2763 new_cfqq
= kmem_cache_alloc_node(cfq_pool
,
2764 gfp_mask
| __GFP_ZERO
,
2766 spin_lock_irq(cfqd
->queue
->queue_lock
);
2770 cfqq
= kmem_cache_alloc_node(cfq_pool
,
2771 gfp_mask
| __GFP_ZERO
,
2776 cfq_init_cfqq(cfqd
, cfqq
, current
->pid
, is_sync
);
2777 cfq_init_prio_data(cfqq
, ioc
);
2778 cfq_link_cfqq_cfqg(cfqq
, cfqg
);
2779 cfq_log_cfqq(cfqd
, cfqq
, "alloced");
2781 cfqq
= &cfqd
->oom_cfqq
;
2785 kmem_cache_free(cfq_pool
, new_cfqq
);
2790 static struct cfq_queue
**
2791 cfq_async_queue_prio(struct cfq_data
*cfqd
, int ioprio_class
, int ioprio
)
2793 switch (ioprio_class
) {
2794 case IOPRIO_CLASS_RT
:
2795 return &cfqd
->async_cfqq
[0][ioprio
];
2796 case IOPRIO_CLASS_BE
:
2797 return &cfqd
->async_cfqq
[1][ioprio
];
2798 case IOPRIO_CLASS_IDLE
:
2799 return &cfqd
->async_idle_cfqq
;
2805 static struct cfq_queue
*
2806 cfq_get_queue(struct cfq_data
*cfqd
, bool is_sync
, struct io_context
*ioc
,
2809 const int ioprio
= task_ioprio(ioc
);
2810 const int ioprio_class
= task_ioprio_class(ioc
);
2811 struct cfq_queue
**async_cfqq
= NULL
;
2812 struct cfq_queue
*cfqq
= NULL
;
2815 async_cfqq
= cfq_async_queue_prio(cfqd
, ioprio_class
, ioprio
);
2820 cfqq
= cfq_find_alloc_queue(cfqd
, is_sync
, ioc
, gfp_mask
);
2823 * pin the queue now that it's allocated, scheduler exit will prune it
2825 if (!is_sync
&& !(*async_cfqq
)) {
2826 atomic_inc(&cfqq
->ref
);
2830 atomic_inc(&cfqq
->ref
);
2835 * We drop cfq io contexts lazily, so we may find a dead one.
2838 cfq_drop_dead_cic(struct cfq_data
*cfqd
, struct io_context
*ioc
,
2839 struct cfq_io_context
*cic
)
2841 unsigned long flags
;
2843 WARN_ON(!list_empty(&cic
->queue_list
));
2845 spin_lock_irqsave(&ioc
->lock
, flags
);
2847 BUG_ON(ioc
->ioc_data
== cic
);
2849 radix_tree_delete(&ioc
->radix_root
, (unsigned long) cfqd
);
2850 hlist_del_rcu(&cic
->cic_list
);
2851 spin_unlock_irqrestore(&ioc
->lock
, flags
);
2856 static struct cfq_io_context
*
2857 cfq_cic_lookup(struct cfq_data
*cfqd
, struct io_context
*ioc
)
2859 struct cfq_io_context
*cic
;
2860 unsigned long flags
;
2869 * we maintain a last-hit cache, to avoid browsing over the tree
2871 cic
= rcu_dereference(ioc
->ioc_data
);
2872 if (cic
&& cic
->key
== cfqd
) {
2878 cic
= radix_tree_lookup(&ioc
->radix_root
, (unsigned long) cfqd
);
2882 /* ->key must be copied to avoid race with cfq_exit_queue() */
2885 cfq_drop_dead_cic(cfqd
, ioc
, cic
);
2890 spin_lock_irqsave(&ioc
->lock
, flags
);
2891 rcu_assign_pointer(ioc
->ioc_data
, cic
);
2892 spin_unlock_irqrestore(&ioc
->lock
, flags
);
2900 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2901 * the process specific cfq io context when entered from the block layer.
2902 * Also adds the cic to a per-cfqd list, used when this queue is removed.
2904 static int cfq_cic_link(struct cfq_data
*cfqd
, struct io_context
*ioc
,
2905 struct cfq_io_context
*cic
, gfp_t gfp_mask
)
2907 unsigned long flags
;
2910 ret
= radix_tree_preload(gfp_mask
);
2915 spin_lock_irqsave(&ioc
->lock
, flags
);
2916 ret
= radix_tree_insert(&ioc
->radix_root
,
2917 (unsigned long) cfqd
, cic
);
2919 hlist_add_head_rcu(&cic
->cic_list
, &ioc
->cic_list
);
2920 spin_unlock_irqrestore(&ioc
->lock
, flags
);
2922 radix_tree_preload_end();
2925 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
2926 list_add(&cic
->queue_list
, &cfqd
->cic_list
);
2927 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
2932 printk(KERN_ERR
"cfq: cic link failed!\n");
2938 * Setup general io context and cfq io context. There can be several cfq
2939 * io contexts per general io context, if this process is doing io to more
2940 * than one device managed by cfq.
2942 static struct cfq_io_context
*
2943 cfq_get_io_context(struct cfq_data
*cfqd
, gfp_t gfp_mask
)
2945 struct io_context
*ioc
= NULL
;
2946 struct cfq_io_context
*cic
;
2948 might_sleep_if(gfp_mask
& __GFP_WAIT
);
2950 ioc
= get_io_context(gfp_mask
, cfqd
->queue
->node
);
2954 cic
= cfq_cic_lookup(cfqd
, ioc
);
2958 cic
= cfq_alloc_io_context(cfqd
, gfp_mask
);
2962 if (cfq_cic_link(cfqd
, ioc
, cic
, gfp_mask
))
2966 smp_read_barrier_depends();
2967 if (unlikely(ioc
->ioprio_changed
))
2968 cfq_ioc_set_ioprio(ioc
);
2970 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2971 if (unlikely(ioc
->cgroup_changed
))
2972 cfq_ioc_set_cgroup(ioc
);
2978 put_io_context(ioc
);
2983 cfq_update_io_thinktime(struct cfq_data
*cfqd
, struct cfq_io_context
*cic
)
2985 unsigned long elapsed
= jiffies
- cic
->last_end_request
;
2986 unsigned long ttime
= min(elapsed
, 2UL * cfqd
->cfq_slice_idle
);
2988 cic
->ttime_samples
= (7*cic
->ttime_samples
+ 256) / 8;
2989 cic
->ttime_total
= (7*cic
->ttime_total
+ 256*ttime
) / 8;
2990 cic
->ttime_mean
= (cic
->ttime_total
+ 128) / cic
->ttime_samples
;
2994 cfq_update_io_seektime(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3000 if (!cfqq
->last_request_pos
)
3002 else if (cfqq
->last_request_pos
< blk_rq_pos(rq
))
3003 sdist
= blk_rq_pos(rq
) - cfqq
->last_request_pos
;
3005 sdist
= cfqq
->last_request_pos
- blk_rq_pos(rq
);
3008 * Don't allow the seek distance to get too large from the
3009 * odd fragment, pagein, etc
3011 if (cfqq
->seek_samples
<= 60) /* second&third seek */
3012 sdist
= min(sdist
, (cfqq
->seek_mean
* 4) + 2*1024*1024);
3014 sdist
= min(sdist
, (cfqq
->seek_mean
* 4) + 2*1024*64);
3016 cfqq
->seek_samples
= (7*cfqq
->seek_samples
+ 256) / 8;
3017 cfqq
->seek_total
= (7*cfqq
->seek_total
+ (u64
)256*sdist
) / 8;
3018 total
= cfqq
->seek_total
+ (cfqq
->seek_samples
/2);
3019 do_div(total
, cfqq
->seek_samples
);
3020 cfqq
->seek_mean
= (sector_t
)total
;
3024 * Disable idle window if the process thinks too long or seeks so much that
3028 cfq_update_idle_window(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3029 struct cfq_io_context
*cic
)
3031 int old_idle
, enable_idle
;
3034 * Don't idle for async or idle io prio class
3036 if (!cfq_cfqq_sync(cfqq
) || cfq_class_idle(cfqq
))
3039 enable_idle
= old_idle
= cfq_cfqq_idle_window(cfqq
);
3041 if (cfqq
->queued
[0] + cfqq
->queued
[1] >= 4)
3042 cfq_mark_cfqq_deep(cfqq
);
3044 if (!atomic_read(&cic
->ioc
->nr_tasks
) || !cfqd
->cfq_slice_idle
||
3045 (!cfq_cfqq_deep(cfqq
) && sample_valid(cfqq
->seek_samples
)
3046 && CFQQ_SEEKY(cfqq
)))
3048 else if (sample_valid(cic
->ttime_samples
)) {
3049 if (cic
->ttime_mean
> cfqd
->cfq_slice_idle
)
3055 if (old_idle
!= enable_idle
) {
3056 cfq_log_cfqq(cfqd
, cfqq
, "idle=%d", enable_idle
);
3058 cfq_mark_cfqq_idle_window(cfqq
);
3060 cfq_clear_cfqq_idle_window(cfqq
);
3065 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3066 * no or if we aren't sure, a 1 will cause a preempt.
3069 cfq_should_preempt(struct cfq_data
*cfqd
, struct cfq_queue
*new_cfqq
,
3072 struct cfq_queue
*cfqq
;
3074 cfqq
= cfqd
->active_queue
;
3078 if (cfq_class_idle(new_cfqq
))
3081 if (cfq_class_idle(cfqq
))
3085 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3087 if (cfq_class_rt(cfqq
) && !cfq_class_rt(new_cfqq
))
3091 * if the new request is sync, but the currently running queue is
3092 * not, let the sync request have priority.
3094 if (rq_is_sync(rq
) && !cfq_cfqq_sync(cfqq
))
3097 if (new_cfqq
->cfqg
!= cfqq
->cfqg
)
3100 if (cfq_slice_used(cfqq
))
3103 /* Allow preemption only if we are idling on sync-noidle tree */
3104 if (cfqd
->serving_type
== SYNC_NOIDLE_WORKLOAD
&&
3105 cfqq_type(new_cfqq
) == SYNC_NOIDLE_WORKLOAD
&&
3106 new_cfqq
->service_tree
->count
== 2 &&
3107 RB_EMPTY_ROOT(&cfqq
->sort_list
))
3111 * So both queues are sync. Let the new request get disk time if
3112 * it's a metadata request and the current queue is doing regular IO.
3114 if (rq_is_meta(rq
) && !cfqq
->meta_pending
)
3118 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3120 if (cfq_class_rt(new_cfqq
) && !cfq_class_rt(cfqq
))
3123 if (!cfqd
->active_cic
|| !cfq_cfqq_wait_request(cfqq
))
3127 * if this request is as-good as one we would expect from the
3128 * current cfqq, let it preempt
3130 if (cfq_rq_close(cfqd
, cfqq
, rq
, true))
3137 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3138 * let it have half of its nominal slice.
3140 static void cfq_preempt_queue(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
3142 cfq_log_cfqq(cfqd
, cfqq
, "preempt");
3143 cfq_slice_expired(cfqd
, 1);
3146 * Put the new queue at the front of the of the current list,
3147 * so we know that it will be selected next.
3149 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
3151 cfq_service_tree_add(cfqd
, cfqq
, 1);
3153 cfqq
->slice_end
= 0;
3154 cfq_mark_cfqq_slice_new(cfqq
);
3158 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3159 * something we should do about it
3162 cfq_rq_enqueued(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3165 struct cfq_io_context
*cic
= RQ_CIC(rq
);
3169 cfqq
->meta_pending
++;
3171 cfq_update_io_thinktime(cfqd
, cic
);
3172 cfq_update_io_seektime(cfqd
, cfqq
, rq
);
3173 cfq_update_idle_window(cfqd
, cfqq
, cic
);
3175 cfqq
->last_request_pos
= blk_rq_pos(rq
) + blk_rq_sectors(rq
);
3177 if (cfqq
== cfqd
->active_queue
) {
3179 * Remember that we saw a request from this process, but
3180 * don't start queuing just yet. Otherwise we risk seeing lots
3181 * of tiny requests, because we disrupt the normal plugging
3182 * and merging. If the request is already larger than a single
3183 * page, let it rip immediately. For that case we assume that
3184 * merging is already done. Ditto for a busy system that
3185 * has other work pending, don't risk delaying until the
3186 * idle timer unplug to continue working.
3188 if (cfq_cfqq_wait_request(cfqq
)) {
3189 if (blk_rq_bytes(rq
) > PAGE_CACHE_SIZE
||
3190 cfqd
->busy_queues
> 1) {
3191 del_timer(&cfqd
->idle_slice_timer
);
3192 cfq_clear_cfqq_wait_request(cfqq
);
3193 __blk_run_queue(cfqd
->queue
);
3195 cfq_mark_cfqq_must_dispatch(cfqq
);
3197 } else if (cfq_should_preempt(cfqd
, cfqq
, rq
)) {
3199 * not the active queue - expire current slice if it is
3200 * idle and has expired it's mean thinktime or this new queue
3201 * has some old slice time left and is of higher priority or
3202 * this new queue is RT and the current one is BE
3204 cfq_preempt_queue(cfqd
, cfqq
);
3205 __blk_run_queue(cfqd
->queue
);
3209 static void cfq_insert_request(struct request_queue
*q
, struct request
*rq
)
3211 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
3212 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
3214 cfq_log_cfqq(cfqd
, cfqq
, "insert_request");
3215 cfq_init_prio_data(cfqq
, RQ_CIC(rq
)->ioc
);
3217 rq_set_fifo_time(rq
, jiffies
+ cfqd
->cfq_fifo_expire
[rq_is_sync(rq
)]);
3218 list_add_tail(&rq
->queuelist
, &cfqq
->fifo
);
3221 cfq_rq_enqueued(cfqd
, cfqq
, rq
);
3225 * Update hw_tag based on peak queue depth over 50 samples under
3228 static void cfq_update_hw_tag(struct cfq_data
*cfqd
)
3230 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
3232 if (rq_in_driver(cfqd
) > cfqd
->hw_tag_est_depth
)
3233 cfqd
->hw_tag_est_depth
= rq_in_driver(cfqd
);
3235 if (cfqd
->hw_tag
== 1)
3238 if (cfqd
->rq_queued
<= CFQ_HW_QUEUE_MIN
&&
3239 rq_in_driver(cfqd
) <= CFQ_HW_QUEUE_MIN
)
3243 * If active queue hasn't enough requests and can idle, cfq might not
3244 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3247 if (cfqq
&& cfq_cfqq_idle_window(cfqq
) &&
3248 cfqq
->dispatched
+ cfqq
->queued
[0] + cfqq
->queued
[1] <
3249 CFQ_HW_QUEUE_MIN
&& rq_in_driver(cfqd
) < CFQ_HW_QUEUE_MIN
)
3252 if (cfqd
->hw_tag_samples
++ < 50)
3255 if (cfqd
->hw_tag_est_depth
>= CFQ_HW_QUEUE_MIN
)
3261 static bool cfq_should_wait_busy(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
3263 struct cfq_io_context
*cic
= cfqd
->active_cic
;
3265 /* If the queue already has requests, don't wait */
3266 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
3269 /* If there are other queues in the group, don't wait */
3270 if (cfqq
->cfqg
->nr_cfqq
> 1)
3273 if (cfq_slice_used(cfqq
))
3276 /* if slice left is less than think time, wait busy */
3277 if (cic
&& sample_valid(cic
->ttime_samples
)
3278 && (cfqq
->slice_end
- jiffies
< cic
->ttime_mean
))
3282 * If think times is less than a jiffy than ttime_mean=0 and above
3283 * will not be true. It might happen that slice has not expired yet
3284 * but will expire soon (4-5 ns) during select_queue(). To cover the
3285 * case where think time is less than a jiffy, mark the queue wait
3286 * busy if only 1 jiffy is left in the slice.
3288 if (cfqq
->slice_end
- jiffies
== 1)
3294 static void cfq_completed_request(struct request_queue
*q
, struct request
*rq
)
3296 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
3297 struct cfq_data
*cfqd
= cfqq
->cfqd
;
3298 const int sync
= rq_is_sync(rq
);
3302 cfq_log_cfqq(cfqd
, cfqq
, "complete rqnoidle %d", !!rq_noidle(rq
));
3304 cfq_update_hw_tag(cfqd
);
3306 WARN_ON(!cfqd
->rq_in_driver
[sync
]);
3307 WARN_ON(!cfqq
->dispatched
);
3308 cfqd
->rq_in_driver
[sync
]--;
3311 if (cfq_cfqq_sync(cfqq
))
3312 cfqd
->sync_flight
--;
3315 RQ_CIC(rq
)->last_end_request
= now
;
3316 if (!time_after(rq
->start_time
+ cfqd
->cfq_fifo_expire
[1], now
))
3317 cfqd
->last_delayed_sync
= now
;
3321 * If this is the active queue, check if it needs to be expired,
3322 * or if we want to idle in case it has no pending requests.
3324 if (cfqd
->active_queue
== cfqq
) {
3325 const bool cfqq_empty
= RB_EMPTY_ROOT(&cfqq
->sort_list
);
3327 if (cfq_cfqq_slice_new(cfqq
)) {
3328 cfq_set_prio_slice(cfqd
, cfqq
);
3329 cfq_clear_cfqq_slice_new(cfqq
);
3333 * Should we wait for next request to come in before we expire
3336 if (cfq_should_wait_busy(cfqd
, cfqq
)) {
3337 cfqq
->slice_end
= jiffies
+ cfqd
->cfq_slice_idle
;
3338 cfq_mark_cfqq_wait_busy(cfqq
);
3342 * Idling is not enabled on:
3344 * - idle-priority queues
3346 * - queues with still some requests queued
3347 * - when there is a close cooperator
3349 if (cfq_slice_used(cfqq
) || cfq_class_idle(cfqq
))
3350 cfq_slice_expired(cfqd
, 1);
3351 else if (sync
&& cfqq_empty
&&
3352 !cfq_close_cooperator(cfqd
, cfqq
)) {
3353 cfqd
->noidle_tree_requires_idle
|= !rq_noidle(rq
);
3355 * Idling is enabled for SYNC_WORKLOAD.
3356 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
3357 * only if we processed at least one !rq_noidle request
3359 if (cfqd
->serving_type
== SYNC_WORKLOAD
3360 || cfqd
->noidle_tree_requires_idle
3361 || cfqq
->cfqg
->nr_cfqq
== 1)
3362 cfq_arm_slice_timer(cfqd
);
3366 if (!rq_in_driver(cfqd
))
3367 cfq_schedule_dispatch(cfqd
);
3371 * we temporarily boost lower priority queues if they are holding fs exclusive
3372 * resources. they are boosted to normal prio (CLASS_BE/4)
3374 static void cfq_prio_boost(struct cfq_queue
*cfqq
)
3376 if (has_fs_excl()) {
3378 * boost idle prio on transactions that would lock out other
3379 * users of the filesystem
3381 if (cfq_class_idle(cfqq
))
3382 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
3383 if (cfqq
->ioprio
> IOPRIO_NORM
)
3384 cfqq
->ioprio
= IOPRIO_NORM
;
3387 * unboost the queue (if needed)
3389 cfqq
->ioprio_class
= cfqq
->org_ioprio_class
;
3390 cfqq
->ioprio
= cfqq
->org_ioprio
;
3394 static inline int __cfq_may_queue(struct cfq_queue
*cfqq
)
3396 if (cfq_cfqq_wait_request(cfqq
) && !cfq_cfqq_must_alloc_slice(cfqq
)) {
3397 cfq_mark_cfqq_must_alloc_slice(cfqq
);
3398 return ELV_MQUEUE_MUST
;
3401 return ELV_MQUEUE_MAY
;
3404 static int cfq_may_queue(struct request_queue
*q
, int rw
)
3406 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
3407 struct task_struct
*tsk
= current
;
3408 struct cfq_io_context
*cic
;
3409 struct cfq_queue
*cfqq
;
3412 * don't force setup of a queue from here, as a call to may_queue
3413 * does not necessarily imply that a request actually will be queued.
3414 * so just lookup a possibly existing queue, or return 'may queue'
3417 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
3419 return ELV_MQUEUE_MAY
;
3421 cfqq
= cic_to_cfqq(cic
, rw_is_sync(rw
));
3423 cfq_init_prio_data(cfqq
, cic
->ioc
);
3424 cfq_prio_boost(cfqq
);
3426 return __cfq_may_queue(cfqq
);
3429 return ELV_MQUEUE_MAY
;
3433 * queue lock held here
3435 static void cfq_put_request(struct request
*rq
)
3437 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
3440 const int rw
= rq_data_dir(rq
);
3442 BUG_ON(!cfqq
->allocated
[rw
]);
3443 cfqq
->allocated
[rw
]--;
3445 put_io_context(RQ_CIC(rq
)->ioc
);
3447 rq
->elevator_private
= NULL
;
3448 rq
->elevator_private2
= NULL
;
3450 cfq_put_queue(cfqq
);
3454 static struct cfq_queue
*
3455 cfq_merge_cfqqs(struct cfq_data
*cfqd
, struct cfq_io_context
*cic
,
3456 struct cfq_queue
*cfqq
)
3458 cfq_log_cfqq(cfqd
, cfqq
, "merging with queue %p", cfqq
->new_cfqq
);
3459 cic_set_cfqq(cic
, cfqq
->new_cfqq
, 1);
3460 cfq_mark_cfqq_coop(cfqq
->new_cfqq
);
3461 cfq_put_queue(cfqq
);
3462 return cic_to_cfqq(cic
, 1);
3466 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3467 * was the last process referring to said cfqq.
3469 static struct cfq_queue
*
3470 split_cfqq(struct cfq_io_context
*cic
, struct cfq_queue
*cfqq
)
3472 if (cfqq_process_refs(cfqq
) == 1) {
3473 cfqq
->pid
= current
->pid
;
3474 cfq_clear_cfqq_coop(cfqq
);
3475 cfq_clear_cfqq_split_coop(cfqq
);
3479 cic_set_cfqq(cic
, NULL
, 1);
3481 cfq_put_cooperator(cfqq
);
3483 cfq_put_queue(cfqq
);
3487 * Allocate cfq data structures associated with this request.
3490 cfq_set_request(struct request_queue
*q
, struct request
*rq
, gfp_t gfp_mask
)
3492 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
3493 struct cfq_io_context
*cic
;
3494 const int rw
= rq_data_dir(rq
);
3495 const bool is_sync
= rq_is_sync(rq
);
3496 struct cfq_queue
*cfqq
;
3497 unsigned long flags
;
3499 might_sleep_if(gfp_mask
& __GFP_WAIT
);
3501 cic
= cfq_get_io_context(cfqd
, gfp_mask
);
3503 spin_lock_irqsave(q
->queue_lock
, flags
);
3509 cfqq
= cic_to_cfqq(cic
, is_sync
);
3510 if (!cfqq
|| cfqq
== &cfqd
->oom_cfqq
) {
3511 cfqq
= cfq_get_queue(cfqd
, is_sync
, cic
->ioc
, gfp_mask
);
3512 cic_set_cfqq(cic
, cfqq
, is_sync
);
3515 * If the queue was seeky for too long, break it apart.
3517 if (cfq_cfqq_coop(cfqq
) && cfq_cfqq_split_coop(cfqq
)) {
3518 cfq_log_cfqq(cfqd
, cfqq
, "breaking apart cfqq");
3519 cfqq
= split_cfqq(cic
, cfqq
);
3525 * Check to see if this queue is scheduled to merge with
3526 * another, closely cooperating queue. The merging of
3527 * queues happens here as it must be done in process context.
3528 * The reference on new_cfqq was taken in merge_cfqqs.
3531 cfqq
= cfq_merge_cfqqs(cfqd
, cic
, cfqq
);
3534 cfqq
->allocated
[rw
]++;
3535 atomic_inc(&cfqq
->ref
);
3537 spin_unlock_irqrestore(q
->queue_lock
, flags
);
3539 rq
->elevator_private
= cic
;
3540 rq
->elevator_private2
= cfqq
;
3545 put_io_context(cic
->ioc
);
3547 cfq_schedule_dispatch(cfqd
);
3548 spin_unlock_irqrestore(q
->queue_lock
, flags
);
3549 cfq_log(cfqd
, "set_request fail");
3553 static void cfq_kick_queue(struct work_struct
*work
)
3555 struct cfq_data
*cfqd
=
3556 container_of(work
, struct cfq_data
, unplug_work
);
3557 struct request_queue
*q
= cfqd
->queue
;
3559 spin_lock_irq(q
->queue_lock
);
3560 __blk_run_queue(cfqd
->queue
);
3561 spin_unlock_irq(q
->queue_lock
);
3565 * Timer running if the active_queue is currently idling inside its time slice
3567 static void cfq_idle_slice_timer(unsigned long data
)
3569 struct cfq_data
*cfqd
= (struct cfq_data
*) data
;
3570 struct cfq_queue
*cfqq
;
3571 unsigned long flags
;
3574 cfq_log(cfqd
, "idle timer fired");
3576 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
3578 cfqq
= cfqd
->active_queue
;
3583 * We saw a request before the queue expired, let it through
3585 if (cfq_cfqq_must_dispatch(cfqq
))
3591 if (cfq_slice_used(cfqq
))
3595 * only expire and reinvoke request handler, if there are
3596 * other queues with pending requests
3598 if (!cfqd
->busy_queues
)
3602 * not expired and it has a request pending, let it dispatch
3604 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
3608 * Queue depth flag is reset only when the idle didn't succeed
3610 cfq_clear_cfqq_deep(cfqq
);
3613 cfq_slice_expired(cfqd
, timed_out
);
3615 cfq_schedule_dispatch(cfqd
);
3617 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
3620 static void cfq_shutdown_timer_wq(struct cfq_data
*cfqd
)
3622 del_timer_sync(&cfqd
->idle_slice_timer
);
3623 cancel_work_sync(&cfqd
->unplug_work
);
3626 static void cfq_put_async_queues(struct cfq_data
*cfqd
)
3630 for (i
= 0; i
< IOPRIO_BE_NR
; i
++) {
3631 if (cfqd
->async_cfqq
[0][i
])
3632 cfq_put_queue(cfqd
->async_cfqq
[0][i
]);
3633 if (cfqd
->async_cfqq
[1][i
])
3634 cfq_put_queue(cfqd
->async_cfqq
[1][i
]);
3637 if (cfqd
->async_idle_cfqq
)
3638 cfq_put_queue(cfqd
->async_idle_cfqq
);
3641 static void cfq_cfqd_free(struct rcu_head
*head
)
3643 kfree(container_of(head
, struct cfq_data
, rcu
));
3646 static void cfq_exit_queue(struct elevator_queue
*e
)
3648 struct cfq_data
*cfqd
= e
->elevator_data
;
3649 struct request_queue
*q
= cfqd
->queue
;
3651 cfq_shutdown_timer_wq(cfqd
);
3653 spin_lock_irq(q
->queue_lock
);
3655 if (cfqd
->active_queue
)
3656 __cfq_slice_expired(cfqd
, cfqd
->active_queue
, 0);
3658 while (!list_empty(&cfqd
->cic_list
)) {
3659 struct cfq_io_context
*cic
= list_entry(cfqd
->cic_list
.next
,
3660 struct cfq_io_context
,
3663 __cfq_exit_single_io_context(cfqd
, cic
);
3666 cfq_put_async_queues(cfqd
);
3667 cfq_release_cfq_groups(cfqd
);
3668 blkiocg_del_blkio_group(&cfqd
->root_group
.blkg
);
3670 spin_unlock_irq(q
->queue_lock
);
3672 cfq_shutdown_timer_wq(cfqd
);
3674 /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
3675 call_rcu(&cfqd
->rcu
, cfq_cfqd_free
);
3678 static void *cfq_init_queue(struct request_queue
*q
)
3680 struct cfq_data
*cfqd
;
3682 struct cfq_group
*cfqg
;
3683 struct cfq_rb_root
*st
;
3685 cfqd
= kmalloc_node(sizeof(*cfqd
), GFP_KERNEL
| __GFP_ZERO
, q
->node
);
3689 /* Init root service tree */
3690 cfqd
->grp_service_tree
= CFQ_RB_ROOT
;
3692 /* Init root group */
3693 cfqg
= &cfqd
->root_group
;
3694 for_each_cfqg_st(cfqg
, i
, j
, st
)
3696 RB_CLEAR_NODE(&cfqg
->rb_node
);
3698 /* Give preference to root group over other groups */
3699 cfqg
->weight
= 2*BLKIO_WEIGHT_DEFAULT
;
3701 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3703 * Take a reference to root group which we never drop. This is just
3704 * to make sure that cfq_put_cfqg() does not try to kfree root group
3706 atomic_set(&cfqg
->ref
, 1);
3707 blkiocg_add_blkio_group(&blkio_root_cgroup
, &cfqg
->blkg
, (void *)cfqd
,
3711 * Not strictly needed (since RB_ROOT just clears the node and we
3712 * zeroed cfqd on alloc), but better be safe in case someone decides
3713 * to add magic to the rb code
3715 for (i
= 0; i
< CFQ_PRIO_LISTS
; i
++)
3716 cfqd
->prio_trees
[i
] = RB_ROOT
;
3719 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3720 * Grab a permanent reference to it, so that the normal code flow
3721 * will not attempt to free it.
3723 cfq_init_cfqq(cfqd
, &cfqd
->oom_cfqq
, 1, 0);
3724 atomic_inc(&cfqd
->oom_cfqq
.ref
);
3725 cfq_link_cfqq_cfqg(&cfqd
->oom_cfqq
, &cfqd
->root_group
);
3727 INIT_LIST_HEAD(&cfqd
->cic_list
);
3731 init_timer(&cfqd
->idle_slice_timer
);
3732 cfqd
->idle_slice_timer
.function
= cfq_idle_slice_timer
;
3733 cfqd
->idle_slice_timer
.data
= (unsigned long) cfqd
;
3735 INIT_WORK(&cfqd
->unplug_work
, cfq_kick_queue
);
3737 cfqd
->cfq_quantum
= cfq_quantum
;
3738 cfqd
->cfq_fifo_expire
[0] = cfq_fifo_expire
[0];
3739 cfqd
->cfq_fifo_expire
[1] = cfq_fifo_expire
[1];
3740 cfqd
->cfq_back_max
= cfq_back_max
;
3741 cfqd
->cfq_back_penalty
= cfq_back_penalty
;
3742 cfqd
->cfq_slice
[0] = cfq_slice_async
;
3743 cfqd
->cfq_slice
[1] = cfq_slice_sync
;
3744 cfqd
->cfq_slice_async_rq
= cfq_slice_async_rq
;
3745 cfqd
->cfq_slice_idle
= cfq_slice_idle
;
3746 cfqd
->cfq_latency
= 1;
3747 cfqd
->cfq_group_isolation
= 0;
3750 * we optimistically start assuming sync ops weren't delayed in last
3751 * second, in order to have larger depth for async operations.
3753 cfqd
->last_delayed_sync
= jiffies
- HZ
;
3754 INIT_RCU_HEAD(&cfqd
->rcu
);
3758 static void cfq_slab_kill(void)
3761 * Caller already ensured that pending RCU callbacks are completed,
3762 * so we should have no busy allocations at this point.
3765 kmem_cache_destroy(cfq_pool
);
3767 kmem_cache_destroy(cfq_ioc_pool
);
3770 static int __init
cfq_slab_setup(void)
3772 cfq_pool
= KMEM_CACHE(cfq_queue
, 0);
3776 cfq_ioc_pool
= KMEM_CACHE(cfq_io_context
, 0);
3787 * sysfs parts below -->
3790 cfq_var_show(unsigned int var
, char *page
)
3792 return sprintf(page
, "%d\n", var
);
3796 cfq_var_store(unsigned int *var
, const char *page
, size_t count
)
3798 char *p
= (char *) page
;
3800 *var
= simple_strtoul(p
, &p
, 10);
3804 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
3805 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
3807 struct cfq_data *cfqd = e->elevator_data; \
3808 unsigned int __data = __VAR; \
3810 __data = jiffies_to_msecs(__data); \
3811 return cfq_var_show(__data, (page)); \
3813 SHOW_FUNCTION(cfq_quantum_show
, cfqd
->cfq_quantum
, 0);
3814 SHOW_FUNCTION(cfq_fifo_expire_sync_show
, cfqd
->cfq_fifo_expire
[1], 1);
3815 SHOW_FUNCTION(cfq_fifo_expire_async_show
, cfqd
->cfq_fifo_expire
[0], 1);
3816 SHOW_FUNCTION(cfq_back_seek_max_show
, cfqd
->cfq_back_max
, 0);
3817 SHOW_FUNCTION(cfq_back_seek_penalty_show
, cfqd
->cfq_back_penalty
, 0);
3818 SHOW_FUNCTION(cfq_slice_idle_show
, cfqd
->cfq_slice_idle
, 1);
3819 SHOW_FUNCTION(cfq_slice_sync_show
, cfqd
->cfq_slice
[1], 1);
3820 SHOW_FUNCTION(cfq_slice_async_show
, cfqd
->cfq_slice
[0], 1);
3821 SHOW_FUNCTION(cfq_slice_async_rq_show
, cfqd
->cfq_slice_async_rq
, 0);
3822 SHOW_FUNCTION(cfq_low_latency_show
, cfqd
->cfq_latency
, 0);
3823 SHOW_FUNCTION(cfq_group_isolation_show
, cfqd
->cfq_group_isolation
, 0);
3824 #undef SHOW_FUNCTION
3826 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
3827 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
3829 struct cfq_data *cfqd = e->elevator_data; \
3830 unsigned int __data; \
3831 int ret = cfq_var_store(&__data, (page), count); \
3832 if (__data < (MIN)) \
3834 else if (__data > (MAX)) \
3837 *(__PTR) = msecs_to_jiffies(__data); \
3839 *(__PTR) = __data; \
3842 STORE_FUNCTION(cfq_quantum_store
, &cfqd
->cfq_quantum
, 1, UINT_MAX
, 0);
3843 STORE_FUNCTION(cfq_fifo_expire_sync_store
, &cfqd
->cfq_fifo_expire
[1], 1,
3845 STORE_FUNCTION(cfq_fifo_expire_async_store
, &cfqd
->cfq_fifo_expire
[0], 1,
3847 STORE_FUNCTION(cfq_back_seek_max_store
, &cfqd
->cfq_back_max
, 0, UINT_MAX
, 0);
3848 STORE_FUNCTION(cfq_back_seek_penalty_store
, &cfqd
->cfq_back_penalty
, 1,
3850 STORE_FUNCTION(cfq_slice_idle_store
, &cfqd
->cfq_slice_idle
, 0, UINT_MAX
, 1);
3851 STORE_FUNCTION(cfq_slice_sync_store
, &cfqd
->cfq_slice
[1], 1, UINT_MAX
, 1);
3852 STORE_FUNCTION(cfq_slice_async_store
, &cfqd
->cfq_slice
[0], 1, UINT_MAX
, 1);
3853 STORE_FUNCTION(cfq_slice_async_rq_store
, &cfqd
->cfq_slice_async_rq
, 1,
3855 STORE_FUNCTION(cfq_low_latency_store
, &cfqd
->cfq_latency
, 0, 1, 0);
3856 STORE_FUNCTION(cfq_group_isolation_store
, &cfqd
->cfq_group_isolation
, 0, 1, 0);
3857 #undef STORE_FUNCTION
3859 #define CFQ_ATTR(name) \
3860 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3862 static struct elv_fs_entry cfq_attrs
[] = {
3864 CFQ_ATTR(fifo_expire_sync
),
3865 CFQ_ATTR(fifo_expire_async
),
3866 CFQ_ATTR(back_seek_max
),
3867 CFQ_ATTR(back_seek_penalty
),
3868 CFQ_ATTR(slice_sync
),
3869 CFQ_ATTR(slice_async
),
3870 CFQ_ATTR(slice_async_rq
),
3871 CFQ_ATTR(slice_idle
),
3872 CFQ_ATTR(low_latency
),
3873 CFQ_ATTR(group_isolation
),
3877 static struct elevator_type iosched_cfq
= {
3879 .elevator_merge_fn
= cfq_merge
,
3880 .elevator_merged_fn
= cfq_merged_request
,
3881 .elevator_merge_req_fn
= cfq_merged_requests
,
3882 .elevator_allow_merge_fn
= cfq_allow_merge
,
3883 .elevator_dispatch_fn
= cfq_dispatch_requests
,
3884 .elevator_add_req_fn
= cfq_insert_request
,
3885 .elevator_activate_req_fn
= cfq_activate_request
,
3886 .elevator_deactivate_req_fn
= cfq_deactivate_request
,
3887 .elevator_queue_empty_fn
= cfq_queue_empty
,
3888 .elevator_completed_req_fn
= cfq_completed_request
,
3889 .elevator_former_req_fn
= elv_rb_former_request
,
3890 .elevator_latter_req_fn
= elv_rb_latter_request
,
3891 .elevator_set_req_fn
= cfq_set_request
,
3892 .elevator_put_req_fn
= cfq_put_request
,
3893 .elevator_may_queue_fn
= cfq_may_queue
,
3894 .elevator_init_fn
= cfq_init_queue
,
3895 .elevator_exit_fn
= cfq_exit_queue
,
3896 .trim
= cfq_free_io_context
,
3898 .elevator_attrs
= cfq_attrs
,
3899 .elevator_name
= "cfq",
3900 .elevator_owner
= THIS_MODULE
,
3903 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3904 static struct blkio_policy_type blkio_policy_cfq
= {
3906 .blkio_unlink_group_fn
= cfq_unlink_blkio_group
,
3907 .blkio_update_group_weight_fn
= cfq_update_blkio_group_weight
,
3911 static struct blkio_policy_type blkio_policy_cfq
;
3914 static int __init
cfq_init(void)
3917 * could be 0 on HZ < 1000 setups
3919 if (!cfq_slice_async
)
3920 cfq_slice_async
= 1;
3921 if (!cfq_slice_idle
)
3924 if (cfq_slab_setup())
3927 elv_register(&iosched_cfq
);
3928 blkio_policy_register(&blkio_policy_cfq
);
3933 static void __exit
cfq_exit(void)
3935 DECLARE_COMPLETION_ONSTACK(all_gone
);
3936 blkio_policy_unregister(&blkio_policy_cfq
);
3937 elv_unregister(&iosched_cfq
);
3938 ioc_gone
= &all_gone
;
3939 /* ioc_gone's update must be visible before reading ioc_count */
3943 * this also protects us from entering cfq_slab_kill() with
3944 * pending RCU callbacks
3946 if (elv_ioc_count_read(cfq_ioc_count
))
3947 wait_for_completion(&all_gone
);
3951 module_init(cfq_init
);
3952 module_exit(cfq_exit
);
3954 MODULE_AUTHOR("Jens Axboe");
3955 MODULE_LICENSE("GPL");
3956 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");