x86, cpu: AMD errata checking framework
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / block / cfq-iosched.c
blobabc5d8087b0c21708c4dff97ddb5a23c59a8eea2
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/jiffies.h>
13 #include <linux/rbtree.h>
14 #include <linux/ioprio.h>
15 #include <linux/blktrace_api.h>
16 #include "blk-cgroup.h"
19 * tunables
21 /* max queue in one round of service */
22 static const int cfq_quantum = 4;
23 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
24 /* maximum backwards seek, in KiB */
25 static const int cfq_back_max = 16 * 1024;
26 /* penalty of a backwards seek */
27 static const int cfq_back_penalty = 2;
28 static const int cfq_slice_sync = HZ / 10;
29 static int cfq_slice_async = HZ / 25;
30 static const int cfq_slice_async_rq = 2;
31 static int cfq_slice_idle = HZ / 125;
32 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
33 static const int cfq_hist_divisor = 4;
36 * offset from end of service tree
38 #define CFQ_IDLE_DELAY (HZ / 5)
41 * below this threshold, we consider thinktime immediate
43 #define CFQ_MIN_TT (2)
45 #define CFQ_SLICE_SCALE (5)
46 #define CFQ_HW_QUEUE_MIN (5)
47 #define CFQ_SERVICE_SHIFT 12
49 #define CFQQ_SEEK_THR 8 * 1024
50 #define CFQQ_SEEKY(cfqq) ((cfqq)->seek_mean > CFQQ_SEEK_THR)
52 #define RQ_CIC(rq) \
53 ((struct cfq_io_context *) (rq)->elevator_private)
54 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
56 static struct kmem_cache *cfq_pool;
57 static struct kmem_cache *cfq_ioc_pool;
59 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
60 static struct completion *ioc_gone;
61 static DEFINE_SPINLOCK(ioc_gone_lock);
63 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
64 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
65 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
67 #define sample_valid(samples) ((samples) > 80)
68 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
71 * Most of our rbtree usage is for sorting with min extraction, so
72 * if we cache the leftmost node we don't have to walk down the tree
73 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
74 * move this into the elevator for the rq sorting as well.
76 struct cfq_rb_root {
77 struct rb_root rb;
78 struct rb_node *left;
79 unsigned count;
80 u64 min_vdisktime;
81 struct rb_node *active;
82 unsigned total_weight;
84 #define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, 0, 0, }
87 * Per process-grouping structure
89 struct cfq_queue {
90 /* reference count */
91 atomic_t ref;
92 /* various state flags, see below */
93 unsigned int flags;
94 /* parent cfq_data */
95 struct cfq_data *cfqd;
96 /* service_tree member */
97 struct rb_node rb_node;
98 /* service_tree key */
99 unsigned long rb_key;
100 /* prio tree member */
101 struct rb_node p_node;
102 /* prio tree root we belong to, if any */
103 struct rb_root *p_root;
104 /* sorted list of pending requests */
105 struct rb_root sort_list;
106 /* if fifo isn't expired, next request to serve */
107 struct request *next_rq;
108 /* requests queued in sort_list */
109 int queued[2];
110 /* currently allocated requests */
111 int allocated[2];
112 /* fifo list of requests in sort_list */
113 struct list_head fifo;
115 /* time when queue got scheduled in to dispatch first request. */
116 unsigned long dispatch_start;
117 unsigned int allocated_slice;
118 /* time when first request from queue completed and slice started. */
119 unsigned long slice_start;
120 unsigned long slice_end;
121 long slice_resid;
122 unsigned int slice_dispatch;
124 /* pending metadata requests */
125 int meta_pending;
126 /* number of requests that are on the dispatch list or inside driver */
127 int dispatched;
129 /* io prio of this group */
130 unsigned short ioprio, org_ioprio;
131 unsigned short ioprio_class, org_ioprio_class;
133 unsigned int seek_samples;
134 u64 seek_total;
135 sector_t seek_mean;
136 sector_t last_request_pos;
138 pid_t pid;
140 struct cfq_rb_root *service_tree;
141 struct cfq_queue *new_cfqq;
142 struct cfq_group *cfqg;
143 struct cfq_group *orig_cfqg;
144 /* Sectors dispatched in current dispatch round */
145 unsigned long nr_sectors;
149 * First index in the service_trees.
150 * IDLE is handled separately, so it has negative index
152 enum wl_prio_t {
153 BE_WORKLOAD = 0,
154 RT_WORKLOAD = 1,
155 IDLE_WORKLOAD = 2,
159 * Second index in the service_trees.
161 enum wl_type_t {
162 ASYNC_WORKLOAD = 0,
163 SYNC_NOIDLE_WORKLOAD = 1,
164 SYNC_WORKLOAD = 2
167 /* This is per cgroup per device grouping structure */
168 struct cfq_group {
169 /* group service_tree member */
170 struct rb_node rb_node;
172 /* group service_tree key */
173 u64 vdisktime;
174 unsigned int weight;
175 bool on_st;
177 /* number of cfqq currently on this group */
178 int nr_cfqq;
180 /* Per group busy queus average. Useful for workload slice calc. */
181 unsigned int busy_queues_avg[2];
183 * rr lists of queues with requests, onle rr for each priority class.
184 * Counts are embedded in the cfq_rb_root
186 struct cfq_rb_root service_trees[2][3];
187 struct cfq_rb_root service_tree_idle;
189 unsigned long saved_workload_slice;
190 enum wl_type_t saved_workload;
191 enum wl_prio_t saved_serving_prio;
192 struct blkio_group blkg;
193 #ifdef CONFIG_CFQ_GROUP_IOSCHED
194 struct hlist_node cfqd_node;
195 atomic_t ref;
196 #endif
200 * Per block device queue structure
202 struct cfq_data {
203 struct request_queue *queue;
204 /* Root service tree for cfq_groups */
205 struct cfq_rb_root grp_service_tree;
206 struct cfq_group root_group;
209 * The priority currently being served
211 enum wl_prio_t serving_prio;
212 enum wl_type_t serving_type;
213 unsigned long workload_expires;
214 struct cfq_group *serving_group;
215 bool noidle_tree_requires_idle;
218 * Each priority tree is sorted by next_request position. These
219 * trees are used when determining if two or more queues are
220 * interleaving requests (see cfq_close_cooperator).
222 struct rb_root prio_trees[CFQ_PRIO_LISTS];
224 unsigned int busy_queues;
226 int rq_in_driver[2];
227 int sync_flight;
230 * queue-depth detection
232 int rq_queued;
233 int hw_tag;
235 * hw_tag can be
236 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
237 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
238 * 0 => no NCQ
240 int hw_tag_est_depth;
241 unsigned int hw_tag_samples;
244 * idle window management
246 struct timer_list idle_slice_timer;
247 struct work_struct unplug_work;
249 struct cfq_queue *active_queue;
250 struct cfq_io_context *active_cic;
253 * async queue for each priority case
255 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
256 struct cfq_queue *async_idle_cfqq;
258 sector_t last_position;
261 * tunables, see top of file
263 unsigned int cfq_quantum;
264 unsigned int cfq_fifo_expire[2];
265 unsigned int cfq_back_penalty;
266 unsigned int cfq_back_max;
267 unsigned int cfq_slice[2];
268 unsigned int cfq_slice_async_rq;
269 unsigned int cfq_slice_idle;
270 unsigned int cfq_latency;
271 unsigned int cfq_group_isolation;
273 struct list_head cic_list;
276 * Fallback dummy cfqq for extreme OOM conditions
278 struct cfq_queue oom_cfqq;
280 unsigned long last_delayed_sync;
282 /* List of cfq groups being managed on this device*/
283 struct hlist_head cfqg_list;
284 struct rcu_head rcu;
287 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
289 static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
290 enum wl_prio_t prio,
291 enum wl_type_t type)
293 if (!cfqg)
294 return NULL;
296 if (prio == IDLE_WORKLOAD)
297 return &cfqg->service_tree_idle;
299 return &cfqg->service_trees[prio][type];
302 enum cfqq_state_flags {
303 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
304 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
305 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
306 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
307 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
308 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
309 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
310 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
311 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
312 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
313 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
314 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
315 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
318 #define CFQ_CFQQ_FNS(name) \
319 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
321 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
323 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
325 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
327 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
329 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
332 CFQ_CFQQ_FNS(on_rr);
333 CFQ_CFQQ_FNS(wait_request);
334 CFQ_CFQQ_FNS(must_dispatch);
335 CFQ_CFQQ_FNS(must_alloc_slice);
336 CFQ_CFQQ_FNS(fifo_expire);
337 CFQ_CFQQ_FNS(idle_window);
338 CFQ_CFQQ_FNS(prio_changed);
339 CFQ_CFQQ_FNS(slice_new);
340 CFQ_CFQQ_FNS(sync);
341 CFQ_CFQQ_FNS(coop);
342 CFQ_CFQQ_FNS(split_coop);
343 CFQ_CFQQ_FNS(deep);
344 CFQ_CFQQ_FNS(wait_busy);
345 #undef CFQ_CFQQ_FNS
347 #ifdef CONFIG_DEBUG_CFQ_IOSCHED
348 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
349 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
350 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
351 blkg_path(&(cfqq)->cfqg->blkg), ##args);
353 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
354 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
355 blkg_path(&(cfqg)->blkg), ##args); \
357 #else
358 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
359 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
360 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
361 #endif
362 #define cfq_log(cfqd, fmt, args...) \
363 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
365 /* Traverses through cfq group service trees */
366 #define for_each_cfqg_st(cfqg, i, j, st) \
367 for (i = 0; i <= IDLE_WORKLOAD; i++) \
368 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
369 : &cfqg->service_tree_idle; \
370 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
371 (i == IDLE_WORKLOAD && j == 0); \
372 j++, st = i < IDLE_WORKLOAD ? \
373 &cfqg->service_trees[i][j]: NULL) \
376 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
378 if (cfq_class_idle(cfqq))
379 return IDLE_WORKLOAD;
380 if (cfq_class_rt(cfqq))
381 return RT_WORKLOAD;
382 return BE_WORKLOAD;
386 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
388 if (!cfq_cfqq_sync(cfqq))
389 return ASYNC_WORKLOAD;
390 if (!cfq_cfqq_idle_window(cfqq))
391 return SYNC_NOIDLE_WORKLOAD;
392 return SYNC_WORKLOAD;
395 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
396 struct cfq_data *cfqd,
397 struct cfq_group *cfqg)
399 if (wl == IDLE_WORKLOAD)
400 return cfqg->service_tree_idle.count;
402 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
403 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
404 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
407 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
408 struct cfq_group *cfqg)
410 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
411 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
414 static void cfq_dispatch_insert(struct request_queue *, struct request *);
415 static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
416 struct io_context *, gfp_t);
417 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
418 struct io_context *);
420 static inline int rq_in_driver(struct cfq_data *cfqd)
422 return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
425 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
426 bool is_sync)
428 return cic->cfqq[is_sync];
431 static inline void cic_set_cfqq(struct cfq_io_context *cic,
432 struct cfq_queue *cfqq, bool is_sync)
434 cic->cfqq[is_sync] = cfqq;
438 * We regard a request as SYNC, if it's either a read or has the SYNC bit
439 * set (in which case it could also be direct WRITE).
441 static inline bool cfq_bio_sync(struct bio *bio)
443 return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
447 * scheduler run of queue, if there are requests pending and no one in the
448 * driver that will restart queueing
450 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
452 if (cfqd->busy_queues) {
453 cfq_log(cfqd, "schedule dispatch");
454 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
458 static int cfq_queue_empty(struct request_queue *q)
460 struct cfq_data *cfqd = q->elevator->elevator_data;
462 return !cfqd->rq_queued;
466 * Scale schedule slice based on io priority. Use the sync time slice only
467 * if a queue is marked sync and has sync io queued. A sync queue with async
468 * io only, should not get full sync slice length.
470 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
471 unsigned short prio)
473 const int base_slice = cfqd->cfq_slice[sync];
475 WARN_ON(prio >= IOPRIO_BE_NR);
477 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
480 static inline int
481 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
483 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
486 static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
488 u64 d = delta << CFQ_SERVICE_SHIFT;
490 d = d * BLKIO_WEIGHT_DEFAULT;
491 do_div(d, cfqg->weight);
492 return d;
495 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
497 s64 delta = (s64)(vdisktime - min_vdisktime);
498 if (delta > 0)
499 min_vdisktime = vdisktime;
501 return min_vdisktime;
504 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
506 s64 delta = (s64)(vdisktime - min_vdisktime);
507 if (delta < 0)
508 min_vdisktime = vdisktime;
510 return min_vdisktime;
513 static void update_min_vdisktime(struct cfq_rb_root *st)
515 u64 vdisktime = st->min_vdisktime;
516 struct cfq_group *cfqg;
518 if (st->active) {
519 cfqg = rb_entry_cfqg(st->active);
520 vdisktime = cfqg->vdisktime;
523 if (st->left) {
524 cfqg = rb_entry_cfqg(st->left);
525 vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
528 st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
532 * get averaged number of queues of RT/BE priority.
533 * average is updated, with a formula that gives more weight to higher numbers,
534 * to quickly follows sudden increases and decrease slowly
537 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
538 struct cfq_group *cfqg, bool rt)
540 unsigned min_q, max_q;
541 unsigned mult = cfq_hist_divisor - 1;
542 unsigned round = cfq_hist_divisor / 2;
543 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
545 min_q = min(cfqg->busy_queues_avg[rt], busy);
546 max_q = max(cfqg->busy_queues_avg[rt], busy);
547 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
548 cfq_hist_divisor;
549 return cfqg->busy_queues_avg[rt];
552 static inline unsigned
553 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
555 struct cfq_rb_root *st = &cfqd->grp_service_tree;
557 return cfq_target_latency * cfqg->weight / st->total_weight;
560 static inline void
561 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
563 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
564 if (cfqd->cfq_latency) {
566 * interested queues (we consider only the ones with the same
567 * priority class in the cfq group)
569 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
570 cfq_class_rt(cfqq));
571 unsigned sync_slice = cfqd->cfq_slice[1];
572 unsigned expect_latency = sync_slice * iq;
573 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
575 if (expect_latency > group_slice) {
576 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
577 /* scale low_slice according to IO priority
578 * and sync vs async */
579 unsigned low_slice =
580 min(slice, base_low_slice * slice / sync_slice);
581 /* the adapted slice value is scaled to fit all iqs
582 * into the target latency */
583 slice = max(slice * group_slice / expect_latency,
584 low_slice);
587 cfqq->slice_start = jiffies;
588 cfqq->slice_end = jiffies + slice;
589 cfqq->allocated_slice = slice;
590 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
594 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
595 * isn't valid until the first request from the dispatch is activated
596 * and the slice time set.
598 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
600 if (cfq_cfqq_slice_new(cfqq))
601 return 0;
602 if (time_before(jiffies, cfqq->slice_end))
603 return 0;
605 return 1;
609 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
610 * We choose the request that is closest to the head right now. Distance
611 * behind the head is penalized and only allowed to a certain extent.
613 static struct request *
614 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
616 sector_t s1, s2, d1 = 0, d2 = 0;
617 unsigned long back_max;
618 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
619 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
620 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
622 if (rq1 == NULL || rq1 == rq2)
623 return rq2;
624 if (rq2 == NULL)
625 return rq1;
627 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
628 return rq1;
629 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
630 return rq2;
631 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
632 return rq1;
633 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
634 return rq2;
636 s1 = blk_rq_pos(rq1);
637 s2 = blk_rq_pos(rq2);
640 * by definition, 1KiB is 2 sectors
642 back_max = cfqd->cfq_back_max * 2;
645 * Strict one way elevator _except_ in the case where we allow
646 * short backward seeks which are biased as twice the cost of a
647 * similar forward seek.
649 if (s1 >= last)
650 d1 = s1 - last;
651 else if (s1 + back_max >= last)
652 d1 = (last - s1) * cfqd->cfq_back_penalty;
653 else
654 wrap |= CFQ_RQ1_WRAP;
656 if (s2 >= last)
657 d2 = s2 - last;
658 else if (s2 + back_max >= last)
659 d2 = (last - s2) * cfqd->cfq_back_penalty;
660 else
661 wrap |= CFQ_RQ2_WRAP;
663 /* Found required data */
666 * By doing switch() on the bit mask "wrap" we avoid having to
667 * check two variables for all permutations: --> faster!
669 switch (wrap) {
670 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
671 if (d1 < d2)
672 return rq1;
673 else if (d2 < d1)
674 return rq2;
675 else {
676 if (s1 >= s2)
677 return rq1;
678 else
679 return rq2;
682 case CFQ_RQ2_WRAP:
683 return rq1;
684 case CFQ_RQ1_WRAP:
685 return rq2;
686 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
687 default:
689 * Since both rqs are wrapped,
690 * start with the one that's further behind head
691 * (--> only *one* back seek required),
692 * since back seek takes more time than forward.
694 if (s1 <= s2)
695 return rq1;
696 else
697 return rq2;
702 * The below is leftmost cache rbtree addon
704 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
706 /* Service tree is empty */
707 if (!root->count)
708 return NULL;
710 if (!root->left)
711 root->left = rb_first(&root->rb);
713 if (root->left)
714 return rb_entry(root->left, struct cfq_queue, rb_node);
716 return NULL;
719 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
721 if (!root->left)
722 root->left = rb_first(&root->rb);
724 if (root->left)
725 return rb_entry_cfqg(root->left);
727 return NULL;
730 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
732 rb_erase(n, root);
733 RB_CLEAR_NODE(n);
736 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
738 if (root->left == n)
739 root->left = NULL;
740 rb_erase_init(n, &root->rb);
741 --root->count;
745 * would be nice to take fifo expire time into account as well
747 static struct request *
748 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
749 struct request *last)
751 struct rb_node *rbnext = rb_next(&last->rb_node);
752 struct rb_node *rbprev = rb_prev(&last->rb_node);
753 struct request *next = NULL, *prev = NULL;
755 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
757 if (rbprev)
758 prev = rb_entry_rq(rbprev);
760 if (rbnext)
761 next = rb_entry_rq(rbnext);
762 else {
763 rbnext = rb_first(&cfqq->sort_list);
764 if (rbnext && rbnext != &last->rb_node)
765 next = rb_entry_rq(rbnext);
768 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
771 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
772 struct cfq_queue *cfqq)
775 * just an approximation, should be ok.
777 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
778 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
781 static inline s64
782 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
784 return cfqg->vdisktime - st->min_vdisktime;
787 static void
788 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
790 struct rb_node **node = &st->rb.rb_node;
791 struct rb_node *parent = NULL;
792 struct cfq_group *__cfqg;
793 s64 key = cfqg_key(st, cfqg);
794 int left = 1;
796 while (*node != NULL) {
797 parent = *node;
798 __cfqg = rb_entry_cfqg(parent);
800 if (key < cfqg_key(st, __cfqg))
801 node = &parent->rb_left;
802 else {
803 node = &parent->rb_right;
804 left = 0;
808 if (left)
809 st->left = &cfqg->rb_node;
811 rb_link_node(&cfqg->rb_node, parent, node);
812 rb_insert_color(&cfqg->rb_node, &st->rb);
815 static void
816 cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
818 struct cfq_rb_root *st = &cfqd->grp_service_tree;
819 struct cfq_group *__cfqg;
820 struct rb_node *n;
822 cfqg->nr_cfqq++;
823 if (cfqg->on_st)
824 return;
827 * Currently put the group at the end. Later implement something
828 * so that groups get lesser vtime based on their weights, so that
829 * if group does not loose all if it was not continously backlogged.
831 n = rb_last(&st->rb);
832 if (n) {
833 __cfqg = rb_entry_cfqg(n);
834 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
835 } else
836 cfqg->vdisktime = st->min_vdisktime;
838 __cfq_group_service_tree_add(st, cfqg);
839 cfqg->on_st = true;
840 st->total_weight += cfqg->weight;
843 static void
844 cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
846 struct cfq_rb_root *st = &cfqd->grp_service_tree;
848 if (st->active == &cfqg->rb_node)
849 st->active = NULL;
851 BUG_ON(cfqg->nr_cfqq < 1);
852 cfqg->nr_cfqq--;
854 /* If there are other cfq queues under this group, don't delete it */
855 if (cfqg->nr_cfqq)
856 return;
858 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
859 cfqg->on_st = false;
860 st->total_weight -= cfqg->weight;
861 if (!RB_EMPTY_NODE(&cfqg->rb_node))
862 cfq_rb_erase(&cfqg->rb_node, st);
863 cfqg->saved_workload_slice = 0;
864 blkiocg_update_blkio_group_dequeue_stats(&cfqg->blkg, 1);
867 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
869 unsigned int slice_used;
872 * Queue got expired before even a single request completed or
873 * got expired immediately after first request completion.
875 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
877 * Also charge the seek time incurred to the group, otherwise
878 * if there are mutiple queues in the group, each can dispatch
879 * a single request on seeky media and cause lots of seek time
880 * and group will never know it.
882 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
884 } else {
885 slice_used = jiffies - cfqq->slice_start;
886 if (slice_used > cfqq->allocated_slice)
887 slice_used = cfqq->allocated_slice;
890 cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u sect=%lu", slice_used,
891 cfqq->nr_sectors);
892 return slice_used;
895 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
896 struct cfq_queue *cfqq)
898 struct cfq_rb_root *st = &cfqd->grp_service_tree;
899 unsigned int used_sl, charge_sl;
900 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
901 - cfqg->service_tree_idle.count;
903 BUG_ON(nr_sync < 0);
904 used_sl = charge_sl = cfq_cfqq_slice_usage(cfqq);
906 if (!cfq_cfqq_sync(cfqq) && !nr_sync)
907 charge_sl = cfqq->allocated_slice;
909 /* Can't update vdisktime while group is on service tree */
910 cfq_rb_erase(&cfqg->rb_node, st);
911 cfqg->vdisktime += cfq_scale_slice(charge_sl, cfqg);
912 __cfq_group_service_tree_add(st, cfqg);
914 /* This group is being expired. Save the context */
915 if (time_after(cfqd->workload_expires, jiffies)) {
916 cfqg->saved_workload_slice = cfqd->workload_expires
917 - jiffies;
918 cfqg->saved_workload = cfqd->serving_type;
919 cfqg->saved_serving_prio = cfqd->serving_prio;
920 } else
921 cfqg->saved_workload_slice = 0;
923 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
924 st->min_vdisktime);
925 blkiocg_update_blkio_group_stats(&cfqg->blkg, used_sl,
926 cfqq->nr_sectors);
929 #ifdef CONFIG_CFQ_GROUP_IOSCHED
930 static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
932 if (blkg)
933 return container_of(blkg, struct cfq_group, blkg);
934 return NULL;
937 void
938 cfq_update_blkio_group_weight(struct blkio_group *blkg, unsigned int weight)
940 cfqg_of_blkg(blkg)->weight = weight;
943 static struct cfq_group *
944 cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
946 struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
947 struct cfq_group *cfqg = NULL;
948 void *key = cfqd;
949 int i, j;
950 struct cfq_rb_root *st;
951 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
952 unsigned int major, minor;
954 /* Do we need to take this reference */
955 if (!blkiocg_css_tryget(blkcg))
956 return NULL;;
958 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
959 if (cfqg || !create)
960 goto done;
962 cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
963 if (!cfqg)
964 goto done;
966 cfqg->weight = blkcg->weight;
967 for_each_cfqg_st(cfqg, i, j, st)
968 *st = CFQ_RB_ROOT;
969 RB_CLEAR_NODE(&cfqg->rb_node);
972 * Take the initial reference that will be released on destroy
973 * This can be thought of a joint reference by cgroup and
974 * elevator which will be dropped by either elevator exit
975 * or cgroup deletion path depending on who is exiting first.
977 atomic_set(&cfqg->ref, 1);
979 /* Add group onto cgroup list */
980 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
981 blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
982 MKDEV(major, minor));
984 /* Add group on cfqd list */
985 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
987 done:
988 blkiocg_css_put(blkcg);
989 return cfqg;
993 * Search for the cfq group current task belongs to. If create = 1, then also
994 * create the cfq group if it does not exist. request_queue lock must be held.
996 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
998 struct cgroup *cgroup;
999 struct cfq_group *cfqg = NULL;
1001 rcu_read_lock();
1002 cgroup = task_cgroup(current, blkio_subsys_id);
1003 cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
1004 if (!cfqg && create)
1005 cfqg = &cfqd->root_group;
1006 rcu_read_unlock();
1007 return cfqg;
1010 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1012 /* Currently, all async queues are mapped to root group */
1013 if (!cfq_cfqq_sync(cfqq))
1014 cfqg = &cfqq->cfqd->root_group;
1016 cfqq->cfqg = cfqg;
1017 /* cfqq reference on cfqg */
1018 atomic_inc(&cfqq->cfqg->ref);
1021 static void cfq_put_cfqg(struct cfq_group *cfqg)
1023 struct cfq_rb_root *st;
1024 int i, j;
1026 BUG_ON(atomic_read(&cfqg->ref) <= 0);
1027 if (!atomic_dec_and_test(&cfqg->ref))
1028 return;
1029 for_each_cfqg_st(cfqg, i, j, st)
1030 BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
1031 kfree(cfqg);
1034 static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1036 /* Something wrong if we are trying to remove same group twice */
1037 BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1039 hlist_del_init(&cfqg->cfqd_node);
1042 * Put the reference taken at the time of creation so that when all
1043 * queues are gone, group can be destroyed.
1045 cfq_put_cfqg(cfqg);
1048 static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1050 struct hlist_node *pos, *n;
1051 struct cfq_group *cfqg;
1053 hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1055 * If cgroup removal path got to blk_group first and removed
1056 * it from cgroup list, then it will take care of destroying
1057 * cfqg also.
1059 if (!blkiocg_del_blkio_group(&cfqg->blkg))
1060 cfq_destroy_cfqg(cfqd, cfqg);
1065 * Blk cgroup controller notification saying that blkio_group object is being
1066 * delinked as associated cgroup object is going away. That also means that
1067 * no new IO will come in this group. So get rid of this group as soon as
1068 * any pending IO in the group is finished.
1070 * This function is called under rcu_read_lock(). key is the rcu protected
1071 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1072 * read lock.
1074 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1075 * it should not be NULL as even if elevator was exiting, cgroup deltion
1076 * path got to it first.
1078 void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1080 unsigned long flags;
1081 struct cfq_data *cfqd = key;
1083 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1084 cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1085 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1088 #else /* GROUP_IOSCHED */
1089 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1091 return &cfqd->root_group;
1093 static inline void
1094 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1095 cfqq->cfqg = cfqg;
1098 static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1099 static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1101 #endif /* GROUP_IOSCHED */
1104 * The cfqd->service_trees holds all pending cfq_queue's that have
1105 * requests waiting to be processed. It is sorted in the order that
1106 * we will service the queues.
1108 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1109 bool add_front)
1111 struct rb_node **p, *parent;
1112 struct cfq_queue *__cfqq;
1113 unsigned long rb_key;
1114 struct cfq_rb_root *service_tree;
1115 int left;
1116 int new_cfqq = 1;
1117 int group_changed = 0;
1119 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1120 if (!cfqd->cfq_group_isolation
1121 && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
1122 && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
1123 /* Move this cfq to root group */
1124 cfq_log_cfqq(cfqd, cfqq, "moving to root group");
1125 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1126 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1127 cfqq->orig_cfqg = cfqq->cfqg;
1128 cfqq->cfqg = &cfqd->root_group;
1129 atomic_inc(&cfqd->root_group.ref);
1130 group_changed = 1;
1131 } else if (!cfqd->cfq_group_isolation
1132 && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
1133 /* cfqq is sequential now needs to go to its original group */
1134 BUG_ON(cfqq->cfqg != &cfqd->root_group);
1135 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1136 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1137 cfq_put_cfqg(cfqq->cfqg);
1138 cfqq->cfqg = cfqq->orig_cfqg;
1139 cfqq->orig_cfqg = NULL;
1140 group_changed = 1;
1141 cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
1143 #endif
1145 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1146 cfqq_type(cfqq));
1147 if (cfq_class_idle(cfqq)) {
1148 rb_key = CFQ_IDLE_DELAY;
1149 parent = rb_last(&service_tree->rb);
1150 if (parent && parent != &cfqq->rb_node) {
1151 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1152 rb_key += __cfqq->rb_key;
1153 } else
1154 rb_key += jiffies;
1155 } else if (!add_front) {
1157 * Get our rb key offset. Subtract any residual slice
1158 * value carried from last service. A negative resid
1159 * count indicates slice overrun, and this should position
1160 * the next service time further away in the tree.
1162 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1163 rb_key -= cfqq->slice_resid;
1164 cfqq->slice_resid = 0;
1165 } else {
1166 rb_key = -HZ;
1167 __cfqq = cfq_rb_first(service_tree);
1168 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1171 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1172 new_cfqq = 0;
1174 * same position, nothing more to do
1176 if (rb_key == cfqq->rb_key &&
1177 cfqq->service_tree == service_tree)
1178 return;
1180 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1181 cfqq->service_tree = NULL;
1184 left = 1;
1185 parent = NULL;
1186 cfqq->service_tree = service_tree;
1187 p = &service_tree->rb.rb_node;
1188 while (*p) {
1189 struct rb_node **n;
1191 parent = *p;
1192 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1195 * sort by key, that represents service time.
1197 if (time_before(rb_key, __cfqq->rb_key))
1198 n = &(*p)->rb_left;
1199 else {
1200 n = &(*p)->rb_right;
1201 left = 0;
1204 p = n;
1207 if (left)
1208 service_tree->left = &cfqq->rb_node;
1210 cfqq->rb_key = rb_key;
1211 rb_link_node(&cfqq->rb_node, parent, p);
1212 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1213 service_tree->count++;
1214 if ((add_front || !new_cfqq) && !group_changed)
1215 return;
1216 cfq_group_service_tree_add(cfqd, cfqq->cfqg);
1219 static struct cfq_queue *
1220 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1221 sector_t sector, struct rb_node **ret_parent,
1222 struct rb_node ***rb_link)
1224 struct rb_node **p, *parent;
1225 struct cfq_queue *cfqq = NULL;
1227 parent = NULL;
1228 p = &root->rb_node;
1229 while (*p) {
1230 struct rb_node **n;
1232 parent = *p;
1233 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1236 * Sort strictly based on sector. Smallest to the left,
1237 * largest to the right.
1239 if (sector > blk_rq_pos(cfqq->next_rq))
1240 n = &(*p)->rb_right;
1241 else if (sector < blk_rq_pos(cfqq->next_rq))
1242 n = &(*p)->rb_left;
1243 else
1244 break;
1245 p = n;
1246 cfqq = NULL;
1249 *ret_parent = parent;
1250 if (rb_link)
1251 *rb_link = p;
1252 return cfqq;
1255 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1257 struct rb_node **p, *parent;
1258 struct cfq_queue *__cfqq;
1260 if (cfqq->p_root) {
1261 rb_erase(&cfqq->p_node, cfqq->p_root);
1262 cfqq->p_root = NULL;
1265 if (cfq_class_idle(cfqq))
1266 return;
1267 if (!cfqq->next_rq)
1268 return;
1270 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1271 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1272 blk_rq_pos(cfqq->next_rq), &parent, &p);
1273 if (!__cfqq) {
1274 rb_link_node(&cfqq->p_node, parent, p);
1275 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1276 } else
1277 cfqq->p_root = NULL;
1281 * Update cfqq's position in the service tree.
1283 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1286 * Resorting requires the cfqq to be on the RR list already.
1288 if (cfq_cfqq_on_rr(cfqq)) {
1289 cfq_service_tree_add(cfqd, cfqq, 0);
1290 cfq_prio_tree_add(cfqd, cfqq);
1295 * add to busy list of queues for service, trying to be fair in ordering
1296 * the pending list according to last request service
1298 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1300 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1301 BUG_ON(cfq_cfqq_on_rr(cfqq));
1302 cfq_mark_cfqq_on_rr(cfqq);
1303 cfqd->busy_queues++;
1305 cfq_resort_rr_list(cfqd, cfqq);
1309 * Called when the cfqq no longer has requests pending, remove it from
1310 * the service tree.
1312 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1314 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1315 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1316 cfq_clear_cfqq_on_rr(cfqq);
1318 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1319 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1320 cfqq->service_tree = NULL;
1322 if (cfqq->p_root) {
1323 rb_erase(&cfqq->p_node, cfqq->p_root);
1324 cfqq->p_root = NULL;
1327 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1328 BUG_ON(!cfqd->busy_queues);
1329 cfqd->busy_queues--;
1333 * rb tree support functions
1335 static void cfq_del_rq_rb(struct request *rq)
1337 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1338 const int sync = rq_is_sync(rq);
1340 BUG_ON(!cfqq->queued[sync]);
1341 cfqq->queued[sync]--;
1343 elv_rb_del(&cfqq->sort_list, rq);
1345 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1347 * Queue will be deleted from service tree when we actually
1348 * expire it later. Right now just remove it from prio tree
1349 * as it is empty.
1351 if (cfqq->p_root) {
1352 rb_erase(&cfqq->p_node, cfqq->p_root);
1353 cfqq->p_root = NULL;
1358 static void cfq_add_rq_rb(struct request *rq)
1360 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1361 struct cfq_data *cfqd = cfqq->cfqd;
1362 struct request *__alias, *prev;
1364 cfqq->queued[rq_is_sync(rq)]++;
1367 * looks a little odd, but the first insert might return an alias.
1368 * if that happens, put the alias on the dispatch list
1370 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
1371 cfq_dispatch_insert(cfqd->queue, __alias);
1373 if (!cfq_cfqq_on_rr(cfqq))
1374 cfq_add_cfqq_rr(cfqd, cfqq);
1377 * check if this request is a better next-serve candidate
1379 prev = cfqq->next_rq;
1380 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1383 * adjust priority tree position, if ->next_rq changes
1385 if (prev != cfqq->next_rq)
1386 cfq_prio_tree_add(cfqd, cfqq);
1388 BUG_ON(!cfqq->next_rq);
1391 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1393 elv_rb_del(&cfqq->sort_list, rq);
1394 cfqq->queued[rq_is_sync(rq)]--;
1395 cfq_add_rq_rb(rq);
1398 static struct request *
1399 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1401 struct task_struct *tsk = current;
1402 struct cfq_io_context *cic;
1403 struct cfq_queue *cfqq;
1405 cic = cfq_cic_lookup(cfqd, tsk->io_context);
1406 if (!cic)
1407 return NULL;
1409 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1410 if (cfqq) {
1411 sector_t sector = bio->bi_sector + bio_sectors(bio);
1413 return elv_rb_find(&cfqq->sort_list, sector);
1416 return NULL;
1419 static void cfq_activate_request(struct request_queue *q, struct request *rq)
1421 struct cfq_data *cfqd = q->elevator->elevator_data;
1423 cfqd->rq_in_driver[rq_is_sync(rq)]++;
1424 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1425 rq_in_driver(cfqd));
1427 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1430 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1432 struct cfq_data *cfqd = q->elevator->elevator_data;
1433 const int sync = rq_is_sync(rq);
1435 WARN_ON(!cfqd->rq_in_driver[sync]);
1436 cfqd->rq_in_driver[sync]--;
1437 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1438 rq_in_driver(cfqd));
1441 static void cfq_remove_request(struct request *rq)
1443 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1445 if (cfqq->next_rq == rq)
1446 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1448 list_del_init(&rq->queuelist);
1449 cfq_del_rq_rb(rq);
1451 cfqq->cfqd->rq_queued--;
1452 if (rq_is_meta(rq)) {
1453 WARN_ON(!cfqq->meta_pending);
1454 cfqq->meta_pending--;
1458 static int cfq_merge(struct request_queue *q, struct request **req,
1459 struct bio *bio)
1461 struct cfq_data *cfqd = q->elevator->elevator_data;
1462 struct request *__rq;
1464 __rq = cfq_find_rq_fmerge(cfqd, bio);
1465 if (__rq && elv_rq_merge_ok(__rq, bio)) {
1466 *req = __rq;
1467 return ELEVATOR_FRONT_MERGE;
1470 return ELEVATOR_NO_MERGE;
1473 static void cfq_merged_request(struct request_queue *q, struct request *req,
1474 int type)
1476 if (type == ELEVATOR_FRONT_MERGE) {
1477 struct cfq_queue *cfqq = RQ_CFQQ(req);
1479 cfq_reposition_rq_rb(cfqq, req);
1483 static void
1484 cfq_merged_requests(struct request_queue *q, struct request *rq,
1485 struct request *next)
1487 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1489 * reposition in fifo if next is older than rq
1491 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1492 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1493 list_move(&rq->queuelist, &next->queuelist);
1494 rq_set_fifo_time(rq, rq_fifo_time(next));
1497 if (cfqq->next_rq == next)
1498 cfqq->next_rq = rq;
1499 cfq_remove_request(next);
1502 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1503 struct bio *bio)
1505 struct cfq_data *cfqd = q->elevator->elevator_data;
1506 struct cfq_io_context *cic;
1507 struct cfq_queue *cfqq;
1510 * Disallow merge of a sync bio into an async request.
1512 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1513 return false;
1516 * Lookup the cfqq that this bio will be queued with. Allow
1517 * merge only if rq is queued there.
1519 cic = cfq_cic_lookup(cfqd, current->io_context);
1520 if (!cic)
1521 return false;
1523 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1524 return cfqq == RQ_CFQQ(rq);
1527 static void __cfq_set_active_queue(struct cfq_data *cfqd,
1528 struct cfq_queue *cfqq)
1530 if (cfqq) {
1531 cfq_log_cfqq(cfqd, cfqq, "set_active");
1532 cfqq->slice_start = 0;
1533 cfqq->dispatch_start = jiffies;
1534 cfqq->allocated_slice = 0;
1535 cfqq->slice_end = 0;
1536 cfqq->slice_dispatch = 0;
1537 cfqq->nr_sectors = 0;
1539 cfq_clear_cfqq_wait_request(cfqq);
1540 cfq_clear_cfqq_must_dispatch(cfqq);
1541 cfq_clear_cfqq_must_alloc_slice(cfqq);
1542 cfq_clear_cfqq_fifo_expire(cfqq);
1543 cfq_mark_cfqq_slice_new(cfqq);
1545 del_timer(&cfqd->idle_slice_timer);
1548 cfqd->active_queue = cfqq;
1552 * current cfqq expired its slice (or was too idle), select new one
1554 static void
1555 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1556 bool timed_out)
1558 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1560 if (cfq_cfqq_wait_request(cfqq))
1561 del_timer(&cfqd->idle_slice_timer);
1563 cfq_clear_cfqq_wait_request(cfqq);
1564 cfq_clear_cfqq_wait_busy(cfqq);
1567 * If this cfqq is shared between multiple processes, check to
1568 * make sure that those processes are still issuing I/Os within
1569 * the mean seek distance. If not, it may be time to break the
1570 * queues apart again.
1572 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1573 cfq_mark_cfqq_split_coop(cfqq);
1576 * store what was left of this slice, if the queue idled/timed out
1578 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1579 cfqq->slice_resid = cfqq->slice_end - jiffies;
1580 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1583 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1585 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1586 cfq_del_cfqq_rr(cfqd, cfqq);
1588 cfq_resort_rr_list(cfqd, cfqq);
1590 if (cfqq == cfqd->active_queue)
1591 cfqd->active_queue = NULL;
1593 if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
1594 cfqd->grp_service_tree.active = NULL;
1596 if (cfqd->active_cic) {
1597 put_io_context(cfqd->active_cic->ioc);
1598 cfqd->active_cic = NULL;
1602 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1604 struct cfq_queue *cfqq = cfqd->active_queue;
1606 if (cfqq)
1607 __cfq_slice_expired(cfqd, cfqq, timed_out);
1611 * Get next queue for service. Unless we have a queue preemption,
1612 * we'll simply select the first cfqq in the service tree.
1614 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1616 struct cfq_rb_root *service_tree =
1617 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1618 cfqd->serving_type);
1620 if (!cfqd->rq_queued)
1621 return NULL;
1623 /* There is nothing to dispatch */
1624 if (!service_tree)
1625 return NULL;
1626 if (RB_EMPTY_ROOT(&service_tree->rb))
1627 return NULL;
1628 return cfq_rb_first(service_tree);
1631 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1633 struct cfq_group *cfqg;
1634 struct cfq_queue *cfqq;
1635 int i, j;
1636 struct cfq_rb_root *st;
1638 if (!cfqd->rq_queued)
1639 return NULL;
1641 cfqg = cfq_get_next_cfqg(cfqd);
1642 if (!cfqg)
1643 return NULL;
1645 for_each_cfqg_st(cfqg, i, j, st)
1646 if ((cfqq = cfq_rb_first(st)) != NULL)
1647 return cfqq;
1648 return NULL;
1652 * Get and set a new active queue for service.
1654 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1655 struct cfq_queue *cfqq)
1657 if (!cfqq)
1658 cfqq = cfq_get_next_queue(cfqd);
1660 __cfq_set_active_queue(cfqd, cfqq);
1661 return cfqq;
1664 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1665 struct request *rq)
1667 if (blk_rq_pos(rq) >= cfqd->last_position)
1668 return blk_rq_pos(rq) - cfqd->last_position;
1669 else
1670 return cfqd->last_position - blk_rq_pos(rq);
1673 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1674 struct request *rq, bool for_preempt)
1676 sector_t sdist = cfqq->seek_mean;
1678 if (!sample_valid(cfqq->seek_samples))
1679 sdist = CFQQ_SEEK_THR;
1681 /* if seek_mean is big, using it as close criteria is meaningless */
1682 if (sdist > CFQQ_SEEK_THR && !for_preempt)
1683 sdist = CFQQ_SEEK_THR;
1685 return cfq_dist_from_last(cfqd, rq) <= sdist;
1688 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1689 struct cfq_queue *cur_cfqq)
1691 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1692 struct rb_node *parent, *node;
1693 struct cfq_queue *__cfqq;
1694 sector_t sector = cfqd->last_position;
1696 if (RB_EMPTY_ROOT(root))
1697 return NULL;
1700 * First, if we find a request starting at the end of the last
1701 * request, choose it.
1703 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1704 if (__cfqq)
1705 return __cfqq;
1708 * If the exact sector wasn't found, the parent of the NULL leaf
1709 * will contain the closest sector.
1711 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1712 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq, false))
1713 return __cfqq;
1715 if (blk_rq_pos(__cfqq->next_rq) < sector)
1716 node = rb_next(&__cfqq->p_node);
1717 else
1718 node = rb_prev(&__cfqq->p_node);
1719 if (!node)
1720 return NULL;
1722 __cfqq = rb_entry(node, struct cfq_queue, p_node);
1723 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq, false))
1724 return __cfqq;
1726 return NULL;
1730 * cfqd - obvious
1731 * cur_cfqq - passed in so that we don't decide that the current queue is
1732 * closely cooperating with itself.
1734 * So, basically we're assuming that that cur_cfqq has dispatched at least
1735 * one request, and that cfqd->last_position reflects a position on the disk
1736 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1737 * assumption.
1739 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1740 struct cfq_queue *cur_cfqq)
1742 struct cfq_queue *cfqq;
1744 if (!cfq_cfqq_sync(cur_cfqq))
1745 return NULL;
1746 if (CFQQ_SEEKY(cur_cfqq))
1747 return NULL;
1750 * Don't search priority tree if it's the only queue in the group.
1752 if (cur_cfqq->cfqg->nr_cfqq == 1)
1753 return NULL;
1756 * We should notice if some of the queues are cooperating, eg
1757 * working closely on the same area of the disk. In that case,
1758 * we can group them together and don't waste time idling.
1760 cfqq = cfqq_close(cfqd, cur_cfqq);
1761 if (!cfqq)
1762 return NULL;
1764 /* If new queue belongs to different cfq_group, don't choose it */
1765 if (cur_cfqq->cfqg != cfqq->cfqg)
1766 return NULL;
1769 * It only makes sense to merge sync queues.
1771 if (!cfq_cfqq_sync(cfqq))
1772 return NULL;
1773 if (CFQQ_SEEKY(cfqq))
1774 return NULL;
1777 * Do not merge queues of different priority classes
1779 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1780 return NULL;
1782 return cfqq;
1786 * Determine whether we should enforce idle window for this queue.
1789 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1791 enum wl_prio_t prio = cfqq_prio(cfqq);
1792 struct cfq_rb_root *service_tree = cfqq->service_tree;
1794 BUG_ON(!service_tree);
1795 BUG_ON(!service_tree->count);
1797 /* We never do for idle class queues. */
1798 if (prio == IDLE_WORKLOAD)
1799 return false;
1801 /* We do for queues that were marked with idle window flag. */
1802 if (cfq_cfqq_idle_window(cfqq) &&
1803 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
1804 return true;
1807 * Otherwise, we do only if they are the last ones
1808 * in their service tree.
1810 return service_tree->count == 1 && cfq_cfqq_sync(cfqq);
1813 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1815 struct cfq_queue *cfqq = cfqd->active_queue;
1816 struct cfq_io_context *cic;
1817 unsigned long sl;
1820 * SSD device without seek penalty, disable idling. But only do so
1821 * for devices that support queuing, otherwise we still have a problem
1822 * with sync vs async workloads.
1824 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1825 return;
1827 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1828 WARN_ON(cfq_cfqq_slice_new(cfqq));
1831 * idle is disabled, either manually or by past process history
1833 if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
1834 return;
1837 * still active requests from this queue, don't idle
1839 if (cfqq->dispatched)
1840 return;
1843 * task has exited, don't wait
1845 cic = cfqd->active_cic;
1846 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1847 return;
1850 * If our average think time is larger than the remaining time
1851 * slice, then don't idle. This avoids overrunning the allotted
1852 * time slice.
1854 if (sample_valid(cic->ttime_samples) &&
1855 (cfqq->slice_end - jiffies < cic->ttime_mean))
1856 return;
1858 cfq_mark_cfqq_wait_request(cfqq);
1860 sl = cfqd->cfq_slice_idle;
1862 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1863 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1867 * Move request from internal lists to the request queue dispatch list.
1869 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1871 struct cfq_data *cfqd = q->elevator->elevator_data;
1872 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1874 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1876 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1877 cfq_remove_request(rq);
1878 cfqq->dispatched++;
1879 elv_dispatch_sort(q, rq);
1881 if (cfq_cfqq_sync(cfqq))
1882 cfqd->sync_flight++;
1883 cfqq->nr_sectors += blk_rq_sectors(rq);
1887 * return expired entry, or NULL to just start from scratch in rbtree
1889 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1891 struct request *rq = NULL;
1893 if (cfq_cfqq_fifo_expire(cfqq))
1894 return NULL;
1896 cfq_mark_cfqq_fifo_expire(cfqq);
1898 if (list_empty(&cfqq->fifo))
1899 return NULL;
1901 rq = rq_entry_fifo(cfqq->fifo.next);
1902 if (time_before(jiffies, rq_fifo_time(rq)))
1903 rq = NULL;
1905 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
1906 return rq;
1909 static inline int
1910 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1912 const int base_rq = cfqd->cfq_slice_async_rq;
1914 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1916 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1920 * Must be called with the queue_lock held.
1922 static int cfqq_process_refs(struct cfq_queue *cfqq)
1924 int process_refs, io_refs;
1926 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1927 process_refs = atomic_read(&cfqq->ref) - io_refs;
1928 BUG_ON(process_refs < 0);
1929 return process_refs;
1932 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1934 int process_refs, new_process_refs;
1935 struct cfq_queue *__cfqq;
1938 * If there are no process references on the new_cfqq, then it is
1939 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
1940 * chain may have dropped their last reference (not just their
1941 * last process reference).
1943 if (!cfqq_process_refs(new_cfqq))
1944 return;
1946 /* Avoid a circular list and skip interim queue merges */
1947 while ((__cfqq = new_cfqq->new_cfqq)) {
1948 if (__cfqq == cfqq)
1949 return;
1950 new_cfqq = __cfqq;
1953 process_refs = cfqq_process_refs(cfqq);
1954 new_process_refs = cfqq_process_refs(new_cfqq);
1956 * If the process for the cfqq has gone away, there is no
1957 * sense in merging the queues.
1959 if (process_refs == 0 || new_process_refs == 0)
1960 return;
1963 * Merge in the direction of the lesser amount of work.
1965 if (new_process_refs >= process_refs) {
1966 cfqq->new_cfqq = new_cfqq;
1967 atomic_add(process_refs, &new_cfqq->ref);
1968 } else {
1969 new_cfqq->new_cfqq = cfqq;
1970 atomic_add(new_process_refs, &cfqq->ref);
1974 static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
1975 struct cfq_group *cfqg, enum wl_prio_t prio)
1977 struct cfq_queue *queue;
1978 int i;
1979 bool key_valid = false;
1980 unsigned long lowest_key = 0;
1981 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
1983 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
1984 /* select the one with lowest rb_key */
1985 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
1986 if (queue &&
1987 (!key_valid || time_before(queue->rb_key, lowest_key))) {
1988 lowest_key = queue->rb_key;
1989 cur_best = i;
1990 key_valid = true;
1994 return cur_best;
1997 static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
1999 unsigned slice;
2000 unsigned count;
2001 struct cfq_rb_root *st;
2002 unsigned group_slice;
2004 if (!cfqg) {
2005 cfqd->serving_prio = IDLE_WORKLOAD;
2006 cfqd->workload_expires = jiffies + 1;
2007 return;
2010 /* Choose next priority. RT > BE > IDLE */
2011 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2012 cfqd->serving_prio = RT_WORKLOAD;
2013 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2014 cfqd->serving_prio = BE_WORKLOAD;
2015 else {
2016 cfqd->serving_prio = IDLE_WORKLOAD;
2017 cfqd->workload_expires = jiffies + 1;
2018 return;
2022 * For RT and BE, we have to choose also the type
2023 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2024 * expiration time
2026 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2027 count = st->count;
2030 * check workload expiration, and that we still have other queues ready
2032 if (count && !time_after(jiffies, cfqd->workload_expires))
2033 return;
2035 /* otherwise select new workload type */
2036 cfqd->serving_type =
2037 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2038 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2039 count = st->count;
2042 * the workload slice is computed as a fraction of target latency
2043 * proportional to the number of queues in that workload, over
2044 * all the queues in the same priority class
2046 group_slice = cfq_group_slice(cfqd, cfqg);
2048 slice = group_slice * count /
2049 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2050 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2052 if (cfqd->serving_type == ASYNC_WORKLOAD) {
2053 unsigned int tmp;
2056 * Async queues are currently system wide. Just taking
2057 * proportion of queues with-in same group will lead to higher
2058 * async ratio system wide as generally root group is going
2059 * to have higher weight. A more accurate thing would be to
2060 * calculate system wide asnc/sync ratio.
2062 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2063 tmp = tmp/cfqd->busy_queues;
2064 slice = min_t(unsigned, slice, tmp);
2066 /* async workload slice is scaled down according to
2067 * the sync/async slice ratio. */
2068 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2069 } else
2070 /* sync workload slice is at least 2 * cfq_slice_idle */
2071 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2073 slice = max_t(unsigned, slice, CFQ_MIN_TT);
2074 cfqd->workload_expires = jiffies + slice;
2075 cfqd->noidle_tree_requires_idle = false;
2078 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2080 struct cfq_rb_root *st = &cfqd->grp_service_tree;
2081 struct cfq_group *cfqg;
2083 if (RB_EMPTY_ROOT(&st->rb))
2084 return NULL;
2085 cfqg = cfq_rb_first_group(st);
2086 st->active = &cfqg->rb_node;
2087 update_min_vdisktime(st);
2088 return cfqg;
2091 static void cfq_choose_cfqg(struct cfq_data *cfqd)
2093 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2095 cfqd->serving_group = cfqg;
2097 /* Restore the workload type data */
2098 if (cfqg->saved_workload_slice) {
2099 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2100 cfqd->serving_type = cfqg->saved_workload;
2101 cfqd->serving_prio = cfqg->saved_serving_prio;
2102 } else
2103 cfqd->workload_expires = jiffies - 1;
2105 choose_service_tree(cfqd, cfqg);
2109 * Select a queue for service. If we have a current active queue,
2110 * check whether to continue servicing it, or retrieve and set a new one.
2112 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2114 struct cfq_queue *cfqq, *new_cfqq = NULL;
2116 cfqq = cfqd->active_queue;
2117 if (!cfqq)
2118 goto new_queue;
2120 if (!cfqd->rq_queued)
2121 return NULL;
2124 * We were waiting for group to get backlogged. Expire the queue
2126 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2127 goto expire;
2130 * The active queue has run out of time, expire it and select new.
2132 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2134 * If slice had not expired at the completion of last request
2135 * we might not have turned on wait_busy flag. Don't expire
2136 * the queue yet. Allow the group to get backlogged.
2138 * The very fact that we have used the slice, that means we
2139 * have been idling all along on this queue and it should be
2140 * ok to wait for this request to complete.
2142 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2143 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2144 cfqq = NULL;
2145 goto keep_queue;
2146 } else
2147 goto expire;
2151 * The active queue has requests and isn't expired, allow it to
2152 * dispatch.
2154 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2155 goto keep_queue;
2158 * If another queue has a request waiting within our mean seek
2159 * distance, let it run. The expire code will check for close
2160 * cooperators and put the close queue at the front of the service
2161 * tree. If possible, merge the expiring queue with the new cfqq.
2163 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2164 if (new_cfqq) {
2165 if (!cfqq->new_cfqq)
2166 cfq_setup_merge(cfqq, new_cfqq);
2167 goto expire;
2171 * No requests pending. If the active queue still has requests in
2172 * flight or is idling for a new request, allow either of these
2173 * conditions to happen (or time out) before selecting a new queue.
2175 if (timer_pending(&cfqd->idle_slice_timer) ||
2176 (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
2177 cfqq = NULL;
2178 goto keep_queue;
2181 expire:
2182 cfq_slice_expired(cfqd, 0);
2183 new_queue:
2185 * Current queue expired. Check if we have to switch to a new
2186 * service tree
2188 if (!new_cfqq)
2189 cfq_choose_cfqg(cfqd);
2191 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2192 keep_queue:
2193 return cfqq;
2196 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2198 int dispatched = 0;
2200 while (cfqq->next_rq) {
2201 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2202 dispatched++;
2205 BUG_ON(!list_empty(&cfqq->fifo));
2207 /* By default cfqq is not expired if it is empty. Do it explicitly */
2208 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2209 return dispatched;
2213 * Drain our current requests. Used for barriers and when switching
2214 * io schedulers on-the-fly.
2216 static int cfq_forced_dispatch(struct cfq_data *cfqd)
2218 struct cfq_queue *cfqq;
2219 int dispatched = 0;
2221 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL)
2222 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2224 cfq_slice_expired(cfqd, 0);
2225 BUG_ON(cfqd->busy_queues);
2227 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2228 return dispatched;
2231 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2233 unsigned int max_dispatch;
2236 * Drain async requests before we start sync IO
2238 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
2239 return false;
2242 * If this is an async queue and we have sync IO in flight, let it wait
2244 if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
2245 return false;
2247 max_dispatch = cfqd->cfq_quantum;
2248 if (cfq_class_idle(cfqq))
2249 max_dispatch = 1;
2252 * Does this cfqq already have too much IO in flight?
2254 if (cfqq->dispatched >= max_dispatch) {
2256 * idle queue must always only have a single IO in flight
2258 if (cfq_class_idle(cfqq))
2259 return false;
2262 * We have other queues, don't allow more IO from this one
2264 if (cfqd->busy_queues > 1)
2265 return false;
2268 * Sole queue user, no limit
2270 max_dispatch = -1;
2274 * Async queues must wait a bit before being allowed dispatch.
2275 * We also ramp up the dispatch depth gradually for async IO,
2276 * based on the last sync IO we serviced
2278 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2279 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
2280 unsigned int depth;
2282 depth = last_sync / cfqd->cfq_slice[1];
2283 if (!depth && !cfqq->dispatched)
2284 depth = 1;
2285 if (depth < max_dispatch)
2286 max_dispatch = depth;
2290 * If we're below the current max, allow a dispatch
2292 return cfqq->dispatched < max_dispatch;
2296 * Dispatch a request from cfqq, moving them to the request queue
2297 * dispatch list.
2299 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2301 struct request *rq;
2303 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2305 if (!cfq_may_dispatch(cfqd, cfqq))
2306 return false;
2309 * follow expired path, else get first next available
2311 rq = cfq_check_fifo(cfqq);
2312 if (!rq)
2313 rq = cfqq->next_rq;
2316 * insert request into driver dispatch list
2318 cfq_dispatch_insert(cfqd->queue, rq);
2320 if (!cfqd->active_cic) {
2321 struct cfq_io_context *cic = RQ_CIC(rq);
2323 atomic_long_inc(&cic->ioc->refcount);
2324 cfqd->active_cic = cic;
2327 return true;
2331 * Find the cfqq that we need to service and move a request from that to the
2332 * dispatch list
2334 static int cfq_dispatch_requests(struct request_queue *q, int force)
2336 struct cfq_data *cfqd = q->elevator->elevator_data;
2337 struct cfq_queue *cfqq;
2339 if (!cfqd->busy_queues)
2340 return 0;
2342 if (unlikely(force))
2343 return cfq_forced_dispatch(cfqd);
2345 cfqq = cfq_select_queue(cfqd);
2346 if (!cfqq)
2347 return 0;
2350 * Dispatch a request from this cfqq, if it is allowed
2352 if (!cfq_dispatch_request(cfqd, cfqq))
2353 return 0;
2355 cfqq->slice_dispatch++;
2356 cfq_clear_cfqq_must_dispatch(cfqq);
2359 * expire an async queue immediately if it has used up its slice. idle
2360 * queue always expire after 1 dispatch round.
2362 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2363 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2364 cfq_class_idle(cfqq))) {
2365 cfqq->slice_end = jiffies + 1;
2366 cfq_slice_expired(cfqd, 0);
2369 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2370 return 1;
2374 * task holds one reference to the queue, dropped when task exits. each rq
2375 * in-flight on this queue also holds a reference, dropped when rq is freed.
2377 * Each cfq queue took a reference on the parent group. Drop it now.
2378 * queue lock must be held here.
2380 static void cfq_put_queue(struct cfq_queue *cfqq)
2382 struct cfq_data *cfqd = cfqq->cfqd;
2383 struct cfq_group *cfqg, *orig_cfqg;
2385 BUG_ON(atomic_read(&cfqq->ref) <= 0);
2387 if (!atomic_dec_and_test(&cfqq->ref))
2388 return;
2390 cfq_log_cfqq(cfqd, cfqq, "put_queue");
2391 BUG_ON(rb_first(&cfqq->sort_list));
2392 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2393 cfqg = cfqq->cfqg;
2394 orig_cfqg = cfqq->orig_cfqg;
2396 if (unlikely(cfqd->active_queue == cfqq)) {
2397 __cfq_slice_expired(cfqd, cfqq, 0);
2398 cfq_schedule_dispatch(cfqd);
2401 BUG_ON(cfq_cfqq_on_rr(cfqq));
2402 kmem_cache_free(cfq_pool, cfqq);
2403 cfq_put_cfqg(cfqg);
2404 if (orig_cfqg)
2405 cfq_put_cfqg(orig_cfqg);
2409 * Must always be called with the rcu_read_lock() held
2411 static void
2412 __call_for_each_cic(struct io_context *ioc,
2413 void (*func)(struct io_context *, struct cfq_io_context *))
2415 struct cfq_io_context *cic;
2416 struct hlist_node *n;
2418 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2419 func(ioc, cic);
2423 * Call func for each cic attached to this ioc.
2425 static void
2426 call_for_each_cic(struct io_context *ioc,
2427 void (*func)(struct io_context *, struct cfq_io_context *))
2429 rcu_read_lock();
2430 __call_for_each_cic(ioc, func);
2431 rcu_read_unlock();
2434 static void cfq_cic_free_rcu(struct rcu_head *head)
2436 struct cfq_io_context *cic;
2438 cic = container_of(head, struct cfq_io_context, rcu_head);
2440 kmem_cache_free(cfq_ioc_pool, cic);
2441 elv_ioc_count_dec(cfq_ioc_count);
2443 if (ioc_gone) {
2445 * CFQ scheduler is exiting, grab exit lock and check
2446 * the pending io context count. If it hits zero,
2447 * complete ioc_gone and set it back to NULL
2449 spin_lock(&ioc_gone_lock);
2450 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2451 complete(ioc_gone);
2452 ioc_gone = NULL;
2454 spin_unlock(&ioc_gone_lock);
2458 static void cfq_cic_free(struct cfq_io_context *cic)
2460 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2463 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2465 unsigned long flags;
2467 BUG_ON(!cic->dead_key);
2469 spin_lock_irqsave(&ioc->lock, flags);
2470 radix_tree_delete(&ioc->radix_root, cic->dead_key);
2471 hlist_del_rcu(&cic->cic_list);
2472 spin_unlock_irqrestore(&ioc->lock, flags);
2474 cfq_cic_free(cic);
2478 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2479 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2480 * and ->trim() which is called with the task lock held
2482 static void cfq_free_io_context(struct io_context *ioc)
2485 * ioc->refcount is zero here, or we are called from elv_unregister(),
2486 * so no more cic's are allowed to be linked into this ioc. So it
2487 * should be ok to iterate over the known list, we will see all cic's
2488 * since no new ones are added.
2490 __call_for_each_cic(ioc, cic_free_func);
2493 static void cfq_put_cooperator(struct cfq_queue *cfqq)
2495 struct cfq_queue *__cfqq, *next;
2498 * If this queue was scheduled to merge with another queue, be
2499 * sure to drop the reference taken on that queue (and others in
2500 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2502 __cfqq = cfqq->new_cfqq;
2503 while (__cfqq) {
2504 if (__cfqq == cfqq) {
2505 WARN(1, "cfqq->new_cfqq loop detected\n");
2506 break;
2508 next = __cfqq->new_cfqq;
2509 cfq_put_queue(__cfqq);
2510 __cfqq = next;
2514 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2516 if (unlikely(cfqq == cfqd->active_queue)) {
2517 __cfq_slice_expired(cfqd, cfqq, 0);
2518 cfq_schedule_dispatch(cfqd);
2521 cfq_put_cooperator(cfqq);
2523 cfq_put_queue(cfqq);
2526 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2527 struct cfq_io_context *cic)
2529 struct io_context *ioc = cic->ioc;
2531 list_del_init(&cic->queue_list);
2534 * Make sure key == NULL is seen for dead queues
2536 smp_wmb();
2537 cic->dead_key = (unsigned long) cic->key;
2538 cic->key = NULL;
2540 if (ioc->ioc_data == cic)
2541 rcu_assign_pointer(ioc->ioc_data, NULL);
2543 if (cic->cfqq[BLK_RW_ASYNC]) {
2544 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2545 cic->cfqq[BLK_RW_ASYNC] = NULL;
2548 if (cic->cfqq[BLK_RW_SYNC]) {
2549 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2550 cic->cfqq[BLK_RW_SYNC] = NULL;
2554 static void cfq_exit_single_io_context(struct io_context *ioc,
2555 struct cfq_io_context *cic)
2557 struct cfq_data *cfqd = cic->key;
2559 if (cfqd) {
2560 struct request_queue *q = cfqd->queue;
2561 unsigned long flags;
2563 spin_lock_irqsave(q->queue_lock, flags);
2566 * Ensure we get a fresh copy of the ->key to prevent
2567 * race between exiting task and queue
2569 smp_read_barrier_depends();
2570 if (cic->key)
2571 __cfq_exit_single_io_context(cfqd, cic);
2573 spin_unlock_irqrestore(q->queue_lock, flags);
2578 * The process that ioc belongs to has exited, we need to clean up
2579 * and put the internal structures we have that belongs to that process.
2581 static void cfq_exit_io_context(struct io_context *ioc)
2583 call_for_each_cic(ioc, cfq_exit_single_io_context);
2586 static struct cfq_io_context *
2587 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2589 struct cfq_io_context *cic;
2591 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2592 cfqd->queue->node);
2593 if (cic) {
2594 cic->last_end_request = jiffies;
2595 INIT_LIST_HEAD(&cic->queue_list);
2596 INIT_HLIST_NODE(&cic->cic_list);
2597 cic->dtor = cfq_free_io_context;
2598 cic->exit = cfq_exit_io_context;
2599 elv_ioc_count_inc(cfq_ioc_count);
2602 return cic;
2605 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2607 struct task_struct *tsk = current;
2608 int ioprio_class;
2610 if (!cfq_cfqq_prio_changed(cfqq))
2611 return;
2613 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2614 switch (ioprio_class) {
2615 default:
2616 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2617 case IOPRIO_CLASS_NONE:
2619 * no prio set, inherit CPU scheduling settings
2621 cfqq->ioprio = task_nice_ioprio(tsk);
2622 cfqq->ioprio_class = task_nice_ioclass(tsk);
2623 break;
2624 case IOPRIO_CLASS_RT:
2625 cfqq->ioprio = task_ioprio(ioc);
2626 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2627 break;
2628 case IOPRIO_CLASS_BE:
2629 cfqq->ioprio = task_ioprio(ioc);
2630 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2631 break;
2632 case IOPRIO_CLASS_IDLE:
2633 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2634 cfqq->ioprio = 7;
2635 cfq_clear_cfqq_idle_window(cfqq);
2636 break;
2640 * keep track of original prio settings in case we have to temporarily
2641 * elevate the priority of this queue
2643 cfqq->org_ioprio = cfqq->ioprio;
2644 cfqq->org_ioprio_class = cfqq->ioprio_class;
2645 cfq_clear_cfqq_prio_changed(cfqq);
2648 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2650 struct cfq_data *cfqd = cic->key;
2651 struct cfq_queue *cfqq;
2652 unsigned long flags;
2654 if (unlikely(!cfqd))
2655 return;
2657 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2659 cfqq = cic->cfqq[BLK_RW_ASYNC];
2660 if (cfqq) {
2661 struct cfq_queue *new_cfqq;
2662 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2663 GFP_ATOMIC);
2664 if (new_cfqq) {
2665 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2666 cfq_put_queue(cfqq);
2670 cfqq = cic->cfqq[BLK_RW_SYNC];
2671 if (cfqq)
2672 cfq_mark_cfqq_prio_changed(cfqq);
2674 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2677 static void cfq_ioc_set_ioprio(struct io_context *ioc)
2679 call_for_each_cic(ioc, changed_ioprio);
2680 ioc->ioprio_changed = 0;
2683 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2684 pid_t pid, bool is_sync)
2686 RB_CLEAR_NODE(&cfqq->rb_node);
2687 RB_CLEAR_NODE(&cfqq->p_node);
2688 INIT_LIST_HEAD(&cfqq->fifo);
2690 atomic_set(&cfqq->ref, 0);
2691 cfqq->cfqd = cfqd;
2693 cfq_mark_cfqq_prio_changed(cfqq);
2695 if (is_sync) {
2696 if (!cfq_class_idle(cfqq))
2697 cfq_mark_cfqq_idle_window(cfqq);
2698 cfq_mark_cfqq_sync(cfqq);
2700 cfqq->pid = pid;
2703 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2704 static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2706 struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2707 struct cfq_data *cfqd = cic->key;
2708 unsigned long flags;
2709 struct request_queue *q;
2711 if (unlikely(!cfqd))
2712 return;
2714 q = cfqd->queue;
2716 spin_lock_irqsave(q->queue_lock, flags);
2718 if (sync_cfqq) {
2720 * Drop reference to sync queue. A new sync queue will be
2721 * assigned in new group upon arrival of a fresh request.
2723 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2724 cic_set_cfqq(cic, NULL, 1);
2725 cfq_put_queue(sync_cfqq);
2728 spin_unlock_irqrestore(q->queue_lock, flags);
2731 static void cfq_ioc_set_cgroup(struct io_context *ioc)
2733 call_for_each_cic(ioc, changed_cgroup);
2734 ioc->cgroup_changed = 0;
2736 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
2738 static struct cfq_queue *
2739 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2740 struct io_context *ioc, gfp_t gfp_mask)
2742 struct cfq_queue *cfqq, *new_cfqq = NULL;
2743 struct cfq_io_context *cic;
2744 struct cfq_group *cfqg;
2746 retry:
2747 cfqg = cfq_get_cfqg(cfqd, 1);
2748 cic = cfq_cic_lookup(cfqd, ioc);
2749 /* cic always exists here */
2750 cfqq = cic_to_cfqq(cic, is_sync);
2753 * Always try a new alloc if we fell back to the OOM cfqq
2754 * originally, since it should just be a temporary situation.
2756 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2757 cfqq = NULL;
2758 if (new_cfqq) {
2759 cfqq = new_cfqq;
2760 new_cfqq = NULL;
2761 } else if (gfp_mask & __GFP_WAIT) {
2762 spin_unlock_irq(cfqd->queue->queue_lock);
2763 new_cfqq = kmem_cache_alloc_node(cfq_pool,
2764 gfp_mask | __GFP_ZERO,
2765 cfqd->queue->node);
2766 spin_lock_irq(cfqd->queue->queue_lock);
2767 if (new_cfqq)
2768 goto retry;
2769 } else {
2770 cfqq = kmem_cache_alloc_node(cfq_pool,
2771 gfp_mask | __GFP_ZERO,
2772 cfqd->queue->node);
2775 if (cfqq) {
2776 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2777 cfq_init_prio_data(cfqq, ioc);
2778 cfq_link_cfqq_cfqg(cfqq, cfqg);
2779 cfq_log_cfqq(cfqd, cfqq, "alloced");
2780 } else
2781 cfqq = &cfqd->oom_cfqq;
2784 if (new_cfqq)
2785 kmem_cache_free(cfq_pool, new_cfqq);
2787 return cfqq;
2790 static struct cfq_queue **
2791 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2793 switch (ioprio_class) {
2794 case IOPRIO_CLASS_RT:
2795 return &cfqd->async_cfqq[0][ioprio];
2796 case IOPRIO_CLASS_BE:
2797 return &cfqd->async_cfqq[1][ioprio];
2798 case IOPRIO_CLASS_IDLE:
2799 return &cfqd->async_idle_cfqq;
2800 default:
2801 BUG();
2805 static struct cfq_queue *
2806 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2807 gfp_t gfp_mask)
2809 const int ioprio = task_ioprio(ioc);
2810 const int ioprio_class = task_ioprio_class(ioc);
2811 struct cfq_queue **async_cfqq = NULL;
2812 struct cfq_queue *cfqq = NULL;
2814 if (!is_sync) {
2815 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2816 cfqq = *async_cfqq;
2819 if (!cfqq)
2820 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2823 * pin the queue now that it's allocated, scheduler exit will prune it
2825 if (!is_sync && !(*async_cfqq)) {
2826 atomic_inc(&cfqq->ref);
2827 *async_cfqq = cfqq;
2830 atomic_inc(&cfqq->ref);
2831 return cfqq;
2835 * We drop cfq io contexts lazily, so we may find a dead one.
2837 static void
2838 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2839 struct cfq_io_context *cic)
2841 unsigned long flags;
2843 WARN_ON(!list_empty(&cic->queue_list));
2845 spin_lock_irqsave(&ioc->lock, flags);
2847 BUG_ON(ioc->ioc_data == cic);
2849 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
2850 hlist_del_rcu(&cic->cic_list);
2851 spin_unlock_irqrestore(&ioc->lock, flags);
2853 cfq_cic_free(cic);
2856 static struct cfq_io_context *
2857 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2859 struct cfq_io_context *cic;
2860 unsigned long flags;
2861 void *k;
2863 if (unlikely(!ioc))
2864 return NULL;
2866 rcu_read_lock();
2869 * we maintain a last-hit cache, to avoid browsing over the tree
2871 cic = rcu_dereference(ioc->ioc_data);
2872 if (cic && cic->key == cfqd) {
2873 rcu_read_unlock();
2874 return cic;
2877 do {
2878 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
2879 rcu_read_unlock();
2880 if (!cic)
2881 break;
2882 /* ->key must be copied to avoid race with cfq_exit_queue() */
2883 k = cic->key;
2884 if (unlikely(!k)) {
2885 cfq_drop_dead_cic(cfqd, ioc, cic);
2886 rcu_read_lock();
2887 continue;
2890 spin_lock_irqsave(&ioc->lock, flags);
2891 rcu_assign_pointer(ioc->ioc_data, cic);
2892 spin_unlock_irqrestore(&ioc->lock, flags);
2893 break;
2894 } while (1);
2896 return cic;
2900 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2901 * the process specific cfq io context when entered from the block layer.
2902 * Also adds the cic to a per-cfqd list, used when this queue is removed.
2904 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2905 struct cfq_io_context *cic, gfp_t gfp_mask)
2907 unsigned long flags;
2908 int ret;
2910 ret = radix_tree_preload(gfp_mask);
2911 if (!ret) {
2912 cic->ioc = ioc;
2913 cic->key = cfqd;
2915 spin_lock_irqsave(&ioc->lock, flags);
2916 ret = radix_tree_insert(&ioc->radix_root,
2917 (unsigned long) cfqd, cic);
2918 if (!ret)
2919 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
2920 spin_unlock_irqrestore(&ioc->lock, flags);
2922 radix_tree_preload_end();
2924 if (!ret) {
2925 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2926 list_add(&cic->queue_list, &cfqd->cic_list);
2927 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2931 if (ret)
2932 printk(KERN_ERR "cfq: cic link failed!\n");
2934 return ret;
2938 * Setup general io context and cfq io context. There can be several cfq
2939 * io contexts per general io context, if this process is doing io to more
2940 * than one device managed by cfq.
2942 static struct cfq_io_context *
2943 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2945 struct io_context *ioc = NULL;
2946 struct cfq_io_context *cic;
2948 might_sleep_if(gfp_mask & __GFP_WAIT);
2950 ioc = get_io_context(gfp_mask, cfqd->queue->node);
2951 if (!ioc)
2952 return NULL;
2954 cic = cfq_cic_lookup(cfqd, ioc);
2955 if (cic)
2956 goto out;
2958 cic = cfq_alloc_io_context(cfqd, gfp_mask);
2959 if (cic == NULL)
2960 goto err;
2962 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
2963 goto err_free;
2965 out:
2966 smp_read_barrier_depends();
2967 if (unlikely(ioc->ioprio_changed))
2968 cfq_ioc_set_ioprio(ioc);
2970 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2971 if (unlikely(ioc->cgroup_changed))
2972 cfq_ioc_set_cgroup(ioc);
2973 #endif
2974 return cic;
2975 err_free:
2976 cfq_cic_free(cic);
2977 err:
2978 put_io_context(ioc);
2979 return NULL;
2982 static void
2983 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
2985 unsigned long elapsed = jiffies - cic->last_end_request;
2986 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
2988 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
2989 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
2990 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
2993 static void
2994 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2995 struct request *rq)
2997 sector_t sdist;
2998 u64 total;
3000 if (!cfqq->last_request_pos)
3001 sdist = 0;
3002 else if (cfqq->last_request_pos < blk_rq_pos(rq))
3003 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3004 else
3005 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3008 * Don't allow the seek distance to get too large from the
3009 * odd fragment, pagein, etc
3011 if (cfqq->seek_samples <= 60) /* second&third seek */
3012 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
3013 else
3014 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
3016 cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
3017 cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
3018 total = cfqq->seek_total + (cfqq->seek_samples/2);
3019 do_div(total, cfqq->seek_samples);
3020 cfqq->seek_mean = (sector_t)total;
3024 * Disable idle window if the process thinks too long or seeks so much that
3025 * it doesn't matter
3027 static void
3028 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3029 struct cfq_io_context *cic)
3031 int old_idle, enable_idle;
3034 * Don't idle for async or idle io prio class
3036 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3037 return;
3039 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3041 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3042 cfq_mark_cfqq_deep(cfqq);
3044 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3045 (!cfq_cfqq_deep(cfqq) && sample_valid(cfqq->seek_samples)
3046 && CFQQ_SEEKY(cfqq)))
3047 enable_idle = 0;
3048 else if (sample_valid(cic->ttime_samples)) {
3049 if (cic->ttime_mean > cfqd->cfq_slice_idle)
3050 enable_idle = 0;
3051 else
3052 enable_idle = 1;
3055 if (old_idle != enable_idle) {
3056 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3057 if (enable_idle)
3058 cfq_mark_cfqq_idle_window(cfqq);
3059 else
3060 cfq_clear_cfqq_idle_window(cfqq);
3065 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3066 * no or if we aren't sure, a 1 will cause a preempt.
3068 static bool
3069 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3070 struct request *rq)
3072 struct cfq_queue *cfqq;
3074 cfqq = cfqd->active_queue;
3075 if (!cfqq)
3076 return false;
3078 if (cfq_class_idle(new_cfqq))
3079 return false;
3081 if (cfq_class_idle(cfqq))
3082 return true;
3085 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3087 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3088 return false;
3091 * if the new request is sync, but the currently running queue is
3092 * not, let the sync request have priority.
3094 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3095 return true;
3097 if (new_cfqq->cfqg != cfqq->cfqg)
3098 return false;
3100 if (cfq_slice_used(cfqq))
3101 return true;
3103 /* Allow preemption only if we are idling on sync-noidle tree */
3104 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3105 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3106 new_cfqq->service_tree->count == 2 &&
3107 RB_EMPTY_ROOT(&cfqq->sort_list))
3108 return true;
3111 * So both queues are sync. Let the new request get disk time if
3112 * it's a metadata request and the current queue is doing regular IO.
3114 if (rq_is_meta(rq) && !cfqq->meta_pending)
3115 return true;
3118 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3120 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3121 return true;
3123 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3124 return false;
3127 * if this request is as-good as one we would expect from the
3128 * current cfqq, let it preempt
3130 if (cfq_rq_close(cfqd, cfqq, rq, true))
3131 return true;
3133 return false;
3137 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3138 * let it have half of its nominal slice.
3140 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3142 cfq_log_cfqq(cfqd, cfqq, "preempt");
3143 cfq_slice_expired(cfqd, 1);
3146 * Put the new queue at the front of the of the current list,
3147 * so we know that it will be selected next.
3149 BUG_ON(!cfq_cfqq_on_rr(cfqq));
3151 cfq_service_tree_add(cfqd, cfqq, 1);
3153 cfqq->slice_end = 0;
3154 cfq_mark_cfqq_slice_new(cfqq);
3158 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3159 * something we should do about it
3161 static void
3162 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3163 struct request *rq)
3165 struct cfq_io_context *cic = RQ_CIC(rq);
3167 cfqd->rq_queued++;
3168 if (rq_is_meta(rq))
3169 cfqq->meta_pending++;
3171 cfq_update_io_thinktime(cfqd, cic);
3172 cfq_update_io_seektime(cfqd, cfqq, rq);
3173 cfq_update_idle_window(cfqd, cfqq, cic);
3175 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3177 if (cfqq == cfqd->active_queue) {
3179 * Remember that we saw a request from this process, but
3180 * don't start queuing just yet. Otherwise we risk seeing lots
3181 * of tiny requests, because we disrupt the normal plugging
3182 * and merging. If the request is already larger than a single
3183 * page, let it rip immediately. For that case we assume that
3184 * merging is already done. Ditto for a busy system that
3185 * has other work pending, don't risk delaying until the
3186 * idle timer unplug to continue working.
3188 if (cfq_cfqq_wait_request(cfqq)) {
3189 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3190 cfqd->busy_queues > 1) {
3191 del_timer(&cfqd->idle_slice_timer);
3192 cfq_clear_cfqq_wait_request(cfqq);
3193 __blk_run_queue(cfqd->queue);
3194 } else
3195 cfq_mark_cfqq_must_dispatch(cfqq);
3197 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3199 * not the active queue - expire current slice if it is
3200 * idle and has expired it's mean thinktime or this new queue
3201 * has some old slice time left and is of higher priority or
3202 * this new queue is RT and the current one is BE
3204 cfq_preempt_queue(cfqd, cfqq);
3205 __blk_run_queue(cfqd->queue);
3209 static void cfq_insert_request(struct request_queue *q, struct request *rq)
3211 struct cfq_data *cfqd = q->elevator->elevator_data;
3212 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3214 cfq_log_cfqq(cfqd, cfqq, "insert_request");
3215 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
3217 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3218 list_add_tail(&rq->queuelist, &cfqq->fifo);
3219 cfq_add_rq_rb(rq);
3221 cfq_rq_enqueued(cfqd, cfqq, rq);
3225 * Update hw_tag based on peak queue depth over 50 samples under
3226 * sufficient load.
3228 static void cfq_update_hw_tag(struct cfq_data *cfqd)
3230 struct cfq_queue *cfqq = cfqd->active_queue;
3232 if (rq_in_driver(cfqd) > cfqd->hw_tag_est_depth)
3233 cfqd->hw_tag_est_depth = rq_in_driver(cfqd);
3235 if (cfqd->hw_tag == 1)
3236 return;
3238 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3239 rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
3240 return;
3243 * If active queue hasn't enough requests and can idle, cfq might not
3244 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3245 * case
3247 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3248 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3249 CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
3250 return;
3252 if (cfqd->hw_tag_samples++ < 50)
3253 return;
3255 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3256 cfqd->hw_tag = 1;
3257 else
3258 cfqd->hw_tag = 0;
3261 static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3263 struct cfq_io_context *cic = cfqd->active_cic;
3265 /* If the queue already has requests, don't wait */
3266 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3267 return false;
3269 /* If there are other queues in the group, don't wait */
3270 if (cfqq->cfqg->nr_cfqq > 1)
3271 return false;
3273 if (cfq_slice_used(cfqq))
3274 return true;
3276 /* if slice left is less than think time, wait busy */
3277 if (cic && sample_valid(cic->ttime_samples)
3278 && (cfqq->slice_end - jiffies < cic->ttime_mean))
3279 return true;
3282 * If think times is less than a jiffy than ttime_mean=0 and above
3283 * will not be true. It might happen that slice has not expired yet
3284 * but will expire soon (4-5 ns) during select_queue(). To cover the
3285 * case where think time is less than a jiffy, mark the queue wait
3286 * busy if only 1 jiffy is left in the slice.
3288 if (cfqq->slice_end - jiffies == 1)
3289 return true;
3291 return false;
3294 static void cfq_completed_request(struct request_queue *q, struct request *rq)
3296 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3297 struct cfq_data *cfqd = cfqq->cfqd;
3298 const int sync = rq_is_sync(rq);
3299 unsigned long now;
3301 now = jiffies;
3302 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", !!rq_noidle(rq));
3304 cfq_update_hw_tag(cfqd);
3306 WARN_ON(!cfqd->rq_in_driver[sync]);
3307 WARN_ON(!cfqq->dispatched);
3308 cfqd->rq_in_driver[sync]--;
3309 cfqq->dispatched--;
3311 if (cfq_cfqq_sync(cfqq))
3312 cfqd->sync_flight--;
3314 if (sync) {
3315 RQ_CIC(rq)->last_end_request = now;
3316 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3317 cfqd->last_delayed_sync = now;
3321 * If this is the active queue, check if it needs to be expired,
3322 * or if we want to idle in case it has no pending requests.
3324 if (cfqd->active_queue == cfqq) {
3325 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3327 if (cfq_cfqq_slice_new(cfqq)) {
3328 cfq_set_prio_slice(cfqd, cfqq);
3329 cfq_clear_cfqq_slice_new(cfqq);
3333 * Should we wait for next request to come in before we expire
3334 * the queue.
3336 if (cfq_should_wait_busy(cfqd, cfqq)) {
3337 cfqq->slice_end = jiffies + cfqd->cfq_slice_idle;
3338 cfq_mark_cfqq_wait_busy(cfqq);
3342 * Idling is not enabled on:
3343 * - expired queues
3344 * - idle-priority queues
3345 * - async queues
3346 * - queues with still some requests queued
3347 * - when there is a close cooperator
3349 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3350 cfq_slice_expired(cfqd, 1);
3351 else if (sync && cfqq_empty &&
3352 !cfq_close_cooperator(cfqd, cfqq)) {
3353 cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
3355 * Idling is enabled for SYNC_WORKLOAD.
3356 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
3357 * only if we processed at least one !rq_noidle request
3359 if (cfqd->serving_type == SYNC_WORKLOAD
3360 || cfqd->noidle_tree_requires_idle
3361 || cfqq->cfqg->nr_cfqq == 1)
3362 cfq_arm_slice_timer(cfqd);
3366 if (!rq_in_driver(cfqd))
3367 cfq_schedule_dispatch(cfqd);
3371 * we temporarily boost lower priority queues if they are holding fs exclusive
3372 * resources. they are boosted to normal prio (CLASS_BE/4)
3374 static void cfq_prio_boost(struct cfq_queue *cfqq)
3376 if (has_fs_excl()) {
3378 * boost idle prio on transactions that would lock out other
3379 * users of the filesystem
3381 if (cfq_class_idle(cfqq))
3382 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3383 if (cfqq->ioprio > IOPRIO_NORM)
3384 cfqq->ioprio = IOPRIO_NORM;
3385 } else {
3387 * unboost the queue (if needed)
3389 cfqq->ioprio_class = cfqq->org_ioprio_class;
3390 cfqq->ioprio = cfqq->org_ioprio;
3394 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3396 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3397 cfq_mark_cfqq_must_alloc_slice(cfqq);
3398 return ELV_MQUEUE_MUST;
3401 return ELV_MQUEUE_MAY;
3404 static int cfq_may_queue(struct request_queue *q, int rw)
3406 struct cfq_data *cfqd = q->elevator->elevator_data;
3407 struct task_struct *tsk = current;
3408 struct cfq_io_context *cic;
3409 struct cfq_queue *cfqq;
3412 * don't force setup of a queue from here, as a call to may_queue
3413 * does not necessarily imply that a request actually will be queued.
3414 * so just lookup a possibly existing queue, or return 'may queue'
3415 * if that fails
3417 cic = cfq_cic_lookup(cfqd, tsk->io_context);
3418 if (!cic)
3419 return ELV_MQUEUE_MAY;
3421 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3422 if (cfqq) {
3423 cfq_init_prio_data(cfqq, cic->ioc);
3424 cfq_prio_boost(cfqq);
3426 return __cfq_may_queue(cfqq);
3429 return ELV_MQUEUE_MAY;
3433 * queue lock held here
3435 static void cfq_put_request(struct request *rq)
3437 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3439 if (cfqq) {
3440 const int rw = rq_data_dir(rq);
3442 BUG_ON(!cfqq->allocated[rw]);
3443 cfqq->allocated[rw]--;
3445 put_io_context(RQ_CIC(rq)->ioc);
3447 rq->elevator_private = NULL;
3448 rq->elevator_private2 = NULL;
3450 cfq_put_queue(cfqq);
3454 static struct cfq_queue *
3455 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3456 struct cfq_queue *cfqq)
3458 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3459 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3460 cfq_mark_cfqq_coop(cfqq->new_cfqq);
3461 cfq_put_queue(cfqq);
3462 return cic_to_cfqq(cic, 1);
3466 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3467 * was the last process referring to said cfqq.
3469 static struct cfq_queue *
3470 split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3472 if (cfqq_process_refs(cfqq) == 1) {
3473 cfqq->pid = current->pid;
3474 cfq_clear_cfqq_coop(cfqq);
3475 cfq_clear_cfqq_split_coop(cfqq);
3476 return cfqq;
3479 cic_set_cfqq(cic, NULL, 1);
3481 cfq_put_cooperator(cfqq);
3483 cfq_put_queue(cfqq);
3484 return NULL;
3487 * Allocate cfq data structures associated with this request.
3489 static int
3490 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3492 struct cfq_data *cfqd = q->elevator->elevator_data;
3493 struct cfq_io_context *cic;
3494 const int rw = rq_data_dir(rq);
3495 const bool is_sync = rq_is_sync(rq);
3496 struct cfq_queue *cfqq;
3497 unsigned long flags;
3499 might_sleep_if(gfp_mask & __GFP_WAIT);
3501 cic = cfq_get_io_context(cfqd, gfp_mask);
3503 spin_lock_irqsave(q->queue_lock, flags);
3505 if (!cic)
3506 goto queue_fail;
3508 new_queue:
3509 cfqq = cic_to_cfqq(cic, is_sync);
3510 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3511 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3512 cic_set_cfqq(cic, cfqq, is_sync);
3513 } else {
3515 * If the queue was seeky for too long, break it apart.
3517 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
3518 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3519 cfqq = split_cfqq(cic, cfqq);
3520 if (!cfqq)
3521 goto new_queue;
3525 * Check to see if this queue is scheduled to merge with
3526 * another, closely cooperating queue. The merging of
3527 * queues happens here as it must be done in process context.
3528 * The reference on new_cfqq was taken in merge_cfqqs.
3530 if (cfqq->new_cfqq)
3531 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3534 cfqq->allocated[rw]++;
3535 atomic_inc(&cfqq->ref);
3537 spin_unlock_irqrestore(q->queue_lock, flags);
3539 rq->elevator_private = cic;
3540 rq->elevator_private2 = cfqq;
3541 return 0;
3543 queue_fail:
3544 if (cic)
3545 put_io_context(cic->ioc);
3547 cfq_schedule_dispatch(cfqd);
3548 spin_unlock_irqrestore(q->queue_lock, flags);
3549 cfq_log(cfqd, "set_request fail");
3550 return 1;
3553 static void cfq_kick_queue(struct work_struct *work)
3555 struct cfq_data *cfqd =
3556 container_of(work, struct cfq_data, unplug_work);
3557 struct request_queue *q = cfqd->queue;
3559 spin_lock_irq(q->queue_lock);
3560 __blk_run_queue(cfqd->queue);
3561 spin_unlock_irq(q->queue_lock);
3565 * Timer running if the active_queue is currently idling inside its time slice
3567 static void cfq_idle_slice_timer(unsigned long data)
3569 struct cfq_data *cfqd = (struct cfq_data *) data;
3570 struct cfq_queue *cfqq;
3571 unsigned long flags;
3572 int timed_out = 1;
3574 cfq_log(cfqd, "idle timer fired");
3576 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3578 cfqq = cfqd->active_queue;
3579 if (cfqq) {
3580 timed_out = 0;
3583 * We saw a request before the queue expired, let it through
3585 if (cfq_cfqq_must_dispatch(cfqq))
3586 goto out_kick;
3589 * expired
3591 if (cfq_slice_used(cfqq))
3592 goto expire;
3595 * only expire and reinvoke request handler, if there are
3596 * other queues with pending requests
3598 if (!cfqd->busy_queues)
3599 goto out_cont;
3602 * not expired and it has a request pending, let it dispatch
3604 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3605 goto out_kick;
3608 * Queue depth flag is reset only when the idle didn't succeed
3610 cfq_clear_cfqq_deep(cfqq);
3612 expire:
3613 cfq_slice_expired(cfqd, timed_out);
3614 out_kick:
3615 cfq_schedule_dispatch(cfqd);
3616 out_cont:
3617 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3620 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3622 del_timer_sync(&cfqd->idle_slice_timer);
3623 cancel_work_sync(&cfqd->unplug_work);
3626 static void cfq_put_async_queues(struct cfq_data *cfqd)
3628 int i;
3630 for (i = 0; i < IOPRIO_BE_NR; i++) {
3631 if (cfqd->async_cfqq[0][i])
3632 cfq_put_queue(cfqd->async_cfqq[0][i]);
3633 if (cfqd->async_cfqq[1][i])
3634 cfq_put_queue(cfqd->async_cfqq[1][i]);
3637 if (cfqd->async_idle_cfqq)
3638 cfq_put_queue(cfqd->async_idle_cfqq);
3641 static void cfq_cfqd_free(struct rcu_head *head)
3643 kfree(container_of(head, struct cfq_data, rcu));
3646 static void cfq_exit_queue(struct elevator_queue *e)
3648 struct cfq_data *cfqd = e->elevator_data;
3649 struct request_queue *q = cfqd->queue;
3651 cfq_shutdown_timer_wq(cfqd);
3653 spin_lock_irq(q->queue_lock);
3655 if (cfqd->active_queue)
3656 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3658 while (!list_empty(&cfqd->cic_list)) {
3659 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3660 struct cfq_io_context,
3661 queue_list);
3663 __cfq_exit_single_io_context(cfqd, cic);
3666 cfq_put_async_queues(cfqd);
3667 cfq_release_cfq_groups(cfqd);
3668 blkiocg_del_blkio_group(&cfqd->root_group.blkg);
3670 spin_unlock_irq(q->queue_lock);
3672 cfq_shutdown_timer_wq(cfqd);
3674 /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
3675 call_rcu(&cfqd->rcu, cfq_cfqd_free);
3678 static void *cfq_init_queue(struct request_queue *q)
3680 struct cfq_data *cfqd;
3681 int i, j;
3682 struct cfq_group *cfqg;
3683 struct cfq_rb_root *st;
3685 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3686 if (!cfqd)
3687 return NULL;
3689 /* Init root service tree */
3690 cfqd->grp_service_tree = CFQ_RB_ROOT;
3692 /* Init root group */
3693 cfqg = &cfqd->root_group;
3694 for_each_cfqg_st(cfqg, i, j, st)
3695 *st = CFQ_RB_ROOT;
3696 RB_CLEAR_NODE(&cfqg->rb_node);
3698 /* Give preference to root group over other groups */
3699 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3701 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3703 * Take a reference to root group which we never drop. This is just
3704 * to make sure that cfq_put_cfqg() does not try to kfree root group
3706 atomic_set(&cfqg->ref, 1);
3707 blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg, (void *)cfqd,
3709 #endif
3711 * Not strictly needed (since RB_ROOT just clears the node and we
3712 * zeroed cfqd on alloc), but better be safe in case someone decides
3713 * to add magic to the rb code
3715 for (i = 0; i < CFQ_PRIO_LISTS; i++)
3716 cfqd->prio_trees[i] = RB_ROOT;
3719 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3720 * Grab a permanent reference to it, so that the normal code flow
3721 * will not attempt to free it.
3723 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3724 atomic_inc(&cfqd->oom_cfqq.ref);
3725 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
3727 INIT_LIST_HEAD(&cfqd->cic_list);
3729 cfqd->queue = q;
3731 init_timer(&cfqd->idle_slice_timer);
3732 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3733 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3735 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3737 cfqd->cfq_quantum = cfq_quantum;
3738 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3739 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
3740 cfqd->cfq_back_max = cfq_back_max;
3741 cfqd->cfq_back_penalty = cfq_back_penalty;
3742 cfqd->cfq_slice[0] = cfq_slice_async;
3743 cfqd->cfq_slice[1] = cfq_slice_sync;
3744 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3745 cfqd->cfq_slice_idle = cfq_slice_idle;
3746 cfqd->cfq_latency = 1;
3747 cfqd->cfq_group_isolation = 0;
3748 cfqd->hw_tag = -1;
3750 * we optimistically start assuming sync ops weren't delayed in last
3751 * second, in order to have larger depth for async operations.
3753 cfqd->last_delayed_sync = jiffies - HZ;
3754 INIT_RCU_HEAD(&cfqd->rcu);
3755 return cfqd;
3758 static void cfq_slab_kill(void)
3761 * Caller already ensured that pending RCU callbacks are completed,
3762 * so we should have no busy allocations at this point.
3764 if (cfq_pool)
3765 kmem_cache_destroy(cfq_pool);
3766 if (cfq_ioc_pool)
3767 kmem_cache_destroy(cfq_ioc_pool);
3770 static int __init cfq_slab_setup(void)
3772 cfq_pool = KMEM_CACHE(cfq_queue, 0);
3773 if (!cfq_pool)
3774 goto fail;
3776 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
3777 if (!cfq_ioc_pool)
3778 goto fail;
3780 return 0;
3781 fail:
3782 cfq_slab_kill();
3783 return -ENOMEM;
3787 * sysfs parts below -->
3789 static ssize_t
3790 cfq_var_show(unsigned int var, char *page)
3792 return sprintf(page, "%d\n", var);
3795 static ssize_t
3796 cfq_var_store(unsigned int *var, const char *page, size_t count)
3798 char *p = (char *) page;
3800 *var = simple_strtoul(p, &p, 10);
3801 return count;
3804 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
3805 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
3807 struct cfq_data *cfqd = e->elevator_data; \
3808 unsigned int __data = __VAR; \
3809 if (__CONV) \
3810 __data = jiffies_to_msecs(__data); \
3811 return cfq_var_show(__data, (page)); \
3813 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3814 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3815 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3816 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3817 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3818 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3819 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3820 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3821 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3822 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
3823 SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
3824 #undef SHOW_FUNCTION
3826 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
3827 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
3829 struct cfq_data *cfqd = e->elevator_data; \
3830 unsigned int __data; \
3831 int ret = cfq_var_store(&__data, (page), count); \
3832 if (__data < (MIN)) \
3833 __data = (MIN); \
3834 else if (__data > (MAX)) \
3835 __data = (MAX); \
3836 if (__CONV) \
3837 *(__PTR) = msecs_to_jiffies(__data); \
3838 else \
3839 *(__PTR) = __data; \
3840 return ret; \
3842 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3843 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3844 UINT_MAX, 1);
3845 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3846 UINT_MAX, 1);
3847 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3848 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3849 UINT_MAX, 0);
3850 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3851 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3852 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3853 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3854 UINT_MAX, 0);
3855 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
3856 STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
3857 #undef STORE_FUNCTION
3859 #define CFQ_ATTR(name) \
3860 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3862 static struct elv_fs_entry cfq_attrs[] = {
3863 CFQ_ATTR(quantum),
3864 CFQ_ATTR(fifo_expire_sync),
3865 CFQ_ATTR(fifo_expire_async),
3866 CFQ_ATTR(back_seek_max),
3867 CFQ_ATTR(back_seek_penalty),
3868 CFQ_ATTR(slice_sync),
3869 CFQ_ATTR(slice_async),
3870 CFQ_ATTR(slice_async_rq),
3871 CFQ_ATTR(slice_idle),
3872 CFQ_ATTR(low_latency),
3873 CFQ_ATTR(group_isolation),
3874 __ATTR_NULL
3877 static struct elevator_type iosched_cfq = {
3878 .ops = {
3879 .elevator_merge_fn = cfq_merge,
3880 .elevator_merged_fn = cfq_merged_request,
3881 .elevator_merge_req_fn = cfq_merged_requests,
3882 .elevator_allow_merge_fn = cfq_allow_merge,
3883 .elevator_dispatch_fn = cfq_dispatch_requests,
3884 .elevator_add_req_fn = cfq_insert_request,
3885 .elevator_activate_req_fn = cfq_activate_request,
3886 .elevator_deactivate_req_fn = cfq_deactivate_request,
3887 .elevator_queue_empty_fn = cfq_queue_empty,
3888 .elevator_completed_req_fn = cfq_completed_request,
3889 .elevator_former_req_fn = elv_rb_former_request,
3890 .elevator_latter_req_fn = elv_rb_latter_request,
3891 .elevator_set_req_fn = cfq_set_request,
3892 .elevator_put_req_fn = cfq_put_request,
3893 .elevator_may_queue_fn = cfq_may_queue,
3894 .elevator_init_fn = cfq_init_queue,
3895 .elevator_exit_fn = cfq_exit_queue,
3896 .trim = cfq_free_io_context,
3898 .elevator_attrs = cfq_attrs,
3899 .elevator_name = "cfq",
3900 .elevator_owner = THIS_MODULE,
3903 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3904 static struct blkio_policy_type blkio_policy_cfq = {
3905 .ops = {
3906 .blkio_unlink_group_fn = cfq_unlink_blkio_group,
3907 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
3910 #else
3911 static struct blkio_policy_type blkio_policy_cfq;
3912 #endif
3914 static int __init cfq_init(void)
3917 * could be 0 on HZ < 1000 setups
3919 if (!cfq_slice_async)
3920 cfq_slice_async = 1;
3921 if (!cfq_slice_idle)
3922 cfq_slice_idle = 1;
3924 if (cfq_slab_setup())
3925 return -ENOMEM;
3927 elv_register(&iosched_cfq);
3928 blkio_policy_register(&blkio_policy_cfq);
3930 return 0;
3933 static void __exit cfq_exit(void)
3935 DECLARE_COMPLETION_ONSTACK(all_gone);
3936 blkio_policy_unregister(&blkio_policy_cfq);
3937 elv_unregister(&iosched_cfq);
3938 ioc_gone = &all_gone;
3939 /* ioc_gone's update must be visible before reading ioc_count */
3940 smp_wmb();
3943 * this also protects us from entering cfq_slab_kill() with
3944 * pending RCU callbacks
3946 if (elv_ioc_count_read(cfq_ioc_count))
3947 wait_for_completion(&all_gone);
3948 cfq_slab_kill();
3951 module_init(cfq_init);
3952 module_exit(cfq_exit);
3954 MODULE_AUTHOR("Jens Axboe");
3955 MODULE_LICENSE("GPL");
3956 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");