md: manage redundancy group in sysfs when changing level.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / perf_event.c
blob44b4c626907cab07b2f5a0669b6823935c79b2c0
1 /*
2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/sysfs.h>
20 #include <linux/dcache.h>
21 #include <linux/percpu.h>
22 #include <linux/ptrace.h>
23 #include <linux/vmstat.h>
24 #include <linux/vmalloc.h>
25 #include <linux/hardirq.h>
26 #include <linux/rculist.h>
27 #include <linux/uaccess.h>
28 #include <linux/syscalls.h>
29 #include <linux/anon_inodes.h>
30 #include <linux/kernel_stat.h>
31 #include <linux/perf_event.h>
32 #include <linux/ftrace_event.h>
33 #include <linux/hw_breakpoint.h>
35 #include <asm/irq_regs.h>
38 * Each CPU has a list of per CPU events:
40 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
42 int perf_max_events __read_mostly = 1;
43 static int perf_reserved_percpu __read_mostly;
44 static int perf_overcommit __read_mostly = 1;
46 static atomic_t nr_events __read_mostly;
47 static atomic_t nr_mmap_events __read_mostly;
48 static atomic_t nr_comm_events __read_mostly;
49 static atomic_t nr_task_events __read_mostly;
52 * perf event paranoia level:
53 * -1 - not paranoid at all
54 * 0 - disallow raw tracepoint access for unpriv
55 * 1 - disallow cpu events for unpriv
56 * 2 - disallow kernel profiling for unpriv
58 int sysctl_perf_event_paranoid __read_mostly = 1;
60 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
63 * max perf event sample rate
65 int sysctl_perf_event_sample_rate __read_mostly = 100000;
67 static atomic64_t perf_event_id;
70 * Lock for (sysadmin-configurable) event reservations:
72 static DEFINE_SPINLOCK(perf_resource_lock);
75 * Architecture provided APIs - weak aliases:
77 extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
79 return NULL;
82 void __weak hw_perf_disable(void) { barrier(); }
83 void __weak hw_perf_enable(void) { barrier(); }
85 int __weak
86 hw_perf_group_sched_in(struct perf_event *group_leader,
87 struct perf_cpu_context *cpuctx,
88 struct perf_event_context *ctx)
90 return 0;
93 void __weak perf_event_print_debug(void) { }
95 static DEFINE_PER_CPU(int, perf_disable_count);
97 void perf_disable(void)
99 if (!__get_cpu_var(perf_disable_count)++)
100 hw_perf_disable();
103 void perf_enable(void)
105 if (!--__get_cpu_var(perf_disable_count))
106 hw_perf_enable();
109 static void get_ctx(struct perf_event_context *ctx)
111 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
114 static void free_ctx(struct rcu_head *head)
116 struct perf_event_context *ctx;
118 ctx = container_of(head, struct perf_event_context, rcu_head);
119 kfree(ctx);
122 static void put_ctx(struct perf_event_context *ctx)
124 if (atomic_dec_and_test(&ctx->refcount)) {
125 if (ctx->parent_ctx)
126 put_ctx(ctx->parent_ctx);
127 if (ctx->task)
128 put_task_struct(ctx->task);
129 call_rcu(&ctx->rcu_head, free_ctx);
133 static void unclone_ctx(struct perf_event_context *ctx)
135 if (ctx->parent_ctx) {
136 put_ctx(ctx->parent_ctx);
137 ctx->parent_ctx = NULL;
142 * If we inherit events we want to return the parent event id
143 * to userspace.
145 static u64 primary_event_id(struct perf_event *event)
147 u64 id = event->id;
149 if (event->parent)
150 id = event->parent->id;
152 return id;
156 * Get the perf_event_context for a task and lock it.
157 * This has to cope with with the fact that until it is locked,
158 * the context could get moved to another task.
160 static struct perf_event_context *
161 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
163 struct perf_event_context *ctx;
165 rcu_read_lock();
166 retry:
167 ctx = rcu_dereference(task->perf_event_ctxp);
168 if (ctx) {
170 * If this context is a clone of another, it might
171 * get swapped for another underneath us by
172 * perf_event_task_sched_out, though the
173 * rcu_read_lock() protects us from any context
174 * getting freed. Lock the context and check if it
175 * got swapped before we could get the lock, and retry
176 * if so. If we locked the right context, then it
177 * can't get swapped on us any more.
179 raw_spin_lock_irqsave(&ctx->lock, *flags);
180 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
181 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
182 goto retry;
185 if (!atomic_inc_not_zero(&ctx->refcount)) {
186 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
187 ctx = NULL;
190 rcu_read_unlock();
191 return ctx;
195 * Get the context for a task and increment its pin_count so it
196 * can't get swapped to another task. This also increments its
197 * reference count so that the context can't get freed.
199 static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
201 struct perf_event_context *ctx;
202 unsigned long flags;
204 ctx = perf_lock_task_context(task, &flags);
205 if (ctx) {
206 ++ctx->pin_count;
207 raw_spin_unlock_irqrestore(&ctx->lock, flags);
209 return ctx;
212 static void perf_unpin_context(struct perf_event_context *ctx)
214 unsigned long flags;
216 raw_spin_lock_irqsave(&ctx->lock, flags);
217 --ctx->pin_count;
218 raw_spin_unlock_irqrestore(&ctx->lock, flags);
219 put_ctx(ctx);
222 static inline u64 perf_clock(void)
224 return cpu_clock(raw_smp_processor_id());
228 * Update the record of the current time in a context.
230 static void update_context_time(struct perf_event_context *ctx)
232 u64 now = perf_clock();
234 ctx->time += now - ctx->timestamp;
235 ctx->timestamp = now;
239 * Update the total_time_enabled and total_time_running fields for a event.
241 static void update_event_times(struct perf_event *event)
243 struct perf_event_context *ctx = event->ctx;
244 u64 run_end;
246 if (event->state < PERF_EVENT_STATE_INACTIVE ||
247 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
248 return;
250 if (ctx->is_active)
251 run_end = ctx->time;
252 else
253 run_end = event->tstamp_stopped;
255 event->total_time_enabled = run_end - event->tstamp_enabled;
257 if (event->state == PERF_EVENT_STATE_INACTIVE)
258 run_end = event->tstamp_stopped;
259 else
260 run_end = ctx->time;
262 event->total_time_running = run_end - event->tstamp_running;
266 * Update total_time_enabled and total_time_running for all events in a group.
268 static void update_group_times(struct perf_event *leader)
270 struct perf_event *event;
272 update_event_times(leader);
273 list_for_each_entry(event, &leader->sibling_list, group_entry)
274 update_event_times(event);
277 static struct list_head *
278 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
280 if (event->attr.pinned)
281 return &ctx->pinned_groups;
282 else
283 return &ctx->flexible_groups;
287 * Add a event from the lists for its context.
288 * Must be called with ctx->mutex and ctx->lock held.
290 static void
291 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
293 struct perf_event *group_leader = event->group_leader;
296 * Depending on whether it is a standalone or sibling event,
297 * add it straight to the context's event list, or to the group
298 * leader's sibling list:
300 if (group_leader == event) {
301 struct list_head *list;
303 if (is_software_event(event))
304 event->group_flags |= PERF_GROUP_SOFTWARE;
306 list = ctx_group_list(event, ctx);
307 list_add_tail(&event->group_entry, list);
308 } else {
309 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
310 !is_software_event(event))
311 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
313 list_add_tail(&event->group_entry, &group_leader->sibling_list);
314 group_leader->nr_siblings++;
317 list_add_rcu(&event->event_entry, &ctx->event_list);
318 ctx->nr_events++;
319 if (event->attr.inherit_stat)
320 ctx->nr_stat++;
324 * Remove a event from the lists for its context.
325 * Must be called with ctx->mutex and ctx->lock held.
327 static void
328 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
330 if (list_empty(&event->group_entry))
331 return;
332 ctx->nr_events--;
333 if (event->attr.inherit_stat)
334 ctx->nr_stat--;
336 list_del_init(&event->group_entry);
337 list_del_rcu(&event->event_entry);
339 if (event->group_leader != event)
340 event->group_leader->nr_siblings--;
342 update_group_times(event);
345 * If event was in error state, then keep it
346 * that way, otherwise bogus counts will be
347 * returned on read(). The only way to get out
348 * of error state is by explicit re-enabling
349 * of the event
351 if (event->state > PERF_EVENT_STATE_OFF)
352 event->state = PERF_EVENT_STATE_OFF;
355 static void
356 perf_destroy_group(struct perf_event *event, struct perf_event_context *ctx)
358 struct perf_event *sibling, *tmp;
361 * If this was a group event with sibling events then
362 * upgrade the siblings to singleton events by adding them
363 * to the context list directly:
365 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
366 struct list_head *list;
368 list = ctx_group_list(event, ctx);
369 list_move_tail(&sibling->group_entry, list);
370 sibling->group_leader = sibling;
372 /* Inherit group flags from the previous leader */
373 sibling->group_flags = event->group_flags;
377 static void
378 event_sched_out(struct perf_event *event,
379 struct perf_cpu_context *cpuctx,
380 struct perf_event_context *ctx)
382 if (event->state != PERF_EVENT_STATE_ACTIVE)
383 return;
385 event->state = PERF_EVENT_STATE_INACTIVE;
386 if (event->pending_disable) {
387 event->pending_disable = 0;
388 event->state = PERF_EVENT_STATE_OFF;
390 event->tstamp_stopped = ctx->time;
391 event->pmu->disable(event);
392 event->oncpu = -1;
394 if (!is_software_event(event))
395 cpuctx->active_oncpu--;
396 ctx->nr_active--;
397 if (event->attr.exclusive || !cpuctx->active_oncpu)
398 cpuctx->exclusive = 0;
401 static void
402 group_sched_out(struct perf_event *group_event,
403 struct perf_cpu_context *cpuctx,
404 struct perf_event_context *ctx)
406 struct perf_event *event;
408 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
409 return;
411 event_sched_out(group_event, cpuctx, ctx);
414 * Schedule out siblings (if any):
416 list_for_each_entry(event, &group_event->sibling_list, group_entry)
417 event_sched_out(event, cpuctx, ctx);
419 if (group_event->attr.exclusive)
420 cpuctx->exclusive = 0;
424 * Cross CPU call to remove a performance event
426 * We disable the event on the hardware level first. After that we
427 * remove it from the context list.
429 static void __perf_event_remove_from_context(void *info)
431 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
432 struct perf_event *event = info;
433 struct perf_event_context *ctx = event->ctx;
436 * If this is a task context, we need to check whether it is
437 * the current task context of this cpu. If not it has been
438 * scheduled out before the smp call arrived.
440 if (ctx->task && cpuctx->task_ctx != ctx)
441 return;
443 raw_spin_lock(&ctx->lock);
445 * Protect the list operation against NMI by disabling the
446 * events on a global level.
448 perf_disable();
450 event_sched_out(event, cpuctx, ctx);
452 list_del_event(event, ctx);
454 if (!ctx->task) {
456 * Allow more per task events with respect to the
457 * reservation:
459 cpuctx->max_pertask =
460 min(perf_max_events - ctx->nr_events,
461 perf_max_events - perf_reserved_percpu);
464 perf_enable();
465 raw_spin_unlock(&ctx->lock);
470 * Remove the event from a task's (or a CPU's) list of events.
472 * Must be called with ctx->mutex held.
474 * CPU events are removed with a smp call. For task events we only
475 * call when the task is on a CPU.
477 * If event->ctx is a cloned context, callers must make sure that
478 * every task struct that event->ctx->task could possibly point to
479 * remains valid. This is OK when called from perf_release since
480 * that only calls us on the top-level context, which can't be a clone.
481 * When called from perf_event_exit_task, it's OK because the
482 * context has been detached from its task.
484 static void perf_event_remove_from_context(struct perf_event *event)
486 struct perf_event_context *ctx = event->ctx;
487 struct task_struct *task = ctx->task;
489 if (!task) {
491 * Per cpu events are removed via an smp call and
492 * the removal is always successful.
494 smp_call_function_single(event->cpu,
495 __perf_event_remove_from_context,
496 event, 1);
497 return;
500 retry:
501 task_oncpu_function_call(task, __perf_event_remove_from_context,
502 event);
504 raw_spin_lock_irq(&ctx->lock);
506 * If the context is active we need to retry the smp call.
508 if (ctx->nr_active && !list_empty(&event->group_entry)) {
509 raw_spin_unlock_irq(&ctx->lock);
510 goto retry;
514 * The lock prevents that this context is scheduled in so we
515 * can remove the event safely, if the call above did not
516 * succeed.
518 if (!list_empty(&event->group_entry))
519 list_del_event(event, ctx);
520 raw_spin_unlock_irq(&ctx->lock);
524 * Cross CPU call to disable a performance event
526 static void __perf_event_disable(void *info)
528 struct perf_event *event = info;
529 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
530 struct perf_event_context *ctx = event->ctx;
533 * If this is a per-task event, need to check whether this
534 * event's task is the current task on this cpu.
536 if (ctx->task && cpuctx->task_ctx != ctx)
537 return;
539 raw_spin_lock(&ctx->lock);
542 * If the event is on, turn it off.
543 * If it is in error state, leave it in error state.
545 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
546 update_context_time(ctx);
547 update_group_times(event);
548 if (event == event->group_leader)
549 group_sched_out(event, cpuctx, ctx);
550 else
551 event_sched_out(event, cpuctx, ctx);
552 event->state = PERF_EVENT_STATE_OFF;
555 raw_spin_unlock(&ctx->lock);
559 * Disable a event.
561 * If event->ctx is a cloned context, callers must make sure that
562 * every task struct that event->ctx->task could possibly point to
563 * remains valid. This condition is satisifed when called through
564 * perf_event_for_each_child or perf_event_for_each because they
565 * hold the top-level event's child_mutex, so any descendant that
566 * goes to exit will block in sync_child_event.
567 * When called from perf_pending_event it's OK because event->ctx
568 * is the current context on this CPU and preemption is disabled,
569 * hence we can't get into perf_event_task_sched_out for this context.
571 void perf_event_disable(struct perf_event *event)
573 struct perf_event_context *ctx = event->ctx;
574 struct task_struct *task = ctx->task;
576 if (!task) {
578 * Disable the event on the cpu that it's on
580 smp_call_function_single(event->cpu, __perf_event_disable,
581 event, 1);
582 return;
585 retry:
586 task_oncpu_function_call(task, __perf_event_disable, event);
588 raw_spin_lock_irq(&ctx->lock);
590 * If the event is still active, we need to retry the cross-call.
592 if (event->state == PERF_EVENT_STATE_ACTIVE) {
593 raw_spin_unlock_irq(&ctx->lock);
594 goto retry;
598 * Since we have the lock this context can't be scheduled
599 * in, so we can change the state safely.
601 if (event->state == PERF_EVENT_STATE_INACTIVE) {
602 update_group_times(event);
603 event->state = PERF_EVENT_STATE_OFF;
606 raw_spin_unlock_irq(&ctx->lock);
609 static int
610 event_sched_in(struct perf_event *event,
611 struct perf_cpu_context *cpuctx,
612 struct perf_event_context *ctx)
614 if (event->state <= PERF_EVENT_STATE_OFF)
615 return 0;
617 event->state = PERF_EVENT_STATE_ACTIVE;
618 event->oncpu = smp_processor_id();
620 * The new state must be visible before we turn it on in the hardware:
622 smp_wmb();
624 if (event->pmu->enable(event)) {
625 event->state = PERF_EVENT_STATE_INACTIVE;
626 event->oncpu = -1;
627 return -EAGAIN;
630 event->tstamp_running += ctx->time - event->tstamp_stopped;
632 if (!is_software_event(event))
633 cpuctx->active_oncpu++;
634 ctx->nr_active++;
636 if (event->attr.exclusive)
637 cpuctx->exclusive = 1;
639 return 0;
642 static int
643 group_sched_in(struct perf_event *group_event,
644 struct perf_cpu_context *cpuctx,
645 struct perf_event_context *ctx)
647 struct perf_event *event, *partial_group;
648 int ret;
650 if (group_event->state == PERF_EVENT_STATE_OFF)
651 return 0;
653 ret = hw_perf_group_sched_in(group_event, cpuctx, ctx);
654 if (ret)
655 return ret < 0 ? ret : 0;
657 if (event_sched_in(group_event, cpuctx, ctx))
658 return -EAGAIN;
661 * Schedule in siblings as one group (if any):
663 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
664 if (event_sched_in(event, cpuctx, ctx)) {
665 partial_group = event;
666 goto group_error;
670 return 0;
672 group_error:
674 * Groups can be scheduled in as one unit only, so undo any
675 * partial group before returning:
677 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
678 if (event == partial_group)
679 break;
680 event_sched_out(event, cpuctx, ctx);
682 event_sched_out(group_event, cpuctx, ctx);
684 return -EAGAIN;
688 * Work out whether we can put this event group on the CPU now.
690 static int group_can_go_on(struct perf_event *event,
691 struct perf_cpu_context *cpuctx,
692 int can_add_hw)
695 * Groups consisting entirely of software events can always go on.
697 if (event->group_flags & PERF_GROUP_SOFTWARE)
698 return 1;
700 * If an exclusive group is already on, no other hardware
701 * events can go on.
703 if (cpuctx->exclusive)
704 return 0;
706 * If this group is exclusive and there are already
707 * events on the CPU, it can't go on.
709 if (event->attr.exclusive && cpuctx->active_oncpu)
710 return 0;
712 * Otherwise, try to add it if all previous groups were able
713 * to go on.
715 return can_add_hw;
718 static void add_event_to_ctx(struct perf_event *event,
719 struct perf_event_context *ctx)
721 list_add_event(event, ctx);
722 event->tstamp_enabled = ctx->time;
723 event->tstamp_running = ctx->time;
724 event->tstamp_stopped = ctx->time;
728 * Cross CPU call to install and enable a performance event
730 * Must be called with ctx->mutex held
732 static void __perf_install_in_context(void *info)
734 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
735 struct perf_event *event = info;
736 struct perf_event_context *ctx = event->ctx;
737 struct perf_event *leader = event->group_leader;
738 int err;
741 * If this is a task context, we need to check whether it is
742 * the current task context of this cpu. If not it has been
743 * scheduled out before the smp call arrived.
744 * Or possibly this is the right context but it isn't
745 * on this cpu because it had no events.
747 if (ctx->task && cpuctx->task_ctx != ctx) {
748 if (cpuctx->task_ctx || ctx->task != current)
749 return;
750 cpuctx->task_ctx = ctx;
753 raw_spin_lock(&ctx->lock);
754 ctx->is_active = 1;
755 update_context_time(ctx);
758 * Protect the list operation against NMI by disabling the
759 * events on a global level. NOP for non NMI based events.
761 perf_disable();
763 add_event_to_ctx(event, ctx);
765 if (event->cpu != -1 && event->cpu != smp_processor_id())
766 goto unlock;
769 * Don't put the event on if it is disabled or if
770 * it is in a group and the group isn't on.
772 if (event->state != PERF_EVENT_STATE_INACTIVE ||
773 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
774 goto unlock;
777 * An exclusive event can't go on if there are already active
778 * hardware events, and no hardware event can go on if there
779 * is already an exclusive event on.
781 if (!group_can_go_on(event, cpuctx, 1))
782 err = -EEXIST;
783 else
784 err = event_sched_in(event, cpuctx, ctx);
786 if (err) {
788 * This event couldn't go on. If it is in a group
789 * then we have to pull the whole group off.
790 * If the event group is pinned then put it in error state.
792 if (leader != event)
793 group_sched_out(leader, cpuctx, ctx);
794 if (leader->attr.pinned) {
795 update_group_times(leader);
796 leader->state = PERF_EVENT_STATE_ERROR;
800 if (!err && !ctx->task && cpuctx->max_pertask)
801 cpuctx->max_pertask--;
803 unlock:
804 perf_enable();
806 raw_spin_unlock(&ctx->lock);
810 * Attach a performance event to a context
812 * First we add the event to the list with the hardware enable bit
813 * in event->hw_config cleared.
815 * If the event is attached to a task which is on a CPU we use a smp
816 * call to enable it in the task context. The task might have been
817 * scheduled away, but we check this in the smp call again.
819 * Must be called with ctx->mutex held.
821 static void
822 perf_install_in_context(struct perf_event_context *ctx,
823 struct perf_event *event,
824 int cpu)
826 struct task_struct *task = ctx->task;
828 if (!task) {
830 * Per cpu events are installed via an smp call and
831 * the install is always successful.
833 smp_call_function_single(cpu, __perf_install_in_context,
834 event, 1);
835 return;
838 retry:
839 task_oncpu_function_call(task, __perf_install_in_context,
840 event);
842 raw_spin_lock_irq(&ctx->lock);
844 * we need to retry the smp call.
846 if (ctx->is_active && list_empty(&event->group_entry)) {
847 raw_spin_unlock_irq(&ctx->lock);
848 goto retry;
852 * The lock prevents that this context is scheduled in so we
853 * can add the event safely, if it the call above did not
854 * succeed.
856 if (list_empty(&event->group_entry))
857 add_event_to_ctx(event, ctx);
858 raw_spin_unlock_irq(&ctx->lock);
862 * Put a event into inactive state and update time fields.
863 * Enabling the leader of a group effectively enables all
864 * the group members that aren't explicitly disabled, so we
865 * have to update their ->tstamp_enabled also.
866 * Note: this works for group members as well as group leaders
867 * since the non-leader members' sibling_lists will be empty.
869 static void __perf_event_mark_enabled(struct perf_event *event,
870 struct perf_event_context *ctx)
872 struct perf_event *sub;
874 event->state = PERF_EVENT_STATE_INACTIVE;
875 event->tstamp_enabled = ctx->time - event->total_time_enabled;
876 list_for_each_entry(sub, &event->sibling_list, group_entry)
877 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
878 sub->tstamp_enabled =
879 ctx->time - sub->total_time_enabled;
883 * Cross CPU call to enable a performance event
885 static void __perf_event_enable(void *info)
887 struct perf_event *event = info;
888 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
889 struct perf_event_context *ctx = event->ctx;
890 struct perf_event *leader = event->group_leader;
891 int err;
894 * If this is a per-task event, need to check whether this
895 * event's task is the current task on this cpu.
897 if (ctx->task && cpuctx->task_ctx != ctx) {
898 if (cpuctx->task_ctx || ctx->task != current)
899 return;
900 cpuctx->task_ctx = ctx;
903 raw_spin_lock(&ctx->lock);
904 ctx->is_active = 1;
905 update_context_time(ctx);
907 if (event->state >= PERF_EVENT_STATE_INACTIVE)
908 goto unlock;
909 __perf_event_mark_enabled(event, ctx);
911 if (event->cpu != -1 && event->cpu != smp_processor_id())
912 goto unlock;
915 * If the event is in a group and isn't the group leader,
916 * then don't put it on unless the group is on.
918 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
919 goto unlock;
921 if (!group_can_go_on(event, cpuctx, 1)) {
922 err = -EEXIST;
923 } else {
924 perf_disable();
925 if (event == leader)
926 err = group_sched_in(event, cpuctx, ctx);
927 else
928 err = event_sched_in(event, cpuctx, ctx);
929 perf_enable();
932 if (err) {
934 * If this event can't go on and it's part of a
935 * group, then the whole group has to come off.
937 if (leader != event)
938 group_sched_out(leader, cpuctx, ctx);
939 if (leader->attr.pinned) {
940 update_group_times(leader);
941 leader->state = PERF_EVENT_STATE_ERROR;
945 unlock:
946 raw_spin_unlock(&ctx->lock);
950 * Enable a event.
952 * If event->ctx is a cloned context, callers must make sure that
953 * every task struct that event->ctx->task could possibly point to
954 * remains valid. This condition is satisfied when called through
955 * perf_event_for_each_child or perf_event_for_each as described
956 * for perf_event_disable.
958 void perf_event_enable(struct perf_event *event)
960 struct perf_event_context *ctx = event->ctx;
961 struct task_struct *task = ctx->task;
963 if (!task) {
965 * Enable the event on the cpu that it's on
967 smp_call_function_single(event->cpu, __perf_event_enable,
968 event, 1);
969 return;
972 raw_spin_lock_irq(&ctx->lock);
973 if (event->state >= PERF_EVENT_STATE_INACTIVE)
974 goto out;
977 * If the event is in error state, clear that first.
978 * That way, if we see the event in error state below, we
979 * know that it has gone back into error state, as distinct
980 * from the task having been scheduled away before the
981 * cross-call arrived.
983 if (event->state == PERF_EVENT_STATE_ERROR)
984 event->state = PERF_EVENT_STATE_OFF;
986 retry:
987 raw_spin_unlock_irq(&ctx->lock);
988 task_oncpu_function_call(task, __perf_event_enable, event);
990 raw_spin_lock_irq(&ctx->lock);
993 * If the context is active and the event is still off,
994 * we need to retry the cross-call.
996 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
997 goto retry;
1000 * Since we have the lock this context can't be scheduled
1001 * in, so we can change the state safely.
1003 if (event->state == PERF_EVENT_STATE_OFF)
1004 __perf_event_mark_enabled(event, ctx);
1006 out:
1007 raw_spin_unlock_irq(&ctx->lock);
1010 static int perf_event_refresh(struct perf_event *event, int refresh)
1013 * not supported on inherited events
1015 if (event->attr.inherit)
1016 return -EINVAL;
1018 atomic_add(refresh, &event->event_limit);
1019 perf_event_enable(event);
1021 return 0;
1024 enum event_type_t {
1025 EVENT_FLEXIBLE = 0x1,
1026 EVENT_PINNED = 0x2,
1027 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1030 static void ctx_sched_out(struct perf_event_context *ctx,
1031 struct perf_cpu_context *cpuctx,
1032 enum event_type_t event_type)
1034 struct perf_event *event;
1036 raw_spin_lock(&ctx->lock);
1037 ctx->is_active = 0;
1038 if (likely(!ctx->nr_events))
1039 goto out;
1040 update_context_time(ctx);
1042 perf_disable();
1043 if (!ctx->nr_active)
1044 goto out_enable;
1046 if (event_type & EVENT_PINNED)
1047 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1048 group_sched_out(event, cpuctx, ctx);
1050 if (event_type & EVENT_FLEXIBLE)
1051 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1052 group_sched_out(event, cpuctx, ctx);
1054 out_enable:
1055 perf_enable();
1056 out:
1057 raw_spin_unlock(&ctx->lock);
1061 * Test whether two contexts are equivalent, i.e. whether they
1062 * have both been cloned from the same version of the same context
1063 * and they both have the same number of enabled events.
1064 * If the number of enabled events is the same, then the set
1065 * of enabled events should be the same, because these are both
1066 * inherited contexts, therefore we can't access individual events
1067 * in them directly with an fd; we can only enable/disable all
1068 * events via prctl, or enable/disable all events in a family
1069 * via ioctl, which will have the same effect on both contexts.
1071 static int context_equiv(struct perf_event_context *ctx1,
1072 struct perf_event_context *ctx2)
1074 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1075 && ctx1->parent_gen == ctx2->parent_gen
1076 && !ctx1->pin_count && !ctx2->pin_count;
1079 static void __perf_event_sync_stat(struct perf_event *event,
1080 struct perf_event *next_event)
1082 u64 value;
1084 if (!event->attr.inherit_stat)
1085 return;
1088 * Update the event value, we cannot use perf_event_read()
1089 * because we're in the middle of a context switch and have IRQs
1090 * disabled, which upsets smp_call_function_single(), however
1091 * we know the event must be on the current CPU, therefore we
1092 * don't need to use it.
1094 switch (event->state) {
1095 case PERF_EVENT_STATE_ACTIVE:
1096 event->pmu->read(event);
1097 /* fall-through */
1099 case PERF_EVENT_STATE_INACTIVE:
1100 update_event_times(event);
1101 break;
1103 default:
1104 break;
1108 * In order to keep per-task stats reliable we need to flip the event
1109 * values when we flip the contexts.
1111 value = atomic64_read(&next_event->count);
1112 value = atomic64_xchg(&event->count, value);
1113 atomic64_set(&next_event->count, value);
1115 swap(event->total_time_enabled, next_event->total_time_enabled);
1116 swap(event->total_time_running, next_event->total_time_running);
1119 * Since we swizzled the values, update the user visible data too.
1121 perf_event_update_userpage(event);
1122 perf_event_update_userpage(next_event);
1125 #define list_next_entry(pos, member) \
1126 list_entry(pos->member.next, typeof(*pos), member)
1128 static void perf_event_sync_stat(struct perf_event_context *ctx,
1129 struct perf_event_context *next_ctx)
1131 struct perf_event *event, *next_event;
1133 if (!ctx->nr_stat)
1134 return;
1136 update_context_time(ctx);
1138 event = list_first_entry(&ctx->event_list,
1139 struct perf_event, event_entry);
1141 next_event = list_first_entry(&next_ctx->event_list,
1142 struct perf_event, event_entry);
1144 while (&event->event_entry != &ctx->event_list &&
1145 &next_event->event_entry != &next_ctx->event_list) {
1147 __perf_event_sync_stat(event, next_event);
1149 event = list_next_entry(event, event_entry);
1150 next_event = list_next_entry(next_event, event_entry);
1155 * Called from scheduler to remove the events of the current task,
1156 * with interrupts disabled.
1158 * We stop each event and update the event value in event->count.
1160 * This does not protect us against NMI, but disable()
1161 * sets the disabled bit in the control field of event _before_
1162 * accessing the event control register. If a NMI hits, then it will
1163 * not restart the event.
1165 void perf_event_task_sched_out(struct task_struct *task,
1166 struct task_struct *next)
1168 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1169 struct perf_event_context *ctx = task->perf_event_ctxp;
1170 struct perf_event_context *next_ctx;
1171 struct perf_event_context *parent;
1172 int do_switch = 1;
1174 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1176 if (likely(!ctx || !cpuctx->task_ctx))
1177 return;
1179 rcu_read_lock();
1180 parent = rcu_dereference(ctx->parent_ctx);
1181 next_ctx = next->perf_event_ctxp;
1182 if (parent && next_ctx &&
1183 rcu_dereference(next_ctx->parent_ctx) == parent) {
1185 * Looks like the two contexts are clones, so we might be
1186 * able to optimize the context switch. We lock both
1187 * contexts and check that they are clones under the
1188 * lock (including re-checking that neither has been
1189 * uncloned in the meantime). It doesn't matter which
1190 * order we take the locks because no other cpu could
1191 * be trying to lock both of these tasks.
1193 raw_spin_lock(&ctx->lock);
1194 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1195 if (context_equiv(ctx, next_ctx)) {
1197 * XXX do we need a memory barrier of sorts
1198 * wrt to rcu_dereference() of perf_event_ctxp
1200 task->perf_event_ctxp = next_ctx;
1201 next->perf_event_ctxp = ctx;
1202 ctx->task = next;
1203 next_ctx->task = task;
1204 do_switch = 0;
1206 perf_event_sync_stat(ctx, next_ctx);
1208 raw_spin_unlock(&next_ctx->lock);
1209 raw_spin_unlock(&ctx->lock);
1211 rcu_read_unlock();
1213 if (do_switch) {
1214 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1215 cpuctx->task_ctx = NULL;
1219 static void task_ctx_sched_out(struct perf_event_context *ctx,
1220 enum event_type_t event_type)
1222 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1224 if (!cpuctx->task_ctx)
1225 return;
1227 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1228 return;
1230 ctx_sched_out(ctx, cpuctx, event_type);
1231 cpuctx->task_ctx = NULL;
1235 * Called with IRQs disabled
1237 static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1239 task_ctx_sched_out(ctx, EVENT_ALL);
1243 * Called with IRQs disabled
1245 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1246 enum event_type_t event_type)
1248 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1251 static void
1252 ctx_pinned_sched_in(struct perf_event_context *ctx,
1253 struct perf_cpu_context *cpuctx)
1255 struct perf_event *event;
1257 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1258 if (event->state <= PERF_EVENT_STATE_OFF)
1259 continue;
1260 if (event->cpu != -1 && event->cpu != smp_processor_id())
1261 continue;
1263 if (group_can_go_on(event, cpuctx, 1))
1264 group_sched_in(event, cpuctx, ctx);
1267 * If this pinned group hasn't been scheduled,
1268 * put it in error state.
1270 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1271 update_group_times(event);
1272 event->state = PERF_EVENT_STATE_ERROR;
1277 static void
1278 ctx_flexible_sched_in(struct perf_event_context *ctx,
1279 struct perf_cpu_context *cpuctx)
1281 struct perf_event *event;
1282 int can_add_hw = 1;
1284 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1285 /* Ignore events in OFF or ERROR state */
1286 if (event->state <= PERF_EVENT_STATE_OFF)
1287 continue;
1289 * Listen to the 'cpu' scheduling filter constraint
1290 * of events:
1292 if (event->cpu != -1 && event->cpu != smp_processor_id())
1293 continue;
1295 if (group_can_go_on(event, cpuctx, can_add_hw))
1296 if (group_sched_in(event, cpuctx, ctx))
1297 can_add_hw = 0;
1301 static void
1302 ctx_sched_in(struct perf_event_context *ctx,
1303 struct perf_cpu_context *cpuctx,
1304 enum event_type_t event_type)
1306 raw_spin_lock(&ctx->lock);
1307 ctx->is_active = 1;
1308 if (likely(!ctx->nr_events))
1309 goto out;
1311 ctx->timestamp = perf_clock();
1313 perf_disable();
1316 * First go through the list and put on any pinned groups
1317 * in order to give them the best chance of going on.
1319 if (event_type & EVENT_PINNED)
1320 ctx_pinned_sched_in(ctx, cpuctx);
1322 /* Then walk through the lower prio flexible groups */
1323 if (event_type & EVENT_FLEXIBLE)
1324 ctx_flexible_sched_in(ctx, cpuctx);
1326 perf_enable();
1327 out:
1328 raw_spin_unlock(&ctx->lock);
1331 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1332 enum event_type_t event_type)
1334 struct perf_event_context *ctx = &cpuctx->ctx;
1336 ctx_sched_in(ctx, cpuctx, event_type);
1339 static void task_ctx_sched_in(struct task_struct *task,
1340 enum event_type_t event_type)
1342 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1343 struct perf_event_context *ctx = task->perf_event_ctxp;
1345 if (likely(!ctx))
1346 return;
1347 if (cpuctx->task_ctx == ctx)
1348 return;
1349 ctx_sched_in(ctx, cpuctx, event_type);
1350 cpuctx->task_ctx = ctx;
1353 * Called from scheduler to add the events of the current task
1354 * with interrupts disabled.
1356 * We restore the event value and then enable it.
1358 * This does not protect us against NMI, but enable()
1359 * sets the enabled bit in the control field of event _before_
1360 * accessing the event control register. If a NMI hits, then it will
1361 * keep the event running.
1363 void perf_event_task_sched_in(struct task_struct *task)
1365 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1366 struct perf_event_context *ctx = task->perf_event_ctxp;
1368 if (likely(!ctx))
1369 return;
1371 if (cpuctx->task_ctx == ctx)
1372 return;
1375 * We want to keep the following priority order:
1376 * cpu pinned (that don't need to move), task pinned,
1377 * cpu flexible, task flexible.
1379 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1381 ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1382 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1383 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1385 cpuctx->task_ctx = ctx;
1388 #define MAX_INTERRUPTS (~0ULL)
1390 static void perf_log_throttle(struct perf_event *event, int enable);
1392 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1394 u64 frequency = event->attr.sample_freq;
1395 u64 sec = NSEC_PER_SEC;
1396 u64 divisor, dividend;
1398 int count_fls, nsec_fls, frequency_fls, sec_fls;
1400 count_fls = fls64(count);
1401 nsec_fls = fls64(nsec);
1402 frequency_fls = fls64(frequency);
1403 sec_fls = 30;
1406 * We got @count in @nsec, with a target of sample_freq HZ
1407 * the target period becomes:
1409 * @count * 10^9
1410 * period = -------------------
1411 * @nsec * sample_freq
1416 * Reduce accuracy by one bit such that @a and @b converge
1417 * to a similar magnitude.
1419 #define REDUCE_FLS(a, b) \
1420 do { \
1421 if (a##_fls > b##_fls) { \
1422 a >>= 1; \
1423 a##_fls--; \
1424 } else { \
1425 b >>= 1; \
1426 b##_fls--; \
1428 } while (0)
1431 * Reduce accuracy until either term fits in a u64, then proceed with
1432 * the other, so that finally we can do a u64/u64 division.
1434 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1435 REDUCE_FLS(nsec, frequency);
1436 REDUCE_FLS(sec, count);
1439 if (count_fls + sec_fls > 64) {
1440 divisor = nsec * frequency;
1442 while (count_fls + sec_fls > 64) {
1443 REDUCE_FLS(count, sec);
1444 divisor >>= 1;
1447 dividend = count * sec;
1448 } else {
1449 dividend = count * sec;
1451 while (nsec_fls + frequency_fls > 64) {
1452 REDUCE_FLS(nsec, frequency);
1453 dividend >>= 1;
1456 divisor = nsec * frequency;
1459 return div64_u64(dividend, divisor);
1462 static void perf_event_stop(struct perf_event *event)
1464 if (!event->pmu->stop)
1465 return event->pmu->disable(event);
1467 return event->pmu->stop(event);
1470 static int perf_event_start(struct perf_event *event)
1472 if (!event->pmu->start)
1473 return event->pmu->enable(event);
1475 return event->pmu->start(event);
1478 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1480 struct hw_perf_event *hwc = &event->hw;
1481 u64 period, sample_period;
1482 s64 delta;
1484 period = perf_calculate_period(event, nsec, count);
1486 delta = (s64)(period - hwc->sample_period);
1487 delta = (delta + 7) / 8; /* low pass filter */
1489 sample_period = hwc->sample_period + delta;
1491 if (!sample_period)
1492 sample_period = 1;
1494 hwc->sample_period = sample_period;
1496 if (atomic64_read(&hwc->period_left) > 8*sample_period) {
1497 perf_disable();
1498 perf_event_stop(event);
1499 atomic64_set(&hwc->period_left, 0);
1500 perf_event_start(event);
1501 perf_enable();
1505 static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1507 struct perf_event *event;
1508 struct hw_perf_event *hwc;
1509 u64 interrupts, now;
1510 s64 delta;
1512 raw_spin_lock(&ctx->lock);
1513 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1514 if (event->state != PERF_EVENT_STATE_ACTIVE)
1515 continue;
1517 if (event->cpu != -1 && event->cpu != smp_processor_id())
1518 continue;
1520 hwc = &event->hw;
1522 interrupts = hwc->interrupts;
1523 hwc->interrupts = 0;
1526 * unthrottle events on the tick
1528 if (interrupts == MAX_INTERRUPTS) {
1529 perf_log_throttle(event, 1);
1530 perf_disable();
1531 event->pmu->unthrottle(event);
1532 perf_enable();
1535 if (!event->attr.freq || !event->attr.sample_freq)
1536 continue;
1538 perf_disable();
1539 event->pmu->read(event);
1540 now = atomic64_read(&event->count);
1541 delta = now - hwc->freq_count_stamp;
1542 hwc->freq_count_stamp = now;
1544 if (delta > 0)
1545 perf_adjust_period(event, TICK_NSEC, delta);
1546 perf_enable();
1548 raw_spin_unlock(&ctx->lock);
1552 * Round-robin a context's events:
1554 static void rotate_ctx(struct perf_event_context *ctx)
1556 raw_spin_lock(&ctx->lock);
1558 /* Rotate the first entry last of non-pinned groups */
1559 list_rotate_left(&ctx->flexible_groups);
1561 raw_spin_unlock(&ctx->lock);
1564 void perf_event_task_tick(struct task_struct *curr)
1566 struct perf_cpu_context *cpuctx;
1567 struct perf_event_context *ctx;
1568 int rotate = 0;
1570 if (!atomic_read(&nr_events))
1571 return;
1573 cpuctx = &__get_cpu_var(perf_cpu_context);
1574 if (cpuctx->ctx.nr_events &&
1575 cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1576 rotate = 1;
1578 ctx = curr->perf_event_ctxp;
1579 if (ctx && ctx->nr_events && ctx->nr_events != ctx->nr_active)
1580 rotate = 1;
1582 perf_ctx_adjust_freq(&cpuctx->ctx);
1583 if (ctx)
1584 perf_ctx_adjust_freq(ctx);
1586 if (!rotate)
1587 return;
1589 perf_disable();
1590 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1591 if (ctx)
1592 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1594 rotate_ctx(&cpuctx->ctx);
1595 if (ctx)
1596 rotate_ctx(ctx);
1598 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1599 if (ctx)
1600 task_ctx_sched_in(curr, EVENT_FLEXIBLE);
1601 perf_enable();
1604 static int event_enable_on_exec(struct perf_event *event,
1605 struct perf_event_context *ctx)
1607 if (!event->attr.enable_on_exec)
1608 return 0;
1610 event->attr.enable_on_exec = 0;
1611 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1612 return 0;
1614 __perf_event_mark_enabled(event, ctx);
1616 return 1;
1620 * Enable all of a task's events that have been marked enable-on-exec.
1621 * This expects task == current.
1623 static void perf_event_enable_on_exec(struct task_struct *task)
1625 struct perf_event_context *ctx;
1626 struct perf_event *event;
1627 unsigned long flags;
1628 int enabled = 0;
1629 int ret;
1631 local_irq_save(flags);
1632 ctx = task->perf_event_ctxp;
1633 if (!ctx || !ctx->nr_events)
1634 goto out;
1636 __perf_event_task_sched_out(ctx);
1638 raw_spin_lock(&ctx->lock);
1640 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1641 ret = event_enable_on_exec(event, ctx);
1642 if (ret)
1643 enabled = 1;
1646 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1647 ret = event_enable_on_exec(event, ctx);
1648 if (ret)
1649 enabled = 1;
1653 * Unclone this context if we enabled any event.
1655 if (enabled)
1656 unclone_ctx(ctx);
1658 raw_spin_unlock(&ctx->lock);
1660 perf_event_task_sched_in(task);
1661 out:
1662 local_irq_restore(flags);
1666 * Cross CPU call to read the hardware event
1668 static void __perf_event_read(void *info)
1670 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1671 struct perf_event *event = info;
1672 struct perf_event_context *ctx = event->ctx;
1675 * If this is a task context, we need to check whether it is
1676 * the current task context of this cpu. If not it has been
1677 * scheduled out before the smp call arrived. In that case
1678 * event->count would have been updated to a recent sample
1679 * when the event was scheduled out.
1681 if (ctx->task && cpuctx->task_ctx != ctx)
1682 return;
1684 raw_spin_lock(&ctx->lock);
1685 update_context_time(ctx);
1686 update_event_times(event);
1687 raw_spin_unlock(&ctx->lock);
1689 event->pmu->read(event);
1692 static u64 perf_event_read(struct perf_event *event)
1695 * If event is enabled and currently active on a CPU, update the
1696 * value in the event structure:
1698 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1699 smp_call_function_single(event->oncpu,
1700 __perf_event_read, event, 1);
1701 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1702 struct perf_event_context *ctx = event->ctx;
1703 unsigned long flags;
1705 raw_spin_lock_irqsave(&ctx->lock, flags);
1706 update_context_time(ctx);
1707 update_event_times(event);
1708 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1711 return atomic64_read(&event->count);
1715 * Initialize the perf_event context in a task_struct:
1717 static void
1718 __perf_event_init_context(struct perf_event_context *ctx,
1719 struct task_struct *task)
1721 raw_spin_lock_init(&ctx->lock);
1722 mutex_init(&ctx->mutex);
1723 INIT_LIST_HEAD(&ctx->pinned_groups);
1724 INIT_LIST_HEAD(&ctx->flexible_groups);
1725 INIT_LIST_HEAD(&ctx->event_list);
1726 atomic_set(&ctx->refcount, 1);
1727 ctx->task = task;
1730 static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1732 struct perf_event_context *ctx;
1733 struct perf_cpu_context *cpuctx;
1734 struct task_struct *task;
1735 unsigned long flags;
1736 int err;
1738 if (pid == -1 && cpu != -1) {
1739 /* Must be root to operate on a CPU event: */
1740 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1741 return ERR_PTR(-EACCES);
1743 if (cpu < 0 || cpu >= nr_cpumask_bits)
1744 return ERR_PTR(-EINVAL);
1747 * We could be clever and allow to attach a event to an
1748 * offline CPU and activate it when the CPU comes up, but
1749 * that's for later.
1751 if (!cpu_online(cpu))
1752 return ERR_PTR(-ENODEV);
1754 cpuctx = &per_cpu(perf_cpu_context, cpu);
1755 ctx = &cpuctx->ctx;
1756 get_ctx(ctx);
1758 return ctx;
1761 rcu_read_lock();
1762 if (!pid)
1763 task = current;
1764 else
1765 task = find_task_by_vpid(pid);
1766 if (task)
1767 get_task_struct(task);
1768 rcu_read_unlock();
1770 if (!task)
1771 return ERR_PTR(-ESRCH);
1774 * Can't attach events to a dying task.
1776 err = -ESRCH;
1777 if (task->flags & PF_EXITING)
1778 goto errout;
1780 /* Reuse ptrace permission checks for now. */
1781 err = -EACCES;
1782 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1783 goto errout;
1785 retry:
1786 ctx = perf_lock_task_context(task, &flags);
1787 if (ctx) {
1788 unclone_ctx(ctx);
1789 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1792 if (!ctx) {
1793 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1794 err = -ENOMEM;
1795 if (!ctx)
1796 goto errout;
1797 __perf_event_init_context(ctx, task);
1798 get_ctx(ctx);
1799 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1801 * We raced with some other task; use
1802 * the context they set.
1804 kfree(ctx);
1805 goto retry;
1807 get_task_struct(task);
1810 put_task_struct(task);
1811 return ctx;
1813 errout:
1814 put_task_struct(task);
1815 return ERR_PTR(err);
1818 static void perf_event_free_filter(struct perf_event *event);
1820 static void free_event_rcu(struct rcu_head *head)
1822 struct perf_event *event;
1824 event = container_of(head, struct perf_event, rcu_head);
1825 if (event->ns)
1826 put_pid_ns(event->ns);
1827 perf_event_free_filter(event);
1828 kfree(event);
1831 static void perf_pending_sync(struct perf_event *event);
1833 static void free_event(struct perf_event *event)
1835 perf_pending_sync(event);
1837 if (!event->parent) {
1838 atomic_dec(&nr_events);
1839 if (event->attr.mmap)
1840 atomic_dec(&nr_mmap_events);
1841 if (event->attr.comm)
1842 atomic_dec(&nr_comm_events);
1843 if (event->attr.task)
1844 atomic_dec(&nr_task_events);
1847 if (event->output) {
1848 fput(event->output->filp);
1849 event->output = NULL;
1852 if (event->destroy)
1853 event->destroy(event);
1855 put_ctx(event->ctx);
1856 call_rcu(&event->rcu_head, free_event_rcu);
1859 int perf_event_release_kernel(struct perf_event *event)
1861 struct perf_event_context *ctx = event->ctx;
1864 * Remove from the PMU, can't get re-enabled since we got
1865 * here because the last ref went.
1867 perf_event_disable(event);
1869 WARN_ON_ONCE(ctx->parent_ctx);
1870 mutex_lock(&ctx->mutex);
1871 raw_spin_lock_irq(&ctx->lock);
1872 list_del_event(event, ctx);
1873 perf_destroy_group(event, ctx);
1874 raw_spin_unlock_irq(&ctx->lock);
1875 mutex_unlock(&ctx->mutex);
1877 mutex_lock(&event->owner->perf_event_mutex);
1878 list_del_init(&event->owner_entry);
1879 mutex_unlock(&event->owner->perf_event_mutex);
1880 put_task_struct(event->owner);
1882 free_event(event);
1884 return 0;
1886 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
1889 * Called when the last reference to the file is gone.
1891 static int perf_release(struct inode *inode, struct file *file)
1893 struct perf_event *event = file->private_data;
1895 file->private_data = NULL;
1897 return perf_event_release_kernel(event);
1900 static int perf_event_read_size(struct perf_event *event)
1902 int entry = sizeof(u64); /* value */
1903 int size = 0;
1904 int nr = 1;
1906 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1907 size += sizeof(u64);
1909 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1910 size += sizeof(u64);
1912 if (event->attr.read_format & PERF_FORMAT_ID)
1913 entry += sizeof(u64);
1915 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1916 nr += event->group_leader->nr_siblings;
1917 size += sizeof(u64);
1920 size += entry * nr;
1922 return size;
1925 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
1927 struct perf_event *child;
1928 u64 total = 0;
1930 *enabled = 0;
1931 *running = 0;
1933 mutex_lock(&event->child_mutex);
1934 total += perf_event_read(event);
1935 *enabled += event->total_time_enabled +
1936 atomic64_read(&event->child_total_time_enabled);
1937 *running += event->total_time_running +
1938 atomic64_read(&event->child_total_time_running);
1940 list_for_each_entry(child, &event->child_list, child_list) {
1941 total += perf_event_read(child);
1942 *enabled += child->total_time_enabled;
1943 *running += child->total_time_running;
1945 mutex_unlock(&event->child_mutex);
1947 return total;
1949 EXPORT_SYMBOL_GPL(perf_event_read_value);
1951 static int perf_event_read_group(struct perf_event *event,
1952 u64 read_format, char __user *buf)
1954 struct perf_event *leader = event->group_leader, *sub;
1955 int n = 0, size = 0, ret = -EFAULT;
1956 struct perf_event_context *ctx = leader->ctx;
1957 u64 values[5];
1958 u64 count, enabled, running;
1960 mutex_lock(&ctx->mutex);
1961 count = perf_event_read_value(leader, &enabled, &running);
1963 values[n++] = 1 + leader->nr_siblings;
1964 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1965 values[n++] = enabled;
1966 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1967 values[n++] = running;
1968 values[n++] = count;
1969 if (read_format & PERF_FORMAT_ID)
1970 values[n++] = primary_event_id(leader);
1972 size = n * sizeof(u64);
1974 if (copy_to_user(buf, values, size))
1975 goto unlock;
1977 ret = size;
1979 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1980 n = 0;
1982 values[n++] = perf_event_read_value(sub, &enabled, &running);
1983 if (read_format & PERF_FORMAT_ID)
1984 values[n++] = primary_event_id(sub);
1986 size = n * sizeof(u64);
1988 if (copy_to_user(buf + ret, values, size)) {
1989 ret = -EFAULT;
1990 goto unlock;
1993 ret += size;
1995 unlock:
1996 mutex_unlock(&ctx->mutex);
1998 return ret;
2001 static int perf_event_read_one(struct perf_event *event,
2002 u64 read_format, char __user *buf)
2004 u64 enabled, running;
2005 u64 values[4];
2006 int n = 0;
2008 values[n++] = perf_event_read_value(event, &enabled, &running);
2009 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2010 values[n++] = enabled;
2011 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2012 values[n++] = running;
2013 if (read_format & PERF_FORMAT_ID)
2014 values[n++] = primary_event_id(event);
2016 if (copy_to_user(buf, values, n * sizeof(u64)))
2017 return -EFAULT;
2019 return n * sizeof(u64);
2023 * Read the performance event - simple non blocking version for now
2025 static ssize_t
2026 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2028 u64 read_format = event->attr.read_format;
2029 int ret;
2032 * Return end-of-file for a read on a event that is in
2033 * error state (i.e. because it was pinned but it couldn't be
2034 * scheduled on to the CPU at some point).
2036 if (event->state == PERF_EVENT_STATE_ERROR)
2037 return 0;
2039 if (count < perf_event_read_size(event))
2040 return -ENOSPC;
2042 WARN_ON_ONCE(event->ctx->parent_ctx);
2043 if (read_format & PERF_FORMAT_GROUP)
2044 ret = perf_event_read_group(event, read_format, buf);
2045 else
2046 ret = perf_event_read_one(event, read_format, buf);
2048 return ret;
2051 static ssize_t
2052 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2054 struct perf_event *event = file->private_data;
2056 return perf_read_hw(event, buf, count);
2059 static unsigned int perf_poll(struct file *file, poll_table *wait)
2061 struct perf_event *event = file->private_data;
2062 struct perf_mmap_data *data;
2063 unsigned int events = POLL_HUP;
2065 rcu_read_lock();
2066 data = rcu_dereference(event->data);
2067 if (data)
2068 events = atomic_xchg(&data->poll, 0);
2069 rcu_read_unlock();
2071 poll_wait(file, &event->waitq, wait);
2073 return events;
2076 static void perf_event_reset(struct perf_event *event)
2078 (void)perf_event_read(event);
2079 atomic64_set(&event->count, 0);
2080 perf_event_update_userpage(event);
2084 * Holding the top-level event's child_mutex means that any
2085 * descendant process that has inherited this event will block
2086 * in sync_child_event if it goes to exit, thus satisfying the
2087 * task existence requirements of perf_event_enable/disable.
2089 static void perf_event_for_each_child(struct perf_event *event,
2090 void (*func)(struct perf_event *))
2092 struct perf_event *child;
2094 WARN_ON_ONCE(event->ctx->parent_ctx);
2095 mutex_lock(&event->child_mutex);
2096 func(event);
2097 list_for_each_entry(child, &event->child_list, child_list)
2098 func(child);
2099 mutex_unlock(&event->child_mutex);
2102 static void perf_event_for_each(struct perf_event *event,
2103 void (*func)(struct perf_event *))
2105 struct perf_event_context *ctx = event->ctx;
2106 struct perf_event *sibling;
2108 WARN_ON_ONCE(ctx->parent_ctx);
2109 mutex_lock(&ctx->mutex);
2110 event = event->group_leader;
2112 perf_event_for_each_child(event, func);
2113 func(event);
2114 list_for_each_entry(sibling, &event->sibling_list, group_entry)
2115 perf_event_for_each_child(event, func);
2116 mutex_unlock(&ctx->mutex);
2119 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2121 struct perf_event_context *ctx = event->ctx;
2122 unsigned long size;
2123 int ret = 0;
2124 u64 value;
2126 if (!event->attr.sample_period)
2127 return -EINVAL;
2129 size = copy_from_user(&value, arg, sizeof(value));
2130 if (size != sizeof(value))
2131 return -EFAULT;
2133 if (!value)
2134 return -EINVAL;
2136 raw_spin_lock_irq(&ctx->lock);
2137 if (event->attr.freq) {
2138 if (value > sysctl_perf_event_sample_rate) {
2139 ret = -EINVAL;
2140 goto unlock;
2143 event->attr.sample_freq = value;
2144 } else {
2145 event->attr.sample_period = value;
2146 event->hw.sample_period = value;
2148 unlock:
2149 raw_spin_unlock_irq(&ctx->lock);
2151 return ret;
2154 static int perf_event_set_output(struct perf_event *event, int output_fd);
2155 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2157 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2159 struct perf_event *event = file->private_data;
2160 void (*func)(struct perf_event *);
2161 u32 flags = arg;
2163 switch (cmd) {
2164 case PERF_EVENT_IOC_ENABLE:
2165 func = perf_event_enable;
2166 break;
2167 case PERF_EVENT_IOC_DISABLE:
2168 func = perf_event_disable;
2169 break;
2170 case PERF_EVENT_IOC_RESET:
2171 func = perf_event_reset;
2172 break;
2174 case PERF_EVENT_IOC_REFRESH:
2175 return perf_event_refresh(event, arg);
2177 case PERF_EVENT_IOC_PERIOD:
2178 return perf_event_period(event, (u64 __user *)arg);
2180 case PERF_EVENT_IOC_SET_OUTPUT:
2181 return perf_event_set_output(event, arg);
2183 case PERF_EVENT_IOC_SET_FILTER:
2184 return perf_event_set_filter(event, (void __user *)arg);
2186 default:
2187 return -ENOTTY;
2190 if (flags & PERF_IOC_FLAG_GROUP)
2191 perf_event_for_each(event, func);
2192 else
2193 perf_event_for_each_child(event, func);
2195 return 0;
2198 int perf_event_task_enable(void)
2200 struct perf_event *event;
2202 mutex_lock(&current->perf_event_mutex);
2203 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2204 perf_event_for_each_child(event, perf_event_enable);
2205 mutex_unlock(&current->perf_event_mutex);
2207 return 0;
2210 int perf_event_task_disable(void)
2212 struct perf_event *event;
2214 mutex_lock(&current->perf_event_mutex);
2215 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2216 perf_event_for_each_child(event, perf_event_disable);
2217 mutex_unlock(&current->perf_event_mutex);
2219 return 0;
2222 #ifndef PERF_EVENT_INDEX_OFFSET
2223 # define PERF_EVENT_INDEX_OFFSET 0
2224 #endif
2226 static int perf_event_index(struct perf_event *event)
2228 if (event->state != PERF_EVENT_STATE_ACTIVE)
2229 return 0;
2231 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2235 * Callers need to ensure there can be no nesting of this function, otherwise
2236 * the seqlock logic goes bad. We can not serialize this because the arch
2237 * code calls this from NMI context.
2239 void perf_event_update_userpage(struct perf_event *event)
2241 struct perf_event_mmap_page *userpg;
2242 struct perf_mmap_data *data;
2244 rcu_read_lock();
2245 data = rcu_dereference(event->data);
2246 if (!data)
2247 goto unlock;
2249 userpg = data->user_page;
2252 * Disable preemption so as to not let the corresponding user-space
2253 * spin too long if we get preempted.
2255 preempt_disable();
2256 ++userpg->lock;
2257 barrier();
2258 userpg->index = perf_event_index(event);
2259 userpg->offset = atomic64_read(&event->count);
2260 if (event->state == PERF_EVENT_STATE_ACTIVE)
2261 userpg->offset -= atomic64_read(&event->hw.prev_count);
2263 userpg->time_enabled = event->total_time_enabled +
2264 atomic64_read(&event->child_total_time_enabled);
2266 userpg->time_running = event->total_time_running +
2267 atomic64_read(&event->child_total_time_running);
2269 barrier();
2270 ++userpg->lock;
2271 preempt_enable();
2272 unlock:
2273 rcu_read_unlock();
2276 static unsigned long perf_data_size(struct perf_mmap_data *data)
2278 return data->nr_pages << (PAGE_SHIFT + data->data_order);
2281 #ifndef CONFIG_PERF_USE_VMALLOC
2284 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2287 static struct page *
2288 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2290 if (pgoff > data->nr_pages)
2291 return NULL;
2293 if (pgoff == 0)
2294 return virt_to_page(data->user_page);
2296 return virt_to_page(data->data_pages[pgoff - 1]);
2299 static struct perf_mmap_data *
2300 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2302 struct perf_mmap_data *data;
2303 unsigned long size;
2304 int i;
2306 WARN_ON(atomic_read(&event->mmap_count));
2308 size = sizeof(struct perf_mmap_data);
2309 size += nr_pages * sizeof(void *);
2311 data = kzalloc(size, GFP_KERNEL);
2312 if (!data)
2313 goto fail;
2315 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
2316 if (!data->user_page)
2317 goto fail_user_page;
2319 for (i = 0; i < nr_pages; i++) {
2320 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
2321 if (!data->data_pages[i])
2322 goto fail_data_pages;
2325 data->data_order = 0;
2326 data->nr_pages = nr_pages;
2328 return data;
2330 fail_data_pages:
2331 for (i--; i >= 0; i--)
2332 free_page((unsigned long)data->data_pages[i]);
2334 free_page((unsigned long)data->user_page);
2336 fail_user_page:
2337 kfree(data);
2339 fail:
2340 return NULL;
2343 static void perf_mmap_free_page(unsigned long addr)
2345 struct page *page = virt_to_page((void *)addr);
2347 page->mapping = NULL;
2348 __free_page(page);
2351 static void perf_mmap_data_free(struct perf_mmap_data *data)
2353 int i;
2355 perf_mmap_free_page((unsigned long)data->user_page);
2356 for (i = 0; i < data->nr_pages; i++)
2357 perf_mmap_free_page((unsigned long)data->data_pages[i]);
2358 kfree(data);
2361 #else
2364 * Back perf_mmap() with vmalloc memory.
2366 * Required for architectures that have d-cache aliasing issues.
2369 static struct page *
2370 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2372 if (pgoff > (1UL << data->data_order))
2373 return NULL;
2375 return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
2378 static void perf_mmap_unmark_page(void *addr)
2380 struct page *page = vmalloc_to_page(addr);
2382 page->mapping = NULL;
2385 static void perf_mmap_data_free_work(struct work_struct *work)
2387 struct perf_mmap_data *data;
2388 void *base;
2389 int i, nr;
2391 data = container_of(work, struct perf_mmap_data, work);
2392 nr = 1 << data->data_order;
2394 base = data->user_page;
2395 for (i = 0; i < nr + 1; i++)
2396 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2398 vfree(base);
2399 kfree(data);
2402 static void perf_mmap_data_free(struct perf_mmap_data *data)
2404 schedule_work(&data->work);
2407 static struct perf_mmap_data *
2408 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2410 struct perf_mmap_data *data;
2411 unsigned long size;
2412 void *all_buf;
2414 WARN_ON(atomic_read(&event->mmap_count));
2416 size = sizeof(struct perf_mmap_data);
2417 size += sizeof(void *);
2419 data = kzalloc(size, GFP_KERNEL);
2420 if (!data)
2421 goto fail;
2423 INIT_WORK(&data->work, perf_mmap_data_free_work);
2425 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2426 if (!all_buf)
2427 goto fail_all_buf;
2429 data->user_page = all_buf;
2430 data->data_pages[0] = all_buf + PAGE_SIZE;
2431 data->data_order = ilog2(nr_pages);
2432 data->nr_pages = 1;
2434 return data;
2436 fail_all_buf:
2437 kfree(data);
2439 fail:
2440 return NULL;
2443 #endif
2445 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2447 struct perf_event *event = vma->vm_file->private_data;
2448 struct perf_mmap_data *data;
2449 int ret = VM_FAULT_SIGBUS;
2451 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2452 if (vmf->pgoff == 0)
2453 ret = 0;
2454 return ret;
2457 rcu_read_lock();
2458 data = rcu_dereference(event->data);
2459 if (!data)
2460 goto unlock;
2462 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2463 goto unlock;
2465 vmf->page = perf_mmap_to_page(data, vmf->pgoff);
2466 if (!vmf->page)
2467 goto unlock;
2469 get_page(vmf->page);
2470 vmf->page->mapping = vma->vm_file->f_mapping;
2471 vmf->page->index = vmf->pgoff;
2473 ret = 0;
2474 unlock:
2475 rcu_read_unlock();
2477 return ret;
2480 static void
2481 perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
2483 long max_size = perf_data_size(data);
2485 atomic_set(&data->lock, -1);
2487 if (event->attr.watermark) {
2488 data->watermark = min_t(long, max_size,
2489 event->attr.wakeup_watermark);
2492 if (!data->watermark)
2493 data->watermark = max_size / 2;
2496 rcu_assign_pointer(event->data, data);
2499 static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
2501 struct perf_mmap_data *data;
2503 data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2504 perf_mmap_data_free(data);
2507 static void perf_mmap_data_release(struct perf_event *event)
2509 struct perf_mmap_data *data = event->data;
2511 WARN_ON(atomic_read(&event->mmap_count));
2513 rcu_assign_pointer(event->data, NULL);
2514 call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
2517 static void perf_mmap_open(struct vm_area_struct *vma)
2519 struct perf_event *event = vma->vm_file->private_data;
2521 atomic_inc(&event->mmap_count);
2524 static void perf_mmap_close(struct vm_area_struct *vma)
2526 struct perf_event *event = vma->vm_file->private_data;
2528 WARN_ON_ONCE(event->ctx->parent_ctx);
2529 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2530 unsigned long size = perf_data_size(event->data);
2531 struct user_struct *user = current_user();
2533 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2534 vma->vm_mm->locked_vm -= event->data->nr_locked;
2535 perf_mmap_data_release(event);
2536 mutex_unlock(&event->mmap_mutex);
2540 static const struct vm_operations_struct perf_mmap_vmops = {
2541 .open = perf_mmap_open,
2542 .close = perf_mmap_close,
2543 .fault = perf_mmap_fault,
2544 .page_mkwrite = perf_mmap_fault,
2547 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2549 struct perf_event *event = file->private_data;
2550 unsigned long user_locked, user_lock_limit;
2551 struct user_struct *user = current_user();
2552 unsigned long locked, lock_limit;
2553 struct perf_mmap_data *data;
2554 unsigned long vma_size;
2555 unsigned long nr_pages;
2556 long user_extra, extra;
2557 int ret = 0;
2559 if (!(vma->vm_flags & VM_SHARED))
2560 return -EINVAL;
2562 vma_size = vma->vm_end - vma->vm_start;
2563 nr_pages = (vma_size / PAGE_SIZE) - 1;
2566 * If we have data pages ensure they're a power-of-two number, so we
2567 * can do bitmasks instead of modulo.
2569 if (nr_pages != 0 && !is_power_of_2(nr_pages))
2570 return -EINVAL;
2572 if (vma_size != PAGE_SIZE * (1 + nr_pages))
2573 return -EINVAL;
2575 if (vma->vm_pgoff != 0)
2576 return -EINVAL;
2578 WARN_ON_ONCE(event->ctx->parent_ctx);
2579 mutex_lock(&event->mmap_mutex);
2580 if (event->output) {
2581 ret = -EINVAL;
2582 goto unlock;
2585 if (atomic_inc_not_zero(&event->mmap_count)) {
2586 if (nr_pages != event->data->nr_pages)
2587 ret = -EINVAL;
2588 goto unlock;
2591 user_extra = nr_pages + 1;
2592 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2595 * Increase the limit linearly with more CPUs:
2597 user_lock_limit *= num_online_cpus();
2599 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2601 extra = 0;
2602 if (user_locked > user_lock_limit)
2603 extra = user_locked - user_lock_limit;
2605 lock_limit = rlimit(RLIMIT_MEMLOCK);
2606 lock_limit >>= PAGE_SHIFT;
2607 locked = vma->vm_mm->locked_vm + extra;
2609 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2610 !capable(CAP_IPC_LOCK)) {
2611 ret = -EPERM;
2612 goto unlock;
2615 WARN_ON(event->data);
2617 data = perf_mmap_data_alloc(event, nr_pages);
2618 ret = -ENOMEM;
2619 if (!data)
2620 goto unlock;
2622 ret = 0;
2623 perf_mmap_data_init(event, data);
2625 atomic_set(&event->mmap_count, 1);
2626 atomic_long_add(user_extra, &user->locked_vm);
2627 vma->vm_mm->locked_vm += extra;
2628 event->data->nr_locked = extra;
2629 if (vma->vm_flags & VM_WRITE)
2630 event->data->writable = 1;
2632 unlock:
2633 mutex_unlock(&event->mmap_mutex);
2635 vma->vm_flags |= VM_RESERVED;
2636 vma->vm_ops = &perf_mmap_vmops;
2638 return ret;
2641 static int perf_fasync(int fd, struct file *filp, int on)
2643 struct inode *inode = filp->f_path.dentry->d_inode;
2644 struct perf_event *event = filp->private_data;
2645 int retval;
2647 mutex_lock(&inode->i_mutex);
2648 retval = fasync_helper(fd, filp, on, &event->fasync);
2649 mutex_unlock(&inode->i_mutex);
2651 if (retval < 0)
2652 return retval;
2654 return 0;
2657 static const struct file_operations perf_fops = {
2658 .release = perf_release,
2659 .read = perf_read,
2660 .poll = perf_poll,
2661 .unlocked_ioctl = perf_ioctl,
2662 .compat_ioctl = perf_ioctl,
2663 .mmap = perf_mmap,
2664 .fasync = perf_fasync,
2668 * Perf event wakeup
2670 * If there's data, ensure we set the poll() state and publish everything
2671 * to user-space before waking everybody up.
2674 void perf_event_wakeup(struct perf_event *event)
2676 wake_up_all(&event->waitq);
2678 if (event->pending_kill) {
2679 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2680 event->pending_kill = 0;
2685 * Pending wakeups
2687 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2689 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2690 * single linked list and use cmpxchg() to add entries lockless.
2693 static void perf_pending_event(struct perf_pending_entry *entry)
2695 struct perf_event *event = container_of(entry,
2696 struct perf_event, pending);
2698 if (event->pending_disable) {
2699 event->pending_disable = 0;
2700 __perf_event_disable(event);
2703 if (event->pending_wakeup) {
2704 event->pending_wakeup = 0;
2705 perf_event_wakeup(event);
2709 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2711 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2712 PENDING_TAIL,
2715 static void perf_pending_queue(struct perf_pending_entry *entry,
2716 void (*func)(struct perf_pending_entry *))
2718 struct perf_pending_entry **head;
2720 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2721 return;
2723 entry->func = func;
2725 head = &get_cpu_var(perf_pending_head);
2727 do {
2728 entry->next = *head;
2729 } while (cmpxchg(head, entry->next, entry) != entry->next);
2731 set_perf_event_pending();
2733 put_cpu_var(perf_pending_head);
2736 static int __perf_pending_run(void)
2738 struct perf_pending_entry *list;
2739 int nr = 0;
2741 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2742 while (list != PENDING_TAIL) {
2743 void (*func)(struct perf_pending_entry *);
2744 struct perf_pending_entry *entry = list;
2746 list = list->next;
2748 func = entry->func;
2749 entry->next = NULL;
2751 * Ensure we observe the unqueue before we issue the wakeup,
2752 * so that we won't be waiting forever.
2753 * -- see perf_not_pending().
2755 smp_wmb();
2757 func(entry);
2758 nr++;
2761 return nr;
2764 static inline int perf_not_pending(struct perf_event *event)
2767 * If we flush on whatever cpu we run, there is a chance we don't
2768 * need to wait.
2770 get_cpu();
2771 __perf_pending_run();
2772 put_cpu();
2775 * Ensure we see the proper queue state before going to sleep
2776 * so that we do not miss the wakeup. -- see perf_pending_handle()
2778 smp_rmb();
2779 return event->pending.next == NULL;
2782 static void perf_pending_sync(struct perf_event *event)
2784 wait_event(event->waitq, perf_not_pending(event));
2787 void perf_event_do_pending(void)
2789 __perf_pending_run();
2793 * Callchain support -- arch specific
2796 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2798 return NULL;
2801 __weak
2802 void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip, int skip)
2808 * Output
2810 static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
2811 unsigned long offset, unsigned long head)
2813 unsigned long mask;
2815 if (!data->writable)
2816 return true;
2818 mask = perf_data_size(data) - 1;
2820 offset = (offset - tail) & mask;
2821 head = (head - tail) & mask;
2823 if ((int)(head - offset) < 0)
2824 return false;
2826 return true;
2829 static void perf_output_wakeup(struct perf_output_handle *handle)
2831 atomic_set(&handle->data->poll, POLL_IN);
2833 if (handle->nmi) {
2834 handle->event->pending_wakeup = 1;
2835 perf_pending_queue(&handle->event->pending,
2836 perf_pending_event);
2837 } else
2838 perf_event_wakeup(handle->event);
2842 * Curious locking construct.
2844 * We need to ensure a later event_id doesn't publish a head when a former
2845 * event_id isn't done writing. However since we need to deal with NMIs we
2846 * cannot fully serialize things.
2848 * What we do is serialize between CPUs so we only have to deal with NMI
2849 * nesting on a single CPU.
2851 * We only publish the head (and generate a wakeup) when the outer-most
2852 * event_id completes.
2854 static void perf_output_lock(struct perf_output_handle *handle)
2856 struct perf_mmap_data *data = handle->data;
2857 int cur, cpu = get_cpu();
2859 handle->locked = 0;
2861 for (;;) {
2862 cur = atomic_cmpxchg(&data->lock, -1, cpu);
2863 if (cur == -1) {
2864 handle->locked = 1;
2865 break;
2867 if (cur == cpu)
2868 break;
2870 cpu_relax();
2874 static void perf_output_unlock(struct perf_output_handle *handle)
2876 struct perf_mmap_data *data = handle->data;
2877 unsigned long head;
2878 int cpu;
2880 data->done_head = data->head;
2882 if (!handle->locked)
2883 goto out;
2885 again:
2887 * The xchg implies a full barrier that ensures all writes are done
2888 * before we publish the new head, matched by a rmb() in userspace when
2889 * reading this position.
2891 while ((head = atomic_long_xchg(&data->done_head, 0)))
2892 data->user_page->data_head = head;
2895 * NMI can happen here, which means we can miss a done_head update.
2898 cpu = atomic_xchg(&data->lock, -1);
2899 WARN_ON_ONCE(cpu != smp_processor_id());
2902 * Therefore we have to validate we did not indeed do so.
2904 if (unlikely(atomic_long_read(&data->done_head))) {
2906 * Since we had it locked, we can lock it again.
2908 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2909 cpu_relax();
2911 goto again;
2914 if (atomic_xchg(&data->wakeup, 0))
2915 perf_output_wakeup(handle);
2916 out:
2917 put_cpu();
2920 void perf_output_copy(struct perf_output_handle *handle,
2921 const void *buf, unsigned int len)
2923 unsigned int pages_mask;
2924 unsigned long offset;
2925 unsigned int size;
2926 void **pages;
2928 offset = handle->offset;
2929 pages_mask = handle->data->nr_pages - 1;
2930 pages = handle->data->data_pages;
2932 do {
2933 unsigned long page_offset;
2934 unsigned long page_size;
2935 int nr;
2937 nr = (offset >> PAGE_SHIFT) & pages_mask;
2938 page_size = 1UL << (handle->data->data_order + PAGE_SHIFT);
2939 page_offset = offset & (page_size - 1);
2940 size = min_t(unsigned int, page_size - page_offset, len);
2942 memcpy(pages[nr] + page_offset, buf, size);
2944 len -= size;
2945 buf += size;
2946 offset += size;
2947 } while (len);
2949 handle->offset = offset;
2952 * Check we didn't copy past our reservation window, taking the
2953 * possible unsigned int wrap into account.
2955 WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2958 int perf_output_begin(struct perf_output_handle *handle,
2959 struct perf_event *event, unsigned int size,
2960 int nmi, int sample)
2962 struct perf_event *output_event;
2963 struct perf_mmap_data *data;
2964 unsigned long tail, offset, head;
2965 int have_lost;
2966 struct {
2967 struct perf_event_header header;
2968 u64 id;
2969 u64 lost;
2970 } lost_event;
2972 rcu_read_lock();
2974 * For inherited events we send all the output towards the parent.
2976 if (event->parent)
2977 event = event->parent;
2979 output_event = rcu_dereference(event->output);
2980 if (output_event)
2981 event = output_event;
2983 data = rcu_dereference(event->data);
2984 if (!data)
2985 goto out;
2987 handle->data = data;
2988 handle->event = event;
2989 handle->nmi = nmi;
2990 handle->sample = sample;
2992 if (!data->nr_pages)
2993 goto fail;
2995 have_lost = atomic_read(&data->lost);
2996 if (have_lost)
2997 size += sizeof(lost_event);
2999 perf_output_lock(handle);
3001 do {
3003 * Userspace could choose to issue a mb() before updating the
3004 * tail pointer. So that all reads will be completed before the
3005 * write is issued.
3007 tail = ACCESS_ONCE(data->user_page->data_tail);
3008 smp_rmb();
3009 offset = head = atomic_long_read(&data->head);
3010 head += size;
3011 if (unlikely(!perf_output_space(data, tail, offset, head)))
3012 goto fail;
3013 } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
3015 handle->offset = offset;
3016 handle->head = head;
3018 if (head - tail > data->watermark)
3019 atomic_set(&data->wakeup, 1);
3021 if (have_lost) {
3022 lost_event.header.type = PERF_RECORD_LOST;
3023 lost_event.header.misc = 0;
3024 lost_event.header.size = sizeof(lost_event);
3025 lost_event.id = event->id;
3026 lost_event.lost = atomic_xchg(&data->lost, 0);
3028 perf_output_put(handle, lost_event);
3031 return 0;
3033 fail:
3034 atomic_inc(&data->lost);
3035 perf_output_unlock(handle);
3036 out:
3037 rcu_read_unlock();
3039 return -ENOSPC;
3042 void perf_output_end(struct perf_output_handle *handle)
3044 struct perf_event *event = handle->event;
3045 struct perf_mmap_data *data = handle->data;
3047 int wakeup_events = event->attr.wakeup_events;
3049 if (handle->sample && wakeup_events) {
3050 int events = atomic_inc_return(&data->events);
3051 if (events >= wakeup_events) {
3052 atomic_sub(wakeup_events, &data->events);
3053 atomic_set(&data->wakeup, 1);
3057 perf_output_unlock(handle);
3058 rcu_read_unlock();
3061 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3064 * only top level events have the pid namespace they were created in
3066 if (event->parent)
3067 event = event->parent;
3069 return task_tgid_nr_ns(p, event->ns);
3072 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3075 * only top level events have the pid namespace they were created in
3077 if (event->parent)
3078 event = event->parent;
3080 return task_pid_nr_ns(p, event->ns);
3083 static void perf_output_read_one(struct perf_output_handle *handle,
3084 struct perf_event *event)
3086 u64 read_format = event->attr.read_format;
3087 u64 values[4];
3088 int n = 0;
3090 values[n++] = atomic64_read(&event->count);
3091 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3092 values[n++] = event->total_time_enabled +
3093 atomic64_read(&event->child_total_time_enabled);
3095 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3096 values[n++] = event->total_time_running +
3097 atomic64_read(&event->child_total_time_running);
3099 if (read_format & PERF_FORMAT_ID)
3100 values[n++] = primary_event_id(event);
3102 perf_output_copy(handle, values, n * sizeof(u64));
3106 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3108 static void perf_output_read_group(struct perf_output_handle *handle,
3109 struct perf_event *event)
3111 struct perf_event *leader = event->group_leader, *sub;
3112 u64 read_format = event->attr.read_format;
3113 u64 values[5];
3114 int n = 0;
3116 values[n++] = 1 + leader->nr_siblings;
3118 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3119 values[n++] = leader->total_time_enabled;
3121 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3122 values[n++] = leader->total_time_running;
3124 if (leader != event)
3125 leader->pmu->read(leader);
3127 values[n++] = atomic64_read(&leader->count);
3128 if (read_format & PERF_FORMAT_ID)
3129 values[n++] = primary_event_id(leader);
3131 perf_output_copy(handle, values, n * sizeof(u64));
3133 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3134 n = 0;
3136 if (sub != event)
3137 sub->pmu->read(sub);
3139 values[n++] = atomic64_read(&sub->count);
3140 if (read_format & PERF_FORMAT_ID)
3141 values[n++] = primary_event_id(sub);
3143 perf_output_copy(handle, values, n * sizeof(u64));
3147 static void perf_output_read(struct perf_output_handle *handle,
3148 struct perf_event *event)
3150 if (event->attr.read_format & PERF_FORMAT_GROUP)
3151 perf_output_read_group(handle, event);
3152 else
3153 perf_output_read_one(handle, event);
3156 void perf_output_sample(struct perf_output_handle *handle,
3157 struct perf_event_header *header,
3158 struct perf_sample_data *data,
3159 struct perf_event *event)
3161 u64 sample_type = data->type;
3163 perf_output_put(handle, *header);
3165 if (sample_type & PERF_SAMPLE_IP)
3166 perf_output_put(handle, data->ip);
3168 if (sample_type & PERF_SAMPLE_TID)
3169 perf_output_put(handle, data->tid_entry);
3171 if (sample_type & PERF_SAMPLE_TIME)
3172 perf_output_put(handle, data->time);
3174 if (sample_type & PERF_SAMPLE_ADDR)
3175 perf_output_put(handle, data->addr);
3177 if (sample_type & PERF_SAMPLE_ID)
3178 perf_output_put(handle, data->id);
3180 if (sample_type & PERF_SAMPLE_STREAM_ID)
3181 perf_output_put(handle, data->stream_id);
3183 if (sample_type & PERF_SAMPLE_CPU)
3184 perf_output_put(handle, data->cpu_entry);
3186 if (sample_type & PERF_SAMPLE_PERIOD)
3187 perf_output_put(handle, data->period);
3189 if (sample_type & PERF_SAMPLE_READ)
3190 perf_output_read(handle, event);
3192 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3193 if (data->callchain) {
3194 int size = 1;
3196 if (data->callchain)
3197 size += data->callchain->nr;
3199 size *= sizeof(u64);
3201 perf_output_copy(handle, data->callchain, size);
3202 } else {
3203 u64 nr = 0;
3204 perf_output_put(handle, nr);
3208 if (sample_type & PERF_SAMPLE_RAW) {
3209 if (data->raw) {
3210 perf_output_put(handle, data->raw->size);
3211 perf_output_copy(handle, data->raw->data,
3212 data->raw->size);
3213 } else {
3214 struct {
3215 u32 size;
3216 u32 data;
3217 } raw = {
3218 .size = sizeof(u32),
3219 .data = 0,
3221 perf_output_put(handle, raw);
3226 void perf_prepare_sample(struct perf_event_header *header,
3227 struct perf_sample_data *data,
3228 struct perf_event *event,
3229 struct pt_regs *regs)
3231 u64 sample_type = event->attr.sample_type;
3233 data->type = sample_type;
3235 header->type = PERF_RECORD_SAMPLE;
3236 header->size = sizeof(*header);
3238 header->misc = 0;
3239 header->misc |= perf_misc_flags(regs);
3241 if (sample_type & PERF_SAMPLE_IP) {
3242 data->ip = perf_instruction_pointer(regs);
3244 header->size += sizeof(data->ip);
3247 if (sample_type & PERF_SAMPLE_TID) {
3248 /* namespace issues */
3249 data->tid_entry.pid = perf_event_pid(event, current);
3250 data->tid_entry.tid = perf_event_tid(event, current);
3252 header->size += sizeof(data->tid_entry);
3255 if (sample_type & PERF_SAMPLE_TIME) {
3256 data->time = perf_clock();
3258 header->size += sizeof(data->time);
3261 if (sample_type & PERF_SAMPLE_ADDR)
3262 header->size += sizeof(data->addr);
3264 if (sample_type & PERF_SAMPLE_ID) {
3265 data->id = primary_event_id(event);
3267 header->size += sizeof(data->id);
3270 if (sample_type & PERF_SAMPLE_STREAM_ID) {
3271 data->stream_id = event->id;
3273 header->size += sizeof(data->stream_id);
3276 if (sample_type & PERF_SAMPLE_CPU) {
3277 data->cpu_entry.cpu = raw_smp_processor_id();
3278 data->cpu_entry.reserved = 0;
3280 header->size += sizeof(data->cpu_entry);
3283 if (sample_type & PERF_SAMPLE_PERIOD)
3284 header->size += sizeof(data->period);
3286 if (sample_type & PERF_SAMPLE_READ)
3287 header->size += perf_event_read_size(event);
3289 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3290 int size = 1;
3292 data->callchain = perf_callchain(regs);
3294 if (data->callchain)
3295 size += data->callchain->nr;
3297 header->size += size * sizeof(u64);
3300 if (sample_type & PERF_SAMPLE_RAW) {
3301 int size = sizeof(u32);
3303 if (data->raw)
3304 size += data->raw->size;
3305 else
3306 size += sizeof(u32);
3308 WARN_ON_ONCE(size & (sizeof(u64)-1));
3309 header->size += size;
3313 static void perf_event_output(struct perf_event *event, int nmi,
3314 struct perf_sample_data *data,
3315 struct pt_regs *regs)
3317 struct perf_output_handle handle;
3318 struct perf_event_header header;
3320 perf_prepare_sample(&header, data, event, regs);
3322 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3323 return;
3325 perf_output_sample(&handle, &header, data, event);
3327 perf_output_end(&handle);
3331 * read event_id
3334 struct perf_read_event {
3335 struct perf_event_header header;
3337 u32 pid;
3338 u32 tid;
3341 static void
3342 perf_event_read_event(struct perf_event *event,
3343 struct task_struct *task)
3345 struct perf_output_handle handle;
3346 struct perf_read_event read_event = {
3347 .header = {
3348 .type = PERF_RECORD_READ,
3349 .misc = 0,
3350 .size = sizeof(read_event) + perf_event_read_size(event),
3352 .pid = perf_event_pid(event, task),
3353 .tid = perf_event_tid(event, task),
3355 int ret;
3357 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3358 if (ret)
3359 return;
3361 perf_output_put(&handle, read_event);
3362 perf_output_read(&handle, event);
3364 perf_output_end(&handle);
3368 * task tracking -- fork/exit
3370 * enabled by: attr.comm | attr.mmap | attr.task
3373 struct perf_task_event {
3374 struct task_struct *task;
3375 struct perf_event_context *task_ctx;
3377 struct {
3378 struct perf_event_header header;
3380 u32 pid;
3381 u32 ppid;
3382 u32 tid;
3383 u32 ptid;
3384 u64 time;
3385 } event_id;
3388 static void perf_event_task_output(struct perf_event *event,
3389 struct perf_task_event *task_event)
3391 struct perf_output_handle handle;
3392 struct task_struct *task = task_event->task;
3393 unsigned long flags;
3394 int size, ret;
3397 * If this CPU attempts to acquire an rq lock held by a CPU spinning
3398 * in perf_output_lock() from interrupt context, it's game over.
3400 local_irq_save(flags);
3402 size = task_event->event_id.header.size;
3403 ret = perf_output_begin(&handle, event, size, 0, 0);
3405 if (ret) {
3406 local_irq_restore(flags);
3407 return;
3410 task_event->event_id.pid = perf_event_pid(event, task);
3411 task_event->event_id.ppid = perf_event_pid(event, current);
3413 task_event->event_id.tid = perf_event_tid(event, task);
3414 task_event->event_id.ptid = perf_event_tid(event, current);
3416 perf_output_put(&handle, task_event->event_id);
3418 perf_output_end(&handle);
3419 local_irq_restore(flags);
3422 static int perf_event_task_match(struct perf_event *event)
3424 if (event->state < PERF_EVENT_STATE_INACTIVE)
3425 return 0;
3427 if (event->cpu != -1 && event->cpu != smp_processor_id())
3428 return 0;
3430 if (event->attr.comm || event->attr.mmap || event->attr.task)
3431 return 1;
3433 return 0;
3436 static void perf_event_task_ctx(struct perf_event_context *ctx,
3437 struct perf_task_event *task_event)
3439 struct perf_event *event;
3441 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3442 if (perf_event_task_match(event))
3443 perf_event_task_output(event, task_event);
3447 static void perf_event_task_event(struct perf_task_event *task_event)
3449 struct perf_cpu_context *cpuctx;
3450 struct perf_event_context *ctx = task_event->task_ctx;
3452 rcu_read_lock();
3453 cpuctx = &get_cpu_var(perf_cpu_context);
3454 perf_event_task_ctx(&cpuctx->ctx, task_event);
3455 if (!ctx)
3456 ctx = rcu_dereference(current->perf_event_ctxp);
3457 if (ctx)
3458 perf_event_task_ctx(ctx, task_event);
3459 put_cpu_var(perf_cpu_context);
3460 rcu_read_unlock();
3463 static void perf_event_task(struct task_struct *task,
3464 struct perf_event_context *task_ctx,
3465 int new)
3467 struct perf_task_event task_event;
3469 if (!atomic_read(&nr_comm_events) &&
3470 !atomic_read(&nr_mmap_events) &&
3471 !atomic_read(&nr_task_events))
3472 return;
3474 task_event = (struct perf_task_event){
3475 .task = task,
3476 .task_ctx = task_ctx,
3477 .event_id = {
3478 .header = {
3479 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3480 .misc = 0,
3481 .size = sizeof(task_event.event_id),
3483 /* .pid */
3484 /* .ppid */
3485 /* .tid */
3486 /* .ptid */
3487 .time = perf_clock(),
3491 perf_event_task_event(&task_event);
3494 void perf_event_fork(struct task_struct *task)
3496 perf_event_task(task, NULL, 1);
3500 * comm tracking
3503 struct perf_comm_event {
3504 struct task_struct *task;
3505 char *comm;
3506 int comm_size;
3508 struct {
3509 struct perf_event_header header;
3511 u32 pid;
3512 u32 tid;
3513 } event_id;
3516 static void perf_event_comm_output(struct perf_event *event,
3517 struct perf_comm_event *comm_event)
3519 struct perf_output_handle handle;
3520 int size = comm_event->event_id.header.size;
3521 int ret = perf_output_begin(&handle, event, size, 0, 0);
3523 if (ret)
3524 return;
3526 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3527 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3529 perf_output_put(&handle, comm_event->event_id);
3530 perf_output_copy(&handle, comm_event->comm,
3531 comm_event->comm_size);
3532 perf_output_end(&handle);
3535 static int perf_event_comm_match(struct perf_event *event)
3537 if (event->state < PERF_EVENT_STATE_INACTIVE)
3538 return 0;
3540 if (event->cpu != -1 && event->cpu != smp_processor_id())
3541 return 0;
3543 if (event->attr.comm)
3544 return 1;
3546 return 0;
3549 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3550 struct perf_comm_event *comm_event)
3552 struct perf_event *event;
3554 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3555 if (perf_event_comm_match(event))
3556 perf_event_comm_output(event, comm_event);
3560 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3562 struct perf_cpu_context *cpuctx;
3563 struct perf_event_context *ctx;
3564 unsigned int size;
3565 char comm[TASK_COMM_LEN];
3567 memset(comm, 0, sizeof(comm));
3568 strlcpy(comm, comm_event->task->comm, sizeof(comm));
3569 size = ALIGN(strlen(comm)+1, sizeof(u64));
3571 comm_event->comm = comm;
3572 comm_event->comm_size = size;
3574 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3576 rcu_read_lock();
3577 cpuctx = &get_cpu_var(perf_cpu_context);
3578 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3579 ctx = rcu_dereference(current->perf_event_ctxp);
3580 if (ctx)
3581 perf_event_comm_ctx(ctx, comm_event);
3582 put_cpu_var(perf_cpu_context);
3583 rcu_read_unlock();
3586 void perf_event_comm(struct task_struct *task)
3588 struct perf_comm_event comm_event;
3590 if (task->perf_event_ctxp)
3591 perf_event_enable_on_exec(task);
3593 if (!atomic_read(&nr_comm_events))
3594 return;
3596 comm_event = (struct perf_comm_event){
3597 .task = task,
3598 /* .comm */
3599 /* .comm_size */
3600 .event_id = {
3601 .header = {
3602 .type = PERF_RECORD_COMM,
3603 .misc = 0,
3604 /* .size */
3606 /* .pid */
3607 /* .tid */
3611 perf_event_comm_event(&comm_event);
3615 * mmap tracking
3618 struct perf_mmap_event {
3619 struct vm_area_struct *vma;
3621 const char *file_name;
3622 int file_size;
3624 struct {
3625 struct perf_event_header header;
3627 u32 pid;
3628 u32 tid;
3629 u64 start;
3630 u64 len;
3631 u64 pgoff;
3632 } event_id;
3635 static void perf_event_mmap_output(struct perf_event *event,
3636 struct perf_mmap_event *mmap_event)
3638 struct perf_output_handle handle;
3639 int size = mmap_event->event_id.header.size;
3640 int ret = perf_output_begin(&handle, event, size, 0, 0);
3642 if (ret)
3643 return;
3645 mmap_event->event_id.pid = perf_event_pid(event, current);
3646 mmap_event->event_id.tid = perf_event_tid(event, current);
3648 perf_output_put(&handle, mmap_event->event_id);
3649 perf_output_copy(&handle, mmap_event->file_name,
3650 mmap_event->file_size);
3651 perf_output_end(&handle);
3654 static int perf_event_mmap_match(struct perf_event *event,
3655 struct perf_mmap_event *mmap_event)
3657 if (event->state < PERF_EVENT_STATE_INACTIVE)
3658 return 0;
3660 if (event->cpu != -1 && event->cpu != smp_processor_id())
3661 return 0;
3663 if (event->attr.mmap)
3664 return 1;
3666 return 0;
3669 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3670 struct perf_mmap_event *mmap_event)
3672 struct perf_event *event;
3674 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3675 if (perf_event_mmap_match(event, mmap_event))
3676 perf_event_mmap_output(event, mmap_event);
3680 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3682 struct perf_cpu_context *cpuctx;
3683 struct perf_event_context *ctx;
3684 struct vm_area_struct *vma = mmap_event->vma;
3685 struct file *file = vma->vm_file;
3686 unsigned int size;
3687 char tmp[16];
3688 char *buf = NULL;
3689 const char *name;
3691 memset(tmp, 0, sizeof(tmp));
3693 if (file) {
3695 * d_path works from the end of the buffer backwards, so we
3696 * need to add enough zero bytes after the string to handle
3697 * the 64bit alignment we do later.
3699 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3700 if (!buf) {
3701 name = strncpy(tmp, "//enomem", sizeof(tmp));
3702 goto got_name;
3704 name = d_path(&file->f_path, buf, PATH_MAX);
3705 if (IS_ERR(name)) {
3706 name = strncpy(tmp, "//toolong", sizeof(tmp));
3707 goto got_name;
3709 } else {
3710 if (arch_vma_name(mmap_event->vma)) {
3711 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3712 sizeof(tmp));
3713 goto got_name;
3716 if (!vma->vm_mm) {
3717 name = strncpy(tmp, "[vdso]", sizeof(tmp));
3718 goto got_name;
3721 name = strncpy(tmp, "//anon", sizeof(tmp));
3722 goto got_name;
3725 got_name:
3726 size = ALIGN(strlen(name)+1, sizeof(u64));
3728 mmap_event->file_name = name;
3729 mmap_event->file_size = size;
3731 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3733 rcu_read_lock();
3734 cpuctx = &get_cpu_var(perf_cpu_context);
3735 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
3736 ctx = rcu_dereference(current->perf_event_ctxp);
3737 if (ctx)
3738 perf_event_mmap_ctx(ctx, mmap_event);
3739 put_cpu_var(perf_cpu_context);
3740 rcu_read_unlock();
3742 kfree(buf);
3745 void __perf_event_mmap(struct vm_area_struct *vma)
3747 struct perf_mmap_event mmap_event;
3749 if (!atomic_read(&nr_mmap_events))
3750 return;
3752 mmap_event = (struct perf_mmap_event){
3753 .vma = vma,
3754 /* .file_name */
3755 /* .file_size */
3756 .event_id = {
3757 .header = {
3758 .type = PERF_RECORD_MMAP,
3759 .misc = 0,
3760 /* .size */
3762 /* .pid */
3763 /* .tid */
3764 .start = vma->vm_start,
3765 .len = vma->vm_end - vma->vm_start,
3766 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
3770 perf_event_mmap_event(&mmap_event);
3774 * IRQ throttle logging
3777 static void perf_log_throttle(struct perf_event *event, int enable)
3779 struct perf_output_handle handle;
3780 int ret;
3782 struct {
3783 struct perf_event_header header;
3784 u64 time;
3785 u64 id;
3786 u64 stream_id;
3787 } throttle_event = {
3788 .header = {
3789 .type = PERF_RECORD_THROTTLE,
3790 .misc = 0,
3791 .size = sizeof(throttle_event),
3793 .time = perf_clock(),
3794 .id = primary_event_id(event),
3795 .stream_id = event->id,
3798 if (enable)
3799 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3801 ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3802 if (ret)
3803 return;
3805 perf_output_put(&handle, throttle_event);
3806 perf_output_end(&handle);
3810 * Generic event overflow handling, sampling.
3813 static int __perf_event_overflow(struct perf_event *event, int nmi,
3814 int throttle, struct perf_sample_data *data,
3815 struct pt_regs *regs)
3817 int events = atomic_read(&event->event_limit);
3818 struct hw_perf_event *hwc = &event->hw;
3819 int ret = 0;
3821 throttle = (throttle && event->pmu->unthrottle != NULL);
3823 if (!throttle) {
3824 hwc->interrupts++;
3825 } else {
3826 if (hwc->interrupts != MAX_INTERRUPTS) {
3827 hwc->interrupts++;
3828 if (HZ * hwc->interrupts >
3829 (u64)sysctl_perf_event_sample_rate) {
3830 hwc->interrupts = MAX_INTERRUPTS;
3831 perf_log_throttle(event, 0);
3832 ret = 1;
3834 } else {
3836 * Keep re-disabling events even though on the previous
3837 * pass we disabled it - just in case we raced with a
3838 * sched-in and the event got enabled again:
3840 ret = 1;
3844 if (event->attr.freq) {
3845 u64 now = perf_clock();
3846 s64 delta = now - hwc->freq_time_stamp;
3848 hwc->freq_time_stamp = now;
3850 if (delta > 0 && delta < 2*TICK_NSEC)
3851 perf_adjust_period(event, delta, hwc->last_period);
3855 * XXX event_limit might not quite work as expected on inherited
3856 * events
3859 event->pending_kill = POLL_IN;
3860 if (events && atomic_dec_and_test(&event->event_limit)) {
3861 ret = 1;
3862 event->pending_kill = POLL_HUP;
3863 if (nmi) {
3864 event->pending_disable = 1;
3865 perf_pending_queue(&event->pending,
3866 perf_pending_event);
3867 } else
3868 perf_event_disable(event);
3871 if (event->overflow_handler)
3872 event->overflow_handler(event, nmi, data, regs);
3873 else
3874 perf_event_output(event, nmi, data, regs);
3876 return ret;
3879 int perf_event_overflow(struct perf_event *event, int nmi,
3880 struct perf_sample_data *data,
3881 struct pt_regs *regs)
3883 return __perf_event_overflow(event, nmi, 1, data, regs);
3887 * Generic software event infrastructure
3891 * We directly increment event->count and keep a second value in
3892 * event->hw.period_left to count intervals. This period event
3893 * is kept in the range [-sample_period, 0] so that we can use the
3894 * sign as trigger.
3897 static u64 perf_swevent_set_period(struct perf_event *event)
3899 struct hw_perf_event *hwc = &event->hw;
3900 u64 period = hwc->last_period;
3901 u64 nr, offset;
3902 s64 old, val;
3904 hwc->last_period = hwc->sample_period;
3906 again:
3907 old = val = atomic64_read(&hwc->period_left);
3908 if (val < 0)
3909 return 0;
3911 nr = div64_u64(period + val, period);
3912 offset = nr * period;
3913 val -= offset;
3914 if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
3915 goto again;
3917 return nr;
3920 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
3921 int nmi, struct perf_sample_data *data,
3922 struct pt_regs *regs)
3924 struct hw_perf_event *hwc = &event->hw;
3925 int throttle = 0;
3927 data->period = event->hw.last_period;
3928 if (!overflow)
3929 overflow = perf_swevent_set_period(event);
3931 if (hwc->interrupts == MAX_INTERRUPTS)
3932 return;
3934 for (; overflow; overflow--) {
3935 if (__perf_event_overflow(event, nmi, throttle,
3936 data, regs)) {
3938 * We inhibit the overflow from happening when
3939 * hwc->interrupts == MAX_INTERRUPTS.
3941 break;
3943 throttle = 1;
3947 static void perf_swevent_unthrottle(struct perf_event *event)
3950 * Nothing to do, we already reset hwc->interrupts.
3954 static void perf_swevent_add(struct perf_event *event, u64 nr,
3955 int nmi, struct perf_sample_data *data,
3956 struct pt_regs *regs)
3958 struct hw_perf_event *hwc = &event->hw;
3960 atomic64_add(nr, &event->count);
3962 if (!regs)
3963 return;
3965 if (!hwc->sample_period)
3966 return;
3968 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
3969 return perf_swevent_overflow(event, 1, nmi, data, regs);
3971 if (atomic64_add_negative(nr, &hwc->period_left))
3972 return;
3974 perf_swevent_overflow(event, 0, nmi, data, regs);
3977 static int perf_swevent_is_counting(struct perf_event *event)
3980 * The event is active, we're good!
3982 if (event->state == PERF_EVENT_STATE_ACTIVE)
3983 return 1;
3986 * The event is off/error, not counting.
3988 if (event->state != PERF_EVENT_STATE_INACTIVE)
3989 return 0;
3992 * The event is inactive, if the context is active
3993 * we're part of a group that didn't make it on the 'pmu',
3994 * not counting.
3996 if (event->ctx->is_active)
3997 return 0;
4000 * We're inactive and the context is too, this means the
4001 * task is scheduled out, we're counting events that happen
4002 * to us, like migration events.
4004 return 1;
4007 static int perf_tp_event_match(struct perf_event *event,
4008 struct perf_sample_data *data);
4010 static int perf_exclude_event(struct perf_event *event,
4011 struct pt_regs *regs)
4013 if (regs) {
4014 if (event->attr.exclude_user && user_mode(regs))
4015 return 1;
4017 if (event->attr.exclude_kernel && !user_mode(regs))
4018 return 1;
4021 return 0;
4024 static int perf_swevent_match(struct perf_event *event,
4025 enum perf_type_id type,
4026 u32 event_id,
4027 struct perf_sample_data *data,
4028 struct pt_regs *regs)
4030 if (event->cpu != -1 && event->cpu != smp_processor_id())
4031 return 0;
4033 if (!perf_swevent_is_counting(event))
4034 return 0;
4036 if (event->attr.type != type)
4037 return 0;
4039 if (event->attr.config != event_id)
4040 return 0;
4042 if (perf_exclude_event(event, regs))
4043 return 0;
4045 if (event->attr.type == PERF_TYPE_TRACEPOINT &&
4046 !perf_tp_event_match(event, data))
4047 return 0;
4049 return 1;
4052 static void perf_swevent_ctx_event(struct perf_event_context *ctx,
4053 enum perf_type_id type,
4054 u32 event_id, u64 nr, int nmi,
4055 struct perf_sample_data *data,
4056 struct pt_regs *regs)
4058 struct perf_event *event;
4060 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4061 if (perf_swevent_match(event, type, event_id, data, regs))
4062 perf_swevent_add(event, nr, nmi, data, regs);
4066 int perf_swevent_get_recursion_context(void)
4068 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
4069 int rctx;
4071 if (in_nmi())
4072 rctx = 3;
4073 else if (in_irq())
4074 rctx = 2;
4075 else if (in_softirq())
4076 rctx = 1;
4077 else
4078 rctx = 0;
4080 if (cpuctx->recursion[rctx]) {
4081 put_cpu_var(perf_cpu_context);
4082 return -1;
4085 cpuctx->recursion[rctx]++;
4086 barrier();
4088 return rctx;
4090 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4092 void perf_swevent_put_recursion_context(int rctx)
4094 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4095 barrier();
4096 cpuctx->recursion[rctx]--;
4097 put_cpu_var(perf_cpu_context);
4099 EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context);
4101 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4102 u64 nr, int nmi,
4103 struct perf_sample_data *data,
4104 struct pt_regs *regs)
4106 struct perf_cpu_context *cpuctx;
4107 struct perf_event_context *ctx;
4109 cpuctx = &__get_cpu_var(perf_cpu_context);
4110 rcu_read_lock();
4111 perf_swevent_ctx_event(&cpuctx->ctx, type, event_id,
4112 nr, nmi, data, regs);
4114 * doesn't really matter which of the child contexts the
4115 * events ends up in.
4117 ctx = rcu_dereference(current->perf_event_ctxp);
4118 if (ctx)
4119 perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs);
4120 rcu_read_unlock();
4123 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4124 struct pt_regs *regs, u64 addr)
4126 struct perf_sample_data data;
4127 int rctx;
4129 rctx = perf_swevent_get_recursion_context();
4130 if (rctx < 0)
4131 return;
4133 perf_sample_data_init(&data, addr);
4135 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4137 perf_swevent_put_recursion_context(rctx);
4140 static void perf_swevent_read(struct perf_event *event)
4144 static int perf_swevent_enable(struct perf_event *event)
4146 struct hw_perf_event *hwc = &event->hw;
4148 if (hwc->sample_period) {
4149 hwc->last_period = hwc->sample_period;
4150 perf_swevent_set_period(event);
4152 return 0;
4155 static void perf_swevent_disable(struct perf_event *event)
4159 static const struct pmu perf_ops_generic = {
4160 .enable = perf_swevent_enable,
4161 .disable = perf_swevent_disable,
4162 .read = perf_swevent_read,
4163 .unthrottle = perf_swevent_unthrottle,
4167 * hrtimer based swevent callback
4170 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4172 enum hrtimer_restart ret = HRTIMER_RESTART;
4173 struct perf_sample_data data;
4174 struct pt_regs *regs;
4175 struct perf_event *event;
4176 u64 period;
4178 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4179 event->pmu->read(event);
4181 perf_sample_data_init(&data, 0);
4182 data.period = event->hw.last_period;
4183 regs = get_irq_regs();
4185 * In case we exclude kernel IPs or are somehow not in interrupt
4186 * context, provide the next best thing, the user IP.
4188 if ((event->attr.exclude_kernel || !regs) &&
4189 !event->attr.exclude_user)
4190 regs = task_pt_regs(current);
4192 if (regs) {
4193 if (!(event->attr.exclude_idle && current->pid == 0))
4194 if (perf_event_overflow(event, 0, &data, regs))
4195 ret = HRTIMER_NORESTART;
4198 period = max_t(u64, 10000, event->hw.sample_period);
4199 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4201 return ret;
4204 static void perf_swevent_start_hrtimer(struct perf_event *event)
4206 struct hw_perf_event *hwc = &event->hw;
4208 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4209 hwc->hrtimer.function = perf_swevent_hrtimer;
4210 if (hwc->sample_period) {
4211 u64 period;
4213 if (hwc->remaining) {
4214 if (hwc->remaining < 0)
4215 period = 10000;
4216 else
4217 period = hwc->remaining;
4218 hwc->remaining = 0;
4219 } else {
4220 period = max_t(u64, 10000, hwc->sample_period);
4222 __hrtimer_start_range_ns(&hwc->hrtimer,
4223 ns_to_ktime(period), 0,
4224 HRTIMER_MODE_REL, 0);
4228 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4230 struct hw_perf_event *hwc = &event->hw;
4232 if (hwc->sample_period) {
4233 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4234 hwc->remaining = ktime_to_ns(remaining);
4236 hrtimer_cancel(&hwc->hrtimer);
4241 * Software event: cpu wall time clock
4244 static void cpu_clock_perf_event_update(struct perf_event *event)
4246 int cpu = raw_smp_processor_id();
4247 s64 prev;
4248 u64 now;
4250 now = cpu_clock(cpu);
4251 prev = atomic64_xchg(&event->hw.prev_count, now);
4252 atomic64_add(now - prev, &event->count);
4255 static int cpu_clock_perf_event_enable(struct perf_event *event)
4257 struct hw_perf_event *hwc = &event->hw;
4258 int cpu = raw_smp_processor_id();
4260 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
4261 perf_swevent_start_hrtimer(event);
4263 return 0;
4266 static void cpu_clock_perf_event_disable(struct perf_event *event)
4268 perf_swevent_cancel_hrtimer(event);
4269 cpu_clock_perf_event_update(event);
4272 static void cpu_clock_perf_event_read(struct perf_event *event)
4274 cpu_clock_perf_event_update(event);
4277 static const struct pmu perf_ops_cpu_clock = {
4278 .enable = cpu_clock_perf_event_enable,
4279 .disable = cpu_clock_perf_event_disable,
4280 .read = cpu_clock_perf_event_read,
4284 * Software event: task time clock
4287 static void task_clock_perf_event_update(struct perf_event *event, u64 now)
4289 u64 prev;
4290 s64 delta;
4292 prev = atomic64_xchg(&event->hw.prev_count, now);
4293 delta = now - prev;
4294 atomic64_add(delta, &event->count);
4297 static int task_clock_perf_event_enable(struct perf_event *event)
4299 struct hw_perf_event *hwc = &event->hw;
4300 u64 now;
4302 now = event->ctx->time;
4304 atomic64_set(&hwc->prev_count, now);
4306 perf_swevent_start_hrtimer(event);
4308 return 0;
4311 static void task_clock_perf_event_disable(struct perf_event *event)
4313 perf_swevent_cancel_hrtimer(event);
4314 task_clock_perf_event_update(event, event->ctx->time);
4318 static void task_clock_perf_event_read(struct perf_event *event)
4320 u64 time;
4322 if (!in_nmi()) {
4323 update_context_time(event->ctx);
4324 time = event->ctx->time;
4325 } else {
4326 u64 now = perf_clock();
4327 u64 delta = now - event->ctx->timestamp;
4328 time = event->ctx->time + delta;
4331 task_clock_perf_event_update(event, time);
4334 static const struct pmu perf_ops_task_clock = {
4335 .enable = task_clock_perf_event_enable,
4336 .disable = task_clock_perf_event_disable,
4337 .read = task_clock_perf_event_read,
4340 #ifdef CONFIG_EVENT_TRACING
4342 void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
4343 int entry_size, struct pt_regs *regs)
4345 struct perf_sample_data data;
4346 struct perf_raw_record raw = {
4347 .size = entry_size,
4348 .data = record,
4351 perf_sample_data_init(&data, addr);
4352 data.raw = &raw;
4354 /* Trace events already protected against recursion */
4355 do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
4356 &data, regs);
4358 EXPORT_SYMBOL_GPL(perf_tp_event);
4360 static int perf_tp_event_match(struct perf_event *event,
4361 struct perf_sample_data *data)
4363 void *record = data->raw->data;
4365 if (likely(!event->filter) || filter_match_preds(event->filter, record))
4366 return 1;
4367 return 0;
4370 static void tp_perf_event_destroy(struct perf_event *event)
4372 perf_trace_disable(event->attr.config);
4375 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4378 * Raw tracepoint data is a severe data leak, only allow root to
4379 * have these.
4381 if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4382 perf_paranoid_tracepoint_raw() &&
4383 !capable(CAP_SYS_ADMIN))
4384 return ERR_PTR(-EPERM);
4386 if (perf_trace_enable(event->attr.config))
4387 return NULL;
4389 event->destroy = tp_perf_event_destroy;
4391 return &perf_ops_generic;
4394 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4396 char *filter_str;
4397 int ret;
4399 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4400 return -EINVAL;
4402 filter_str = strndup_user(arg, PAGE_SIZE);
4403 if (IS_ERR(filter_str))
4404 return PTR_ERR(filter_str);
4406 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4408 kfree(filter_str);
4409 return ret;
4412 static void perf_event_free_filter(struct perf_event *event)
4414 ftrace_profile_free_filter(event);
4417 #else
4419 static int perf_tp_event_match(struct perf_event *event,
4420 struct perf_sample_data *data)
4422 return 1;
4425 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4427 return NULL;
4430 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4432 return -ENOENT;
4435 static void perf_event_free_filter(struct perf_event *event)
4439 #endif /* CONFIG_EVENT_TRACING */
4441 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4442 static void bp_perf_event_destroy(struct perf_event *event)
4444 release_bp_slot(event);
4447 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4449 int err;
4451 err = register_perf_hw_breakpoint(bp);
4452 if (err)
4453 return ERR_PTR(err);
4455 bp->destroy = bp_perf_event_destroy;
4457 return &perf_ops_bp;
4460 void perf_bp_event(struct perf_event *bp, void *data)
4462 struct perf_sample_data sample;
4463 struct pt_regs *regs = data;
4465 perf_sample_data_init(&sample, bp->attr.bp_addr);
4467 if (!perf_exclude_event(bp, regs))
4468 perf_swevent_add(bp, 1, 1, &sample, regs);
4470 #else
4471 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4473 return NULL;
4476 void perf_bp_event(struct perf_event *bp, void *regs)
4479 #endif
4481 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4483 static void sw_perf_event_destroy(struct perf_event *event)
4485 u64 event_id = event->attr.config;
4487 WARN_ON(event->parent);
4489 atomic_dec(&perf_swevent_enabled[event_id]);
4492 static const struct pmu *sw_perf_event_init(struct perf_event *event)
4494 const struct pmu *pmu = NULL;
4495 u64 event_id = event->attr.config;
4498 * Software events (currently) can't in general distinguish
4499 * between user, kernel and hypervisor events.
4500 * However, context switches and cpu migrations are considered
4501 * to be kernel events, and page faults are never hypervisor
4502 * events.
4504 switch (event_id) {
4505 case PERF_COUNT_SW_CPU_CLOCK:
4506 pmu = &perf_ops_cpu_clock;
4508 break;
4509 case PERF_COUNT_SW_TASK_CLOCK:
4511 * If the user instantiates this as a per-cpu event,
4512 * use the cpu_clock event instead.
4514 if (event->ctx->task)
4515 pmu = &perf_ops_task_clock;
4516 else
4517 pmu = &perf_ops_cpu_clock;
4519 break;
4520 case PERF_COUNT_SW_PAGE_FAULTS:
4521 case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4522 case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4523 case PERF_COUNT_SW_CONTEXT_SWITCHES:
4524 case PERF_COUNT_SW_CPU_MIGRATIONS:
4525 case PERF_COUNT_SW_ALIGNMENT_FAULTS:
4526 case PERF_COUNT_SW_EMULATION_FAULTS:
4527 if (!event->parent) {
4528 atomic_inc(&perf_swevent_enabled[event_id]);
4529 event->destroy = sw_perf_event_destroy;
4531 pmu = &perf_ops_generic;
4532 break;
4535 return pmu;
4539 * Allocate and initialize a event structure
4541 static struct perf_event *
4542 perf_event_alloc(struct perf_event_attr *attr,
4543 int cpu,
4544 struct perf_event_context *ctx,
4545 struct perf_event *group_leader,
4546 struct perf_event *parent_event,
4547 perf_overflow_handler_t overflow_handler,
4548 gfp_t gfpflags)
4550 const struct pmu *pmu;
4551 struct perf_event *event;
4552 struct hw_perf_event *hwc;
4553 long err;
4555 event = kzalloc(sizeof(*event), gfpflags);
4556 if (!event)
4557 return ERR_PTR(-ENOMEM);
4560 * Single events are their own group leaders, with an
4561 * empty sibling list:
4563 if (!group_leader)
4564 group_leader = event;
4566 mutex_init(&event->child_mutex);
4567 INIT_LIST_HEAD(&event->child_list);
4569 INIT_LIST_HEAD(&event->group_entry);
4570 INIT_LIST_HEAD(&event->event_entry);
4571 INIT_LIST_HEAD(&event->sibling_list);
4572 init_waitqueue_head(&event->waitq);
4574 mutex_init(&event->mmap_mutex);
4576 event->cpu = cpu;
4577 event->attr = *attr;
4578 event->group_leader = group_leader;
4579 event->pmu = NULL;
4580 event->ctx = ctx;
4581 event->oncpu = -1;
4583 event->parent = parent_event;
4585 event->ns = get_pid_ns(current->nsproxy->pid_ns);
4586 event->id = atomic64_inc_return(&perf_event_id);
4588 event->state = PERF_EVENT_STATE_INACTIVE;
4590 if (!overflow_handler && parent_event)
4591 overflow_handler = parent_event->overflow_handler;
4593 event->overflow_handler = overflow_handler;
4595 if (attr->disabled)
4596 event->state = PERF_EVENT_STATE_OFF;
4598 pmu = NULL;
4600 hwc = &event->hw;
4601 hwc->sample_period = attr->sample_period;
4602 if (attr->freq && attr->sample_freq)
4603 hwc->sample_period = 1;
4604 hwc->last_period = hwc->sample_period;
4606 atomic64_set(&hwc->period_left, hwc->sample_period);
4609 * we currently do not support PERF_FORMAT_GROUP on inherited events
4611 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4612 goto done;
4614 switch (attr->type) {
4615 case PERF_TYPE_RAW:
4616 case PERF_TYPE_HARDWARE:
4617 case PERF_TYPE_HW_CACHE:
4618 pmu = hw_perf_event_init(event);
4619 break;
4621 case PERF_TYPE_SOFTWARE:
4622 pmu = sw_perf_event_init(event);
4623 break;
4625 case PERF_TYPE_TRACEPOINT:
4626 pmu = tp_perf_event_init(event);
4627 break;
4629 case PERF_TYPE_BREAKPOINT:
4630 pmu = bp_perf_event_init(event);
4631 break;
4634 default:
4635 break;
4637 done:
4638 err = 0;
4639 if (!pmu)
4640 err = -EINVAL;
4641 else if (IS_ERR(pmu))
4642 err = PTR_ERR(pmu);
4644 if (err) {
4645 if (event->ns)
4646 put_pid_ns(event->ns);
4647 kfree(event);
4648 return ERR_PTR(err);
4651 event->pmu = pmu;
4653 if (!event->parent) {
4654 atomic_inc(&nr_events);
4655 if (event->attr.mmap)
4656 atomic_inc(&nr_mmap_events);
4657 if (event->attr.comm)
4658 atomic_inc(&nr_comm_events);
4659 if (event->attr.task)
4660 atomic_inc(&nr_task_events);
4663 return event;
4666 static int perf_copy_attr(struct perf_event_attr __user *uattr,
4667 struct perf_event_attr *attr)
4669 u32 size;
4670 int ret;
4672 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4673 return -EFAULT;
4676 * zero the full structure, so that a short copy will be nice.
4678 memset(attr, 0, sizeof(*attr));
4680 ret = get_user(size, &uattr->size);
4681 if (ret)
4682 return ret;
4684 if (size > PAGE_SIZE) /* silly large */
4685 goto err_size;
4687 if (!size) /* abi compat */
4688 size = PERF_ATTR_SIZE_VER0;
4690 if (size < PERF_ATTR_SIZE_VER0)
4691 goto err_size;
4694 * If we're handed a bigger struct than we know of,
4695 * ensure all the unknown bits are 0 - i.e. new
4696 * user-space does not rely on any kernel feature
4697 * extensions we dont know about yet.
4699 if (size > sizeof(*attr)) {
4700 unsigned char __user *addr;
4701 unsigned char __user *end;
4702 unsigned char val;
4704 addr = (void __user *)uattr + sizeof(*attr);
4705 end = (void __user *)uattr + size;
4707 for (; addr < end; addr++) {
4708 ret = get_user(val, addr);
4709 if (ret)
4710 return ret;
4711 if (val)
4712 goto err_size;
4714 size = sizeof(*attr);
4717 ret = copy_from_user(attr, uattr, size);
4718 if (ret)
4719 return -EFAULT;
4722 * If the type exists, the corresponding creation will verify
4723 * the attr->config.
4725 if (attr->type >= PERF_TYPE_MAX)
4726 return -EINVAL;
4728 if (attr->__reserved_1)
4729 return -EINVAL;
4731 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4732 return -EINVAL;
4734 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
4735 return -EINVAL;
4737 out:
4738 return ret;
4740 err_size:
4741 put_user(sizeof(*attr), &uattr->size);
4742 ret = -E2BIG;
4743 goto out;
4746 static int perf_event_set_output(struct perf_event *event, int output_fd)
4748 struct perf_event *output_event = NULL;
4749 struct file *output_file = NULL;
4750 struct perf_event *old_output;
4751 int fput_needed = 0;
4752 int ret = -EINVAL;
4754 if (!output_fd)
4755 goto set;
4757 output_file = fget_light(output_fd, &fput_needed);
4758 if (!output_file)
4759 return -EBADF;
4761 if (output_file->f_op != &perf_fops)
4762 goto out;
4764 output_event = output_file->private_data;
4766 /* Don't chain output fds */
4767 if (output_event->output)
4768 goto out;
4770 /* Don't set an output fd when we already have an output channel */
4771 if (event->data)
4772 goto out;
4774 atomic_long_inc(&output_file->f_count);
4776 set:
4777 mutex_lock(&event->mmap_mutex);
4778 old_output = event->output;
4779 rcu_assign_pointer(event->output, output_event);
4780 mutex_unlock(&event->mmap_mutex);
4782 if (old_output) {
4784 * we need to make sure no existing perf_output_*()
4785 * is still referencing this event.
4787 synchronize_rcu();
4788 fput(old_output->filp);
4791 ret = 0;
4792 out:
4793 fput_light(output_file, fput_needed);
4794 return ret;
4798 * sys_perf_event_open - open a performance event, associate it to a task/cpu
4800 * @attr_uptr: event_id type attributes for monitoring/sampling
4801 * @pid: target pid
4802 * @cpu: target cpu
4803 * @group_fd: group leader event fd
4805 SYSCALL_DEFINE5(perf_event_open,
4806 struct perf_event_attr __user *, attr_uptr,
4807 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
4809 struct perf_event *event, *group_leader;
4810 struct perf_event_attr attr;
4811 struct perf_event_context *ctx;
4812 struct file *event_file = NULL;
4813 struct file *group_file = NULL;
4814 int event_fd;
4815 int fput_needed = 0;
4816 int err;
4818 /* for future expandability... */
4819 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4820 return -EINVAL;
4822 err = perf_copy_attr(attr_uptr, &attr);
4823 if (err)
4824 return err;
4826 if (!attr.exclude_kernel) {
4827 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
4828 return -EACCES;
4831 if (attr.freq) {
4832 if (attr.sample_freq > sysctl_perf_event_sample_rate)
4833 return -EINVAL;
4836 event_fd = get_unused_fd_flags(O_RDWR);
4837 if (event_fd < 0)
4838 return event_fd;
4841 * Get the target context (task or percpu):
4843 ctx = find_get_context(pid, cpu);
4844 if (IS_ERR(ctx)) {
4845 err = PTR_ERR(ctx);
4846 goto err_fd;
4850 * Look up the group leader (we will attach this event to it):
4852 group_leader = NULL;
4853 if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4854 err = -EINVAL;
4855 group_file = fget_light(group_fd, &fput_needed);
4856 if (!group_file)
4857 goto err_put_context;
4858 if (group_file->f_op != &perf_fops)
4859 goto err_put_context;
4861 group_leader = group_file->private_data;
4863 * Do not allow a recursive hierarchy (this new sibling
4864 * becoming part of another group-sibling):
4866 if (group_leader->group_leader != group_leader)
4867 goto err_put_context;
4869 * Do not allow to attach to a group in a different
4870 * task or CPU context:
4872 if (group_leader->ctx != ctx)
4873 goto err_put_context;
4875 * Only a group leader can be exclusive or pinned
4877 if (attr.exclusive || attr.pinned)
4878 goto err_put_context;
4881 event = perf_event_alloc(&attr, cpu, ctx, group_leader,
4882 NULL, NULL, GFP_KERNEL);
4883 err = PTR_ERR(event);
4884 if (IS_ERR(event))
4885 goto err_put_context;
4887 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
4888 if (IS_ERR(event_file)) {
4889 err = PTR_ERR(event_file);
4890 goto err_free_put_context;
4893 if (flags & PERF_FLAG_FD_OUTPUT) {
4894 err = perf_event_set_output(event, group_fd);
4895 if (err)
4896 goto err_fput_free_put_context;
4899 event->filp = event_file;
4900 WARN_ON_ONCE(ctx->parent_ctx);
4901 mutex_lock(&ctx->mutex);
4902 perf_install_in_context(ctx, event, cpu);
4903 ++ctx->generation;
4904 mutex_unlock(&ctx->mutex);
4906 event->owner = current;
4907 get_task_struct(current);
4908 mutex_lock(&current->perf_event_mutex);
4909 list_add_tail(&event->owner_entry, &current->perf_event_list);
4910 mutex_unlock(&current->perf_event_mutex);
4912 fput_light(group_file, fput_needed);
4913 fd_install(event_fd, event_file);
4914 return event_fd;
4916 err_fput_free_put_context:
4917 fput(event_file);
4918 err_free_put_context:
4919 free_event(event);
4920 err_put_context:
4921 fput_light(group_file, fput_needed);
4922 put_ctx(ctx);
4923 err_fd:
4924 put_unused_fd(event_fd);
4925 return err;
4929 * perf_event_create_kernel_counter
4931 * @attr: attributes of the counter to create
4932 * @cpu: cpu in which the counter is bound
4933 * @pid: task to profile
4935 struct perf_event *
4936 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
4937 pid_t pid,
4938 perf_overflow_handler_t overflow_handler)
4940 struct perf_event *event;
4941 struct perf_event_context *ctx;
4942 int err;
4945 * Get the target context (task or percpu):
4948 ctx = find_get_context(pid, cpu);
4949 if (IS_ERR(ctx)) {
4950 err = PTR_ERR(ctx);
4951 goto err_exit;
4954 event = perf_event_alloc(attr, cpu, ctx, NULL,
4955 NULL, overflow_handler, GFP_KERNEL);
4956 if (IS_ERR(event)) {
4957 err = PTR_ERR(event);
4958 goto err_put_context;
4961 event->filp = NULL;
4962 WARN_ON_ONCE(ctx->parent_ctx);
4963 mutex_lock(&ctx->mutex);
4964 perf_install_in_context(ctx, event, cpu);
4965 ++ctx->generation;
4966 mutex_unlock(&ctx->mutex);
4968 event->owner = current;
4969 get_task_struct(current);
4970 mutex_lock(&current->perf_event_mutex);
4971 list_add_tail(&event->owner_entry, &current->perf_event_list);
4972 mutex_unlock(&current->perf_event_mutex);
4974 return event;
4976 err_put_context:
4977 put_ctx(ctx);
4978 err_exit:
4979 return ERR_PTR(err);
4981 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
4984 * inherit a event from parent task to child task:
4986 static struct perf_event *
4987 inherit_event(struct perf_event *parent_event,
4988 struct task_struct *parent,
4989 struct perf_event_context *parent_ctx,
4990 struct task_struct *child,
4991 struct perf_event *group_leader,
4992 struct perf_event_context *child_ctx)
4994 struct perf_event *child_event;
4997 * Instead of creating recursive hierarchies of events,
4998 * we link inherited events back to the original parent,
4999 * which has a filp for sure, which we use as the reference
5000 * count:
5002 if (parent_event->parent)
5003 parent_event = parent_event->parent;
5005 child_event = perf_event_alloc(&parent_event->attr,
5006 parent_event->cpu, child_ctx,
5007 group_leader, parent_event,
5008 NULL, GFP_KERNEL);
5009 if (IS_ERR(child_event))
5010 return child_event;
5011 get_ctx(child_ctx);
5014 * Make the child state follow the state of the parent event,
5015 * not its attr.disabled bit. We hold the parent's mutex,
5016 * so we won't race with perf_event_{en, dis}able_family.
5018 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
5019 child_event->state = PERF_EVENT_STATE_INACTIVE;
5020 else
5021 child_event->state = PERF_EVENT_STATE_OFF;
5023 if (parent_event->attr.freq) {
5024 u64 sample_period = parent_event->hw.sample_period;
5025 struct hw_perf_event *hwc = &child_event->hw;
5027 hwc->sample_period = sample_period;
5028 hwc->last_period = sample_period;
5030 atomic64_set(&hwc->period_left, sample_period);
5033 child_event->overflow_handler = parent_event->overflow_handler;
5036 * Link it up in the child's context:
5038 add_event_to_ctx(child_event, child_ctx);
5041 * Get a reference to the parent filp - we will fput it
5042 * when the child event exits. This is safe to do because
5043 * we are in the parent and we know that the filp still
5044 * exists and has a nonzero count:
5046 atomic_long_inc(&parent_event->filp->f_count);
5049 * Link this into the parent event's child list
5051 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5052 mutex_lock(&parent_event->child_mutex);
5053 list_add_tail(&child_event->child_list, &parent_event->child_list);
5054 mutex_unlock(&parent_event->child_mutex);
5056 return child_event;
5059 static int inherit_group(struct perf_event *parent_event,
5060 struct task_struct *parent,
5061 struct perf_event_context *parent_ctx,
5062 struct task_struct *child,
5063 struct perf_event_context *child_ctx)
5065 struct perf_event *leader;
5066 struct perf_event *sub;
5067 struct perf_event *child_ctr;
5069 leader = inherit_event(parent_event, parent, parent_ctx,
5070 child, NULL, child_ctx);
5071 if (IS_ERR(leader))
5072 return PTR_ERR(leader);
5073 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
5074 child_ctr = inherit_event(sub, parent, parent_ctx,
5075 child, leader, child_ctx);
5076 if (IS_ERR(child_ctr))
5077 return PTR_ERR(child_ctr);
5079 return 0;
5082 static void sync_child_event(struct perf_event *child_event,
5083 struct task_struct *child)
5085 struct perf_event *parent_event = child_event->parent;
5086 u64 child_val;
5088 if (child_event->attr.inherit_stat)
5089 perf_event_read_event(child_event, child);
5091 child_val = atomic64_read(&child_event->count);
5094 * Add back the child's count to the parent's count:
5096 atomic64_add(child_val, &parent_event->count);
5097 atomic64_add(child_event->total_time_enabled,
5098 &parent_event->child_total_time_enabled);
5099 atomic64_add(child_event->total_time_running,
5100 &parent_event->child_total_time_running);
5103 * Remove this event from the parent's list
5105 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5106 mutex_lock(&parent_event->child_mutex);
5107 list_del_init(&child_event->child_list);
5108 mutex_unlock(&parent_event->child_mutex);
5111 * Release the parent event, if this was the last
5112 * reference to it.
5114 fput(parent_event->filp);
5117 static void
5118 __perf_event_exit_task(struct perf_event *child_event,
5119 struct perf_event_context *child_ctx,
5120 struct task_struct *child)
5122 struct perf_event *parent_event;
5124 perf_event_remove_from_context(child_event);
5126 parent_event = child_event->parent;
5128 * It can happen that parent exits first, and has events
5129 * that are still around due to the child reference. These
5130 * events need to be zapped - but otherwise linger.
5132 if (parent_event) {
5133 sync_child_event(child_event, child);
5134 free_event(child_event);
5139 * When a child task exits, feed back event values to parent events.
5141 void perf_event_exit_task(struct task_struct *child)
5143 struct perf_event *child_event, *tmp;
5144 struct perf_event_context *child_ctx;
5145 unsigned long flags;
5147 if (likely(!child->perf_event_ctxp)) {
5148 perf_event_task(child, NULL, 0);
5149 return;
5152 local_irq_save(flags);
5154 * We can't reschedule here because interrupts are disabled,
5155 * and either child is current or it is a task that can't be
5156 * scheduled, so we are now safe from rescheduling changing
5157 * our context.
5159 child_ctx = child->perf_event_ctxp;
5160 __perf_event_task_sched_out(child_ctx);
5163 * Take the context lock here so that if find_get_context is
5164 * reading child->perf_event_ctxp, we wait until it has
5165 * incremented the context's refcount before we do put_ctx below.
5167 raw_spin_lock(&child_ctx->lock);
5168 child->perf_event_ctxp = NULL;
5170 * If this context is a clone; unclone it so it can't get
5171 * swapped to another process while we're removing all
5172 * the events from it.
5174 unclone_ctx(child_ctx);
5175 update_context_time(child_ctx);
5176 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5179 * Report the task dead after unscheduling the events so that we
5180 * won't get any samples after PERF_RECORD_EXIT. We can however still
5181 * get a few PERF_RECORD_READ events.
5183 perf_event_task(child, child_ctx, 0);
5186 * We can recurse on the same lock type through:
5188 * __perf_event_exit_task()
5189 * sync_child_event()
5190 * fput(parent_event->filp)
5191 * perf_release()
5192 * mutex_lock(&ctx->mutex)
5194 * But since its the parent context it won't be the same instance.
5196 mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
5198 again:
5199 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5200 group_entry)
5201 __perf_event_exit_task(child_event, child_ctx, child);
5203 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5204 group_entry)
5205 __perf_event_exit_task(child_event, child_ctx, child);
5208 * If the last event was a group event, it will have appended all
5209 * its siblings to the list, but we obtained 'tmp' before that which
5210 * will still point to the list head terminating the iteration.
5212 if (!list_empty(&child_ctx->pinned_groups) ||
5213 !list_empty(&child_ctx->flexible_groups))
5214 goto again;
5216 mutex_unlock(&child_ctx->mutex);
5218 put_ctx(child_ctx);
5221 static void perf_free_event(struct perf_event *event,
5222 struct perf_event_context *ctx)
5224 struct perf_event *parent = event->parent;
5226 if (WARN_ON_ONCE(!parent))
5227 return;
5229 mutex_lock(&parent->child_mutex);
5230 list_del_init(&event->child_list);
5231 mutex_unlock(&parent->child_mutex);
5233 fput(parent->filp);
5235 list_del_event(event, ctx);
5236 free_event(event);
5240 * free an unexposed, unused context as created by inheritance by
5241 * init_task below, used by fork() in case of fail.
5243 void perf_event_free_task(struct task_struct *task)
5245 struct perf_event_context *ctx = task->perf_event_ctxp;
5246 struct perf_event *event, *tmp;
5248 if (!ctx)
5249 return;
5251 mutex_lock(&ctx->mutex);
5252 again:
5253 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5254 perf_free_event(event, ctx);
5256 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5257 group_entry)
5258 perf_free_event(event, ctx);
5260 if (!list_empty(&ctx->pinned_groups) ||
5261 !list_empty(&ctx->flexible_groups))
5262 goto again;
5264 mutex_unlock(&ctx->mutex);
5266 put_ctx(ctx);
5269 static int
5270 inherit_task_group(struct perf_event *event, struct task_struct *parent,
5271 struct perf_event_context *parent_ctx,
5272 struct task_struct *child,
5273 int *inherited_all)
5275 int ret;
5276 struct perf_event_context *child_ctx = child->perf_event_ctxp;
5278 if (!event->attr.inherit) {
5279 *inherited_all = 0;
5280 return 0;
5283 if (!child_ctx) {
5285 * This is executed from the parent task context, so
5286 * inherit events that have been marked for cloning.
5287 * First allocate and initialize a context for the
5288 * child.
5291 child_ctx = kzalloc(sizeof(struct perf_event_context),
5292 GFP_KERNEL);
5293 if (!child_ctx)
5294 return -ENOMEM;
5296 __perf_event_init_context(child_ctx, child);
5297 child->perf_event_ctxp = child_ctx;
5298 get_task_struct(child);
5301 ret = inherit_group(event, parent, parent_ctx,
5302 child, child_ctx);
5304 if (ret)
5305 *inherited_all = 0;
5307 return ret;
5312 * Initialize the perf_event context in task_struct
5314 int perf_event_init_task(struct task_struct *child)
5316 struct perf_event_context *child_ctx, *parent_ctx;
5317 struct perf_event_context *cloned_ctx;
5318 struct perf_event *event;
5319 struct task_struct *parent = current;
5320 int inherited_all = 1;
5321 int ret = 0;
5323 child->perf_event_ctxp = NULL;
5325 mutex_init(&child->perf_event_mutex);
5326 INIT_LIST_HEAD(&child->perf_event_list);
5328 if (likely(!parent->perf_event_ctxp))
5329 return 0;
5332 * If the parent's context is a clone, pin it so it won't get
5333 * swapped under us.
5335 parent_ctx = perf_pin_task_context(parent);
5338 * No need to check if parent_ctx != NULL here; since we saw
5339 * it non-NULL earlier, the only reason for it to become NULL
5340 * is if we exit, and since we're currently in the middle of
5341 * a fork we can't be exiting at the same time.
5345 * Lock the parent list. No need to lock the child - not PID
5346 * hashed yet and not running, so nobody can access it.
5348 mutex_lock(&parent_ctx->mutex);
5351 * We dont have to disable NMIs - we are only looking at
5352 * the list, not manipulating it:
5354 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
5355 ret = inherit_task_group(event, parent, parent_ctx, child,
5356 &inherited_all);
5357 if (ret)
5358 break;
5361 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
5362 ret = inherit_task_group(event, parent, parent_ctx, child,
5363 &inherited_all);
5364 if (ret)
5365 break;
5368 child_ctx = child->perf_event_ctxp;
5370 if (child_ctx && inherited_all) {
5372 * Mark the child context as a clone of the parent
5373 * context, or of whatever the parent is a clone of.
5374 * Note that if the parent is a clone, it could get
5375 * uncloned at any point, but that doesn't matter
5376 * because the list of events and the generation
5377 * count can't have changed since we took the mutex.
5379 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
5380 if (cloned_ctx) {
5381 child_ctx->parent_ctx = cloned_ctx;
5382 child_ctx->parent_gen = parent_ctx->parent_gen;
5383 } else {
5384 child_ctx->parent_ctx = parent_ctx;
5385 child_ctx->parent_gen = parent_ctx->generation;
5387 get_ctx(child_ctx->parent_ctx);
5390 mutex_unlock(&parent_ctx->mutex);
5392 perf_unpin_context(parent_ctx);
5394 return ret;
5397 static void __init perf_event_init_all_cpus(void)
5399 int cpu;
5400 struct perf_cpu_context *cpuctx;
5402 for_each_possible_cpu(cpu) {
5403 cpuctx = &per_cpu(perf_cpu_context, cpu);
5404 __perf_event_init_context(&cpuctx->ctx, NULL);
5408 static void __cpuinit perf_event_init_cpu(int cpu)
5410 struct perf_cpu_context *cpuctx;
5412 cpuctx = &per_cpu(perf_cpu_context, cpu);
5414 spin_lock(&perf_resource_lock);
5415 cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5416 spin_unlock(&perf_resource_lock);
5419 #ifdef CONFIG_HOTPLUG_CPU
5420 static void __perf_event_exit_cpu(void *info)
5422 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5423 struct perf_event_context *ctx = &cpuctx->ctx;
5424 struct perf_event *event, *tmp;
5426 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5427 __perf_event_remove_from_context(event);
5428 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
5429 __perf_event_remove_from_context(event);
5431 static void perf_event_exit_cpu(int cpu)
5433 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5434 struct perf_event_context *ctx = &cpuctx->ctx;
5436 mutex_lock(&ctx->mutex);
5437 smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5438 mutex_unlock(&ctx->mutex);
5440 #else
5441 static inline void perf_event_exit_cpu(int cpu) { }
5442 #endif
5444 static int __cpuinit
5445 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5447 unsigned int cpu = (long)hcpu;
5449 switch (action) {
5451 case CPU_UP_PREPARE:
5452 case CPU_UP_PREPARE_FROZEN:
5453 perf_event_init_cpu(cpu);
5454 break;
5456 case CPU_DOWN_PREPARE:
5457 case CPU_DOWN_PREPARE_FROZEN:
5458 perf_event_exit_cpu(cpu);
5459 break;
5461 default:
5462 break;
5465 return NOTIFY_OK;
5469 * This has to have a higher priority than migration_notifier in sched.c.
5471 static struct notifier_block __cpuinitdata perf_cpu_nb = {
5472 .notifier_call = perf_cpu_notify,
5473 .priority = 20,
5476 void __init perf_event_init(void)
5478 perf_event_init_all_cpus();
5479 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
5480 (void *)(long)smp_processor_id());
5481 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
5482 (void *)(long)smp_processor_id());
5483 register_cpu_notifier(&perf_cpu_nb);
5486 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class,
5487 struct sysdev_class_attribute *attr,
5488 char *buf)
5490 return sprintf(buf, "%d\n", perf_reserved_percpu);
5493 static ssize_t
5494 perf_set_reserve_percpu(struct sysdev_class *class,
5495 struct sysdev_class_attribute *attr,
5496 const char *buf,
5497 size_t count)
5499 struct perf_cpu_context *cpuctx;
5500 unsigned long val;
5501 int err, cpu, mpt;
5503 err = strict_strtoul(buf, 10, &val);
5504 if (err)
5505 return err;
5506 if (val > perf_max_events)
5507 return -EINVAL;
5509 spin_lock(&perf_resource_lock);
5510 perf_reserved_percpu = val;
5511 for_each_online_cpu(cpu) {
5512 cpuctx = &per_cpu(perf_cpu_context, cpu);
5513 raw_spin_lock_irq(&cpuctx->ctx.lock);
5514 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
5515 perf_max_events - perf_reserved_percpu);
5516 cpuctx->max_pertask = mpt;
5517 raw_spin_unlock_irq(&cpuctx->ctx.lock);
5519 spin_unlock(&perf_resource_lock);
5521 return count;
5524 static ssize_t perf_show_overcommit(struct sysdev_class *class,
5525 struct sysdev_class_attribute *attr,
5526 char *buf)
5528 return sprintf(buf, "%d\n", perf_overcommit);
5531 static ssize_t
5532 perf_set_overcommit(struct sysdev_class *class,
5533 struct sysdev_class_attribute *attr,
5534 const char *buf, size_t count)
5536 unsigned long val;
5537 int err;
5539 err = strict_strtoul(buf, 10, &val);
5540 if (err)
5541 return err;
5542 if (val > 1)
5543 return -EINVAL;
5545 spin_lock(&perf_resource_lock);
5546 perf_overcommit = val;
5547 spin_unlock(&perf_resource_lock);
5549 return count;
5552 static SYSDEV_CLASS_ATTR(
5553 reserve_percpu,
5554 0644,
5555 perf_show_reserve_percpu,
5556 perf_set_reserve_percpu
5559 static SYSDEV_CLASS_ATTR(
5560 overcommit,
5561 0644,
5562 perf_show_overcommit,
5563 perf_set_overcommit
5566 static struct attribute *perfclass_attrs[] = {
5567 &attr_reserve_percpu.attr,
5568 &attr_overcommit.attr,
5569 NULL
5572 static struct attribute_group perfclass_attr_group = {
5573 .attrs = perfclass_attrs,
5574 .name = "perf_events",
5577 static int __init perf_event_sysfs_init(void)
5579 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
5580 &perfclass_attr_group);
5582 device_initcall(perf_event_sysfs_init);