xhci: Setup array of USB 2.0 and USB 3.0 ports.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / rcutree_plugin.h
blob71a4147473f95f51d2b2e88db4c14372dafe375f
1 /*
2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
4 * or preemptable semantics.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
23 * Author: Ingo Molnar <mingo@elte.hu>
24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
27 #include <linux/delay.h>
30 * Check the RCU kernel configuration parameters and print informative
31 * messages about anything out of the ordinary. If you like #ifdef, you
32 * will love this function.
34 static void __init rcu_bootup_announce_oddness(void)
36 #ifdef CONFIG_RCU_TRACE
37 printk(KERN_INFO "\tRCU debugfs-based tracing is enabled.\n");
38 #endif
39 #if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
40 printk(KERN_INFO "\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
41 CONFIG_RCU_FANOUT);
42 #endif
43 #ifdef CONFIG_RCU_FANOUT_EXACT
44 printk(KERN_INFO "\tHierarchical RCU autobalancing is disabled.\n");
45 #endif
46 #ifdef CONFIG_RCU_FAST_NO_HZ
47 printk(KERN_INFO
48 "\tRCU dyntick-idle grace-period acceleration is enabled.\n");
49 #endif
50 #ifdef CONFIG_PROVE_RCU
51 printk(KERN_INFO "\tRCU lockdep checking is enabled.\n");
52 #endif
53 #ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
54 printk(KERN_INFO "\tRCU torture testing starts during boot.\n");
55 #endif
56 #ifndef CONFIG_RCU_CPU_STALL_DETECTOR
57 printk(KERN_INFO
58 "\tRCU-based detection of stalled CPUs is disabled.\n");
59 #endif
60 #if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE)
61 printk(KERN_INFO "\tVerbose stalled-CPUs detection is disabled.\n");
62 #endif
63 #if NUM_RCU_LVL_4 != 0
64 printk(KERN_INFO "\tExperimental four-level hierarchy is enabled.\n");
65 #endif
68 #ifdef CONFIG_TREE_PREEMPT_RCU
70 struct rcu_state rcu_preempt_state = RCU_STATE_INITIALIZER(rcu_preempt_state);
71 DEFINE_PER_CPU(struct rcu_data, rcu_preempt_data);
73 static int rcu_preempted_readers_exp(struct rcu_node *rnp);
76 * Tell them what RCU they are running.
78 static void __init rcu_bootup_announce(void)
80 printk(KERN_INFO "Preemptable hierarchical RCU implementation.\n");
81 rcu_bootup_announce_oddness();
85 * Return the number of RCU-preempt batches processed thus far
86 * for debug and statistics.
88 long rcu_batches_completed_preempt(void)
90 return rcu_preempt_state.completed;
92 EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);
95 * Return the number of RCU batches processed thus far for debug & stats.
97 long rcu_batches_completed(void)
99 return rcu_batches_completed_preempt();
101 EXPORT_SYMBOL_GPL(rcu_batches_completed);
104 * Force a quiescent state for preemptible RCU.
106 void rcu_force_quiescent_state(void)
108 force_quiescent_state(&rcu_preempt_state, 0);
110 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
113 * Record a preemptable-RCU quiescent state for the specified CPU. Note
114 * that this just means that the task currently running on the CPU is
115 * not in a quiescent state. There might be any number of tasks blocked
116 * while in an RCU read-side critical section.
118 * Unlike the other rcu_*_qs() functions, callers to this function
119 * must disable irqs in order to protect the assignment to
120 * ->rcu_read_unlock_special.
122 static void rcu_preempt_qs(int cpu)
124 struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
126 rdp->passed_quiesc_completed = rdp->gpnum - 1;
127 barrier();
128 rdp->passed_quiesc = 1;
129 current->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
133 * We have entered the scheduler, and the current task might soon be
134 * context-switched away from. If this task is in an RCU read-side
135 * critical section, we will no longer be able to rely on the CPU to
136 * record that fact, so we enqueue the task on the appropriate entry
137 * of the blocked_tasks[] array. The task will dequeue itself when
138 * it exits the outermost enclosing RCU read-side critical section.
139 * Therefore, the current grace period cannot be permitted to complete
140 * until the blocked_tasks[] entry indexed by the low-order bit of
141 * rnp->gpnum empties.
143 * Caller must disable preemption.
145 static void rcu_preempt_note_context_switch(int cpu)
147 struct task_struct *t = current;
148 unsigned long flags;
149 int phase;
150 struct rcu_data *rdp;
151 struct rcu_node *rnp;
153 if (t->rcu_read_lock_nesting &&
154 (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {
156 /* Possibly blocking in an RCU read-side critical section. */
157 rdp = per_cpu_ptr(rcu_preempt_state.rda, cpu);
158 rnp = rdp->mynode;
159 raw_spin_lock_irqsave(&rnp->lock, flags);
160 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
161 t->rcu_blocked_node = rnp;
164 * If this CPU has already checked in, then this task
165 * will hold up the next grace period rather than the
166 * current grace period. Queue the task accordingly.
167 * If the task is queued for the current grace period
168 * (i.e., this CPU has not yet passed through a quiescent
169 * state for the current grace period), then as long
170 * as that task remains queued, the current grace period
171 * cannot end.
173 * But first, note that the current CPU must still be
174 * on line!
176 WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
177 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
178 phase = (rnp->gpnum + !(rnp->qsmask & rdp->grpmask)) & 0x1;
179 list_add(&t->rcu_node_entry, &rnp->blocked_tasks[phase]);
180 raw_spin_unlock_irqrestore(&rnp->lock, flags);
184 * Either we were not in an RCU read-side critical section to
185 * begin with, or we have now recorded that critical section
186 * globally. Either way, we can now note a quiescent state
187 * for this CPU. Again, if we were in an RCU read-side critical
188 * section, and if that critical section was blocking the current
189 * grace period, then the fact that the task has been enqueued
190 * means that we continue to block the current grace period.
192 local_irq_save(flags);
193 rcu_preempt_qs(cpu);
194 local_irq_restore(flags);
198 * Tree-preemptable RCU implementation for rcu_read_lock().
199 * Just increment ->rcu_read_lock_nesting, shared state will be updated
200 * if we block.
202 void __rcu_read_lock(void)
204 current->rcu_read_lock_nesting++;
205 barrier(); /* needed if we ever invoke rcu_read_lock in rcutree.c */
207 EXPORT_SYMBOL_GPL(__rcu_read_lock);
210 * Check for preempted RCU readers blocking the current grace period
211 * for the specified rcu_node structure. If the caller needs a reliable
212 * answer, it must hold the rcu_node's ->lock.
214 static int rcu_preempted_readers(struct rcu_node *rnp)
216 int phase = rnp->gpnum & 0x1;
218 return !list_empty(&rnp->blocked_tasks[phase]) ||
219 !list_empty(&rnp->blocked_tasks[phase + 2]);
223 * Record a quiescent state for all tasks that were previously queued
224 * on the specified rcu_node structure and that were blocking the current
225 * RCU grace period. The caller must hold the specified rnp->lock with
226 * irqs disabled, and this lock is released upon return, but irqs remain
227 * disabled.
229 static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
230 __releases(rnp->lock)
232 unsigned long mask;
233 struct rcu_node *rnp_p;
235 if (rnp->qsmask != 0 || rcu_preempted_readers(rnp)) {
236 raw_spin_unlock_irqrestore(&rnp->lock, flags);
237 return; /* Still need more quiescent states! */
240 rnp_p = rnp->parent;
241 if (rnp_p == NULL) {
243 * Either there is only one rcu_node in the tree,
244 * or tasks were kicked up to root rcu_node due to
245 * CPUs going offline.
247 rcu_report_qs_rsp(&rcu_preempt_state, flags);
248 return;
251 /* Report up the rest of the hierarchy. */
252 mask = rnp->grpmask;
253 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
254 raw_spin_lock(&rnp_p->lock); /* irqs already disabled. */
255 rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
259 * Handle special cases during rcu_read_unlock(), such as needing to
260 * notify RCU core processing or task having blocked during the RCU
261 * read-side critical section.
263 static void rcu_read_unlock_special(struct task_struct *t)
265 int empty;
266 int empty_exp;
267 unsigned long flags;
268 struct rcu_node *rnp;
269 int special;
271 /* NMI handlers cannot block and cannot safely manipulate state. */
272 if (in_nmi())
273 return;
275 local_irq_save(flags);
278 * If RCU core is waiting for this CPU to exit critical section,
279 * let it know that we have done so.
281 special = t->rcu_read_unlock_special;
282 if (special & RCU_READ_UNLOCK_NEED_QS) {
283 rcu_preempt_qs(smp_processor_id());
286 /* Hardware IRQ handlers cannot block. */
287 if (in_irq()) {
288 local_irq_restore(flags);
289 return;
292 /* Clean up if blocked during RCU read-side critical section. */
293 if (special & RCU_READ_UNLOCK_BLOCKED) {
294 t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;
297 * Remove this task from the list it blocked on. The
298 * task can migrate while we acquire the lock, but at
299 * most one time. So at most two passes through loop.
301 for (;;) {
302 rnp = t->rcu_blocked_node;
303 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
304 if (rnp == t->rcu_blocked_node)
305 break;
306 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
308 empty = !rcu_preempted_readers(rnp);
309 empty_exp = !rcu_preempted_readers_exp(rnp);
310 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
311 list_del_init(&t->rcu_node_entry);
312 t->rcu_blocked_node = NULL;
315 * If this was the last task on the current list, and if
316 * we aren't waiting on any CPUs, report the quiescent state.
317 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock.
319 if (empty)
320 raw_spin_unlock_irqrestore(&rnp->lock, flags);
321 else
322 rcu_report_unblock_qs_rnp(rnp, flags);
325 * If this was the last task on the expedited lists,
326 * then we need to report up the rcu_node hierarchy.
328 if (!empty_exp && !rcu_preempted_readers_exp(rnp))
329 rcu_report_exp_rnp(&rcu_preempt_state, rnp);
330 } else {
331 local_irq_restore(flags);
336 * Tree-preemptable RCU implementation for rcu_read_unlock().
337 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
338 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
339 * invoke rcu_read_unlock_special() to clean up after a context switch
340 * in an RCU read-side critical section and other special cases.
342 void __rcu_read_unlock(void)
344 struct task_struct *t = current;
346 barrier(); /* needed if we ever invoke rcu_read_unlock in rcutree.c */
347 --t->rcu_read_lock_nesting;
348 barrier(); /* decrement before load of ->rcu_read_unlock_special */
349 if (t->rcu_read_lock_nesting == 0 &&
350 unlikely(ACCESS_ONCE(t->rcu_read_unlock_special)))
351 rcu_read_unlock_special(t);
352 #ifdef CONFIG_PROVE_LOCKING
353 WARN_ON_ONCE(ACCESS_ONCE(t->rcu_read_lock_nesting) < 0);
354 #endif /* #ifdef CONFIG_PROVE_LOCKING */
356 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
358 #ifdef CONFIG_RCU_CPU_STALL_DETECTOR
360 #ifdef CONFIG_RCU_CPU_STALL_VERBOSE
363 * Dump detailed information for all tasks blocking the current RCU
364 * grace period on the specified rcu_node structure.
366 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
368 unsigned long flags;
369 struct list_head *lp;
370 int phase;
371 struct task_struct *t;
373 if (rcu_preempted_readers(rnp)) {
374 raw_spin_lock_irqsave(&rnp->lock, flags);
375 phase = rnp->gpnum & 0x1;
376 lp = &rnp->blocked_tasks[phase];
377 list_for_each_entry(t, lp, rcu_node_entry)
378 sched_show_task(t);
379 raw_spin_unlock_irqrestore(&rnp->lock, flags);
384 * Dump detailed information for all tasks blocking the current RCU
385 * grace period.
387 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
389 struct rcu_node *rnp = rcu_get_root(rsp);
391 rcu_print_detail_task_stall_rnp(rnp);
392 rcu_for_each_leaf_node(rsp, rnp)
393 rcu_print_detail_task_stall_rnp(rnp);
396 #else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
398 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
402 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
405 * Scan the current list of tasks blocked within RCU read-side critical
406 * sections, printing out the tid of each.
408 static void rcu_print_task_stall(struct rcu_node *rnp)
410 struct list_head *lp;
411 int phase;
412 struct task_struct *t;
414 if (rcu_preempted_readers(rnp)) {
415 phase = rnp->gpnum & 0x1;
416 lp = &rnp->blocked_tasks[phase];
417 list_for_each_entry(t, lp, rcu_node_entry)
418 printk(" P%d", t->pid);
423 * Suppress preemptible RCU's CPU stall warnings by pushing the
424 * time of the next stall-warning message comfortably far into the
425 * future.
427 static void rcu_preempt_stall_reset(void)
429 rcu_preempt_state.jiffies_stall = jiffies + ULONG_MAX / 2;
432 #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
435 * Check that the list of blocked tasks for the newly completed grace
436 * period is in fact empty. It is a serious bug to complete a grace
437 * period that still has RCU readers blocked! This function must be
438 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
439 * must be held by the caller.
441 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
443 WARN_ON_ONCE(rcu_preempted_readers(rnp));
444 WARN_ON_ONCE(rnp->qsmask);
447 #ifdef CONFIG_HOTPLUG_CPU
450 * Handle tasklist migration for case in which all CPUs covered by the
451 * specified rcu_node have gone offline. Move them up to the root
452 * rcu_node. The reason for not just moving them to the immediate
453 * parent is to remove the need for rcu_read_unlock_special() to
454 * make more than two attempts to acquire the target rcu_node's lock.
455 * Returns true if there were tasks blocking the current RCU grace
456 * period.
458 * Returns 1 if there was previously a task blocking the current grace
459 * period on the specified rcu_node structure.
461 * The caller must hold rnp->lock with irqs disabled.
463 static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
464 struct rcu_node *rnp,
465 struct rcu_data *rdp)
467 int i;
468 struct list_head *lp;
469 struct list_head *lp_root;
470 int retval = 0;
471 struct rcu_node *rnp_root = rcu_get_root(rsp);
472 struct task_struct *tp;
474 if (rnp == rnp_root) {
475 WARN_ONCE(1, "Last CPU thought to be offlined?");
476 return 0; /* Shouldn't happen: at least one CPU online. */
478 WARN_ON_ONCE(rnp != rdp->mynode &&
479 (!list_empty(&rnp->blocked_tasks[0]) ||
480 !list_empty(&rnp->blocked_tasks[1]) ||
481 !list_empty(&rnp->blocked_tasks[2]) ||
482 !list_empty(&rnp->blocked_tasks[3])));
485 * Move tasks up to root rcu_node. Rely on the fact that the
486 * root rcu_node can be at most one ahead of the rest of the
487 * rcu_nodes in terms of gp_num value. This fact allows us to
488 * move the blocked_tasks[] array directly, element by element.
490 if (rcu_preempted_readers(rnp))
491 retval |= RCU_OFL_TASKS_NORM_GP;
492 if (rcu_preempted_readers_exp(rnp))
493 retval |= RCU_OFL_TASKS_EXP_GP;
494 for (i = 0; i < 4; i++) {
495 lp = &rnp->blocked_tasks[i];
496 lp_root = &rnp_root->blocked_tasks[i];
497 while (!list_empty(lp)) {
498 tp = list_entry(lp->next, typeof(*tp), rcu_node_entry);
499 raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
500 list_del(&tp->rcu_node_entry);
501 tp->rcu_blocked_node = rnp_root;
502 list_add(&tp->rcu_node_entry, lp_root);
503 raw_spin_unlock(&rnp_root->lock); /* irqs remain disabled */
506 return retval;
510 * Do CPU-offline processing for preemptable RCU.
512 static void rcu_preempt_offline_cpu(int cpu)
514 __rcu_offline_cpu(cpu, &rcu_preempt_state);
517 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
520 * Check for a quiescent state from the current CPU. When a task blocks,
521 * the task is recorded in the corresponding CPU's rcu_node structure,
522 * which is checked elsewhere.
524 * Caller must disable hard irqs.
526 static void rcu_preempt_check_callbacks(int cpu)
528 struct task_struct *t = current;
530 if (t->rcu_read_lock_nesting == 0) {
531 rcu_preempt_qs(cpu);
532 return;
534 if (per_cpu(rcu_preempt_data, cpu).qs_pending)
535 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
539 * Process callbacks for preemptable RCU.
541 static void rcu_preempt_process_callbacks(void)
543 __rcu_process_callbacks(&rcu_preempt_state,
544 &__get_cpu_var(rcu_preempt_data));
548 * Queue a preemptable-RCU callback for invocation after a grace period.
550 void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
552 __call_rcu(head, func, &rcu_preempt_state);
554 EXPORT_SYMBOL_GPL(call_rcu);
557 * synchronize_rcu - wait until a grace period has elapsed.
559 * Control will return to the caller some time after a full grace
560 * period has elapsed, in other words after all currently executing RCU
561 * read-side critical sections have completed. Note, however, that
562 * upon return from synchronize_rcu(), the caller might well be executing
563 * concurrently with new RCU read-side critical sections that began while
564 * synchronize_rcu() was waiting. RCU read-side critical sections are
565 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
567 void synchronize_rcu(void)
569 struct rcu_synchronize rcu;
571 if (!rcu_scheduler_active)
572 return;
574 init_rcu_head_on_stack(&rcu.head);
575 init_completion(&rcu.completion);
576 /* Will wake me after RCU finished. */
577 call_rcu(&rcu.head, wakeme_after_rcu);
578 /* Wait for it. */
579 wait_for_completion(&rcu.completion);
580 destroy_rcu_head_on_stack(&rcu.head);
582 EXPORT_SYMBOL_GPL(synchronize_rcu);
584 static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
585 static long sync_rcu_preempt_exp_count;
586 static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
589 * Return non-zero if there are any tasks in RCU read-side critical
590 * sections blocking the current preemptible-RCU expedited grace period.
591 * If there is no preemptible-RCU expedited grace period currently in
592 * progress, returns zero unconditionally.
594 static int rcu_preempted_readers_exp(struct rcu_node *rnp)
596 return !list_empty(&rnp->blocked_tasks[2]) ||
597 !list_empty(&rnp->blocked_tasks[3]);
601 * return non-zero if there is no RCU expedited grace period in progress
602 * for the specified rcu_node structure, in other words, if all CPUs and
603 * tasks covered by the specified rcu_node structure have done their bit
604 * for the current expedited grace period. Works only for preemptible
605 * RCU -- other RCU implementation use other means.
607 * Caller must hold sync_rcu_preempt_exp_mutex.
609 static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
611 return !rcu_preempted_readers_exp(rnp) &&
612 ACCESS_ONCE(rnp->expmask) == 0;
616 * Report the exit from RCU read-side critical section for the last task
617 * that queued itself during or before the current expedited preemptible-RCU
618 * grace period. This event is reported either to the rcu_node structure on
619 * which the task was queued or to one of that rcu_node structure's ancestors,
620 * recursively up the tree. (Calm down, calm down, we do the recursion
621 * iteratively!)
623 * Caller must hold sync_rcu_preempt_exp_mutex.
625 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp)
627 unsigned long flags;
628 unsigned long mask;
630 raw_spin_lock_irqsave(&rnp->lock, flags);
631 for (;;) {
632 if (!sync_rcu_preempt_exp_done(rnp))
633 break;
634 if (rnp->parent == NULL) {
635 wake_up(&sync_rcu_preempt_exp_wq);
636 break;
638 mask = rnp->grpmask;
639 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
640 rnp = rnp->parent;
641 raw_spin_lock(&rnp->lock); /* irqs already disabled */
642 rnp->expmask &= ~mask;
644 raw_spin_unlock_irqrestore(&rnp->lock, flags);
648 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
649 * grace period for the specified rcu_node structure. If there are no such
650 * tasks, report it up the rcu_node hierarchy.
652 * Caller must hold sync_rcu_preempt_exp_mutex and rsp->onofflock.
654 static void
655 sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
657 int must_wait;
659 raw_spin_lock(&rnp->lock); /* irqs already disabled */
660 list_splice_init(&rnp->blocked_tasks[0], &rnp->blocked_tasks[2]);
661 list_splice_init(&rnp->blocked_tasks[1], &rnp->blocked_tasks[3]);
662 must_wait = rcu_preempted_readers_exp(rnp);
663 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
664 if (!must_wait)
665 rcu_report_exp_rnp(rsp, rnp);
669 * Wait for an rcu-preempt grace period, but expedite it. The basic idea
670 * is to invoke synchronize_sched_expedited() to push all the tasks to
671 * the ->blocked_tasks[] lists, move all entries from the first set of
672 * ->blocked_tasks[] lists to the second set, and finally wait for this
673 * second set to drain.
675 void synchronize_rcu_expedited(void)
677 unsigned long flags;
678 struct rcu_node *rnp;
679 struct rcu_state *rsp = &rcu_preempt_state;
680 long snap;
681 int trycount = 0;
683 smp_mb(); /* Caller's modifications seen first by other CPUs. */
684 snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
685 smp_mb(); /* Above access cannot bleed into critical section. */
688 * Acquire lock, falling back to synchronize_rcu() if too many
689 * lock-acquisition failures. Of course, if someone does the
690 * expedited grace period for us, just leave.
692 while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
693 if (trycount++ < 10)
694 udelay(trycount * num_online_cpus());
695 else {
696 synchronize_rcu();
697 return;
699 if ((ACCESS_ONCE(sync_rcu_preempt_exp_count) - snap) > 0)
700 goto mb_ret; /* Others did our work for us. */
702 if ((ACCESS_ONCE(sync_rcu_preempt_exp_count) - snap) > 0)
703 goto unlock_mb_ret; /* Others did our work for us. */
705 /* force all RCU readers onto blocked_tasks[]. */
706 synchronize_sched_expedited();
708 raw_spin_lock_irqsave(&rsp->onofflock, flags);
710 /* Initialize ->expmask for all non-leaf rcu_node structures. */
711 rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
712 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
713 rnp->expmask = rnp->qsmaskinit;
714 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
717 /* Snapshot current state of ->blocked_tasks[] lists. */
718 rcu_for_each_leaf_node(rsp, rnp)
719 sync_rcu_preempt_exp_init(rsp, rnp);
720 if (NUM_RCU_NODES > 1)
721 sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));
723 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
725 /* Wait for snapshotted ->blocked_tasks[] lists to drain. */
726 rnp = rcu_get_root(rsp);
727 wait_event(sync_rcu_preempt_exp_wq,
728 sync_rcu_preempt_exp_done(rnp));
730 /* Clean up and exit. */
731 smp_mb(); /* ensure expedited GP seen before counter increment. */
732 ACCESS_ONCE(sync_rcu_preempt_exp_count)++;
733 unlock_mb_ret:
734 mutex_unlock(&sync_rcu_preempt_exp_mutex);
735 mb_ret:
736 smp_mb(); /* ensure subsequent action seen after grace period. */
738 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
741 * Check to see if there is any immediate preemptable-RCU-related work
742 * to be done.
744 static int rcu_preempt_pending(int cpu)
746 return __rcu_pending(&rcu_preempt_state,
747 &per_cpu(rcu_preempt_data, cpu));
751 * Does preemptable RCU need the CPU to stay out of dynticks mode?
753 static int rcu_preempt_needs_cpu(int cpu)
755 return !!per_cpu(rcu_preempt_data, cpu).nxtlist;
759 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
761 void rcu_barrier(void)
763 _rcu_barrier(&rcu_preempt_state, call_rcu);
765 EXPORT_SYMBOL_GPL(rcu_barrier);
768 * Initialize preemptable RCU's per-CPU data.
770 static void __cpuinit rcu_preempt_init_percpu_data(int cpu)
772 rcu_init_percpu_data(cpu, &rcu_preempt_state, 1);
776 * Move preemptable RCU's callbacks to ->orphan_cbs_list.
778 static void rcu_preempt_send_cbs_to_orphanage(void)
780 rcu_send_cbs_to_orphanage(&rcu_preempt_state);
784 * Initialize preemptable RCU's state structures.
786 static void __init __rcu_init_preempt(void)
788 rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
792 * Check for a task exiting while in a preemptable-RCU read-side
793 * critical section, clean up if so. No need to issue warnings,
794 * as debug_check_no_locks_held() already does this if lockdep
795 * is enabled.
797 void exit_rcu(void)
799 struct task_struct *t = current;
801 if (t->rcu_read_lock_nesting == 0)
802 return;
803 t->rcu_read_lock_nesting = 1;
804 rcu_read_unlock();
807 #else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
810 * Tell them what RCU they are running.
812 static void __init rcu_bootup_announce(void)
814 printk(KERN_INFO "Hierarchical RCU implementation.\n");
815 rcu_bootup_announce_oddness();
819 * Return the number of RCU batches processed thus far for debug & stats.
821 long rcu_batches_completed(void)
823 return rcu_batches_completed_sched();
825 EXPORT_SYMBOL_GPL(rcu_batches_completed);
828 * Force a quiescent state for RCU, which, because there is no preemptible
829 * RCU, becomes the same as rcu-sched.
831 void rcu_force_quiescent_state(void)
833 rcu_sched_force_quiescent_state();
835 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
838 * Because preemptable RCU does not exist, we never have to check for
839 * CPUs being in quiescent states.
841 static void rcu_preempt_note_context_switch(int cpu)
846 * Because preemptable RCU does not exist, there are never any preempted
847 * RCU readers.
849 static int rcu_preempted_readers(struct rcu_node *rnp)
851 return 0;
854 #ifdef CONFIG_HOTPLUG_CPU
856 /* Because preemptible RCU does not exist, no quieting of tasks. */
857 static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
859 raw_spin_unlock_irqrestore(&rnp->lock, flags);
862 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
864 #ifdef CONFIG_RCU_CPU_STALL_DETECTOR
867 * Because preemptable RCU does not exist, we never have to check for
868 * tasks blocked within RCU read-side critical sections.
870 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
875 * Because preemptable RCU does not exist, we never have to check for
876 * tasks blocked within RCU read-side critical sections.
878 static void rcu_print_task_stall(struct rcu_node *rnp)
883 * Because preemptible RCU does not exist, there is no need to suppress
884 * its CPU stall warnings.
886 static void rcu_preempt_stall_reset(void)
890 #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
893 * Because there is no preemptable RCU, there can be no readers blocked,
894 * so there is no need to check for blocked tasks. So check only for
895 * bogus qsmask values.
897 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
899 WARN_ON_ONCE(rnp->qsmask);
902 #ifdef CONFIG_HOTPLUG_CPU
905 * Because preemptable RCU does not exist, it never needs to migrate
906 * tasks that were blocked within RCU read-side critical sections, and
907 * such non-existent tasks cannot possibly have been blocking the current
908 * grace period.
910 static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
911 struct rcu_node *rnp,
912 struct rcu_data *rdp)
914 return 0;
918 * Because preemptable RCU does not exist, it never needs CPU-offline
919 * processing.
921 static void rcu_preempt_offline_cpu(int cpu)
925 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
928 * Because preemptable RCU does not exist, it never has any callbacks
929 * to check.
931 static void rcu_preempt_check_callbacks(int cpu)
936 * Because preemptable RCU does not exist, it never has any callbacks
937 * to process.
939 static void rcu_preempt_process_callbacks(void)
944 * Wait for an rcu-preempt grace period, but make it happen quickly.
945 * But because preemptable RCU does not exist, map to rcu-sched.
947 void synchronize_rcu_expedited(void)
949 synchronize_sched_expedited();
951 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
953 #ifdef CONFIG_HOTPLUG_CPU
956 * Because preemptable RCU does not exist, there is never any need to
957 * report on tasks preempted in RCU read-side critical sections during
958 * expedited RCU grace periods.
960 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp)
962 return;
965 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
968 * Because preemptable RCU does not exist, it never has any work to do.
970 static int rcu_preempt_pending(int cpu)
972 return 0;
976 * Because preemptable RCU does not exist, it never needs any CPU.
978 static int rcu_preempt_needs_cpu(int cpu)
980 return 0;
984 * Because preemptable RCU does not exist, rcu_barrier() is just
985 * another name for rcu_barrier_sched().
987 void rcu_barrier(void)
989 rcu_barrier_sched();
991 EXPORT_SYMBOL_GPL(rcu_barrier);
994 * Because preemptable RCU does not exist, there is no per-CPU
995 * data to initialize.
997 static void __cpuinit rcu_preempt_init_percpu_data(int cpu)
1002 * Because there is no preemptable RCU, there are no callbacks to move.
1004 static void rcu_preempt_send_cbs_to_orphanage(void)
1009 * Because preemptable RCU does not exist, it need not be initialized.
1011 static void __init __rcu_init_preempt(void)
1015 #endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
1017 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1020 * Check to see if any future RCU-related work will need to be done
1021 * by the current CPU, even if none need be done immediately, returning
1022 * 1 if so. This function is part of the RCU implementation; it is -not-
1023 * an exported member of the RCU API.
1025 * Because we have preemptible RCU, just check whether this CPU needs
1026 * any flavor of RCU. Do not chew up lots of CPU cycles with preemption
1027 * disabled in a most-likely vain attempt to cause RCU not to need this CPU.
1029 int rcu_needs_cpu(int cpu)
1031 return rcu_needs_cpu_quick_check(cpu);
1035 * Check to see if we need to continue a callback-flush operations to
1036 * allow the last CPU to enter dyntick-idle mode. But fast dyntick-idle
1037 * entry is not configured, so we never do need to.
1039 static void rcu_needs_cpu_flush(void)
1043 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1045 #define RCU_NEEDS_CPU_FLUSHES 5
1046 static DEFINE_PER_CPU(int, rcu_dyntick_drain);
1047 static DEFINE_PER_CPU(unsigned long, rcu_dyntick_holdoff);
1050 * Check to see if any future RCU-related work will need to be done
1051 * by the current CPU, even if none need be done immediately, returning
1052 * 1 if so. This function is part of the RCU implementation; it is -not-
1053 * an exported member of the RCU API.
1055 * Because we are not supporting preemptible RCU, attempt to accelerate
1056 * any current grace periods so that RCU no longer needs this CPU, but
1057 * only if all other CPUs are already in dynticks-idle mode. This will
1058 * allow the CPU cores to be powered down immediately, as opposed to after
1059 * waiting many milliseconds for grace periods to elapse.
1061 * Because it is not legal to invoke rcu_process_callbacks() with irqs
1062 * disabled, we do one pass of force_quiescent_state(), then do a
1063 * raise_softirq() to cause rcu_process_callbacks() to be invoked later.
1064 * The per-cpu rcu_dyntick_drain variable controls the sequencing.
1066 int rcu_needs_cpu(int cpu)
1068 int c = 0;
1069 int snap;
1070 int snap_nmi;
1071 int thatcpu;
1073 /* Check for being in the holdoff period. */
1074 if (per_cpu(rcu_dyntick_holdoff, cpu) == jiffies)
1075 return rcu_needs_cpu_quick_check(cpu);
1077 /* Don't bother unless we are the last non-dyntick-idle CPU. */
1078 for_each_online_cpu(thatcpu) {
1079 if (thatcpu == cpu)
1080 continue;
1081 snap = per_cpu(rcu_dynticks, thatcpu).dynticks;
1082 snap_nmi = per_cpu(rcu_dynticks, thatcpu).dynticks_nmi;
1083 smp_mb(); /* Order sampling of snap with end of grace period. */
1084 if (((snap & 0x1) != 0) || ((snap_nmi & 0x1) != 0)) {
1085 per_cpu(rcu_dyntick_drain, cpu) = 0;
1086 per_cpu(rcu_dyntick_holdoff, cpu) = jiffies - 1;
1087 return rcu_needs_cpu_quick_check(cpu);
1091 /* Check and update the rcu_dyntick_drain sequencing. */
1092 if (per_cpu(rcu_dyntick_drain, cpu) <= 0) {
1093 /* First time through, initialize the counter. */
1094 per_cpu(rcu_dyntick_drain, cpu) = RCU_NEEDS_CPU_FLUSHES;
1095 } else if (--per_cpu(rcu_dyntick_drain, cpu) <= 0) {
1096 /* We have hit the limit, so time to give up. */
1097 per_cpu(rcu_dyntick_holdoff, cpu) = jiffies;
1098 return rcu_needs_cpu_quick_check(cpu);
1101 /* Do one step pushing remaining RCU callbacks through. */
1102 if (per_cpu(rcu_sched_data, cpu).nxtlist) {
1103 rcu_sched_qs(cpu);
1104 force_quiescent_state(&rcu_sched_state, 0);
1105 c = c || per_cpu(rcu_sched_data, cpu).nxtlist;
1107 if (per_cpu(rcu_bh_data, cpu).nxtlist) {
1108 rcu_bh_qs(cpu);
1109 force_quiescent_state(&rcu_bh_state, 0);
1110 c = c || per_cpu(rcu_bh_data, cpu).nxtlist;
1113 /* If RCU callbacks are still pending, RCU still needs this CPU. */
1114 if (c)
1115 raise_softirq(RCU_SOFTIRQ);
1116 return c;
1120 * Check to see if we need to continue a callback-flush operations to
1121 * allow the last CPU to enter dyntick-idle mode.
1123 static void rcu_needs_cpu_flush(void)
1125 int cpu = smp_processor_id();
1126 unsigned long flags;
1128 if (per_cpu(rcu_dyntick_drain, cpu) <= 0)
1129 return;
1130 local_irq_save(flags);
1131 (void)rcu_needs_cpu(cpu);
1132 local_irq_restore(flags);
1135 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */