block: Move blk_throtl_exit() call to blk_cleanup_queue()
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / btrfs / extent_io.c
blob92ac5192c518be5d59de00b1cb5b66c29e1e9cd2
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/module.h>
8 #include <linux/spinlock.h>
9 #include <linux/blkdev.h>
10 #include <linux/swap.h>
11 #include <linux/writeback.h>
12 #include <linux/pagevec.h>
13 #include "extent_io.h"
14 #include "extent_map.h"
15 #include "compat.h"
16 #include "ctree.h"
17 #include "btrfs_inode.h"
19 static struct kmem_cache *extent_state_cache;
20 static struct kmem_cache *extent_buffer_cache;
22 static LIST_HEAD(buffers);
23 static LIST_HEAD(states);
25 #define LEAK_DEBUG 0
26 #if LEAK_DEBUG
27 static DEFINE_SPINLOCK(leak_lock);
28 #endif
30 #define BUFFER_LRU_MAX 64
32 struct tree_entry {
33 u64 start;
34 u64 end;
35 struct rb_node rb_node;
38 struct extent_page_data {
39 struct bio *bio;
40 struct extent_io_tree *tree;
41 get_extent_t *get_extent;
43 /* tells writepage not to lock the state bits for this range
44 * it still does the unlocking
46 unsigned int extent_locked:1;
48 /* tells the submit_bio code to use a WRITE_SYNC */
49 unsigned int sync_io:1;
52 int __init extent_io_init(void)
54 extent_state_cache = kmem_cache_create("extent_state",
55 sizeof(struct extent_state), 0,
56 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
57 if (!extent_state_cache)
58 return -ENOMEM;
60 extent_buffer_cache = kmem_cache_create("extent_buffers",
61 sizeof(struct extent_buffer), 0,
62 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
63 if (!extent_buffer_cache)
64 goto free_state_cache;
65 return 0;
67 free_state_cache:
68 kmem_cache_destroy(extent_state_cache);
69 return -ENOMEM;
72 void extent_io_exit(void)
74 struct extent_state *state;
75 struct extent_buffer *eb;
77 while (!list_empty(&states)) {
78 state = list_entry(states.next, struct extent_state, leak_list);
79 printk(KERN_ERR "btrfs state leak: start %llu end %llu "
80 "state %lu in tree %p refs %d\n",
81 (unsigned long long)state->start,
82 (unsigned long long)state->end,
83 state->state, state->tree, atomic_read(&state->refs));
84 list_del(&state->leak_list);
85 kmem_cache_free(extent_state_cache, state);
89 while (!list_empty(&buffers)) {
90 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
91 printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
92 "refs %d\n", (unsigned long long)eb->start,
93 eb->len, atomic_read(&eb->refs));
94 list_del(&eb->leak_list);
95 kmem_cache_free(extent_buffer_cache, eb);
97 if (extent_state_cache)
98 kmem_cache_destroy(extent_state_cache);
99 if (extent_buffer_cache)
100 kmem_cache_destroy(extent_buffer_cache);
103 void extent_io_tree_init(struct extent_io_tree *tree,
104 struct address_space *mapping, gfp_t mask)
106 tree->state = RB_ROOT;
107 INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
108 tree->ops = NULL;
109 tree->dirty_bytes = 0;
110 spin_lock_init(&tree->lock);
111 spin_lock_init(&tree->buffer_lock);
112 tree->mapping = mapping;
115 static struct extent_state *alloc_extent_state(gfp_t mask)
117 struct extent_state *state;
118 #if LEAK_DEBUG
119 unsigned long flags;
120 #endif
122 state = kmem_cache_alloc(extent_state_cache, mask);
123 if (!state)
124 return state;
125 state->state = 0;
126 state->private = 0;
127 state->tree = NULL;
128 #if LEAK_DEBUG
129 spin_lock_irqsave(&leak_lock, flags);
130 list_add(&state->leak_list, &states);
131 spin_unlock_irqrestore(&leak_lock, flags);
132 #endif
133 atomic_set(&state->refs, 1);
134 init_waitqueue_head(&state->wq);
135 return state;
138 void free_extent_state(struct extent_state *state)
140 if (!state)
141 return;
142 if (atomic_dec_and_test(&state->refs)) {
143 #if LEAK_DEBUG
144 unsigned long flags;
145 #endif
146 WARN_ON(state->tree);
147 #if LEAK_DEBUG
148 spin_lock_irqsave(&leak_lock, flags);
149 list_del(&state->leak_list);
150 spin_unlock_irqrestore(&leak_lock, flags);
151 #endif
152 kmem_cache_free(extent_state_cache, state);
156 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
157 struct rb_node *node)
159 struct rb_node **p = &root->rb_node;
160 struct rb_node *parent = NULL;
161 struct tree_entry *entry;
163 while (*p) {
164 parent = *p;
165 entry = rb_entry(parent, struct tree_entry, rb_node);
167 if (offset < entry->start)
168 p = &(*p)->rb_left;
169 else if (offset > entry->end)
170 p = &(*p)->rb_right;
171 else
172 return parent;
175 entry = rb_entry(node, struct tree_entry, rb_node);
176 rb_link_node(node, parent, p);
177 rb_insert_color(node, root);
178 return NULL;
181 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
182 struct rb_node **prev_ret,
183 struct rb_node **next_ret)
185 struct rb_root *root = &tree->state;
186 struct rb_node *n = root->rb_node;
187 struct rb_node *prev = NULL;
188 struct rb_node *orig_prev = NULL;
189 struct tree_entry *entry;
190 struct tree_entry *prev_entry = NULL;
192 while (n) {
193 entry = rb_entry(n, struct tree_entry, rb_node);
194 prev = n;
195 prev_entry = entry;
197 if (offset < entry->start)
198 n = n->rb_left;
199 else if (offset > entry->end)
200 n = n->rb_right;
201 else
202 return n;
205 if (prev_ret) {
206 orig_prev = prev;
207 while (prev && offset > prev_entry->end) {
208 prev = rb_next(prev);
209 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
211 *prev_ret = prev;
212 prev = orig_prev;
215 if (next_ret) {
216 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
217 while (prev && offset < prev_entry->start) {
218 prev = rb_prev(prev);
219 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
221 *next_ret = prev;
223 return NULL;
226 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
227 u64 offset)
229 struct rb_node *prev = NULL;
230 struct rb_node *ret;
232 ret = __etree_search(tree, offset, &prev, NULL);
233 if (!ret)
234 return prev;
235 return ret;
238 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
239 struct extent_state *other)
241 if (tree->ops && tree->ops->merge_extent_hook)
242 tree->ops->merge_extent_hook(tree->mapping->host, new,
243 other);
247 * utility function to look for merge candidates inside a given range.
248 * Any extents with matching state are merged together into a single
249 * extent in the tree. Extents with EXTENT_IO in their state field
250 * are not merged because the end_io handlers need to be able to do
251 * operations on them without sleeping (or doing allocations/splits).
253 * This should be called with the tree lock held.
255 static int merge_state(struct extent_io_tree *tree,
256 struct extent_state *state)
258 struct extent_state *other;
259 struct rb_node *other_node;
261 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
262 return 0;
264 other_node = rb_prev(&state->rb_node);
265 if (other_node) {
266 other = rb_entry(other_node, struct extent_state, rb_node);
267 if (other->end == state->start - 1 &&
268 other->state == state->state) {
269 merge_cb(tree, state, other);
270 state->start = other->start;
271 other->tree = NULL;
272 rb_erase(&other->rb_node, &tree->state);
273 free_extent_state(other);
276 other_node = rb_next(&state->rb_node);
277 if (other_node) {
278 other = rb_entry(other_node, struct extent_state, rb_node);
279 if (other->start == state->end + 1 &&
280 other->state == state->state) {
281 merge_cb(tree, state, other);
282 other->start = state->start;
283 state->tree = NULL;
284 rb_erase(&state->rb_node, &tree->state);
285 free_extent_state(state);
286 state = NULL;
290 return 0;
293 static int set_state_cb(struct extent_io_tree *tree,
294 struct extent_state *state, int *bits)
296 if (tree->ops && tree->ops->set_bit_hook) {
297 return tree->ops->set_bit_hook(tree->mapping->host,
298 state, bits);
301 return 0;
304 static void clear_state_cb(struct extent_io_tree *tree,
305 struct extent_state *state, int *bits)
307 if (tree->ops && tree->ops->clear_bit_hook)
308 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
312 * insert an extent_state struct into the tree. 'bits' are set on the
313 * struct before it is inserted.
315 * This may return -EEXIST if the extent is already there, in which case the
316 * state struct is freed.
318 * The tree lock is not taken internally. This is a utility function and
319 * probably isn't what you want to call (see set/clear_extent_bit).
321 static int insert_state(struct extent_io_tree *tree,
322 struct extent_state *state, u64 start, u64 end,
323 int *bits)
325 struct rb_node *node;
326 int bits_to_set = *bits & ~EXTENT_CTLBITS;
327 int ret;
329 if (end < start) {
330 printk(KERN_ERR "btrfs end < start %llu %llu\n",
331 (unsigned long long)end,
332 (unsigned long long)start);
333 WARN_ON(1);
335 state->start = start;
336 state->end = end;
337 ret = set_state_cb(tree, state, bits);
338 if (ret)
339 return ret;
341 if (bits_to_set & EXTENT_DIRTY)
342 tree->dirty_bytes += end - start + 1;
343 state->state |= bits_to_set;
344 node = tree_insert(&tree->state, end, &state->rb_node);
345 if (node) {
346 struct extent_state *found;
347 found = rb_entry(node, struct extent_state, rb_node);
348 printk(KERN_ERR "btrfs found node %llu %llu on insert of "
349 "%llu %llu\n", (unsigned long long)found->start,
350 (unsigned long long)found->end,
351 (unsigned long long)start, (unsigned long long)end);
352 free_extent_state(state);
353 return -EEXIST;
355 state->tree = tree;
356 merge_state(tree, state);
357 return 0;
360 static int split_cb(struct extent_io_tree *tree, struct extent_state *orig,
361 u64 split)
363 if (tree->ops && tree->ops->split_extent_hook)
364 return tree->ops->split_extent_hook(tree->mapping->host,
365 orig, split);
366 return 0;
370 * split a given extent state struct in two, inserting the preallocated
371 * struct 'prealloc' as the newly created second half. 'split' indicates an
372 * offset inside 'orig' where it should be split.
374 * Before calling,
375 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
376 * are two extent state structs in the tree:
377 * prealloc: [orig->start, split - 1]
378 * orig: [ split, orig->end ]
380 * The tree locks are not taken by this function. They need to be held
381 * by the caller.
383 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
384 struct extent_state *prealloc, u64 split)
386 struct rb_node *node;
388 split_cb(tree, orig, split);
390 prealloc->start = orig->start;
391 prealloc->end = split - 1;
392 prealloc->state = orig->state;
393 orig->start = split;
395 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
396 if (node) {
397 free_extent_state(prealloc);
398 return -EEXIST;
400 prealloc->tree = tree;
401 return 0;
405 * utility function to clear some bits in an extent state struct.
406 * it will optionally wake up any one waiting on this state (wake == 1), or
407 * forcibly remove the state from the tree (delete == 1).
409 * If no bits are set on the state struct after clearing things, the
410 * struct is freed and removed from the tree
412 static int clear_state_bit(struct extent_io_tree *tree,
413 struct extent_state *state,
414 int *bits, int wake)
416 int bits_to_clear = *bits & ~EXTENT_CTLBITS;
417 int ret = state->state & bits_to_clear;
419 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
420 u64 range = state->end - state->start + 1;
421 WARN_ON(range > tree->dirty_bytes);
422 tree->dirty_bytes -= range;
424 clear_state_cb(tree, state, bits);
425 state->state &= ~bits_to_clear;
426 if (wake)
427 wake_up(&state->wq);
428 if (state->state == 0) {
429 if (state->tree) {
430 rb_erase(&state->rb_node, &tree->state);
431 state->tree = NULL;
432 free_extent_state(state);
433 } else {
434 WARN_ON(1);
436 } else {
437 merge_state(tree, state);
439 return ret;
443 * clear some bits on a range in the tree. This may require splitting
444 * or inserting elements in the tree, so the gfp mask is used to
445 * indicate which allocations or sleeping are allowed.
447 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
448 * the given range from the tree regardless of state (ie for truncate).
450 * the range [start, end] is inclusive.
452 * This takes the tree lock, and returns < 0 on error, > 0 if any of the
453 * bits were already set, or zero if none of the bits were already set.
455 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
456 int bits, int wake, int delete,
457 struct extent_state **cached_state,
458 gfp_t mask)
460 struct extent_state *state;
461 struct extent_state *cached;
462 struct extent_state *prealloc = NULL;
463 struct rb_node *next_node;
464 struct rb_node *node;
465 u64 last_end;
466 int err;
467 int set = 0;
468 int clear = 0;
470 if (delete)
471 bits |= ~EXTENT_CTLBITS;
472 bits |= EXTENT_FIRST_DELALLOC;
474 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
475 clear = 1;
476 again:
477 if (!prealloc && (mask & __GFP_WAIT)) {
478 prealloc = alloc_extent_state(mask);
479 if (!prealloc)
480 return -ENOMEM;
483 spin_lock(&tree->lock);
484 if (cached_state) {
485 cached = *cached_state;
487 if (clear) {
488 *cached_state = NULL;
489 cached_state = NULL;
492 if (cached && cached->tree && cached->start == start) {
493 if (clear)
494 atomic_dec(&cached->refs);
495 state = cached;
496 goto hit_next;
498 if (clear)
499 free_extent_state(cached);
502 * this search will find the extents that end after
503 * our range starts
505 node = tree_search(tree, start);
506 if (!node)
507 goto out;
508 state = rb_entry(node, struct extent_state, rb_node);
509 hit_next:
510 if (state->start > end)
511 goto out;
512 WARN_ON(state->end < start);
513 last_end = state->end;
516 * | ---- desired range ---- |
517 * | state | or
518 * | ------------- state -------------- |
520 * We need to split the extent we found, and may flip
521 * bits on second half.
523 * If the extent we found extends past our range, we
524 * just split and search again. It'll get split again
525 * the next time though.
527 * If the extent we found is inside our range, we clear
528 * the desired bit on it.
531 if (state->start < start) {
532 if (!prealloc)
533 prealloc = alloc_extent_state(GFP_ATOMIC);
534 err = split_state(tree, state, prealloc, start);
535 BUG_ON(err == -EEXIST);
536 prealloc = NULL;
537 if (err)
538 goto out;
539 if (state->end <= end) {
540 set |= clear_state_bit(tree, state, &bits, wake);
541 if (last_end == (u64)-1)
542 goto out;
543 start = last_end + 1;
545 goto search_again;
548 * | ---- desired range ---- |
549 * | state |
550 * We need to split the extent, and clear the bit
551 * on the first half
553 if (state->start <= end && state->end > end) {
554 if (!prealloc)
555 prealloc = alloc_extent_state(GFP_ATOMIC);
556 err = split_state(tree, state, prealloc, end + 1);
557 BUG_ON(err == -EEXIST);
558 if (wake)
559 wake_up(&state->wq);
561 set |= clear_state_bit(tree, prealloc, &bits, wake);
563 prealloc = NULL;
564 goto out;
567 if (state->end < end && prealloc && !need_resched())
568 next_node = rb_next(&state->rb_node);
569 else
570 next_node = NULL;
572 set |= clear_state_bit(tree, state, &bits, wake);
573 if (last_end == (u64)-1)
574 goto out;
575 start = last_end + 1;
576 if (start <= end && next_node) {
577 state = rb_entry(next_node, struct extent_state,
578 rb_node);
579 if (state->start == start)
580 goto hit_next;
582 goto search_again;
584 out:
585 spin_unlock(&tree->lock);
586 if (prealloc)
587 free_extent_state(prealloc);
589 return set;
591 search_again:
592 if (start > end)
593 goto out;
594 spin_unlock(&tree->lock);
595 if (mask & __GFP_WAIT)
596 cond_resched();
597 goto again;
600 static int wait_on_state(struct extent_io_tree *tree,
601 struct extent_state *state)
602 __releases(tree->lock)
603 __acquires(tree->lock)
605 DEFINE_WAIT(wait);
606 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
607 spin_unlock(&tree->lock);
608 schedule();
609 spin_lock(&tree->lock);
610 finish_wait(&state->wq, &wait);
611 return 0;
615 * waits for one or more bits to clear on a range in the state tree.
616 * The range [start, end] is inclusive.
617 * The tree lock is taken by this function
619 int wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
621 struct extent_state *state;
622 struct rb_node *node;
624 spin_lock(&tree->lock);
625 again:
626 while (1) {
628 * this search will find all the extents that end after
629 * our range starts
631 node = tree_search(tree, start);
632 if (!node)
633 break;
635 state = rb_entry(node, struct extent_state, rb_node);
637 if (state->start > end)
638 goto out;
640 if (state->state & bits) {
641 start = state->start;
642 atomic_inc(&state->refs);
643 wait_on_state(tree, state);
644 free_extent_state(state);
645 goto again;
647 start = state->end + 1;
649 if (start > end)
650 break;
652 if (need_resched()) {
653 spin_unlock(&tree->lock);
654 cond_resched();
655 spin_lock(&tree->lock);
658 out:
659 spin_unlock(&tree->lock);
660 return 0;
663 static int set_state_bits(struct extent_io_tree *tree,
664 struct extent_state *state,
665 int *bits)
667 int ret;
668 int bits_to_set = *bits & ~EXTENT_CTLBITS;
670 ret = set_state_cb(tree, state, bits);
671 if (ret)
672 return ret;
673 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
674 u64 range = state->end - state->start + 1;
675 tree->dirty_bytes += range;
677 state->state |= bits_to_set;
679 return 0;
682 static void cache_state(struct extent_state *state,
683 struct extent_state **cached_ptr)
685 if (cached_ptr && !(*cached_ptr)) {
686 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
687 *cached_ptr = state;
688 atomic_inc(&state->refs);
694 * set some bits on a range in the tree. This may require allocations or
695 * sleeping, so the gfp mask is used to indicate what is allowed.
697 * If any of the exclusive bits are set, this will fail with -EEXIST if some
698 * part of the range already has the desired bits set. The start of the
699 * existing range is returned in failed_start in this case.
701 * [start, end] is inclusive This takes the tree lock.
704 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
705 int bits, int exclusive_bits, u64 *failed_start,
706 struct extent_state **cached_state, gfp_t mask)
708 struct extent_state *state;
709 struct extent_state *prealloc = NULL;
710 struct rb_node *node;
711 int err = 0;
712 u64 last_start;
713 u64 last_end;
715 bits |= EXTENT_FIRST_DELALLOC;
716 again:
717 if (!prealloc && (mask & __GFP_WAIT)) {
718 prealloc = alloc_extent_state(mask);
719 if (!prealloc)
720 return -ENOMEM;
723 spin_lock(&tree->lock);
724 if (cached_state && *cached_state) {
725 state = *cached_state;
726 if (state->start == start && state->tree) {
727 node = &state->rb_node;
728 goto hit_next;
732 * this search will find all the extents that end after
733 * our range starts.
735 node = tree_search(tree, start);
736 if (!node) {
737 err = insert_state(tree, prealloc, start, end, &bits);
738 prealloc = NULL;
739 BUG_ON(err == -EEXIST);
740 goto out;
742 state = rb_entry(node, struct extent_state, rb_node);
743 hit_next:
744 last_start = state->start;
745 last_end = state->end;
748 * | ---- desired range ---- |
749 * | state |
751 * Just lock what we found and keep going
753 if (state->start == start && state->end <= end) {
754 struct rb_node *next_node;
755 if (state->state & exclusive_bits) {
756 *failed_start = state->start;
757 err = -EEXIST;
758 goto out;
761 err = set_state_bits(tree, state, &bits);
762 if (err)
763 goto out;
765 cache_state(state, cached_state);
766 merge_state(tree, state);
767 if (last_end == (u64)-1)
768 goto out;
770 start = last_end + 1;
771 if (start < end && prealloc && !need_resched()) {
772 next_node = rb_next(node);
773 if (next_node) {
774 state = rb_entry(next_node, struct extent_state,
775 rb_node);
776 if (state->start == start)
777 goto hit_next;
780 goto search_again;
784 * | ---- desired range ---- |
785 * | state |
786 * or
787 * | ------------- state -------------- |
789 * We need to split the extent we found, and may flip bits on
790 * second half.
792 * If the extent we found extends past our
793 * range, we just split and search again. It'll get split
794 * again the next time though.
796 * If the extent we found is inside our range, we set the
797 * desired bit on it.
799 if (state->start < start) {
800 if (state->state & exclusive_bits) {
801 *failed_start = start;
802 err = -EEXIST;
803 goto out;
805 err = split_state(tree, state, prealloc, start);
806 BUG_ON(err == -EEXIST);
807 prealloc = NULL;
808 if (err)
809 goto out;
810 if (state->end <= end) {
811 err = set_state_bits(tree, state, &bits);
812 if (err)
813 goto out;
814 cache_state(state, cached_state);
815 merge_state(tree, state);
816 if (last_end == (u64)-1)
817 goto out;
818 start = last_end + 1;
820 goto search_again;
823 * | ---- desired range ---- |
824 * | state | or | state |
826 * There's a hole, we need to insert something in it and
827 * ignore the extent we found.
829 if (state->start > start) {
830 u64 this_end;
831 if (end < last_start)
832 this_end = end;
833 else
834 this_end = last_start - 1;
835 err = insert_state(tree, prealloc, start, this_end,
836 &bits);
837 BUG_ON(err == -EEXIST);
838 if (err) {
839 prealloc = NULL;
840 goto out;
842 cache_state(prealloc, cached_state);
843 prealloc = NULL;
844 start = this_end + 1;
845 goto search_again;
848 * | ---- desired range ---- |
849 * | state |
850 * We need to split the extent, and set the bit
851 * on the first half
853 if (state->start <= end && state->end > end) {
854 if (state->state & exclusive_bits) {
855 *failed_start = start;
856 err = -EEXIST;
857 goto out;
859 err = split_state(tree, state, prealloc, end + 1);
860 BUG_ON(err == -EEXIST);
862 err = set_state_bits(tree, prealloc, &bits);
863 if (err) {
864 prealloc = NULL;
865 goto out;
867 cache_state(prealloc, cached_state);
868 merge_state(tree, prealloc);
869 prealloc = NULL;
870 goto out;
873 goto search_again;
875 out:
876 spin_unlock(&tree->lock);
877 if (prealloc)
878 free_extent_state(prealloc);
880 return err;
882 search_again:
883 if (start > end)
884 goto out;
885 spin_unlock(&tree->lock);
886 if (mask & __GFP_WAIT)
887 cond_resched();
888 goto again;
891 /* wrappers around set/clear extent bit */
892 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
893 gfp_t mask)
895 return set_extent_bit(tree, start, end, EXTENT_DIRTY, 0, NULL,
896 NULL, mask);
899 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
900 int bits, gfp_t mask)
902 return set_extent_bit(tree, start, end, bits, 0, NULL,
903 NULL, mask);
906 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
907 int bits, gfp_t mask)
909 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
912 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
913 struct extent_state **cached_state, gfp_t mask)
915 return set_extent_bit(tree, start, end,
916 EXTENT_DELALLOC | EXTENT_DIRTY | EXTENT_UPTODATE,
917 0, NULL, cached_state, mask);
920 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
921 gfp_t mask)
923 return clear_extent_bit(tree, start, end,
924 EXTENT_DIRTY | EXTENT_DELALLOC |
925 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
928 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
929 gfp_t mask)
931 return set_extent_bit(tree, start, end, EXTENT_NEW, 0, NULL,
932 NULL, mask);
935 static int clear_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
936 gfp_t mask)
938 return clear_extent_bit(tree, start, end, EXTENT_NEW, 0, 0,
939 NULL, mask);
942 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
943 gfp_t mask)
945 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, NULL,
946 NULL, mask);
949 static int clear_extent_uptodate(struct extent_io_tree *tree, u64 start,
950 u64 end, struct extent_state **cached_state,
951 gfp_t mask)
953 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
954 cached_state, mask);
957 int wait_on_extent_writeback(struct extent_io_tree *tree, u64 start, u64 end)
959 return wait_extent_bit(tree, start, end, EXTENT_WRITEBACK);
963 * either insert or lock state struct between start and end use mask to tell
964 * us if waiting is desired.
966 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
967 int bits, struct extent_state **cached_state, gfp_t mask)
969 int err;
970 u64 failed_start;
971 while (1) {
972 err = set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
973 EXTENT_LOCKED, &failed_start,
974 cached_state, mask);
975 if (err == -EEXIST && (mask & __GFP_WAIT)) {
976 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
977 start = failed_start;
978 } else {
979 break;
981 WARN_ON(start > end);
983 return err;
986 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask)
988 return lock_extent_bits(tree, start, end, 0, NULL, mask);
991 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end,
992 gfp_t mask)
994 int err;
995 u64 failed_start;
997 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
998 &failed_start, NULL, mask);
999 if (err == -EEXIST) {
1000 if (failed_start > start)
1001 clear_extent_bit(tree, start, failed_start - 1,
1002 EXTENT_LOCKED, 1, 0, NULL, mask);
1003 return 0;
1005 return 1;
1008 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1009 struct extent_state **cached, gfp_t mask)
1011 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1012 mask);
1015 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end,
1016 gfp_t mask)
1018 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1019 mask);
1023 * helper function to set pages and extents in the tree dirty
1025 int set_range_dirty(struct extent_io_tree *tree, u64 start, u64 end)
1027 unsigned long index = start >> PAGE_CACHE_SHIFT;
1028 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1029 struct page *page;
1031 while (index <= end_index) {
1032 page = find_get_page(tree->mapping, index);
1033 BUG_ON(!page);
1034 __set_page_dirty_nobuffers(page);
1035 page_cache_release(page);
1036 index++;
1038 return 0;
1042 * helper function to set both pages and extents in the tree writeback
1044 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1046 unsigned long index = start >> PAGE_CACHE_SHIFT;
1047 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1048 struct page *page;
1050 while (index <= end_index) {
1051 page = find_get_page(tree->mapping, index);
1052 BUG_ON(!page);
1053 set_page_writeback(page);
1054 page_cache_release(page);
1055 index++;
1057 return 0;
1061 * find the first offset in the io tree with 'bits' set. zero is
1062 * returned if we find something, and *start_ret and *end_ret are
1063 * set to reflect the state struct that was found.
1065 * If nothing was found, 1 is returned, < 0 on error
1067 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1068 u64 *start_ret, u64 *end_ret, int bits)
1070 struct rb_node *node;
1071 struct extent_state *state;
1072 int ret = 1;
1074 spin_lock(&tree->lock);
1076 * this search will find all the extents that end after
1077 * our range starts.
1079 node = tree_search(tree, start);
1080 if (!node)
1081 goto out;
1083 while (1) {
1084 state = rb_entry(node, struct extent_state, rb_node);
1085 if (state->end >= start && (state->state & bits)) {
1086 *start_ret = state->start;
1087 *end_ret = state->end;
1088 ret = 0;
1089 break;
1091 node = rb_next(node);
1092 if (!node)
1093 break;
1095 out:
1096 spin_unlock(&tree->lock);
1097 return ret;
1100 /* find the first state struct with 'bits' set after 'start', and
1101 * return it. tree->lock must be held. NULL will returned if
1102 * nothing was found after 'start'
1104 struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
1105 u64 start, int bits)
1107 struct rb_node *node;
1108 struct extent_state *state;
1111 * this search will find all the extents that end after
1112 * our range starts.
1114 node = tree_search(tree, start);
1115 if (!node)
1116 goto out;
1118 while (1) {
1119 state = rb_entry(node, struct extent_state, rb_node);
1120 if (state->end >= start && (state->state & bits))
1121 return state;
1123 node = rb_next(node);
1124 if (!node)
1125 break;
1127 out:
1128 return NULL;
1132 * find a contiguous range of bytes in the file marked as delalloc, not
1133 * more than 'max_bytes'. start and end are used to return the range,
1135 * 1 is returned if we find something, 0 if nothing was in the tree
1137 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1138 u64 *start, u64 *end, u64 max_bytes,
1139 struct extent_state **cached_state)
1141 struct rb_node *node;
1142 struct extent_state *state;
1143 u64 cur_start = *start;
1144 u64 found = 0;
1145 u64 total_bytes = 0;
1147 spin_lock(&tree->lock);
1150 * this search will find all the extents that end after
1151 * our range starts.
1153 node = tree_search(tree, cur_start);
1154 if (!node) {
1155 if (!found)
1156 *end = (u64)-1;
1157 goto out;
1160 while (1) {
1161 state = rb_entry(node, struct extent_state, rb_node);
1162 if (found && (state->start != cur_start ||
1163 (state->state & EXTENT_BOUNDARY))) {
1164 goto out;
1166 if (!(state->state & EXTENT_DELALLOC)) {
1167 if (!found)
1168 *end = state->end;
1169 goto out;
1171 if (!found) {
1172 *start = state->start;
1173 *cached_state = state;
1174 atomic_inc(&state->refs);
1176 found++;
1177 *end = state->end;
1178 cur_start = state->end + 1;
1179 node = rb_next(node);
1180 if (!node)
1181 break;
1182 total_bytes += state->end - state->start + 1;
1183 if (total_bytes >= max_bytes)
1184 break;
1186 out:
1187 spin_unlock(&tree->lock);
1188 return found;
1191 static noinline int __unlock_for_delalloc(struct inode *inode,
1192 struct page *locked_page,
1193 u64 start, u64 end)
1195 int ret;
1196 struct page *pages[16];
1197 unsigned long index = start >> PAGE_CACHE_SHIFT;
1198 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1199 unsigned long nr_pages = end_index - index + 1;
1200 int i;
1202 if (index == locked_page->index && end_index == index)
1203 return 0;
1205 while (nr_pages > 0) {
1206 ret = find_get_pages_contig(inode->i_mapping, index,
1207 min_t(unsigned long, nr_pages,
1208 ARRAY_SIZE(pages)), pages);
1209 for (i = 0; i < ret; i++) {
1210 if (pages[i] != locked_page)
1211 unlock_page(pages[i]);
1212 page_cache_release(pages[i]);
1214 nr_pages -= ret;
1215 index += ret;
1216 cond_resched();
1218 return 0;
1221 static noinline int lock_delalloc_pages(struct inode *inode,
1222 struct page *locked_page,
1223 u64 delalloc_start,
1224 u64 delalloc_end)
1226 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1227 unsigned long start_index = index;
1228 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1229 unsigned long pages_locked = 0;
1230 struct page *pages[16];
1231 unsigned long nrpages;
1232 int ret;
1233 int i;
1235 /* the caller is responsible for locking the start index */
1236 if (index == locked_page->index && index == end_index)
1237 return 0;
1239 /* skip the page at the start index */
1240 nrpages = end_index - index + 1;
1241 while (nrpages > 0) {
1242 ret = find_get_pages_contig(inode->i_mapping, index,
1243 min_t(unsigned long,
1244 nrpages, ARRAY_SIZE(pages)), pages);
1245 if (ret == 0) {
1246 ret = -EAGAIN;
1247 goto done;
1249 /* now we have an array of pages, lock them all */
1250 for (i = 0; i < ret; i++) {
1252 * the caller is taking responsibility for
1253 * locked_page
1255 if (pages[i] != locked_page) {
1256 lock_page(pages[i]);
1257 if (!PageDirty(pages[i]) ||
1258 pages[i]->mapping != inode->i_mapping) {
1259 ret = -EAGAIN;
1260 unlock_page(pages[i]);
1261 page_cache_release(pages[i]);
1262 goto done;
1265 page_cache_release(pages[i]);
1266 pages_locked++;
1268 nrpages -= ret;
1269 index += ret;
1270 cond_resched();
1272 ret = 0;
1273 done:
1274 if (ret && pages_locked) {
1275 __unlock_for_delalloc(inode, locked_page,
1276 delalloc_start,
1277 ((u64)(start_index + pages_locked - 1)) <<
1278 PAGE_CACHE_SHIFT);
1280 return ret;
1284 * find a contiguous range of bytes in the file marked as delalloc, not
1285 * more than 'max_bytes'. start and end are used to return the range,
1287 * 1 is returned if we find something, 0 if nothing was in the tree
1289 static noinline u64 find_lock_delalloc_range(struct inode *inode,
1290 struct extent_io_tree *tree,
1291 struct page *locked_page,
1292 u64 *start, u64 *end,
1293 u64 max_bytes)
1295 u64 delalloc_start;
1296 u64 delalloc_end;
1297 u64 found;
1298 struct extent_state *cached_state = NULL;
1299 int ret;
1300 int loops = 0;
1302 again:
1303 /* step one, find a bunch of delalloc bytes starting at start */
1304 delalloc_start = *start;
1305 delalloc_end = 0;
1306 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1307 max_bytes, &cached_state);
1308 if (!found || delalloc_end <= *start) {
1309 *start = delalloc_start;
1310 *end = delalloc_end;
1311 free_extent_state(cached_state);
1312 return found;
1316 * start comes from the offset of locked_page. We have to lock
1317 * pages in order, so we can't process delalloc bytes before
1318 * locked_page
1320 if (delalloc_start < *start)
1321 delalloc_start = *start;
1324 * make sure to limit the number of pages we try to lock down
1325 * if we're looping.
1327 if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
1328 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
1330 /* step two, lock all the pages after the page that has start */
1331 ret = lock_delalloc_pages(inode, locked_page,
1332 delalloc_start, delalloc_end);
1333 if (ret == -EAGAIN) {
1334 /* some of the pages are gone, lets avoid looping by
1335 * shortening the size of the delalloc range we're searching
1337 free_extent_state(cached_state);
1338 if (!loops) {
1339 unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1340 max_bytes = PAGE_CACHE_SIZE - offset;
1341 loops = 1;
1342 goto again;
1343 } else {
1344 found = 0;
1345 goto out_failed;
1348 BUG_ON(ret);
1350 /* step three, lock the state bits for the whole range */
1351 lock_extent_bits(tree, delalloc_start, delalloc_end,
1352 0, &cached_state, GFP_NOFS);
1354 /* then test to make sure it is all still delalloc */
1355 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1356 EXTENT_DELALLOC, 1, cached_state);
1357 if (!ret) {
1358 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1359 &cached_state, GFP_NOFS);
1360 __unlock_for_delalloc(inode, locked_page,
1361 delalloc_start, delalloc_end);
1362 cond_resched();
1363 goto again;
1365 free_extent_state(cached_state);
1366 *start = delalloc_start;
1367 *end = delalloc_end;
1368 out_failed:
1369 return found;
1372 int extent_clear_unlock_delalloc(struct inode *inode,
1373 struct extent_io_tree *tree,
1374 u64 start, u64 end, struct page *locked_page,
1375 unsigned long op)
1377 int ret;
1378 struct page *pages[16];
1379 unsigned long index = start >> PAGE_CACHE_SHIFT;
1380 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1381 unsigned long nr_pages = end_index - index + 1;
1382 int i;
1383 int clear_bits = 0;
1385 if (op & EXTENT_CLEAR_UNLOCK)
1386 clear_bits |= EXTENT_LOCKED;
1387 if (op & EXTENT_CLEAR_DIRTY)
1388 clear_bits |= EXTENT_DIRTY;
1390 if (op & EXTENT_CLEAR_DELALLOC)
1391 clear_bits |= EXTENT_DELALLOC;
1393 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1394 if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
1395 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK |
1396 EXTENT_SET_PRIVATE2)))
1397 return 0;
1399 while (nr_pages > 0) {
1400 ret = find_get_pages_contig(inode->i_mapping, index,
1401 min_t(unsigned long,
1402 nr_pages, ARRAY_SIZE(pages)), pages);
1403 for (i = 0; i < ret; i++) {
1405 if (op & EXTENT_SET_PRIVATE2)
1406 SetPagePrivate2(pages[i]);
1408 if (pages[i] == locked_page) {
1409 page_cache_release(pages[i]);
1410 continue;
1412 if (op & EXTENT_CLEAR_DIRTY)
1413 clear_page_dirty_for_io(pages[i]);
1414 if (op & EXTENT_SET_WRITEBACK)
1415 set_page_writeback(pages[i]);
1416 if (op & EXTENT_END_WRITEBACK)
1417 end_page_writeback(pages[i]);
1418 if (op & EXTENT_CLEAR_UNLOCK_PAGE)
1419 unlock_page(pages[i]);
1420 page_cache_release(pages[i]);
1422 nr_pages -= ret;
1423 index += ret;
1424 cond_resched();
1426 return 0;
1430 * count the number of bytes in the tree that have a given bit(s)
1431 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1432 * cached. The total number found is returned.
1434 u64 count_range_bits(struct extent_io_tree *tree,
1435 u64 *start, u64 search_end, u64 max_bytes,
1436 unsigned long bits)
1438 struct rb_node *node;
1439 struct extent_state *state;
1440 u64 cur_start = *start;
1441 u64 total_bytes = 0;
1442 int found = 0;
1444 if (search_end <= cur_start) {
1445 WARN_ON(1);
1446 return 0;
1449 spin_lock(&tree->lock);
1450 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1451 total_bytes = tree->dirty_bytes;
1452 goto out;
1455 * this search will find all the extents that end after
1456 * our range starts.
1458 node = tree_search(tree, cur_start);
1459 if (!node)
1460 goto out;
1462 while (1) {
1463 state = rb_entry(node, struct extent_state, rb_node);
1464 if (state->start > search_end)
1465 break;
1466 if (state->end >= cur_start && (state->state & bits)) {
1467 total_bytes += min(search_end, state->end) + 1 -
1468 max(cur_start, state->start);
1469 if (total_bytes >= max_bytes)
1470 break;
1471 if (!found) {
1472 *start = state->start;
1473 found = 1;
1476 node = rb_next(node);
1477 if (!node)
1478 break;
1480 out:
1481 spin_unlock(&tree->lock);
1482 return total_bytes;
1486 * set the private field for a given byte offset in the tree. If there isn't
1487 * an extent_state there already, this does nothing.
1489 int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1491 struct rb_node *node;
1492 struct extent_state *state;
1493 int ret = 0;
1495 spin_lock(&tree->lock);
1497 * this search will find all the extents that end after
1498 * our range starts.
1500 node = tree_search(tree, start);
1501 if (!node) {
1502 ret = -ENOENT;
1503 goto out;
1505 state = rb_entry(node, struct extent_state, rb_node);
1506 if (state->start != start) {
1507 ret = -ENOENT;
1508 goto out;
1510 state->private = private;
1511 out:
1512 spin_unlock(&tree->lock);
1513 return ret;
1516 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1518 struct rb_node *node;
1519 struct extent_state *state;
1520 int ret = 0;
1522 spin_lock(&tree->lock);
1524 * this search will find all the extents that end after
1525 * our range starts.
1527 node = tree_search(tree, start);
1528 if (!node) {
1529 ret = -ENOENT;
1530 goto out;
1532 state = rb_entry(node, struct extent_state, rb_node);
1533 if (state->start != start) {
1534 ret = -ENOENT;
1535 goto out;
1537 *private = state->private;
1538 out:
1539 spin_unlock(&tree->lock);
1540 return ret;
1544 * searches a range in the state tree for a given mask.
1545 * If 'filled' == 1, this returns 1 only if every extent in the tree
1546 * has the bits set. Otherwise, 1 is returned if any bit in the
1547 * range is found set.
1549 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1550 int bits, int filled, struct extent_state *cached)
1552 struct extent_state *state = NULL;
1553 struct rb_node *node;
1554 int bitset = 0;
1556 spin_lock(&tree->lock);
1557 if (cached && cached->tree && cached->start == start)
1558 node = &cached->rb_node;
1559 else
1560 node = tree_search(tree, start);
1561 while (node && start <= end) {
1562 state = rb_entry(node, struct extent_state, rb_node);
1564 if (filled && state->start > start) {
1565 bitset = 0;
1566 break;
1569 if (state->start > end)
1570 break;
1572 if (state->state & bits) {
1573 bitset = 1;
1574 if (!filled)
1575 break;
1576 } else if (filled) {
1577 bitset = 0;
1578 break;
1581 if (state->end == (u64)-1)
1582 break;
1584 start = state->end + 1;
1585 if (start > end)
1586 break;
1587 node = rb_next(node);
1588 if (!node) {
1589 if (filled)
1590 bitset = 0;
1591 break;
1594 spin_unlock(&tree->lock);
1595 return bitset;
1599 * helper function to set a given page up to date if all the
1600 * extents in the tree for that page are up to date
1602 static int check_page_uptodate(struct extent_io_tree *tree,
1603 struct page *page)
1605 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1606 u64 end = start + PAGE_CACHE_SIZE - 1;
1607 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1608 SetPageUptodate(page);
1609 return 0;
1613 * helper function to unlock a page if all the extents in the tree
1614 * for that page are unlocked
1616 static int check_page_locked(struct extent_io_tree *tree,
1617 struct page *page)
1619 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1620 u64 end = start + PAGE_CACHE_SIZE - 1;
1621 if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL))
1622 unlock_page(page);
1623 return 0;
1627 * helper function to end page writeback if all the extents
1628 * in the tree for that page are done with writeback
1630 static int check_page_writeback(struct extent_io_tree *tree,
1631 struct page *page)
1633 end_page_writeback(page);
1634 return 0;
1637 /* lots and lots of room for performance fixes in the end_bio funcs */
1640 * after a writepage IO is done, we need to:
1641 * clear the uptodate bits on error
1642 * clear the writeback bits in the extent tree for this IO
1643 * end_page_writeback if the page has no more pending IO
1645 * Scheduling is not allowed, so the extent state tree is expected
1646 * to have one and only one object corresponding to this IO.
1648 static void end_bio_extent_writepage(struct bio *bio, int err)
1650 int uptodate = err == 0;
1651 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1652 struct extent_io_tree *tree;
1653 u64 start;
1654 u64 end;
1655 int whole_page;
1656 int ret;
1658 do {
1659 struct page *page = bvec->bv_page;
1660 tree = &BTRFS_I(page->mapping->host)->io_tree;
1662 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1663 bvec->bv_offset;
1664 end = start + bvec->bv_len - 1;
1666 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1667 whole_page = 1;
1668 else
1669 whole_page = 0;
1671 if (--bvec >= bio->bi_io_vec)
1672 prefetchw(&bvec->bv_page->flags);
1673 if (tree->ops && tree->ops->writepage_end_io_hook) {
1674 ret = tree->ops->writepage_end_io_hook(page, start,
1675 end, NULL, uptodate);
1676 if (ret)
1677 uptodate = 0;
1680 if (!uptodate && tree->ops &&
1681 tree->ops->writepage_io_failed_hook) {
1682 ret = tree->ops->writepage_io_failed_hook(bio, page,
1683 start, end, NULL);
1684 if (ret == 0) {
1685 uptodate = (err == 0);
1686 continue;
1690 if (!uptodate) {
1691 clear_extent_uptodate(tree, start, end, NULL, GFP_NOFS);
1692 ClearPageUptodate(page);
1693 SetPageError(page);
1696 if (whole_page)
1697 end_page_writeback(page);
1698 else
1699 check_page_writeback(tree, page);
1700 } while (bvec >= bio->bi_io_vec);
1702 bio_put(bio);
1706 * after a readpage IO is done, we need to:
1707 * clear the uptodate bits on error
1708 * set the uptodate bits if things worked
1709 * set the page up to date if all extents in the tree are uptodate
1710 * clear the lock bit in the extent tree
1711 * unlock the page if there are no other extents locked for it
1713 * Scheduling is not allowed, so the extent state tree is expected
1714 * to have one and only one object corresponding to this IO.
1716 static void end_bio_extent_readpage(struct bio *bio, int err)
1718 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1719 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
1720 struct bio_vec *bvec = bio->bi_io_vec;
1721 struct extent_io_tree *tree;
1722 u64 start;
1723 u64 end;
1724 int whole_page;
1725 int ret;
1727 if (err)
1728 uptodate = 0;
1730 do {
1731 struct page *page = bvec->bv_page;
1732 tree = &BTRFS_I(page->mapping->host)->io_tree;
1734 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1735 bvec->bv_offset;
1736 end = start + bvec->bv_len - 1;
1738 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1739 whole_page = 1;
1740 else
1741 whole_page = 0;
1743 if (++bvec <= bvec_end)
1744 prefetchw(&bvec->bv_page->flags);
1746 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
1747 ret = tree->ops->readpage_end_io_hook(page, start, end,
1748 NULL);
1749 if (ret)
1750 uptodate = 0;
1752 if (!uptodate && tree->ops &&
1753 tree->ops->readpage_io_failed_hook) {
1754 ret = tree->ops->readpage_io_failed_hook(bio, page,
1755 start, end, NULL);
1756 if (ret == 0) {
1757 uptodate =
1758 test_bit(BIO_UPTODATE, &bio->bi_flags);
1759 if (err)
1760 uptodate = 0;
1761 continue;
1765 if (uptodate) {
1766 set_extent_uptodate(tree, start, end,
1767 GFP_ATOMIC);
1769 unlock_extent(tree, start, end, GFP_ATOMIC);
1771 if (whole_page) {
1772 if (uptodate) {
1773 SetPageUptodate(page);
1774 } else {
1775 ClearPageUptodate(page);
1776 SetPageError(page);
1778 unlock_page(page);
1779 } else {
1780 if (uptodate) {
1781 check_page_uptodate(tree, page);
1782 } else {
1783 ClearPageUptodate(page);
1784 SetPageError(page);
1786 check_page_locked(tree, page);
1788 } while (bvec <= bvec_end);
1790 bio_put(bio);
1794 * IO done from prepare_write is pretty simple, we just unlock
1795 * the structs in the extent tree when done, and set the uptodate bits
1796 * as appropriate.
1798 static void end_bio_extent_preparewrite(struct bio *bio, int err)
1800 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1801 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1802 struct extent_io_tree *tree;
1803 u64 start;
1804 u64 end;
1806 do {
1807 struct page *page = bvec->bv_page;
1808 tree = &BTRFS_I(page->mapping->host)->io_tree;
1810 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1811 bvec->bv_offset;
1812 end = start + bvec->bv_len - 1;
1814 if (--bvec >= bio->bi_io_vec)
1815 prefetchw(&bvec->bv_page->flags);
1817 if (uptodate) {
1818 set_extent_uptodate(tree, start, end, GFP_ATOMIC);
1819 } else {
1820 ClearPageUptodate(page);
1821 SetPageError(page);
1824 unlock_extent(tree, start, end, GFP_ATOMIC);
1826 } while (bvec >= bio->bi_io_vec);
1828 bio_put(bio);
1831 struct bio *
1832 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
1833 gfp_t gfp_flags)
1835 struct bio *bio;
1837 bio = bio_alloc(gfp_flags, nr_vecs);
1839 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
1840 while (!bio && (nr_vecs /= 2))
1841 bio = bio_alloc(gfp_flags, nr_vecs);
1844 if (bio) {
1845 bio->bi_size = 0;
1846 bio->bi_bdev = bdev;
1847 bio->bi_sector = first_sector;
1849 return bio;
1852 static int submit_one_bio(int rw, struct bio *bio, int mirror_num,
1853 unsigned long bio_flags)
1855 int ret = 0;
1856 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1857 struct page *page = bvec->bv_page;
1858 struct extent_io_tree *tree = bio->bi_private;
1859 u64 start;
1861 start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
1863 bio->bi_private = NULL;
1865 bio_get(bio);
1867 if (tree->ops && tree->ops->submit_bio_hook)
1868 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
1869 mirror_num, bio_flags, start);
1870 else
1871 submit_bio(rw, bio);
1872 if (bio_flagged(bio, BIO_EOPNOTSUPP))
1873 ret = -EOPNOTSUPP;
1874 bio_put(bio);
1875 return ret;
1878 static int submit_extent_page(int rw, struct extent_io_tree *tree,
1879 struct page *page, sector_t sector,
1880 size_t size, unsigned long offset,
1881 struct block_device *bdev,
1882 struct bio **bio_ret,
1883 unsigned long max_pages,
1884 bio_end_io_t end_io_func,
1885 int mirror_num,
1886 unsigned long prev_bio_flags,
1887 unsigned long bio_flags)
1889 int ret = 0;
1890 struct bio *bio;
1891 int nr;
1892 int contig = 0;
1893 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
1894 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
1895 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
1897 if (bio_ret && *bio_ret) {
1898 bio = *bio_ret;
1899 if (old_compressed)
1900 contig = bio->bi_sector == sector;
1901 else
1902 contig = bio->bi_sector + (bio->bi_size >> 9) ==
1903 sector;
1905 if (prev_bio_flags != bio_flags || !contig ||
1906 (tree->ops && tree->ops->merge_bio_hook &&
1907 tree->ops->merge_bio_hook(page, offset, page_size, bio,
1908 bio_flags)) ||
1909 bio_add_page(bio, page, page_size, offset) < page_size) {
1910 ret = submit_one_bio(rw, bio, mirror_num,
1911 prev_bio_flags);
1912 bio = NULL;
1913 } else {
1914 return 0;
1917 if (this_compressed)
1918 nr = BIO_MAX_PAGES;
1919 else
1920 nr = bio_get_nr_vecs(bdev);
1922 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
1923 if (!bio)
1924 return -ENOMEM;
1926 bio_add_page(bio, page, page_size, offset);
1927 bio->bi_end_io = end_io_func;
1928 bio->bi_private = tree;
1930 if (bio_ret)
1931 *bio_ret = bio;
1932 else
1933 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
1935 return ret;
1938 void set_page_extent_mapped(struct page *page)
1940 if (!PagePrivate(page)) {
1941 SetPagePrivate(page);
1942 page_cache_get(page);
1943 set_page_private(page, EXTENT_PAGE_PRIVATE);
1947 static void set_page_extent_head(struct page *page, unsigned long len)
1949 WARN_ON(!PagePrivate(page));
1950 set_page_private(page, EXTENT_PAGE_PRIVATE_FIRST_PAGE | len << 2);
1954 * basic readpage implementation. Locked extent state structs are inserted
1955 * into the tree that are removed when the IO is done (by the end_io
1956 * handlers)
1958 static int __extent_read_full_page(struct extent_io_tree *tree,
1959 struct page *page,
1960 get_extent_t *get_extent,
1961 struct bio **bio, int mirror_num,
1962 unsigned long *bio_flags)
1964 struct inode *inode = page->mapping->host;
1965 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1966 u64 page_end = start + PAGE_CACHE_SIZE - 1;
1967 u64 end;
1968 u64 cur = start;
1969 u64 extent_offset;
1970 u64 last_byte = i_size_read(inode);
1971 u64 block_start;
1972 u64 cur_end;
1973 sector_t sector;
1974 struct extent_map *em;
1975 struct block_device *bdev;
1976 struct btrfs_ordered_extent *ordered;
1977 int ret;
1978 int nr = 0;
1979 size_t page_offset = 0;
1980 size_t iosize;
1981 size_t disk_io_size;
1982 size_t blocksize = inode->i_sb->s_blocksize;
1983 unsigned long this_bio_flag = 0;
1985 set_page_extent_mapped(page);
1987 end = page_end;
1988 while (1) {
1989 lock_extent(tree, start, end, GFP_NOFS);
1990 ordered = btrfs_lookup_ordered_extent(inode, start);
1991 if (!ordered)
1992 break;
1993 unlock_extent(tree, start, end, GFP_NOFS);
1994 btrfs_start_ordered_extent(inode, ordered, 1);
1995 btrfs_put_ordered_extent(ordered);
1998 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
1999 char *userpage;
2000 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2002 if (zero_offset) {
2003 iosize = PAGE_CACHE_SIZE - zero_offset;
2004 userpage = kmap_atomic(page, KM_USER0);
2005 memset(userpage + zero_offset, 0, iosize);
2006 flush_dcache_page(page);
2007 kunmap_atomic(userpage, KM_USER0);
2010 while (cur <= end) {
2011 if (cur >= last_byte) {
2012 char *userpage;
2013 iosize = PAGE_CACHE_SIZE - page_offset;
2014 userpage = kmap_atomic(page, KM_USER0);
2015 memset(userpage + page_offset, 0, iosize);
2016 flush_dcache_page(page);
2017 kunmap_atomic(userpage, KM_USER0);
2018 set_extent_uptodate(tree, cur, cur + iosize - 1,
2019 GFP_NOFS);
2020 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2021 break;
2023 em = get_extent(inode, page, page_offset, cur,
2024 end - cur + 1, 0);
2025 if (IS_ERR(em) || !em) {
2026 SetPageError(page);
2027 unlock_extent(tree, cur, end, GFP_NOFS);
2028 break;
2030 extent_offset = cur - em->start;
2031 BUG_ON(extent_map_end(em) <= cur);
2032 BUG_ON(end < cur);
2034 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2035 this_bio_flag = EXTENT_BIO_COMPRESSED;
2036 extent_set_compress_type(&this_bio_flag,
2037 em->compress_type);
2040 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2041 cur_end = min(extent_map_end(em) - 1, end);
2042 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2043 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2044 disk_io_size = em->block_len;
2045 sector = em->block_start >> 9;
2046 } else {
2047 sector = (em->block_start + extent_offset) >> 9;
2048 disk_io_size = iosize;
2050 bdev = em->bdev;
2051 block_start = em->block_start;
2052 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2053 block_start = EXTENT_MAP_HOLE;
2054 free_extent_map(em);
2055 em = NULL;
2057 /* we've found a hole, just zero and go on */
2058 if (block_start == EXTENT_MAP_HOLE) {
2059 char *userpage;
2060 userpage = kmap_atomic(page, KM_USER0);
2061 memset(userpage + page_offset, 0, iosize);
2062 flush_dcache_page(page);
2063 kunmap_atomic(userpage, KM_USER0);
2065 set_extent_uptodate(tree, cur, cur + iosize - 1,
2066 GFP_NOFS);
2067 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2068 cur = cur + iosize;
2069 page_offset += iosize;
2070 continue;
2072 /* the get_extent function already copied into the page */
2073 if (test_range_bit(tree, cur, cur_end,
2074 EXTENT_UPTODATE, 1, NULL)) {
2075 check_page_uptodate(tree, page);
2076 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2077 cur = cur + iosize;
2078 page_offset += iosize;
2079 continue;
2081 /* we have an inline extent but it didn't get marked up
2082 * to date. Error out
2084 if (block_start == EXTENT_MAP_INLINE) {
2085 SetPageError(page);
2086 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2087 cur = cur + iosize;
2088 page_offset += iosize;
2089 continue;
2092 ret = 0;
2093 if (tree->ops && tree->ops->readpage_io_hook) {
2094 ret = tree->ops->readpage_io_hook(page, cur,
2095 cur + iosize - 1);
2097 if (!ret) {
2098 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2099 pnr -= page->index;
2100 ret = submit_extent_page(READ, tree, page,
2101 sector, disk_io_size, page_offset,
2102 bdev, bio, pnr,
2103 end_bio_extent_readpage, mirror_num,
2104 *bio_flags,
2105 this_bio_flag);
2106 nr++;
2107 *bio_flags = this_bio_flag;
2109 if (ret)
2110 SetPageError(page);
2111 cur = cur + iosize;
2112 page_offset += iosize;
2114 if (!nr) {
2115 if (!PageError(page))
2116 SetPageUptodate(page);
2117 unlock_page(page);
2119 return 0;
2122 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
2123 get_extent_t *get_extent)
2125 struct bio *bio = NULL;
2126 unsigned long bio_flags = 0;
2127 int ret;
2129 ret = __extent_read_full_page(tree, page, get_extent, &bio, 0,
2130 &bio_flags);
2131 if (bio)
2132 ret = submit_one_bio(READ, bio, 0, bio_flags);
2133 return ret;
2136 static noinline void update_nr_written(struct page *page,
2137 struct writeback_control *wbc,
2138 unsigned long nr_written)
2140 wbc->nr_to_write -= nr_written;
2141 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2142 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2143 page->mapping->writeback_index = page->index + nr_written;
2147 * the writepage semantics are similar to regular writepage. extent
2148 * records are inserted to lock ranges in the tree, and as dirty areas
2149 * are found, they are marked writeback. Then the lock bits are removed
2150 * and the end_io handler clears the writeback ranges
2152 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2153 void *data)
2155 struct inode *inode = page->mapping->host;
2156 struct extent_page_data *epd = data;
2157 struct extent_io_tree *tree = epd->tree;
2158 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2159 u64 delalloc_start;
2160 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2161 u64 end;
2162 u64 cur = start;
2163 u64 extent_offset;
2164 u64 last_byte = i_size_read(inode);
2165 u64 block_start;
2166 u64 iosize;
2167 sector_t sector;
2168 struct extent_state *cached_state = NULL;
2169 struct extent_map *em;
2170 struct block_device *bdev;
2171 int ret;
2172 int nr = 0;
2173 size_t pg_offset = 0;
2174 size_t blocksize;
2175 loff_t i_size = i_size_read(inode);
2176 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2177 u64 nr_delalloc;
2178 u64 delalloc_end;
2179 int page_started;
2180 int compressed;
2181 int write_flags;
2182 unsigned long nr_written = 0;
2184 if (wbc->sync_mode == WB_SYNC_ALL)
2185 write_flags = WRITE_SYNC_PLUG;
2186 else
2187 write_flags = WRITE;
2189 WARN_ON(!PageLocked(page));
2190 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
2191 if (page->index > end_index ||
2192 (page->index == end_index && !pg_offset)) {
2193 page->mapping->a_ops->invalidatepage(page, 0);
2194 unlock_page(page);
2195 return 0;
2198 if (page->index == end_index) {
2199 char *userpage;
2201 userpage = kmap_atomic(page, KM_USER0);
2202 memset(userpage + pg_offset, 0,
2203 PAGE_CACHE_SIZE - pg_offset);
2204 kunmap_atomic(userpage, KM_USER0);
2205 flush_dcache_page(page);
2207 pg_offset = 0;
2209 set_page_extent_mapped(page);
2211 delalloc_start = start;
2212 delalloc_end = 0;
2213 page_started = 0;
2214 if (!epd->extent_locked) {
2215 u64 delalloc_to_write = 0;
2217 * make sure the wbc mapping index is at least updated
2218 * to this page.
2220 update_nr_written(page, wbc, 0);
2222 while (delalloc_end < page_end) {
2223 nr_delalloc = find_lock_delalloc_range(inode, tree,
2224 page,
2225 &delalloc_start,
2226 &delalloc_end,
2227 128 * 1024 * 1024);
2228 if (nr_delalloc == 0) {
2229 delalloc_start = delalloc_end + 1;
2230 continue;
2232 tree->ops->fill_delalloc(inode, page, delalloc_start,
2233 delalloc_end, &page_started,
2234 &nr_written);
2236 * delalloc_end is already one less than the total
2237 * length, so we don't subtract one from
2238 * PAGE_CACHE_SIZE
2240 delalloc_to_write += (delalloc_end - delalloc_start +
2241 PAGE_CACHE_SIZE) >>
2242 PAGE_CACHE_SHIFT;
2243 delalloc_start = delalloc_end + 1;
2245 if (wbc->nr_to_write < delalloc_to_write) {
2246 int thresh = 8192;
2248 if (delalloc_to_write < thresh * 2)
2249 thresh = delalloc_to_write;
2250 wbc->nr_to_write = min_t(u64, delalloc_to_write,
2251 thresh);
2254 /* did the fill delalloc function already unlock and start
2255 * the IO?
2257 if (page_started) {
2258 ret = 0;
2260 * we've unlocked the page, so we can't update
2261 * the mapping's writeback index, just update
2262 * nr_to_write.
2264 wbc->nr_to_write -= nr_written;
2265 goto done_unlocked;
2268 if (tree->ops && tree->ops->writepage_start_hook) {
2269 ret = tree->ops->writepage_start_hook(page, start,
2270 page_end);
2271 if (ret == -EAGAIN) {
2272 redirty_page_for_writepage(wbc, page);
2273 update_nr_written(page, wbc, nr_written);
2274 unlock_page(page);
2275 ret = 0;
2276 goto done_unlocked;
2281 * we don't want to touch the inode after unlocking the page,
2282 * so we update the mapping writeback index now
2284 update_nr_written(page, wbc, nr_written + 1);
2286 end = page_end;
2287 if (last_byte <= start) {
2288 if (tree->ops && tree->ops->writepage_end_io_hook)
2289 tree->ops->writepage_end_io_hook(page, start,
2290 page_end, NULL, 1);
2291 goto done;
2294 blocksize = inode->i_sb->s_blocksize;
2296 while (cur <= end) {
2297 if (cur >= last_byte) {
2298 if (tree->ops && tree->ops->writepage_end_io_hook)
2299 tree->ops->writepage_end_io_hook(page, cur,
2300 page_end, NULL, 1);
2301 break;
2303 em = epd->get_extent(inode, page, pg_offset, cur,
2304 end - cur + 1, 1);
2305 if (IS_ERR(em) || !em) {
2306 SetPageError(page);
2307 break;
2310 extent_offset = cur - em->start;
2311 BUG_ON(extent_map_end(em) <= cur);
2312 BUG_ON(end < cur);
2313 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2314 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2315 sector = (em->block_start + extent_offset) >> 9;
2316 bdev = em->bdev;
2317 block_start = em->block_start;
2318 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
2319 free_extent_map(em);
2320 em = NULL;
2323 * compressed and inline extents are written through other
2324 * paths in the FS
2326 if (compressed || block_start == EXTENT_MAP_HOLE ||
2327 block_start == EXTENT_MAP_INLINE) {
2329 * end_io notification does not happen here for
2330 * compressed extents
2332 if (!compressed && tree->ops &&
2333 tree->ops->writepage_end_io_hook)
2334 tree->ops->writepage_end_io_hook(page, cur,
2335 cur + iosize - 1,
2336 NULL, 1);
2337 else if (compressed) {
2338 /* we don't want to end_page_writeback on
2339 * a compressed extent. this happens
2340 * elsewhere
2342 nr++;
2345 cur += iosize;
2346 pg_offset += iosize;
2347 continue;
2349 /* leave this out until we have a page_mkwrite call */
2350 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
2351 EXTENT_DIRTY, 0, NULL)) {
2352 cur = cur + iosize;
2353 pg_offset += iosize;
2354 continue;
2357 if (tree->ops && tree->ops->writepage_io_hook) {
2358 ret = tree->ops->writepage_io_hook(page, cur,
2359 cur + iosize - 1);
2360 } else {
2361 ret = 0;
2363 if (ret) {
2364 SetPageError(page);
2365 } else {
2366 unsigned long max_nr = end_index + 1;
2368 set_range_writeback(tree, cur, cur + iosize - 1);
2369 if (!PageWriteback(page)) {
2370 printk(KERN_ERR "btrfs warning page %lu not "
2371 "writeback, cur %llu end %llu\n",
2372 page->index, (unsigned long long)cur,
2373 (unsigned long long)end);
2376 ret = submit_extent_page(write_flags, tree, page,
2377 sector, iosize, pg_offset,
2378 bdev, &epd->bio, max_nr,
2379 end_bio_extent_writepage,
2380 0, 0, 0);
2381 if (ret)
2382 SetPageError(page);
2384 cur = cur + iosize;
2385 pg_offset += iosize;
2386 nr++;
2388 done:
2389 if (nr == 0) {
2390 /* make sure the mapping tag for page dirty gets cleared */
2391 set_page_writeback(page);
2392 end_page_writeback(page);
2394 unlock_page(page);
2396 done_unlocked:
2398 /* drop our reference on any cached states */
2399 free_extent_state(cached_state);
2400 return 0;
2404 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2405 * @mapping: address space structure to write
2406 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2407 * @writepage: function called for each page
2408 * @data: data passed to writepage function
2410 * If a page is already under I/O, write_cache_pages() skips it, even
2411 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2412 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2413 * and msync() need to guarantee that all the data which was dirty at the time
2414 * the call was made get new I/O started against them. If wbc->sync_mode is
2415 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2416 * existing IO to complete.
2418 static int extent_write_cache_pages(struct extent_io_tree *tree,
2419 struct address_space *mapping,
2420 struct writeback_control *wbc,
2421 writepage_t writepage, void *data,
2422 void (*flush_fn)(void *))
2424 int ret = 0;
2425 int done = 0;
2426 int nr_to_write_done = 0;
2427 struct pagevec pvec;
2428 int nr_pages;
2429 pgoff_t index;
2430 pgoff_t end; /* Inclusive */
2431 int scanned = 0;
2433 pagevec_init(&pvec, 0);
2434 if (wbc->range_cyclic) {
2435 index = mapping->writeback_index; /* Start from prev offset */
2436 end = -1;
2437 } else {
2438 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2439 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2440 scanned = 1;
2442 retry:
2443 while (!done && !nr_to_write_done && (index <= end) &&
2444 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
2445 PAGECACHE_TAG_DIRTY, min(end - index,
2446 (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
2447 unsigned i;
2449 scanned = 1;
2450 for (i = 0; i < nr_pages; i++) {
2451 struct page *page = pvec.pages[i];
2454 * At this point we hold neither mapping->tree_lock nor
2455 * lock on the page itself: the page may be truncated or
2456 * invalidated (changing page->mapping to NULL), or even
2457 * swizzled back from swapper_space to tmpfs file
2458 * mapping
2460 if (tree->ops && tree->ops->write_cache_pages_lock_hook)
2461 tree->ops->write_cache_pages_lock_hook(page);
2462 else
2463 lock_page(page);
2465 if (unlikely(page->mapping != mapping)) {
2466 unlock_page(page);
2467 continue;
2470 if (!wbc->range_cyclic && page->index > end) {
2471 done = 1;
2472 unlock_page(page);
2473 continue;
2476 if (wbc->sync_mode != WB_SYNC_NONE) {
2477 if (PageWriteback(page))
2478 flush_fn(data);
2479 wait_on_page_writeback(page);
2482 if (PageWriteback(page) ||
2483 !clear_page_dirty_for_io(page)) {
2484 unlock_page(page);
2485 continue;
2488 ret = (*writepage)(page, wbc, data);
2490 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
2491 unlock_page(page);
2492 ret = 0;
2494 if (ret)
2495 done = 1;
2498 * the filesystem may choose to bump up nr_to_write.
2499 * We have to make sure to honor the new nr_to_write
2500 * at any time
2502 nr_to_write_done = wbc->nr_to_write <= 0;
2504 pagevec_release(&pvec);
2505 cond_resched();
2507 if (!scanned && !done) {
2509 * We hit the last page and there is more work to be done: wrap
2510 * back to the start of the file
2512 scanned = 1;
2513 index = 0;
2514 goto retry;
2516 return ret;
2519 static void flush_epd_write_bio(struct extent_page_data *epd)
2521 if (epd->bio) {
2522 if (epd->sync_io)
2523 submit_one_bio(WRITE_SYNC, epd->bio, 0, 0);
2524 else
2525 submit_one_bio(WRITE, epd->bio, 0, 0);
2526 epd->bio = NULL;
2530 static noinline void flush_write_bio(void *data)
2532 struct extent_page_data *epd = data;
2533 flush_epd_write_bio(epd);
2536 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
2537 get_extent_t *get_extent,
2538 struct writeback_control *wbc)
2540 int ret;
2541 struct address_space *mapping = page->mapping;
2542 struct extent_page_data epd = {
2543 .bio = NULL,
2544 .tree = tree,
2545 .get_extent = get_extent,
2546 .extent_locked = 0,
2547 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
2549 struct writeback_control wbc_writepages = {
2550 .sync_mode = wbc->sync_mode,
2551 .older_than_this = NULL,
2552 .nr_to_write = 64,
2553 .range_start = page_offset(page) + PAGE_CACHE_SIZE,
2554 .range_end = (loff_t)-1,
2557 ret = __extent_writepage(page, wbc, &epd);
2559 extent_write_cache_pages(tree, mapping, &wbc_writepages,
2560 __extent_writepage, &epd, flush_write_bio);
2561 flush_epd_write_bio(&epd);
2562 return ret;
2565 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
2566 u64 start, u64 end, get_extent_t *get_extent,
2567 int mode)
2569 int ret = 0;
2570 struct address_space *mapping = inode->i_mapping;
2571 struct page *page;
2572 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
2573 PAGE_CACHE_SHIFT;
2575 struct extent_page_data epd = {
2576 .bio = NULL,
2577 .tree = tree,
2578 .get_extent = get_extent,
2579 .extent_locked = 1,
2580 .sync_io = mode == WB_SYNC_ALL,
2582 struct writeback_control wbc_writepages = {
2583 .sync_mode = mode,
2584 .older_than_this = NULL,
2585 .nr_to_write = nr_pages * 2,
2586 .range_start = start,
2587 .range_end = end + 1,
2590 while (start <= end) {
2591 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
2592 if (clear_page_dirty_for_io(page))
2593 ret = __extent_writepage(page, &wbc_writepages, &epd);
2594 else {
2595 if (tree->ops && tree->ops->writepage_end_io_hook)
2596 tree->ops->writepage_end_io_hook(page, start,
2597 start + PAGE_CACHE_SIZE - 1,
2598 NULL, 1);
2599 unlock_page(page);
2601 page_cache_release(page);
2602 start += PAGE_CACHE_SIZE;
2605 flush_epd_write_bio(&epd);
2606 return ret;
2609 int extent_writepages(struct extent_io_tree *tree,
2610 struct address_space *mapping,
2611 get_extent_t *get_extent,
2612 struct writeback_control *wbc)
2614 int ret = 0;
2615 struct extent_page_data epd = {
2616 .bio = NULL,
2617 .tree = tree,
2618 .get_extent = get_extent,
2619 .extent_locked = 0,
2620 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
2623 ret = extent_write_cache_pages(tree, mapping, wbc,
2624 __extent_writepage, &epd,
2625 flush_write_bio);
2626 flush_epd_write_bio(&epd);
2627 return ret;
2630 int extent_readpages(struct extent_io_tree *tree,
2631 struct address_space *mapping,
2632 struct list_head *pages, unsigned nr_pages,
2633 get_extent_t get_extent)
2635 struct bio *bio = NULL;
2636 unsigned page_idx;
2637 unsigned long bio_flags = 0;
2639 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
2640 struct page *page = list_entry(pages->prev, struct page, lru);
2642 prefetchw(&page->flags);
2643 list_del(&page->lru);
2644 if (!add_to_page_cache_lru(page, mapping,
2645 page->index, GFP_KERNEL)) {
2646 __extent_read_full_page(tree, page, get_extent,
2647 &bio, 0, &bio_flags);
2649 page_cache_release(page);
2651 BUG_ON(!list_empty(pages));
2652 if (bio)
2653 submit_one_bio(READ, bio, 0, bio_flags);
2654 return 0;
2658 * basic invalidatepage code, this waits on any locked or writeback
2659 * ranges corresponding to the page, and then deletes any extent state
2660 * records from the tree
2662 int extent_invalidatepage(struct extent_io_tree *tree,
2663 struct page *page, unsigned long offset)
2665 struct extent_state *cached_state = NULL;
2666 u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
2667 u64 end = start + PAGE_CACHE_SIZE - 1;
2668 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
2670 start += (offset + blocksize - 1) & ~(blocksize - 1);
2671 if (start > end)
2672 return 0;
2674 lock_extent_bits(tree, start, end, 0, &cached_state, GFP_NOFS);
2675 wait_on_page_writeback(page);
2676 clear_extent_bit(tree, start, end,
2677 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
2678 EXTENT_DO_ACCOUNTING,
2679 1, 1, &cached_state, GFP_NOFS);
2680 return 0;
2684 * simple commit_write call, set_range_dirty is used to mark both
2685 * the pages and the extent records as dirty
2687 int extent_commit_write(struct extent_io_tree *tree,
2688 struct inode *inode, struct page *page,
2689 unsigned from, unsigned to)
2691 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2693 set_page_extent_mapped(page);
2694 set_page_dirty(page);
2696 if (pos > inode->i_size) {
2697 i_size_write(inode, pos);
2698 mark_inode_dirty(inode);
2700 return 0;
2703 int extent_prepare_write(struct extent_io_tree *tree,
2704 struct inode *inode, struct page *page,
2705 unsigned from, unsigned to, get_extent_t *get_extent)
2707 u64 page_start = (u64)page->index << PAGE_CACHE_SHIFT;
2708 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
2709 u64 block_start;
2710 u64 orig_block_start;
2711 u64 block_end;
2712 u64 cur_end;
2713 struct extent_map *em;
2714 unsigned blocksize = 1 << inode->i_blkbits;
2715 size_t page_offset = 0;
2716 size_t block_off_start;
2717 size_t block_off_end;
2718 int err = 0;
2719 int iocount = 0;
2720 int ret = 0;
2721 int isnew;
2723 set_page_extent_mapped(page);
2725 block_start = (page_start + from) & ~((u64)blocksize - 1);
2726 block_end = (page_start + to - 1) | (blocksize - 1);
2727 orig_block_start = block_start;
2729 lock_extent(tree, page_start, page_end, GFP_NOFS);
2730 while (block_start <= block_end) {
2731 em = get_extent(inode, page, page_offset, block_start,
2732 block_end - block_start + 1, 1);
2733 if (IS_ERR(em) || !em)
2734 goto err;
2736 cur_end = min(block_end, extent_map_end(em) - 1);
2737 block_off_start = block_start & (PAGE_CACHE_SIZE - 1);
2738 block_off_end = block_off_start + blocksize;
2739 isnew = clear_extent_new(tree, block_start, cur_end, GFP_NOFS);
2741 if (!PageUptodate(page) && isnew &&
2742 (block_off_end > to || block_off_start < from)) {
2743 void *kaddr;
2745 kaddr = kmap_atomic(page, KM_USER0);
2746 if (block_off_end > to)
2747 memset(kaddr + to, 0, block_off_end - to);
2748 if (block_off_start < from)
2749 memset(kaddr + block_off_start, 0,
2750 from - block_off_start);
2751 flush_dcache_page(page);
2752 kunmap_atomic(kaddr, KM_USER0);
2754 if ((em->block_start != EXTENT_MAP_HOLE &&
2755 em->block_start != EXTENT_MAP_INLINE) &&
2756 !isnew && !PageUptodate(page) &&
2757 (block_off_end > to || block_off_start < from) &&
2758 !test_range_bit(tree, block_start, cur_end,
2759 EXTENT_UPTODATE, 1, NULL)) {
2760 u64 sector;
2761 u64 extent_offset = block_start - em->start;
2762 size_t iosize;
2763 sector = (em->block_start + extent_offset) >> 9;
2764 iosize = (cur_end - block_start + blocksize) &
2765 ~((u64)blocksize - 1);
2767 * we've already got the extent locked, but we
2768 * need to split the state such that our end_bio
2769 * handler can clear the lock.
2771 set_extent_bit(tree, block_start,
2772 block_start + iosize - 1,
2773 EXTENT_LOCKED, 0, NULL, NULL, GFP_NOFS);
2774 ret = submit_extent_page(READ, tree, page,
2775 sector, iosize, page_offset, em->bdev,
2776 NULL, 1,
2777 end_bio_extent_preparewrite, 0,
2778 0, 0);
2779 if (ret && !err)
2780 err = ret;
2781 iocount++;
2782 block_start = block_start + iosize;
2783 } else {
2784 set_extent_uptodate(tree, block_start, cur_end,
2785 GFP_NOFS);
2786 unlock_extent(tree, block_start, cur_end, GFP_NOFS);
2787 block_start = cur_end + 1;
2789 page_offset = block_start & (PAGE_CACHE_SIZE - 1);
2790 free_extent_map(em);
2792 if (iocount) {
2793 wait_extent_bit(tree, orig_block_start,
2794 block_end, EXTENT_LOCKED);
2796 check_page_uptodate(tree, page);
2797 err:
2798 /* FIXME, zero out newly allocated blocks on error */
2799 return err;
2803 * a helper for releasepage, this tests for areas of the page that
2804 * are locked or under IO and drops the related state bits if it is safe
2805 * to drop the page.
2807 int try_release_extent_state(struct extent_map_tree *map,
2808 struct extent_io_tree *tree, struct page *page,
2809 gfp_t mask)
2811 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2812 u64 end = start + PAGE_CACHE_SIZE - 1;
2813 int ret = 1;
2815 if (test_range_bit(tree, start, end,
2816 EXTENT_IOBITS, 0, NULL))
2817 ret = 0;
2818 else {
2819 if ((mask & GFP_NOFS) == GFP_NOFS)
2820 mask = GFP_NOFS;
2822 * at this point we can safely clear everything except the
2823 * locked bit and the nodatasum bit
2825 ret = clear_extent_bit(tree, start, end,
2826 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
2827 0, 0, NULL, mask);
2829 /* if clear_extent_bit failed for enomem reasons,
2830 * we can't allow the release to continue.
2832 if (ret < 0)
2833 ret = 0;
2834 else
2835 ret = 1;
2837 return ret;
2841 * a helper for releasepage. As long as there are no locked extents
2842 * in the range corresponding to the page, both state records and extent
2843 * map records are removed
2845 int try_release_extent_mapping(struct extent_map_tree *map,
2846 struct extent_io_tree *tree, struct page *page,
2847 gfp_t mask)
2849 struct extent_map *em;
2850 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2851 u64 end = start + PAGE_CACHE_SIZE - 1;
2853 if ((mask & __GFP_WAIT) &&
2854 page->mapping->host->i_size > 16 * 1024 * 1024) {
2855 u64 len;
2856 while (start <= end) {
2857 len = end - start + 1;
2858 write_lock(&map->lock);
2859 em = lookup_extent_mapping(map, start, len);
2860 if (!em || IS_ERR(em)) {
2861 write_unlock(&map->lock);
2862 break;
2864 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
2865 em->start != start) {
2866 write_unlock(&map->lock);
2867 free_extent_map(em);
2868 break;
2870 if (!test_range_bit(tree, em->start,
2871 extent_map_end(em) - 1,
2872 EXTENT_LOCKED | EXTENT_WRITEBACK,
2873 0, NULL)) {
2874 remove_extent_mapping(map, em);
2875 /* once for the rb tree */
2876 free_extent_map(em);
2878 start = extent_map_end(em);
2879 write_unlock(&map->lock);
2881 /* once for us */
2882 free_extent_map(em);
2885 return try_release_extent_state(map, tree, page, mask);
2888 sector_t extent_bmap(struct address_space *mapping, sector_t iblock,
2889 get_extent_t *get_extent)
2891 struct inode *inode = mapping->host;
2892 struct extent_state *cached_state = NULL;
2893 u64 start = iblock << inode->i_blkbits;
2894 sector_t sector = 0;
2895 size_t blksize = (1 << inode->i_blkbits);
2896 struct extent_map *em;
2898 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + blksize - 1,
2899 0, &cached_state, GFP_NOFS);
2900 em = get_extent(inode, NULL, 0, start, blksize, 0);
2901 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start,
2902 start + blksize - 1, &cached_state, GFP_NOFS);
2903 if (!em || IS_ERR(em))
2904 return 0;
2906 if (em->block_start > EXTENT_MAP_LAST_BYTE)
2907 goto out;
2909 sector = (em->block_start + start - em->start) >> inode->i_blkbits;
2910 out:
2911 free_extent_map(em);
2912 return sector;
2915 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
2916 __u64 start, __u64 len, get_extent_t *get_extent)
2918 int ret = 0;
2919 u64 off = start;
2920 u64 max = start + len;
2921 u32 flags = 0;
2922 u32 found_type;
2923 u64 last;
2924 u64 disko = 0;
2925 struct btrfs_key found_key;
2926 struct extent_map *em = NULL;
2927 struct extent_state *cached_state = NULL;
2928 struct btrfs_path *path;
2929 struct btrfs_file_extent_item *item;
2930 int end = 0;
2931 u64 em_start = 0, em_len = 0;
2932 unsigned long emflags;
2933 int hole = 0;
2935 if (len == 0)
2936 return -EINVAL;
2938 path = btrfs_alloc_path();
2939 if (!path)
2940 return -ENOMEM;
2941 path->leave_spinning = 1;
2943 ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
2944 path, inode->i_ino, -1, 0);
2945 if (ret < 0) {
2946 btrfs_free_path(path);
2947 return ret;
2949 WARN_ON(!ret);
2950 path->slots[0]--;
2951 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2952 struct btrfs_file_extent_item);
2953 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
2954 found_type = btrfs_key_type(&found_key);
2956 /* No extents, just return */
2957 if (found_key.objectid != inode->i_ino ||
2958 found_type != BTRFS_EXTENT_DATA_KEY) {
2959 btrfs_free_path(path);
2960 return 0;
2962 last = found_key.offset;
2963 btrfs_free_path(path);
2965 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len, 0,
2966 &cached_state, GFP_NOFS);
2967 em = get_extent(inode, NULL, 0, off, max - off, 0);
2968 if (!em)
2969 goto out;
2970 if (IS_ERR(em)) {
2971 ret = PTR_ERR(em);
2972 goto out;
2975 while (!end) {
2976 hole = 0;
2977 off = em->start + em->len;
2978 if (off >= max)
2979 end = 1;
2981 if (em->block_start == EXTENT_MAP_HOLE) {
2982 hole = 1;
2983 goto next;
2986 em_start = em->start;
2987 em_len = em->len;
2989 disko = 0;
2990 flags = 0;
2992 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
2993 end = 1;
2994 flags |= FIEMAP_EXTENT_LAST;
2995 } else if (em->block_start == EXTENT_MAP_INLINE) {
2996 flags |= (FIEMAP_EXTENT_DATA_INLINE |
2997 FIEMAP_EXTENT_NOT_ALIGNED);
2998 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
2999 flags |= (FIEMAP_EXTENT_DELALLOC |
3000 FIEMAP_EXTENT_UNKNOWN);
3001 } else {
3002 disko = em->block_start;
3004 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
3005 flags |= FIEMAP_EXTENT_ENCODED;
3007 next:
3008 emflags = em->flags;
3009 free_extent_map(em);
3010 em = NULL;
3011 if (!end) {
3012 em = get_extent(inode, NULL, 0, off, max - off, 0);
3013 if (!em)
3014 goto out;
3015 if (IS_ERR(em)) {
3016 ret = PTR_ERR(em);
3017 goto out;
3019 emflags = em->flags;
3022 if (test_bit(EXTENT_FLAG_VACANCY, &emflags)) {
3023 flags |= FIEMAP_EXTENT_LAST;
3024 end = 1;
3027 if (em_start == last) {
3028 flags |= FIEMAP_EXTENT_LAST;
3029 end = 1;
3032 if (!hole) {
3033 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
3034 em_len, flags);
3035 if (ret)
3036 goto out_free;
3039 out_free:
3040 free_extent_map(em);
3041 out:
3042 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len,
3043 &cached_state, GFP_NOFS);
3044 return ret;
3047 static inline struct page *extent_buffer_page(struct extent_buffer *eb,
3048 unsigned long i)
3050 struct page *p;
3051 struct address_space *mapping;
3053 if (i == 0)
3054 return eb->first_page;
3055 i += eb->start >> PAGE_CACHE_SHIFT;
3056 mapping = eb->first_page->mapping;
3057 if (!mapping)
3058 return NULL;
3061 * extent_buffer_page is only called after pinning the page
3062 * by increasing the reference count. So we know the page must
3063 * be in the radix tree.
3065 rcu_read_lock();
3066 p = radix_tree_lookup(&mapping->page_tree, i);
3067 rcu_read_unlock();
3069 return p;
3072 static inline unsigned long num_extent_pages(u64 start, u64 len)
3074 return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
3075 (start >> PAGE_CACHE_SHIFT);
3078 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
3079 u64 start,
3080 unsigned long len,
3081 gfp_t mask)
3083 struct extent_buffer *eb = NULL;
3084 #if LEAK_DEBUG
3085 unsigned long flags;
3086 #endif
3088 eb = kmem_cache_zalloc(extent_buffer_cache, mask);
3089 if (eb == NULL)
3090 return NULL;
3091 eb->start = start;
3092 eb->len = len;
3093 spin_lock_init(&eb->lock);
3094 init_waitqueue_head(&eb->lock_wq);
3096 #if LEAK_DEBUG
3097 spin_lock_irqsave(&leak_lock, flags);
3098 list_add(&eb->leak_list, &buffers);
3099 spin_unlock_irqrestore(&leak_lock, flags);
3100 #endif
3101 atomic_set(&eb->refs, 1);
3103 return eb;
3106 static void __free_extent_buffer(struct extent_buffer *eb)
3108 #if LEAK_DEBUG
3109 unsigned long flags;
3110 spin_lock_irqsave(&leak_lock, flags);
3111 list_del(&eb->leak_list);
3112 spin_unlock_irqrestore(&leak_lock, flags);
3113 #endif
3114 kmem_cache_free(extent_buffer_cache, eb);
3118 * Helper for releasing extent buffer page.
3120 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
3121 unsigned long start_idx)
3123 unsigned long index;
3124 struct page *page;
3126 if (!eb->first_page)
3127 return;
3129 index = num_extent_pages(eb->start, eb->len);
3130 if (start_idx >= index)
3131 return;
3133 do {
3134 index--;
3135 page = extent_buffer_page(eb, index);
3136 if (page)
3137 page_cache_release(page);
3138 } while (index != start_idx);
3142 * Helper for releasing the extent buffer.
3144 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
3146 btrfs_release_extent_buffer_page(eb, 0);
3147 __free_extent_buffer(eb);
3150 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
3151 u64 start, unsigned long len,
3152 struct page *page0,
3153 gfp_t mask)
3155 unsigned long num_pages = num_extent_pages(start, len);
3156 unsigned long i;
3157 unsigned long index = start >> PAGE_CACHE_SHIFT;
3158 struct extent_buffer *eb;
3159 struct extent_buffer *exists = NULL;
3160 struct page *p;
3161 struct address_space *mapping = tree->mapping;
3162 int uptodate = 1;
3163 int ret;
3165 rcu_read_lock();
3166 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
3167 if (eb && atomic_inc_not_zero(&eb->refs)) {
3168 rcu_read_unlock();
3169 mark_page_accessed(eb->first_page);
3170 return eb;
3172 rcu_read_unlock();
3174 eb = __alloc_extent_buffer(tree, start, len, mask);
3175 if (!eb)
3176 return NULL;
3178 if (page0) {
3179 eb->first_page = page0;
3180 i = 1;
3181 index++;
3182 page_cache_get(page0);
3183 mark_page_accessed(page0);
3184 set_page_extent_mapped(page0);
3185 set_page_extent_head(page0, len);
3186 uptodate = PageUptodate(page0);
3187 } else {
3188 i = 0;
3190 for (; i < num_pages; i++, index++) {
3191 p = find_or_create_page(mapping, index, mask | __GFP_HIGHMEM);
3192 if (!p) {
3193 WARN_ON(1);
3194 goto free_eb;
3196 set_page_extent_mapped(p);
3197 mark_page_accessed(p);
3198 if (i == 0) {
3199 eb->first_page = p;
3200 set_page_extent_head(p, len);
3201 } else {
3202 set_page_private(p, EXTENT_PAGE_PRIVATE);
3204 if (!PageUptodate(p))
3205 uptodate = 0;
3208 * see below about how we avoid a nasty race with release page
3209 * and why we unlock later
3211 if (i != 0)
3212 unlock_page(p);
3214 if (uptodate)
3215 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3217 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
3218 if (ret)
3219 goto free_eb;
3221 spin_lock(&tree->buffer_lock);
3222 ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
3223 if (ret == -EEXIST) {
3224 exists = radix_tree_lookup(&tree->buffer,
3225 start >> PAGE_CACHE_SHIFT);
3226 /* add one reference for the caller */
3227 atomic_inc(&exists->refs);
3228 spin_unlock(&tree->buffer_lock);
3229 radix_tree_preload_end();
3230 goto free_eb;
3232 /* add one reference for the tree */
3233 atomic_inc(&eb->refs);
3234 spin_unlock(&tree->buffer_lock);
3235 radix_tree_preload_end();
3238 * there is a race where release page may have
3239 * tried to find this extent buffer in the radix
3240 * but failed. It will tell the VM it is safe to
3241 * reclaim the, and it will clear the page private bit.
3242 * We must make sure to set the page private bit properly
3243 * after the extent buffer is in the radix tree so
3244 * it doesn't get lost
3246 set_page_extent_mapped(eb->first_page);
3247 set_page_extent_head(eb->first_page, eb->len);
3248 if (!page0)
3249 unlock_page(eb->first_page);
3250 return eb;
3252 free_eb:
3253 if (eb->first_page && !page0)
3254 unlock_page(eb->first_page);
3256 if (!atomic_dec_and_test(&eb->refs))
3257 return exists;
3258 btrfs_release_extent_buffer(eb);
3259 return exists;
3262 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
3263 u64 start, unsigned long len,
3264 gfp_t mask)
3266 struct extent_buffer *eb;
3268 rcu_read_lock();
3269 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
3270 if (eb && atomic_inc_not_zero(&eb->refs)) {
3271 rcu_read_unlock();
3272 mark_page_accessed(eb->first_page);
3273 return eb;
3275 rcu_read_unlock();
3277 return NULL;
3280 void free_extent_buffer(struct extent_buffer *eb)
3282 if (!eb)
3283 return;
3285 if (!atomic_dec_and_test(&eb->refs))
3286 return;
3288 WARN_ON(1);
3291 int clear_extent_buffer_dirty(struct extent_io_tree *tree,
3292 struct extent_buffer *eb)
3294 unsigned long i;
3295 unsigned long num_pages;
3296 struct page *page;
3298 num_pages = num_extent_pages(eb->start, eb->len);
3300 for (i = 0; i < num_pages; i++) {
3301 page = extent_buffer_page(eb, i);
3302 if (!PageDirty(page))
3303 continue;
3305 lock_page(page);
3306 WARN_ON(!PagePrivate(page));
3308 set_page_extent_mapped(page);
3309 if (i == 0)
3310 set_page_extent_head(page, eb->len);
3312 clear_page_dirty_for_io(page);
3313 spin_lock_irq(&page->mapping->tree_lock);
3314 if (!PageDirty(page)) {
3315 radix_tree_tag_clear(&page->mapping->page_tree,
3316 page_index(page),
3317 PAGECACHE_TAG_DIRTY);
3319 spin_unlock_irq(&page->mapping->tree_lock);
3320 unlock_page(page);
3322 return 0;
3325 int wait_on_extent_buffer_writeback(struct extent_io_tree *tree,
3326 struct extent_buffer *eb)
3328 return wait_on_extent_writeback(tree, eb->start,
3329 eb->start + eb->len - 1);
3332 int set_extent_buffer_dirty(struct extent_io_tree *tree,
3333 struct extent_buffer *eb)
3335 unsigned long i;
3336 unsigned long num_pages;
3337 int was_dirty = 0;
3339 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3340 num_pages = num_extent_pages(eb->start, eb->len);
3341 for (i = 0; i < num_pages; i++)
3342 __set_page_dirty_nobuffers(extent_buffer_page(eb, i));
3343 return was_dirty;
3346 int clear_extent_buffer_uptodate(struct extent_io_tree *tree,
3347 struct extent_buffer *eb,
3348 struct extent_state **cached_state)
3350 unsigned long i;
3351 struct page *page;
3352 unsigned long num_pages;
3354 num_pages = num_extent_pages(eb->start, eb->len);
3355 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3357 clear_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
3358 cached_state, GFP_NOFS);
3359 for (i = 0; i < num_pages; i++) {
3360 page = extent_buffer_page(eb, i);
3361 if (page)
3362 ClearPageUptodate(page);
3364 return 0;
3367 int set_extent_buffer_uptodate(struct extent_io_tree *tree,
3368 struct extent_buffer *eb)
3370 unsigned long i;
3371 struct page *page;
3372 unsigned long num_pages;
3374 num_pages = num_extent_pages(eb->start, eb->len);
3376 set_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
3377 GFP_NOFS);
3378 for (i = 0; i < num_pages; i++) {
3379 page = extent_buffer_page(eb, i);
3380 if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
3381 ((i == num_pages - 1) &&
3382 ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
3383 check_page_uptodate(tree, page);
3384 continue;
3386 SetPageUptodate(page);
3388 return 0;
3391 int extent_range_uptodate(struct extent_io_tree *tree,
3392 u64 start, u64 end)
3394 struct page *page;
3395 int ret;
3396 int pg_uptodate = 1;
3397 int uptodate;
3398 unsigned long index;
3400 ret = test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL);
3401 if (ret)
3402 return 1;
3403 while (start <= end) {
3404 index = start >> PAGE_CACHE_SHIFT;
3405 page = find_get_page(tree->mapping, index);
3406 uptodate = PageUptodate(page);
3407 page_cache_release(page);
3408 if (!uptodate) {
3409 pg_uptodate = 0;
3410 break;
3412 start += PAGE_CACHE_SIZE;
3414 return pg_uptodate;
3417 int extent_buffer_uptodate(struct extent_io_tree *tree,
3418 struct extent_buffer *eb,
3419 struct extent_state *cached_state)
3421 int ret = 0;
3422 unsigned long num_pages;
3423 unsigned long i;
3424 struct page *page;
3425 int pg_uptodate = 1;
3427 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3428 return 1;
3430 ret = test_range_bit(tree, eb->start, eb->start + eb->len - 1,
3431 EXTENT_UPTODATE, 1, cached_state);
3432 if (ret)
3433 return ret;
3435 num_pages = num_extent_pages(eb->start, eb->len);
3436 for (i = 0; i < num_pages; i++) {
3437 page = extent_buffer_page(eb, i);
3438 if (!PageUptodate(page)) {
3439 pg_uptodate = 0;
3440 break;
3443 return pg_uptodate;
3446 int read_extent_buffer_pages(struct extent_io_tree *tree,
3447 struct extent_buffer *eb,
3448 u64 start, int wait,
3449 get_extent_t *get_extent, int mirror_num)
3451 unsigned long i;
3452 unsigned long start_i;
3453 struct page *page;
3454 int err;
3455 int ret = 0;
3456 int locked_pages = 0;
3457 int all_uptodate = 1;
3458 int inc_all_pages = 0;
3459 unsigned long num_pages;
3460 struct bio *bio = NULL;
3461 unsigned long bio_flags = 0;
3463 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3464 return 0;
3466 if (test_range_bit(tree, eb->start, eb->start + eb->len - 1,
3467 EXTENT_UPTODATE, 1, NULL)) {
3468 return 0;
3471 if (start) {
3472 WARN_ON(start < eb->start);
3473 start_i = (start >> PAGE_CACHE_SHIFT) -
3474 (eb->start >> PAGE_CACHE_SHIFT);
3475 } else {
3476 start_i = 0;
3479 num_pages = num_extent_pages(eb->start, eb->len);
3480 for (i = start_i; i < num_pages; i++) {
3481 page = extent_buffer_page(eb, i);
3482 if (!wait) {
3483 if (!trylock_page(page))
3484 goto unlock_exit;
3485 } else {
3486 lock_page(page);
3488 locked_pages++;
3489 if (!PageUptodate(page))
3490 all_uptodate = 0;
3492 if (all_uptodate) {
3493 if (start_i == 0)
3494 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3495 goto unlock_exit;
3498 for (i = start_i; i < num_pages; i++) {
3499 page = extent_buffer_page(eb, i);
3501 WARN_ON(!PagePrivate(page));
3503 set_page_extent_mapped(page);
3504 if (i == 0)
3505 set_page_extent_head(page, eb->len);
3507 if (inc_all_pages)
3508 page_cache_get(page);
3509 if (!PageUptodate(page)) {
3510 if (start_i == 0)
3511 inc_all_pages = 1;
3512 ClearPageError(page);
3513 err = __extent_read_full_page(tree, page,
3514 get_extent, &bio,
3515 mirror_num, &bio_flags);
3516 if (err)
3517 ret = err;
3518 } else {
3519 unlock_page(page);
3523 if (bio)
3524 submit_one_bio(READ, bio, mirror_num, bio_flags);
3526 if (ret || !wait)
3527 return ret;
3529 for (i = start_i; i < num_pages; i++) {
3530 page = extent_buffer_page(eb, i);
3531 wait_on_page_locked(page);
3532 if (!PageUptodate(page))
3533 ret = -EIO;
3536 if (!ret)
3537 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3538 return ret;
3540 unlock_exit:
3541 i = start_i;
3542 while (locked_pages > 0) {
3543 page = extent_buffer_page(eb, i);
3544 i++;
3545 unlock_page(page);
3546 locked_pages--;
3548 return ret;
3551 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
3552 unsigned long start,
3553 unsigned long len)
3555 size_t cur;
3556 size_t offset;
3557 struct page *page;
3558 char *kaddr;
3559 char *dst = (char *)dstv;
3560 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3561 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3563 WARN_ON(start > eb->len);
3564 WARN_ON(start + len > eb->start + eb->len);
3566 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3568 while (len > 0) {
3569 page = extent_buffer_page(eb, i);
3571 cur = min(len, (PAGE_CACHE_SIZE - offset));
3572 kaddr = kmap_atomic(page, KM_USER1);
3573 memcpy(dst, kaddr + offset, cur);
3574 kunmap_atomic(kaddr, KM_USER1);
3576 dst += cur;
3577 len -= cur;
3578 offset = 0;
3579 i++;
3583 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
3584 unsigned long min_len, char **token, char **map,
3585 unsigned long *map_start,
3586 unsigned long *map_len, int km)
3588 size_t offset = start & (PAGE_CACHE_SIZE - 1);
3589 char *kaddr;
3590 struct page *p;
3591 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3592 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3593 unsigned long end_i = (start_offset + start + min_len - 1) >>
3594 PAGE_CACHE_SHIFT;
3596 if (i != end_i)
3597 return -EINVAL;
3599 if (i == 0) {
3600 offset = start_offset;
3601 *map_start = 0;
3602 } else {
3603 offset = 0;
3604 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
3607 if (start + min_len > eb->len) {
3608 printk(KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
3609 "wanted %lu %lu\n", (unsigned long long)eb->start,
3610 eb->len, start, min_len);
3611 WARN_ON(1);
3614 p = extent_buffer_page(eb, i);
3615 kaddr = kmap_atomic(p, km);
3616 *token = kaddr;
3617 *map = kaddr + offset;
3618 *map_len = PAGE_CACHE_SIZE - offset;
3619 return 0;
3622 int map_extent_buffer(struct extent_buffer *eb, unsigned long start,
3623 unsigned long min_len,
3624 char **token, char **map,
3625 unsigned long *map_start,
3626 unsigned long *map_len, int km)
3628 int err;
3629 int save = 0;
3630 if (eb->map_token) {
3631 unmap_extent_buffer(eb, eb->map_token, km);
3632 eb->map_token = NULL;
3633 save = 1;
3635 err = map_private_extent_buffer(eb, start, min_len, token, map,
3636 map_start, map_len, km);
3637 if (!err && save) {
3638 eb->map_token = *token;
3639 eb->kaddr = *map;
3640 eb->map_start = *map_start;
3641 eb->map_len = *map_len;
3643 return err;
3646 void unmap_extent_buffer(struct extent_buffer *eb, char *token, int km)
3648 kunmap_atomic(token, km);
3651 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
3652 unsigned long start,
3653 unsigned long len)
3655 size_t cur;
3656 size_t offset;
3657 struct page *page;
3658 char *kaddr;
3659 char *ptr = (char *)ptrv;
3660 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3661 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3662 int ret = 0;
3664 WARN_ON(start > eb->len);
3665 WARN_ON(start + len > eb->start + eb->len);
3667 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3669 while (len > 0) {
3670 page = extent_buffer_page(eb, i);
3672 cur = min(len, (PAGE_CACHE_SIZE - offset));
3674 kaddr = kmap_atomic(page, KM_USER0);
3675 ret = memcmp(ptr, kaddr + offset, cur);
3676 kunmap_atomic(kaddr, KM_USER0);
3677 if (ret)
3678 break;
3680 ptr += cur;
3681 len -= cur;
3682 offset = 0;
3683 i++;
3685 return ret;
3688 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
3689 unsigned long start, unsigned long len)
3691 size_t cur;
3692 size_t offset;
3693 struct page *page;
3694 char *kaddr;
3695 char *src = (char *)srcv;
3696 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3697 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3699 WARN_ON(start > eb->len);
3700 WARN_ON(start + len > eb->start + eb->len);
3702 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3704 while (len > 0) {
3705 page = extent_buffer_page(eb, i);
3706 WARN_ON(!PageUptodate(page));
3708 cur = min(len, PAGE_CACHE_SIZE - offset);
3709 kaddr = kmap_atomic(page, KM_USER1);
3710 memcpy(kaddr + offset, src, cur);
3711 kunmap_atomic(kaddr, KM_USER1);
3713 src += cur;
3714 len -= cur;
3715 offset = 0;
3716 i++;
3720 void memset_extent_buffer(struct extent_buffer *eb, char c,
3721 unsigned long start, unsigned long len)
3723 size_t cur;
3724 size_t offset;
3725 struct page *page;
3726 char *kaddr;
3727 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3728 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3730 WARN_ON(start > eb->len);
3731 WARN_ON(start + len > eb->start + eb->len);
3733 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3735 while (len > 0) {
3736 page = extent_buffer_page(eb, i);
3737 WARN_ON(!PageUptodate(page));
3739 cur = min(len, PAGE_CACHE_SIZE - offset);
3740 kaddr = kmap_atomic(page, KM_USER0);
3741 memset(kaddr + offset, c, cur);
3742 kunmap_atomic(kaddr, KM_USER0);
3744 len -= cur;
3745 offset = 0;
3746 i++;
3750 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
3751 unsigned long dst_offset, unsigned long src_offset,
3752 unsigned long len)
3754 u64 dst_len = dst->len;
3755 size_t cur;
3756 size_t offset;
3757 struct page *page;
3758 char *kaddr;
3759 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3760 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
3762 WARN_ON(src->len != dst_len);
3764 offset = (start_offset + dst_offset) &
3765 ((unsigned long)PAGE_CACHE_SIZE - 1);
3767 while (len > 0) {
3768 page = extent_buffer_page(dst, i);
3769 WARN_ON(!PageUptodate(page));
3771 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
3773 kaddr = kmap_atomic(page, KM_USER0);
3774 read_extent_buffer(src, kaddr + offset, src_offset, cur);
3775 kunmap_atomic(kaddr, KM_USER0);
3777 src_offset += cur;
3778 len -= cur;
3779 offset = 0;
3780 i++;
3784 static void move_pages(struct page *dst_page, struct page *src_page,
3785 unsigned long dst_off, unsigned long src_off,
3786 unsigned long len)
3788 char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
3789 if (dst_page == src_page) {
3790 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
3791 } else {
3792 char *src_kaddr = kmap_atomic(src_page, KM_USER1);
3793 char *p = dst_kaddr + dst_off + len;
3794 char *s = src_kaddr + src_off + len;
3796 while (len--)
3797 *--p = *--s;
3799 kunmap_atomic(src_kaddr, KM_USER1);
3801 kunmap_atomic(dst_kaddr, KM_USER0);
3804 static void copy_pages(struct page *dst_page, struct page *src_page,
3805 unsigned long dst_off, unsigned long src_off,
3806 unsigned long len)
3808 char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
3809 char *src_kaddr;
3811 if (dst_page != src_page)
3812 src_kaddr = kmap_atomic(src_page, KM_USER1);
3813 else
3814 src_kaddr = dst_kaddr;
3816 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
3817 kunmap_atomic(dst_kaddr, KM_USER0);
3818 if (dst_page != src_page)
3819 kunmap_atomic(src_kaddr, KM_USER1);
3822 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
3823 unsigned long src_offset, unsigned long len)
3825 size_t cur;
3826 size_t dst_off_in_page;
3827 size_t src_off_in_page;
3828 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3829 unsigned long dst_i;
3830 unsigned long src_i;
3832 if (src_offset + len > dst->len) {
3833 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
3834 "len %lu dst len %lu\n", src_offset, len, dst->len);
3835 BUG_ON(1);
3837 if (dst_offset + len > dst->len) {
3838 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
3839 "len %lu dst len %lu\n", dst_offset, len, dst->len);
3840 BUG_ON(1);
3843 while (len > 0) {
3844 dst_off_in_page = (start_offset + dst_offset) &
3845 ((unsigned long)PAGE_CACHE_SIZE - 1);
3846 src_off_in_page = (start_offset + src_offset) &
3847 ((unsigned long)PAGE_CACHE_SIZE - 1);
3849 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
3850 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
3852 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
3853 src_off_in_page));
3854 cur = min_t(unsigned long, cur,
3855 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
3857 copy_pages(extent_buffer_page(dst, dst_i),
3858 extent_buffer_page(dst, src_i),
3859 dst_off_in_page, src_off_in_page, cur);
3861 src_offset += cur;
3862 dst_offset += cur;
3863 len -= cur;
3867 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
3868 unsigned long src_offset, unsigned long len)
3870 size_t cur;
3871 size_t dst_off_in_page;
3872 size_t src_off_in_page;
3873 unsigned long dst_end = dst_offset + len - 1;
3874 unsigned long src_end = src_offset + len - 1;
3875 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3876 unsigned long dst_i;
3877 unsigned long src_i;
3879 if (src_offset + len > dst->len) {
3880 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
3881 "len %lu len %lu\n", src_offset, len, dst->len);
3882 BUG_ON(1);
3884 if (dst_offset + len > dst->len) {
3885 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
3886 "len %lu len %lu\n", dst_offset, len, dst->len);
3887 BUG_ON(1);
3889 if (dst_offset < src_offset) {
3890 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
3891 return;
3893 while (len > 0) {
3894 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
3895 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
3897 dst_off_in_page = (start_offset + dst_end) &
3898 ((unsigned long)PAGE_CACHE_SIZE - 1);
3899 src_off_in_page = (start_offset + src_end) &
3900 ((unsigned long)PAGE_CACHE_SIZE - 1);
3902 cur = min_t(unsigned long, len, src_off_in_page + 1);
3903 cur = min(cur, dst_off_in_page + 1);
3904 move_pages(extent_buffer_page(dst, dst_i),
3905 extent_buffer_page(dst, src_i),
3906 dst_off_in_page - cur + 1,
3907 src_off_in_page - cur + 1, cur);
3909 dst_end -= cur;
3910 src_end -= cur;
3911 len -= cur;
3915 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
3917 struct extent_buffer *eb =
3918 container_of(head, struct extent_buffer, rcu_head);
3920 btrfs_release_extent_buffer(eb);
3923 int try_release_extent_buffer(struct extent_io_tree *tree, struct page *page)
3925 u64 start = page_offset(page);
3926 struct extent_buffer *eb;
3927 int ret = 1;
3929 spin_lock(&tree->buffer_lock);
3930 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
3931 if (!eb) {
3932 spin_unlock(&tree->buffer_lock);
3933 return ret;
3936 if (test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3937 ret = 0;
3938 goto out;
3942 * set @eb->refs to 0 if it is already 1, and then release the @eb.
3943 * Or go back.
3945 if (atomic_cmpxchg(&eb->refs, 1, 0) != 1) {
3946 ret = 0;
3947 goto out;
3950 radix_tree_delete(&tree->buffer, start >> PAGE_CACHE_SHIFT);
3951 out:
3952 spin_unlock(&tree->buffer_lock);
3954 /* at this point we can safely release the extent buffer */
3955 if (atomic_read(&eb->refs) == 0)
3956 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
3957 return ret;