2 * Implement CPU time clocks for the POSIX clock interface.
5 #include <linux/sched.h>
6 #include <linux/posix-timers.h>
7 #include <linux/errno.h>
8 #include <linux/math64.h>
9 #include <asm/uaccess.h>
10 #include <linux/kernel_stat.h>
11 #include <trace/events/timer.h>
14 * Called after updating RLIMIT_CPU to run cpu timer and update
15 * tsk->signal->cputime_expires expiration cache if necessary. Needs
16 * siglock protection since other code may update expiration cache as
19 void update_rlimit_cpu(unsigned long rlim_new
)
21 cputime_t cputime
= secs_to_cputime(rlim_new
);
23 spin_lock_irq(¤t
->sighand
->siglock
);
24 set_process_cpu_timer(current
, CPUCLOCK_PROF
, &cputime
, NULL
);
25 spin_unlock_irq(¤t
->sighand
->siglock
);
28 static int check_clock(const clockid_t which_clock
)
31 struct task_struct
*p
;
32 const pid_t pid
= CPUCLOCK_PID(which_clock
);
34 if (CPUCLOCK_WHICH(which_clock
) >= CPUCLOCK_MAX
)
40 read_lock(&tasklist_lock
);
41 p
= find_task_by_vpid(pid
);
42 if (!p
|| !(CPUCLOCK_PERTHREAD(which_clock
) ?
43 same_thread_group(p
, current
) : thread_group_leader(p
))) {
46 read_unlock(&tasklist_lock
);
51 static inline union cpu_time_count
52 timespec_to_sample(const clockid_t which_clock
, const struct timespec
*tp
)
54 union cpu_time_count ret
;
55 ret
.sched
= 0; /* high half always zero when .cpu used */
56 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
57 ret
.sched
= (unsigned long long)tp
->tv_sec
* NSEC_PER_SEC
+ tp
->tv_nsec
;
59 ret
.cpu
= timespec_to_cputime(tp
);
64 static void sample_to_timespec(const clockid_t which_clock
,
65 union cpu_time_count cpu
,
68 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
)
69 *tp
= ns_to_timespec(cpu
.sched
);
71 cputime_to_timespec(cpu
.cpu
, tp
);
74 static inline int cpu_time_before(const clockid_t which_clock
,
75 union cpu_time_count now
,
76 union cpu_time_count then
)
78 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
79 return now
.sched
< then
.sched
;
81 return cputime_lt(now
.cpu
, then
.cpu
);
84 static inline void cpu_time_add(const clockid_t which_clock
,
85 union cpu_time_count
*acc
,
86 union cpu_time_count val
)
88 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
89 acc
->sched
+= val
.sched
;
91 acc
->cpu
= cputime_add(acc
->cpu
, val
.cpu
);
94 static inline union cpu_time_count
cpu_time_sub(const clockid_t which_clock
,
95 union cpu_time_count a
,
96 union cpu_time_count b
)
98 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
101 a
.cpu
= cputime_sub(a
.cpu
, b
.cpu
);
107 * Divide and limit the result to res >= 1
109 * This is necessary to prevent signal delivery starvation, when the result of
110 * the division would be rounded down to 0.
112 static inline cputime_t
cputime_div_non_zero(cputime_t time
, unsigned long div
)
114 cputime_t res
= cputime_div(time
, div
);
116 return max_t(cputime_t
, res
, 1);
120 * Update expiry time from increment, and increase overrun count,
121 * given the current clock sample.
123 static void bump_cpu_timer(struct k_itimer
*timer
,
124 union cpu_time_count now
)
128 if (timer
->it
.cpu
.incr
.sched
== 0)
131 if (CPUCLOCK_WHICH(timer
->it_clock
) == CPUCLOCK_SCHED
) {
132 unsigned long long delta
, incr
;
134 if (now
.sched
< timer
->it
.cpu
.expires
.sched
)
136 incr
= timer
->it
.cpu
.incr
.sched
;
137 delta
= now
.sched
+ incr
- timer
->it
.cpu
.expires
.sched
;
138 /* Don't use (incr*2 < delta), incr*2 might overflow. */
139 for (i
= 0; incr
< delta
- incr
; i
++)
141 for (; i
>= 0; incr
>>= 1, i
--) {
144 timer
->it
.cpu
.expires
.sched
+= incr
;
145 timer
->it_overrun
+= 1 << i
;
149 cputime_t delta
, incr
;
151 if (cputime_lt(now
.cpu
, timer
->it
.cpu
.expires
.cpu
))
153 incr
= timer
->it
.cpu
.incr
.cpu
;
154 delta
= cputime_sub(cputime_add(now
.cpu
, incr
),
155 timer
->it
.cpu
.expires
.cpu
);
156 /* Don't use (incr*2 < delta), incr*2 might overflow. */
157 for (i
= 0; cputime_lt(incr
, cputime_sub(delta
, incr
)); i
++)
158 incr
= cputime_add(incr
, incr
);
159 for (; i
>= 0; incr
= cputime_halve(incr
), i
--) {
160 if (cputime_lt(delta
, incr
))
162 timer
->it
.cpu
.expires
.cpu
=
163 cputime_add(timer
->it
.cpu
.expires
.cpu
, incr
);
164 timer
->it_overrun
+= 1 << i
;
165 delta
= cputime_sub(delta
, incr
);
170 static inline cputime_t
prof_ticks(struct task_struct
*p
)
172 return cputime_add(p
->utime
, p
->stime
);
174 static inline cputime_t
virt_ticks(struct task_struct
*p
)
179 int posix_cpu_clock_getres(const clockid_t which_clock
, struct timespec
*tp
)
181 int error
= check_clock(which_clock
);
184 tp
->tv_nsec
= ((NSEC_PER_SEC
+ HZ
- 1) / HZ
);
185 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
187 * If sched_clock is using a cycle counter, we
188 * don't have any idea of its true resolution
189 * exported, but it is much more than 1s/HZ.
197 int posix_cpu_clock_set(const clockid_t which_clock
, const struct timespec
*tp
)
200 * You can never reset a CPU clock, but we check for other errors
201 * in the call before failing with EPERM.
203 int error
= check_clock(which_clock
);
212 * Sample a per-thread clock for the given task.
214 static int cpu_clock_sample(const clockid_t which_clock
, struct task_struct
*p
,
215 union cpu_time_count
*cpu
)
217 switch (CPUCLOCK_WHICH(which_clock
)) {
221 cpu
->cpu
= prof_ticks(p
);
224 cpu
->cpu
= virt_ticks(p
);
227 cpu
->sched
= task_sched_runtime(p
);
233 void thread_group_cputime(struct task_struct
*tsk
, struct task_cputime
*times
)
235 struct signal_struct
*sig
= tsk
->signal
;
236 struct task_struct
*t
;
238 times
->utime
= sig
->utime
;
239 times
->stime
= sig
->stime
;
240 times
->sum_exec_runtime
= sig
->sum_sched_runtime
;
243 /* make sure we can trust tsk->thread_group list */
244 if (!likely(pid_alive(tsk
)))
249 times
->utime
= cputime_add(times
->utime
, t
->utime
);
250 times
->stime
= cputime_add(times
->stime
, t
->stime
);
251 times
->sum_exec_runtime
+= t
->se
.sum_exec_runtime
;
252 } while_each_thread(tsk
, t
);
257 static void update_gt_cputime(struct task_cputime
*a
, struct task_cputime
*b
)
259 if (cputime_gt(b
->utime
, a
->utime
))
262 if (cputime_gt(b
->stime
, a
->stime
))
265 if (b
->sum_exec_runtime
> a
->sum_exec_runtime
)
266 a
->sum_exec_runtime
= b
->sum_exec_runtime
;
269 void thread_group_cputimer(struct task_struct
*tsk
, struct task_cputime
*times
)
271 struct thread_group_cputimer
*cputimer
= &tsk
->signal
->cputimer
;
272 struct task_cputime sum
;
275 spin_lock_irqsave(&cputimer
->lock
, flags
);
276 if (!cputimer
->running
) {
277 cputimer
->running
= 1;
279 * The POSIX timer interface allows for absolute time expiry
280 * values through the TIMER_ABSTIME flag, therefore we have
281 * to synchronize the timer to the clock every time we start
284 thread_group_cputime(tsk
, &sum
);
285 update_gt_cputime(&cputimer
->cputime
, &sum
);
287 *times
= cputimer
->cputime
;
288 spin_unlock_irqrestore(&cputimer
->lock
, flags
);
292 * Sample a process (thread group) clock for the given group_leader task.
293 * Must be called with tasklist_lock held for reading.
295 static int cpu_clock_sample_group(const clockid_t which_clock
,
296 struct task_struct
*p
,
297 union cpu_time_count
*cpu
)
299 struct task_cputime cputime
;
301 switch (CPUCLOCK_WHICH(which_clock
)) {
305 thread_group_cputime(p
, &cputime
);
306 cpu
->cpu
= cputime_add(cputime
.utime
, cputime
.stime
);
309 thread_group_cputime(p
, &cputime
);
310 cpu
->cpu
= cputime
.utime
;
313 cpu
->sched
= thread_group_sched_runtime(p
);
320 int posix_cpu_clock_get(const clockid_t which_clock
, struct timespec
*tp
)
322 const pid_t pid
= CPUCLOCK_PID(which_clock
);
324 union cpu_time_count rtn
;
328 * Special case constant value for our own clocks.
329 * We don't have to do any lookup to find ourselves.
331 if (CPUCLOCK_PERTHREAD(which_clock
)) {
333 * Sampling just ourselves we can do with no locking.
335 error
= cpu_clock_sample(which_clock
,
338 read_lock(&tasklist_lock
);
339 error
= cpu_clock_sample_group(which_clock
,
341 read_unlock(&tasklist_lock
);
345 * Find the given PID, and validate that the caller
346 * should be able to see it.
348 struct task_struct
*p
;
350 p
= find_task_by_vpid(pid
);
352 if (CPUCLOCK_PERTHREAD(which_clock
)) {
353 if (same_thread_group(p
, current
)) {
354 error
= cpu_clock_sample(which_clock
,
358 read_lock(&tasklist_lock
);
359 if (thread_group_leader(p
) && p
->sighand
) {
361 cpu_clock_sample_group(which_clock
,
364 read_unlock(&tasklist_lock
);
372 sample_to_timespec(which_clock
, rtn
, tp
);
378 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
379 * This is called from sys_timer_create() and do_cpu_nanosleep() with the
380 * new timer already all-zeros initialized.
382 int posix_cpu_timer_create(struct k_itimer
*new_timer
)
385 const pid_t pid
= CPUCLOCK_PID(new_timer
->it_clock
);
386 struct task_struct
*p
;
388 if (CPUCLOCK_WHICH(new_timer
->it_clock
) >= CPUCLOCK_MAX
)
391 INIT_LIST_HEAD(&new_timer
->it
.cpu
.entry
);
393 read_lock(&tasklist_lock
);
394 if (CPUCLOCK_PERTHREAD(new_timer
->it_clock
)) {
398 p
= find_task_by_vpid(pid
);
399 if (p
&& !same_thread_group(p
, current
))
404 p
= current
->group_leader
;
406 p
= find_task_by_vpid(pid
);
407 if (p
&& !thread_group_leader(p
))
411 new_timer
->it
.cpu
.task
= p
;
417 read_unlock(&tasklist_lock
);
423 * Clean up a CPU-clock timer that is about to be destroyed.
424 * This is called from timer deletion with the timer already locked.
425 * If we return TIMER_RETRY, it's necessary to release the timer's lock
426 * and try again. (This happens when the timer is in the middle of firing.)
428 int posix_cpu_timer_del(struct k_itimer
*timer
)
430 struct task_struct
*p
= timer
->it
.cpu
.task
;
433 if (likely(p
!= NULL
)) {
434 read_lock(&tasklist_lock
);
435 if (unlikely(p
->sighand
== NULL
)) {
437 * We raced with the reaping of the task.
438 * The deletion should have cleared us off the list.
440 BUG_ON(!list_empty(&timer
->it
.cpu
.entry
));
442 spin_lock(&p
->sighand
->siglock
);
443 if (timer
->it
.cpu
.firing
)
446 list_del(&timer
->it
.cpu
.entry
);
447 spin_unlock(&p
->sighand
->siglock
);
449 read_unlock(&tasklist_lock
);
459 * Clean out CPU timers still ticking when a thread exited. The task
460 * pointer is cleared, and the expiry time is replaced with the residual
461 * time for later timer_gettime calls to return.
462 * This must be called with the siglock held.
464 static void cleanup_timers(struct list_head
*head
,
465 cputime_t utime
, cputime_t stime
,
466 unsigned long long sum_exec_runtime
)
468 struct cpu_timer_list
*timer
, *next
;
469 cputime_t ptime
= cputime_add(utime
, stime
);
471 list_for_each_entry_safe(timer
, next
, head
, entry
) {
472 list_del_init(&timer
->entry
);
473 if (cputime_lt(timer
->expires
.cpu
, ptime
)) {
474 timer
->expires
.cpu
= cputime_zero
;
476 timer
->expires
.cpu
= cputime_sub(timer
->expires
.cpu
,
482 list_for_each_entry_safe(timer
, next
, head
, entry
) {
483 list_del_init(&timer
->entry
);
484 if (cputime_lt(timer
->expires
.cpu
, utime
)) {
485 timer
->expires
.cpu
= cputime_zero
;
487 timer
->expires
.cpu
= cputime_sub(timer
->expires
.cpu
,
493 list_for_each_entry_safe(timer
, next
, head
, entry
) {
494 list_del_init(&timer
->entry
);
495 if (timer
->expires
.sched
< sum_exec_runtime
) {
496 timer
->expires
.sched
= 0;
498 timer
->expires
.sched
-= sum_exec_runtime
;
504 * These are both called with the siglock held, when the current thread
505 * is being reaped. When the final (leader) thread in the group is reaped,
506 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
508 void posix_cpu_timers_exit(struct task_struct
*tsk
)
510 cleanup_timers(tsk
->cpu_timers
,
511 tsk
->utime
, tsk
->stime
, tsk
->se
.sum_exec_runtime
);
514 void posix_cpu_timers_exit_group(struct task_struct
*tsk
)
516 struct signal_struct
*const sig
= tsk
->signal
;
518 cleanup_timers(tsk
->signal
->cpu_timers
,
519 cputime_add(tsk
->utime
, sig
->utime
),
520 cputime_add(tsk
->stime
, sig
->stime
),
521 tsk
->se
.sum_exec_runtime
+ sig
->sum_sched_runtime
);
524 static void clear_dead_task(struct k_itimer
*timer
, union cpu_time_count now
)
527 * That's all for this thread or process.
528 * We leave our residual in expires to be reported.
530 put_task_struct(timer
->it
.cpu
.task
);
531 timer
->it
.cpu
.task
= NULL
;
532 timer
->it
.cpu
.expires
= cpu_time_sub(timer
->it_clock
,
533 timer
->it
.cpu
.expires
,
537 static inline int expires_gt(cputime_t expires
, cputime_t new_exp
)
539 return cputime_eq(expires
, cputime_zero
) ||
540 cputime_gt(expires
, new_exp
);
544 * Insert the timer on the appropriate list before any timers that
545 * expire later. This must be called with the tasklist_lock held
546 * for reading, interrupts disabled and p->sighand->siglock taken.
548 static void arm_timer(struct k_itimer
*timer
)
550 struct task_struct
*p
= timer
->it
.cpu
.task
;
551 struct list_head
*head
, *listpos
;
552 struct task_cputime
*cputime_expires
;
553 struct cpu_timer_list
*const nt
= &timer
->it
.cpu
;
554 struct cpu_timer_list
*next
;
556 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
557 head
= p
->cpu_timers
;
558 cputime_expires
= &p
->cputime_expires
;
560 head
= p
->signal
->cpu_timers
;
561 cputime_expires
= &p
->signal
->cputime_expires
;
563 head
+= CPUCLOCK_WHICH(timer
->it_clock
);
566 list_for_each_entry(next
, head
, entry
) {
567 if (cpu_time_before(timer
->it_clock
, nt
->expires
, next
->expires
))
569 listpos
= &next
->entry
;
571 list_add(&nt
->entry
, listpos
);
573 if (listpos
== head
) {
574 union cpu_time_count
*exp
= &nt
->expires
;
577 * We are the new earliest-expiring POSIX 1.b timer, hence
578 * need to update expiration cache. Take into account that
579 * for process timers we share expiration cache with itimers
580 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
583 switch (CPUCLOCK_WHICH(timer
->it_clock
)) {
585 if (expires_gt(cputime_expires
->prof_exp
, exp
->cpu
))
586 cputime_expires
->prof_exp
= exp
->cpu
;
589 if (expires_gt(cputime_expires
->virt_exp
, exp
->cpu
))
590 cputime_expires
->virt_exp
= exp
->cpu
;
593 if (cputime_expires
->sched_exp
== 0 ||
594 cputime_expires
->sched_exp
> exp
->sched
)
595 cputime_expires
->sched_exp
= exp
->sched
;
602 * The timer is locked, fire it and arrange for its reload.
604 static void cpu_timer_fire(struct k_itimer
*timer
)
606 if ((timer
->it_sigev_notify
& ~SIGEV_THREAD_ID
) == SIGEV_NONE
) {
608 * User don't want any signal.
610 timer
->it
.cpu
.expires
.sched
= 0;
611 } else if (unlikely(timer
->sigq
== NULL
)) {
613 * This a special case for clock_nanosleep,
614 * not a normal timer from sys_timer_create.
616 wake_up_process(timer
->it_process
);
617 timer
->it
.cpu
.expires
.sched
= 0;
618 } else if (timer
->it
.cpu
.incr
.sched
== 0) {
620 * One-shot timer. Clear it as soon as it's fired.
622 posix_timer_event(timer
, 0);
623 timer
->it
.cpu
.expires
.sched
= 0;
624 } else if (posix_timer_event(timer
, ++timer
->it_requeue_pending
)) {
626 * The signal did not get queued because the signal
627 * was ignored, so we won't get any callback to
628 * reload the timer. But we need to keep it
629 * ticking in case the signal is deliverable next time.
631 posix_cpu_timer_schedule(timer
);
636 * Sample a process (thread group) timer for the given group_leader task.
637 * Must be called with tasklist_lock held for reading.
639 static int cpu_timer_sample_group(const clockid_t which_clock
,
640 struct task_struct
*p
,
641 union cpu_time_count
*cpu
)
643 struct task_cputime cputime
;
645 thread_group_cputimer(p
, &cputime
);
646 switch (CPUCLOCK_WHICH(which_clock
)) {
650 cpu
->cpu
= cputime_add(cputime
.utime
, cputime
.stime
);
653 cpu
->cpu
= cputime
.utime
;
656 cpu
->sched
= cputime
.sum_exec_runtime
+ task_delta_exec(p
);
663 * Guts of sys_timer_settime for CPU timers.
664 * This is called with the timer locked and interrupts disabled.
665 * If we return TIMER_RETRY, it's necessary to release the timer's lock
666 * and try again. (This happens when the timer is in the middle of firing.)
668 int posix_cpu_timer_set(struct k_itimer
*timer
, int flags
,
669 struct itimerspec
*new, struct itimerspec
*old
)
671 struct task_struct
*p
= timer
->it
.cpu
.task
;
672 union cpu_time_count old_expires
, new_expires
, old_incr
, val
;
675 if (unlikely(p
== NULL
)) {
677 * Timer refers to a dead task's clock.
682 new_expires
= timespec_to_sample(timer
->it_clock
, &new->it_value
);
684 read_lock(&tasklist_lock
);
686 * We need the tasklist_lock to protect against reaping that
687 * clears p->sighand. If p has just been reaped, we can no
688 * longer get any information about it at all.
690 if (unlikely(p
->sighand
== NULL
)) {
691 read_unlock(&tasklist_lock
);
693 timer
->it
.cpu
.task
= NULL
;
698 * Disarm any old timer after extracting its expiry time.
700 BUG_ON(!irqs_disabled());
703 old_incr
= timer
->it
.cpu
.incr
;
704 spin_lock(&p
->sighand
->siglock
);
705 old_expires
= timer
->it
.cpu
.expires
;
706 if (unlikely(timer
->it
.cpu
.firing
)) {
707 timer
->it
.cpu
.firing
= -1;
710 list_del_init(&timer
->it
.cpu
.entry
);
713 * We need to sample the current value to convert the new
714 * value from to relative and absolute, and to convert the
715 * old value from absolute to relative. To set a process
716 * timer, we need a sample to balance the thread expiry
717 * times (in arm_timer). With an absolute time, we must
718 * check if it's already passed. In short, we need a sample.
720 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
721 cpu_clock_sample(timer
->it_clock
, p
, &val
);
723 cpu_timer_sample_group(timer
->it_clock
, p
, &val
);
727 if (old_expires
.sched
== 0) {
728 old
->it_value
.tv_sec
= 0;
729 old
->it_value
.tv_nsec
= 0;
732 * Update the timer in case it has
733 * overrun already. If it has,
734 * we'll report it as having overrun
735 * and with the next reloaded timer
736 * already ticking, though we are
737 * swallowing that pending
738 * notification here to install the
741 bump_cpu_timer(timer
, val
);
742 if (cpu_time_before(timer
->it_clock
, val
,
743 timer
->it
.cpu
.expires
)) {
744 old_expires
= cpu_time_sub(
746 timer
->it
.cpu
.expires
, val
);
747 sample_to_timespec(timer
->it_clock
,
751 old
->it_value
.tv_nsec
= 1;
752 old
->it_value
.tv_sec
= 0;
759 * We are colliding with the timer actually firing.
760 * Punt after filling in the timer's old value, and
761 * disable this firing since we are already reporting
762 * it as an overrun (thanks to bump_cpu_timer above).
764 spin_unlock(&p
->sighand
->siglock
);
765 read_unlock(&tasklist_lock
);
769 if (new_expires
.sched
!= 0 && !(flags
& TIMER_ABSTIME
)) {
770 cpu_time_add(timer
->it_clock
, &new_expires
, val
);
774 * Install the new expiry time (or zero).
775 * For a timer with no notification action, we don't actually
776 * arm the timer (we'll just fake it for timer_gettime).
778 timer
->it
.cpu
.expires
= new_expires
;
779 if (new_expires
.sched
!= 0 &&
780 cpu_time_before(timer
->it_clock
, val
, new_expires
)) {
784 spin_unlock(&p
->sighand
->siglock
);
785 read_unlock(&tasklist_lock
);
788 * Install the new reload setting, and
789 * set up the signal and overrun bookkeeping.
791 timer
->it
.cpu
.incr
= timespec_to_sample(timer
->it_clock
,
795 * This acts as a modification timestamp for the timer,
796 * so any automatic reload attempt will punt on seeing
797 * that we have reset the timer manually.
799 timer
->it_requeue_pending
= (timer
->it_requeue_pending
+ 2) &
801 timer
->it_overrun_last
= 0;
802 timer
->it_overrun
= -1;
804 if (new_expires
.sched
!= 0 &&
805 !cpu_time_before(timer
->it_clock
, val
, new_expires
)) {
807 * The designated time already passed, so we notify
808 * immediately, even if the thread never runs to
809 * accumulate more time on this clock.
811 cpu_timer_fire(timer
);
817 sample_to_timespec(timer
->it_clock
,
818 old_incr
, &old
->it_interval
);
823 void posix_cpu_timer_get(struct k_itimer
*timer
, struct itimerspec
*itp
)
825 union cpu_time_count now
;
826 struct task_struct
*p
= timer
->it
.cpu
.task
;
830 * Easy part: convert the reload time.
832 sample_to_timespec(timer
->it_clock
,
833 timer
->it
.cpu
.incr
, &itp
->it_interval
);
835 if (timer
->it
.cpu
.expires
.sched
== 0) { /* Timer not armed at all. */
836 itp
->it_value
.tv_sec
= itp
->it_value
.tv_nsec
= 0;
840 if (unlikely(p
== NULL
)) {
842 * This task already died and the timer will never fire.
843 * In this case, expires is actually the dead value.
846 sample_to_timespec(timer
->it_clock
, timer
->it
.cpu
.expires
,
852 * Sample the clock to take the difference with the expiry time.
854 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
855 cpu_clock_sample(timer
->it_clock
, p
, &now
);
856 clear_dead
= p
->exit_state
;
858 read_lock(&tasklist_lock
);
859 if (unlikely(p
->sighand
== NULL
)) {
861 * The process has been reaped.
862 * We can't even collect a sample any more.
863 * Call the timer disarmed, nothing else to do.
866 timer
->it
.cpu
.task
= NULL
;
867 timer
->it
.cpu
.expires
.sched
= 0;
868 read_unlock(&tasklist_lock
);
871 cpu_timer_sample_group(timer
->it_clock
, p
, &now
);
872 clear_dead
= (unlikely(p
->exit_state
) &&
873 thread_group_empty(p
));
875 read_unlock(&tasklist_lock
);
878 if (unlikely(clear_dead
)) {
880 * We've noticed that the thread is dead, but
881 * not yet reaped. Take this opportunity to
884 clear_dead_task(timer
, now
);
888 if (cpu_time_before(timer
->it_clock
, now
, timer
->it
.cpu
.expires
)) {
889 sample_to_timespec(timer
->it_clock
,
890 cpu_time_sub(timer
->it_clock
,
891 timer
->it
.cpu
.expires
, now
),
895 * The timer should have expired already, but the firing
896 * hasn't taken place yet. Say it's just about to expire.
898 itp
->it_value
.tv_nsec
= 1;
899 itp
->it_value
.tv_sec
= 0;
904 * Check for any per-thread CPU timers that have fired and move them off
905 * the tsk->cpu_timers[N] list onto the firing list. Here we update the
906 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
908 static void check_thread_timers(struct task_struct
*tsk
,
909 struct list_head
*firing
)
912 struct list_head
*timers
= tsk
->cpu_timers
;
913 struct signal_struct
*const sig
= tsk
->signal
;
917 tsk
->cputime_expires
.prof_exp
= cputime_zero
;
918 while (!list_empty(timers
)) {
919 struct cpu_timer_list
*t
= list_first_entry(timers
,
920 struct cpu_timer_list
,
922 if (!--maxfire
|| cputime_lt(prof_ticks(tsk
), t
->expires
.cpu
)) {
923 tsk
->cputime_expires
.prof_exp
= t
->expires
.cpu
;
927 list_move_tail(&t
->entry
, firing
);
932 tsk
->cputime_expires
.virt_exp
= cputime_zero
;
933 while (!list_empty(timers
)) {
934 struct cpu_timer_list
*t
= list_first_entry(timers
,
935 struct cpu_timer_list
,
937 if (!--maxfire
|| cputime_lt(virt_ticks(tsk
), t
->expires
.cpu
)) {
938 tsk
->cputime_expires
.virt_exp
= t
->expires
.cpu
;
942 list_move_tail(&t
->entry
, firing
);
947 tsk
->cputime_expires
.sched_exp
= 0;
948 while (!list_empty(timers
)) {
949 struct cpu_timer_list
*t
= list_first_entry(timers
,
950 struct cpu_timer_list
,
952 if (!--maxfire
|| tsk
->se
.sum_exec_runtime
< t
->expires
.sched
) {
953 tsk
->cputime_expires
.sched_exp
= t
->expires
.sched
;
957 list_move_tail(&t
->entry
, firing
);
961 * Check for the special case thread timers.
963 soft
= ACCESS_ONCE(sig
->rlim
[RLIMIT_RTTIME
].rlim_cur
);
964 if (soft
!= RLIM_INFINITY
) {
966 ACCESS_ONCE(sig
->rlim
[RLIMIT_RTTIME
].rlim_max
);
968 if (hard
!= RLIM_INFINITY
&&
969 tsk
->rt
.timeout
> DIV_ROUND_UP(hard
, USEC_PER_SEC
/HZ
)) {
971 * At the hard limit, we just die.
972 * No need to calculate anything else now.
974 __group_send_sig_info(SIGKILL
, SEND_SIG_PRIV
, tsk
);
977 if (tsk
->rt
.timeout
> DIV_ROUND_UP(soft
, USEC_PER_SEC
/HZ
)) {
979 * At the soft limit, send a SIGXCPU every second.
982 soft
+= USEC_PER_SEC
;
983 sig
->rlim
[RLIMIT_RTTIME
].rlim_cur
= soft
;
986 "RT Watchdog Timeout: %s[%d]\n",
987 tsk
->comm
, task_pid_nr(tsk
));
988 __group_send_sig_info(SIGXCPU
, SEND_SIG_PRIV
, tsk
);
993 static void stop_process_timers(struct signal_struct
*sig
)
995 struct thread_group_cputimer
*cputimer
= &sig
->cputimer
;
998 spin_lock_irqsave(&cputimer
->lock
, flags
);
999 cputimer
->running
= 0;
1000 spin_unlock_irqrestore(&cputimer
->lock
, flags
);
1003 static u32 onecputick
;
1005 static void check_cpu_itimer(struct task_struct
*tsk
, struct cpu_itimer
*it
,
1006 cputime_t
*expires
, cputime_t cur_time
, int signo
)
1008 if (cputime_eq(it
->expires
, cputime_zero
))
1011 if (cputime_ge(cur_time
, it
->expires
)) {
1012 if (!cputime_eq(it
->incr
, cputime_zero
)) {
1013 it
->expires
= cputime_add(it
->expires
, it
->incr
);
1014 it
->error
+= it
->incr_error
;
1015 if (it
->error
>= onecputick
) {
1016 it
->expires
= cputime_sub(it
->expires
,
1018 it
->error
-= onecputick
;
1021 it
->expires
= cputime_zero
;
1024 trace_itimer_expire(signo
== SIGPROF
?
1025 ITIMER_PROF
: ITIMER_VIRTUAL
,
1026 tsk
->signal
->leader_pid
, cur_time
);
1027 __group_send_sig_info(signo
, SEND_SIG_PRIV
, tsk
);
1030 if (!cputime_eq(it
->expires
, cputime_zero
) &&
1031 (cputime_eq(*expires
, cputime_zero
) ||
1032 cputime_lt(it
->expires
, *expires
))) {
1033 *expires
= it
->expires
;
1038 * task_cputime_zero - Check a task_cputime struct for all zero fields.
1040 * @cputime: The struct to compare.
1042 * Checks @cputime to see if all fields are zero. Returns true if all fields
1043 * are zero, false if any field is nonzero.
1045 static inline int task_cputime_zero(const struct task_cputime
*cputime
)
1047 if (cputime_eq(cputime
->utime
, cputime_zero
) &&
1048 cputime_eq(cputime
->stime
, cputime_zero
) &&
1049 cputime
->sum_exec_runtime
== 0)
1055 * Check for any per-thread CPU timers that have fired and move them
1056 * off the tsk->*_timers list onto the firing list. Per-thread timers
1057 * have already been taken off.
1059 static void check_process_timers(struct task_struct
*tsk
,
1060 struct list_head
*firing
)
1063 struct signal_struct
*const sig
= tsk
->signal
;
1064 cputime_t utime
, ptime
, virt_expires
, prof_expires
;
1065 unsigned long long sum_sched_runtime
, sched_expires
;
1066 struct list_head
*timers
= sig
->cpu_timers
;
1067 struct task_cputime cputime
;
1071 * Collect the current process totals.
1073 thread_group_cputimer(tsk
, &cputime
);
1074 utime
= cputime
.utime
;
1075 ptime
= cputime_add(utime
, cputime
.stime
);
1076 sum_sched_runtime
= cputime
.sum_exec_runtime
;
1078 prof_expires
= cputime_zero
;
1079 while (!list_empty(timers
)) {
1080 struct cpu_timer_list
*tl
= list_first_entry(timers
,
1081 struct cpu_timer_list
,
1083 if (!--maxfire
|| cputime_lt(ptime
, tl
->expires
.cpu
)) {
1084 prof_expires
= tl
->expires
.cpu
;
1088 list_move_tail(&tl
->entry
, firing
);
1093 virt_expires
= cputime_zero
;
1094 while (!list_empty(timers
)) {
1095 struct cpu_timer_list
*tl
= list_first_entry(timers
,
1096 struct cpu_timer_list
,
1098 if (!--maxfire
|| cputime_lt(utime
, tl
->expires
.cpu
)) {
1099 virt_expires
= tl
->expires
.cpu
;
1103 list_move_tail(&tl
->entry
, firing
);
1109 while (!list_empty(timers
)) {
1110 struct cpu_timer_list
*tl
= list_first_entry(timers
,
1111 struct cpu_timer_list
,
1113 if (!--maxfire
|| sum_sched_runtime
< tl
->expires
.sched
) {
1114 sched_expires
= tl
->expires
.sched
;
1118 list_move_tail(&tl
->entry
, firing
);
1122 * Check for the special case process timers.
1124 check_cpu_itimer(tsk
, &sig
->it
[CPUCLOCK_PROF
], &prof_expires
, ptime
,
1126 check_cpu_itimer(tsk
, &sig
->it
[CPUCLOCK_VIRT
], &virt_expires
, utime
,
1128 soft
= ACCESS_ONCE(sig
->rlim
[RLIMIT_CPU
].rlim_cur
);
1129 if (soft
!= RLIM_INFINITY
) {
1130 unsigned long psecs
= cputime_to_secs(ptime
);
1131 unsigned long hard
=
1132 ACCESS_ONCE(sig
->rlim
[RLIMIT_CPU
].rlim_max
);
1134 if (psecs
>= hard
) {
1136 * At the hard limit, we just die.
1137 * No need to calculate anything else now.
1139 __group_send_sig_info(SIGKILL
, SEND_SIG_PRIV
, tsk
);
1142 if (psecs
>= soft
) {
1144 * At the soft limit, send a SIGXCPU every second.
1146 __group_send_sig_info(SIGXCPU
, SEND_SIG_PRIV
, tsk
);
1149 sig
->rlim
[RLIMIT_CPU
].rlim_cur
= soft
;
1152 x
= secs_to_cputime(soft
);
1153 if (cputime_eq(prof_expires
, cputime_zero
) ||
1154 cputime_lt(x
, prof_expires
)) {
1159 sig
->cputime_expires
.prof_exp
= prof_expires
;
1160 sig
->cputime_expires
.virt_exp
= virt_expires
;
1161 sig
->cputime_expires
.sched_exp
= sched_expires
;
1162 if (task_cputime_zero(&sig
->cputime_expires
))
1163 stop_process_timers(sig
);
1167 * This is called from the signal code (via do_schedule_next_timer)
1168 * when the last timer signal was delivered and we have to reload the timer.
1170 void posix_cpu_timer_schedule(struct k_itimer
*timer
)
1172 struct task_struct
*p
= timer
->it
.cpu
.task
;
1173 union cpu_time_count now
;
1175 if (unlikely(p
== NULL
))
1177 * The task was cleaned up already, no future firings.
1182 * Fetch the current sample and update the timer's expiry time.
1184 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
1185 cpu_clock_sample(timer
->it_clock
, p
, &now
);
1186 bump_cpu_timer(timer
, now
);
1187 if (unlikely(p
->exit_state
)) {
1188 clear_dead_task(timer
, now
);
1191 read_lock(&tasklist_lock
); /* arm_timer needs it. */
1192 spin_lock(&p
->sighand
->siglock
);
1194 read_lock(&tasklist_lock
);
1195 if (unlikely(p
->sighand
== NULL
)) {
1197 * The process has been reaped.
1198 * We can't even collect a sample any more.
1201 timer
->it
.cpu
.task
= p
= NULL
;
1202 timer
->it
.cpu
.expires
.sched
= 0;
1204 } else if (unlikely(p
->exit_state
) && thread_group_empty(p
)) {
1206 * We've noticed that the thread is dead, but
1207 * not yet reaped. Take this opportunity to
1208 * drop our task ref.
1210 clear_dead_task(timer
, now
);
1213 spin_lock(&p
->sighand
->siglock
);
1214 cpu_timer_sample_group(timer
->it_clock
, p
, &now
);
1215 bump_cpu_timer(timer
, now
);
1216 /* Leave the tasklist_lock locked for the call below. */
1220 * Now re-arm for the new expiry time.
1222 BUG_ON(!irqs_disabled());
1224 spin_unlock(&p
->sighand
->siglock
);
1227 read_unlock(&tasklist_lock
);
1230 timer
->it_overrun_last
= timer
->it_overrun
;
1231 timer
->it_overrun
= -1;
1232 ++timer
->it_requeue_pending
;
1236 * task_cputime_expired - Compare two task_cputime entities.
1238 * @sample: The task_cputime structure to be checked for expiration.
1239 * @expires: Expiration times, against which @sample will be checked.
1241 * Checks @sample against @expires to see if any field of @sample has expired.
1242 * Returns true if any field of the former is greater than the corresponding
1243 * field of the latter if the latter field is set. Otherwise returns false.
1245 static inline int task_cputime_expired(const struct task_cputime
*sample
,
1246 const struct task_cputime
*expires
)
1248 if (!cputime_eq(expires
->utime
, cputime_zero
) &&
1249 cputime_ge(sample
->utime
, expires
->utime
))
1251 if (!cputime_eq(expires
->stime
, cputime_zero
) &&
1252 cputime_ge(cputime_add(sample
->utime
, sample
->stime
),
1255 if (expires
->sum_exec_runtime
!= 0 &&
1256 sample
->sum_exec_runtime
>= expires
->sum_exec_runtime
)
1262 * fastpath_timer_check - POSIX CPU timers fast path.
1264 * @tsk: The task (thread) being checked.
1266 * Check the task and thread group timers. If both are zero (there are no
1267 * timers set) return false. Otherwise snapshot the task and thread group
1268 * timers and compare them with the corresponding expiration times. Return
1269 * true if a timer has expired, else return false.
1271 static inline int fastpath_timer_check(struct task_struct
*tsk
)
1273 struct signal_struct
*sig
;
1275 if (!task_cputime_zero(&tsk
->cputime_expires
)) {
1276 struct task_cputime task_sample
= {
1277 .utime
= tsk
->utime
,
1278 .stime
= tsk
->stime
,
1279 .sum_exec_runtime
= tsk
->se
.sum_exec_runtime
1282 if (task_cputime_expired(&task_sample
, &tsk
->cputime_expires
))
1287 if (sig
->cputimer
.running
) {
1288 struct task_cputime group_sample
;
1290 spin_lock(&sig
->cputimer
.lock
);
1291 group_sample
= sig
->cputimer
.cputime
;
1292 spin_unlock(&sig
->cputimer
.lock
);
1294 if (task_cputime_expired(&group_sample
, &sig
->cputime_expires
))
1302 * This is called from the timer interrupt handler. The irq handler has
1303 * already updated our counts. We need to check if any timers fire now.
1304 * Interrupts are disabled.
1306 void run_posix_cpu_timers(struct task_struct
*tsk
)
1309 struct k_itimer
*timer
, *next
;
1310 unsigned long flags
;
1312 BUG_ON(!irqs_disabled());
1315 * The fast path checks that there are no expired thread or thread
1316 * group timers. If that's so, just return.
1318 if (!fastpath_timer_check(tsk
))
1321 if (!lock_task_sighand(tsk
, &flags
))
1324 * Here we take off tsk->signal->cpu_timers[N] and
1325 * tsk->cpu_timers[N] all the timers that are firing, and
1326 * put them on the firing list.
1328 check_thread_timers(tsk
, &firing
);
1330 * If there are any active process wide timers (POSIX 1.b, itimers,
1331 * RLIMIT_CPU) cputimer must be running.
1333 if (tsk
->signal
->cputimer
.running
)
1334 check_process_timers(tsk
, &firing
);
1337 * We must release these locks before taking any timer's lock.
1338 * There is a potential race with timer deletion here, as the
1339 * siglock now protects our private firing list. We have set
1340 * the firing flag in each timer, so that a deletion attempt
1341 * that gets the timer lock before we do will give it up and
1342 * spin until we've taken care of that timer below.
1344 unlock_task_sighand(tsk
, &flags
);
1347 * Now that all the timers on our list have the firing flag,
1348 * noone will touch their list entries but us. We'll take
1349 * each timer's lock before clearing its firing flag, so no
1350 * timer call will interfere.
1352 list_for_each_entry_safe(timer
, next
, &firing
, it
.cpu
.entry
) {
1355 spin_lock(&timer
->it_lock
);
1356 list_del_init(&timer
->it
.cpu
.entry
);
1357 cpu_firing
= timer
->it
.cpu
.firing
;
1358 timer
->it
.cpu
.firing
= 0;
1360 * The firing flag is -1 if we collided with a reset
1361 * of the timer, which already reported this
1362 * almost-firing as an overrun. So don't generate an event.
1364 if (likely(cpu_firing
>= 0))
1365 cpu_timer_fire(timer
);
1366 spin_unlock(&timer
->it_lock
);
1371 * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
1372 * The tsk->sighand->siglock must be held by the caller.
1374 void set_process_cpu_timer(struct task_struct
*tsk
, unsigned int clock_idx
,
1375 cputime_t
*newval
, cputime_t
*oldval
)
1377 union cpu_time_count now
;
1379 BUG_ON(clock_idx
== CPUCLOCK_SCHED
);
1380 cpu_timer_sample_group(clock_idx
, tsk
, &now
);
1384 * We are setting itimer. The *oldval is absolute and we update
1385 * it to be relative, *newval argument is relative and we update
1386 * it to be absolute.
1388 if (!cputime_eq(*oldval
, cputime_zero
)) {
1389 if (cputime_le(*oldval
, now
.cpu
)) {
1390 /* Just about to fire. */
1391 *oldval
= cputime_one_jiffy
;
1393 *oldval
= cputime_sub(*oldval
, now
.cpu
);
1397 if (cputime_eq(*newval
, cputime_zero
))
1399 *newval
= cputime_add(*newval
, now
.cpu
);
1403 * Update expiration cache if we are the earliest timer, or eventually
1404 * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
1406 switch (clock_idx
) {
1408 if (expires_gt(tsk
->signal
->cputime_expires
.prof_exp
, *newval
))
1409 tsk
->signal
->cputime_expires
.prof_exp
= *newval
;
1412 if (expires_gt(tsk
->signal
->cputime_expires
.virt_exp
, *newval
))
1413 tsk
->signal
->cputime_expires
.virt_exp
= *newval
;
1418 static int do_cpu_nanosleep(const clockid_t which_clock
, int flags
,
1419 struct timespec
*rqtp
, struct itimerspec
*it
)
1421 struct k_itimer timer
;
1425 * Set up a temporary timer and then wait for it to go off.
1427 memset(&timer
, 0, sizeof timer
);
1428 spin_lock_init(&timer
.it_lock
);
1429 timer
.it_clock
= which_clock
;
1430 timer
.it_overrun
= -1;
1431 error
= posix_cpu_timer_create(&timer
);
1432 timer
.it_process
= current
;
1434 static struct itimerspec zero_it
;
1436 memset(it
, 0, sizeof *it
);
1437 it
->it_value
= *rqtp
;
1439 spin_lock_irq(&timer
.it_lock
);
1440 error
= posix_cpu_timer_set(&timer
, flags
, it
, NULL
);
1442 spin_unlock_irq(&timer
.it_lock
);
1446 while (!signal_pending(current
)) {
1447 if (timer
.it
.cpu
.expires
.sched
== 0) {
1449 * Our timer fired and was reset.
1451 spin_unlock_irq(&timer
.it_lock
);
1456 * Block until cpu_timer_fire (or a signal) wakes us.
1458 __set_current_state(TASK_INTERRUPTIBLE
);
1459 spin_unlock_irq(&timer
.it_lock
);
1461 spin_lock_irq(&timer
.it_lock
);
1465 * We were interrupted by a signal.
1467 sample_to_timespec(which_clock
, timer
.it
.cpu
.expires
, rqtp
);
1468 posix_cpu_timer_set(&timer
, 0, &zero_it
, it
);
1469 spin_unlock_irq(&timer
.it_lock
);
1471 if ((it
->it_value
.tv_sec
| it
->it_value
.tv_nsec
) == 0) {
1473 * It actually did fire already.
1478 error
= -ERESTART_RESTARTBLOCK
;
1484 int posix_cpu_nsleep(const clockid_t which_clock
, int flags
,
1485 struct timespec
*rqtp
, struct timespec __user
*rmtp
)
1487 struct restart_block
*restart_block
=
1488 ¤t_thread_info()->restart_block
;
1489 struct itimerspec it
;
1493 * Diagnose required errors first.
1495 if (CPUCLOCK_PERTHREAD(which_clock
) &&
1496 (CPUCLOCK_PID(which_clock
) == 0 ||
1497 CPUCLOCK_PID(which_clock
) == current
->pid
))
1500 error
= do_cpu_nanosleep(which_clock
, flags
, rqtp
, &it
);
1502 if (error
== -ERESTART_RESTARTBLOCK
) {
1504 if (flags
& TIMER_ABSTIME
)
1505 return -ERESTARTNOHAND
;
1507 * Report back to the user the time still remaining.
1509 if (rmtp
!= NULL
&& copy_to_user(rmtp
, &it
.it_value
, sizeof *rmtp
))
1512 restart_block
->fn
= posix_cpu_nsleep_restart
;
1513 restart_block
->arg0
= which_clock
;
1514 restart_block
->arg1
= (unsigned long) rmtp
;
1515 restart_block
->arg2
= rqtp
->tv_sec
;
1516 restart_block
->arg3
= rqtp
->tv_nsec
;
1521 long posix_cpu_nsleep_restart(struct restart_block
*restart_block
)
1523 clockid_t which_clock
= restart_block
->arg0
;
1524 struct timespec __user
*rmtp
;
1526 struct itimerspec it
;
1529 rmtp
= (struct timespec __user
*) restart_block
->arg1
;
1530 t
.tv_sec
= restart_block
->arg2
;
1531 t
.tv_nsec
= restart_block
->arg3
;
1533 restart_block
->fn
= do_no_restart_syscall
;
1534 error
= do_cpu_nanosleep(which_clock
, TIMER_ABSTIME
, &t
, &it
);
1536 if (error
== -ERESTART_RESTARTBLOCK
) {
1538 * Report back to the user the time still remaining.
1540 if (rmtp
!= NULL
&& copy_to_user(rmtp
, &it
.it_value
, sizeof *rmtp
))
1543 restart_block
->fn
= posix_cpu_nsleep_restart
;
1544 restart_block
->arg0
= which_clock
;
1545 restart_block
->arg1
= (unsigned long) rmtp
;
1546 restart_block
->arg2
= t
.tv_sec
;
1547 restart_block
->arg3
= t
.tv_nsec
;
1554 #define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1555 #define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1557 static int process_cpu_clock_getres(const clockid_t which_clock
,
1558 struct timespec
*tp
)
1560 return posix_cpu_clock_getres(PROCESS_CLOCK
, tp
);
1562 static int process_cpu_clock_get(const clockid_t which_clock
,
1563 struct timespec
*tp
)
1565 return posix_cpu_clock_get(PROCESS_CLOCK
, tp
);
1567 static int process_cpu_timer_create(struct k_itimer
*timer
)
1569 timer
->it_clock
= PROCESS_CLOCK
;
1570 return posix_cpu_timer_create(timer
);
1572 static int process_cpu_nsleep(const clockid_t which_clock
, int flags
,
1573 struct timespec
*rqtp
,
1574 struct timespec __user
*rmtp
)
1576 return posix_cpu_nsleep(PROCESS_CLOCK
, flags
, rqtp
, rmtp
);
1578 static long process_cpu_nsleep_restart(struct restart_block
*restart_block
)
1582 static int thread_cpu_clock_getres(const clockid_t which_clock
,
1583 struct timespec
*tp
)
1585 return posix_cpu_clock_getres(THREAD_CLOCK
, tp
);
1587 static int thread_cpu_clock_get(const clockid_t which_clock
,
1588 struct timespec
*tp
)
1590 return posix_cpu_clock_get(THREAD_CLOCK
, tp
);
1592 static int thread_cpu_timer_create(struct k_itimer
*timer
)
1594 timer
->it_clock
= THREAD_CLOCK
;
1595 return posix_cpu_timer_create(timer
);
1597 static int thread_cpu_nsleep(const clockid_t which_clock
, int flags
,
1598 struct timespec
*rqtp
, struct timespec __user
*rmtp
)
1602 static long thread_cpu_nsleep_restart(struct restart_block
*restart_block
)
1607 static __init
int init_posix_cpu_timers(void)
1609 struct k_clock process
= {
1610 .clock_getres
= process_cpu_clock_getres
,
1611 .clock_get
= process_cpu_clock_get
,
1612 .clock_set
= do_posix_clock_nosettime
,
1613 .timer_create
= process_cpu_timer_create
,
1614 .nsleep
= process_cpu_nsleep
,
1615 .nsleep_restart
= process_cpu_nsleep_restart
,
1617 struct k_clock thread
= {
1618 .clock_getres
= thread_cpu_clock_getres
,
1619 .clock_get
= thread_cpu_clock_get
,
1620 .clock_set
= do_posix_clock_nosettime
,
1621 .timer_create
= thread_cpu_timer_create
,
1622 .nsleep
= thread_cpu_nsleep
,
1623 .nsleep_restart
= thread_cpu_nsleep_restart
,
1627 register_posix_clock(CLOCK_PROCESS_CPUTIME_ID
, &process
);
1628 register_posix_clock(CLOCK_THREAD_CPUTIME_ID
, &thread
);
1630 cputime_to_timespec(cputime_one_jiffy
, &ts
);
1631 onecputick
= ts
.tv_nsec
;
1632 WARN_ON(ts
.tv_sec
!= 0);
1636 __initcall(init_posix_cpu_timers
);