V4L/DVB: IR/imon: remove bad ir_input_dev use
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / cgroup.c
blobd83cab06da8722f7d91fad428a74799645964676
1 /*
2 * Generic process-grouping system.
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
29 #include <linux/cgroup.h>
30 #include <linux/ctype.h>
31 #include <linux/errno.h>
32 #include <linux/fs.h>
33 #include <linux/kernel.h>
34 #include <linux/list.h>
35 #include <linux/mm.h>
36 #include <linux/mutex.h>
37 #include <linux/mount.h>
38 #include <linux/pagemap.h>
39 #include <linux/proc_fs.h>
40 #include <linux/rcupdate.h>
41 #include <linux/sched.h>
42 #include <linux/backing-dev.h>
43 #include <linux/seq_file.h>
44 #include <linux/slab.h>
45 #include <linux/magic.h>
46 #include <linux/spinlock.h>
47 #include <linux/string.h>
48 #include <linux/sort.h>
49 #include <linux/kmod.h>
50 #include <linux/module.h>
51 #include <linux/delayacct.h>
52 #include <linux/cgroupstats.h>
53 #include <linux/hash.h>
54 #include <linux/namei.h>
55 #include <linux/smp_lock.h>
56 #include <linux/pid_namespace.h>
57 #include <linux/idr.h>
58 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
59 #include <linux/eventfd.h>
60 #include <linux/poll.h>
62 #include <asm/atomic.h>
64 static DEFINE_MUTEX(cgroup_mutex);
67 * Generate an array of cgroup subsystem pointers. At boot time, this is
68 * populated up to CGROUP_BUILTIN_SUBSYS_COUNT, and modular subsystems are
69 * registered after that. The mutable section of this array is protected by
70 * cgroup_mutex.
72 #define SUBSYS(_x) &_x ## _subsys,
73 static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
74 #include <linux/cgroup_subsys.h>
77 #define MAX_CGROUP_ROOT_NAMELEN 64
80 * A cgroupfs_root represents the root of a cgroup hierarchy,
81 * and may be associated with a superblock to form an active
82 * hierarchy
84 struct cgroupfs_root {
85 struct super_block *sb;
88 * The bitmask of subsystems intended to be attached to this
89 * hierarchy
91 unsigned long subsys_bits;
93 /* Unique id for this hierarchy. */
94 int hierarchy_id;
96 /* The bitmask of subsystems currently attached to this hierarchy */
97 unsigned long actual_subsys_bits;
99 /* A list running through the attached subsystems */
100 struct list_head subsys_list;
102 /* The root cgroup for this hierarchy */
103 struct cgroup top_cgroup;
105 /* Tracks how many cgroups are currently defined in hierarchy.*/
106 int number_of_cgroups;
108 /* A list running through the active hierarchies */
109 struct list_head root_list;
111 /* Hierarchy-specific flags */
112 unsigned long flags;
114 /* The path to use for release notifications. */
115 char release_agent_path[PATH_MAX];
117 /* The name for this hierarchy - may be empty */
118 char name[MAX_CGROUP_ROOT_NAMELEN];
122 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
123 * subsystems that are otherwise unattached - it never has more than a
124 * single cgroup, and all tasks are part of that cgroup.
126 static struct cgroupfs_root rootnode;
129 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
130 * cgroup_subsys->use_id != 0.
132 #define CSS_ID_MAX (65535)
133 struct css_id {
135 * The css to which this ID points. This pointer is set to valid value
136 * after cgroup is populated. If cgroup is removed, this will be NULL.
137 * This pointer is expected to be RCU-safe because destroy()
138 * is called after synchronize_rcu(). But for safe use, css_is_removed()
139 * css_tryget() should be used for avoiding race.
141 struct cgroup_subsys_state *css;
143 * ID of this css.
145 unsigned short id;
147 * Depth in hierarchy which this ID belongs to.
149 unsigned short depth;
151 * ID is freed by RCU. (and lookup routine is RCU safe.)
153 struct rcu_head rcu_head;
155 * Hierarchy of CSS ID belongs to.
157 unsigned short stack[0]; /* Array of Length (depth+1) */
161 * cgroup_event represents events which userspace want to recieve.
163 struct cgroup_event {
165 * Cgroup which the event belongs to.
167 struct cgroup *cgrp;
169 * Control file which the event associated.
171 struct cftype *cft;
173 * eventfd to signal userspace about the event.
175 struct eventfd_ctx *eventfd;
177 * Each of these stored in a list by the cgroup.
179 struct list_head list;
181 * All fields below needed to unregister event when
182 * userspace closes eventfd.
184 poll_table pt;
185 wait_queue_head_t *wqh;
186 wait_queue_t wait;
187 struct work_struct remove;
190 /* The list of hierarchy roots */
192 static LIST_HEAD(roots);
193 static int root_count;
195 static DEFINE_IDA(hierarchy_ida);
196 static int next_hierarchy_id;
197 static DEFINE_SPINLOCK(hierarchy_id_lock);
199 /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
200 #define dummytop (&rootnode.top_cgroup)
202 /* This flag indicates whether tasks in the fork and exit paths should
203 * check for fork/exit handlers to call. This avoids us having to do
204 * extra work in the fork/exit path if none of the subsystems need to
205 * be called.
207 static int need_forkexit_callback __read_mostly;
209 #ifdef CONFIG_PROVE_LOCKING
210 int cgroup_lock_is_held(void)
212 return lockdep_is_held(&cgroup_mutex);
214 #else /* #ifdef CONFIG_PROVE_LOCKING */
215 int cgroup_lock_is_held(void)
217 return mutex_is_locked(&cgroup_mutex);
219 #endif /* #else #ifdef CONFIG_PROVE_LOCKING */
221 EXPORT_SYMBOL_GPL(cgroup_lock_is_held);
223 /* convenient tests for these bits */
224 inline int cgroup_is_removed(const struct cgroup *cgrp)
226 return test_bit(CGRP_REMOVED, &cgrp->flags);
229 /* bits in struct cgroupfs_root flags field */
230 enum {
231 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
234 static int cgroup_is_releasable(const struct cgroup *cgrp)
236 const int bits =
237 (1 << CGRP_RELEASABLE) |
238 (1 << CGRP_NOTIFY_ON_RELEASE);
239 return (cgrp->flags & bits) == bits;
242 static int notify_on_release(const struct cgroup *cgrp)
244 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
248 * for_each_subsys() allows you to iterate on each subsystem attached to
249 * an active hierarchy
251 #define for_each_subsys(_root, _ss) \
252 list_for_each_entry(_ss, &_root->subsys_list, sibling)
254 /* for_each_active_root() allows you to iterate across the active hierarchies */
255 #define for_each_active_root(_root) \
256 list_for_each_entry(_root, &roots, root_list)
258 /* the list of cgroups eligible for automatic release. Protected by
259 * release_list_lock */
260 static LIST_HEAD(release_list);
261 static DEFINE_SPINLOCK(release_list_lock);
262 static void cgroup_release_agent(struct work_struct *work);
263 static DECLARE_WORK(release_agent_work, cgroup_release_agent);
264 static void check_for_release(struct cgroup *cgrp);
266 /* Link structure for associating css_set objects with cgroups */
267 struct cg_cgroup_link {
269 * List running through cg_cgroup_links associated with a
270 * cgroup, anchored on cgroup->css_sets
272 struct list_head cgrp_link_list;
273 struct cgroup *cgrp;
275 * List running through cg_cgroup_links pointing at a
276 * single css_set object, anchored on css_set->cg_links
278 struct list_head cg_link_list;
279 struct css_set *cg;
282 /* The default css_set - used by init and its children prior to any
283 * hierarchies being mounted. It contains a pointer to the root state
284 * for each subsystem. Also used to anchor the list of css_sets. Not
285 * reference-counted, to improve performance when child cgroups
286 * haven't been created.
289 static struct css_set init_css_set;
290 static struct cg_cgroup_link init_css_set_link;
292 static int cgroup_init_idr(struct cgroup_subsys *ss,
293 struct cgroup_subsys_state *css);
295 /* css_set_lock protects the list of css_set objects, and the
296 * chain of tasks off each css_set. Nests outside task->alloc_lock
297 * due to cgroup_iter_start() */
298 static DEFINE_RWLOCK(css_set_lock);
299 static int css_set_count;
302 * hash table for cgroup groups. This improves the performance to find
303 * an existing css_set. This hash doesn't (currently) take into
304 * account cgroups in empty hierarchies.
306 #define CSS_SET_HASH_BITS 7
307 #define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
308 static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
310 static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
312 int i;
313 int index;
314 unsigned long tmp = 0UL;
316 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
317 tmp += (unsigned long)css[i];
318 tmp = (tmp >> 16) ^ tmp;
320 index = hash_long(tmp, CSS_SET_HASH_BITS);
322 return &css_set_table[index];
325 static void free_css_set_rcu(struct rcu_head *obj)
327 struct css_set *cg = container_of(obj, struct css_set, rcu_head);
328 kfree(cg);
331 /* We don't maintain the lists running through each css_set to its
332 * task until after the first call to cgroup_iter_start(). This
333 * reduces the fork()/exit() overhead for people who have cgroups
334 * compiled into their kernel but not actually in use */
335 static int use_task_css_set_links __read_mostly;
337 static void __put_css_set(struct css_set *cg, int taskexit)
339 struct cg_cgroup_link *link;
340 struct cg_cgroup_link *saved_link;
342 * Ensure that the refcount doesn't hit zero while any readers
343 * can see it. Similar to atomic_dec_and_lock(), but for an
344 * rwlock
346 if (atomic_add_unless(&cg->refcount, -1, 1))
347 return;
348 write_lock(&css_set_lock);
349 if (!atomic_dec_and_test(&cg->refcount)) {
350 write_unlock(&css_set_lock);
351 return;
354 /* This css_set is dead. unlink it and release cgroup refcounts */
355 hlist_del(&cg->hlist);
356 css_set_count--;
358 list_for_each_entry_safe(link, saved_link, &cg->cg_links,
359 cg_link_list) {
360 struct cgroup *cgrp = link->cgrp;
361 list_del(&link->cg_link_list);
362 list_del(&link->cgrp_link_list);
363 if (atomic_dec_and_test(&cgrp->count) &&
364 notify_on_release(cgrp)) {
365 if (taskexit)
366 set_bit(CGRP_RELEASABLE, &cgrp->flags);
367 check_for_release(cgrp);
370 kfree(link);
373 write_unlock(&css_set_lock);
374 call_rcu(&cg->rcu_head, free_css_set_rcu);
378 * refcounted get/put for css_set objects
380 static inline void get_css_set(struct css_set *cg)
382 atomic_inc(&cg->refcount);
385 static inline void put_css_set(struct css_set *cg)
387 __put_css_set(cg, 0);
390 static inline void put_css_set_taskexit(struct css_set *cg)
392 __put_css_set(cg, 1);
396 * compare_css_sets - helper function for find_existing_css_set().
397 * @cg: candidate css_set being tested
398 * @old_cg: existing css_set for a task
399 * @new_cgrp: cgroup that's being entered by the task
400 * @template: desired set of css pointers in css_set (pre-calculated)
402 * Returns true if "cg" matches "old_cg" except for the hierarchy
403 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
405 static bool compare_css_sets(struct css_set *cg,
406 struct css_set *old_cg,
407 struct cgroup *new_cgrp,
408 struct cgroup_subsys_state *template[])
410 struct list_head *l1, *l2;
412 if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
413 /* Not all subsystems matched */
414 return false;
418 * Compare cgroup pointers in order to distinguish between
419 * different cgroups in heirarchies with no subsystems. We
420 * could get by with just this check alone (and skip the
421 * memcmp above) but on most setups the memcmp check will
422 * avoid the need for this more expensive check on almost all
423 * candidates.
426 l1 = &cg->cg_links;
427 l2 = &old_cg->cg_links;
428 while (1) {
429 struct cg_cgroup_link *cgl1, *cgl2;
430 struct cgroup *cg1, *cg2;
432 l1 = l1->next;
433 l2 = l2->next;
434 /* See if we reached the end - both lists are equal length. */
435 if (l1 == &cg->cg_links) {
436 BUG_ON(l2 != &old_cg->cg_links);
437 break;
438 } else {
439 BUG_ON(l2 == &old_cg->cg_links);
441 /* Locate the cgroups associated with these links. */
442 cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
443 cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
444 cg1 = cgl1->cgrp;
445 cg2 = cgl2->cgrp;
446 /* Hierarchies should be linked in the same order. */
447 BUG_ON(cg1->root != cg2->root);
450 * If this hierarchy is the hierarchy of the cgroup
451 * that's changing, then we need to check that this
452 * css_set points to the new cgroup; if it's any other
453 * hierarchy, then this css_set should point to the
454 * same cgroup as the old css_set.
456 if (cg1->root == new_cgrp->root) {
457 if (cg1 != new_cgrp)
458 return false;
459 } else {
460 if (cg1 != cg2)
461 return false;
464 return true;
468 * find_existing_css_set() is a helper for
469 * find_css_set(), and checks to see whether an existing
470 * css_set is suitable.
472 * oldcg: the cgroup group that we're using before the cgroup
473 * transition
475 * cgrp: the cgroup that we're moving into
477 * template: location in which to build the desired set of subsystem
478 * state objects for the new cgroup group
480 static struct css_set *find_existing_css_set(
481 struct css_set *oldcg,
482 struct cgroup *cgrp,
483 struct cgroup_subsys_state *template[])
485 int i;
486 struct cgroupfs_root *root = cgrp->root;
487 struct hlist_head *hhead;
488 struct hlist_node *node;
489 struct css_set *cg;
492 * Build the set of subsystem state objects that we want to see in the
493 * new css_set. while subsystems can change globally, the entries here
494 * won't change, so no need for locking.
496 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
497 if (root->subsys_bits & (1UL << i)) {
498 /* Subsystem is in this hierarchy. So we want
499 * the subsystem state from the new
500 * cgroup */
501 template[i] = cgrp->subsys[i];
502 } else {
503 /* Subsystem is not in this hierarchy, so we
504 * don't want to change the subsystem state */
505 template[i] = oldcg->subsys[i];
509 hhead = css_set_hash(template);
510 hlist_for_each_entry(cg, node, hhead, hlist) {
511 if (!compare_css_sets(cg, oldcg, cgrp, template))
512 continue;
514 /* This css_set matches what we need */
515 return cg;
518 /* No existing cgroup group matched */
519 return NULL;
522 static void free_cg_links(struct list_head *tmp)
524 struct cg_cgroup_link *link;
525 struct cg_cgroup_link *saved_link;
527 list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
528 list_del(&link->cgrp_link_list);
529 kfree(link);
534 * allocate_cg_links() allocates "count" cg_cgroup_link structures
535 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
536 * success or a negative error
538 static int allocate_cg_links(int count, struct list_head *tmp)
540 struct cg_cgroup_link *link;
541 int i;
542 INIT_LIST_HEAD(tmp);
543 for (i = 0; i < count; i++) {
544 link = kmalloc(sizeof(*link), GFP_KERNEL);
545 if (!link) {
546 free_cg_links(tmp);
547 return -ENOMEM;
549 list_add(&link->cgrp_link_list, tmp);
551 return 0;
555 * link_css_set - a helper function to link a css_set to a cgroup
556 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
557 * @cg: the css_set to be linked
558 * @cgrp: the destination cgroup
560 static void link_css_set(struct list_head *tmp_cg_links,
561 struct css_set *cg, struct cgroup *cgrp)
563 struct cg_cgroup_link *link;
565 BUG_ON(list_empty(tmp_cg_links));
566 link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
567 cgrp_link_list);
568 link->cg = cg;
569 link->cgrp = cgrp;
570 atomic_inc(&cgrp->count);
571 list_move(&link->cgrp_link_list, &cgrp->css_sets);
573 * Always add links to the tail of the list so that the list
574 * is sorted by order of hierarchy creation
576 list_add_tail(&link->cg_link_list, &cg->cg_links);
580 * find_css_set() takes an existing cgroup group and a
581 * cgroup object, and returns a css_set object that's
582 * equivalent to the old group, but with the given cgroup
583 * substituted into the appropriate hierarchy. Must be called with
584 * cgroup_mutex held
586 static struct css_set *find_css_set(
587 struct css_set *oldcg, struct cgroup *cgrp)
589 struct css_set *res;
590 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
592 struct list_head tmp_cg_links;
594 struct hlist_head *hhead;
595 struct cg_cgroup_link *link;
597 /* First see if we already have a cgroup group that matches
598 * the desired set */
599 read_lock(&css_set_lock);
600 res = find_existing_css_set(oldcg, cgrp, template);
601 if (res)
602 get_css_set(res);
603 read_unlock(&css_set_lock);
605 if (res)
606 return res;
608 res = kmalloc(sizeof(*res), GFP_KERNEL);
609 if (!res)
610 return NULL;
612 /* Allocate all the cg_cgroup_link objects that we'll need */
613 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
614 kfree(res);
615 return NULL;
618 atomic_set(&res->refcount, 1);
619 INIT_LIST_HEAD(&res->cg_links);
620 INIT_LIST_HEAD(&res->tasks);
621 INIT_HLIST_NODE(&res->hlist);
623 /* Copy the set of subsystem state objects generated in
624 * find_existing_css_set() */
625 memcpy(res->subsys, template, sizeof(res->subsys));
627 write_lock(&css_set_lock);
628 /* Add reference counts and links from the new css_set. */
629 list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
630 struct cgroup *c = link->cgrp;
631 if (c->root == cgrp->root)
632 c = cgrp;
633 link_css_set(&tmp_cg_links, res, c);
636 BUG_ON(!list_empty(&tmp_cg_links));
638 css_set_count++;
640 /* Add this cgroup group to the hash table */
641 hhead = css_set_hash(res->subsys);
642 hlist_add_head(&res->hlist, hhead);
644 write_unlock(&css_set_lock);
646 return res;
650 * Return the cgroup for "task" from the given hierarchy. Must be
651 * called with cgroup_mutex held.
653 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
654 struct cgroupfs_root *root)
656 struct css_set *css;
657 struct cgroup *res = NULL;
659 BUG_ON(!mutex_is_locked(&cgroup_mutex));
660 read_lock(&css_set_lock);
662 * No need to lock the task - since we hold cgroup_mutex the
663 * task can't change groups, so the only thing that can happen
664 * is that it exits and its css is set back to init_css_set.
666 css = task->cgroups;
667 if (css == &init_css_set) {
668 res = &root->top_cgroup;
669 } else {
670 struct cg_cgroup_link *link;
671 list_for_each_entry(link, &css->cg_links, cg_link_list) {
672 struct cgroup *c = link->cgrp;
673 if (c->root == root) {
674 res = c;
675 break;
679 read_unlock(&css_set_lock);
680 BUG_ON(!res);
681 return res;
685 * There is one global cgroup mutex. We also require taking
686 * task_lock() when dereferencing a task's cgroup subsys pointers.
687 * See "The task_lock() exception", at the end of this comment.
689 * A task must hold cgroup_mutex to modify cgroups.
691 * Any task can increment and decrement the count field without lock.
692 * So in general, code holding cgroup_mutex can't rely on the count
693 * field not changing. However, if the count goes to zero, then only
694 * cgroup_attach_task() can increment it again. Because a count of zero
695 * means that no tasks are currently attached, therefore there is no
696 * way a task attached to that cgroup can fork (the other way to
697 * increment the count). So code holding cgroup_mutex can safely
698 * assume that if the count is zero, it will stay zero. Similarly, if
699 * a task holds cgroup_mutex on a cgroup with zero count, it
700 * knows that the cgroup won't be removed, as cgroup_rmdir()
701 * needs that mutex.
703 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
704 * (usually) take cgroup_mutex. These are the two most performance
705 * critical pieces of code here. The exception occurs on cgroup_exit(),
706 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
707 * is taken, and if the cgroup count is zero, a usermode call made
708 * to the release agent with the name of the cgroup (path relative to
709 * the root of cgroup file system) as the argument.
711 * A cgroup can only be deleted if both its 'count' of using tasks
712 * is zero, and its list of 'children' cgroups is empty. Since all
713 * tasks in the system use _some_ cgroup, and since there is always at
714 * least one task in the system (init, pid == 1), therefore, top_cgroup
715 * always has either children cgroups and/or using tasks. So we don't
716 * need a special hack to ensure that top_cgroup cannot be deleted.
718 * The task_lock() exception
720 * The need for this exception arises from the action of
721 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
722 * another. It does so using cgroup_mutex, however there are
723 * several performance critical places that need to reference
724 * task->cgroup without the expense of grabbing a system global
725 * mutex. Therefore except as noted below, when dereferencing or, as
726 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
727 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
728 * the task_struct routinely used for such matters.
730 * P.S. One more locking exception. RCU is used to guard the
731 * update of a tasks cgroup pointer by cgroup_attach_task()
735 * cgroup_lock - lock out any changes to cgroup structures
738 void cgroup_lock(void)
740 mutex_lock(&cgroup_mutex);
742 EXPORT_SYMBOL_GPL(cgroup_lock);
745 * cgroup_unlock - release lock on cgroup changes
747 * Undo the lock taken in a previous cgroup_lock() call.
749 void cgroup_unlock(void)
751 mutex_unlock(&cgroup_mutex);
753 EXPORT_SYMBOL_GPL(cgroup_unlock);
756 * A couple of forward declarations required, due to cyclic reference loop:
757 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
758 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
759 * -> cgroup_mkdir.
762 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
763 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
764 static int cgroup_populate_dir(struct cgroup *cgrp);
765 static const struct inode_operations cgroup_dir_inode_operations;
766 static const struct file_operations proc_cgroupstats_operations;
768 static struct backing_dev_info cgroup_backing_dev_info = {
769 .name = "cgroup",
770 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
773 static int alloc_css_id(struct cgroup_subsys *ss,
774 struct cgroup *parent, struct cgroup *child);
776 static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
778 struct inode *inode = new_inode(sb);
780 if (inode) {
781 inode->i_mode = mode;
782 inode->i_uid = current_fsuid();
783 inode->i_gid = current_fsgid();
784 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
785 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
787 return inode;
791 * Call subsys's pre_destroy handler.
792 * This is called before css refcnt check.
794 static int cgroup_call_pre_destroy(struct cgroup *cgrp)
796 struct cgroup_subsys *ss;
797 int ret = 0;
799 for_each_subsys(cgrp->root, ss)
800 if (ss->pre_destroy) {
801 ret = ss->pre_destroy(ss, cgrp);
802 if (ret)
803 break;
806 return ret;
809 static void free_cgroup_rcu(struct rcu_head *obj)
811 struct cgroup *cgrp = container_of(obj, struct cgroup, rcu_head);
813 kfree(cgrp);
816 static void cgroup_diput(struct dentry *dentry, struct inode *inode)
818 /* is dentry a directory ? if so, kfree() associated cgroup */
819 if (S_ISDIR(inode->i_mode)) {
820 struct cgroup *cgrp = dentry->d_fsdata;
821 struct cgroup_subsys *ss;
822 BUG_ON(!(cgroup_is_removed(cgrp)));
823 /* It's possible for external users to be holding css
824 * reference counts on a cgroup; css_put() needs to
825 * be able to access the cgroup after decrementing
826 * the reference count in order to know if it needs to
827 * queue the cgroup to be handled by the release
828 * agent */
829 synchronize_rcu();
831 mutex_lock(&cgroup_mutex);
833 * Release the subsystem state objects.
835 for_each_subsys(cgrp->root, ss)
836 ss->destroy(ss, cgrp);
838 cgrp->root->number_of_cgroups--;
839 mutex_unlock(&cgroup_mutex);
842 * Drop the active superblock reference that we took when we
843 * created the cgroup
845 deactivate_super(cgrp->root->sb);
848 * if we're getting rid of the cgroup, refcount should ensure
849 * that there are no pidlists left.
851 BUG_ON(!list_empty(&cgrp->pidlists));
853 call_rcu(&cgrp->rcu_head, free_cgroup_rcu);
855 iput(inode);
858 static void remove_dir(struct dentry *d)
860 struct dentry *parent = dget(d->d_parent);
862 d_delete(d);
863 simple_rmdir(parent->d_inode, d);
864 dput(parent);
867 static void cgroup_clear_directory(struct dentry *dentry)
869 struct list_head *node;
871 BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
872 spin_lock(&dcache_lock);
873 node = dentry->d_subdirs.next;
874 while (node != &dentry->d_subdirs) {
875 struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
876 list_del_init(node);
877 if (d->d_inode) {
878 /* This should never be called on a cgroup
879 * directory with child cgroups */
880 BUG_ON(d->d_inode->i_mode & S_IFDIR);
881 d = dget_locked(d);
882 spin_unlock(&dcache_lock);
883 d_delete(d);
884 simple_unlink(dentry->d_inode, d);
885 dput(d);
886 spin_lock(&dcache_lock);
888 node = dentry->d_subdirs.next;
890 spin_unlock(&dcache_lock);
894 * NOTE : the dentry must have been dget()'ed
896 static void cgroup_d_remove_dir(struct dentry *dentry)
898 cgroup_clear_directory(dentry);
900 spin_lock(&dcache_lock);
901 list_del_init(&dentry->d_u.d_child);
902 spin_unlock(&dcache_lock);
903 remove_dir(dentry);
907 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
908 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
909 * reference to css->refcnt. In general, this refcnt is expected to goes down
910 * to zero, soon.
912 * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
914 DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);
916 static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp)
918 if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
919 wake_up_all(&cgroup_rmdir_waitq);
922 void cgroup_exclude_rmdir(struct cgroup_subsys_state *css)
924 css_get(css);
927 void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css)
929 cgroup_wakeup_rmdir_waiter(css->cgroup);
930 css_put(css);
934 * Call with cgroup_mutex held. Drops reference counts on modules, including
935 * any duplicate ones that parse_cgroupfs_options took. If this function
936 * returns an error, no reference counts are touched.
938 static int rebind_subsystems(struct cgroupfs_root *root,
939 unsigned long final_bits)
941 unsigned long added_bits, removed_bits;
942 struct cgroup *cgrp = &root->top_cgroup;
943 int i;
945 BUG_ON(!mutex_is_locked(&cgroup_mutex));
947 removed_bits = root->actual_subsys_bits & ~final_bits;
948 added_bits = final_bits & ~root->actual_subsys_bits;
949 /* Check that any added subsystems are currently free */
950 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
951 unsigned long bit = 1UL << i;
952 struct cgroup_subsys *ss = subsys[i];
953 if (!(bit & added_bits))
954 continue;
956 * Nobody should tell us to do a subsys that doesn't exist:
957 * parse_cgroupfs_options should catch that case and refcounts
958 * ensure that subsystems won't disappear once selected.
960 BUG_ON(ss == NULL);
961 if (ss->root != &rootnode) {
962 /* Subsystem isn't free */
963 return -EBUSY;
967 /* Currently we don't handle adding/removing subsystems when
968 * any child cgroups exist. This is theoretically supportable
969 * but involves complex error handling, so it's being left until
970 * later */
971 if (root->number_of_cgroups > 1)
972 return -EBUSY;
974 /* Process each subsystem */
975 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
976 struct cgroup_subsys *ss = subsys[i];
977 unsigned long bit = 1UL << i;
978 if (bit & added_bits) {
979 /* We're binding this subsystem to this hierarchy */
980 BUG_ON(ss == NULL);
981 BUG_ON(cgrp->subsys[i]);
982 BUG_ON(!dummytop->subsys[i]);
983 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
984 mutex_lock(&ss->hierarchy_mutex);
985 cgrp->subsys[i] = dummytop->subsys[i];
986 cgrp->subsys[i]->cgroup = cgrp;
987 list_move(&ss->sibling, &root->subsys_list);
988 ss->root = root;
989 if (ss->bind)
990 ss->bind(ss, cgrp);
991 mutex_unlock(&ss->hierarchy_mutex);
992 /* refcount was already taken, and we're keeping it */
993 } else if (bit & removed_bits) {
994 /* We're removing this subsystem */
995 BUG_ON(ss == NULL);
996 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
997 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
998 mutex_lock(&ss->hierarchy_mutex);
999 if (ss->bind)
1000 ss->bind(ss, dummytop);
1001 dummytop->subsys[i]->cgroup = dummytop;
1002 cgrp->subsys[i] = NULL;
1003 subsys[i]->root = &rootnode;
1004 list_move(&ss->sibling, &rootnode.subsys_list);
1005 mutex_unlock(&ss->hierarchy_mutex);
1006 /* subsystem is now free - drop reference on module */
1007 module_put(ss->module);
1008 } else if (bit & final_bits) {
1009 /* Subsystem state should already exist */
1010 BUG_ON(ss == NULL);
1011 BUG_ON(!cgrp->subsys[i]);
1013 * a refcount was taken, but we already had one, so
1014 * drop the extra reference.
1016 module_put(ss->module);
1017 #ifdef CONFIG_MODULE_UNLOAD
1018 BUG_ON(ss->module && !module_refcount(ss->module));
1019 #endif
1020 } else {
1021 /* Subsystem state shouldn't exist */
1022 BUG_ON(cgrp->subsys[i]);
1025 root->subsys_bits = root->actual_subsys_bits = final_bits;
1026 synchronize_rcu();
1028 return 0;
1031 static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
1033 struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
1034 struct cgroup_subsys *ss;
1036 mutex_lock(&cgroup_mutex);
1037 for_each_subsys(root, ss)
1038 seq_printf(seq, ",%s", ss->name);
1039 if (test_bit(ROOT_NOPREFIX, &root->flags))
1040 seq_puts(seq, ",noprefix");
1041 if (strlen(root->release_agent_path))
1042 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1043 if (strlen(root->name))
1044 seq_printf(seq, ",name=%s", root->name);
1045 mutex_unlock(&cgroup_mutex);
1046 return 0;
1049 struct cgroup_sb_opts {
1050 unsigned long subsys_bits;
1051 unsigned long flags;
1052 char *release_agent;
1053 char *name;
1054 /* User explicitly requested empty subsystem */
1055 bool none;
1057 struct cgroupfs_root *new_root;
1062 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
1063 * with cgroup_mutex held to protect the subsys[] array. This function takes
1064 * refcounts on subsystems to be used, unless it returns error, in which case
1065 * no refcounts are taken.
1067 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1069 char *token, *o = data ?: "all";
1070 unsigned long mask = (unsigned long)-1;
1071 int i;
1072 bool module_pin_failed = false;
1074 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1076 #ifdef CONFIG_CPUSETS
1077 mask = ~(1UL << cpuset_subsys_id);
1078 #endif
1080 memset(opts, 0, sizeof(*opts));
1082 while ((token = strsep(&o, ",")) != NULL) {
1083 if (!*token)
1084 return -EINVAL;
1085 if (!strcmp(token, "all")) {
1086 /* Add all non-disabled subsystems */
1087 opts->subsys_bits = 0;
1088 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1089 struct cgroup_subsys *ss = subsys[i];
1090 if (ss == NULL)
1091 continue;
1092 if (!ss->disabled)
1093 opts->subsys_bits |= 1ul << i;
1095 } else if (!strcmp(token, "none")) {
1096 /* Explicitly have no subsystems */
1097 opts->none = true;
1098 } else if (!strcmp(token, "noprefix")) {
1099 set_bit(ROOT_NOPREFIX, &opts->flags);
1100 } else if (!strncmp(token, "release_agent=", 14)) {
1101 /* Specifying two release agents is forbidden */
1102 if (opts->release_agent)
1103 return -EINVAL;
1104 opts->release_agent =
1105 kstrndup(token + 14, PATH_MAX, GFP_KERNEL);
1106 if (!opts->release_agent)
1107 return -ENOMEM;
1108 } else if (!strncmp(token, "name=", 5)) {
1109 const char *name = token + 5;
1110 /* Can't specify an empty name */
1111 if (!strlen(name))
1112 return -EINVAL;
1113 /* Must match [\w.-]+ */
1114 for (i = 0; i < strlen(name); i++) {
1115 char c = name[i];
1116 if (isalnum(c))
1117 continue;
1118 if ((c == '.') || (c == '-') || (c == '_'))
1119 continue;
1120 return -EINVAL;
1122 /* Specifying two names is forbidden */
1123 if (opts->name)
1124 return -EINVAL;
1125 opts->name = kstrndup(name,
1126 MAX_CGROUP_ROOT_NAMELEN,
1127 GFP_KERNEL);
1128 if (!opts->name)
1129 return -ENOMEM;
1130 } else {
1131 struct cgroup_subsys *ss;
1132 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1133 ss = subsys[i];
1134 if (ss == NULL)
1135 continue;
1136 if (!strcmp(token, ss->name)) {
1137 if (!ss->disabled)
1138 set_bit(i, &opts->subsys_bits);
1139 break;
1142 if (i == CGROUP_SUBSYS_COUNT)
1143 return -ENOENT;
1147 /* Consistency checks */
1150 * Option noprefix was introduced just for backward compatibility
1151 * with the old cpuset, so we allow noprefix only if mounting just
1152 * the cpuset subsystem.
1154 if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
1155 (opts->subsys_bits & mask))
1156 return -EINVAL;
1159 /* Can't specify "none" and some subsystems */
1160 if (opts->subsys_bits && opts->none)
1161 return -EINVAL;
1164 * We either have to specify by name or by subsystems. (So all
1165 * empty hierarchies must have a name).
1167 if (!opts->subsys_bits && !opts->name)
1168 return -EINVAL;
1171 * Grab references on all the modules we'll need, so the subsystems
1172 * don't dance around before rebind_subsystems attaches them. This may
1173 * take duplicate reference counts on a subsystem that's already used,
1174 * but rebind_subsystems handles this case.
1176 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1177 unsigned long bit = 1UL << i;
1179 if (!(bit & opts->subsys_bits))
1180 continue;
1181 if (!try_module_get(subsys[i]->module)) {
1182 module_pin_failed = true;
1183 break;
1186 if (module_pin_failed) {
1188 * oops, one of the modules was going away. this means that we
1189 * raced with a module_delete call, and to the user this is
1190 * essentially a "subsystem doesn't exist" case.
1192 for (i--; i >= CGROUP_BUILTIN_SUBSYS_COUNT; i--) {
1193 /* drop refcounts only on the ones we took */
1194 unsigned long bit = 1UL << i;
1196 if (!(bit & opts->subsys_bits))
1197 continue;
1198 module_put(subsys[i]->module);
1200 return -ENOENT;
1203 return 0;
1206 static void drop_parsed_module_refcounts(unsigned long subsys_bits)
1208 int i;
1209 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1210 unsigned long bit = 1UL << i;
1212 if (!(bit & subsys_bits))
1213 continue;
1214 module_put(subsys[i]->module);
1218 static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1220 int ret = 0;
1221 struct cgroupfs_root *root = sb->s_fs_info;
1222 struct cgroup *cgrp = &root->top_cgroup;
1223 struct cgroup_sb_opts opts;
1225 lock_kernel();
1226 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1227 mutex_lock(&cgroup_mutex);
1229 /* See what subsystems are wanted */
1230 ret = parse_cgroupfs_options(data, &opts);
1231 if (ret)
1232 goto out_unlock;
1234 /* Don't allow flags or name to change at remount */
1235 if (opts.flags != root->flags ||
1236 (opts.name && strcmp(opts.name, root->name))) {
1237 ret = -EINVAL;
1238 drop_parsed_module_refcounts(opts.subsys_bits);
1239 goto out_unlock;
1242 ret = rebind_subsystems(root, opts.subsys_bits);
1243 if (ret) {
1244 drop_parsed_module_refcounts(opts.subsys_bits);
1245 goto out_unlock;
1248 /* (re)populate subsystem files */
1249 cgroup_populate_dir(cgrp);
1251 if (opts.release_agent)
1252 strcpy(root->release_agent_path, opts.release_agent);
1253 out_unlock:
1254 kfree(opts.release_agent);
1255 kfree(opts.name);
1256 mutex_unlock(&cgroup_mutex);
1257 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1258 unlock_kernel();
1259 return ret;
1262 static const struct super_operations cgroup_ops = {
1263 .statfs = simple_statfs,
1264 .drop_inode = generic_delete_inode,
1265 .show_options = cgroup_show_options,
1266 .remount_fs = cgroup_remount,
1269 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1271 INIT_LIST_HEAD(&cgrp->sibling);
1272 INIT_LIST_HEAD(&cgrp->children);
1273 INIT_LIST_HEAD(&cgrp->css_sets);
1274 INIT_LIST_HEAD(&cgrp->release_list);
1275 INIT_LIST_HEAD(&cgrp->pidlists);
1276 mutex_init(&cgrp->pidlist_mutex);
1277 INIT_LIST_HEAD(&cgrp->event_list);
1278 spin_lock_init(&cgrp->event_list_lock);
1281 static void init_cgroup_root(struct cgroupfs_root *root)
1283 struct cgroup *cgrp = &root->top_cgroup;
1284 INIT_LIST_HEAD(&root->subsys_list);
1285 INIT_LIST_HEAD(&root->root_list);
1286 root->number_of_cgroups = 1;
1287 cgrp->root = root;
1288 cgrp->top_cgroup = cgrp;
1289 init_cgroup_housekeeping(cgrp);
1292 static bool init_root_id(struct cgroupfs_root *root)
1294 int ret = 0;
1296 do {
1297 if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
1298 return false;
1299 spin_lock(&hierarchy_id_lock);
1300 /* Try to allocate the next unused ID */
1301 ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
1302 &root->hierarchy_id);
1303 if (ret == -ENOSPC)
1304 /* Try again starting from 0 */
1305 ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
1306 if (!ret) {
1307 next_hierarchy_id = root->hierarchy_id + 1;
1308 } else if (ret != -EAGAIN) {
1309 /* Can only get here if the 31-bit IDR is full ... */
1310 BUG_ON(ret);
1312 spin_unlock(&hierarchy_id_lock);
1313 } while (ret);
1314 return true;
1317 static int cgroup_test_super(struct super_block *sb, void *data)
1319 struct cgroup_sb_opts *opts = data;
1320 struct cgroupfs_root *root = sb->s_fs_info;
1322 /* If we asked for a name then it must match */
1323 if (opts->name && strcmp(opts->name, root->name))
1324 return 0;
1327 * If we asked for subsystems (or explicitly for no
1328 * subsystems) then they must match
1330 if ((opts->subsys_bits || opts->none)
1331 && (opts->subsys_bits != root->subsys_bits))
1332 return 0;
1334 return 1;
1337 static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1339 struct cgroupfs_root *root;
1341 if (!opts->subsys_bits && !opts->none)
1342 return NULL;
1344 root = kzalloc(sizeof(*root), GFP_KERNEL);
1345 if (!root)
1346 return ERR_PTR(-ENOMEM);
1348 if (!init_root_id(root)) {
1349 kfree(root);
1350 return ERR_PTR(-ENOMEM);
1352 init_cgroup_root(root);
1354 root->subsys_bits = opts->subsys_bits;
1355 root->flags = opts->flags;
1356 if (opts->release_agent)
1357 strcpy(root->release_agent_path, opts->release_agent);
1358 if (opts->name)
1359 strcpy(root->name, opts->name);
1360 return root;
1363 static void cgroup_drop_root(struct cgroupfs_root *root)
1365 if (!root)
1366 return;
1368 BUG_ON(!root->hierarchy_id);
1369 spin_lock(&hierarchy_id_lock);
1370 ida_remove(&hierarchy_ida, root->hierarchy_id);
1371 spin_unlock(&hierarchy_id_lock);
1372 kfree(root);
1375 static int cgroup_set_super(struct super_block *sb, void *data)
1377 int ret;
1378 struct cgroup_sb_opts *opts = data;
1380 /* If we don't have a new root, we can't set up a new sb */
1381 if (!opts->new_root)
1382 return -EINVAL;
1384 BUG_ON(!opts->subsys_bits && !opts->none);
1386 ret = set_anon_super(sb, NULL);
1387 if (ret)
1388 return ret;
1390 sb->s_fs_info = opts->new_root;
1391 opts->new_root->sb = sb;
1393 sb->s_blocksize = PAGE_CACHE_SIZE;
1394 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1395 sb->s_magic = CGROUP_SUPER_MAGIC;
1396 sb->s_op = &cgroup_ops;
1398 return 0;
1401 static int cgroup_get_rootdir(struct super_block *sb)
1403 struct inode *inode =
1404 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
1405 struct dentry *dentry;
1407 if (!inode)
1408 return -ENOMEM;
1410 inode->i_fop = &simple_dir_operations;
1411 inode->i_op = &cgroup_dir_inode_operations;
1412 /* directories start off with i_nlink == 2 (for "." entry) */
1413 inc_nlink(inode);
1414 dentry = d_alloc_root(inode);
1415 if (!dentry) {
1416 iput(inode);
1417 return -ENOMEM;
1419 sb->s_root = dentry;
1420 return 0;
1423 static int cgroup_get_sb(struct file_system_type *fs_type,
1424 int flags, const char *unused_dev_name,
1425 void *data, struct vfsmount *mnt)
1427 struct cgroup_sb_opts opts;
1428 struct cgroupfs_root *root;
1429 int ret = 0;
1430 struct super_block *sb;
1431 struct cgroupfs_root *new_root;
1433 /* First find the desired set of subsystems */
1434 mutex_lock(&cgroup_mutex);
1435 ret = parse_cgroupfs_options(data, &opts);
1436 mutex_unlock(&cgroup_mutex);
1437 if (ret)
1438 goto out_err;
1441 * Allocate a new cgroup root. We may not need it if we're
1442 * reusing an existing hierarchy.
1444 new_root = cgroup_root_from_opts(&opts);
1445 if (IS_ERR(new_root)) {
1446 ret = PTR_ERR(new_root);
1447 goto drop_modules;
1449 opts.new_root = new_root;
1451 /* Locate an existing or new sb for this hierarchy */
1452 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, &opts);
1453 if (IS_ERR(sb)) {
1454 ret = PTR_ERR(sb);
1455 cgroup_drop_root(opts.new_root);
1456 goto drop_modules;
1459 root = sb->s_fs_info;
1460 BUG_ON(!root);
1461 if (root == opts.new_root) {
1462 /* We used the new root structure, so this is a new hierarchy */
1463 struct list_head tmp_cg_links;
1464 struct cgroup *root_cgrp = &root->top_cgroup;
1465 struct inode *inode;
1466 struct cgroupfs_root *existing_root;
1467 int i;
1469 BUG_ON(sb->s_root != NULL);
1471 ret = cgroup_get_rootdir(sb);
1472 if (ret)
1473 goto drop_new_super;
1474 inode = sb->s_root->d_inode;
1476 mutex_lock(&inode->i_mutex);
1477 mutex_lock(&cgroup_mutex);
1479 if (strlen(root->name)) {
1480 /* Check for name clashes with existing mounts */
1481 for_each_active_root(existing_root) {
1482 if (!strcmp(existing_root->name, root->name)) {
1483 ret = -EBUSY;
1484 mutex_unlock(&cgroup_mutex);
1485 mutex_unlock(&inode->i_mutex);
1486 goto drop_new_super;
1492 * We're accessing css_set_count without locking
1493 * css_set_lock here, but that's OK - it can only be
1494 * increased by someone holding cgroup_lock, and
1495 * that's us. The worst that can happen is that we
1496 * have some link structures left over
1498 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
1499 if (ret) {
1500 mutex_unlock(&cgroup_mutex);
1501 mutex_unlock(&inode->i_mutex);
1502 goto drop_new_super;
1505 ret = rebind_subsystems(root, root->subsys_bits);
1506 if (ret == -EBUSY) {
1507 mutex_unlock(&cgroup_mutex);
1508 mutex_unlock(&inode->i_mutex);
1509 free_cg_links(&tmp_cg_links);
1510 goto drop_new_super;
1513 * There must be no failure case after here, since rebinding
1514 * takes care of subsystems' refcounts, which are explicitly
1515 * dropped in the failure exit path.
1518 /* EBUSY should be the only error here */
1519 BUG_ON(ret);
1521 list_add(&root->root_list, &roots);
1522 root_count++;
1524 sb->s_root->d_fsdata = root_cgrp;
1525 root->top_cgroup.dentry = sb->s_root;
1527 /* Link the top cgroup in this hierarchy into all
1528 * the css_set objects */
1529 write_lock(&css_set_lock);
1530 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
1531 struct hlist_head *hhead = &css_set_table[i];
1532 struct hlist_node *node;
1533 struct css_set *cg;
1535 hlist_for_each_entry(cg, node, hhead, hlist)
1536 link_css_set(&tmp_cg_links, cg, root_cgrp);
1538 write_unlock(&css_set_lock);
1540 free_cg_links(&tmp_cg_links);
1542 BUG_ON(!list_empty(&root_cgrp->sibling));
1543 BUG_ON(!list_empty(&root_cgrp->children));
1544 BUG_ON(root->number_of_cgroups != 1);
1546 cgroup_populate_dir(root_cgrp);
1547 mutex_unlock(&cgroup_mutex);
1548 mutex_unlock(&inode->i_mutex);
1549 } else {
1551 * We re-used an existing hierarchy - the new root (if
1552 * any) is not needed
1554 cgroup_drop_root(opts.new_root);
1555 /* no subsys rebinding, so refcounts don't change */
1556 drop_parsed_module_refcounts(opts.subsys_bits);
1559 simple_set_mnt(mnt, sb);
1560 kfree(opts.release_agent);
1561 kfree(opts.name);
1562 return 0;
1564 drop_new_super:
1565 deactivate_locked_super(sb);
1566 drop_modules:
1567 drop_parsed_module_refcounts(opts.subsys_bits);
1568 out_err:
1569 kfree(opts.release_agent);
1570 kfree(opts.name);
1572 return ret;
1575 static void cgroup_kill_sb(struct super_block *sb) {
1576 struct cgroupfs_root *root = sb->s_fs_info;
1577 struct cgroup *cgrp = &root->top_cgroup;
1578 int ret;
1579 struct cg_cgroup_link *link;
1580 struct cg_cgroup_link *saved_link;
1582 BUG_ON(!root);
1584 BUG_ON(root->number_of_cgroups != 1);
1585 BUG_ON(!list_empty(&cgrp->children));
1586 BUG_ON(!list_empty(&cgrp->sibling));
1588 mutex_lock(&cgroup_mutex);
1590 /* Rebind all subsystems back to the default hierarchy */
1591 ret = rebind_subsystems(root, 0);
1592 /* Shouldn't be able to fail ... */
1593 BUG_ON(ret);
1596 * Release all the links from css_sets to this hierarchy's
1597 * root cgroup
1599 write_lock(&css_set_lock);
1601 list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1602 cgrp_link_list) {
1603 list_del(&link->cg_link_list);
1604 list_del(&link->cgrp_link_list);
1605 kfree(link);
1607 write_unlock(&css_set_lock);
1609 if (!list_empty(&root->root_list)) {
1610 list_del(&root->root_list);
1611 root_count--;
1614 mutex_unlock(&cgroup_mutex);
1616 kill_litter_super(sb);
1617 cgroup_drop_root(root);
1620 static struct file_system_type cgroup_fs_type = {
1621 .name = "cgroup",
1622 .get_sb = cgroup_get_sb,
1623 .kill_sb = cgroup_kill_sb,
1626 static struct kobject *cgroup_kobj;
1628 static inline struct cgroup *__d_cgrp(struct dentry *dentry)
1630 return dentry->d_fsdata;
1633 static inline struct cftype *__d_cft(struct dentry *dentry)
1635 return dentry->d_fsdata;
1639 * cgroup_path - generate the path of a cgroup
1640 * @cgrp: the cgroup in question
1641 * @buf: the buffer to write the path into
1642 * @buflen: the length of the buffer
1644 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1645 * reference. Writes path of cgroup into buf. Returns 0 on success,
1646 * -errno on error.
1648 int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1650 char *start;
1651 struct dentry *dentry = rcu_dereference_check(cgrp->dentry,
1652 rcu_read_lock_held() ||
1653 cgroup_lock_is_held());
1655 if (!dentry || cgrp == dummytop) {
1657 * Inactive subsystems have no dentry for their root
1658 * cgroup
1660 strcpy(buf, "/");
1661 return 0;
1664 start = buf + buflen;
1666 *--start = '\0';
1667 for (;;) {
1668 int len = dentry->d_name.len;
1670 if ((start -= len) < buf)
1671 return -ENAMETOOLONG;
1672 memcpy(start, dentry->d_name.name, len);
1673 cgrp = cgrp->parent;
1674 if (!cgrp)
1675 break;
1677 dentry = rcu_dereference_check(cgrp->dentry,
1678 rcu_read_lock_held() ||
1679 cgroup_lock_is_held());
1680 if (!cgrp->parent)
1681 continue;
1682 if (--start < buf)
1683 return -ENAMETOOLONG;
1684 *start = '/';
1686 memmove(buf, start, buf + buflen - start);
1687 return 0;
1689 EXPORT_SYMBOL_GPL(cgroup_path);
1692 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1693 * @cgrp: the cgroup the task is attaching to
1694 * @tsk: the task to be attached
1696 * Call holding cgroup_mutex. May take task_lock of
1697 * the task 'tsk' during call.
1699 int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1701 int retval = 0;
1702 struct cgroup_subsys *ss, *failed_ss = NULL;
1703 struct cgroup *oldcgrp;
1704 struct css_set *cg;
1705 struct css_set *newcg;
1706 struct cgroupfs_root *root = cgrp->root;
1708 /* Nothing to do if the task is already in that cgroup */
1709 oldcgrp = task_cgroup_from_root(tsk, root);
1710 if (cgrp == oldcgrp)
1711 return 0;
1713 for_each_subsys(root, ss) {
1714 if (ss->can_attach) {
1715 retval = ss->can_attach(ss, cgrp, tsk, false);
1716 if (retval) {
1718 * Remember on which subsystem the can_attach()
1719 * failed, so that we only call cancel_attach()
1720 * against the subsystems whose can_attach()
1721 * succeeded. (See below)
1723 failed_ss = ss;
1724 goto out;
1729 task_lock(tsk);
1730 cg = tsk->cgroups;
1731 get_css_set(cg);
1732 task_unlock(tsk);
1734 * Locate or allocate a new css_set for this task,
1735 * based on its final set of cgroups
1737 newcg = find_css_set(cg, cgrp);
1738 put_css_set(cg);
1739 if (!newcg) {
1740 retval = -ENOMEM;
1741 goto out;
1744 task_lock(tsk);
1745 if (tsk->flags & PF_EXITING) {
1746 task_unlock(tsk);
1747 put_css_set(newcg);
1748 retval = -ESRCH;
1749 goto out;
1751 rcu_assign_pointer(tsk->cgroups, newcg);
1752 task_unlock(tsk);
1754 /* Update the css_set linked lists if we're using them */
1755 write_lock(&css_set_lock);
1756 if (!list_empty(&tsk->cg_list)) {
1757 list_del(&tsk->cg_list);
1758 list_add(&tsk->cg_list, &newcg->tasks);
1760 write_unlock(&css_set_lock);
1762 for_each_subsys(root, ss) {
1763 if (ss->attach)
1764 ss->attach(ss, cgrp, oldcgrp, tsk, false);
1766 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1767 synchronize_rcu();
1768 put_css_set(cg);
1771 * wake up rmdir() waiter. the rmdir should fail since the cgroup
1772 * is no longer empty.
1774 cgroup_wakeup_rmdir_waiter(cgrp);
1775 out:
1776 if (retval) {
1777 for_each_subsys(root, ss) {
1778 if (ss == failed_ss)
1780 * This subsystem was the one that failed the
1781 * can_attach() check earlier, so we don't need
1782 * to call cancel_attach() against it or any
1783 * remaining subsystems.
1785 break;
1786 if (ss->cancel_attach)
1787 ss->cancel_attach(ss, cgrp, tsk, false);
1790 return retval;
1794 * cgroup_attach_task_current_cg - attach task 'tsk' to current task's cgroup
1795 * @tsk: the task to be attached
1797 int cgroup_attach_task_current_cg(struct task_struct *tsk)
1799 struct cgroupfs_root *root;
1800 struct cgroup *cur_cg;
1801 int retval = 0;
1803 cgroup_lock();
1804 for_each_active_root(root) {
1805 cur_cg = task_cgroup_from_root(current, root);
1806 retval = cgroup_attach_task(cur_cg, tsk);
1807 if (retval)
1808 break;
1810 cgroup_unlock();
1812 return retval;
1814 EXPORT_SYMBOL_GPL(cgroup_attach_task_current_cg);
1817 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with cgroup_mutex
1818 * held. May take task_lock of task
1820 static int attach_task_by_pid(struct cgroup *cgrp, u64 pid)
1822 struct task_struct *tsk;
1823 const struct cred *cred = current_cred(), *tcred;
1824 int ret;
1826 if (pid) {
1827 rcu_read_lock();
1828 tsk = find_task_by_vpid(pid);
1829 if (!tsk || tsk->flags & PF_EXITING) {
1830 rcu_read_unlock();
1831 return -ESRCH;
1834 tcred = __task_cred(tsk);
1835 if (cred->euid &&
1836 cred->euid != tcred->uid &&
1837 cred->euid != tcred->suid) {
1838 rcu_read_unlock();
1839 return -EACCES;
1841 get_task_struct(tsk);
1842 rcu_read_unlock();
1843 } else {
1844 tsk = current;
1845 get_task_struct(tsk);
1848 ret = cgroup_attach_task(cgrp, tsk);
1849 put_task_struct(tsk);
1850 return ret;
1853 static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
1855 int ret;
1856 if (!cgroup_lock_live_group(cgrp))
1857 return -ENODEV;
1858 ret = attach_task_by_pid(cgrp, pid);
1859 cgroup_unlock();
1860 return ret;
1864 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
1865 * @cgrp: the cgroup to be checked for liveness
1867 * On success, returns true; the lock should be later released with
1868 * cgroup_unlock(). On failure returns false with no lock held.
1870 bool cgroup_lock_live_group(struct cgroup *cgrp)
1872 mutex_lock(&cgroup_mutex);
1873 if (cgroup_is_removed(cgrp)) {
1874 mutex_unlock(&cgroup_mutex);
1875 return false;
1877 return true;
1879 EXPORT_SYMBOL_GPL(cgroup_lock_live_group);
1881 static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
1882 const char *buffer)
1884 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
1885 if (!cgroup_lock_live_group(cgrp))
1886 return -ENODEV;
1887 strcpy(cgrp->root->release_agent_path, buffer);
1888 cgroup_unlock();
1889 return 0;
1892 static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
1893 struct seq_file *seq)
1895 if (!cgroup_lock_live_group(cgrp))
1896 return -ENODEV;
1897 seq_puts(seq, cgrp->root->release_agent_path);
1898 seq_putc(seq, '\n');
1899 cgroup_unlock();
1900 return 0;
1903 /* A buffer size big enough for numbers or short strings */
1904 #define CGROUP_LOCAL_BUFFER_SIZE 64
1906 static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
1907 struct file *file,
1908 const char __user *userbuf,
1909 size_t nbytes, loff_t *unused_ppos)
1911 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
1912 int retval = 0;
1913 char *end;
1915 if (!nbytes)
1916 return -EINVAL;
1917 if (nbytes >= sizeof(buffer))
1918 return -E2BIG;
1919 if (copy_from_user(buffer, userbuf, nbytes))
1920 return -EFAULT;
1922 buffer[nbytes] = 0; /* nul-terminate */
1923 if (cft->write_u64) {
1924 u64 val = simple_strtoull(strstrip(buffer), &end, 0);
1925 if (*end)
1926 return -EINVAL;
1927 retval = cft->write_u64(cgrp, cft, val);
1928 } else {
1929 s64 val = simple_strtoll(strstrip(buffer), &end, 0);
1930 if (*end)
1931 return -EINVAL;
1932 retval = cft->write_s64(cgrp, cft, val);
1934 if (!retval)
1935 retval = nbytes;
1936 return retval;
1939 static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
1940 struct file *file,
1941 const char __user *userbuf,
1942 size_t nbytes, loff_t *unused_ppos)
1944 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
1945 int retval = 0;
1946 size_t max_bytes = cft->max_write_len;
1947 char *buffer = local_buffer;
1949 if (!max_bytes)
1950 max_bytes = sizeof(local_buffer) - 1;
1951 if (nbytes >= max_bytes)
1952 return -E2BIG;
1953 /* Allocate a dynamic buffer if we need one */
1954 if (nbytes >= sizeof(local_buffer)) {
1955 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
1956 if (buffer == NULL)
1957 return -ENOMEM;
1959 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
1960 retval = -EFAULT;
1961 goto out;
1964 buffer[nbytes] = 0; /* nul-terminate */
1965 retval = cft->write_string(cgrp, cft, strstrip(buffer));
1966 if (!retval)
1967 retval = nbytes;
1968 out:
1969 if (buffer != local_buffer)
1970 kfree(buffer);
1971 return retval;
1974 static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
1975 size_t nbytes, loff_t *ppos)
1977 struct cftype *cft = __d_cft(file->f_dentry);
1978 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1980 if (cgroup_is_removed(cgrp))
1981 return -ENODEV;
1982 if (cft->write)
1983 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
1984 if (cft->write_u64 || cft->write_s64)
1985 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
1986 if (cft->write_string)
1987 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
1988 if (cft->trigger) {
1989 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
1990 return ret ? ret : nbytes;
1992 return -EINVAL;
1995 static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
1996 struct file *file,
1997 char __user *buf, size_t nbytes,
1998 loff_t *ppos)
2000 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2001 u64 val = cft->read_u64(cgrp, cft);
2002 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2004 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2007 static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
2008 struct file *file,
2009 char __user *buf, size_t nbytes,
2010 loff_t *ppos)
2012 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2013 s64 val = cft->read_s64(cgrp, cft);
2014 int len = sprintf(tmp, "%lld\n", (long long) val);
2016 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2019 static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2020 size_t nbytes, loff_t *ppos)
2022 struct cftype *cft = __d_cft(file->f_dentry);
2023 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2025 if (cgroup_is_removed(cgrp))
2026 return -ENODEV;
2028 if (cft->read)
2029 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
2030 if (cft->read_u64)
2031 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
2032 if (cft->read_s64)
2033 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
2034 return -EINVAL;
2038 * seqfile ops/methods for returning structured data. Currently just
2039 * supports string->u64 maps, but can be extended in future.
2042 struct cgroup_seqfile_state {
2043 struct cftype *cft;
2044 struct cgroup *cgroup;
2047 static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2049 struct seq_file *sf = cb->state;
2050 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2053 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2055 struct cgroup_seqfile_state *state = m->private;
2056 struct cftype *cft = state->cft;
2057 if (cft->read_map) {
2058 struct cgroup_map_cb cb = {
2059 .fill = cgroup_map_add,
2060 .state = m,
2062 return cft->read_map(state->cgroup, cft, &cb);
2064 return cft->read_seq_string(state->cgroup, cft, m);
2067 static int cgroup_seqfile_release(struct inode *inode, struct file *file)
2069 struct seq_file *seq = file->private_data;
2070 kfree(seq->private);
2071 return single_release(inode, file);
2074 static const struct file_operations cgroup_seqfile_operations = {
2075 .read = seq_read,
2076 .write = cgroup_file_write,
2077 .llseek = seq_lseek,
2078 .release = cgroup_seqfile_release,
2081 static int cgroup_file_open(struct inode *inode, struct file *file)
2083 int err;
2084 struct cftype *cft;
2086 err = generic_file_open(inode, file);
2087 if (err)
2088 return err;
2089 cft = __d_cft(file->f_dentry);
2091 if (cft->read_map || cft->read_seq_string) {
2092 struct cgroup_seqfile_state *state =
2093 kzalloc(sizeof(*state), GFP_USER);
2094 if (!state)
2095 return -ENOMEM;
2096 state->cft = cft;
2097 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
2098 file->f_op = &cgroup_seqfile_operations;
2099 err = single_open(file, cgroup_seqfile_show, state);
2100 if (err < 0)
2101 kfree(state);
2102 } else if (cft->open)
2103 err = cft->open(inode, file);
2104 else
2105 err = 0;
2107 return err;
2110 static int cgroup_file_release(struct inode *inode, struct file *file)
2112 struct cftype *cft = __d_cft(file->f_dentry);
2113 if (cft->release)
2114 return cft->release(inode, file);
2115 return 0;
2119 * cgroup_rename - Only allow simple rename of directories in place.
2121 static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2122 struct inode *new_dir, struct dentry *new_dentry)
2124 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2125 return -ENOTDIR;
2126 if (new_dentry->d_inode)
2127 return -EEXIST;
2128 if (old_dir != new_dir)
2129 return -EIO;
2130 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2133 static const struct file_operations cgroup_file_operations = {
2134 .read = cgroup_file_read,
2135 .write = cgroup_file_write,
2136 .llseek = generic_file_llseek,
2137 .open = cgroup_file_open,
2138 .release = cgroup_file_release,
2141 static const struct inode_operations cgroup_dir_inode_operations = {
2142 .lookup = simple_lookup,
2143 .mkdir = cgroup_mkdir,
2144 .rmdir = cgroup_rmdir,
2145 .rename = cgroup_rename,
2149 * Check if a file is a control file
2151 static inline struct cftype *__file_cft(struct file *file)
2153 if (file->f_dentry->d_inode->i_fop != &cgroup_file_operations)
2154 return ERR_PTR(-EINVAL);
2155 return __d_cft(file->f_dentry);
2158 static int cgroup_create_file(struct dentry *dentry, mode_t mode,
2159 struct super_block *sb)
2161 static const struct dentry_operations cgroup_dops = {
2162 .d_iput = cgroup_diput,
2165 struct inode *inode;
2167 if (!dentry)
2168 return -ENOENT;
2169 if (dentry->d_inode)
2170 return -EEXIST;
2172 inode = cgroup_new_inode(mode, sb);
2173 if (!inode)
2174 return -ENOMEM;
2176 if (S_ISDIR(mode)) {
2177 inode->i_op = &cgroup_dir_inode_operations;
2178 inode->i_fop = &simple_dir_operations;
2180 /* start off with i_nlink == 2 (for "." entry) */
2181 inc_nlink(inode);
2183 /* start with the directory inode held, so that we can
2184 * populate it without racing with another mkdir */
2185 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2186 } else if (S_ISREG(mode)) {
2187 inode->i_size = 0;
2188 inode->i_fop = &cgroup_file_operations;
2190 dentry->d_op = &cgroup_dops;
2191 d_instantiate(dentry, inode);
2192 dget(dentry); /* Extra count - pin the dentry in core */
2193 return 0;
2197 * cgroup_create_dir - create a directory for an object.
2198 * @cgrp: the cgroup we create the directory for. It must have a valid
2199 * ->parent field. And we are going to fill its ->dentry field.
2200 * @dentry: dentry of the new cgroup
2201 * @mode: mode to set on new directory.
2203 static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
2204 mode_t mode)
2206 struct dentry *parent;
2207 int error = 0;
2209 parent = cgrp->parent->dentry;
2210 error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
2211 if (!error) {
2212 dentry->d_fsdata = cgrp;
2213 inc_nlink(parent->d_inode);
2214 rcu_assign_pointer(cgrp->dentry, dentry);
2215 dget(dentry);
2217 dput(dentry);
2219 return error;
2223 * cgroup_file_mode - deduce file mode of a control file
2224 * @cft: the control file in question
2226 * returns cft->mode if ->mode is not 0
2227 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2228 * returns S_IRUGO if it has only a read handler
2229 * returns S_IWUSR if it has only a write hander
2231 static mode_t cgroup_file_mode(const struct cftype *cft)
2233 mode_t mode = 0;
2235 if (cft->mode)
2236 return cft->mode;
2238 if (cft->read || cft->read_u64 || cft->read_s64 ||
2239 cft->read_map || cft->read_seq_string)
2240 mode |= S_IRUGO;
2242 if (cft->write || cft->write_u64 || cft->write_s64 ||
2243 cft->write_string || cft->trigger)
2244 mode |= S_IWUSR;
2246 return mode;
2249 int cgroup_add_file(struct cgroup *cgrp,
2250 struct cgroup_subsys *subsys,
2251 const struct cftype *cft)
2253 struct dentry *dir = cgrp->dentry;
2254 struct dentry *dentry;
2255 int error;
2256 mode_t mode;
2258 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
2259 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
2260 strcpy(name, subsys->name);
2261 strcat(name, ".");
2263 strcat(name, cft->name);
2264 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
2265 dentry = lookup_one_len(name, dir, strlen(name));
2266 if (!IS_ERR(dentry)) {
2267 mode = cgroup_file_mode(cft);
2268 error = cgroup_create_file(dentry, mode | S_IFREG,
2269 cgrp->root->sb);
2270 if (!error)
2271 dentry->d_fsdata = (void *)cft;
2272 dput(dentry);
2273 } else
2274 error = PTR_ERR(dentry);
2275 return error;
2277 EXPORT_SYMBOL_GPL(cgroup_add_file);
2279 int cgroup_add_files(struct cgroup *cgrp,
2280 struct cgroup_subsys *subsys,
2281 const struct cftype cft[],
2282 int count)
2284 int i, err;
2285 for (i = 0; i < count; i++) {
2286 err = cgroup_add_file(cgrp, subsys, &cft[i]);
2287 if (err)
2288 return err;
2290 return 0;
2292 EXPORT_SYMBOL_GPL(cgroup_add_files);
2295 * cgroup_task_count - count the number of tasks in a cgroup.
2296 * @cgrp: the cgroup in question
2298 * Return the number of tasks in the cgroup.
2300 int cgroup_task_count(const struct cgroup *cgrp)
2302 int count = 0;
2303 struct cg_cgroup_link *link;
2305 read_lock(&css_set_lock);
2306 list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
2307 count += atomic_read(&link->cg->refcount);
2309 read_unlock(&css_set_lock);
2310 return count;
2314 * Advance a list_head iterator. The iterator should be positioned at
2315 * the start of a css_set
2317 static void cgroup_advance_iter(struct cgroup *cgrp,
2318 struct cgroup_iter *it)
2320 struct list_head *l = it->cg_link;
2321 struct cg_cgroup_link *link;
2322 struct css_set *cg;
2324 /* Advance to the next non-empty css_set */
2325 do {
2326 l = l->next;
2327 if (l == &cgrp->css_sets) {
2328 it->cg_link = NULL;
2329 return;
2331 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
2332 cg = link->cg;
2333 } while (list_empty(&cg->tasks));
2334 it->cg_link = l;
2335 it->task = cg->tasks.next;
2339 * To reduce the fork() overhead for systems that are not actually
2340 * using their cgroups capability, we don't maintain the lists running
2341 * through each css_set to its tasks until we see the list actually
2342 * used - in other words after the first call to cgroup_iter_start().
2344 * The tasklist_lock is not held here, as do_each_thread() and
2345 * while_each_thread() are protected by RCU.
2347 static void cgroup_enable_task_cg_lists(void)
2349 struct task_struct *p, *g;
2350 write_lock(&css_set_lock);
2351 use_task_css_set_links = 1;
2352 do_each_thread(g, p) {
2353 task_lock(p);
2355 * We should check if the process is exiting, otherwise
2356 * it will race with cgroup_exit() in that the list
2357 * entry won't be deleted though the process has exited.
2359 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
2360 list_add(&p->cg_list, &p->cgroups->tasks);
2361 task_unlock(p);
2362 } while_each_thread(g, p);
2363 write_unlock(&css_set_lock);
2366 void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
2369 * The first time anyone tries to iterate across a cgroup,
2370 * we need to enable the list linking each css_set to its
2371 * tasks, and fix up all existing tasks.
2373 if (!use_task_css_set_links)
2374 cgroup_enable_task_cg_lists();
2376 read_lock(&css_set_lock);
2377 it->cg_link = &cgrp->css_sets;
2378 cgroup_advance_iter(cgrp, it);
2381 struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
2382 struct cgroup_iter *it)
2384 struct task_struct *res;
2385 struct list_head *l = it->task;
2386 struct cg_cgroup_link *link;
2388 /* If the iterator cg is NULL, we have no tasks */
2389 if (!it->cg_link)
2390 return NULL;
2391 res = list_entry(l, struct task_struct, cg_list);
2392 /* Advance iterator to find next entry */
2393 l = l->next;
2394 link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
2395 if (l == &link->cg->tasks) {
2396 /* We reached the end of this task list - move on to
2397 * the next cg_cgroup_link */
2398 cgroup_advance_iter(cgrp, it);
2399 } else {
2400 it->task = l;
2402 return res;
2405 void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
2407 read_unlock(&css_set_lock);
2410 static inline int started_after_time(struct task_struct *t1,
2411 struct timespec *time,
2412 struct task_struct *t2)
2414 int start_diff = timespec_compare(&t1->start_time, time);
2415 if (start_diff > 0) {
2416 return 1;
2417 } else if (start_diff < 0) {
2418 return 0;
2419 } else {
2421 * Arbitrarily, if two processes started at the same
2422 * time, we'll say that the lower pointer value
2423 * started first. Note that t2 may have exited by now
2424 * so this may not be a valid pointer any longer, but
2425 * that's fine - it still serves to distinguish
2426 * between two tasks started (effectively) simultaneously.
2428 return t1 > t2;
2433 * This function is a callback from heap_insert() and is used to order
2434 * the heap.
2435 * In this case we order the heap in descending task start time.
2437 static inline int started_after(void *p1, void *p2)
2439 struct task_struct *t1 = p1;
2440 struct task_struct *t2 = p2;
2441 return started_after_time(t1, &t2->start_time, t2);
2445 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
2446 * @scan: struct cgroup_scanner containing arguments for the scan
2448 * Arguments include pointers to callback functions test_task() and
2449 * process_task().
2450 * Iterate through all the tasks in a cgroup, calling test_task() for each,
2451 * and if it returns true, call process_task() for it also.
2452 * The test_task pointer may be NULL, meaning always true (select all tasks).
2453 * Effectively duplicates cgroup_iter_{start,next,end}()
2454 * but does not lock css_set_lock for the call to process_task().
2455 * The struct cgroup_scanner may be embedded in any structure of the caller's
2456 * creation.
2457 * It is guaranteed that process_task() will act on every task that
2458 * is a member of the cgroup for the duration of this call. This
2459 * function may or may not call process_task() for tasks that exit
2460 * or move to a different cgroup during the call, or are forked or
2461 * move into the cgroup during the call.
2463 * Note that test_task() may be called with locks held, and may in some
2464 * situations be called multiple times for the same task, so it should
2465 * be cheap.
2466 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
2467 * pre-allocated and will be used for heap operations (and its "gt" member will
2468 * be overwritten), else a temporary heap will be used (allocation of which
2469 * may cause this function to fail).
2471 int cgroup_scan_tasks(struct cgroup_scanner *scan)
2473 int retval, i;
2474 struct cgroup_iter it;
2475 struct task_struct *p, *dropped;
2476 /* Never dereference latest_task, since it's not refcounted */
2477 struct task_struct *latest_task = NULL;
2478 struct ptr_heap tmp_heap;
2479 struct ptr_heap *heap;
2480 struct timespec latest_time = { 0, 0 };
2482 if (scan->heap) {
2483 /* The caller supplied our heap and pre-allocated its memory */
2484 heap = scan->heap;
2485 heap->gt = &started_after;
2486 } else {
2487 /* We need to allocate our own heap memory */
2488 heap = &tmp_heap;
2489 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
2490 if (retval)
2491 /* cannot allocate the heap */
2492 return retval;
2495 again:
2497 * Scan tasks in the cgroup, using the scanner's "test_task" callback
2498 * to determine which are of interest, and using the scanner's
2499 * "process_task" callback to process any of them that need an update.
2500 * Since we don't want to hold any locks during the task updates,
2501 * gather tasks to be processed in a heap structure.
2502 * The heap is sorted by descending task start time.
2503 * If the statically-sized heap fills up, we overflow tasks that
2504 * started later, and in future iterations only consider tasks that
2505 * started after the latest task in the previous pass. This
2506 * guarantees forward progress and that we don't miss any tasks.
2508 heap->size = 0;
2509 cgroup_iter_start(scan->cg, &it);
2510 while ((p = cgroup_iter_next(scan->cg, &it))) {
2512 * Only affect tasks that qualify per the caller's callback,
2513 * if he provided one
2515 if (scan->test_task && !scan->test_task(p, scan))
2516 continue;
2518 * Only process tasks that started after the last task
2519 * we processed
2521 if (!started_after_time(p, &latest_time, latest_task))
2522 continue;
2523 dropped = heap_insert(heap, p);
2524 if (dropped == NULL) {
2526 * The new task was inserted; the heap wasn't
2527 * previously full
2529 get_task_struct(p);
2530 } else if (dropped != p) {
2532 * The new task was inserted, and pushed out a
2533 * different task
2535 get_task_struct(p);
2536 put_task_struct(dropped);
2539 * Else the new task was newer than anything already in
2540 * the heap and wasn't inserted
2543 cgroup_iter_end(scan->cg, &it);
2545 if (heap->size) {
2546 for (i = 0; i < heap->size; i++) {
2547 struct task_struct *q = heap->ptrs[i];
2548 if (i == 0) {
2549 latest_time = q->start_time;
2550 latest_task = q;
2552 /* Process the task per the caller's callback */
2553 scan->process_task(q, scan);
2554 put_task_struct(q);
2557 * If we had to process any tasks at all, scan again
2558 * in case some of them were in the middle of forking
2559 * children that didn't get processed.
2560 * Not the most efficient way to do it, but it avoids
2561 * having to take callback_mutex in the fork path
2563 goto again;
2565 if (heap == &tmp_heap)
2566 heap_free(&tmp_heap);
2567 return 0;
2571 * Stuff for reading the 'tasks'/'procs' files.
2573 * Reading this file can return large amounts of data if a cgroup has
2574 * *lots* of attached tasks. So it may need several calls to read(),
2575 * but we cannot guarantee that the information we produce is correct
2576 * unless we produce it entirely atomically.
2581 * The following two functions "fix" the issue where there are more pids
2582 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
2583 * TODO: replace with a kernel-wide solution to this problem
2585 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
2586 static void *pidlist_allocate(int count)
2588 if (PIDLIST_TOO_LARGE(count))
2589 return vmalloc(count * sizeof(pid_t));
2590 else
2591 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
2593 static void pidlist_free(void *p)
2595 if (is_vmalloc_addr(p))
2596 vfree(p);
2597 else
2598 kfree(p);
2600 static void *pidlist_resize(void *p, int newcount)
2602 void *newlist;
2603 /* note: if new alloc fails, old p will still be valid either way */
2604 if (is_vmalloc_addr(p)) {
2605 newlist = vmalloc(newcount * sizeof(pid_t));
2606 if (!newlist)
2607 return NULL;
2608 memcpy(newlist, p, newcount * sizeof(pid_t));
2609 vfree(p);
2610 } else {
2611 newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL);
2613 return newlist;
2617 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
2618 * If the new stripped list is sufficiently smaller and there's enough memory
2619 * to allocate a new buffer, will let go of the unneeded memory. Returns the
2620 * number of unique elements.
2622 /* is the size difference enough that we should re-allocate the array? */
2623 #define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
2624 static int pidlist_uniq(pid_t **p, int length)
2626 int src, dest = 1;
2627 pid_t *list = *p;
2628 pid_t *newlist;
2631 * we presume the 0th element is unique, so i starts at 1. trivial
2632 * edge cases first; no work needs to be done for either
2634 if (length == 0 || length == 1)
2635 return length;
2636 /* src and dest walk down the list; dest counts unique elements */
2637 for (src = 1; src < length; src++) {
2638 /* find next unique element */
2639 while (list[src] == list[src-1]) {
2640 src++;
2641 if (src == length)
2642 goto after;
2644 /* dest always points to where the next unique element goes */
2645 list[dest] = list[src];
2646 dest++;
2648 after:
2650 * if the length difference is large enough, we want to allocate a
2651 * smaller buffer to save memory. if this fails due to out of memory,
2652 * we'll just stay with what we've got.
2654 if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) {
2655 newlist = pidlist_resize(list, dest);
2656 if (newlist)
2657 *p = newlist;
2659 return dest;
2662 static int cmppid(const void *a, const void *b)
2664 return *(pid_t *)a - *(pid_t *)b;
2668 * find the appropriate pidlist for our purpose (given procs vs tasks)
2669 * returns with the lock on that pidlist already held, and takes care
2670 * of the use count, or returns NULL with no locks held if we're out of
2671 * memory.
2673 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
2674 enum cgroup_filetype type)
2676 struct cgroup_pidlist *l;
2677 /* don't need task_nsproxy() if we're looking at ourself */
2678 struct pid_namespace *ns = current->nsproxy->pid_ns;
2681 * We can't drop the pidlist_mutex before taking the l->mutex in case
2682 * the last ref-holder is trying to remove l from the list at the same
2683 * time. Holding the pidlist_mutex precludes somebody taking whichever
2684 * list we find out from under us - compare release_pid_array().
2686 mutex_lock(&cgrp->pidlist_mutex);
2687 list_for_each_entry(l, &cgrp->pidlists, links) {
2688 if (l->key.type == type && l->key.ns == ns) {
2689 /* make sure l doesn't vanish out from under us */
2690 down_write(&l->mutex);
2691 mutex_unlock(&cgrp->pidlist_mutex);
2692 return l;
2695 /* entry not found; create a new one */
2696 l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
2697 if (!l) {
2698 mutex_unlock(&cgrp->pidlist_mutex);
2699 return l;
2701 init_rwsem(&l->mutex);
2702 down_write(&l->mutex);
2703 l->key.type = type;
2704 l->key.ns = get_pid_ns(ns);
2705 l->use_count = 0; /* don't increment here */
2706 l->list = NULL;
2707 l->owner = cgrp;
2708 list_add(&l->links, &cgrp->pidlists);
2709 mutex_unlock(&cgrp->pidlist_mutex);
2710 return l;
2714 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
2716 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
2717 struct cgroup_pidlist **lp)
2719 pid_t *array;
2720 int length;
2721 int pid, n = 0; /* used for populating the array */
2722 struct cgroup_iter it;
2723 struct task_struct *tsk;
2724 struct cgroup_pidlist *l;
2727 * If cgroup gets more users after we read count, we won't have
2728 * enough space - tough. This race is indistinguishable to the
2729 * caller from the case that the additional cgroup users didn't
2730 * show up until sometime later on.
2732 length = cgroup_task_count(cgrp);
2733 array = pidlist_allocate(length);
2734 if (!array)
2735 return -ENOMEM;
2736 /* now, populate the array */
2737 cgroup_iter_start(cgrp, &it);
2738 while ((tsk = cgroup_iter_next(cgrp, &it))) {
2739 if (unlikely(n == length))
2740 break;
2741 /* get tgid or pid for procs or tasks file respectively */
2742 if (type == CGROUP_FILE_PROCS)
2743 pid = task_tgid_vnr(tsk);
2744 else
2745 pid = task_pid_vnr(tsk);
2746 if (pid > 0) /* make sure to only use valid results */
2747 array[n++] = pid;
2749 cgroup_iter_end(cgrp, &it);
2750 length = n;
2751 /* now sort & (if procs) strip out duplicates */
2752 sort(array, length, sizeof(pid_t), cmppid, NULL);
2753 if (type == CGROUP_FILE_PROCS)
2754 length = pidlist_uniq(&array, length);
2755 l = cgroup_pidlist_find(cgrp, type);
2756 if (!l) {
2757 pidlist_free(array);
2758 return -ENOMEM;
2760 /* store array, freeing old if necessary - lock already held */
2761 pidlist_free(l->list);
2762 l->list = array;
2763 l->length = length;
2764 l->use_count++;
2765 up_write(&l->mutex);
2766 *lp = l;
2767 return 0;
2771 * cgroupstats_build - build and fill cgroupstats
2772 * @stats: cgroupstats to fill information into
2773 * @dentry: A dentry entry belonging to the cgroup for which stats have
2774 * been requested.
2776 * Build and fill cgroupstats so that taskstats can export it to user
2777 * space.
2779 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
2781 int ret = -EINVAL;
2782 struct cgroup *cgrp;
2783 struct cgroup_iter it;
2784 struct task_struct *tsk;
2787 * Validate dentry by checking the superblock operations,
2788 * and make sure it's a directory.
2790 if (dentry->d_sb->s_op != &cgroup_ops ||
2791 !S_ISDIR(dentry->d_inode->i_mode))
2792 goto err;
2794 ret = 0;
2795 cgrp = dentry->d_fsdata;
2797 cgroup_iter_start(cgrp, &it);
2798 while ((tsk = cgroup_iter_next(cgrp, &it))) {
2799 switch (tsk->state) {
2800 case TASK_RUNNING:
2801 stats->nr_running++;
2802 break;
2803 case TASK_INTERRUPTIBLE:
2804 stats->nr_sleeping++;
2805 break;
2806 case TASK_UNINTERRUPTIBLE:
2807 stats->nr_uninterruptible++;
2808 break;
2809 case TASK_STOPPED:
2810 stats->nr_stopped++;
2811 break;
2812 default:
2813 if (delayacct_is_task_waiting_on_io(tsk))
2814 stats->nr_io_wait++;
2815 break;
2818 cgroup_iter_end(cgrp, &it);
2820 err:
2821 return ret;
2826 * seq_file methods for the tasks/procs files. The seq_file position is the
2827 * next pid to display; the seq_file iterator is a pointer to the pid
2828 * in the cgroup->l->list array.
2831 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
2834 * Initially we receive a position value that corresponds to
2835 * one more than the last pid shown (or 0 on the first call or
2836 * after a seek to the start). Use a binary-search to find the
2837 * next pid to display, if any
2839 struct cgroup_pidlist *l = s->private;
2840 int index = 0, pid = *pos;
2841 int *iter;
2843 down_read(&l->mutex);
2844 if (pid) {
2845 int end = l->length;
2847 while (index < end) {
2848 int mid = (index + end) / 2;
2849 if (l->list[mid] == pid) {
2850 index = mid;
2851 break;
2852 } else if (l->list[mid] <= pid)
2853 index = mid + 1;
2854 else
2855 end = mid;
2858 /* If we're off the end of the array, we're done */
2859 if (index >= l->length)
2860 return NULL;
2861 /* Update the abstract position to be the actual pid that we found */
2862 iter = l->list + index;
2863 *pos = *iter;
2864 return iter;
2867 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
2869 struct cgroup_pidlist *l = s->private;
2870 up_read(&l->mutex);
2873 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
2875 struct cgroup_pidlist *l = s->private;
2876 pid_t *p = v;
2877 pid_t *end = l->list + l->length;
2879 * Advance to the next pid in the array. If this goes off the
2880 * end, we're done
2882 p++;
2883 if (p >= end) {
2884 return NULL;
2885 } else {
2886 *pos = *p;
2887 return p;
2891 static int cgroup_pidlist_show(struct seq_file *s, void *v)
2893 return seq_printf(s, "%d\n", *(int *)v);
2897 * seq_operations functions for iterating on pidlists through seq_file -
2898 * independent of whether it's tasks or procs
2900 static const struct seq_operations cgroup_pidlist_seq_operations = {
2901 .start = cgroup_pidlist_start,
2902 .stop = cgroup_pidlist_stop,
2903 .next = cgroup_pidlist_next,
2904 .show = cgroup_pidlist_show,
2907 static void cgroup_release_pid_array(struct cgroup_pidlist *l)
2910 * the case where we're the last user of this particular pidlist will
2911 * have us remove it from the cgroup's list, which entails taking the
2912 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
2913 * pidlist_mutex, we have to take pidlist_mutex first.
2915 mutex_lock(&l->owner->pidlist_mutex);
2916 down_write(&l->mutex);
2917 BUG_ON(!l->use_count);
2918 if (!--l->use_count) {
2919 /* we're the last user if refcount is 0; remove and free */
2920 list_del(&l->links);
2921 mutex_unlock(&l->owner->pidlist_mutex);
2922 pidlist_free(l->list);
2923 put_pid_ns(l->key.ns);
2924 up_write(&l->mutex);
2925 kfree(l);
2926 return;
2928 mutex_unlock(&l->owner->pidlist_mutex);
2929 up_write(&l->mutex);
2932 static int cgroup_pidlist_release(struct inode *inode, struct file *file)
2934 struct cgroup_pidlist *l;
2935 if (!(file->f_mode & FMODE_READ))
2936 return 0;
2938 * the seq_file will only be initialized if the file was opened for
2939 * reading; hence we check if it's not null only in that case.
2941 l = ((struct seq_file *)file->private_data)->private;
2942 cgroup_release_pid_array(l);
2943 return seq_release(inode, file);
2946 static const struct file_operations cgroup_pidlist_operations = {
2947 .read = seq_read,
2948 .llseek = seq_lseek,
2949 .write = cgroup_file_write,
2950 .release = cgroup_pidlist_release,
2954 * The following functions handle opens on a file that displays a pidlist
2955 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
2956 * in the cgroup.
2958 /* helper function for the two below it */
2959 static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
2961 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2962 struct cgroup_pidlist *l;
2963 int retval;
2965 /* Nothing to do for write-only files */
2966 if (!(file->f_mode & FMODE_READ))
2967 return 0;
2969 /* have the array populated */
2970 retval = pidlist_array_load(cgrp, type, &l);
2971 if (retval)
2972 return retval;
2973 /* configure file information */
2974 file->f_op = &cgroup_pidlist_operations;
2976 retval = seq_open(file, &cgroup_pidlist_seq_operations);
2977 if (retval) {
2978 cgroup_release_pid_array(l);
2979 return retval;
2981 ((struct seq_file *)file->private_data)->private = l;
2982 return 0;
2984 static int cgroup_tasks_open(struct inode *unused, struct file *file)
2986 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
2988 static int cgroup_procs_open(struct inode *unused, struct file *file)
2990 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
2993 static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
2994 struct cftype *cft)
2996 return notify_on_release(cgrp);
2999 static int cgroup_write_notify_on_release(struct cgroup *cgrp,
3000 struct cftype *cft,
3001 u64 val)
3003 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
3004 if (val)
3005 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3006 else
3007 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3008 return 0;
3012 * Unregister event and free resources.
3014 * Gets called from workqueue.
3016 static void cgroup_event_remove(struct work_struct *work)
3018 struct cgroup_event *event = container_of(work, struct cgroup_event,
3019 remove);
3020 struct cgroup *cgrp = event->cgrp;
3022 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3024 eventfd_ctx_put(event->eventfd);
3025 kfree(event);
3026 dput(cgrp->dentry);
3030 * Gets called on POLLHUP on eventfd when user closes it.
3032 * Called with wqh->lock held and interrupts disabled.
3034 static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3035 int sync, void *key)
3037 struct cgroup_event *event = container_of(wait,
3038 struct cgroup_event, wait);
3039 struct cgroup *cgrp = event->cgrp;
3040 unsigned long flags = (unsigned long)key;
3042 if (flags & POLLHUP) {
3043 __remove_wait_queue(event->wqh, &event->wait);
3044 spin_lock(&cgrp->event_list_lock);
3045 list_del(&event->list);
3046 spin_unlock(&cgrp->event_list_lock);
3048 * We are in atomic context, but cgroup_event_remove() may
3049 * sleep, so we have to call it in workqueue.
3051 schedule_work(&event->remove);
3054 return 0;
3057 static void cgroup_event_ptable_queue_proc(struct file *file,
3058 wait_queue_head_t *wqh, poll_table *pt)
3060 struct cgroup_event *event = container_of(pt,
3061 struct cgroup_event, pt);
3063 event->wqh = wqh;
3064 add_wait_queue(wqh, &event->wait);
3068 * Parse input and register new cgroup event handler.
3070 * Input must be in format '<event_fd> <control_fd> <args>'.
3071 * Interpretation of args is defined by control file implementation.
3073 static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
3074 const char *buffer)
3076 struct cgroup_event *event = NULL;
3077 unsigned int efd, cfd;
3078 struct file *efile = NULL;
3079 struct file *cfile = NULL;
3080 char *endp;
3081 int ret;
3083 efd = simple_strtoul(buffer, &endp, 10);
3084 if (*endp != ' ')
3085 return -EINVAL;
3086 buffer = endp + 1;
3088 cfd = simple_strtoul(buffer, &endp, 10);
3089 if ((*endp != ' ') && (*endp != '\0'))
3090 return -EINVAL;
3091 buffer = endp + 1;
3093 event = kzalloc(sizeof(*event), GFP_KERNEL);
3094 if (!event)
3095 return -ENOMEM;
3096 event->cgrp = cgrp;
3097 INIT_LIST_HEAD(&event->list);
3098 init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
3099 init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
3100 INIT_WORK(&event->remove, cgroup_event_remove);
3102 efile = eventfd_fget(efd);
3103 if (IS_ERR(efile)) {
3104 ret = PTR_ERR(efile);
3105 goto fail;
3108 event->eventfd = eventfd_ctx_fileget(efile);
3109 if (IS_ERR(event->eventfd)) {
3110 ret = PTR_ERR(event->eventfd);
3111 goto fail;
3114 cfile = fget(cfd);
3115 if (!cfile) {
3116 ret = -EBADF;
3117 goto fail;
3120 /* the process need read permission on control file */
3121 ret = file_permission(cfile, MAY_READ);
3122 if (ret < 0)
3123 goto fail;
3125 event->cft = __file_cft(cfile);
3126 if (IS_ERR(event->cft)) {
3127 ret = PTR_ERR(event->cft);
3128 goto fail;
3131 if (!event->cft->register_event || !event->cft->unregister_event) {
3132 ret = -EINVAL;
3133 goto fail;
3136 ret = event->cft->register_event(cgrp, event->cft,
3137 event->eventfd, buffer);
3138 if (ret)
3139 goto fail;
3141 if (efile->f_op->poll(efile, &event->pt) & POLLHUP) {
3142 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3143 ret = 0;
3144 goto fail;
3148 * Events should be removed after rmdir of cgroup directory, but before
3149 * destroying subsystem state objects. Let's take reference to cgroup
3150 * directory dentry to do that.
3152 dget(cgrp->dentry);
3154 spin_lock(&cgrp->event_list_lock);
3155 list_add(&event->list, &cgrp->event_list);
3156 spin_unlock(&cgrp->event_list_lock);
3158 fput(cfile);
3159 fput(efile);
3161 return 0;
3163 fail:
3164 if (cfile)
3165 fput(cfile);
3167 if (event && event->eventfd && !IS_ERR(event->eventfd))
3168 eventfd_ctx_put(event->eventfd);
3170 if (!IS_ERR_OR_NULL(efile))
3171 fput(efile);
3173 kfree(event);
3175 return ret;
3179 * for the common functions, 'private' gives the type of file
3181 /* for hysterical raisins, we can't put this on the older files */
3182 #define CGROUP_FILE_GENERIC_PREFIX "cgroup."
3183 static struct cftype files[] = {
3185 .name = "tasks",
3186 .open = cgroup_tasks_open,
3187 .write_u64 = cgroup_tasks_write,
3188 .release = cgroup_pidlist_release,
3189 .mode = S_IRUGO | S_IWUSR,
3192 .name = CGROUP_FILE_GENERIC_PREFIX "procs",
3193 .open = cgroup_procs_open,
3194 /* .write_u64 = cgroup_procs_write, TODO */
3195 .release = cgroup_pidlist_release,
3196 .mode = S_IRUGO,
3199 .name = "notify_on_release",
3200 .read_u64 = cgroup_read_notify_on_release,
3201 .write_u64 = cgroup_write_notify_on_release,
3204 .name = CGROUP_FILE_GENERIC_PREFIX "event_control",
3205 .write_string = cgroup_write_event_control,
3206 .mode = S_IWUGO,
3210 static struct cftype cft_release_agent = {
3211 .name = "release_agent",
3212 .read_seq_string = cgroup_release_agent_show,
3213 .write_string = cgroup_release_agent_write,
3214 .max_write_len = PATH_MAX,
3217 static int cgroup_populate_dir(struct cgroup *cgrp)
3219 int err;
3220 struct cgroup_subsys *ss;
3222 /* First clear out any existing files */
3223 cgroup_clear_directory(cgrp->dentry);
3225 err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
3226 if (err < 0)
3227 return err;
3229 if (cgrp == cgrp->top_cgroup) {
3230 if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
3231 return err;
3234 for_each_subsys(cgrp->root, ss) {
3235 if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
3236 return err;
3238 /* This cgroup is ready now */
3239 for_each_subsys(cgrp->root, ss) {
3240 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3242 * Update id->css pointer and make this css visible from
3243 * CSS ID functions. This pointer will be dereferened
3244 * from RCU-read-side without locks.
3246 if (css->id)
3247 rcu_assign_pointer(css->id->css, css);
3250 return 0;
3253 static void init_cgroup_css(struct cgroup_subsys_state *css,
3254 struct cgroup_subsys *ss,
3255 struct cgroup *cgrp)
3257 css->cgroup = cgrp;
3258 atomic_set(&css->refcnt, 1);
3259 css->flags = 0;
3260 css->id = NULL;
3261 if (cgrp == dummytop)
3262 set_bit(CSS_ROOT, &css->flags);
3263 BUG_ON(cgrp->subsys[ss->subsys_id]);
3264 cgrp->subsys[ss->subsys_id] = css;
3267 static void cgroup_lock_hierarchy(struct cgroupfs_root *root)
3269 /* We need to take each hierarchy_mutex in a consistent order */
3270 int i;
3273 * No worry about a race with rebind_subsystems that might mess up the
3274 * locking order, since both parties are under cgroup_mutex.
3276 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3277 struct cgroup_subsys *ss = subsys[i];
3278 if (ss == NULL)
3279 continue;
3280 if (ss->root == root)
3281 mutex_lock(&ss->hierarchy_mutex);
3285 static void cgroup_unlock_hierarchy(struct cgroupfs_root *root)
3287 int i;
3289 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3290 struct cgroup_subsys *ss = subsys[i];
3291 if (ss == NULL)
3292 continue;
3293 if (ss->root == root)
3294 mutex_unlock(&ss->hierarchy_mutex);
3299 * cgroup_create - create a cgroup
3300 * @parent: cgroup that will be parent of the new cgroup
3301 * @dentry: dentry of the new cgroup
3302 * @mode: mode to set on new inode
3304 * Must be called with the mutex on the parent inode held
3306 static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
3307 mode_t mode)
3309 struct cgroup *cgrp;
3310 struct cgroupfs_root *root = parent->root;
3311 int err = 0;
3312 struct cgroup_subsys *ss;
3313 struct super_block *sb = root->sb;
3315 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
3316 if (!cgrp)
3317 return -ENOMEM;
3319 /* Grab a reference on the superblock so the hierarchy doesn't
3320 * get deleted on unmount if there are child cgroups. This
3321 * can be done outside cgroup_mutex, since the sb can't
3322 * disappear while someone has an open control file on the
3323 * fs */
3324 atomic_inc(&sb->s_active);
3326 mutex_lock(&cgroup_mutex);
3328 init_cgroup_housekeeping(cgrp);
3330 cgrp->parent = parent;
3331 cgrp->root = parent->root;
3332 cgrp->top_cgroup = parent->top_cgroup;
3334 if (notify_on_release(parent))
3335 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3337 for_each_subsys(root, ss) {
3338 struct cgroup_subsys_state *css = ss->create(ss, cgrp);
3340 if (IS_ERR(css)) {
3341 err = PTR_ERR(css);
3342 goto err_destroy;
3344 init_cgroup_css(css, ss, cgrp);
3345 if (ss->use_id) {
3346 err = alloc_css_id(ss, parent, cgrp);
3347 if (err)
3348 goto err_destroy;
3350 /* At error, ->destroy() callback has to free assigned ID. */
3353 cgroup_lock_hierarchy(root);
3354 list_add(&cgrp->sibling, &cgrp->parent->children);
3355 cgroup_unlock_hierarchy(root);
3356 root->number_of_cgroups++;
3358 err = cgroup_create_dir(cgrp, dentry, mode);
3359 if (err < 0)
3360 goto err_remove;
3362 /* The cgroup directory was pre-locked for us */
3363 BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
3365 err = cgroup_populate_dir(cgrp);
3366 /* If err < 0, we have a half-filled directory - oh well ;) */
3368 mutex_unlock(&cgroup_mutex);
3369 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
3371 return 0;
3373 err_remove:
3375 cgroup_lock_hierarchy(root);
3376 list_del(&cgrp->sibling);
3377 cgroup_unlock_hierarchy(root);
3378 root->number_of_cgroups--;
3380 err_destroy:
3382 for_each_subsys(root, ss) {
3383 if (cgrp->subsys[ss->subsys_id])
3384 ss->destroy(ss, cgrp);
3387 mutex_unlock(&cgroup_mutex);
3389 /* Release the reference count that we took on the superblock */
3390 deactivate_super(sb);
3392 kfree(cgrp);
3393 return err;
3396 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
3398 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
3400 /* the vfs holds inode->i_mutex already */
3401 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
3404 static int cgroup_has_css_refs(struct cgroup *cgrp)
3406 /* Check the reference count on each subsystem. Since we
3407 * already established that there are no tasks in the
3408 * cgroup, if the css refcount is also 1, then there should
3409 * be no outstanding references, so the subsystem is safe to
3410 * destroy. We scan across all subsystems rather than using
3411 * the per-hierarchy linked list of mounted subsystems since
3412 * we can be called via check_for_release() with no
3413 * synchronization other than RCU, and the subsystem linked
3414 * list isn't RCU-safe */
3415 int i;
3417 * We won't need to lock the subsys array, because the subsystems
3418 * we're concerned about aren't going anywhere since our cgroup root
3419 * has a reference on them.
3421 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3422 struct cgroup_subsys *ss = subsys[i];
3423 struct cgroup_subsys_state *css;
3424 /* Skip subsystems not present or not in this hierarchy */
3425 if (ss == NULL || ss->root != cgrp->root)
3426 continue;
3427 css = cgrp->subsys[ss->subsys_id];
3428 /* When called from check_for_release() it's possible
3429 * that by this point the cgroup has been removed
3430 * and the css deleted. But a false-positive doesn't
3431 * matter, since it can only happen if the cgroup
3432 * has been deleted and hence no longer needs the
3433 * release agent to be called anyway. */
3434 if (css && (atomic_read(&css->refcnt) > 1))
3435 return 1;
3437 return 0;
3441 * Atomically mark all (or else none) of the cgroup's CSS objects as
3442 * CSS_REMOVED. Return true on success, or false if the cgroup has
3443 * busy subsystems. Call with cgroup_mutex held
3446 static int cgroup_clear_css_refs(struct cgroup *cgrp)
3448 struct cgroup_subsys *ss;
3449 unsigned long flags;
3450 bool failed = false;
3451 local_irq_save(flags);
3452 for_each_subsys(cgrp->root, ss) {
3453 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3454 int refcnt;
3455 while (1) {
3456 /* We can only remove a CSS with a refcnt==1 */
3457 refcnt = atomic_read(&css->refcnt);
3458 if (refcnt > 1) {
3459 failed = true;
3460 goto done;
3462 BUG_ON(!refcnt);
3464 * Drop the refcnt to 0 while we check other
3465 * subsystems. This will cause any racing
3466 * css_tryget() to spin until we set the
3467 * CSS_REMOVED bits or abort
3469 if (atomic_cmpxchg(&css->refcnt, refcnt, 0) == refcnt)
3470 break;
3471 cpu_relax();
3474 done:
3475 for_each_subsys(cgrp->root, ss) {
3476 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3477 if (failed) {
3479 * Restore old refcnt if we previously managed
3480 * to clear it from 1 to 0
3482 if (!atomic_read(&css->refcnt))
3483 atomic_set(&css->refcnt, 1);
3484 } else {
3485 /* Commit the fact that the CSS is removed */
3486 set_bit(CSS_REMOVED, &css->flags);
3489 local_irq_restore(flags);
3490 return !failed;
3493 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
3495 struct cgroup *cgrp = dentry->d_fsdata;
3496 struct dentry *d;
3497 struct cgroup *parent;
3498 DEFINE_WAIT(wait);
3499 struct cgroup_event *event, *tmp;
3500 int ret;
3502 /* the vfs holds both inode->i_mutex already */
3503 again:
3504 mutex_lock(&cgroup_mutex);
3505 if (atomic_read(&cgrp->count) != 0) {
3506 mutex_unlock(&cgroup_mutex);
3507 return -EBUSY;
3509 if (!list_empty(&cgrp->children)) {
3510 mutex_unlock(&cgroup_mutex);
3511 return -EBUSY;
3513 mutex_unlock(&cgroup_mutex);
3516 * In general, subsystem has no css->refcnt after pre_destroy(). But
3517 * in racy cases, subsystem may have to get css->refcnt after
3518 * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
3519 * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
3520 * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
3521 * and subsystem's reference count handling. Please see css_get/put
3522 * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
3524 set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3527 * Call pre_destroy handlers of subsys. Notify subsystems
3528 * that rmdir() request comes.
3530 ret = cgroup_call_pre_destroy(cgrp);
3531 if (ret) {
3532 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3533 return ret;
3536 mutex_lock(&cgroup_mutex);
3537 parent = cgrp->parent;
3538 if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
3539 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3540 mutex_unlock(&cgroup_mutex);
3541 return -EBUSY;
3543 prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE);
3544 if (!cgroup_clear_css_refs(cgrp)) {
3545 mutex_unlock(&cgroup_mutex);
3547 * Because someone may call cgroup_wakeup_rmdir_waiter() before
3548 * prepare_to_wait(), we need to check this flag.
3550 if (test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags))
3551 schedule();
3552 finish_wait(&cgroup_rmdir_waitq, &wait);
3553 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3554 if (signal_pending(current))
3555 return -EINTR;
3556 goto again;
3558 /* NO css_tryget() can success after here. */
3559 finish_wait(&cgroup_rmdir_waitq, &wait);
3560 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3562 spin_lock(&release_list_lock);
3563 set_bit(CGRP_REMOVED, &cgrp->flags);
3564 if (!list_empty(&cgrp->release_list))
3565 list_del(&cgrp->release_list);
3566 spin_unlock(&release_list_lock);
3568 cgroup_lock_hierarchy(cgrp->root);
3569 /* delete this cgroup from parent->children */
3570 list_del(&cgrp->sibling);
3571 cgroup_unlock_hierarchy(cgrp->root);
3573 spin_lock(&cgrp->dentry->d_lock);
3574 d = dget(cgrp->dentry);
3575 spin_unlock(&d->d_lock);
3577 cgroup_d_remove_dir(d);
3578 dput(d);
3580 set_bit(CGRP_RELEASABLE, &parent->flags);
3581 check_for_release(parent);
3584 * Unregister events and notify userspace.
3585 * Notify userspace about cgroup removing only after rmdir of cgroup
3586 * directory to avoid race between userspace and kernelspace
3588 spin_lock(&cgrp->event_list_lock);
3589 list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
3590 list_del(&event->list);
3591 remove_wait_queue(event->wqh, &event->wait);
3592 eventfd_signal(event->eventfd, 1);
3593 schedule_work(&event->remove);
3595 spin_unlock(&cgrp->event_list_lock);
3597 mutex_unlock(&cgroup_mutex);
3598 return 0;
3601 static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
3603 struct cgroup_subsys_state *css;
3605 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
3607 /* Create the top cgroup state for this subsystem */
3608 list_add(&ss->sibling, &rootnode.subsys_list);
3609 ss->root = &rootnode;
3610 css = ss->create(ss, dummytop);
3611 /* We don't handle early failures gracefully */
3612 BUG_ON(IS_ERR(css));
3613 init_cgroup_css(css, ss, dummytop);
3615 /* Update the init_css_set to contain a subsys
3616 * pointer to this state - since the subsystem is
3617 * newly registered, all tasks and hence the
3618 * init_css_set is in the subsystem's top cgroup. */
3619 init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
3621 need_forkexit_callback |= ss->fork || ss->exit;
3623 /* At system boot, before all subsystems have been
3624 * registered, no tasks have been forked, so we don't
3625 * need to invoke fork callbacks here. */
3626 BUG_ON(!list_empty(&init_task.tasks));
3628 mutex_init(&ss->hierarchy_mutex);
3629 lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
3630 ss->active = 1;
3632 /* this function shouldn't be used with modular subsystems, since they
3633 * need to register a subsys_id, among other things */
3634 BUG_ON(ss->module);
3638 * cgroup_load_subsys: load and register a modular subsystem at runtime
3639 * @ss: the subsystem to load
3641 * This function should be called in a modular subsystem's initcall. If the
3642 * subsystem is built as a module, it will be assigned a new subsys_id and set
3643 * up for use. If the subsystem is built-in anyway, work is delegated to the
3644 * simpler cgroup_init_subsys.
3646 int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
3648 int i;
3649 struct cgroup_subsys_state *css;
3651 /* check name and function validity */
3652 if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
3653 ss->create == NULL || ss->destroy == NULL)
3654 return -EINVAL;
3657 * we don't support callbacks in modular subsystems. this check is
3658 * before the ss->module check for consistency; a subsystem that could
3659 * be a module should still have no callbacks even if the user isn't
3660 * compiling it as one.
3662 if (ss->fork || ss->exit)
3663 return -EINVAL;
3666 * an optionally modular subsystem is built-in: we want to do nothing,
3667 * since cgroup_init_subsys will have already taken care of it.
3669 if (ss->module == NULL) {
3670 /* a few sanity checks */
3671 BUG_ON(ss->subsys_id >= CGROUP_BUILTIN_SUBSYS_COUNT);
3672 BUG_ON(subsys[ss->subsys_id] != ss);
3673 return 0;
3677 * need to register a subsys id before anything else - for example,
3678 * init_cgroup_css needs it.
3680 mutex_lock(&cgroup_mutex);
3681 /* find the first empty slot in the array */
3682 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
3683 if (subsys[i] == NULL)
3684 break;
3686 if (i == CGROUP_SUBSYS_COUNT) {
3687 /* maximum number of subsystems already registered! */
3688 mutex_unlock(&cgroup_mutex);
3689 return -EBUSY;
3691 /* assign ourselves the subsys_id */
3692 ss->subsys_id = i;
3693 subsys[i] = ss;
3696 * no ss->create seems to need anything important in the ss struct, so
3697 * this can happen first (i.e. before the rootnode attachment).
3699 css = ss->create(ss, dummytop);
3700 if (IS_ERR(css)) {
3701 /* failure case - need to deassign the subsys[] slot. */
3702 subsys[i] = NULL;
3703 mutex_unlock(&cgroup_mutex);
3704 return PTR_ERR(css);
3707 list_add(&ss->sibling, &rootnode.subsys_list);
3708 ss->root = &rootnode;
3710 /* our new subsystem will be attached to the dummy hierarchy. */
3711 init_cgroup_css(css, ss, dummytop);
3712 /* init_idr must be after init_cgroup_css because it sets css->id. */
3713 if (ss->use_id) {
3714 int ret = cgroup_init_idr(ss, css);
3715 if (ret) {
3716 dummytop->subsys[ss->subsys_id] = NULL;
3717 ss->destroy(ss, dummytop);
3718 subsys[i] = NULL;
3719 mutex_unlock(&cgroup_mutex);
3720 return ret;
3725 * Now we need to entangle the css into the existing css_sets. unlike
3726 * in cgroup_init_subsys, there are now multiple css_sets, so each one
3727 * will need a new pointer to it; done by iterating the css_set_table.
3728 * furthermore, modifying the existing css_sets will corrupt the hash
3729 * table state, so each changed css_set will need its hash recomputed.
3730 * this is all done under the css_set_lock.
3732 write_lock(&css_set_lock);
3733 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
3734 struct css_set *cg;
3735 struct hlist_node *node, *tmp;
3736 struct hlist_head *bucket = &css_set_table[i], *new_bucket;
3738 hlist_for_each_entry_safe(cg, node, tmp, bucket, hlist) {
3739 /* skip entries that we already rehashed */
3740 if (cg->subsys[ss->subsys_id])
3741 continue;
3742 /* remove existing entry */
3743 hlist_del(&cg->hlist);
3744 /* set new value */
3745 cg->subsys[ss->subsys_id] = css;
3746 /* recompute hash and restore entry */
3747 new_bucket = css_set_hash(cg->subsys);
3748 hlist_add_head(&cg->hlist, new_bucket);
3751 write_unlock(&css_set_lock);
3753 mutex_init(&ss->hierarchy_mutex);
3754 lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
3755 ss->active = 1;
3757 /* success! */
3758 mutex_unlock(&cgroup_mutex);
3759 return 0;
3761 EXPORT_SYMBOL_GPL(cgroup_load_subsys);
3764 * cgroup_unload_subsys: unload a modular subsystem
3765 * @ss: the subsystem to unload
3767 * This function should be called in a modular subsystem's exitcall. When this
3768 * function is invoked, the refcount on the subsystem's module will be 0, so
3769 * the subsystem will not be attached to any hierarchy.
3771 void cgroup_unload_subsys(struct cgroup_subsys *ss)
3773 struct cg_cgroup_link *link;
3774 struct hlist_head *hhead;
3776 BUG_ON(ss->module == NULL);
3779 * we shouldn't be called if the subsystem is in use, and the use of
3780 * try_module_get in parse_cgroupfs_options should ensure that it
3781 * doesn't start being used while we're killing it off.
3783 BUG_ON(ss->root != &rootnode);
3785 mutex_lock(&cgroup_mutex);
3786 /* deassign the subsys_id */
3787 BUG_ON(ss->subsys_id < CGROUP_BUILTIN_SUBSYS_COUNT);
3788 subsys[ss->subsys_id] = NULL;
3790 /* remove subsystem from rootnode's list of subsystems */
3791 list_del(&ss->sibling);
3794 * disentangle the css from all css_sets attached to the dummytop. as
3795 * in loading, we need to pay our respects to the hashtable gods.
3797 write_lock(&css_set_lock);
3798 list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) {
3799 struct css_set *cg = link->cg;
3801 hlist_del(&cg->hlist);
3802 BUG_ON(!cg->subsys[ss->subsys_id]);
3803 cg->subsys[ss->subsys_id] = NULL;
3804 hhead = css_set_hash(cg->subsys);
3805 hlist_add_head(&cg->hlist, hhead);
3807 write_unlock(&css_set_lock);
3810 * remove subsystem's css from the dummytop and free it - need to free
3811 * before marking as null because ss->destroy needs the cgrp->subsys
3812 * pointer to find their state. note that this also takes care of
3813 * freeing the css_id.
3815 ss->destroy(ss, dummytop);
3816 dummytop->subsys[ss->subsys_id] = NULL;
3818 mutex_unlock(&cgroup_mutex);
3820 EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
3823 * cgroup_init_early - cgroup initialization at system boot
3825 * Initialize cgroups at system boot, and initialize any
3826 * subsystems that request early init.
3828 int __init cgroup_init_early(void)
3830 int i;
3831 atomic_set(&init_css_set.refcount, 1);
3832 INIT_LIST_HEAD(&init_css_set.cg_links);
3833 INIT_LIST_HEAD(&init_css_set.tasks);
3834 INIT_HLIST_NODE(&init_css_set.hlist);
3835 css_set_count = 1;
3836 init_cgroup_root(&rootnode);
3837 root_count = 1;
3838 init_task.cgroups = &init_css_set;
3840 init_css_set_link.cg = &init_css_set;
3841 init_css_set_link.cgrp = dummytop;
3842 list_add(&init_css_set_link.cgrp_link_list,
3843 &rootnode.top_cgroup.css_sets);
3844 list_add(&init_css_set_link.cg_link_list,
3845 &init_css_set.cg_links);
3847 for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
3848 INIT_HLIST_HEAD(&css_set_table[i]);
3850 /* at bootup time, we don't worry about modular subsystems */
3851 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
3852 struct cgroup_subsys *ss = subsys[i];
3854 BUG_ON(!ss->name);
3855 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
3856 BUG_ON(!ss->create);
3857 BUG_ON(!ss->destroy);
3858 if (ss->subsys_id != i) {
3859 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
3860 ss->name, ss->subsys_id);
3861 BUG();
3864 if (ss->early_init)
3865 cgroup_init_subsys(ss);
3867 return 0;
3871 * cgroup_init - cgroup initialization
3873 * Register cgroup filesystem and /proc file, and initialize
3874 * any subsystems that didn't request early init.
3876 int __init cgroup_init(void)
3878 int err;
3879 int i;
3880 struct hlist_head *hhead;
3882 err = bdi_init(&cgroup_backing_dev_info);
3883 if (err)
3884 return err;
3886 /* at bootup time, we don't worry about modular subsystems */
3887 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
3888 struct cgroup_subsys *ss = subsys[i];
3889 if (!ss->early_init)
3890 cgroup_init_subsys(ss);
3891 if (ss->use_id)
3892 cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
3895 /* Add init_css_set to the hash table */
3896 hhead = css_set_hash(init_css_set.subsys);
3897 hlist_add_head(&init_css_set.hlist, hhead);
3898 BUG_ON(!init_root_id(&rootnode));
3900 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
3901 if (!cgroup_kobj) {
3902 err = -ENOMEM;
3903 goto out;
3906 err = register_filesystem(&cgroup_fs_type);
3907 if (err < 0) {
3908 kobject_put(cgroup_kobj);
3909 goto out;
3912 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
3914 out:
3915 if (err)
3916 bdi_destroy(&cgroup_backing_dev_info);
3918 return err;
3922 * proc_cgroup_show()
3923 * - Print task's cgroup paths into seq_file, one line for each hierarchy
3924 * - Used for /proc/<pid>/cgroup.
3925 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
3926 * doesn't really matter if tsk->cgroup changes after we read it,
3927 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
3928 * anyway. No need to check that tsk->cgroup != NULL, thanks to
3929 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
3930 * cgroup to top_cgroup.
3933 /* TODO: Use a proper seq_file iterator */
3934 static int proc_cgroup_show(struct seq_file *m, void *v)
3936 struct pid *pid;
3937 struct task_struct *tsk;
3938 char *buf;
3939 int retval;
3940 struct cgroupfs_root *root;
3942 retval = -ENOMEM;
3943 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3944 if (!buf)
3945 goto out;
3947 retval = -ESRCH;
3948 pid = m->private;
3949 tsk = get_pid_task(pid, PIDTYPE_PID);
3950 if (!tsk)
3951 goto out_free;
3953 retval = 0;
3955 mutex_lock(&cgroup_mutex);
3957 for_each_active_root(root) {
3958 struct cgroup_subsys *ss;
3959 struct cgroup *cgrp;
3960 int count = 0;
3962 seq_printf(m, "%d:", root->hierarchy_id);
3963 for_each_subsys(root, ss)
3964 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
3965 if (strlen(root->name))
3966 seq_printf(m, "%sname=%s", count ? "," : "",
3967 root->name);
3968 seq_putc(m, ':');
3969 cgrp = task_cgroup_from_root(tsk, root);
3970 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
3971 if (retval < 0)
3972 goto out_unlock;
3973 seq_puts(m, buf);
3974 seq_putc(m, '\n');
3977 out_unlock:
3978 mutex_unlock(&cgroup_mutex);
3979 put_task_struct(tsk);
3980 out_free:
3981 kfree(buf);
3982 out:
3983 return retval;
3986 static int cgroup_open(struct inode *inode, struct file *file)
3988 struct pid *pid = PROC_I(inode)->pid;
3989 return single_open(file, proc_cgroup_show, pid);
3992 const struct file_operations proc_cgroup_operations = {
3993 .open = cgroup_open,
3994 .read = seq_read,
3995 .llseek = seq_lseek,
3996 .release = single_release,
3999 /* Display information about each subsystem and each hierarchy */
4000 static int proc_cgroupstats_show(struct seq_file *m, void *v)
4002 int i;
4004 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
4006 * ideally we don't want subsystems moving around while we do this.
4007 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4008 * subsys/hierarchy state.
4010 mutex_lock(&cgroup_mutex);
4011 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4012 struct cgroup_subsys *ss = subsys[i];
4013 if (ss == NULL)
4014 continue;
4015 seq_printf(m, "%s\t%d\t%d\t%d\n",
4016 ss->name, ss->root->hierarchy_id,
4017 ss->root->number_of_cgroups, !ss->disabled);
4019 mutex_unlock(&cgroup_mutex);
4020 return 0;
4023 static int cgroupstats_open(struct inode *inode, struct file *file)
4025 return single_open(file, proc_cgroupstats_show, NULL);
4028 static const struct file_operations proc_cgroupstats_operations = {
4029 .open = cgroupstats_open,
4030 .read = seq_read,
4031 .llseek = seq_lseek,
4032 .release = single_release,
4036 * cgroup_fork - attach newly forked task to its parents cgroup.
4037 * @child: pointer to task_struct of forking parent process.
4039 * Description: A task inherits its parent's cgroup at fork().
4041 * A pointer to the shared css_set was automatically copied in
4042 * fork.c by dup_task_struct(). However, we ignore that copy, since
4043 * it was not made under the protection of RCU or cgroup_mutex, so
4044 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
4045 * have already changed current->cgroups, allowing the previously
4046 * referenced cgroup group to be removed and freed.
4048 * At the point that cgroup_fork() is called, 'current' is the parent
4049 * task, and the passed argument 'child' points to the child task.
4051 void cgroup_fork(struct task_struct *child)
4053 task_lock(current);
4054 child->cgroups = current->cgroups;
4055 get_css_set(child->cgroups);
4056 task_unlock(current);
4057 INIT_LIST_HEAD(&child->cg_list);
4061 * cgroup_fork_callbacks - run fork callbacks
4062 * @child: the new task
4064 * Called on a new task very soon before adding it to the
4065 * tasklist. No need to take any locks since no-one can
4066 * be operating on this task.
4068 void cgroup_fork_callbacks(struct task_struct *child)
4070 if (need_forkexit_callback) {
4071 int i;
4073 * forkexit callbacks are only supported for builtin
4074 * subsystems, and the builtin section of the subsys array is
4075 * immutable, so we don't need to lock the subsys array here.
4077 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4078 struct cgroup_subsys *ss = subsys[i];
4079 if (ss->fork)
4080 ss->fork(ss, child);
4086 * cgroup_post_fork - called on a new task after adding it to the task list
4087 * @child: the task in question
4089 * Adds the task to the list running through its css_set if necessary.
4090 * Has to be after the task is visible on the task list in case we race
4091 * with the first call to cgroup_iter_start() - to guarantee that the
4092 * new task ends up on its list.
4094 void cgroup_post_fork(struct task_struct *child)
4096 if (use_task_css_set_links) {
4097 write_lock(&css_set_lock);
4098 task_lock(child);
4099 if (list_empty(&child->cg_list))
4100 list_add(&child->cg_list, &child->cgroups->tasks);
4101 task_unlock(child);
4102 write_unlock(&css_set_lock);
4106 * cgroup_exit - detach cgroup from exiting task
4107 * @tsk: pointer to task_struct of exiting process
4108 * @run_callback: run exit callbacks?
4110 * Description: Detach cgroup from @tsk and release it.
4112 * Note that cgroups marked notify_on_release force every task in
4113 * them to take the global cgroup_mutex mutex when exiting.
4114 * This could impact scaling on very large systems. Be reluctant to
4115 * use notify_on_release cgroups where very high task exit scaling
4116 * is required on large systems.
4118 * the_top_cgroup_hack:
4120 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4122 * We call cgroup_exit() while the task is still competent to
4123 * handle notify_on_release(), then leave the task attached to the
4124 * root cgroup in each hierarchy for the remainder of its exit.
4126 * To do this properly, we would increment the reference count on
4127 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
4128 * code we would add a second cgroup function call, to drop that
4129 * reference. This would just create an unnecessary hot spot on
4130 * the top_cgroup reference count, to no avail.
4132 * Normally, holding a reference to a cgroup without bumping its
4133 * count is unsafe. The cgroup could go away, or someone could
4134 * attach us to a different cgroup, decrementing the count on
4135 * the first cgroup that we never incremented. But in this case,
4136 * top_cgroup isn't going away, and either task has PF_EXITING set,
4137 * which wards off any cgroup_attach_task() attempts, or task is a failed
4138 * fork, never visible to cgroup_attach_task.
4140 void cgroup_exit(struct task_struct *tsk, int run_callbacks)
4142 int i;
4143 struct css_set *cg;
4145 if (run_callbacks && need_forkexit_callback) {
4147 * modular subsystems can't use callbacks, so no need to lock
4148 * the subsys array
4150 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4151 struct cgroup_subsys *ss = subsys[i];
4152 if (ss->exit)
4153 ss->exit(ss, tsk);
4158 * Unlink from the css_set task list if necessary.
4159 * Optimistically check cg_list before taking
4160 * css_set_lock
4162 if (!list_empty(&tsk->cg_list)) {
4163 write_lock(&css_set_lock);
4164 if (!list_empty(&tsk->cg_list))
4165 list_del(&tsk->cg_list);
4166 write_unlock(&css_set_lock);
4169 /* Reassign the task to the init_css_set. */
4170 task_lock(tsk);
4171 cg = tsk->cgroups;
4172 tsk->cgroups = &init_css_set;
4173 task_unlock(tsk);
4174 if (cg)
4175 put_css_set_taskexit(cg);
4179 * cgroup_clone - clone the cgroup the given subsystem is attached to
4180 * @tsk: the task to be moved
4181 * @subsys: the given subsystem
4182 * @nodename: the name for the new cgroup
4184 * Duplicate the current cgroup in the hierarchy that the given
4185 * subsystem is attached to, and move this task into the new
4186 * child.
4188 int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys,
4189 char *nodename)
4191 struct dentry *dentry;
4192 int ret = 0;
4193 struct cgroup *parent, *child;
4194 struct inode *inode;
4195 struct css_set *cg;
4196 struct cgroupfs_root *root;
4197 struct cgroup_subsys *ss;
4199 /* We shouldn't be called by an unregistered subsystem */
4200 BUG_ON(!subsys->active);
4202 /* First figure out what hierarchy and cgroup we're dealing
4203 * with, and pin them so we can drop cgroup_mutex */
4204 mutex_lock(&cgroup_mutex);
4205 again:
4206 root = subsys->root;
4207 if (root == &rootnode) {
4208 mutex_unlock(&cgroup_mutex);
4209 return 0;
4212 /* Pin the hierarchy */
4213 if (!atomic_inc_not_zero(&root->sb->s_active)) {
4214 /* We race with the final deactivate_super() */
4215 mutex_unlock(&cgroup_mutex);
4216 return 0;
4219 /* Keep the cgroup alive */
4220 task_lock(tsk);
4221 parent = task_cgroup(tsk, subsys->subsys_id);
4222 cg = tsk->cgroups;
4223 get_css_set(cg);
4224 task_unlock(tsk);
4226 mutex_unlock(&cgroup_mutex);
4228 /* Now do the VFS work to create a cgroup */
4229 inode = parent->dentry->d_inode;
4231 /* Hold the parent directory mutex across this operation to
4232 * stop anyone else deleting the new cgroup */
4233 mutex_lock(&inode->i_mutex);
4234 dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename));
4235 if (IS_ERR(dentry)) {
4236 printk(KERN_INFO
4237 "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename,
4238 PTR_ERR(dentry));
4239 ret = PTR_ERR(dentry);
4240 goto out_release;
4243 /* Create the cgroup directory, which also creates the cgroup */
4244 ret = vfs_mkdir(inode, dentry, 0755);
4245 child = __d_cgrp(dentry);
4246 dput(dentry);
4247 if (ret) {
4248 printk(KERN_INFO
4249 "Failed to create cgroup %s: %d\n", nodename,
4250 ret);
4251 goto out_release;
4254 /* The cgroup now exists. Retake cgroup_mutex and check
4255 * that we're still in the same state that we thought we
4256 * were. */
4257 mutex_lock(&cgroup_mutex);
4258 if ((root != subsys->root) ||
4259 (parent != task_cgroup(tsk, subsys->subsys_id))) {
4260 /* Aargh, we raced ... */
4261 mutex_unlock(&inode->i_mutex);
4262 put_css_set(cg);
4264 deactivate_super(root->sb);
4265 /* The cgroup is still accessible in the VFS, but
4266 * we're not going to try to rmdir() it at this
4267 * point. */
4268 printk(KERN_INFO
4269 "Race in cgroup_clone() - leaking cgroup %s\n",
4270 nodename);
4271 goto again;
4274 /* do any required auto-setup */
4275 for_each_subsys(root, ss) {
4276 if (ss->post_clone)
4277 ss->post_clone(ss, child);
4280 /* All seems fine. Finish by moving the task into the new cgroup */
4281 ret = cgroup_attach_task(child, tsk);
4282 mutex_unlock(&cgroup_mutex);
4284 out_release:
4285 mutex_unlock(&inode->i_mutex);
4287 mutex_lock(&cgroup_mutex);
4288 put_css_set(cg);
4289 mutex_unlock(&cgroup_mutex);
4290 deactivate_super(root->sb);
4291 return ret;
4295 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
4296 * @cgrp: the cgroup in question
4297 * @task: the task in question
4299 * See if @cgrp is a descendant of @task's cgroup in the appropriate
4300 * hierarchy.
4302 * If we are sending in dummytop, then presumably we are creating
4303 * the top cgroup in the subsystem.
4305 * Called only by the ns (nsproxy) cgroup.
4307 int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
4309 int ret;
4310 struct cgroup *target;
4312 if (cgrp == dummytop)
4313 return 1;
4315 target = task_cgroup_from_root(task, cgrp->root);
4316 while (cgrp != target && cgrp!= cgrp->top_cgroup)
4317 cgrp = cgrp->parent;
4318 ret = (cgrp == target);
4319 return ret;
4322 static void check_for_release(struct cgroup *cgrp)
4324 /* All of these checks rely on RCU to keep the cgroup
4325 * structure alive */
4326 if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
4327 && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
4328 /* Control Group is currently removeable. If it's not
4329 * already queued for a userspace notification, queue
4330 * it now */
4331 int need_schedule_work = 0;
4332 spin_lock(&release_list_lock);
4333 if (!cgroup_is_removed(cgrp) &&
4334 list_empty(&cgrp->release_list)) {
4335 list_add(&cgrp->release_list, &release_list);
4336 need_schedule_work = 1;
4338 spin_unlock(&release_list_lock);
4339 if (need_schedule_work)
4340 schedule_work(&release_agent_work);
4344 /* Caller must verify that the css is not for root cgroup */
4345 void __css_put(struct cgroup_subsys_state *css, int count)
4347 struct cgroup *cgrp = css->cgroup;
4348 int val;
4349 rcu_read_lock();
4350 val = atomic_sub_return(count, &css->refcnt);
4351 if (val == 1) {
4352 if (notify_on_release(cgrp)) {
4353 set_bit(CGRP_RELEASABLE, &cgrp->flags);
4354 check_for_release(cgrp);
4356 cgroup_wakeup_rmdir_waiter(cgrp);
4358 rcu_read_unlock();
4359 WARN_ON_ONCE(val < 1);
4361 EXPORT_SYMBOL_GPL(__css_put);
4364 * Notify userspace when a cgroup is released, by running the
4365 * configured release agent with the name of the cgroup (path
4366 * relative to the root of cgroup file system) as the argument.
4368 * Most likely, this user command will try to rmdir this cgroup.
4370 * This races with the possibility that some other task will be
4371 * attached to this cgroup before it is removed, or that some other
4372 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
4373 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
4374 * unused, and this cgroup will be reprieved from its death sentence,
4375 * to continue to serve a useful existence. Next time it's released,
4376 * we will get notified again, if it still has 'notify_on_release' set.
4378 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
4379 * means only wait until the task is successfully execve()'d. The
4380 * separate release agent task is forked by call_usermodehelper(),
4381 * then control in this thread returns here, without waiting for the
4382 * release agent task. We don't bother to wait because the caller of
4383 * this routine has no use for the exit status of the release agent
4384 * task, so no sense holding our caller up for that.
4386 static void cgroup_release_agent(struct work_struct *work)
4388 BUG_ON(work != &release_agent_work);
4389 mutex_lock(&cgroup_mutex);
4390 spin_lock(&release_list_lock);
4391 while (!list_empty(&release_list)) {
4392 char *argv[3], *envp[3];
4393 int i;
4394 char *pathbuf = NULL, *agentbuf = NULL;
4395 struct cgroup *cgrp = list_entry(release_list.next,
4396 struct cgroup,
4397 release_list);
4398 list_del_init(&cgrp->release_list);
4399 spin_unlock(&release_list_lock);
4400 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4401 if (!pathbuf)
4402 goto continue_free;
4403 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
4404 goto continue_free;
4405 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
4406 if (!agentbuf)
4407 goto continue_free;
4409 i = 0;
4410 argv[i++] = agentbuf;
4411 argv[i++] = pathbuf;
4412 argv[i] = NULL;
4414 i = 0;
4415 /* minimal command environment */
4416 envp[i++] = "HOME=/";
4417 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
4418 envp[i] = NULL;
4420 /* Drop the lock while we invoke the usermode helper,
4421 * since the exec could involve hitting disk and hence
4422 * be a slow process */
4423 mutex_unlock(&cgroup_mutex);
4424 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
4425 mutex_lock(&cgroup_mutex);
4426 continue_free:
4427 kfree(pathbuf);
4428 kfree(agentbuf);
4429 spin_lock(&release_list_lock);
4431 spin_unlock(&release_list_lock);
4432 mutex_unlock(&cgroup_mutex);
4435 static int __init cgroup_disable(char *str)
4437 int i;
4438 char *token;
4440 while ((token = strsep(&str, ",")) != NULL) {
4441 if (!*token)
4442 continue;
4444 * cgroup_disable, being at boot time, can't know about module
4445 * subsystems, so we don't worry about them.
4447 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4448 struct cgroup_subsys *ss = subsys[i];
4450 if (!strcmp(token, ss->name)) {
4451 ss->disabled = 1;
4452 printk(KERN_INFO "Disabling %s control group"
4453 " subsystem\n", ss->name);
4454 break;
4458 return 1;
4460 __setup("cgroup_disable=", cgroup_disable);
4463 * Functons for CSS ID.
4467 *To get ID other than 0, this should be called when !cgroup_is_removed().
4469 unsigned short css_id(struct cgroup_subsys_state *css)
4471 struct css_id *cssid;
4474 * This css_id() can return correct value when somone has refcnt
4475 * on this or this is under rcu_read_lock(). Once css->id is allocated,
4476 * it's unchanged until freed.
4478 cssid = rcu_dereference_check(css->id,
4479 rcu_read_lock_held() || atomic_read(&css->refcnt));
4481 if (cssid)
4482 return cssid->id;
4483 return 0;
4485 EXPORT_SYMBOL_GPL(css_id);
4487 unsigned short css_depth(struct cgroup_subsys_state *css)
4489 struct css_id *cssid;
4491 cssid = rcu_dereference_check(css->id,
4492 rcu_read_lock_held() || atomic_read(&css->refcnt));
4494 if (cssid)
4495 return cssid->depth;
4496 return 0;
4498 EXPORT_SYMBOL_GPL(css_depth);
4501 * css_is_ancestor - test "root" css is an ancestor of "child"
4502 * @child: the css to be tested.
4503 * @root: the css supporsed to be an ancestor of the child.
4505 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
4506 * this function reads css->id, this use rcu_dereference() and rcu_read_lock().
4507 * But, considering usual usage, the csses should be valid objects after test.
4508 * Assuming that the caller will do some action to the child if this returns
4509 * returns true, the caller must take "child";s reference count.
4510 * If "child" is valid object and this returns true, "root" is valid, too.
4513 bool css_is_ancestor(struct cgroup_subsys_state *child,
4514 const struct cgroup_subsys_state *root)
4516 struct css_id *child_id;
4517 struct css_id *root_id;
4518 bool ret = true;
4520 rcu_read_lock();
4521 child_id = rcu_dereference(child->id);
4522 root_id = rcu_dereference(root->id);
4523 if (!child_id
4524 || !root_id
4525 || (child_id->depth < root_id->depth)
4526 || (child_id->stack[root_id->depth] != root_id->id))
4527 ret = false;
4528 rcu_read_unlock();
4529 return ret;
4532 static void __free_css_id_cb(struct rcu_head *head)
4534 struct css_id *id;
4536 id = container_of(head, struct css_id, rcu_head);
4537 kfree(id);
4540 void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
4542 struct css_id *id = css->id;
4543 /* When this is called before css_id initialization, id can be NULL */
4544 if (!id)
4545 return;
4547 BUG_ON(!ss->use_id);
4549 rcu_assign_pointer(id->css, NULL);
4550 rcu_assign_pointer(css->id, NULL);
4551 spin_lock(&ss->id_lock);
4552 idr_remove(&ss->idr, id->id);
4553 spin_unlock(&ss->id_lock);
4554 call_rcu(&id->rcu_head, __free_css_id_cb);
4556 EXPORT_SYMBOL_GPL(free_css_id);
4559 * This is called by init or create(). Then, calls to this function are
4560 * always serialized (By cgroup_mutex() at create()).
4563 static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
4565 struct css_id *newid;
4566 int myid, error, size;
4568 BUG_ON(!ss->use_id);
4570 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
4571 newid = kzalloc(size, GFP_KERNEL);
4572 if (!newid)
4573 return ERR_PTR(-ENOMEM);
4574 /* get id */
4575 if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
4576 error = -ENOMEM;
4577 goto err_out;
4579 spin_lock(&ss->id_lock);
4580 /* Don't use 0. allocates an ID of 1-65535 */
4581 error = idr_get_new_above(&ss->idr, newid, 1, &myid);
4582 spin_unlock(&ss->id_lock);
4584 /* Returns error when there are no free spaces for new ID.*/
4585 if (error) {
4586 error = -ENOSPC;
4587 goto err_out;
4589 if (myid > CSS_ID_MAX)
4590 goto remove_idr;
4592 newid->id = myid;
4593 newid->depth = depth;
4594 return newid;
4595 remove_idr:
4596 error = -ENOSPC;
4597 spin_lock(&ss->id_lock);
4598 idr_remove(&ss->idr, myid);
4599 spin_unlock(&ss->id_lock);
4600 err_out:
4601 kfree(newid);
4602 return ERR_PTR(error);
4606 static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
4607 struct cgroup_subsys_state *rootcss)
4609 struct css_id *newid;
4611 spin_lock_init(&ss->id_lock);
4612 idr_init(&ss->idr);
4614 newid = get_new_cssid(ss, 0);
4615 if (IS_ERR(newid))
4616 return PTR_ERR(newid);
4618 newid->stack[0] = newid->id;
4619 newid->css = rootcss;
4620 rootcss->id = newid;
4621 return 0;
4624 static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
4625 struct cgroup *child)
4627 int subsys_id, i, depth = 0;
4628 struct cgroup_subsys_state *parent_css, *child_css;
4629 struct css_id *child_id, *parent_id;
4631 subsys_id = ss->subsys_id;
4632 parent_css = parent->subsys[subsys_id];
4633 child_css = child->subsys[subsys_id];
4634 parent_id = parent_css->id;
4635 depth = parent_id->depth + 1;
4637 child_id = get_new_cssid(ss, depth);
4638 if (IS_ERR(child_id))
4639 return PTR_ERR(child_id);
4641 for (i = 0; i < depth; i++)
4642 child_id->stack[i] = parent_id->stack[i];
4643 child_id->stack[depth] = child_id->id;
4645 * child_id->css pointer will be set after this cgroup is available
4646 * see cgroup_populate_dir()
4648 rcu_assign_pointer(child_css->id, child_id);
4650 return 0;
4654 * css_lookup - lookup css by id
4655 * @ss: cgroup subsys to be looked into.
4656 * @id: the id
4658 * Returns pointer to cgroup_subsys_state if there is valid one with id.
4659 * NULL if not. Should be called under rcu_read_lock()
4661 struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
4663 struct css_id *cssid = NULL;
4665 BUG_ON(!ss->use_id);
4666 cssid = idr_find(&ss->idr, id);
4668 if (unlikely(!cssid))
4669 return NULL;
4671 return rcu_dereference(cssid->css);
4673 EXPORT_SYMBOL_GPL(css_lookup);
4676 * css_get_next - lookup next cgroup under specified hierarchy.
4677 * @ss: pointer to subsystem
4678 * @id: current position of iteration.
4679 * @root: pointer to css. search tree under this.
4680 * @foundid: position of found object.
4682 * Search next css under the specified hierarchy of rootid. Calling under
4683 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
4685 struct cgroup_subsys_state *
4686 css_get_next(struct cgroup_subsys *ss, int id,
4687 struct cgroup_subsys_state *root, int *foundid)
4689 struct cgroup_subsys_state *ret = NULL;
4690 struct css_id *tmp;
4691 int tmpid;
4692 int rootid = css_id(root);
4693 int depth = css_depth(root);
4695 if (!rootid)
4696 return NULL;
4698 BUG_ON(!ss->use_id);
4699 /* fill start point for scan */
4700 tmpid = id;
4701 while (1) {
4703 * scan next entry from bitmap(tree), tmpid is updated after
4704 * idr_get_next().
4706 spin_lock(&ss->id_lock);
4707 tmp = idr_get_next(&ss->idr, &tmpid);
4708 spin_unlock(&ss->id_lock);
4710 if (!tmp)
4711 break;
4712 if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
4713 ret = rcu_dereference(tmp->css);
4714 if (ret) {
4715 *foundid = tmpid;
4716 break;
4719 /* continue to scan from next id */
4720 tmpid = tmpid + 1;
4722 return ret;
4725 #ifdef CONFIG_CGROUP_DEBUG
4726 static struct cgroup_subsys_state *debug_create(struct cgroup_subsys *ss,
4727 struct cgroup *cont)
4729 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
4731 if (!css)
4732 return ERR_PTR(-ENOMEM);
4734 return css;
4737 static void debug_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
4739 kfree(cont->subsys[debug_subsys_id]);
4742 static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
4744 return atomic_read(&cont->count);
4747 static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
4749 return cgroup_task_count(cont);
4752 static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
4754 return (u64)(unsigned long)current->cgroups;
4757 static u64 current_css_set_refcount_read(struct cgroup *cont,
4758 struct cftype *cft)
4760 u64 count;
4762 rcu_read_lock();
4763 count = atomic_read(&current->cgroups->refcount);
4764 rcu_read_unlock();
4765 return count;
4768 static int current_css_set_cg_links_read(struct cgroup *cont,
4769 struct cftype *cft,
4770 struct seq_file *seq)
4772 struct cg_cgroup_link *link;
4773 struct css_set *cg;
4775 read_lock(&css_set_lock);
4776 rcu_read_lock();
4777 cg = rcu_dereference(current->cgroups);
4778 list_for_each_entry(link, &cg->cg_links, cg_link_list) {
4779 struct cgroup *c = link->cgrp;
4780 const char *name;
4782 if (c->dentry)
4783 name = c->dentry->d_name.name;
4784 else
4785 name = "?";
4786 seq_printf(seq, "Root %d group %s\n",
4787 c->root->hierarchy_id, name);
4789 rcu_read_unlock();
4790 read_unlock(&css_set_lock);
4791 return 0;
4794 #define MAX_TASKS_SHOWN_PER_CSS 25
4795 static int cgroup_css_links_read(struct cgroup *cont,
4796 struct cftype *cft,
4797 struct seq_file *seq)
4799 struct cg_cgroup_link *link;
4801 read_lock(&css_set_lock);
4802 list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
4803 struct css_set *cg = link->cg;
4804 struct task_struct *task;
4805 int count = 0;
4806 seq_printf(seq, "css_set %p\n", cg);
4807 list_for_each_entry(task, &cg->tasks, cg_list) {
4808 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
4809 seq_puts(seq, " ...\n");
4810 break;
4811 } else {
4812 seq_printf(seq, " task %d\n",
4813 task_pid_vnr(task));
4817 read_unlock(&css_set_lock);
4818 return 0;
4821 static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
4823 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
4826 static struct cftype debug_files[] = {
4828 .name = "cgroup_refcount",
4829 .read_u64 = cgroup_refcount_read,
4832 .name = "taskcount",
4833 .read_u64 = debug_taskcount_read,
4837 .name = "current_css_set",
4838 .read_u64 = current_css_set_read,
4842 .name = "current_css_set_refcount",
4843 .read_u64 = current_css_set_refcount_read,
4847 .name = "current_css_set_cg_links",
4848 .read_seq_string = current_css_set_cg_links_read,
4852 .name = "cgroup_css_links",
4853 .read_seq_string = cgroup_css_links_read,
4857 .name = "releasable",
4858 .read_u64 = releasable_read,
4862 static int debug_populate(struct cgroup_subsys *ss, struct cgroup *cont)
4864 return cgroup_add_files(cont, ss, debug_files,
4865 ARRAY_SIZE(debug_files));
4868 struct cgroup_subsys debug_subsys = {
4869 .name = "debug",
4870 .create = debug_create,
4871 .destroy = debug_destroy,
4872 .populate = debug_populate,
4873 .subsys_id = debug_subsys_id,
4875 #endif /* CONFIG_CGROUP_DEBUG */