x86, AMD: Remove needless CPU family check (for L3 cache info)
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / rmap.c
blob87b9e8ad450962afa1159b763f0aa0a977ab9a88
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
21 * Lock ordering in mm:
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * inode->i_alloc_sem (vmtruncate_range)
25 * mm->mmap_sem
26 * page->flags PG_locked (lock_page)
27 * mapping->i_mmap_lock
28 * anon_vma->lock
29 * mm->page_table_lock or pte_lock
30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * inode_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within inode_lock in __sync_single_inode)
40 * (code doesn't rely on that order so it could be switched around)
41 * ->tasklist_lock
42 * anon_vma->lock (memory_failure, collect_procs_anon)
43 * pte map lock
46 #include <linux/mm.h>
47 #include <linux/pagemap.h>
48 #include <linux/swap.h>
49 #include <linux/swapops.h>
50 #include <linux/slab.h>
51 #include <linux/init.h>
52 #include <linux/ksm.h>
53 #include <linux/rmap.h>
54 #include <linux/rcupdate.h>
55 #include <linux/module.h>
56 #include <linux/memcontrol.h>
57 #include <linux/mmu_notifier.h>
58 #include <linux/migrate.h>
59 #include <linux/hugetlb.h>
61 #include <asm/tlbflush.h>
63 #include "internal.h"
65 static struct kmem_cache *anon_vma_cachep;
66 static struct kmem_cache *anon_vma_chain_cachep;
68 static inline struct anon_vma *anon_vma_alloc(void)
70 return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
73 void anon_vma_free(struct anon_vma *anon_vma)
75 kmem_cache_free(anon_vma_cachep, anon_vma);
78 static inline struct anon_vma_chain *anon_vma_chain_alloc(void)
80 return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL);
83 void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
85 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
88 /**
89 * anon_vma_prepare - attach an anon_vma to a memory region
90 * @vma: the memory region in question
92 * This makes sure the memory mapping described by 'vma' has
93 * an 'anon_vma' attached to it, so that we can associate the
94 * anonymous pages mapped into it with that anon_vma.
96 * The common case will be that we already have one, but if
97 * if not we either need to find an adjacent mapping that we
98 * can re-use the anon_vma from (very common when the only
99 * reason for splitting a vma has been mprotect()), or we
100 * allocate a new one.
102 * Anon-vma allocations are very subtle, because we may have
103 * optimistically looked up an anon_vma in page_lock_anon_vma()
104 * and that may actually touch the spinlock even in the newly
105 * allocated vma (it depends on RCU to make sure that the
106 * anon_vma isn't actually destroyed).
108 * As a result, we need to do proper anon_vma locking even
109 * for the new allocation. At the same time, we do not want
110 * to do any locking for the common case of already having
111 * an anon_vma.
113 * This must be called with the mmap_sem held for reading.
115 int anon_vma_prepare(struct vm_area_struct *vma)
117 struct anon_vma *anon_vma = vma->anon_vma;
118 struct anon_vma_chain *avc;
120 might_sleep();
121 if (unlikely(!anon_vma)) {
122 struct mm_struct *mm = vma->vm_mm;
123 struct anon_vma *allocated;
125 avc = anon_vma_chain_alloc();
126 if (!avc)
127 goto out_enomem;
129 anon_vma = find_mergeable_anon_vma(vma);
130 allocated = NULL;
131 if (!anon_vma) {
132 anon_vma = anon_vma_alloc();
133 if (unlikely(!anon_vma))
134 goto out_enomem_free_avc;
135 allocated = anon_vma;
137 * This VMA had no anon_vma yet. This anon_vma is
138 * the root of any anon_vma tree that might form.
140 anon_vma->root = anon_vma;
143 anon_vma_lock(anon_vma);
144 /* page_table_lock to protect against threads */
145 spin_lock(&mm->page_table_lock);
146 if (likely(!vma->anon_vma)) {
147 vma->anon_vma = anon_vma;
148 avc->anon_vma = anon_vma;
149 avc->vma = vma;
150 list_add(&avc->same_vma, &vma->anon_vma_chain);
151 list_add_tail(&avc->same_anon_vma, &anon_vma->head);
152 allocated = NULL;
153 avc = NULL;
155 spin_unlock(&mm->page_table_lock);
156 anon_vma_unlock(anon_vma);
158 if (unlikely(allocated))
159 anon_vma_free(allocated);
160 if (unlikely(avc))
161 anon_vma_chain_free(avc);
163 return 0;
165 out_enomem_free_avc:
166 anon_vma_chain_free(avc);
167 out_enomem:
168 return -ENOMEM;
171 static void anon_vma_chain_link(struct vm_area_struct *vma,
172 struct anon_vma_chain *avc,
173 struct anon_vma *anon_vma)
175 avc->vma = vma;
176 avc->anon_vma = anon_vma;
177 list_add(&avc->same_vma, &vma->anon_vma_chain);
179 anon_vma_lock(anon_vma);
180 list_add_tail(&avc->same_anon_vma, &anon_vma->head);
181 anon_vma_unlock(anon_vma);
185 * Attach the anon_vmas from src to dst.
186 * Returns 0 on success, -ENOMEM on failure.
188 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
190 struct anon_vma_chain *avc, *pavc;
192 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
193 avc = anon_vma_chain_alloc();
194 if (!avc)
195 goto enomem_failure;
196 anon_vma_chain_link(dst, avc, pavc->anon_vma);
198 return 0;
200 enomem_failure:
201 unlink_anon_vmas(dst);
202 return -ENOMEM;
206 * Attach vma to its own anon_vma, as well as to the anon_vmas that
207 * the corresponding VMA in the parent process is attached to.
208 * Returns 0 on success, non-zero on failure.
210 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
212 struct anon_vma_chain *avc;
213 struct anon_vma *anon_vma;
215 /* Don't bother if the parent process has no anon_vma here. */
216 if (!pvma->anon_vma)
217 return 0;
220 * First, attach the new VMA to the parent VMA's anon_vmas,
221 * so rmap can find non-COWed pages in child processes.
223 if (anon_vma_clone(vma, pvma))
224 return -ENOMEM;
226 /* Then add our own anon_vma. */
227 anon_vma = anon_vma_alloc();
228 if (!anon_vma)
229 goto out_error;
230 avc = anon_vma_chain_alloc();
231 if (!avc)
232 goto out_error_free_anon_vma;
235 * The root anon_vma's spinlock is the lock actually used when we
236 * lock any of the anon_vmas in this anon_vma tree.
238 anon_vma->root = pvma->anon_vma->root;
240 * With KSM refcounts, an anon_vma can stay around longer than the
241 * process it belongs to. The root anon_vma needs to be pinned
242 * until this anon_vma is freed, because the lock lives in the root.
244 get_anon_vma(anon_vma->root);
245 /* Mark this anon_vma as the one where our new (COWed) pages go. */
246 vma->anon_vma = anon_vma;
247 anon_vma_chain_link(vma, avc, anon_vma);
249 return 0;
251 out_error_free_anon_vma:
252 anon_vma_free(anon_vma);
253 out_error:
254 unlink_anon_vmas(vma);
255 return -ENOMEM;
258 static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain)
260 struct anon_vma *anon_vma = anon_vma_chain->anon_vma;
261 int empty;
263 /* If anon_vma_fork fails, we can get an empty anon_vma_chain. */
264 if (!anon_vma)
265 return;
267 anon_vma_lock(anon_vma);
268 list_del(&anon_vma_chain->same_anon_vma);
270 /* We must garbage collect the anon_vma if it's empty */
271 empty = list_empty(&anon_vma->head) && !anonvma_external_refcount(anon_vma);
272 anon_vma_unlock(anon_vma);
274 if (empty) {
275 /* We no longer need the root anon_vma */
276 if (anon_vma->root != anon_vma)
277 drop_anon_vma(anon_vma->root);
278 anon_vma_free(anon_vma);
282 void unlink_anon_vmas(struct vm_area_struct *vma)
284 struct anon_vma_chain *avc, *next;
287 * Unlink each anon_vma chained to the VMA. This list is ordered
288 * from newest to oldest, ensuring the root anon_vma gets freed last.
290 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
291 anon_vma_unlink(avc);
292 list_del(&avc->same_vma);
293 anon_vma_chain_free(avc);
297 static void anon_vma_ctor(void *data)
299 struct anon_vma *anon_vma = data;
301 spin_lock_init(&anon_vma->lock);
302 anonvma_external_refcount_init(anon_vma);
303 INIT_LIST_HEAD(&anon_vma->head);
306 void __init anon_vma_init(void)
308 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
309 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
310 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
314 * Getting a lock on a stable anon_vma from a page off the LRU is
315 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
317 struct anon_vma *page_lock_anon_vma(struct page *page)
319 struct anon_vma *anon_vma;
320 unsigned long anon_mapping;
322 rcu_read_lock();
323 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
324 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
325 goto out;
326 if (!page_mapped(page))
327 goto out;
329 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
330 anon_vma_lock(anon_vma);
331 return anon_vma;
332 out:
333 rcu_read_unlock();
334 return NULL;
337 void page_unlock_anon_vma(struct anon_vma *anon_vma)
339 anon_vma_unlock(anon_vma);
340 rcu_read_unlock();
344 * At what user virtual address is page expected in @vma?
345 * Returns virtual address or -EFAULT if page's index/offset is not
346 * within the range mapped the @vma.
348 static inline unsigned long
349 vma_address(struct page *page, struct vm_area_struct *vma)
351 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
352 unsigned long address;
354 if (unlikely(is_vm_hugetlb_page(vma)))
355 pgoff = page->index << huge_page_order(page_hstate(page));
356 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
357 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
358 /* page should be within @vma mapping range */
359 return -EFAULT;
361 return address;
365 * At what user virtual address is page expected in vma?
366 * Caller should check the page is actually part of the vma.
368 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
370 if (PageAnon(page)) {
371 if (vma->anon_vma->root != page_anon_vma(page)->root)
372 return -EFAULT;
373 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
374 if (!vma->vm_file ||
375 vma->vm_file->f_mapping != page->mapping)
376 return -EFAULT;
377 } else
378 return -EFAULT;
379 return vma_address(page, vma);
383 * Check that @page is mapped at @address into @mm.
385 * If @sync is false, page_check_address may perform a racy check to avoid
386 * the page table lock when the pte is not present (helpful when reclaiming
387 * highly shared pages).
389 * On success returns with pte mapped and locked.
391 pte_t *page_check_address(struct page *page, struct mm_struct *mm,
392 unsigned long address, spinlock_t **ptlp, int sync)
394 pgd_t *pgd;
395 pud_t *pud;
396 pmd_t *pmd;
397 pte_t *pte;
398 spinlock_t *ptl;
400 if (unlikely(PageHuge(page))) {
401 pte = huge_pte_offset(mm, address);
402 ptl = &mm->page_table_lock;
403 goto check;
406 pgd = pgd_offset(mm, address);
407 if (!pgd_present(*pgd))
408 return NULL;
410 pud = pud_offset(pgd, address);
411 if (!pud_present(*pud))
412 return NULL;
414 pmd = pmd_offset(pud, address);
415 if (!pmd_present(*pmd))
416 return NULL;
418 pte = pte_offset_map(pmd, address);
419 /* Make a quick check before getting the lock */
420 if (!sync && !pte_present(*pte)) {
421 pte_unmap(pte);
422 return NULL;
425 ptl = pte_lockptr(mm, pmd);
426 check:
427 spin_lock(ptl);
428 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
429 *ptlp = ptl;
430 return pte;
432 pte_unmap_unlock(pte, ptl);
433 return NULL;
437 * page_mapped_in_vma - check whether a page is really mapped in a VMA
438 * @page: the page to test
439 * @vma: the VMA to test
441 * Returns 1 if the page is mapped into the page tables of the VMA, 0
442 * if the page is not mapped into the page tables of this VMA. Only
443 * valid for normal file or anonymous VMAs.
445 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
447 unsigned long address;
448 pte_t *pte;
449 spinlock_t *ptl;
451 address = vma_address(page, vma);
452 if (address == -EFAULT) /* out of vma range */
453 return 0;
454 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
455 if (!pte) /* the page is not in this mm */
456 return 0;
457 pte_unmap_unlock(pte, ptl);
459 return 1;
463 * Subfunctions of page_referenced: page_referenced_one called
464 * repeatedly from either page_referenced_anon or page_referenced_file.
466 int page_referenced_one(struct page *page, struct vm_area_struct *vma,
467 unsigned long address, unsigned int *mapcount,
468 unsigned long *vm_flags)
470 struct mm_struct *mm = vma->vm_mm;
471 pte_t *pte;
472 spinlock_t *ptl;
473 int referenced = 0;
475 pte = page_check_address(page, mm, address, &ptl, 0);
476 if (!pte)
477 goto out;
480 * Don't want to elevate referenced for mlocked page that gets this far,
481 * in order that it progresses to try_to_unmap and is moved to the
482 * unevictable list.
484 if (vma->vm_flags & VM_LOCKED) {
485 *mapcount = 1; /* break early from loop */
486 *vm_flags |= VM_LOCKED;
487 goto out_unmap;
490 if (ptep_clear_flush_young_notify(vma, address, pte)) {
492 * Don't treat a reference through a sequentially read
493 * mapping as such. If the page has been used in
494 * another mapping, we will catch it; if this other
495 * mapping is already gone, the unmap path will have
496 * set PG_referenced or activated the page.
498 if (likely(!VM_SequentialReadHint(vma)))
499 referenced++;
502 /* Pretend the page is referenced if the task has the
503 swap token and is in the middle of a page fault. */
504 if (mm != current->mm && has_swap_token(mm) &&
505 rwsem_is_locked(&mm->mmap_sem))
506 referenced++;
508 out_unmap:
509 (*mapcount)--;
510 pte_unmap_unlock(pte, ptl);
512 if (referenced)
513 *vm_flags |= vma->vm_flags;
514 out:
515 return referenced;
518 static int page_referenced_anon(struct page *page,
519 struct mem_cgroup *mem_cont,
520 unsigned long *vm_flags)
522 unsigned int mapcount;
523 struct anon_vma *anon_vma;
524 struct anon_vma_chain *avc;
525 int referenced = 0;
527 anon_vma = page_lock_anon_vma(page);
528 if (!anon_vma)
529 return referenced;
531 mapcount = page_mapcount(page);
532 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
533 struct vm_area_struct *vma = avc->vma;
534 unsigned long address = vma_address(page, vma);
535 if (address == -EFAULT)
536 continue;
538 * If we are reclaiming on behalf of a cgroup, skip
539 * counting on behalf of references from different
540 * cgroups
542 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
543 continue;
544 referenced += page_referenced_one(page, vma, address,
545 &mapcount, vm_flags);
546 if (!mapcount)
547 break;
550 page_unlock_anon_vma(anon_vma);
551 return referenced;
555 * page_referenced_file - referenced check for object-based rmap
556 * @page: the page we're checking references on.
557 * @mem_cont: target memory controller
558 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
560 * For an object-based mapped page, find all the places it is mapped and
561 * check/clear the referenced flag. This is done by following the page->mapping
562 * pointer, then walking the chain of vmas it holds. It returns the number
563 * of references it found.
565 * This function is only called from page_referenced for object-based pages.
567 static int page_referenced_file(struct page *page,
568 struct mem_cgroup *mem_cont,
569 unsigned long *vm_flags)
571 unsigned int mapcount;
572 struct address_space *mapping = page->mapping;
573 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
574 struct vm_area_struct *vma;
575 struct prio_tree_iter iter;
576 int referenced = 0;
579 * The caller's checks on page->mapping and !PageAnon have made
580 * sure that this is a file page: the check for page->mapping
581 * excludes the case just before it gets set on an anon page.
583 BUG_ON(PageAnon(page));
586 * The page lock not only makes sure that page->mapping cannot
587 * suddenly be NULLified by truncation, it makes sure that the
588 * structure at mapping cannot be freed and reused yet,
589 * so we can safely take mapping->i_mmap_lock.
591 BUG_ON(!PageLocked(page));
593 spin_lock(&mapping->i_mmap_lock);
596 * i_mmap_lock does not stabilize mapcount at all, but mapcount
597 * is more likely to be accurate if we note it after spinning.
599 mapcount = page_mapcount(page);
601 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
602 unsigned long address = vma_address(page, vma);
603 if (address == -EFAULT)
604 continue;
606 * If we are reclaiming on behalf of a cgroup, skip
607 * counting on behalf of references from different
608 * cgroups
610 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
611 continue;
612 referenced += page_referenced_one(page, vma, address,
613 &mapcount, vm_flags);
614 if (!mapcount)
615 break;
618 spin_unlock(&mapping->i_mmap_lock);
619 return referenced;
623 * page_referenced - test if the page was referenced
624 * @page: the page to test
625 * @is_locked: caller holds lock on the page
626 * @mem_cont: target memory controller
627 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
629 * Quick test_and_clear_referenced for all mappings to a page,
630 * returns the number of ptes which referenced the page.
632 int page_referenced(struct page *page,
633 int is_locked,
634 struct mem_cgroup *mem_cont,
635 unsigned long *vm_flags)
637 int referenced = 0;
638 int we_locked = 0;
640 *vm_flags = 0;
641 if (page_mapped(page) && page_rmapping(page)) {
642 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
643 we_locked = trylock_page(page);
644 if (!we_locked) {
645 referenced++;
646 goto out;
649 if (unlikely(PageKsm(page)))
650 referenced += page_referenced_ksm(page, mem_cont,
651 vm_flags);
652 else if (PageAnon(page))
653 referenced += page_referenced_anon(page, mem_cont,
654 vm_flags);
655 else if (page->mapping)
656 referenced += page_referenced_file(page, mem_cont,
657 vm_flags);
658 if (we_locked)
659 unlock_page(page);
661 out:
662 if (page_test_and_clear_young(page))
663 referenced++;
665 return referenced;
668 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
669 unsigned long address)
671 struct mm_struct *mm = vma->vm_mm;
672 pte_t *pte;
673 spinlock_t *ptl;
674 int ret = 0;
676 pte = page_check_address(page, mm, address, &ptl, 1);
677 if (!pte)
678 goto out;
680 if (pte_dirty(*pte) || pte_write(*pte)) {
681 pte_t entry;
683 flush_cache_page(vma, address, pte_pfn(*pte));
684 entry = ptep_clear_flush_notify(vma, address, pte);
685 entry = pte_wrprotect(entry);
686 entry = pte_mkclean(entry);
687 set_pte_at(mm, address, pte, entry);
688 ret = 1;
691 pte_unmap_unlock(pte, ptl);
692 out:
693 return ret;
696 static int page_mkclean_file(struct address_space *mapping, struct page *page)
698 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
699 struct vm_area_struct *vma;
700 struct prio_tree_iter iter;
701 int ret = 0;
703 BUG_ON(PageAnon(page));
705 spin_lock(&mapping->i_mmap_lock);
706 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
707 if (vma->vm_flags & VM_SHARED) {
708 unsigned long address = vma_address(page, vma);
709 if (address == -EFAULT)
710 continue;
711 ret += page_mkclean_one(page, vma, address);
714 spin_unlock(&mapping->i_mmap_lock);
715 return ret;
718 int page_mkclean(struct page *page)
720 int ret = 0;
722 BUG_ON(!PageLocked(page));
724 if (page_mapped(page)) {
725 struct address_space *mapping = page_mapping(page);
726 if (mapping) {
727 ret = page_mkclean_file(mapping, page);
728 if (page_test_dirty(page)) {
729 page_clear_dirty(page);
730 ret = 1;
735 return ret;
737 EXPORT_SYMBOL_GPL(page_mkclean);
740 * page_move_anon_rmap - move a page to our anon_vma
741 * @page: the page to move to our anon_vma
742 * @vma: the vma the page belongs to
743 * @address: the user virtual address mapped
745 * When a page belongs exclusively to one process after a COW event,
746 * that page can be moved into the anon_vma that belongs to just that
747 * process, so the rmap code will not search the parent or sibling
748 * processes.
750 void page_move_anon_rmap(struct page *page,
751 struct vm_area_struct *vma, unsigned long address)
753 struct anon_vma *anon_vma = vma->anon_vma;
755 VM_BUG_ON(!PageLocked(page));
756 VM_BUG_ON(!anon_vma);
757 VM_BUG_ON(page->index != linear_page_index(vma, address));
759 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
760 page->mapping = (struct address_space *) anon_vma;
764 * __page_set_anon_rmap - setup new anonymous rmap
765 * @page: the page to add the mapping to
766 * @vma: the vm area in which the mapping is added
767 * @address: the user virtual address mapped
768 * @exclusive: the page is exclusively owned by the current process
770 static void __page_set_anon_rmap(struct page *page,
771 struct vm_area_struct *vma, unsigned long address, int exclusive)
773 struct anon_vma *anon_vma = vma->anon_vma;
775 BUG_ON(!anon_vma);
778 * If the page isn't exclusively mapped into this vma,
779 * we must use the _oldest_ possible anon_vma for the
780 * page mapping!
782 if (!exclusive) {
783 if (PageAnon(page))
784 return;
785 anon_vma = anon_vma->root;
786 } else {
788 * In this case, swapped-out-but-not-discarded swap-cache
789 * is remapped. So, no need to update page->mapping here.
790 * We convice anon_vma poitned by page->mapping is not obsolete
791 * because vma->anon_vma is necessary to be a family of it.
793 if (PageAnon(page))
794 return;
797 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
798 page->mapping = (struct address_space *) anon_vma;
799 page->index = linear_page_index(vma, address);
803 * __page_check_anon_rmap - sanity check anonymous rmap addition
804 * @page: the page to add the mapping to
805 * @vma: the vm area in which the mapping is added
806 * @address: the user virtual address mapped
808 static void __page_check_anon_rmap(struct page *page,
809 struct vm_area_struct *vma, unsigned long address)
811 #ifdef CONFIG_DEBUG_VM
813 * The page's anon-rmap details (mapping and index) are guaranteed to
814 * be set up correctly at this point.
816 * We have exclusion against page_add_anon_rmap because the caller
817 * always holds the page locked, except if called from page_dup_rmap,
818 * in which case the page is already known to be setup.
820 * We have exclusion against page_add_new_anon_rmap because those pages
821 * are initially only visible via the pagetables, and the pte is locked
822 * over the call to page_add_new_anon_rmap.
824 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
825 BUG_ON(page->index != linear_page_index(vma, address));
826 #endif
830 * page_add_anon_rmap - add pte mapping to an anonymous page
831 * @page: the page to add the mapping to
832 * @vma: the vm area in which the mapping is added
833 * @address: the user virtual address mapped
835 * The caller needs to hold the pte lock, and the page must be locked in
836 * the anon_vma case: to serialize mapping,index checking after setting,
837 * and to ensure that PageAnon is not being upgraded racily to PageKsm
838 * (but PageKsm is never downgraded to PageAnon).
840 void page_add_anon_rmap(struct page *page,
841 struct vm_area_struct *vma, unsigned long address)
843 do_page_add_anon_rmap(page, vma, address, 0);
847 * Special version of the above for do_swap_page, which often runs
848 * into pages that are exclusively owned by the current process.
849 * Everybody else should continue to use page_add_anon_rmap above.
851 void do_page_add_anon_rmap(struct page *page,
852 struct vm_area_struct *vma, unsigned long address, int exclusive)
854 int first = atomic_inc_and_test(&page->_mapcount);
855 if (first)
856 __inc_zone_page_state(page, NR_ANON_PAGES);
857 if (unlikely(PageKsm(page)))
858 return;
860 VM_BUG_ON(!PageLocked(page));
861 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
862 if (first)
863 __page_set_anon_rmap(page, vma, address, exclusive);
864 else
865 __page_check_anon_rmap(page, vma, address);
869 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
870 * @page: the page to add the mapping to
871 * @vma: the vm area in which the mapping is added
872 * @address: the user virtual address mapped
874 * Same as page_add_anon_rmap but must only be called on *new* pages.
875 * This means the inc-and-test can be bypassed.
876 * Page does not have to be locked.
878 void page_add_new_anon_rmap(struct page *page,
879 struct vm_area_struct *vma, unsigned long address)
881 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
882 SetPageSwapBacked(page);
883 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
884 __inc_zone_page_state(page, NR_ANON_PAGES);
885 __page_set_anon_rmap(page, vma, address, 1);
886 if (page_evictable(page, vma))
887 lru_cache_add_lru(page, LRU_ACTIVE_ANON);
888 else
889 add_page_to_unevictable_list(page);
893 * page_add_file_rmap - add pte mapping to a file page
894 * @page: the page to add the mapping to
896 * The caller needs to hold the pte lock.
898 void page_add_file_rmap(struct page *page)
900 if (atomic_inc_and_test(&page->_mapcount)) {
901 __inc_zone_page_state(page, NR_FILE_MAPPED);
902 mem_cgroup_update_file_mapped(page, 1);
907 * page_remove_rmap - take down pte mapping from a page
908 * @page: page to remove mapping from
910 * The caller needs to hold the pte lock.
912 void page_remove_rmap(struct page *page)
914 /* page still mapped by someone else? */
915 if (!atomic_add_negative(-1, &page->_mapcount))
916 return;
919 * Now that the last pte has gone, s390 must transfer dirty
920 * flag from storage key to struct page. We can usually skip
921 * this if the page is anon, so about to be freed; but perhaps
922 * not if it's in swapcache - there might be another pte slot
923 * containing the swap entry, but page not yet written to swap.
925 if ((!PageAnon(page) || PageSwapCache(page)) && page_test_dirty(page)) {
926 page_clear_dirty(page);
927 set_page_dirty(page);
930 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
931 * and not charged by memcg for now.
933 if (unlikely(PageHuge(page)))
934 return;
935 if (PageAnon(page)) {
936 mem_cgroup_uncharge_page(page);
937 __dec_zone_page_state(page, NR_ANON_PAGES);
938 } else {
939 __dec_zone_page_state(page, NR_FILE_MAPPED);
940 mem_cgroup_update_file_mapped(page, -1);
943 * It would be tidy to reset the PageAnon mapping here,
944 * but that might overwrite a racing page_add_anon_rmap
945 * which increments mapcount after us but sets mapping
946 * before us: so leave the reset to free_hot_cold_page,
947 * and remember that it's only reliable while mapped.
948 * Leaving it set also helps swapoff to reinstate ptes
949 * faster for those pages still in swapcache.
954 * Subfunctions of try_to_unmap: try_to_unmap_one called
955 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
957 int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
958 unsigned long address, enum ttu_flags flags)
960 struct mm_struct *mm = vma->vm_mm;
961 pte_t *pte;
962 pte_t pteval;
963 spinlock_t *ptl;
964 int ret = SWAP_AGAIN;
966 pte = page_check_address(page, mm, address, &ptl, 0);
967 if (!pte)
968 goto out;
971 * If the page is mlock()d, we cannot swap it out.
972 * If it's recently referenced (perhaps page_referenced
973 * skipped over this mm) then we should reactivate it.
975 if (!(flags & TTU_IGNORE_MLOCK)) {
976 if (vma->vm_flags & VM_LOCKED)
977 goto out_mlock;
979 if (TTU_ACTION(flags) == TTU_MUNLOCK)
980 goto out_unmap;
982 if (!(flags & TTU_IGNORE_ACCESS)) {
983 if (ptep_clear_flush_young_notify(vma, address, pte)) {
984 ret = SWAP_FAIL;
985 goto out_unmap;
989 /* Nuke the page table entry. */
990 flush_cache_page(vma, address, page_to_pfn(page));
991 pteval = ptep_clear_flush_notify(vma, address, pte);
993 /* Move the dirty bit to the physical page now the pte is gone. */
994 if (pte_dirty(pteval))
995 set_page_dirty(page);
997 /* Update high watermark before we lower rss */
998 update_hiwater_rss(mm);
1000 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1001 if (PageAnon(page))
1002 dec_mm_counter(mm, MM_ANONPAGES);
1003 else
1004 dec_mm_counter(mm, MM_FILEPAGES);
1005 set_pte_at(mm, address, pte,
1006 swp_entry_to_pte(make_hwpoison_entry(page)));
1007 } else if (PageAnon(page)) {
1008 swp_entry_t entry = { .val = page_private(page) };
1010 if (PageSwapCache(page)) {
1012 * Store the swap location in the pte.
1013 * See handle_pte_fault() ...
1015 if (swap_duplicate(entry) < 0) {
1016 set_pte_at(mm, address, pte, pteval);
1017 ret = SWAP_FAIL;
1018 goto out_unmap;
1020 if (list_empty(&mm->mmlist)) {
1021 spin_lock(&mmlist_lock);
1022 if (list_empty(&mm->mmlist))
1023 list_add(&mm->mmlist, &init_mm.mmlist);
1024 spin_unlock(&mmlist_lock);
1026 dec_mm_counter(mm, MM_ANONPAGES);
1027 inc_mm_counter(mm, MM_SWAPENTS);
1028 } else if (PAGE_MIGRATION) {
1030 * Store the pfn of the page in a special migration
1031 * pte. do_swap_page() will wait until the migration
1032 * pte is removed and then restart fault handling.
1034 BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
1035 entry = make_migration_entry(page, pte_write(pteval));
1037 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1038 BUG_ON(pte_file(*pte));
1039 } else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
1040 /* Establish migration entry for a file page */
1041 swp_entry_t entry;
1042 entry = make_migration_entry(page, pte_write(pteval));
1043 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1044 } else
1045 dec_mm_counter(mm, MM_FILEPAGES);
1047 page_remove_rmap(page);
1048 page_cache_release(page);
1050 out_unmap:
1051 pte_unmap_unlock(pte, ptl);
1052 out:
1053 return ret;
1055 out_mlock:
1056 pte_unmap_unlock(pte, ptl);
1060 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1061 * unstable result and race. Plus, We can't wait here because
1062 * we now hold anon_vma->lock or mapping->i_mmap_lock.
1063 * if trylock failed, the page remain in evictable lru and later
1064 * vmscan could retry to move the page to unevictable lru if the
1065 * page is actually mlocked.
1067 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1068 if (vma->vm_flags & VM_LOCKED) {
1069 mlock_vma_page(page);
1070 ret = SWAP_MLOCK;
1072 up_read(&vma->vm_mm->mmap_sem);
1074 return ret;
1078 * objrmap doesn't work for nonlinear VMAs because the assumption that
1079 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1080 * Consequently, given a particular page and its ->index, we cannot locate the
1081 * ptes which are mapping that page without an exhaustive linear search.
1083 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1084 * maps the file to which the target page belongs. The ->vm_private_data field
1085 * holds the current cursor into that scan. Successive searches will circulate
1086 * around the vma's virtual address space.
1088 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1089 * more scanning pressure is placed against them as well. Eventually pages
1090 * will become fully unmapped and are eligible for eviction.
1092 * For very sparsely populated VMAs this is a little inefficient - chances are
1093 * there there won't be many ptes located within the scan cluster. In this case
1094 * maybe we could scan further - to the end of the pte page, perhaps.
1096 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1097 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1098 * rather than unmapping them. If we encounter the "check_page" that vmscan is
1099 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1101 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1102 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1104 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1105 struct vm_area_struct *vma, struct page *check_page)
1107 struct mm_struct *mm = vma->vm_mm;
1108 pgd_t *pgd;
1109 pud_t *pud;
1110 pmd_t *pmd;
1111 pte_t *pte;
1112 pte_t pteval;
1113 spinlock_t *ptl;
1114 struct page *page;
1115 unsigned long address;
1116 unsigned long end;
1117 int ret = SWAP_AGAIN;
1118 int locked_vma = 0;
1120 address = (vma->vm_start + cursor) & CLUSTER_MASK;
1121 end = address + CLUSTER_SIZE;
1122 if (address < vma->vm_start)
1123 address = vma->vm_start;
1124 if (end > vma->vm_end)
1125 end = vma->vm_end;
1127 pgd = pgd_offset(mm, address);
1128 if (!pgd_present(*pgd))
1129 return ret;
1131 pud = pud_offset(pgd, address);
1132 if (!pud_present(*pud))
1133 return ret;
1135 pmd = pmd_offset(pud, address);
1136 if (!pmd_present(*pmd))
1137 return ret;
1140 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1141 * keep the sem while scanning the cluster for mlocking pages.
1143 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1144 locked_vma = (vma->vm_flags & VM_LOCKED);
1145 if (!locked_vma)
1146 up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1149 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1151 /* Update high watermark before we lower rss */
1152 update_hiwater_rss(mm);
1154 for (; address < end; pte++, address += PAGE_SIZE) {
1155 if (!pte_present(*pte))
1156 continue;
1157 page = vm_normal_page(vma, address, *pte);
1158 BUG_ON(!page || PageAnon(page));
1160 if (locked_vma) {
1161 mlock_vma_page(page); /* no-op if already mlocked */
1162 if (page == check_page)
1163 ret = SWAP_MLOCK;
1164 continue; /* don't unmap */
1167 if (ptep_clear_flush_young_notify(vma, address, pte))
1168 continue;
1170 /* Nuke the page table entry. */
1171 flush_cache_page(vma, address, pte_pfn(*pte));
1172 pteval = ptep_clear_flush_notify(vma, address, pte);
1174 /* If nonlinear, store the file page offset in the pte. */
1175 if (page->index != linear_page_index(vma, address))
1176 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1178 /* Move the dirty bit to the physical page now the pte is gone. */
1179 if (pte_dirty(pteval))
1180 set_page_dirty(page);
1182 page_remove_rmap(page);
1183 page_cache_release(page);
1184 dec_mm_counter(mm, MM_FILEPAGES);
1185 (*mapcount)--;
1187 pte_unmap_unlock(pte - 1, ptl);
1188 if (locked_vma)
1189 up_read(&vma->vm_mm->mmap_sem);
1190 return ret;
1193 static bool is_vma_temporary_stack(struct vm_area_struct *vma)
1195 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1197 if (!maybe_stack)
1198 return false;
1200 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1201 VM_STACK_INCOMPLETE_SETUP)
1202 return true;
1204 return false;
1208 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1209 * rmap method
1210 * @page: the page to unmap/unlock
1211 * @flags: action and flags
1213 * Find all the mappings of a page using the mapping pointer and the vma chains
1214 * contained in the anon_vma struct it points to.
1216 * This function is only called from try_to_unmap/try_to_munlock for
1217 * anonymous pages.
1218 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1219 * where the page was found will be held for write. So, we won't recheck
1220 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1221 * 'LOCKED.
1223 static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1225 struct anon_vma *anon_vma;
1226 struct anon_vma_chain *avc;
1227 int ret = SWAP_AGAIN;
1229 anon_vma = page_lock_anon_vma(page);
1230 if (!anon_vma)
1231 return ret;
1233 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1234 struct vm_area_struct *vma = avc->vma;
1235 unsigned long address;
1238 * During exec, a temporary VMA is setup and later moved.
1239 * The VMA is moved under the anon_vma lock but not the
1240 * page tables leading to a race where migration cannot
1241 * find the migration ptes. Rather than increasing the
1242 * locking requirements of exec(), migration skips
1243 * temporary VMAs until after exec() completes.
1245 if (PAGE_MIGRATION && (flags & TTU_MIGRATION) &&
1246 is_vma_temporary_stack(vma))
1247 continue;
1249 address = vma_address(page, vma);
1250 if (address == -EFAULT)
1251 continue;
1252 ret = try_to_unmap_one(page, vma, address, flags);
1253 if (ret != SWAP_AGAIN || !page_mapped(page))
1254 break;
1257 page_unlock_anon_vma(anon_vma);
1258 return ret;
1262 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1263 * @page: the page to unmap/unlock
1264 * @flags: action and flags
1266 * Find all the mappings of a page using the mapping pointer and the vma chains
1267 * contained in the address_space struct it points to.
1269 * This function is only called from try_to_unmap/try_to_munlock for
1270 * object-based pages.
1271 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1272 * where the page was found will be held for write. So, we won't recheck
1273 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1274 * 'LOCKED.
1276 static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1278 struct address_space *mapping = page->mapping;
1279 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1280 struct vm_area_struct *vma;
1281 struct prio_tree_iter iter;
1282 int ret = SWAP_AGAIN;
1283 unsigned long cursor;
1284 unsigned long max_nl_cursor = 0;
1285 unsigned long max_nl_size = 0;
1286 unsigned int mapcount;
1288 spin_lock(&mapping->i_mmap_lock);
1289 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1290 unsigned long address = vma_address(page, vma);
1291 if (address == -EFAULT)
1292 continue;
1293 ret = try_to_unmap_one(page, vma, address, flags);
1294 if (ret != SWAP_AGAIN || !page_mapped(page))
1295 goto out;
1298 if (list_empty(&mapping->i_mmap_nonlinear))
1299 goto out;
1302 * We don't bother to try to find the munlocked page in nonlinears.
1303 * It's costly. Instead, later, page reclaim logic may call
1304 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1306 if (TTU_ACTION(flags) == TTU_MUNLOCK)
1307 goto out;
1309 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1310 shared.vm_set.list) {
1311 cursor = (unsigned long) vma->vm_private_data;
1312 if (cursor > max_nl_cursor)
1313 max_nl_cursor = cursor;
1314 cursor = vma->vm_end - vma->vm_start;
1315 if (cursor > max_nl_size)
1316 max_nl_size = cursor;
1319 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1320 ret = SWAP_FAIL;
1321 goto out;
1325 * We don't try to search for this page in the nonlinear vmas,
1326 * and page_referenced wouldn't have found it anyway. Instead
1327 * just walk the nonlinear vmas trying to age and unmap some.
1328 * The mapcount of the page we came in with is irrelevant,
1329 * but even so use it as a guide to how hard we should try?
1331 mapcount = page_mapcount(page);
1332 if (!mapcount)
1333 goto out;
1334 cond_resched_lock(&mapping->i_mmap_lock);
1336 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1337 if (max_nl_cursor == 0)
1338 max_nl_cursor = CLUSTER_SIZE;
1340 do {
1341 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1342 shared.vm_set.list) {
1343 cursor = (unsigned long) vma->vm_private_data;
1344 while ( cursor < max_nl_cursor &&
1345 cursor < vma->vm_end - vma->vm_start) {
1346 if (try_to_unmap_cluster(cursor, &mapcount,
1347 vma, page) == SWAP_MLOCK)
1348 ret = SWAP_MLOCK;
1349 cursor += CLUSTER_SIZE;
1350 vma->vm_private_data = (void *) cursor;
1351 if ((int)mapcount <= 0)
1352 goto out;
1354 vma->vm_private_data = (void *) max_nl_cursor;
1356 cond_resched_lock(&mapping->i_mmap_lock);
1357 max_nl_cursor += CLUSTER_SIZE;
1358 } while (max_nl_cursor <= max_nl_size);
1361 * Don't loop forever (perhaps all the remaining pages are
1362 * in locked vmas). Reset cursor on all unreserved nonlinear
1363 * vmas, now forgetting on which ones it had fallen behind.
1365 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1366 vma->vm_private_data = NULL;
1367 out:
1368 spin_unlock(&mapping->i_mmap_lock);
1369 return ret;
1373 * try_to_unmap - try to remove all page table mappings to a page
1374 * @page: the page to get unmapped
1375 * @flags: action and flags
1377 * Tries to remove all the page table entries which are mapping this
1378 * page, used in the pageout path. Caller must hold the page lock.
1379 * Return values are:
1381 * SWAP_SUCCESS - we succeeded in removing all mappings
1382 * SWAP_AGAIN - we missed a mapping, try again later
1383 * SWAP_FAIL - the page is unswappable
1384 * SWAP_MLOCK - page is mlocked.
1386 int try_to_unmap(struct page *page, enum ttu_flags flags)
1388 int ret;
1390 BUG_ON(!PageLocked(page));
1392 if (unlikely(PageKsm(page)))
1393 ret = try_to_unmap_ksm(page, flags);
1394 else if (PageAnon(page))
1395 ret = try_to_unmap_anon(page, flags);
1396 else
1397 ret = try_to_unmap_file(page, flags);
1398 if (ret != SWAP_MLOCK && !page_mapped(page))
1399 ret = SWAP_SUCCESS;
1400 return ret;
1404 * try_to_munlock - try to munlock a page
1405 * @page: the page to be munlocked
1407 * Called from munlock code. Checks all of the VMAs mapping the page
1408 * to make sure nobody else has this page mlocked. The page will be
1409 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1411 * Return values are:
1413 * SWAP_AGAIN - no vma is holding page mlocked, or,
1414 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1415 * SWAP_FAIL - page cannot be located at present
1416 * SWAP_MLOCK - page is now mlocked.
1418 int try_to_munlock(struct page *page)
1420 VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1422 if (unlikely(PageKsm(page)))
1423 return try_to_unmap_ksm(page, TTU_MUNLOCK);
1424 else if (PageAnon(page))
1425 return try_to_unmap_anon(page, TTU_MUNLOCK);
1426 else
1427 return try_to_unmap_file(page, TTU_MUNLOCK);
1430 #if defined(CONFIG_KSM) || defined(CONFIG_MIGRATION)
1432 * Drop an anon_vma refcount, freeing the anon_vma and anon_vma->root
1433 * if necessary. Be careful to do all the tests under the lock. Once
1434 * we know we are the last user, nobody else can get a reference and we
1435 * can do the freeing without the lock.
1437 void drop_anon_vma(struct anon_vma *anon_vma)
1439 BUG_ON(atomic_read(&anon_vma->external_refcount) <= 0);
1440 if (atomic_dec_and_lock(&anon_vma->external_refcount, &anon_vma->root->lock)) {
1441 struct anon_vma *root = anon_vma->root;
1442 int empty = list_empty(&anon_vma->head);
1443 int last_root_user = 0;
1444 int root_empty = 0;
1447 * The refcount on a non-root anon_vma got dropped. Drop
1448 * the refcount on the root and check if we need to free it.
1450 if (empty && anon_vma != root) {
1451 BUG_ON(atomic_read(&root->external_refcount) <= 0);
1452 last_root_user = atomic_dec_and_test(&root->external_refcount);
1453 root_empty = list_empty(&root->head);
1455 anon_vma_unlock(anon_vma);
1457 if (empty) {
1458 anon_vma_free(anon_vma);
1459 if (root_empty && last_root_user)
1460 anon_vma_free(root);
1464 #endif
1466 #ifdef CONFIG_MIGRATION
1468 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1469 * Called by migrate.c to remove migration ptes, but might be used more later.
1471 static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1472 struct vm_area_struct *, unsigned long, void *), void *arg)
1474 struct anon_vma *anon_vma;
1475 struct anon_vma_chain *avc;
1476 int ret = SWAP_AGAIN;
1479 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1480 * because that depends on page_mapped(); but not all its usages
1481 * are holding mmap_sem. Users without mmap_sem are required to
1482 * take a reference count to prevent the anon_vma disappearing
1484 anon_vma = page_anon_vma(page);
1485 if (!anon_vma)
1486 return ret;
1487 anon_vma_lock(anon_vma);
1488 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1489 struct vm_area_struct *vma = avc->vma;
1490 unsigned long address = vma_address(page, vma);
1491 if (address == -EFAULT)
1492 continue;
1493 ret = rmap_one(page, vma, address, arg);
1494 if (ret != SWAP_AGAIN)
1495 break;
1497 anon_vma_unlock(anon_vma);
1498 return ret;
1501 static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1502 struct vm_area_struct *, unsigned long, void *), void *arg)
1504 struct address_space *mapping = page->mapping;
1505 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1506 struct vm_area_struct *vma;
1507 struct prio_tree_iter iter;
1508 int ret = SWAP_AGAIN;
1510 if (!mapping)
1511 return ret;
1512 spin_lock(&mapping->i_mmap_lock);
1513 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1514 unsigned long address = vma_address(page, vma);
1515 if (address == -EFAULT)
1516 continue;
1517 ret = rmap_one(page, vma, address, arg);
1518 if (ret != SWAP_AGAIN)
1519 break;
1522 * No nonlinear handling: being always shared, nonlinear vmas
1523 * never contain migration ptes. Decide what to do about this
1524 * limitation to linear when we need rmap_walk() on nonlinear.
1526 spin_unlock(&mapping->i_mmap_lock);
1527 return ret;
1530 int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1531 struct vm_area_struct *, unsigned long, void *), void *arg)
1533 VM_BUG_ON(!PageLocked(page));
1535 if (unlikely(PageKsm(page)))
1536 return rmap_walk_ksm(page, rmap_one, arg);
1537 else if (PageAnon(page))
1538 return rmap_walk_anon(page, rmap_one, arg);
1539 else
1540 return rmap_walk_file(page, rmap_one, arg);
1542 #endif /* CONFIG_MIGRATION */
1544 #ifdef CONFIG_HUGETLB_PAGE
1546 * The following three functions are for anonymous (private mapped) hugepages.
1547 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1548 * and no lru code, because we handle hugepages differently from common pages.
1550 static void __hugepage_set_anon_rmap(struct page *page,
1551 struct vm_area_struct *vma, unsigned long address, int exclusive)
1553 struct anon_vma *anon_vma = vma->anon_vma;
1554 BUG_ON(!anon_vma);
1555 if (!exclusive) {
1556 struct anon_vma_chain *avc;
1557 avc = list_entry(vma->anon_vma_chain.prev,
1558 struct anon_vma_chain, same_vma);
1559 anon_vma = avc->anon_vma;
1561 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1562 page->mapping = (struct address_space *) anon_vma;
1563 page->index = linear_page_index(vma, address);
1566 void hugepage_add_anon_rmap(struct page *page,
1567 struct vm_area_struct *vma, unsigned long address)
1569 struct anon_vma *anon_vma = vma->anon_vma;
1570 int first;
1571 BUG_ON(!anon_vma);
1572 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1573 first = atomic_inc_and_test(&page->_mapcount);
1574 if (first)
1575 __hugepage_set_anon_rmap(page, vma, address, 0);
1578 void hugepage_add_new_anon_rmap(struct page *page,
1579 struct vm_area_struct *vma, unsigned long address)
1581 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1582 atomic_set(&page->_mapcount, 0);
1583 __hugepage_set_anon_rmap(page, vma, address, 1);
1585 #endif /* CONFIG_HUGETLB_PAGE */