4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8 * Numa awareness, Christoph Lameter, SGI, June 2005
11 #include <linux/vmalloc.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/slab.h>
16 #include <linux/spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/debugobjects.h>
21 #include <linux/kallsyms.h>
22 #include <linux/list.h>
23 #include <linux/rbtree.h>
24 #include <linux/radix-tree.h>
25 #include <linux/rcupdate.h>
26 #include <linux/bootmem.h>
28 #include <asm/atomic.h>
29 #include <asm/uaccess.h>
30 #include <asm/tlbflush.h>
33 /*** Page table manipulation functions ***/
35 static void vunmap_pte_range(pmd_t
*pmd
, unsigned long addr
, unsigned long end
)
39 pte
= pte_offset_kernel(pmd
, addr
);
41 pte_t ptent
= ptep_get_and_clear(&init_mm
, addr
, pte
);
42 WARN_ON(!pte_none(ptent
) && !pte_present(ptent
));
43 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
46 static void vunmap_pmd_range(pud_t
*pud
, unsigned long addr
, unsigned long end
)
51 pmd
= pmd_offset(pud
, addr
);
53 next
= pmd_addr_end(addr
, end
);
54 if (pmd_none_or_clear_bad(pmd
))
56 vunmap_pte_range(pmd
, addr
, next
);
57 } while (pmd
++, addr
= next
, addr
!= end
);
60 static void vunmap_pud_range(pgd_t
*pgd
, unsigned long addr
, unsigned long end
)
65 pud
= pud_offset(pgd
, addr
);
67 next
= pud_addr_end(addr
, end
);
68 if (pud_none_or_clear_bad(pud
))
70 vunmap_pmd_range(pud
, addr
, next
);
71 } while (pud
++, addr
= next
, addr
!= end
);
74 static void vunmap_page_range(unsigned long addr
, unsigned long end
)
80 pgd
= pgd_offset_k(addr
);
82 next
= pgd_addr_end(addr
, end
);
83 if (pgd_none_or_clear_bad(pgd
))
85 vunmap_pud_range(pgd
, addr
, next
);
86 } while (pgd
++, addr
= next
, addr
!= end
);
89 static int vmap_pte_range(pmd_t
*pmd
, unsigned long addr
,
90 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
)
95 * nr is a running index into the array which helps higher level
96 * callers keep track of where we're up to.
99 pte
= pte_alloc_kernel(pmd
, addr
);
103 struct page
*page
= pages
[*nr
];
105 if (WARN_ON(!pte_none(*pte
)))
109 set_pte_at(&init_mm
, addr
, pte
, mk_pte(page
, prot
));
111 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
115 static int vmap_pmd_range(pud_t
*pud
, unsigned long addr
,
116 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
)
121 pmd
= pmd_alloc(&init_mm
, pud
, addr
);
125 next
= pmd_addr_end(addr
, end
);
126 if (vmap_pte_range(pmd
, addr
, next
, prot
, pages
, nr
))
128 } while (pmd
++, addr
= next
, addr
!= end
);
132 static int vmap_pud_range(pgd_t
*pgd
, unsigned long addr
,
133 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
)
138 pud
= pud_alloc(&init_mm
, pgd
, addr
);
142 next
= pud_addr_end(addr
, end
);
143 if (vmap_pmd_range(pud
, addr
, next
, prot
, pages
, nr
))
145 } while (pud
++, addr
= next
, addr
!= end
);
150 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
151 * will have pfns corresponding to the "pages" array.
153 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
155 static int vmap_page_range(unsigned long start
, unsigned long end
,
156 pgprot_t prot
, struct page
**pages
)
160 unsigned long addr
= start
;
165 pgd
= pgd_offset_k(addr
);
167 next
= pgd_addr_end(addr
, end
);
168 err
= vmap_pud_range(pgd
, addr
, next
, prot
, pages
, &nr
);
171 } while (pgd
++, addr
= next
, addr
!= end
);
172 flush_cache_vmap(start
, end
);
179 static inline int is_vmalloc_or_module_addr(const void *x
)
182 * ARM, x86-64 and sparc64 put modules in a special place,
183 * and fall back on vmalloc() if that fails. Others
184 * just put it in the vmalloc space.
186 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
187 unsigned long addr
= (unsigned long)x
;
188 if (addr
>= MODULES_VADDR
&& addr
< MODULES_END
)
191 return is_vmalloc_addr(x
);
195 * Walk a vmap address to the struct page it maps.
197 struct page
*vmalloc_to_page(const void *vmalloc_addr
)
199 unsigned long addr
= (unsigned long) vmalloc_addr
;
200 struct page
*page
= NULL
;
201 pgd_t
*pgd
= pgd_offset_k(addr
);
204 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
205 * architectures that do not vmalloc module space
207 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr
));
209 if (!pgd_none(*pgd
)) {
210 pud_t
*pud
= pud_offset(pgd
, addr
);
211 if (!pud_none(*pud
)) {
212 pmd_t
*pmd
= pmd_offset(pud
, addr
);
213 if (!pmd_none(*pmd
)) {
216 ptep
= pte_offset_map(pmd
, addr
);
218 if (pte_present(pte
))
219 page
= pte_page(pte
);
226 EXPORT_SYMBOL(vmalloc_to_page
);
229 * Map a vmalloc()-space virtual address to the physical page frame number.
231 unsigned long vmalloc_to_pfn(const void *vmalloc_addr
)
233 return page_to_pfn(vmalloc_to_page(vmalloc_addr
));
235 EXPORT_SYMBOL(vmalloc_to_pfn
);
238 /*** Global kva allocator ***/
240 #define VM_LAZY_FREE 0x01
241 #define VM_LAZY_FREEING 0x02
242 #define VM_VM_AREA 0x04
245 unsigned long va_start
;
246 unsigned long va_end
;
248 struct rb_node rb_node
; /* address sorted rbtree */
249 struct list_head list
; /* address sorted list */
250 struct list_head purge_list
; /* "lazy purge" list */
252 struct rcu_head rcu_head
;
255 static DEFINE_SPINLOCK(vmap_area_lock
);
256 static struct rb_root vmap_area_root
= RB_ROOT
;
257 static LIST_HEAD(vmap_area_list
);
259 static struct vmap_area
*__find_vmap_area(unsigned long addr
)
261 struct rb_node
*n
= vmap_area_root
.rb_node
;
264 struct vmap_area
*va
;
266 va
= rb_entry(n
, struct vmap_area
, rb_node
);
267 if (addr
< va
->va_start
)
269 else if (addr
> va
->va_start
)
278 static void __insert_vmap_area(struct vmap_area
*va
)
280 struct rb_node
**p
= &vmap_area_root
.rb_node
;
281 struct rb_node
*parent
= NULL
;
285 struct vmap_area
*tmp
;
288 tmp
= rb_entry(parent
, struct vmap_area
, rb_node
);
289 if (va
->va_start
< tmp
->va_end
)
291 else if (va
->va_end
> tmp
->va_start
)
297 rb_link_node(&va
->rb_node
, parent
, p
);
298 rb_insert_color(&va
->rb_node
, &vmap_area_root
);
300 /* address-sort this list so it is usable like the vmlist */
301 tmp
= rb_prev(&va
->rb_node
);
303 struct vmap_area
*prev
;
304 prev
= rb_entry(tmp
, struct vmap_area
, rb_node
);
305 list_add_rcu(&va
->list
, &prev
->list
);
307 list_add_rcu(&va
->list
, &vmap_area_list
);
310 static void purge_vmap_area_lazy(void);
313 * Allocate a region of KVA of the specified size and alignment, within the
316 static struct vmap_area
*alloc_vmap_area(unsigned long size
,
318 unsigned long vstart
, unsigned long vend
,
319 int node
, gfp_t gfp_mask
)
321 struct vmap_area
*va
;
327 BUG_ON(size
& ~PAGE_MASK
);
329 va
= kmalloc_node(sizeof(struct vmap_area
),
330 gfp_mask
& GFP_RECLAIM_MASK
, node
);
332 return ERR_PTR(-ENOMEM
);
335 addr
= ALIGN(vstart
, align
);
337 spin_lock(&vmap_area_lock
);
338 if (addr
+ size
- 1 < addr
)
341 /* XXX: could have a last_hole cache */
342 n
= vmap_area_root
.rb_node
;
344 struct vmap_area
*first
= NULL
;
347 struct vmap_area
*tmp
;
348 tmp
= rb_entry(n
, struct vmap_area
, rb_node
);
349 if (tmp
->va_end
>= addr
) {
350 if (!first
&& tmp
->va_start
< addr
+ size
)
362 if (first
->va_end
< addr
) {
363 n
= rb_next(&first
->rb_node
);
365 first
= rb_entry(n
, struct vmap_area
, rb_node
);
370 while (addr
+ size
> first
->va_start
&& addr
+ size
<= vend
) {
371 addr
= ALIGN(first
->va_end
+ PAGE_SIZE
, align
);
372 if (addr
+ size
- 1 < addr
)
375 n
= rb_next(&first
->rb_node
);
377 first
= rb_entry(n
, struct vmap_area
, rb_node
);
383 if (addr
+ size
> vend
) {
385 spin_unlock(&vmap_area_lock
);
387 purge_vmap_area_lazy();
391 if (printk_ratelimit())
392 printk(KERN_WARNING
"vmap allocation failed: "
393 "use vmalloc=<size> to increase size.\n");
394 return ERR_PTR(-EBUSY
);
397 BUG_ON(addr
& (align
-1));
400 va
->va_end
= addr
+ size
;
402 __insert_vmap_area(va
);
403 spin_unlock(&vmap_area_lock
);
408 static void rcu_free_va(struct rcu_head
*head
)
410 struct vmap_area
*va
= container_of(head
, struct vmap_area
, rcu_head
);
415 static void __free_vmap_area(struct vmap_area
*va
)
417 BUG_ON(RB_EMPTY_NODE(&va
->rb_node
));
418 rb_erase(&va
->rb_node
, &vmap_area_root
);
419 RB_CLEAR_NODE(&va
->rb_node
);
420 list_del_rcu(&va
->list
);
422 call_rcu(&va
->rcu_head
, rcu_free_va
);
426 * Free a region of KVA allocated by alloc_vmap_area
428 static void free_vmap_area(struct vmap_area
*va
)
430 spin_lock(&vmap_area_lock
);
431 __free_vmap_area(va
);
432 spin_unlock(&vmap_area_lock
);
436 * Clear the pagetable entries of a given vmap_area
438 static void unmap_vmap_area(struct vmap_area
*va
)
440 vunmap_page_range(va
->va_start
, va
->va_end
);
444 * lazy_max_pages is the maximum amount of virtual address space we gather up
445 * before attempting to purge with a TLB flush.
447 * There is a tradeoff here: a larger number will cover more kernel page tables
448 * and take slightly longer to purge, but it will linearly reduce the number of
449 * global TLB flushes that must be performed. It would seem natural to scale
450 * this number up linearly with the number of CPUs (because vmapping activity
451 * could also scale linearly with the number of CPUs), however it is likely
452 * that in practice, workloads might be constrained in other ways that mean
453 * vmap activity will not scale linearly with CPUs. Also, I want to be
454 * conservative and not introduce a big latency on huge systems, so go with
455 * a less aggressive log scale. It will still be an improvement over the old
456 * code, and it will be simple to change the scale factor if we find that it
457 * becomes a problem on bigger systems.
459 static unsigned long lazy_max_pages(void)
463 log
= fls(num_online_cpus());
465 return log
* (32UL * 1024 * 1024 / PAGE_SIZE
);
468 static atomic_t vmap_lazy_nr
= ATOMIC_INIT(0);
471 * Purges all lazily-freed vmap areas.
473 * If sync is 0 then don't purge if there is already a purge in progress.
474 * If force_flush is 1, then flush kernel TLBs between *start and *end even
475 * if we found no lazy vmap areas to unmap (callers can use this to optimise
476 * their own TLB flushing).
477 * Returns with *start = min(*start, lowest purged address)
478 * *end = max(*end, highest purged address)
480 static void __purge_vmap_area_lazy(unsigned long *start
, unsigned long *end
,
481 int sync
, int force_flush
)
483 static DEFINE_SPINLOCK(purge_lock
);
485 struct vmap_area
*va
;
486 struct vmap_area
*n_va
;
490 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
491 * should not expect such behaviour. This just simplifies locking for
492 * the case that isn't actually used at the moment anyway.
494 if (!sync
&& !force_flush
) {
495 if (!spin_trylock(&purge_lock
))
498 spin_lock(&purge_lock
);
501 list_for_each_entry_rcu(va
, &vmap_area_list
, list
) {
502 if (va
->flags
& VM_LAZY_FREE
) {
503 if (va
->va_start
< *start
)
504 *start
= va
->va_start
;
505 if (va
->va_end
> *end
)
507 nr
+= (va
->va_end
- va
->va_start
) >> PAGE_SHIFT
;
509 list_add_tail(&va
->purge_list
, &valist
);
510 va
->flags
|= VM_LAZY_FREEING
;
511 va
->flags
&= ~VM_LAZY_FREE
;
517 BUG_ON(nr
> atomic_read(&vmap_lazy_nr
));
518 atomic_sub(nr
, &vmap_lazy_nr
);
521 if (nr
|| force_flush
)
522 flush_tlb_kernel_range(*start
, *end
);
525 spin_lock(&vmap_area_lock
);
526 list_for_each_entry_safe(va
, n_va
, &valist
, purge_list
)
527 __free_vmap_area(va
);
528 spin_unlock(&vmap_area_lock
);
530 spin_unlock(&purge_lock
);
534 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
535 * is already purging.
537 static void try_purge_vmap_area_lazy(void)
539 unsigned long start
= ULONG_MAX
, end
= 0;
541 __purge_vmap_area_lazy(&start
, &end
, 0, 0);
545 * Kick off a purge of the outstanding lazy areas.
547 static void purge_vmap_area_lazy(void)
549 unsigned long start
= ULONG_MAX
, end
= 0;
551 __purge_vmap_area_lazy(&start
, &end
, 1, 0);
555 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
556 * called for the correct range previously.
558 static void free_unmap_vmap_area_noflush(struct vmap_area
*va
)
560 va
->flags
|= VM_LAZY_FREE
;
561 atomic_add((va
->va_end
- va
->va_start
) >> PAGE_SHIFT
, &vmap_lazy_nr
);
562 if (unlikely(atomic_read(&vmap_lazy_nr
) > lazy_max_pages()))
563 try_purge_vmap_area_lazy();
567 * Free and unmap a vmap area
569 static void free_unmap_vmap_area(struct vmap_area
*va
)
571 flush_cache_vunmap(va
->va_start
, va
->va_end
);
572 free_unmap_vmap_area_noflush(va
);
575 static struct vmap_area
*find_vmap_area(unsigned long addr
)
577 struct vmap_area
*va
;
579 spin_lock(&vmap_area_lock
);
580 va
= __find_vmap_area(addr
);
581 spin_unlock(&vmap_area_lock
);
586 static void free_unmap_vmap_area_addr(unsigned long addr
)
588 struct vmap_area
*va
;
590 va
= find_vmap_area(addr
);
592 free_unmap_vmap_area(va
);
596 /*** Per cpu kva allocator ***/
599 * vmap space is limited especially on 32 bit architectures. Ensure there is
600 * room for at least 16 percpu vmap blocks per CPU.
603 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
604 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
605 * instead (we just need a rough idea)
607 #if BITS_PER_LONG == 32
608 #define VMALLOC_SPACE (128UL*1024*1024)
610 #define VMALLOC_SPACE (128UL*1024*1024*1024)
613 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
614 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
615 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
616 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
617 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
618 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
619 #define VMAP_BBMAP_BITS VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
620 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
621 VMALLOC_PAGES / NR_CPUS / 16))
623 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
625 static bool vmap_initialized __read_mostly
= false;
627 struct vmap_block_queue
{
629 struct list_head free
;
630 struct list_head dirty
;
631 unsigned int nr_dirty
;
636 struct vmap_area
*va
;
637 struct vmap_block_queue
*vbq
;
638 unsigned long free
, dirty
;
639 DECLARE_BITMAP(alloc_map
, VMAP_BBMAP_BITS
);
640 DECLARE_BITMAP(dirty_map
, VMAP_BBMAP_BITS
);
643 struct list_head free_list
;
644 struct list_head dirty_list
;
646 struct rcu_head rcu_head
;
650 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
651 static DEFINE_PER_CPU(struct vmap_block_queue
, vmap_block_queue
);
654 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
655 * in the free path. Could get rid of this if we change the API to return a
656 * "cookie" from alloc, to be passed to free. But no big deal yet.
658 static DEFINE_SPINLOCK(vmap_block_tree_lock
);
659 static RADIX_TREE(vmap_block_tree
, GFP_ATOMIC
);
662 * We should probably have a fallback mechanism to allocate virtual memory
663 * out of partially filled vmap blocks. However vmap block sizing should be
664 * fairly reasonable according to the vmalloc size, so it shouldn't be a
668 static unsigned long addr_to_vb_idx(unsigned long addr
)
670 addr
-= VMALLOC_START
& ~(VMAP_BLOCK_SIZE
-1);
671 addr
/= VMAP_BLOCK_SIZE
;
675 static struct vmap_block
*new_vmap_block(gfp_t gfp_mask
)
677 struct vmap_block_queue
*vbq
;
678 struct vmap_block
*vb
;
679 struct vmap_area
*va
;
680 unsigned long vb_idx
;
683 node
= numa_node_id();
685 vb
= kmalloc_node(sizeof(struct vmap_block
),
686 gfp_mask
& GFP_RECLAIM_MASK
, node
);
688 return ERR_PTR(-ENOMEM
);
690 va
= alloc_vmap_area(VMAP_BLOCK_SIZE
, VMAP_BLOCK_SIZE
,
691 VMALLOC_START
, VMALLOC_END
,
693 if (unlikely(IS_ERR(va
))) {
695 return ERR_PTR(PTR_ERR(va
));
698 err
= radix_tree_preload(gfp_mask
);
705 spin_lock_init(&vb
->lock
);
707 vb
->free
= VMAP_BBMAP_BITS
;
709 bitmap_zero(vb
->alloc_map
, VMAP_BBMAP_BITS
);
710 bitmap_zero(vb
->dirty_map
, VMAP_BBMAP_BITS
);
711 INIT_LIST_HEAD(&vb
->free_list
);
712 INIT_LIST_HEAD(&vb
->dirty_list
);
714 vb_idx
= addr_to_vb_idx(va
->va_start
);
715 spin_lock(&vmap_block_tree_lock
);
716 err
= radix_tree_insert(&vmap_block_tree
, vb_idx
, vb
);
717 spin_unlock(&vmap_block_tree_lock
);
719 radix_tree_preload_end();
721 vbq
= &get_cpu_var(vmap_block_queue
);
723 spin_lock(&vbq
->lock
);
724 list_add(&vb
->free_list
, &vbq
->free
);
725 spin_unlock(&vbq
->lock
);
726 put_cpu_var(vmap_cpu_blocks
);
731 static void rcu_free_vb(struct rcu_head
*head
)
733 struct vmap_block
*vb
= container_of(head
, struct vmap_block
, rcu_head
);
738 static void free_vmap_block(struct vmap_block
*vb
)
740 struct vmap_block
*tmp
;
741 unsigned long vb_idx
;
743 spin_lock(&vb
->vbq
->lock
);
744 if (!list_empty(&vb
->free_list
))
745 list_del(&vb
->free_list
);
746 if (!list_empty(&vb
->dirty_list
))
747 list_del(&vb
->dirty_list
);
748 spin_unlock(&vb
->vbq
->lock
);
750 vb_idx
= addr_to_vb_idx(vb
->va
->va_start
);
751 spin_lock(&vmap_block_tree_lock
);
752 tmp
= radix_tree_delete(&vmap_block_tree
, vb_idx
);
753 spin_unlock(&vmap_block_tree_lock
);
756 free_unmap_vmap_area_noflush(vb
->va
);
757 call_rcu(&vb
->rcu_head
, rcu_free_vb
);
760 static void *vb_alloc(unsigned long size
, gfp_t gfp_mask
)
762 struct vmap_block_queue
*vbq
;
763 struct vmap_block
*vb
;
764 unsigned long addr
= 0;
767 BUG_ON(size
& ~PAGE_MASK
);
768 BUG_ON(size
> PAGE_SIZE
*VMAP_MAX_ALLOC
);
769 order
= get_order(size
);
773 vbq
= &get_cpu_var(vmap_block_queue
);
774 list_for_each_entry_rcu(vb
, &vbq
->free
, free_list
) {
777 spin_lock(&vb
->lock
);
778 i
= bitmap_find_free_region(vb
->alloc_map
,
779 VMAP_BBMAP_BITS
, order
);
782 addr
= vb
->va
->va_start
+ (i
<< PAGE_SHIFT
);
783 BUG_ON(addr_to_vb_idx(addr
) !=
784 addr_to_vb_idx(vb
->va
->va_start
));
785 vb
->free
-= 1UL << order
;
787 spin_lock(&vbq
->lock
);
788 list_del_init(&vb
->free_list
);
789 spin_unlock(&vbq
->lock
);
791 spin_unlock(&vb
->lock
);
794 spin_unlock(&vb
->lock
);
796 put_cpu_var(vmap_cpu_blocks
);
800 vb
= new_vmap_block(gfp_mask
);
809 static void vb_free(const void *addr
, unsigned long size
)
811 unsigned long offset
;
812 unsigned long vb_idx
;
814 struct vmap_block
*vb
;
816 BUG_ON(size
& ~PAGE_MASK
);
817 BUG_ON(size
> PAGE_SIZE
*VMAP_MAX_ALLOC
);
819 flush_cache_vunmap((unsigned long)addr
, (unsigned long)addr
+ size
);
821 order
= get_order(size
);
823 offset
= (unsigned long)addr
& (VMAP_BLOCK_SIZE
- 1);
825 vb_idx
= addr_to_vb_idx((unsigned long)addr
);
827 vb
= radix_tree_lookup(&vmap_block_tree
, vb_idx
);
831 spin_lock(&vb
->lock
);
832 bitmap_allocate_region(vb
->dirty_map
, offset
>> PAGE_SHIFT
, order
);
834 spin_lock(&vb
->vbq
->lock
);
835 list_add(&vb
->dirty_list
, &vb
->vbq
->dirty
);
836 spin_unlock(&vb
->vbq
->lock
);
838 vb
->dirty
+= 1UL << order
;
839 if (vb
->dirty
== VMAP_BBMAP_BITS
) {
840 BUG_ON(vb
->free
|| !list_empty(&vb
->free_list
));
841 spin_unlock(&vb
->lock
);
844 spin_unlock(&vb
->lock
);
848 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
850 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
851 * to amortize TLB flushing overheads. What this means is that any page you
852 * have now, may, in a former life, have been mapped into kernel virtual
853 * address by the vmap layer and so there might be some CPUs with TLB entries
854 * still referencing that page (additional to the regular 1:1 kernel mapping).
856 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
857 * be sure that none of the pages we have control over will have any aliases
858 * from the vmap layer.
860 void vm_unmap_aliases(void)
862 unsigned long start
= ULONG_MAX
, end
= 0;
866 if (unlikely(!vmap_initialized
))
869 for_each_possible_cpu(cpu
) {
870 struct vmap_block_queue
*vbq
= &per_cpu(vmap_block_queue
, cpu
);
871 struct vmap_block
*vb
;
874 list_for_each_entry_rcu(vb
, &vbq
->free
, free_list
) {
877 spin_lock(&vb
->lock
);
878 i
= find_first_bit(vb
->dirty_map
, VMAP_BBMAP_BITS
);
879 while (i
< VMAP_BBMAP_BITS
) {
882 j
= find_next_zero_bit(vb
->dirty_map
,
885 s
= vb
->va
->va_start
+ (i
<< PAGE_SHIFT
);
886 e
= vb
->va
->va_start
+ (j
<< PAGE_SHIFT
);
887 vunmap_page_range(s
, e
);
896 i
= find_next_bit(vb
->dirty_map
,
899 spin_unlock(&vb
->lock
);
904 __purge_vmap_area_lazy(&start
, &end
, 1, flush
);
906 EXPORT_SYMBOL_GPL(vm_unmap_aliases
);
909 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
910 * @mem: the pointer returned by vm_map_ram
911 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
913 void vm_unmap_ram(const void *mem
, unsigned int count
)
915 unsigned long size
= count
<< PAGE_SHIFT
;
916 unsigned long addr
= (unsigned long)mem
;
919 BUG_ON(addr
< VMALLOC_START
);
920 BUG_ON(addr
> VMALLOC_END
);
921 BUG_ON(addr
& (PAGE_SIZE
-1));
923 debug_check_no_locks_freed(mem
, size
);
925 if (likely(count
<= VMAP_MAX_ALLOC
))
928 free_unmap_vmap_area_addr(addr
);
930 EXPORT_SYMBOL(vm_unmap_ram
);
933 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
934 * @pages: an array of pointers to the pages to be mapped
935 * @count: number of pages
936 * @node: prefer to allocate data structures on this node
937 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
939 * Returns: a pointer to the address that has been mapped, or %NULL on failure
941 void *vm_map_ram(struct page
**pages
, unsigned int count
, int node
, pgprot_t prot
)
943 unsigned long size
= count
<< PAGE_SHIFT
;
947 if (likely(count
<= VMAP_MAX_ALLOC
)) {
948 mem
= vb_alloc(size
, GFP_KERNEL
);
951 addr
= (unsigned long)mem
;
953 struct vmap_area
*va
;
954 va
= alloc_vmap_area(size
, PAGE_SIZE
,
955 VMALLOC_START
, VMALLOC_END
, node
, GFP_KERNEL
);
962 if (vmap_page_range(addr
, addr
+ size
, prot
, pages
) < 0) {
963 vm_unmap_ram(mem
, count
);
968 EXPORT_SYMBOL(vm_map_ram
);
970 void __init
vmalloc_init(void)
972 struct vmap_area
*va
;
973 struct vm_struct
*tmp
;
976 for_each_possible_cpu(i
) {
977 struct vmap_block_queue
*vbq
;
979 vbq
= &per_cpu(vmap_block_queue
, i
);
980 spin_lock_init(&vbq
->lock
);
981 INIT_LIST_HEAD(&vbq
->free
);
982 INIT_LIST_HEAD(&vbq
->dirty
);
986 /* Import existing vmlist entries. */
987 for (tmp
= vmlist
; tmp
; tmp
= tmp
->next
) {
988 va
= alloc_bootmem(sizeof(struct vmap_area
));
989 va
->flags
= tmp
->flags
| VM_VM_AREA
;
990 va
->va_start
= (unsigned long)tmp
->addr
;
991 va
->va_end
= va
->va_start
+ tmp
->size
;
992 __insert_vmap_area(va
);
994 vmap_initialized
= true;
997 void unmap_kernel_range(unsigned long addr
, unsigned long size
)
999 unsigned long end
= addr
+ size
;
1001 flush_cache_vunmap(addr
, end
);
1002 vunmap_page_range(addr
, end
);
1003 flush_tlb_kernel_range(addr
, end
);
1006 int map_vm_area(struct vm_struct
*area
, pgprot_t prot
, struct page
***pages
)
1008 unsigned long addr
= (unsigned long)area
->addr
;
1009 unsigned long end
= addr
+ area
->size
- PAGE_SIZE
;
1012 err
= vmap_page_range(addr
, end
, prot
, *pages
);
1020 EXPORT_SYMBOL_GPL(map_vm_area
);
1022 /*** Old vmalloc interfaces ***/
1023 DEFINE_RWLOCK(vmlist_lock
);
1024 struct vm_struct
*vmlist
;
1026 static struct vm_struct
*__get_vm_area_node(unsigned long size
,
1027 unsigned long flags
, unsigned long start
, unsigned long end
,
1028 int node
, gfp_t gfp_mask
, void *caller
)
1030 static struct vmap_area
*va
;
1031 struct vm_struct
*area
;
1032 struct vm_struct
*tmp
, **p
;
1033 unsigned long align
= 1;
1035 BUG_ON(in_interrupt());
1036 if (flags
& VM_IOREMAP
) {
1037 int bit
= fls(size
);
1039 if (bit
> IOREMAP_MAX_ORDER
)
1040 bit
= IOREMAP_MAX_ORDER
;
1041 else if (bit
< PAGE_SHIFT
)
1047 size
= PAGE_ALIGN(size
);
1048 if (unlikely(!size
))
1051 area
= kmalloc_node(sizeof(*area
), gfp_mask
& GFP_RECLAIM_MASK
, node
);
1052 if (unlikely(!area
))
1056 * We always allocate a guard page.
1060 va
= alloc_vmap_area(size
, align
, start
, end
, node
, gfp_mask
);
1066 area
->flags
= flags
;
1067 area
->addr
= (void *)va
->va_start
;
1071 area
->phys_addr
= 0;
1072 area
->caller
= caller
;
1074 va
->flags
|= VM_VM_AREA
;
1076 write_lock(&vmlist_lock
);
1077 for (p
= &vmlist
; (tmp
= *p
) != NULL
; p
= &tmp
->next
) {
1078 if (tmp
->addr
>= area
->addr
)
1083 write_unlock(&vmlist_lock
);
1088 struct vm_struct
*__get_vm_area(unsigned long size
, unsigned long flags
,
1089 unsigned long start
, unsigned long end
)
1091 return __get_vm_area_node(size
, flags
, start
, end
, -1, GFP_KERNEL
,
1092 __builtin_return_address(0));
1094 EXPORT_SYMBOL_GPL(__get_vm_area
);
1097 * get_vm_area - reserve a contiguous kernel virtual area
1098 * @size: size of the area
1099 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1101 * Search an area of @size in the kernel virtual mapping area,
1102 * and reserved it for out purposes. Returns the area descriptor
1103 * on success or %NULL on failure.
1105 struct vm_struct
*get_vm_area(unsigned long size
, unsigned long flags
)
1107 return __get_vm_area_node(size
, flags
, VMALLOC_START
, VMALLOC_END
,
1108 -1, GFP_KERNEL
, __builtin_return_address(0));
1111 struct vm_struct
*get_vm_area_caller(unsigned long size
, unsigned long flags
,
1114 return __get_vm_area_node(size
, flags
, VMALLOC_START
, VMALLOC_END
,
1115 -1, GFP_KERNEL
, caller
);
1118 struct vm_struct
*get_vm_area_node(unsigned long size
, unsigned long flags
,
1119 int node
, gfp_t gfp_mask
)
1121 return __get_vm_area_node(size
, flags
, VMALLOC_START
, VMALLOC_END
, node
,
1122 gfp_mask
, __builtin_return_address(0));
1125 static struct vm_struct
*find_vm_area(const void *addr
)
1127 struct vmap_area
*va
;
1129 va
= find_vmap_area((unsigned long)addr
);
1130 if (va
&& va
->flags
& VM_VM_AREA
)
1137 * remove_vm_area - find and remove a continuous kernel virtual area
1138 * @addr: base address
1140 * Search for the kernel VM area starting at @addr, and remove it.
1141 * This function returns the found VM area, but using it is NOT safe
1142 * on SMP machines, except for its size or flags.
1144 struct vm_struct
*remove_vm_area(const void *addr
)
1146 struct vmap_area
*va
;
1148 va
= find_vmap_area((unsigned long)addr
);
1149 if (va
&& va
->flags
& VM_VM_AREA
) {
1150 struct vm_struct
*vm
= va
->private;
1151 struct vm_struct
*tmp
, **p
;
1152 free_unmap_vmap_area(va
);
1153 vm
->size
-= PAGE_SIZE
;
1155 write_lock(&vmlist_lock
);
1156 for (p
= &vmlist
; (tmp
= *p
) != vm
; p
= &tmp
->next
)
1159 write_unlock(&vmlist_lock
);
1166 static void __vunmap(const void *addr
, int deallocate_pages
)
1168 struct vm_struct
*area
;
1173 if ((PAGE_SIZE
-1) & (unsigned long)addr
) {
1174 WARN(1, KERN_ERR
"Trying to vfree() bad address (%p)\n", addr
);
1178 area
= remove_vm_area(addr
);
1179 if (unlikely(!area
)) {
1180 WARN(1, KERN_ERR
"Trying to vfree() nonexistent vm area (%p)\n",
1185 debug_check_no_locks_freed(addr
, area
->size
);
1186 debug_check_no_obj_freed(addr
, area
->size
);
1188 if (deallocate_pages
) {
1191 for (i
= 0; i
< area
->nr_pages
; i
++) {
1192 struct page
*page
= area
->pages
[i
];
1198 if (area
->flags
& VM_VPAGES
)
1209 * vfree - release memory allocated by vmalloc()
1210 * @addr: memory base address
1212 * Free the virtually continuous memory area starting at @addr, as
1213 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1214 * NULL, no operation is performed.
1216 * Must not be called in interrupt context.
1218 void vfree(const void *addr
)
1220 BUG_ON(in_interrupt());
1223 EXPORT_SYMBOL(vfree
);
1226 * vunmap - release virtual mapping obtained by vmap()
1227 * @addr: memory base address
1229 * Free the virtually contiguous memory area starting at @addr,
1230 * which was created from the page array passed to vmap().
1232 * Must not be called in interrupt context.
1234 void vunmap(const void *addr
)
1236 BUG_ON(in_interrupt());
1239 EXPORT_SYMBOL(vunmap
);
1242 * vmap - map an array of pages into virtually contiguous space
1243 * @pages: array of page pointers
1244 * @count: number of pages to map
1245 * @flags: vm_area->flags
1246 * @prot: page protection for the mapping
1248 * Maps @count pages from @pages into contiguous kernel virtual
1251 void *vmap(struct page
**pages
, unsigned int count
,
1252 unsigned long flags
, pgprot_t prot
)
1254 struct vm_struct
*area
;
1256 if (count
> num_physpages
)
1259 area
= get_vm_area_caller((count
<< PAGE_SHIFT
), flags
,
1260 __builtin_return_address(0));
1264 if (map_vm_area(area
, prot
, &pages
)) {
1271 EXPORT_SYMBOL(vmap
);
1273 static void *__vmalloc_node(unsigned long size
, gfp_t gfp_mask
, pgprot_t prot
,
1274 int node
, void *caller
);
1275 static void *__vmalloc_area_node(struct vm_struct
*area
, gfp_t gfp_mask
,
1276 pgprot_t prot
, int node
, void *caller
)
1278 struct page
**pages
;
1279 unsigned int nr_pages
, array_size
, i
;
1281 nr_pages
= (area
->size
- PAGE_SIZE
) >> PAGE_SHIFT
;
1282 array_size
= (nr_pages
* sizeof(struct page
*));
1284 area
->nr_pages
= nr_pages
;
1285 /* Please note that the recursion is strictly bounded. */
1286 if (array_size
> PAGE_SIZE
) {
1287 pages
= __vmalloc_node(array_size
, gfp_mask
| __GFP_ZERO
,
1288 PAGE_KERNEL
, node
, caller
);
1289 area
->flags
|= VM_VPAGES
;
1291 pages
= kmalloc_node(array_size
,
1292 (gfp_mask
& GFP_RECLAIM_MASK
) | __GFP_ZERO
,
1295 area
->pages
= pages
;
1296 area
->caller
= caller
;
1298 remove_vm_area(area
->addr
);
1303 for (i
= 0; i
< area
->nr_pages
; i
++) {
1307 page
= alloc_page(gfp_mask
);
1309 page
= alloc_pages_node(node
, gfp_mask
, 0);
1311 if (unlikely(!page
)) {
1312 /* Successfully allocated i pages, free them in __vunmap() */
1316 area
->pages
[i
] = page
;
1319 if (map_vm_area(area
, prot
, &pages
))
1328 void *__vmalloc_area(struct vm_struct
*area
, gfp_t gfp_mask
, pgprot_t prot
)
1330 return __vmalloc_area_node(area
, gfp_mask
, prot
, -1,
1331 __builtin_return_address(0));
1335 * __vmalloc_node - allocate virtually contiguous memory
1336 * @size: allocation size
1337 * @gfp_mask: flags for the page level allocator
1338 * @prot: protection mask for the allocated pages
1339 * @node: node to use for allocation or -1
1340 * @caller: caller's return address
1342 * Allocate enough pages to cover @size from the page level
1343 * allocator with @gfp_mask flags. Map them into contiguous
1344 * kernel virtual space, using a pagetable protection of @prot.
1346 static void *__vmalloc_node(unsigned long size
, gfp_t gfp_mask
, pgprot_t prot
,
1347 int node
, void *caller
)
1349 struct vm_struct
*area
;
1351 size
= PAGE_ALIGN(size
);
1352 if (!size
|| (size
>> PAGE_SHIFT
) > num_physpages
)
1355 area
= __get_vm_area_node(size
, VM_ALLOC
, VMALLOC_START
, VMALLOC_END
,
1356 node
, gfp_mask
, caller
);
1361 return __vmalloc_area_node(area
, gfp_mask
, prot
, node
, caller
);
1364 void *__vmalloc(unsigned long size
, gfp_t gfp_mask
, pgprot_t prot
)
1366 return __vmalloc_node(size
, gfp_mask
, prot
, -1,
1367 __builtin_return_address(0));
1369 EXPORT_SYMBOL(__vmalloc
);
1372 * vmalloc - allocate virtually contiguous memory
1373 * @size: allocation size
1374 * Allocate enough pages to cover @size from the page level
1375 * allocator and map them into contiguous kernel virtual space.
1377 * For tight control over page level allocator and protection flags
1378 * use __vmalloc() instead.
1380 void *vmalloc(unsigned long size
)
1382 return __vmalloc_node(size
, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL
,
1383 -1, __builtin_return_address(0));
1385 EXPORT_SYMBOL(vmalloc
);
1388 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1389 * @size: allocation size
1391 * The resulting memory area is zeroed so it can be mapped to userspace
1392 * without leaking data.
1394 void *vmalloc_user(unsigned long size
)
1396 struct vm_struct
*area
;
1399 ret
= __vmalloc(size
, GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_ZERO
, PAGE_KERNEL
);
1401 area
= find_vm_area(ret
);
1402 area
->flags
|= VM_USERMAP
;
1406 EXPORT_SYMBOL(vmalloc_user
);
1409 * vmalloc_node - allocate memory on a specific node
1410 * @size: allocation size
1413 * Allocate enough pages to cover @size from the page level
1414 * allocator and map them into contiguous kernel virtual space.
1416 * For tight control over page level allocator and protection flags
1417 * use __vmalloc() instead.
1419 void *vmalloc_node(unsigned long size
, int node
)
1421 return __vmalloc_node(size
, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL
,
1422 node
, __builtin_return_address(0));
1424 EXPORT_SYMBOL(vmalloc_node
);
1426 #ifndef PAGE_KERNEL_EXEC
1427 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1431 * vmalloc_exec - allocate virtually contiguous, executable memory
1432 * @size: allocation size
1434 * Kernel-internal function to allocate enough pages to cover @size
1435 * the page level allocator and map them into contiguous and
1436 * executable kernel virtual space.
1438 * For tight control over page level allocator and protection flags
1439 * use __vmalloc() instead.
1442 void *vmalloc_exec(unsigned long size
)
1444 return __vmalloc(size
, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL_EXEC
);
1447 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1448 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1449 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1450 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1452 #define GFP_VMALLOC32 GFP_KERNEL
1456 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1457 * @size: allocation size
1459 * Allocate enough 32bit PA addressable pages to cover @size from the
1460 * page level allocator and map them into contiguous kernel virtual space.
1462 void *vmalloc_32(unsigned long size
)
1464 return __vmalloc(size
, GFP_VMALLOC32
, PAGE_KERNEL
);
1466 EXPORT_SYMBOL(vmalloc_32
);
1469 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1470 * @size: allocation size
1472 * The resulting memory area is 32bit addressable and zeroed so it can be
1473 * mapped to userspace without leaking data.
1475 void *vmalloc_32_user(unsigned long size
)
1477 struct vm_struct
*area
;
1480 ret
= __vmalloc(size
, GFP_VMALLOC32
| __GFP_ZERO
, PAGE_KERNEL
);
1482 area
= find_vm_area(ret
);
1483 area
->flags
|= VM_USERMAP
;
1487 EXPORT_SYMBOL(vmalloc_32_user
);
1489 long vread(char *buf
, char *addr
, unsigned long count
)
1491 struct vm_struct
*tmp
;
1492 char *vaddr
, *buf_start
= buf
;
1495 /* Don't allow overflow */
1496 if ((unsigned long) addr
+ count
< count
)
1497 count
= -(unsigned long) addr
;
1499 read_lock(&vmlist_lock
);
1500 for (tmp
= vmlist
; tmp
; tmp
= tmp
->next
) {
1501 vaddr
= (char *) tmp
->addr
;
1502 if (addr
>= vaddr
+ tmp
->size
- PAGE_SIZE
)
1504 while (addr
< vaddr
) {
1512 n
= vaddr
+ tmp
->size
- PAGE_SIZE
- addr
;
1523 read_unlock(&vmlist_lock
);
1524 return buf
- buf_start
;
1527 long vwrite(char *buf
, char *addr
, unsigned long count
)
1529 struct vm_struct
*tmp
;
1530 char *vaddr
, *buf_start
= buf
;
1533 /* Don't allow overflow */
1534 if ((unsigned long) addr
+ count
< count
)
1535 count
= -(unsigned long) addr
;
1537 read_lock(&vmlist_lock
);
1538 for (tmp
= vmlist
; tmp
; tmp
= tmp
->next
) {
1539 vaddr
= (char *) tmp
->addr
;
1540 if (addr
>= vaddr
+ tmp
->size
- PAGE_SIZE
)
1542 while (addr
< vaddr
) {
1549 n
= vaddr
+ tmp
->size
- PAGE_SIZE
- addr
;
1560 read_unlock(&vmlist_lock
);
1561 return buf
- buf_start
;
1565 * remap_vmalloc_range - map vmalloc pages to userspace
1566 * @vma: vma to cover (map full range of vma)
1567 * @addr: vmalloc memory
1568 * @pgoff: number of pages into addr before first page to map
1570 * Returns: 0 for success, -Exxx on failure
1572 * This function checks that addr is a valid vmalloc'ed area, and
1573 * that it is big enough to cover the vma. Will return failure if
1574 * that criteria isn't met.
1576 * Similar to remap_pfn_range() (see mm/memory.c)
1578 int remap_vmalloc_range(struct vm_area_struct
*vma
, void *addr
,
1579 unsigned long pgoff
)
1581 struct vm_struct
*area
;
1582 unsigned long uaddr
= vma
->vm_start
;
1583 unsigned long usize
= vma
->vm_end
- vma
->vm_start
;
1585 if ((PAGE_SIZE
-1) & (unsigned long)addr
)
1588 area
= find_vm_area(addr
);
1592 if (!(area
->flags
& VM_USERMAP
))
1595 if (usize
+ (pgoff
<< PAGE_SHIFT
) > area
->size
- PAGE_SIZE
)
1598 addr
+= pgoff
<< PAGE_SHIFT
;
1600 struct page
*page
= vmalloc_to_page(addr
);
1603 ret
= vm_insert_page(vma
, uaddr
, page
);
1610 } while (usize
> 0);
1612 /* Prevent "things" like memory migration? VM_flags need a cleanup... */
1613 vma
->vm_flags
|= VM_RESERVED
;
1617 EXPORT_SYMBOL(remap_vmalloc_range
);
1620 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
1623 void __attribute__((weak
)) vmalloc_sync_all(void)
1628 static int f(pte_t
*pte
, pgtable_t table
, unsigned long addr
, void *data
)
1630 /* apply_to_page_range() does all the hard work. */
1635 * alloc_vm_area - allocate a range of kernel address space
1636 * @size: size of the area
1638 * Returns: NULL on failure, vm_struct on success
1640 * This function reserves a range of kernel address space, and
1641 * allocates pagetables to map that range. No actual mappings
1642 * are created. If the kernel address space is not shared
1643 * between processes, it syncs the pagetable across all
1646 struct vm_struct
*alloc_vm_area(size_t size
)
1648 struct vm_struct
*area
;
1650 area
= get_vm_area_caller(size
, VM_IOREMAP
,
1651 __builtin_return_address(0));
1656 * This ensures that page tables are constructed for this region
1657 * of kernel virtual address space and mapped into init_mm.
1659 if (apply_to_page_range(&init_mm
, (unsigned long)area
->addr
,
1660 area
->size
, f
, NULL
)) {
1665 /* Make sure the pagetables are constructed in process kernel
1671 EXPORT_SYMBOL_GPL(alloc_vm_area
);
1673 void free_vm_area(struct vm_struct
*area
)
1675 struct vm_struct
*ret
;
1676 ret
= remove_vm_area(area
->addr
);
1677 BUG_ON(ret
!= area
);
1680 EXPORT_SYMBOL_GPL(free_vm_area
);
1683 #ifdef CONFIG_PROC_FS
1684 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
1687 struct vm_struct
*v
;
1689 read_lock(&vmlist_lock
);
1691 while (n
> 0 && v
) {
1702 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
1704 struct vm_struct
*v
= p
;
1710 static void s_stop(struct seq_file
*m
, void *p
)
1712 read_unlock(&vmlist_lock
);
1715 static void show_numa_info(struct seq_file
*m
, struct vm_struct
*v
)
1718 unsigned int nr
, *counters
= m
->private;
1723 memset(counters
, 0, nr_node_ids
* sizeof(unsigned int));
1725 for (nr
= 0; nr
< v
->nr_pages
; nr
++)
1726 counters
[page_to_nid(v
->pages
[nr
])]++;
1728 for_each_node_state(nr
, N_HIGH_MEMORY
)
1730 seq_printf(m
, " N%u=%u", nr
, counters
[nr
]);
1734 static int s_show(struct seq_file
*m
, void *p
)
1736 struct vm_struct
*v
= p
;
1738 seq_printf(m
, "0x%p-0x%p %7ld",
1739 v
->addr
, v
->addr
+ v
->size
, v
->size
);
1742 char buff
[KSYM_SYMBOL_LEN
];
1745 sprint_symbol(buff
, (unsigned long)v
->caller
);
1750 seq_printf(m
, " pages=%d", v
->nr_pages
);
1753 seq_printf(m
, " phys=%lx", v
->phys_addr
);
1755 if (v
->flags
& VM_IOREMAP
)
1756 seq_printf(m
, " ioremap");
1758 if (v
->flags
& VM_ALLOC
)
1759 seq_printf(m
, " vmalloc");
1761 if (v
->flags
& VM_MAP
)
1762 seq_printf(m
, " vmap");
1764 if (v
->flags
& VM_USERMAP
)
1765 seq_printf(m
, " user");
1767 if (v
->flags
& VM_VPAGES
)
1768 seq_printf(m
, " vpages");
1770 show_numa_info(m
, v
);
1775 static const struct seq_operations vmalloc_op
= {
1782 static int vmalloc_open(struct inode
*inode
, struct file
*file
)
1784 unsigned int *ptr
= NULL
;
1788 ptr
= kmalloc(nr_node_ids
* sizeof(unsigned int), GFP_KERNEL
);
1789 ret
= seq_open(file
, &vmalloc_op
);
1791 struct seq_file
*m
= file
->private_data
;
1798 static const struct file_operations proc_vmalloc_operations
= {
1799 .open
= vmalloc_open
,
1801 .llseek
= seq_lseek
,
1802 .release
= seq_release_private
,
1805 static int __init
proc_vmalloc_init(void)
1807 proc_create("vmallocinfo", S_IRUSR
, NULL
, &proc_vmalloc_operations
);
1810 module_init(proc_vmalloc_init
);