bonding: fix a race condition in calls to slave MII ioctls
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / fork.c
blob266c6af6ef1b089a1c64ee96428bd153db39217c
1 /*
2 * linux/kernel/fork.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/swap.h>
38 #include <linux/syscalls.h>
39 #include <linux/jiffies.h>
40 #include <linux/tracehook.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/task_io_accounting_ops.h>
44 #include <linux/rcupdate.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/audit.h>
48 #include <linux/memcontrol.h>
49 #include <linux/ftrace.h>
50 #include <linux/profile.h>
51 #include <linux/rmap.h>
52 #include <linux/ksm.h>
53 #include <linux/acct.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/freezer.h>
57 #include <linux/delayacct.h>
58 #include <linux/taskstats_kern.h>
59 #include <linux/random.h>
60 #include <linux/tty.h>
61 #include <linux/proc_fs.h>
62 #include <linux/blkdev.h>
63 #include <linux/fs_struct.h>
64 #include <linux/magic.h>
65 #include <linux/perf_event.h>
66 #include <linux/posix-timers.h>
68 #include <asm/pgtable.h>
69 #include <asm/pgalloc.h>
70 #include <asm/uaccess.h>
71 #include <asm/mmu_context.h>
72 #include <asm/cacheflush.h>
73 #include <asm/tlbflush.h>
75 #include <trace/events/sched.h>
78 * Protected counters by write_lock_irq(&tasklist_lock)
80 unsigned long total_forks; /* Handle normal Linux uptimes. */
81 int nr_threads; /* The idle threads do not count.. */
83 int max_threads; /* tunable limit on nr_threads */
85 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
87 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
89 int nr_processes(void)
91 int cpu;
92 int total = 0;
94 for_each_online_cpu(cpu)
95 total += per_cpu(process_counts, cpu);
97 return total;
100 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
101 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
102 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
103 static struct kmem_cache *task_struct_cachep;
104 #endif
106 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
107 static inline struct thread_info *alloc_thread_info(struct task_struct *tsk)
109 #ifdef CONFIG_DEBUG_STACK_USAGE
110 gfp_t mask = GFP_KERNEL | __GFP_ZERO;
111 #else
112 gfp_t mask = GFP_KERNEL;
113 #endif
114 return (struct thread_info *)__get_free_pages(mask, THREAD_SIZE_ORDER);
117 static inline void free_thread_info(struct thread_info *ti)
119 free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
121 #endif
123 /* SLAB cache for signal_struct structures (tsk->signal) */
124 static struct kmem_cache *signal_cachep;
126 /* SLAB cache for sighand_struct structures (tsk->sighand) */
127 struct kmem_cache *sighand_cachep;
129 /* SLAB cache for files_struct structures (tsk->files) */
130 struct kmem_cache *files_cachep;
132 /* SLAB cache for fs_struct structures (tsk->fs) */
133 struct kmem_cache *fs_cachep;
135 /* SLAB cache for vm_area_struct structures */
136 struct kmem_cache *vm_area_cachep;
138 /* SLAB cache for mm_struct structures (tsk->mm) */
139 static struct kmem_cache *mm_cachep;
141 static void account_kernel_stack(struct thread_info *ti, int account)
143 struct zone *zone = page_zone(virt_to_page(ti));
145 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
148 void free_task(struct task_struct *tsk)
150 prop_local_destroy_single(&tsk->dirties);
151 account_kernel_stack(tsk->stack, -1);
152 free_thread_info(tsk->stack);
153 rt_mutex_debug_task_free(tsk);
154 ftrace_graph_exit_task(tsk);
155 free_task_struct(tsk);
157 EXPORT_SYMBOL(free_task);
159 void __put_task_struct(struct task_struct *tsk)
161 WARN_ON(!tsk->exit_state);
162 WARN_ON(atomic_read(&tsk->usage));
163 WARN_ON(tsk == current);
165 exit_creds(tsk);
166 delayacct_tsk_free(tsk);
168 if (!profile_handoff_task(tsk))
169 free_task(tsk);
173 * macro override instead of weak attribute alias, to workaround
174 * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
176 #ifndef arch_task_cache_init
177 #define arch_task_cache_init()
178 #endif
180 void __init fork_init(unsigned long mempages)
182 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
183 #ifndef ARCH_MIN_TASKALIGN
184 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
185 #endif
186 /* create a slab on which task_structs can be allocated */
187 task_struct_cachep =
188 kmem_cache_create("task_struct", sizeof(struct task_struct),
189 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
190 #endif
192 /* do the arch specific task caches init */
193 arch_task_cache_init();
196 * The default maximum number of threads is set to a safe
197 * value: the thread structures can take up at most half
198 * of memory.
200 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
203 * we need to allow at least 20 threads to boot a system
205 if(max_threads < 20)
206 max_threads = 20;
208 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
209 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
210 init_task.signal->rlim[RLIMIT_SIGPENDING] =
211 init_task.signal->rlim[RLIMIT_NPROC];
214 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
215 struct task_struct *src)
217 *dst = *src;
218 return 0;
221 static struct task_struct *dup_task_struct(struct task_struct *orig)
223 struct task_struct *tsk;
224 struct thread_info *ti;
225 unsigned long *stackend;
227 int err;
229 prepare_to_copy(orig);
231 tsk = alloc_task_struct();
232 if (!tsk)
233 return NULL;
235 ti = alloc_thread_info(tsk);
236 if (!ti) {
237 free_task_struct(tsk);
238 return NULL;
241 err = arch_dup_task_struct(tsk, orig);
242 if (err)
243 goto out;
245 tsk->stack = ti;
247 err = prop_local_init_single(&tsk->dirties);
248 if (err)
249 goto out;
251 setup_thread_stack(tsk, orig);
252 stackend = end_of_stack(tsk);
253 *stackend = STACK_END_MAGIC; /* for overflow detection */
255 #ifdef CONFIG_CC_STACKPROTECTOR
256 tsk->stack_canary = get_random_int();
257 #endif
259 /* One for us, one for whoever does the "release_task()" (usually parent) */
260 atomic_set(&tsk->usage,2);
261 atomic_set(&tsk->fs_excl, 0);
262 #ifdef CONFIG_BLK_DEV_IO_TRACE
263 tsk->btrace_seq = 0;
264 #endif
265 tsk->splice_pipe = NULL;
267 account_kernel_stack(ti, 1);
269 return tsk;
271 out:
272 free_thread_info(ti);
273 free_task_struct(tsk);
274 return NULL;
277 #ifdef CONFIG_MMU
278 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
280 struct vm_area_struct *mpnt, *tmp, **pprev;
281 struct rb_node **rb_link, *rb_parent;
282 int retval;
283 unsigned long charge;
284 struct mempolicy *pol;
286 down_write(&oldmm->mmap_sem);
287 flush_cache_dup_mm(oldmm);
289 * Not linked in yet - no deadlock potential:
291 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
293 mm->locked_vm = 0;
294 mm->mmap = NULL;
295 mm->mmap_cache = NULL;
296 mm->free_area_cache = oldmm->mmap_base;
297 mm->cached_hole_size = ~0UL;
298 mm->map_count = 0;
299 cpumask_clear(mm_cpumask(mm));
300 mm->mm_rb = RB_ROOT;
301 rb_link = &mm->mm_rb.rb_node;
302 rb_parent = NULL;
303 pprev = &mm->mmap;
304 retval = ksm_fork(mm, oldmm);
305 if (retval)
306 goto out;
308 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
309 struct file *file;
311 if (mpnt->vm_flags & VM_DONTCOPY) {
312 long pages = vma_pages(mpnt);
313 mm->total_vm -= pages;
314 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
315 -pages);
316 continue;
318 charge = 0;
319 if (mpnt->vm_flags & VM_ACCOUNT) {
320 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
321 if (security_vm_enough_memory(len))
322 goto fail_nomem;
323 charge = len;
325 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
326 if (!tmp)
327 goto fail_nomem;
328 *tmp = *mpnt;
329 pol = mpol_dup(vma_policy(mpnt));
330 retval = PTR_ERR(pol);
331 if (IS_ERR(pol))
332 goto fail_nomem_policy;
333 vma_set_policy(tmp, pol);
334 tmp->vm_flags &= ~VM_LOCKED;
335 tmp->vm_mm = mm;
336 tmp->vm_next = NULL;
337 anon_vma_link(tmp);
338 file = tmp->vm_file;
339 if (file) {
340 struct inode *inode = file->f_path.dentry->d_inode;
341 struct address_space *mapping = file->f_mapping;
343 get_file(file);
344 if (tmp->vm_flags & VM_DENYWRITE)
345 atomic_dec(&inode->i_writecount);
346 spin_lock(&mapping->i_mmap_lock);
347 if (tmp->vm_flags & VM_SHARED)
348 mapping->i_mmap_writable++;
349 tmp->vm_truncate_count = mpnt->vm_truncate_count;
350 flush_dcache_mmap_lock(mapping);
351 /* insert tmp into the share list, just after mpnt */
352 vma_prio_tree_add(tmp, mpnt);
353 flush_dcache_mmap_unlock(mapping);
354 spin_unlock(&mapping->i_mmap_lock);
358 * Clear hugetlb-related page reserves for children. This only
359 * affects MAP_PRIVATE mappings. Faults generated by the child
360 * are not guaranteed to succeed, even if read-only
362 if (is_vm_hugetlb_page(tmp))
363 reset_vma_resv_huge_pages(tmp);
366 * Link in the new vma and copy the page table entries.
368 *pprev = tmp;
369 pprev = &tmp->vm_next;
371 __vma_link_rb(mm, tmp, rb_link, rb_parent);
372 rb_link = &tmp->vm_rb.rb_right;
373 rb_parent = &tmp->vm_rb;
375 mm->map_count++;
376 retval = copy_page_range(mm, oldmm, mpnt);
378 if (tmp->vm_ops && tmp->vm_ops->open)
379 tmp->vm_ops->open(tmp);
381 if (retval)
382 goto out;
384 /* a new mm has just been created */
385 arch_dup_mmap(oldmm, mm);
386 retval = 0;
387 out:
388 up_write(&mm->mmap_sem);
389 flush_tlb_mm(oldmm);
390 up_write(&oldmm->mmap_sem);
391 return retval;
392 fail_nomem_policy:
393 kmem_cache_free(vm_area_cachep, tmp);
394 fail_nomem:
395 retval = -ENOMEM;
396 vm_unacct_memory(charge);
397 goto out;
400 static inline int mm_alloc_pgd(struct mm_struct * mm)
402 mm->pgd = pgd_alloc(mm);
403 if (unlikely(!mm->pgd))
404 return -ENOMEM;
405 return 0;
408 static inline void mm_free_pgd(struct mm_struct * mm)
410 pgd_free(mm, mm->pgd);
412 #else
413 #define dup_mmap(mm, oldmm) (0)
414 #define mm_alloc_pgd(mm) (0)
415 #define mm_free_pgd(mm)
416 #endif /* CONFIG_MMU */
418 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
420 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
421 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
423 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
425 static int __init coredump_filter_setup(char *s)
427 default_dump_filter =
428 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
429 MMF_DUMP_FILTER_MASK;
430 return 1;
433 __setup("coredump_filter=", coredump_filter_setup);
435 #include <linux/init_task.h>
437 static void mm_init_aio(struct mm_struct *mm)
439 #ifdef CONFIG_AIO
440 spin_lock_init(&mm->ioctx_lock);
441 INIT_HLIST_HEAD(&mm->ioctx_list);
442 #endif
445 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
447 atomic_set(&mm->mm_users, 1);
448 atomic_set(&mm->mm_count, 1);
449 init_rwsem(&mm->mmap_sem);
450 INIT_LIST_HEAD(&mm->mmlist);
451 mm->flags = (current->mm) ?
452 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
453 mm->core_state = NULL;
454 mm->nr_ptes = 0;
455 set_mm_counter(mm, file_rss, 0);
456 set_mm_counter(mm, anon_rss, 0);
457 spin_lock_init(&mm->page_table_lock);
458 mm->free_area_cache = TASK_UNMAPPED_BASE;
459 mm->cached_hole_size = ~0UL;
460 mm_init_aio(mm);
461 mm_init_owner(mm, p);
463 if (likely(!mm_alloc_pgd(mm))) {
464 mm->def_flags = 0;
465 mmu_notifier_mm_init(mm);
466 return mm;
469 free_mm(mm);
470 return NULL;
474 * Allocate and initialize an mm_struct.
476 struct mm_struct * mm_alloc(void)
478 struct mm_struct * mm;
480 mm = allocate_mm();
481 if (mm) {
482 memset(mm, 0, sizeof(*mm));
483 mm = mm_init(mm, current);
485 return mm;
489 * Called when the last reference to the mm
490 * is dropped: either by a lazy thread or by
491 * mmput. Free the page directory and the mm.
493 void __mmdrop(struct mm_struct *mm)
495 BUG_ON(mm == &init_mm);
496 mm_free_pgd(mm);
497 destroy_context(mm);
498 mmu_notifier_mm_destroy(mm);
499 free_mm(mm);
501 EXPORT_SYMBOL_GPL(__mmdrop);
504 * Decrement the use count and release all resources for an mm.
506 void mmput(struct mm_struct *mm)
508 might_sleep();
510 if (atomic_dec_and_test(&mm->mm_users)) {
511 exit_aio(mm);
512 ksm_exit(mm);
513 exit_mmap(mm);
514 set_mm_exe_file(mm, NULL);
515 if (!list_empty(&mm->mmlist)) {
516 spin_lock(&mmlist_lock);
517 list_del(&mm->mmlist);
518 spin_unlock(&mmlist_lock);
520 put_swap_token(mm);
521 if (mm->binfmt)
522 module_put(mm->binfmt->module);
523 mmdrop(mm);
526 EXPORT_SYMBOL_GPL(mmput);
529 * get_task_mm - acquire a reference to the task's mm
531 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
532 * this kernel workthread has transiently adopted a user mm with use_mm,
533 * to do its AIO) is not set and if so returns a reference to it, after
534 * bumping up the use count. User must release the mm via mmput()
535 * after use. Typically used by /proc and ptrace.
537 struct mm_struct *get_task_mm(struct task_struct *task)
539 struct mm_struct *mm;
541 task_lock(task);
542 mm = task->mm;
543 if (mm) {
544 if (task->flags & PF_KTHREAD)
545 mm = NULL;
546 else
547 atomic_inc(&mm->mm_users);
549 task_unlock(task);
550 return mm;
552 EXPORT_SYMBOL_GPL(get_task_mm);
554 /* Please note the differences between mmput and mm_release.
555 * mmput is called whenever we stop holding onto a mm_struct,
556 * error success whatever.
558 * mm_release is called after a mm_struct has been removed
559 * from the current process.
561 * This difference is important for error handling, when we
562 * only half set up a mm_struct for a new process and need to restore
563 * the old one. Because we mmput the new mm_struct before
564 * restoring the old one. . .
565 * Eric Biederman 10 January 1998
567 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
569 struct completion *vfork_done = tsk->vfork_done;
571 /* Get rid of any futexes when releasing the mm */
572 #ifdef CONFIG_FUTEX
573 if (unlikely(tsk->robust_list))
574 exit_robust_list(tsk);
575 #ifdef CONFIG_COMPAT
576 if (unlikely(tsk->compat_robust_list))
577 compat_exit_robust_list(tsk);
578 #endif
579 #endif
581 /* Get rid of any cached register state */
582 deactivate_mm(tsk, mm);
584 /* notify parent sleeping on vfork() */
585 if (vfork_done) {
586 tsk->vfork_done = NULL;
587 complete(vfork_done);
591 * If we're exiting normally, clear a user-space tid field if
592 * requested. We leave this alone when dying by signal, to leave
593 * the value intact in a core dump, and to save the unnecessary
594 * trouble otherwise. Userland only wants this done for a sys_exit.
596 if (tsk->clear_child_tid) {
597 if (!(tsk->flags & PF_SIGNALED) &&
598 atomic_read(&mm->mm_users) > 1) {
600 * We don't check the error code - if userspace has
601 * not set up a proper pointer then tough luck.
603 put_user(0, tsk->clear_child_tid);
604 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
605 1, NULL, NULL, 0);
607 tsk->clear_child_tid = NULL;
612 * Allocate a new mm structure and copy contents from the
613 * mm structure of the passed in task structure.
615 struct mm_struct *dup_mm(struct task_struct *tsk)
617 struct mm_struct *mm, *oldmm = current->mm;
618 int err;
620 if (!oldmm)
621 return NULL;
623 mm = allocate_mm();
624 if (!mm)
625 goto fail_nomem;
627 memcpy(mm, oldmm, sizeof(*mm));
629 /* Initializing for Swap token stuff */
630 mm->token_priority = 0;
631 mm->last_interval = 0;
633 if (!mm_init(mm, tsk))
634 goto fail_nomem;
636 if (init_new_context(tsk, mm))
637 goto fail_nocontext;
639 dup_mm_exe_file(oldmm, mm);
641 err = dup_mmap(mm, oldmm);
642 if (err)
643 goto free_pt;
645 mm->hiwater_rss = get_mm_rss(mm);
646 mm->hiwater_vm = mm->total_vm;
648 if (mm->binfmt && !try_module_get(mm->binfmt->module))
649 goto free_pt;
651 return mm;
653 free_pt:
654 /* don't put binfmt in mmput, we haven't got module yet */
655 mm->binfmt = NULL;
656 mmput(mm);
658 fail_nomem:
659 return NULL;
661 fail_nocontext:
663 * If init_new_context() failed, we cannot use mmput() to free the mm
664 * because it calls destroy_context()
666 mm_free_pgd(mm);
667 free_mm(mm);
668 return NULL;
671 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
673 struct mm_struct * mm, *oldmm;
674 int retval;
676 tsk->min_flt = tsk->maj_flt = 0;
677 tsk->nvcsw = tsk->nivcsw = 0;
678 #ifdef CONFIG_DETECT_HUNG_TASK
679 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
680 #endif
682 tsk->mm = NULL;
683 tsk->active_mm = NULL;
686 * Are we cloning a kernel thread?
688 * We need to steal a active VM for that..
690 oldmm = current->mm;
691 if (!oldmm)
692 return 0;
694 if (clone_flags & CLONE_VM) {
695 atomic_inc(&oldmm->mm_users);
696 mm = oldmm;
697 goto good_mm;
700 retval = -ENOMEM;
701 mm = dup_mm(tsk);
702 if (!mm)
703 goto fail_nomem;
705 good_mm:
706 /* Initializing for Swap token stuff */
707 mm->token_priority = 0;
708 mm->last_interval = 0;
710 tsk->mm = mm;
711 tsk->active_mm = mm;
712 return 0;
714 fail_nomem:
715 return retval;
718 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
720 struct fs_struct *fs = current->fs;
721 if (clone_flags & CLONE_FS) {
722 /* tsk->fs is already what we want */
723 write_lock(&fs->lock);
724 if (fs->in_exec) {
725 write_unlock(&fs->lock);
726 return -EAGAIN;
728 fs->users++;
729 write_unlock(&fs->lock);
730 return 0;
732 tsk->fs = copy_fs_struct(fs);
733 if (!tsk->fs)
734 return -ENOMEM;
735 return 0;
738 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
740 struct files_struct *oldf, *newf;
741 int error = 0;
744 * A background process may not have any files ...
746 oldf = current->files;
747 if (!oldf)
748 goto out;
750 if (clone_flags & CLONE_FILES) {
751 atomic_inc(&oldf->count);
752 goto out;
755 newf = dup_fd(oldf, &error);
756 if (!newf)
757 goto out;
759 tsk->files = newf;
760 error = 0;
761 out:
762 return error;
765 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
767 #ifdef CONFIG_BLOCK
768 struct io_context *ioc = current->io_context;
770 if (!ioc)
771 return 0;
773 * Share io context with parent, if CLONE_IO is set
775 if (clone_flags & CLONE_IO) {
776 tsk->io_context = ioc_task_link(ioc);
777 if (unlikely(!tsk->io_context))
778 return -ENOMEM;
779 } else if (ioprio_valid(ioc->ioprio)) {
780 tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
781 if (unlikely(!tsk->io_context))
782 return -ENOMEM;
784 tsk->io_context->ioprio = ioc->ioprio;
786 #endif
787 return 0;
790 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
792 struct sighand_struct *sig;
794 if (clone_flags & CLONE_SIGHAND) {
795 atomic_inc(&current->sighand->count);
796 return 0;
798 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
799 rcu_assign_pointer(tsk->sighand, sig);
800 if (!sig)
801 return -ENOMEM;
802 atomic_set(&sig->count, 1);
803 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
804 return 0;
807 void __cleanup_sighand(struct sighand_struct *sighand)
809 if (atomic_dec_and_test(&sighand->count))
810 kmem_cache_free(sighand_cachep, sighand);
815 * Initialize POSIX timer handling for a thread group.
817 static void posix_cpu_timers_init_group(struct signal_struct *sig)
819 /* Thread group counters. */
820 thread_group_cputime_init(sig);
822 /* Expiration times and increments. */
823 sig->it[CPUCLOCK_PROF].expires = cputime_zero;
824 sig->it[CPUCLOCK_PROF].incr = cputime_zero;
825 sig->it[CPUCLOCK_VIRT].expires = cputime_zero;
826 sig->it[CPUCLOCK_VIRT].incr = cputime_zero;
828 /* Cached expiration times. */
829 sig->cputime_expires.prof_exp = cputime_zero;
830 sig->cputime_expires.virt_exp = cputime_zero;
831 sig->cputime_expires.sched_exp = 0;
833 if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
834 sig->cputime_expires.prof_exp =
835 secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
836 sig->cputimer.running = 1;
839 /* The timer lists. */
840 INIT_LIST_HEAD(&sig->cpu_timers[0]);
841 INIT_LIST_HEAD(&sig->cpu_timers[1]);
842 INIT_LIST_HEAD(&sig->cpu_timers[2]);
845 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
847 struct signal_struct *sig;
849 if (clone_flags & CLONE_THREAD)
850 return 0;
852 sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
853 tsk->signal = sig;
854 if (!sig)
855 return -ENOMEM;
857 atomic_set(&sig->count, 1);
858 atomic_set(&sig->live, 1);
859 init_waitqueue_head(&sig->wait_chldexit);
860 sig->flags = 0;
861 if (clone_flags & CLONE_NEWPID)
862 sig->flags |= SIGNAL_UNKILLABLE;
863 sig->group_exit_code = 0;
864 sig->group_exit_task = NULL;
865 sig->group_stop_count = 0;
866 sig->curr_target = tsk;
867 init_sigpending(&sig->shared_pending);
868 INIT_LIST_HEAD(&sig->posix_timers);
870 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
871 sig->it_real_incr.tv64 = 0;
872 sig->real_timer.function = it_real_fn;
874 sig->leader = 0; /* session leadership doesn't inherit */
875 sig->tty_old_pgrp = NULL;
876 sig->tty = NULL;
878 sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
879 sig->gtime = cputime_zero;
880 sig->cgtime = cputime_zero;
881 sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
882 sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
883 sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
884 sig->maxrss = sig->cmaxrss = 0;
885 task_io_accounting_init(&sig->ioac);
886 sig->sum_sched_runtime = 0;
887 taskstats_tgid_init(sig);
889 task_lock(current->group_leader);
890 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
891 task_unlock(current->group_leader);
893 posix_cpu_timers_init_group(sig);
895 acct_init_pacct(&sig->pacct);
897 tty_audit_fork(sig);
899 sig->oom_adj = current->signal->oom_adj;
901 return 0;
904 void __cleanup_signal(struct signal_struct *sig)
906 thread_group_cputime_free(sig);
907 tty_kref_put(sig->tty);
908 kmem_cache_free(signal_cachep, sig);
911 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
913 unsigned long new_flags = p->flags;
915 new_flags &= ~PF_SUPERPRIV;
916 new_flags |= PF_FORKNOEXEC;
917 new_flags |= PF_STARTING;
918 p->flags = new_flags;
919 clear_freeze_flag(p);
922 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
924 current->clear_child_tid = tidptr;
926 return task_pid_vnr(current);
929 static void rt_mutex_init_task(struct task_struct *p)
931 spin_lock_init(&p->pi_lock);
932 #ifdef CONFIG_RT_MUTEXES
933 plist_head_init(&p->pi_waiters, &p->pi_lock);
934 p->pi_blocked_on = NULL;
935 #endif
938 #ifdef CONFIG_MM_OWNER
939 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
941 mm->owner = p;
943 #endif /* CONFIG_MM_OWNER */
946 * Initialize POSIX timer handling for a single task.
948 static void posix_cpu_timers_init(struct task_struct *tsk)
950 tsk->cputime_expires.prof_exp = cputime_zero;
951 tsk->cputime_expires.virt_exp = cputime_zero;
952 tsk->cputime_expires.sched_exp = 0;
953 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
954 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
955 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
959 * This creates a new process as a copy of the old one,
960 * but does not actually start it yet.
962 * It copies the registers, and all the appropriate
963 * parts of the process environment (as per the clone
964 * flags). The actual kick-off is left to the caller.
966 static struct task_struct *copy_process(unsigned long clone_flags,
967 unsigned long stack_start,
968 struct pt_regs *regs,
969 unsigned long stack_size,
970 int __user *child_tidptr,
971 struct pid *pid,
972 int trace)
974 int retval;
975 struct task_struct *p;
976 int cgroup_callbacks_done = 0;
978 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
979 return ERR_PTR(-EINVAL);
982 * Thread groups must share signals as well, and detached threads
983 * can only be started up within the thread group.
985 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
986 return ERR_PTR(-EINVAL);
989 * Shared signal handlers imply shared VM. By way of the above,
990 * thread groups also imply shared VM. Blocking this case allows
991 * for various simplifications in other code.
993 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
994 return ERR_PTR(-EINVAL);
997 * Siblings of global init remain as zombies on exit since they are
998 * not reaped by their parent (swapper). To solve this and to avoid
999 * multi-rooted process trees, prevent global and container-inits
1000 * from creating siblings.
1002 if ((clone_flags & CLONE_PARENT) &&
1003 current->signal->flags & SIGNAL_UNKILLABLE)
1004 return ERR_PTR(-EINVAL);
1006 retval = security_task_create(clone_flags);
1007 if (retval)
1008 goto fork_out;
1010 retval = -ENOMEM;
1011 p = dup_task_struct(current);
1012 if (!p)
1013 goto fork_out;
1015 ftrace_graph_init_task(p);
1017 rt_mutex_init_task(p);
1019 #ifdef CONFIG_PROVE_LOCKING
1020 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1021 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1022 #endif
1023 retval = -EAGAIN;
1024 if (atomic_read(&p->real_cred->user->processes) >=
1025 p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
1026 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1027 p->real_cred->user != INIT_USER)
1028 goto bad_fork_free;
1031 retval = copy_creds(p, clone_flags);
1032 if (retval < 0)
1033 goto bad_fork_free;
1036 * If multiple threads are within copy_process(), then this check
1037 * triggers too late. This doesn't hurt, the check is only there
1038 * to stop root fork bombs.
1040 retval = -EAGAIN;
1041 if (nr_threads >= max_threads)
1042 goto bad_fork_cleanup_count;
1044 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1045 goto bad_fork_cleanup_count;
1047 p->did_exec = 0;
1048 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1049 copy_flags(clone_flags, p);
1050 INIT_LIST_HEAD(&p->children);
1051 INIT_LIST_HEAD(&p->sibling);
1052 rcu_copy_process(p);
1053 p->vfork_done = NULL;
1054 spin_lock_init(&p->alloc_lock);
1056 init_sigpending(&p->pending);
1058 p->utime = cputime_zero;
1059 p->stime = cputime_zero;
1060 p->gtime = cputime_zero;
1061 p->utimescaled = cputime_zero;
1062 p->stimescaled = cputime_zero;
1063 p->prev_utime = cputime_zero;
1064 p->prev_stime = cputime_zero;
1066 p->default_timer_slack_ns = current->timer_slack_ns;
1068 task_io_accounting_init(&p->ioac);
1069 acct_clear_integrals(p);
1071 posix_cpu_timers_init(p);
1073 p->lock_depth = -1; /* -1 = no lock */
1074 do_posix_clock_monotonic_gettime(&p->start_time);
1075 p->real_start_time = p->start_time;
1076 monotonic_to_bootbased(&p->real_start_time);
1077 p->io_context = NULL;
1078 p->audit_context = NULL;
1079 cgroup_fork(p);
1080 #ifdef CONFIG_NUMA
1081 p->mempolicy = mpol_dup(p->mempolicy);
1082 if (IS_ERR(p->mempolicy)) {
1083 retval = PTR_ERR(p->mempolicy);
1084 p->mempolicy = NULL;
1085 goto bad_fork_cleanup_cgroup;
1087 mpol_fix_fork_child_flag(p);
1088 #endif
1089 #ifdef CONFIG_TRACE_IRQFLAGS
1090 p->irq_events = 0;
1091 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1092 p->hardirqs_enabled = 1;
1093 #else
1094 p->hardirqs_enabled = 0;
1095 #endif
1096 p->hardirq_enable_ip = 0;
1097 p->hardirq_enable_event = 0;
1098 p->hardirq_disable_ip = _THIS_IP_;
1099 p->hardirq_disable_event = 0;
1100 p->softirqs_enabled = 1;
1101 p->softirq_enable_ip = _THIS_IP_;
1102 p->softirq_enable_event = 0;
1103 p->softirq_disable_ip = 0;
1104 p->softirq_disable_event = 0;
1105 p->hardirq_context = 0;
1106 p->softirq_context = 0;
1107 #endif
1108 #ifdef CONFIG_LOCKDEP
1109 p->lockdep_depth = 0; /* no locks held yet */
1110 p->curr_chain_key = 0;
1111 p->lockdep_recursion = 0;
1112 #endif
1114 #ifdef CONFIG_DEBUG_MUTEXES
1115 p->blocked_on = NULL; /* not blocked yet */
1116 #endif
1118 p->bts = NULL;
1120 p->stack_start = stack_start;
1122 /* Perform scheduler related setup. Assign this task to a CPU. */
1123 sched_fork(p, clone_flags);
1125 retval = perf_event_init_task(p);
1126 if (retval)
1127 goto bad_fork_cleanup_policy;
1129 if ((retval = audit_alloc(p)))
1130 goto bad_fork_cleanup_policy;
1131 /* copy all the process information */
1132 if ((retval = copy_semundo(clone_flags, p)))
1133 goto bad_fork_cleanup_audit;
1134 if ((retval = copy_files(clone_flags, p)))
1135 goto bad_fork_cleanup_semundo;
1136 if ((retval = copy_fs(clone_flags, p)))
1137 goto bad_fork_cleanup_files;
1138 if ((retval = copy_sighand(clone_flags, p)))
1139 goto bad_fork_cleanup_fs;
1140 if ((retval = copy_signal(clone_flags, p)))
1141 goto bad_fork_cleanup_sighand;
1142 if ((retval = copy_mm(clone_flags, p)))
1143 goto bad_fork_cleanup_signal;
1144 if ((retval = copy_namespaces(clone_flags, p)))
1145 goto bad_fork_cleanup_mm;
1146 if ((retval = copy_io(clone_flags, p)))
1147 goto bad_fork_cleanup_namespaces;
1148 retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1149 if (retval)
1150 goto bad_fork_cleanup_io;
1152 if (pid != &init_struct_pid) {
1153 retval = -ENOMEM;
1154 pid = alloc_pid(p->nsproxy->pid_ns);
1155 if (!pid)
1156 goto bad_fork_cleanup_io;
1158 if (clone_flags & CLONE_NEWPID) {
1159 retval = pid_ns_prepare_proc(p->nsproxy->pid_ns);
1160 if (retval < 0)
1161 goto bad_fork_free_pid;
1165 p->pid = pid_nr(pid);
1166 p->tgid = p->pid;
1167 if (clone_flags & CLONE_THREAD)
1168 p->tgid = current->tgid;
1170 if (current->nsproxy != p->nsproxy) {
1171 retval = ns_cgroup_clone(p, pid);
1172 if (retval)
1173 goto bad_fork_free_pid;
1176 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1178 * Clear TID on mm_release()?
1180 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1181 #ifdef CONFIG_FUTEX
1182 p->robust_list = NULL;
1183 #ifdef CONFIG_COMPAT
1184 p->compat_robust_list = NULL;
1185 #endif
1186 INIT_LIST_HEAD(&p->pi_state_list);
1187 p->pi_state_cache = NULL;
1188 #endif
1190 * sigaltstack should be cleared when sharing the same VM
1192 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1193 p->sas_ss_sp = p->sas_ss_size = 0;
1196 * Syscall tracing should be turned off in the child regardless
1197 * of CLONE_PTRACE.
1199 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1200 #ifdef TIF_SYSCALL_EMU
1201 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1202 #endif
1203 clear_all_latency_tracing(p);
1205 /* ok, now we should be set up.. */
1206 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1207 p->pdeath_signal = 0;
1208 p->exit_state = 0;
1211 * Ok, make it visible to the rest of the system.
1212 * We dont wake it up yet.
1214 p->group_leader = p;
1215 INIT_LIST_HEAD(&p->thread_group);
1217 /* Now that the task is set up, run cgroup callbacks if
1218 * necessary. We need to run them before the task is visible
1219 * on the tasklist. */
1220 cgroup_fork_callbacks(p);
1221 cgroup_callbacks_done = 1;
1223 /* Need tasklist lock for parent etc handling! */
1224 write_lock_irq(&tasklist_lock);
1227 * The task hasn't been attached yet, so its cpus_allowed mask will
1228 * not be changed, nor will its assigned CPU.
1230 * The cpus_allowed mask of the parent may have changed after it was
1231 * copied first time - so re-copy it here, then check the child's CPU
1232 * to ensure it is on a valid CPU (and if not, just force it back to
1233 * parent's CPU). This avoids alot of nasty races.
1235 p->cpus_allowed = current->cpus_allowed;
1236 p->rt.nr_cpus_allowed = current->rt.nr_cpus_allowed;
1237 if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1238 !cpu_online(task_cpu(p))))
1239 set_task_cpu(p, smp_processor_id());
1241 /* CLONE_PARENT re-uses the old parent */
1242 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1243 p->real_parent = current->real_parent;
1244 p->parent_exec_id = current->parent_exec_id;
1245 } else {
1246 p->real_parent = current;
1247 p->parent_exec_id = current->self_exec_id;
1250 spin_lock(&current->sighand->siglock);
1253 * Process group and session signals need to be delivered to just the
1254 * parent before the fork or both the parent and the child after the
1255 * fork. Restart if a signal comes in before we add the new process to
1256 * it's process group.
1257 * A fatal signal pending means that current will exit, so the new
1258 * thread can't slip out of an OOM kill (or normal SIGKILL).
1260 recalc_sigpending();
1261 if (signal_pending(current)) {
1262 spin_unlock(&current->sighand->siglock);
1263 write_unlock_irq(&tasklist_lock);
1264 retval = -ERESTARTNOINTR;
1265 goto bad_fork_free_pid;
1268 if (clone_flags & CLONE_THREAD) {
1269 atomic_inc(&current->signal->count);
1270 atomic_inc(&current->signal->live);
1271 p->group_leader = current->group_leader;
1272 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1275 if (likely(p->pid)) {
1276 list_add_tail(&p->sibling, &p->real_parent->children);
1277 tracehook_finish_clone(p, clone_flags, trace);
1279 if (thread_group_leader(p)) {
1280 if (clone_flags & CLONE_NEWPID)
1281 p->nsproxy->pid_ns->child_reaper = p;
1283 p->signal->leader_pid = pid;
1284 tty_kref_put(p->signal->tty);
1285 p->signal->tty = tty_kref_get(current->signal->tty);
1286 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1287 attach_pid(p, PIDTYPE_SID, task_session(current));
1288 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1289 __get_cpu_var(process_counts)++;
1291 attach_pid(p, PIDTYPE_PID, pid);
1292 nr_threads++;
1295 total_forks++;
1296 spin_unlock(&current->sighand->siglock);
1297 write_unlock_irq(&tasklist_lock);
1298 proc_fork_connector(p);
1299 cgroup_post_fork(p);
1300 perf_event_fork(p);
1301 return p;
1303 bad_fork_free_pid:
1304 if (pid != &init_struct_pid)
1305 free_pid(pid);
1306 bad_fork_cleanup_io:
1307 put_io_context(p->io_context);
1308 bad_fork_cleanup_namespaces:
1309 exit_task_namespaces(p);
1310 bad_fork_cleanup_mm:
1311 if (p->mm)
1312 mmput(p->mm);
1313 bad_fork_cleanup_signal:
1314 if (!(clone_flags & CLONE_THREAD))
1315 __cleanup_signal(p->signal);
1316 bad_fork_cleanup_sighand:
1317 __cleanup_sighand(p->sighand);
1318 bad_fork_cleanup_fs:
1319 exit_fs(p); /* blocking */
1320 bad_fork_cleanup_files:
1321 exit_files(p); /* blocking */
1322 bad_fork_cleanup_semundo:
1323 exit_sem(p);
1324 bad_fork_cleanup_audit:
1325 audit_free(p);
1326 bad_fork_cleanup_policy:
1327 perf_event_free_task(p);
1328 #ifdef CONFIG_NUMA
1329 mpol_put(p->mempolicy);
1330 bad_fork_cleanup_cgroup:
1331 #endif
1332 cgroup_exit(p, cgroup_callbacks_done);
1333 delayacct_tsk_free(p);
1334 module_put(task_thread_info(p)->exec_domain->module);
1335 bad_fork_cleanup_count:
1336 atomic_dec(&p->cred->user->processes);
1337 exit_creds(p);
1338 bad_fork_free:
1339 free_task(p);
1340 fork_out:
1341 return ERR_PTR(retval);
1344 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1346 memset(regs, 0, sizeof(struct pt_regs));
1347 return regs;
1350 struct task_struct * __cpuinit fork_idle(int cpu)
1352 struct task_struct *task;
1353 struct pt_regs regs;
1355 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1356 &init_struct_pid, 0);
1357 if (!IS_ERR(task))
1358 init_idle(task, cpu);
1360 return task;
1364 * Ok, this is the main fork-routine.
1366 * It copies the process, and if successful kick-starts
1367 * it and waits for it to finish using the VM if required.
1369 long do_fork(unsigned long clone_flags,
1370 unsigned long stack_start,
1371 struct pt_regs *regs,
1372 unsigned long stack_size,
1373 int __user *parent_tidptr,
1374 int __user *child_tidptr)
1376 struct task_struct *p;
1377 int trace = 0;
1378 long nr;
1381 * Do some preliminary argument and permissions checking before we
1382 * actually start allocating stuff
1384 if (clone_flags & CLONE_NEWUSER) {
1385 if (clone_flags & CLONE_THREAD)
1386 return -EINVAL;
1387 /* hopefully this check will go away when userns support is
1388 * complete
1390 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1391 !capable(CAP_SETGID))
1392 return -EPERM;
1396 * We hope to recycle these flags after 2.6.26
1398 if (unlikely(clone_flags & CLONE_STOPPED)) {
1399 static int __read_mostly count = 100;
1401 if (count > 0 && printk_ratelimit()) {
1402 char comm[TASK_COMM_LEN];
1404 count--;
1405 printk(KERN_INFO "fork(): process `%s' used deprecated "
1406 "clone flags 0x%lx\n",
1407 get_task_comm(comm, current),
1408 clone_flags & CLONE_STOPPED);
1413 * When called from kernel_thread, don't do user tracing stuff.
1415 if (likely(user_mode(regs)))
1416 trace = tracehook_prepare_clone(clone_flags);
1418 p = copy_process(clone_flags, stack_start, regs, stack_size,
1419 child_tidptr, NULL, trace);
1421 * Do this prior waking up the new thread - the thread pointer
1422 * might get invalid after that point, if the thread exits quickly.
1424 if (!IS_ERR(p)) {
1425 struct completion vfork;
1427 trace_sched_process_fork(current, p);
1429 nr = task_pid_vnr(p);
1431 if (clone_flags & CLONE_PARENT_SETTID)
1432 put_user(nr, parent_tidptr);
1434 if (clone_flags & CLONE_VFORK) {
1435 p->vfork_done = &vfork;
1436 init_completion(&vfork);
1439 audit_finish_fork(p);
1440 tracehook_report_clone(regs, clone_flags, nr, p);
1443 * We set PF_STARTING at creation in case tracing wants to
1444 * use this to distinguish a fully live task from one that
1445 * hasn't gotten to tracehook_report_clone() yet. Now we
1446 * clear it and set the child going.
1448 p->flags &= ~PF_STARTING;
1450 if (unlikely(clone_flags & CLONE_STOPPED)) {
1452 * We'll start up with an immediate SIGSTOP.
1454 sigaddset(&p->pending.signal, SIGSTOP);
1455 set_tsk_thread_flag(p, TIF_SIGPENDING);
1456 __set_task_state(p, TASK_STOPPED);
1457 } else {
1458 wake_up_new_task(p, clone_flags);
1461 tracehook_report_clone_complete(trace, regs,
1462 clone_flags, nr, p);
1464 if (clone_flags & CLONE_VFORK) {
1465 freezer_do_not_count();
1466 wait_for_completion(&vfork);
1467 freezer_count();
1468 tracehook_report_vfork_done(p, nr);
1470 } else {
1471 nr = PTR_ERR(p);
1473 return nr;
1476 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1477 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1478 #endif
1480 static void sighand_ctor(void *data)
1482 struct sighand_struct *sighand = data;
1484 spin_lock_init(&sighand->siglock);
1485 init_waitqueue_head(&sighand->signalfd_wqh);
1488 void __init proc_caches_init(void)
1490 sighand_cachep = kmem_cache_create("sighand_cache",
1491 sizeof(struct sighand_struct), 0,
1492 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1493 SLAB_NOTRACK, sighand_ctor);
1494 signal_cachep = kmem_cache_create("signal_cache",
1495 sizeof(struct signal_struct), 0,
1496 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1497 files_cachep = kmem_cache_create("files_cache",
1498 sizeof(struct files_struct), 0,
1499 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1500 fs_cachep = kmem_cache_create("fs_cache",
1501 sizeof(struct fs_struct), 0,
1502 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1503 mm_cachep = kmem_cache_create("mm_struct",
1504 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1505 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1506 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1507 mmap_init();
1511 * Check constraints on flags passed to the unshare system call and
1512 * force unsharing of additional process context as appropriate.
1514 static void check_unshare_flags(unsigned long *flags_ptr)
1517 * If unsharing a thread from a thread group, must also
1518 * unshare vm.
1520 if (*flags_ptr & CLONE_THREAD)
1521 *flags_ptr |= CLONE_VM;
1524 * If unsharing vm, must also unshare signal handlers.
1526 if (*flags_ptr & CLONE_VM)
1527 *flags_ptr |= CLONE_SIGHAND;
1530 * If unsharing signal handlers and the task was created
1531 * using CLONE_THREAD, then must unshare the thread
1533 if ((*flags_ptr & CLONE_SIGHAND) &&
1534 (atomic_read(&current->signal->count) > 1))
1535 *flags_ptr |= CLONE_THREAD;
1538 * If unsharing namespace, must also unshare filesystem information.
1540 if (*flags_ptr & CLONE_NEWNS)
1541 *flags_ptr |= CLONE_FS;
1545 * Unsharing of tasks created with CLONE_THREAD is not supported yet
1547 static int unshare_thread(unsigned long unshare_flags)
1549 if (unshare_flags & CLONE_THREAD)
1550 return -EINVAL;
1552 return 0;
1556 * Unshare the filesystem structure if it is being shared
1558 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1560 struct fs_struct *fs = current->fs;
1562 if (!(unshare_flags & CLONE_FS) || !fs)
1563 return 0;
1565 /* don't need lock here; in the worst case we'll do useless copy */
1566 if (fs->users == 1)
1567 return 0;
1569 *new_fsp = copy_fs_struct(fs);
1570 if (!*new_fsp)
1571 return -ENOMEM;
1573 return 0;
1577 * Unsharing of sighand is not supported yet
1579 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1581 struct sighand_struct *sigh = current->sighand;
1583 if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1584 return -EINVAL;
1585 else
1586 return 0;
1590 * Unshare vm if it is being shared
1592 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1594 struct mm_struct *mm = current->mm;
1596 if ((unshare_flags & CLONE_VM) &&
1597 (mm && atomic_read(&mm->mm_users) > 1)) {
1598 return -EINVAL;
1601 return 0;
1605 * Unshare file descriptor table if it is being shared
1607 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1609 struct files_struct *fd = current->files;
1610 int error = 0;
1612 if ((unshare_flags & CLONE_FILES) &&
1613 (fd && atomic_read(&fd->count) > 1)) {
1614 *new_fdp = dup_fd(fd, &error);
1615 if (!*new_fdp)
1616 return error;
1619 return 0;
1623 * unshare allows a process to 'unshare' part of the process
1624 * context which was originally shared using clone. copy_*
1625 * functions used by do_fork() cannot be used here directly
1626 * because they modify an inactive task_struct that is being
1627 * constructed. Here we are modifying the current, active,
1628 * task_struct.
1630 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1632 int err = 0;
1633 struct fs_struct *fs, *new_fs = NULL;
1634 struct sighand_struct *new_sigh = NULL;
1635 struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1636 struct files_struct *fd, *new_fd = NULL;
1637 struct nsproxy *new_nsproxy = NULL;
1638 int do_sysvsem = 0;
1640 check_unshare_flags(&unshare_flags);
1642 /* Return -EINVAL for all unsupported flags */
1643 err = -EINVAL;
1644 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1645 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1646 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1647 goto bad_unshare_out;
1650 * CLONE_NEWIPC must also detach from the undolist: after switching
1651 * to a new ipc namespace, the semaphore arrays from the old
1652 * namespace are unreachable.
1654 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1655 do_sysvsem = 1;
1656 if ((err = unshare_thread(unshare_flags)))
1657 goto bad_unshare_out;
1658 if ((err = unshare_fs(unshare_flags, &new_fs)))
1659 goto bad_unshare_cleanup_thread;
1660 if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1661 goto bad_unshare_cleanup_fs;
1662 if ((err = unshare_vm(unshare_flags, &new_mm)))
1663 goto bad_unshare_cleanup_sigh;
1664 if ((err = unshare_fd(unshare_flags, &new_fd)))
1665 goto bad_unshare_cleanup_vm;
1666 if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1667 new_fs)))
1668 goto bad_unshare_cleanup_fd;
1670 if (new_fs || new_mm || new_fd || do_sysvsem || new_nsproxy) {
1671 if (do_sysvsem) {
1673 * CLONE_SYSVSEM is equivalent to sys_exit().
1675 exit_sem(current);
1678 if (new_nsproxy) {
1679 switch_task_namespaces(current, new_nsproxy);
1680 new_nsproxy = NULL;
1683 task_lock(current);
1685 if (new_fs) {
1686 fs = current->fs;
1687 write_lock(&fs->lock);
1688 current->fs = new_fs;
1689 if (--fs->users)
1690 new_fs = NULL;
1691 else
1692 new_fs = fs;
1693 write_unlock(&fs->lock);
1696 if (new_mm) {
1697 mm = current->mm;
1698 active_mm = current->active_mm;
1699 current->mm = new_mm;
1700 current->active_mm = new_mm;
1701 activate_mm(active_mm, new_mm);
1702 new_mm = mm;
1705 if (new_fd) {
1706 fd = current->files;
1707 current->files = new_fd;
1708 new_fd = fd;
1711 task_unlock(current);
1714 if (new_nsproxy)
1715 put_nsproxy(new_nsproxy);
1717 bad_unshare_cleanup_fd:
1718 if (new_fd)
1719 put_files_struct(new_fd);
1721 bad_unshare_cleanup_vm:
1722 if (new_mm)
1723 mmput(new_mm);
1725 bad_unshare_cleanup_sigh:
1726 if (new_sigh)
1727 if (atomic_dec_and_test(&new_sigh->count))
1728 kmem_cache_free(sighand_cachep, new_sigh);
1730 bad_unshare_cleanup_fs:
1731 if (new_fs)
1732 free_fs_struct(new_fs);
1734 bad_unshare_cleanup_thread:
1735 bad_unshare_out:
1736 return err;
1740 * Helper to unshare the files of the current task.
1741 * We don't want to expose copy_files internals to
1742 * the exec layer of the kernel.
1745 int unshare_files(struct files_struct **displaced)
1747 struct task_struct *task = current;
1748 struct files_struct *copy = NULL;
1749 int error;
1751 error = unshare_fd(CLONE_FILES, &copy);
1752 if (error || !copy) {
1753 *displaced = NULL;
1754 return error;
1756 *displaced = task->files;
1757 task_lock(task);
1758 task->files = copy;
1759 task_unlock(task);
1760 return 0;