4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
11 #include <linux/syscalls.h>
12 #include <linux/slab.h>
13 #include <linux/sched.h>
14 #include <linux/smp_lock.h>
15 #include <linux/init.h>
16 #include <linux/kernel.h>
17 #include <linux/acct.h>
18 #include <linux/capability.h>
19 #include <linux/cpumask.h>
20 #include <linux/module.h>
21 #include <linux/sysfs.h>
22 #include <linux/seq_file.h>
23 #include <linux/mnt_namespace.h>
24 #include <linux/namei.h>
25 #include <linux/security.h>
26 #include <linux/mount.h>
27 #include <linux/ramfs.h>
28 #include <linux/log2.h>
29 #include <linux/idr.h>
30 #include <asm/uaccess.h>
31 #include <asm/unistd.h>
35 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
36 #define HASH_SIZE (1UL << HASH_SHIFT)
38 /* spinlock for vfsmount related operations, inplace of dcache_lock */
39 __cacheline_aligned_in_smp
DEFINE_SPINLOCK(vfsmount_lock
);
42 static DEFINE_IDA(mnt_id_ida
);
43 static DEFINE_IDA(mnt_group_ida
);
45 static struct list_head
*mount_hashtable __read_mostly
;
46 static struct kmem_cache
*mnt_cache __read_mostly
;
47 static struct rw_semaphore namespace_sem
;
50 struct kobject
*fs_kobj
;
51 EXPORT_SYMBOL_GPL(fs_kobj
);
53 static inline unsigned long hash(struct vfsmount
*mnt
, struct dentry
*dentry
)
55 unsigned long tmp
= ((unsigned long)mnt
/ L1_CACHE_BYTES
);
56 tmp
+= ((unsigned long)dentry
/ L1_CACHE_BYTES
);
57 tmp
= tmp
+ (tmp
>> HASH_SHIFT
);
58 return tmp
& (HASH_SIZE
- 1);
61 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
63 /* allocation is serialized by namespace_sem */
64 static int mnt_alloc_id(struct vfsmount
*mnt
)
69 ida_pre_get(&mnt_id_ida
, GFP_KERNEL
);
70 spin_lock(&vfsmount_lock
);
71 res
= ida_get_new(&mnt_id_ida
, &mnt
->mnt_id
);
72 spin_unlock(&vfsmount_lock
);
79 static void mnt_free_id(struct vfsmount
*mnt
)
81 spin_lock(&vfsmount_lock
);
82 ida_remove(&mnt_id_ida
, mnt
->mnt_id
);
83 spin_unlock(&vfsmount_lock
);
87 * Allocate a new peer group ID
89 * mnt_group_ida is protected by namespace_sem
91 static int mnt_alloc_group_id(struct vfsmount
*mnt
)
93 if (!ida_pre_get(&mnt_group_ida
, GFP_KERNEL
))
96 return ida_get_new_above(&mnt_group_ida
, 1, &mnt
->mnt_group_id
);
100 * Release a peer group ID
102 void mnt_release_group_id(struct vfsmount
*mnt
)
104 ida_remove(&mnt_group_ida
, mnt
->mnt_group_id
);
105 mnt
->mnt_group_id
= 0;
108 struct vfsmount
*alloc_vfsmnt(const char *name
)
110 struct vfsmount
*mnt
= kmem_cache_zalloc(mnt_cache
, GFP_KERNEL
);
114 err
= mnt_alloc_id(mnt
);
119 mnt
->mnt_devname
= kstrdup(name
, GFP_KERNEL
);
120 if (!mnt
->mnt_devname
)
124 atomic_set(&mnt
->mnt_count
, 1);
125 INIT_LIST_HEAD(&mnt
->mnt_hash
);
126 INIT_LIST_HEAD(&mnt
->mnt_child
);
127 INIT_LIST_HEAD(&mnt
->mnt_mounts
);
128 INIT_LIST_HEAD(&mnt
->mnt_list
);
129 INIT_LIST_HEAD(&mnt
->mnt_expire
);
130 INIT_LIST_HEAD(&mnt
->mnt_share
);
131 INIT_LIST_HEAD(&mnt
->mnt_slave_list
);
132 INIT_LIST_HEAD(&mnt
->mnt_slave
);
133 atomic_set(&mnt
->__mnt_writers
, 0);
140 kmem_cache_free(mnt_cache
, mnt
);
145 * Most r/o checks on a fs are for operations that take
146 * discrete amounts of time, like a write() or unlink().
147 * We must keep track of when those operations start
148 * (for permission checks) and when they end, so that
149 * we can determine when writes are able to occur to
153 * __mnt_is_readonly: check whether a mount is read-only
154 * @mnt: the mount to check for its write status
156 * This shouldn't be used directly ouside of the VFS.
157 * It does not guarantee that the filesystem will stay
158 * r/w, just that it is right *now*. This can not and
159 * should not be used in place of IS_RDONLY(inode).
160 * mnt_want/drop_write() will _keep_ the filesystem
163 int __mnt_is_readonly(struct vfsmount
*mnt
)
165 if (mnt
->mnt_flags
& MNT_READONLY
)
167 if (mnt
->mnt_sb
->s_flags
& MS_RDONLY
)
171 EXPORT_SYMBOL_GPL(__mnt_is_readonly
);
175 * If holding multiple instances of this lock, they
176 * must be ordered by cpu number.
179 struct lock_class_key lock_class
; /* compiles out with !lockdep */
181 struct vfsmount
*mnt
;
182 } ____cacheline_aligned_in_smp
;
183 static DEFINE_PER_CPU(struct mnt_writer
, mnt_writers
);
185 static int __init
init_mnt_writers(void)
188 for_each_possible_cpu(cpu
) {
189 struct mnt_writer
*writer
= &per_cpu(mnt_writers
, cpu
);
190 spin_lock_init(&writer
->lock
);
191 lockdep_set_class(&writer
->lock
, &writer
->lock_class
);
196 fs_initcall(init_mnt_writers
);
198 static void unlock_mnt_writers(void)
201 struct mnt_writer
*cpu_writer
;
203 for_each_possible_cpu(cpu
) {
204 cpu_writer
= &per_cpu(mnt_writers
, cpu
);
205 spin_unlock(&cpu_writer
->lock
);
209 static inline void __clear_mnt_count(struct mnt_writer
*cpu_writer
)
211 if (!cpu_writer
->mnt
)
214 * This is in case anyone ever leaves an invalid,
215 * old ->mnt and a count of 0.
217 if (!cpu_writer
->count
)
219 atomic_add(cpu_writer
->count
, &cpu_writer
->mnt
->__mnt_writers
);
220 cpu_writer
->count
= 0;
223 * must hold cpu_writer->lock
225 static inline void use_cpu_writer_for_mount(struct mnt_writer
*cpu_writer
,
226 struct vfsmount
*mnt
)
228 if (cpu_writer
->mnt
== mnt
)
230 __clear_mnt_count(cpu_writer
);
231 cpu_writer
->mnt
= mnt
;
235 * Most r/o checks on a fs are for operations that take
236 * discrete amounts of time, like a write() or unlink().
237 * We must keep track of when those operations start
238 * (for permission checks) and when they end, so that
239 * we can determine when writes are able to occur to
243 * mnt_want_write - get write access to a mount
244 * @mnt: the mount on which to take a write
246 * This tells the low-level filesystem that a write is
247 * about to be performed to it, and makes sure that
248 * writes are allowed before returning success. When
249 * the write operation is finished, mnt_drop_write()
250 * must be called. This is effectively a refcount.
252 int mnt_want_write(struct vfsmount
*mnt
)
255 struct mnt_writer
*cpu_writer
;
257 cpu_writer
= &get_cpu_var(mnt_writers
);
258 spin_lock(&cpu_writer
->lock
);
259 if (__mnt_is_readonly(mnt
)) {
263 use_cpu_writer_for_mount(cpu_writer
, mnt
);
266 spin_unlock(&cpu_writer
->lock
);
267 put_cpu_var(mnt_writers
);
270 EXPORT_SYMBOL_GPL(mnt_want_write
);
272 static void lock_mnt_writers(void)
275 struct mnt_writer
*cpu_writer
;
277 for_each_possible_cpu(cpu
) {
278 cpu_writer
= &per_cpu(mnt_writers
, cpu
);
279 spin_lock(&cpu_writer
->lock
);
280 __clear_mnt_count(cpu_writer
);
281 cpu_writer
->mnt
= NULL
;
286 * These per-cpu write counts are not guaranteed to have
287 * matched increments and decrements on any given cpu.
288 * A file open()ed for write on one cpu and close()d on
289 * another cpu will imbalance this count. Make sure it
290 * does not get too far out of whack.
292 static void handle_write_count_underflow(struct vfsmount
*mnt
)
294 if (atomic_read(&mnt
->__mnt_writers
) >=
295 MNT_WRITER_UNDERFLOW_LIMIT
)
298 * It isn't necessary to hold all of the locks
299 * at the same time, but doing it this way makes
300 * us share a lot more code.
304 * vfsmount_lock is for mnt_flags.
306 spin_lock(&vfsmount_lock
);
308 * If coalescing the per-cpu writer counts did not
309 * get us back to a positive writer count, we have
312 if ((atomic_read(&mnt
->__mnt_writers
) < 0) &&
313 !(mnt
->mnt_flags
& MNT_IMBALANCED_WRITE_COUNT
)) {
314 WARN(1, KERN_DEBUG
"leak detected on mount(%p) writers "
316 mnt
, atomic_read(&mnt
->__mnt_writers
));
317 /* use the flag to keep the dmesg spam down */
318 mnt
->mnt_flags
|= MNT_IMBALANCED_WRITE_COUNT
;
320 spin_unlock(&vfsmount_lock
);
321 unlock_mnt_writers();
325 * mnt_drop_write - give up write access to a mount
326 * @mnt: the mount on which to give up write access
328 * Tells the low-level filesystem that we are done
329 * performing writes to it. Must be matched with
330 * mnt_want_write() call above.
332 void mnt_drop_write(struct vfsmount
*mnt
)
334 int must_check_underflow
= 0;
335 struct mnt_writer
*cpu_writer
;
337 cpu_writer
= &get_cpu_var(mnt_writers
);
338 spin_lock(&cpu_writer
->lock
);
340 use_cpu_writer_for_mount(cpu_writer
, mnt
);
341 if (cpu_writer
->count
> 0) {
344 must_check_underflow
= 1;
345 atomic_dec(&mnt
->__mnt_writers
);
348 spin_unlock(&cpu_writer
->lock
);
350 * Logically, we could call this each time,
351 * but the __mnt_writers cacheline tends to
352 * be cold, and makes this expensive.
354 if (must_check_underflow
)
355 handle_write_count_underflow(mnt
);
357 * This could be done right after the spinlock
358 * is taken because the spinlock keeps us on
359 * the cpu, and disables preemption. However,
360 * putting it here bounds the amount that
361 * __mnt_writers can underflow. Without it,
362 * we could theoretically wrap __mnt_writers.
364 put_cpu_var(mnt_writers
);
366 EXPORT_SYMBOL_GPL(mnt_drop_write
);
368 static int mnt_make_readonly(struct vfsmount
*mnt
)
374 * With all the locks held, this value is stable
376 if (atomic_read(&mnt
->__mnt_writers
) > 0) {
381 * nobody can do a successful mnt_want_write() with all
382 * of the counts in MNT_DENIED_WRITE and the locks held.
384 spin_lock(&vfsmount_lock
);
386 mnt
->mnt_flags
|= MNT_READONLY
;
387 spin_unlock(&vfsmount_lock
);
389 unlock_mnt_writers();
393 static void __mnt_unmake_readonly(struct vfsmount
*mnt
)
395 spin_lock(&vfsmount_lock
);
396 mnt
->mnt_flags
&= ~MNT_READONLY
;
397 spin_unlock(&vfsmount_lock
);
400 void simple_set_mnt(struct vfsmount
*mnt
, struct super_block
*sb
)
403 mnt
->mnt_root
= dget(sb
->s_root
);
406 EXPORT_SYMBOL(simple_set_mnt
);
408 void free_vfsmnt(struct vfsmount
*mnt
)
410 kfree(mnt
->mnt_devname
);
412 kmem_cache_free(mnt_cache
, mnt
);
416 * find the first or last mount at @dentry on vfsmount @mnt depending on
417 * @dir. If @dir is set return the first mount else return the last mount.
419 struct vfsmount
*__lookup_mnt(struct vfsmount
*mnt
, struct dentry
*dentry
,
422 struct list_head
*head
= mount_hashtable
+ hash(mnt
, dentry
);
423 struct list_head
*tmp
= head
;
424 struct vfsmount
*p
, *found
= NULL
;
427 tmp
= dir
? tmp
->next
: tmp
->prev
;
431 p
= list_entry(tmp
, struct vfsmount
, mnt_hash
);
432 if (p
->mnt_parent
== mnt
&& p
->mnt_mountpoint
== dentry
) {
441 * lookup_mnt increments the ref count before returning
442 * the vfsmount struct.
444 struct vfsmount
*lookup_mnt(struct vfsmount
*mnt
, struct dentry
*dentry
)
446 struct vfsmount
*child_mnt
;
447 spin_lock(&vfsmount_lock
);
448 if ((child_mnt
= __lookup_mnt(mnt
, dentry
, 1)))
450 spin_unlock(&vfsmount_lock
);
454 static inline int check_mnt(struct vfsmount
*mnt
)
456 return mnt
->mnt_ns
== current
->nsproxy
->mnt_ns
;
459 static void touch_mnt_namespace(struct mnt_namespace
*ns
)
463 wake_up_interruptible(&ns
->poll
);
467 static void __touch_mnt_namespace(struct mnt_namespace
*ns
)
469 if (ns
&& ns
->event
!= event
) {
471 wake_up_interruptible(&ns
->poll
);
475 static void detach_mnt(struct vfsmount
*mnt
, struct path
*old_path
)
477 old_path
->dentry
= mnt
->mnt_mountpoint
;
478 old_path
->mnt
= mnt
->mnt_parent
;
479 mnt
->mnt_parent
= mnt
;
480 mnt
->mnt_mountpoint
= mnt
->mnt_root
;
481 list_del_init(&mnt
->mnt_child
);
482 list_del_init(&mnt
->mnt_hash
);
483 old_path
->dentry
->d_mounted
--;
486 void mnt_set_mountpoint(struct vfsmount
*mnt
, struct dentry
*dentry
,
487 struct vfsmount
*child_mnt
)
489 child_mnt
->mnt_parent
= mntget(mnt
);
490 child_mnt
->mnt_mountpoint
= dget(dentry
);
494 static void attach_mnt(struct vfsmount
*mnt
, struct path
*path
)
496 mnt_set_mountpoint(path
->mnt
, path
->dentry
, mnt
);
497 list_add_tail(&mnt
->mnt_hash
, mount_hashtable
+
498 hash(path
->mnt
, path
->dentry
));
499 list_add_tail(&mnt
->mnt_child
, &path
->mnt
->mnt_mounts
);
503 * the caller must hold vfsmount_lock
505 static void commit_tree(struct vfsmount
*mnt
)
507 struct vfsmount
*parent
= mnt
->mnt_parent
;
510 struct mnt_namespace
*n
= parent
->mnt_ns
;
512 BUG_ON(parent
== mnt
);
514 list_add_tail(&head
, &mnt
->mnt_list
);
515 list_for_each_entry(m
, &head
, mnt_list
)
517 list_splice(&head
, n
->list
.prev
);
519 list_add_tail(&mnt
->mnt_hash
, mount_hashtable
+
520 hash(parent
, mnt
->mnt_mountpoint
));
521 list_add_tail(&mnt
->mnt_child
, &parent
->mnt_mounts
);
522 touch_mnt_namespace(n
);
525 static struct vfsmount
*next_mnt(struct vfsmount
*p
, struct vfsmount
*root
)
527 struct list_head
*next
= p
->mnt_mounts
.next
;
528 if (next
== &p
->mnt_mounts
) {
532 next
= p
->mnt_child
.next
;
533 if (next
!= &p
->mnt_parent
->mnt_mounts
)
538 return list_entry(next
, struct vfsmount
, mnt_child
);
541 static struct vfsmount
*skip_mnt_tree(struct vfsmount
*p
)
543 struct list_head
*prev
= p
->mnt_mounts
.prev
;
544 while (prev
!= &p
->mnt_mounts
) {
545 p
= list_entry(prev
, struct vfsmount
, mnt_child
);
546 prev
= p
->mnt_mounts
.prev
;
551 static struct vfsmount
*clone_mnt(struct vfsmount
*old
, struct dentry
*root
,
554 struct super_block
*sb
= old
->mnt_sb
;
555 struct vfsmount
*mnt
= alloc_vfsmnt(old
->mnt_devname
);
558 if (flag
& (CL_SLAVE
| CL_PRIVATE
))
559 mnt
->mnt_group_id
= 0; /* not a peer of original */
561 mnt
->mnt_group_id
= old
->mnt_group_id
;
563 if ((flag
& CL_MAKE_SHARED
) && !mnt
->mnt_group_id
) {
564 int err
= mnt_alloc_group_id(mnt
);
569 mnt
->mnt_flags
= old
->mnt_flags
;
570 atomic_inc(&sb
->s_active
);
572 mnt
->mnt_root
= dget(root
);
573 mnt
->mnt_mountpoint
= mnt
->mnt_root
;
574 mnt
->mnt_parent
= mnt
;
576 if (flag
& CL_SLAVE
) {
577 list_add(&mnt
->mnt_slave
, &old
->mnt_slave_list
);
578 mnt
->mnt_master
= old
;
579 CLEAR_MNT_SHARED(mnt
);
580 } else if (!(flag
& CL_PRIVATE
)) {
581 if ((flag
& CL_PROPAGATION
) || IS_MNT_SHARED(old
))
582 list_add(&mnt
->mnt_share
, &old
->mnt_share
);
583 if (IS_MNT_SLAVE(old
))
584 list_add(&mnt
->mnt_slave
, &old
->mnt_slave
);
585 mnt
->mnt_master
= old
->mnt_master
;
587 if (flag
& CL_MAKE_SHARED
)
590 /* stick the duplicate mount on the same expiry list
591 * as the original if that was on one */
592 if (flag
& CL_EXPIRE
) {
593 if (!list_empty(&old
->mnt_expire
))
594 list_add(&mnt
->mnt_expire
, &old
->mnt_expire
);
604 static inline void __mntput(struct vfsmount
*mnt
)
607 struct super_block
*sb
= mnt
->mnt_sb
;
609 * We don't have to hold all of the locks at the
610 * same time here because we know that we're the
611 * last reference to mnt and that no new writers
614 for_each_possible_cpu(cpu
) {
615 struct mnt_writer
*cpu_writer
= &per_cpu(mnt_writers
, cpu
);
616 spin_lock(&cpu_writer
->lock
);
617 if (cpu_writer
->mnt
!= mnt
) {
618 spin_unlock(&cpu_writer
->lock
);
621 atomic_add(cpu_writer
->count
, &mnt
->__mnt_writers
);
622 cpu_writer
->count
= 0;
624 * Might as well do this so that no one
625 * ever sees the pointer and expects
628 cpu_writer
->mnt
= NULL
;
629 spin_unlock(&cpu_writer
->lock
);
632 * This probably indicates that somebody messed
633 * up a mnt_want/drop_write() pair. If this
634 * happens, the filesystem was probably unable
635 * to make r/w->r/o transitions.
637 WARN_ON(atomic_read(&mnt
->__mnt_writers
));
640 deactivate_super(sb
);
643 void mntput_no_expire(struct vfsmount
*mnt
)
646 if (atomic_dec_and_lock(&mnt
->mnt_count
, &vfsmount_lock
)) {
647 if (likely(!mnt
->mnt_pinned
)) {
648 spin_unlock(&vfsmount_lock
);
652 atomic_add(mnt
->mnt_pinned
+ 1, &mnt
->mnt_count
);
654 spin_unlock(&vfsmount_lock
);
655 acct_auto_close_mnt(mnt
);
656 security_sb_umount_close(mnt
);
661 EXPORT_SYMBOL(mntput_no_expire
);
663 void mnt_pin(struct vfsmount
*mnt
)
665 spin_lock(&vfsmount_lock
);
667 spin_unlock(&vfsmount_lock
);
670 EXPORT_SYMBOL(mnt_pin
);
672 void mnt_unpin(struct vfsmount
*mnt
)
674 spin_lock(&vfsmount_lock
);
675 if (mnt
->mnt_pinned
) {
676 atomic_inc(&mnt
->mnt_count
);
679 spin_unlock(&vfsmount_lock
);
682 EXPORT_SYMBOL(mnt_unpin
);
684 static inline void mangle(struct seq_file
*m
, const char *s
)
686 seq_escape(m
, s
, " \t\n\\");
690 * Simple .show_options callback for filesystems which don't want to
691 * implement more complex mount option showing.
693 * See also save_mount_options().
695 int generic_show_options(struct seq_file
*m
, struct vfsmount
*mnt
)
697 const char *options
= mnt
->mnt_sb
->s_options
;
699 if (options
!= NULL
&& options
[0]) {
706 EXPORT_SYMBOL(generic_show_options
);
709 * If filesystem uses generic_show_options(), this function should be
710 * called from the fill_super() callback.
712 * The .remount_fs callback usually needs to be handled in a special
713 * way, to make sure, that previous options are not overwritten if the
716 * Also note, that if the filesystem's .remount_fs function doesn't
717 * reset all options to their default value, but changes only newly
718 * given options, then the displayed options will not reflect reality
721 void save_mount_options(struct super_block
*sb
, char *options
)
723 kfree(sb
->s_options
);
724 sb
->s_options
= kstrdup(options
, GFP_KERNEL
);
726 EXPORT_SYMBOL(save_mount_options
);
728 #ifdef CONFIG_PROC_FS
730 static void *m_start(struct seq_file
*m
, loff_t
*pos
)
732 struct proc_mounts
*p
= m
->private;
734 down_read(&namespace_sem
);
735 return seq_list_start(&p
->ns
->list
, *pos
);
738 static void *m_next(struct seq_file
*m
, void *v
, loff_t
*pos
)
740 struct proc_mounts
*p
= m
->private;
742 return seq_list_next(v
, &p
->ns
->list
, pos
);
745 static void m_stop(struct seq_file
*m
, void *v
)
747 up_read(&namespace_sem
);
750 struct proc_fs_info
{
755 static int show_sb_opts(struct seq_file
*m
, struct super_block
*sb
)
757 static const struct proc_fs_info fs_info
[] = {
758 { MS_SYNCHRONOUS
, ",sync" },
759 { MS_DIRSYNC
, ",dirsync" },
760 { MS_MANDLOCK
, ",mand" },
763 const struct proc_fs_info
*fs_infop
;
765 for (fs_infop
= fs_info
; fs_infop
->flag
; fs_infop
++) {
766 if (sb
->s_flags
& fs_infop
->flag
)
767 seq_puts(m
, fs_infop
->str
);
770 return security_sb_show_options(m
, sb
);
773 static void show_mnt_opts(struct seq_file
*m
, struct vfsmount
*mnt
)
775 static const struct proc_fs_info mnt_info
[] = {
776 { MNT_NOSUID
, ",nosuid" },
777 { MNT_NODEV
, ",nodev" },
778 { MNT_NOEXEC
, ",noexec" },
779 { MNT_NOATIME
, ",noatime" },
780 { MNT_NODIRATIME
, ",nodiratime" },
781 { MNT_RELATIME
, ",relatime" },
782 { MNT_STRICTATIME
, ",strictatime" },
785 const struct proc_fs_info
*fs_infop
;
787 for (fs_infop
= mnt_info
; fs_infop
->flag
; fs_infop
++) {
788 if (mnt
->mnt_flags
& fs_infop
->flag
)
789 seq_puts(m
, fs_infop
->str
);
793 static void show_type(struct seq_file
*m
, struct super_block
*sb
)
795 mangle(m
, sb
->s_type
->name
);
796 if (sb
->s_subtype
&& sb
->s_subtype
[0]) {
798 mangle(m
, sb
->s_subtype
);
802 static int show_vfsmnt(struct seq_file
*m
, void *v
)
804 struct vfsmount
*mnt
= list_entry(v
, struct vfsmount
, mnt_list
);
806 struct path mnt_path
= { .dentry
= mnt
->mnt_root
, .mnt
= mnt
};
808 mangle(m
, mnt
->mnt_devname
? mnt
->mnt_devname
: "none");
810 seq_path(m
, &mnt_path
, " \t\n\\");
812 show_type(m
, mnt
->mnt_sb
);
813 seq_puts(m
, __mnt_is_readonly(mnt
) ? " ro" : " rw");
814 err
= show_sb_opts(m
, mnt
->mnt_sb
);
817 show_mnt_opts(m
, mnt
);
818 if (mnt
->mnt_sb
->s_op
->show_options
)
819 err
= mnt
->mnt_sb
->s_op
->show_options(m
, mnt
);
820 seq_puts(m
, " 0 0\n");
825 const struct seq_operations mounts_op
= {
832 static int show_mountinfo(struct seq_file
*m
, void *v
)
834 struct proc_mounts
*p
= m
->private;
835 struct vfsmount
*mnt
= list_entry(v
, struct vfsmount
, mnt_list
);
836 struct super_block
*sb
= mnt
->mnt_sb
;
837 struct path mnt_path
= { .dentry
= mnt
->mnt_root
, .mnt
= mnt
};
838 struct path root
= p
->root
;
841 seq_printf(m
, "%i %i %u:%u ", mnt
->mnt_id
, mnt
->mnt_parent
->mnt_id
,
842 MAJOR(sb
->s_dev
), MINOR(sb
->s_dev
));
843 seq_dentry(m
, mnt
->mnt_root
, " \t\n\\");
845 seq_path_root(m
, &mnt_path
, &root
, " \t\n\\");
846 if (root
.mnt
!= p
->root
.mnt
|| root
.dentry
!= p
->root
.dentry
) {
848 * Mountpoint is outside root, discard that one. Ugly,
849 * but less so than trying to do that in iterator in a
850 * race-free way (due to renames).
854 seq_puts(m
, mnt
->mnt_flags
& MNT_READONLY
? " ro" : " rw");
855 show_mnt_opts(m
, mnt
);
857 /* Tagged fields ("foo:X" or "bar") */
858 if (IS_MNT_SHARED(mnt
))
859 seq_printf(m
, " shared:%i", mnt
->mnt_group_id
);
860 if (IS_MNT_SLAVE(mnt
)) {
861 int master
= mnt
->mnt_master
->mnt_group_id
;
862 int dom
= get_dominating_id(mnt
, &p
->root
);
863 seq_printf(m
, " master:%i", master
);
864 if (dom
&& dom
!= master
)
865 seq_printf(m
, " propagate_from:%i", dom
);
867 if (IS_MNT_UNBINDABLE(mnt
))
868 seq_puts(m
, " unbindable");
870 /* Filesystem specific data */
874 mangle(m
, mnt
->mnt_devname
? mnt
->mnt_devname
: "none");
875 seq_puts(m
, sb
->s_flags
& MS_RDONLY
? " ro" : " rw");
876 err
= show_sb_opts(m
, sb
);
879 if (sb
->s_op
->show_options
)
880 err
= sb
->s_op
->show_options(m
, mnt
);
886 const struct seq_operations mountinfo_op
= {
890 .show
= show_mountinfo
,
893 static int show_vfsstat(struct seq_file
*m
, void *v
)
895 struct vfsmount
*mnt
= list_entry(v
, struct vfsmount
, mnt_list
);
896 struct path mnt_path
= { .dentry
= mnt
->mnt_root
, .mnt
= mnt
};
900 if (mnt
->mnt_devname
) {
901 seq_puts(m
, "device ");
902 mangle(m
, mnt
->mnt_devname
);
904 seq_puts(m
, "no device");
907 seq_puts(m
, " mounted on ");
908 seq_path(m
, &mnt_path
, " \t\n\\");
911 /* file system type */
912 seq_puts(m
, "with fstype ");
913 show_type(m
, mnt
->mnt_sb
);
915 /* optional statistics */
916 if (mnt
->mnt_sb
->s_op
->show_stats
) {
918 err
= mnt
->mnt_sb
->s_op
->show_stats(m
, mnt
);
925 const struct seq_operations mountstats_op
= {
929 .show
= show_vfsstat
,
931 #endif /* CONFIG_PROC_FS */
934 * may_umount_tree - check if a mount tree is busy
935 * @mnt: root of mount tree
937 * This is called to check if a tree of mounts has any
938 * open files, pwds, chroots or sub mounts that are
941 int may_umount_tree(struct vfsmount
*mnt
)
944 int minimum_refs
= 0;
947 spin_lock(&vfsmount_lock
);
948 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
949 actual_refs
+= atomic_read(&p
->mnt_count
);
952 spin_unlock(&vfsmount_lock
);
954 if (actual_refs
> minimum_refs
)
960 EXPORT_SYMBOL(may_umount_tree
);
963 * may_umount - check if a mount point is busy
964 * @mnt: root of mount
966 * This is called to check if a mount point has any
967 * open files, pwds, chroots or sub mounts. If the
968 * mount has sub mounts this will return busy
969 * regardless of whether the sub mounts are busy.
971 * Doesn't take quota and stuff into account. IOW, in some cases it will
972 * give false negatives. The main reason why it's here is that we need
973 * a non-destructive way to look for easily umountable filesystems.
975 int may_umount(struct vfsmount
*mnt
)
978 spin_lock(&vfsmount_lock
);
979 if (propagate_mount_busy(mnt
, 2))
981 spin_unlock(&vfsmount_lock
);
985 EXPORT_SYMBOL(may_umount
);
987 void release_mounts(struct list_head
*head
)
989 struct vfsmount
*mnt
;
990 while (!list_empty(head
)) {
991 mnt
= list_first_entry(head
, struct vfsmount
, mnt_hash
);
992 list_del_init(&mnt
->mnt_hash
);
993 if (mnt
->mnt_parent
!= mnt
) {
994 struct dentry
*dentry
;
996 spin_lock(&vfsmount_lock
);
997 dentry
= mnt
->mnt_mountpoint
;
999 mnt
->mnt_mountpoint
= mnt
->mnt_root
;
1000 mnt
->mnt_parent
= mnt
;
1002 spin_unlock(&vfsmount_lock
);
1010 void umount_tree(struct vfsmount
*mnt
, int propagate
, struct list_head
*kill
)
1014 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
))
1015 list_move(&p
->mnt_hash
, kill
);
1018 propagate_umount(kill
);
1020 list_for_each_entry(p
, kill
, mnt_hash
) {
1021 list_del_init(&p
->mnt_expire
);
1022 list_del_init(&p
->mnt_list
);
1023 __touch_mnt_namespace(p
->mnt_ns
);
1025 list_del_init(&p
->mnt_child
);
1026 if (p
->mnt_parent
!= p
) {
1027 p
->mnt_parent
->mnt_ghosts
++;
1028 p
->mnt_mountpoint
->d_mounted
--;
1030 change_mnt_propagation(p
, MS_PRIVATE
);
1034 static void shrink_submounts(struct vfsmount
*mnt
, struct list_head
*umounts
);
1036 static int do_umount(struct vfsmount
*mnt
, int flags
)
1038 struct super_block
*sb
= mnt
->mnt_sb
;
1040 LIST_HEAD(umount_list
);
1042 retval
= security_sb_umount(mnt
, flags
);
1047 * Allow userspace to request a mountpoint be expired rather than
1048 * unmounting unconditionally. Unmount only happens if:
1049 * (1) the mark is already set (the mark is cleared by mntput())
1050 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1052 if (flags
& MNT_EXPIRE
) {
1053 if (mnt
== current
->fs
->root
.mnt
||
1054 flags
& (MNT_FORCE
| MNT_DETACH
))
1057 if (atomic_read(&mnt
->mnt_count
) != 2)
1060 if (!xchg(&mnt
->mnt_expiry_mark
, 1))
1065 * If we may have to abort operations to get out of this
1066 * mount, and they will themselves hold resources we must
1067 * allow the fs to do things. In the Unix tradition of
1068 * 'Gee thats tricky lets do it in userspace' the umount_begin
1069 * might fail to complete on the first run through as other tasks
1070 * must return, and the like. Thats for the mount program to worry
1071 * about for the moment.
1074 if (flags
& MNT_FORCE
&& sb
->s_op
->umount_begin
) {
1076 sb
->s_op
->umount_begin(sb
);
1081 * No sense to grab the lock for this test, but test itself looks
1082 * somewhat bogus. Suggestions for better replacement?
1083 * Ho-hum... In principle, we might treat that as umount + switch
1084 * to rootfs. GC would eventually take care of the old vfsmount.
1085 * Actually it makes sense, especially if rootfs would contain a
1086 * /reboot - static binary that would close all descriptors and
1087 * call reboot(9). Then init(8) could umount root and exec /reboot.
1089 if (mnt
== current
->fs
->root
.mnt
&& !(flags
& MNT_DETACH
)) {
1091 * Special case for "unmounting" root ...
1092 * we just try to remount it readonly.
1094 down_write(&sb
->s_umount
);
1095 if (!(sb
->s_flags
& MS_RDONLY
)) {
1097 retval
= do_remount_sb(sb
, MS_RDONLY
, NULL
, 0);
1100 up_write(&sb
->s_umount
);
1104 down_write(&namespace_sem
);
1105 spin_lock(&vfsmount_lock
);
1108 if (!(flags
& MNT_DETACH
))
1109 shrink_submounts(mnt
, &umount_list
);
1112 if (flags
& MNT_DETACH
|| !propagate_mount_busy(mnt
, 2)) {
1113 if (!list_empty(&mnt
->mnt_list
))
1114 umount_tree(mnt
, 1, &umount_list
);
1117 spin_unlock(&vfsmount_lock
);
1119 security_sb_umount_busy(mnt
);
1120 up_write(&namespace_sem
);
1121 release_mounts(&umount_list
);
1126 * Now umount can handle mount points as well as block devices.
1127 * This is important for filesystems which use unnamed block devices.
1129 * We now support a flag for forced unmount like the other 'big iron'
1130 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1133 SYSCALL_DEFINE2(umount
, char __user
*, name
, int, flags
)
1138 retval
= user_path(name
, &path
);
1142 if (path
.dentry
!= path
.mnt
->mnt_root
)
1144 if (!check_mnt(path
.mnt
))
1148 if (!capable(CAP_SYS_ADMIN
))
1151 retval
= do_umount(path
.mnt
, flags
);
1153 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1155 mntput_no_expire(path
.mnt
);
1160 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1163 * The 2.0 compatible umount. No flags.
1165 SYSCALL_DEFINE1(oldumount
, char __user
*, name
)
1167 return sys_umount(name
, 0);
1172 static int mount_is_safe(struct path
*path
)
1174 if (capable(CAP_SYS_ADMIN
))
1178 if (S_ISLNK(path
->dentry
->d_inode
->i_mode
))
1180 if (path
->dentry
->d_inode
->i_mode
& S_ISVTX
) {
1181 if (current_uid() != path
->dentry
->d_inode
->i_uid
)
1184 if (inode_permission(path
->dentry
->d_inode
, MAY_WRITE
))
1190 struct vfsmount
*copy_tree(struct vfsmount
*mnt
, struct dentry
*dentry
,
1193 struct vfsmount
*res
, *p
, *q
, *r
, *s
;
1196 if (!(flag
& CL_COPY_ALL
) && IS_MNT_UNBINDABLE(mnt
))
1199 res
= q
= clone_mnt(mnt
, dentry
, flag
);
1202 q
->mnt_mountpoint
= mnt
->mnt_mountpoint
;
1205 list_for_each_entry(r
, &mnt
->mnt_mounts
, mnt_child
) {
1206 if (!is_subdir(r
->mnt_mountpoint
, dentry
))
1209 for (s
= r
; s
; s
= next_mnt(s
, r
)) {
1210 if (!(flag
& CL_COPY_ALL
) && IS_MNT_UNBINDABLE(s
)) {
1211 s
= skip_mnt_tree(s
);
1214 while (p
!= s
->mnt_parent
) {
1220 path
.dentry
= p
->mnt_mountpoint
;
1221 q
= clone_mnt(p
, p
->mnt_root
, flag
);
1224 spin_lock(&vfsmount_lock
);
1225 list_add_tail(&q
->mnt_list
, &res
->mnt_list
);
1226 attach_mnt(q
, &path
);
1227 spin_unlock(&vfsmount_lock
);
1233 LIST_HEAD(umount_list
);
1234 spin_lock(&vfsmount_lock
);
1235 umount_tree(res
, 0, &umount_list
);
1236 spin_unlock(&vfsmount_lock
);
1237 release_mounts(&umount_list
);
1242 struct vfsmount
*collect_mounts(struct vfsmount
*mnt
, struct dentry
*dentry
)
1244 struct vfsmount
*tree
;
1245 down_write(&namespace_sem
);
1246 tree
= copy_tree(mnt
, dentry
, CL_COPY_ALL
| CL_PRIVATE
);
1247 up_write(&namespace_sem
);
1251 void drop_collected_mounts(struct vfsmount
*mnt
)
1253 LIST_HEAD(umount_list
);
1254 down_write(&namespace_sem
);
1255 spin_lock(&vfsmount_lock
);
1256 umount_tree(mnt
, 0, &umount_list
);
1257 spin_unlock(&vfsmount_lock
);
1258 up_write(&namespace_sem
);
1259 release_mounts(&umount_list
);
1262 static void cleanup_group_ids(struct vfsmount
*mnt
, struct vfsmount
*end
)
1266 for (p
= mnt
; p
!= end
; p
= next_mnt(p
, mnt
)) {
1267 if (p
->mnt_group_id
&& !IS_MNT_SHARED(p
))
1268 mnt_release_group_id(p
);
1272 static int invent_group_ids(struct vfsmount
*mnt
, bool recurse
)
1276 for (p
= mnt
; p
; p
= recurse
? next_mnt(p
, mnt
) : NULL
) {
1277 if (!p
->mnt_group_id
&& !IS_MNT_SHARED(p
)) {
1278 int err
= mnt_alloc_group_id(p
);
1280 cleanup_group_ids(mnt
, p
);
1290 * @source_mnt : mount tree to be attached
1291 * @nd : place the mount tree @source_mnt is attached
1292 * @parent_nd : if non-null, detach the source_mnt from its parent and
1293 * store the parent mount and mountpoint dentry.
1294 * (done when source_mnt is moved)
1296 * NOTE: in the table below explains the semantics when a source mount
1297 * of a given type is attached to a destination mount of a given type.
1298 * ---------------------------------------------------------------------------
1299 * | BIND MOUNT OPERATION |
1300 * |**************************************************************************
1301 * | source-->| shared | private | slave | unbindable |
1305 * |**************************************************************************
1306 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1308 * |non-shared| shared (+) | private | slave (*) | invalid |
1309 * ***************************************************************************
1310 * A bind operation clones the source mount and mounts the clone on the
1311 * destination mount.
1313 * (++) the cloned mount is propagated to all the mounts in the propagation
1314 * tree of the destination mount and the cloned mount is added to
1315 * the peer group of the source mount.
1316 * (+) the cloned mount is created under the destination mount and is marked
1317 * as shared. The cloned mount is added to the peer group of the source
1319 * (+++) the mount is propagated to all the mounts in the propagation tree
1320 * of the destination mount and the cloned mount is made slave
1321 * of the same master as that of the source mount. The cloned mount
1322 * is marked as 'shared and slave'.
1323 * (*) the cloned mount is made a slave of the same master as that of the
1326 * ---------------------------------------------------------------------------
1327 * | MOVE MOUNT OPERATION |
1328 * |**************************************************************************
1329 * | source-->| shared | private | slave | unbindable |
1333 * |**************************************************************************
1334 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1336 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1337 * ***************************************************************************
1339 * (+) the mount is moved to the destination. And is then propagated to
1340 * all the mounts in the propagation tree of the destination mount.
1341 * (+*) the mount is moved to the destination.
1342 * (+++) the mount is moved to the destination and is then propagated to
1343 * all the mounts belonging to the destination mount's propagation tree.
1344 * the mount is marked as 'shared and slave'.
1345 * (*) the mount continues to be a slave at the new location.
1347 * if the source mount is a tree, the operations explained above is
1348 * applied to each mount in the tree.
1349 * Must be called without spinlocks held, since this function can sleep
1352 static int attach_recursive_mnt(struct vfsmount
*source_mnt
,
1353 struct path
*path
, struct path
*parent_path
)
1355 LIST_HEAD(tree_list
);
1356 struct vfsmount
*dest_mnt
= path
->mnt
;
1357 struct dentry
*dest_dentry
= path
->dentry
;
1358 struct vfsmount
*child
, *p
;
1361 if (IS_MNT_SHARED(dest_mnt
)) {
1362 err
= invent_group_ids(source_mnt
, true);
1366 err
= propagate_mnt(dest_mnt
, dest_dentry
, source_mnt
, &tree_list
);
1368 goto out_cleanup_ids
;
1370 if (IS_MNT_SHARED(dest_mnt
)) {
1371 for (p
= source_mnt
; p
; p
= next_mnt(p
, source_mnt
))
1375 spin_lock(&vfsmount_lock
);
1377 detach_mnt(source_mnt
, parent_path
);
1378 attach_mnt(source_mnt
, path
);
1379 touch_mnt_namespace(current
->nsproxy
->mnt_ns
);
1381 mnt_set_mountpoint(dest_mnt
, dest_dentry
, source_mnt
);
1382 commit_tree(source_mnt
);
1385 list_for_each_entry_safe(child
, p
, &tree_list
, mnt_hash
) {
1386 list_del_init(&child
->mnt_hash
);
1389 spin_unlock(&vfsmount_lock
);
1393 if (IS_MNT_SHARED(dest_mnt
))
1394 cleanup_group_ids(source_mnt
, NULL
);
1399 static int graft_tree(struct vfsmount
*mnt
, struct path
*path
)
1402 if (mnt
->mnt_sb
->s_flags
& MS_NOUSER
)
1405 if (S_ISDIR(path
->dentry
->d_inode
->i_mode
) !=
1406 S_ISDIR(mnt
->mnt_root
->d_inode
->i_mode
))
1410 mutex_lock(&path
->dentry
->d_inode
->i_mutex
);
1411 if (IS_DEADDIR(path
->dentry
->d_inode
))
1414 err
= security_sb_check_sb(mnt
, path
);
1419 if (IS_ROOT(path
->dentry
) || !d_unhashed(path
->dentry
))
1420 err
= attach_recursive_mnt(mnt
, path
, NULL
);
1422 mutex_unlock(&path
->dentry
->d_inode
->i_mutex
);
1424 security_sb_post_addmount(mnt
, path
);
1429 * recursively change the type of the mountpoint.
1431 static int do_change_type(struct path
*path
, int flag
)
1433 struct vfsmount
*m
, *mnt
= path
->mnt
;
1434 int recurse
= flag
& MS_REC
;
1435 int type
= flag
& ~MS_REC
;
1438 if (!capable(CAP_SYS_ADMIN
))
1441 if (path
->dentry
!= path
->mnt
->mnt_root
)
1444 down_write(&namespace_sem
);
1445 if (type
== MS_SHARED
) {
1446 err
= invent_group_ids(mnt
, recurse
);
1451 spin_lock(&vfsmount_lock
);
1452 for (m
= mnt
; m
; m
= (recurse
? next_mnt(m
, mnt
) : NULL
))
1453 change_mnt_propagation(m
, type
);
1454 spin_unlock(&vfsmount_lock
);
1457 up_write(&namespace_sem
);
1462 * do loopback mount.
1464 static int do_loopback(struct path
*path
, char *old_name
,
1467 struct path old_path
;
1468 struct vfsmount
*mnt
= NULL
;
1469 int err
= mount_is_safe(path
);
1472 if (!old_name
|| !*old_name
)
1474 err
= kern_path(old_name
, LOOKUP_FOLLOW
, &old_path
);
1478 down_write(&namespace_sem
);
1480 if (IS_MNT_UNBINDABLE(old_path
.mnt
))
1483 if (!check_mnt(path
->mnt
) || !check_mnt(old_path
.mnt
))
1488 mnt
= copy_tree(old_path
.mnt
, old_path
.dentry
, 0);
1490 mnt
= clone_mnt(old_path
.mnt
, old_path
.dentry
, 0);
1495 err
= graft_tree(mnt
, path
);
1497 LIST_HEAD(umount_list
);
1498 spin_lock(&vfsmount_lock
);
1499 umount_tree(mnt
, 0, &umount_list
);
1500 spin_unlock(&vfsmount_lock
);
1501 release_mounts(&umount_list
);
1505 up_write(&namespace_sem
);
1506 path_put(&old_path
);
1510 static int change_mount_flags(struct vfsmount
*mnt
, int ms_flags
)
1513 int readonly_request
= 0;
1515 if (ms_flags
& MS_RDONLY
)
1516 readonly_request
= 1;
1517 if (readonly_request
== __mnt_is_readonly(mnt
))
1520 if (readonly_request
)
1521 error
= mnt_make_readonly(mnt
);
1523 __mnt_unmake_readonly(mnt
);
1528 * change filesystem flags. dir should be a physical root of filesystem.
1529 * If you've mounted a non-root directory somewhere and want to do remount
1530 * on it - tough luck.
1532 static int do_remount(struct path
*path
, int flags
, int mnt_flags
,
1536 struct super_block
*sb
= path
->mnt
->mnt_sb
;
1538 if (!capable(CAP_SYS_ADMIN
))
1541 if (!check_mnt(path
->mnt
))
1544 if (path
->dentry
!= path
->mnt
->mnt_root
)
1547 down_write(&sb
->s_umount
);
1548 if (flags
& MS_BIND
)
1549 err
= change_mount_flags(path
->mnt
, flags
);
1551 err
= do_remount_sb(sb
, flags
, data
, 0);
1553 path
->mnt
->mnt_flags
= mnt_flags
;
1554 up_write(&sb
->s_umount
);
1556 security_sb_post_remount(path
->mnt
, flags
, data
);
1558 spin_lock(&vfsmount_lock
);
1559 touch_mnt_namespace(path
->mnt
->mnt_ns
);
1560 spin_unlock(&vfsmount_lock
);
1565 static inline int tree_contains_unbindable(struct vfsmount
*mnt
)
1568 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
1569 if (IS_MNT_UNBINDABLE(p
))
1575 static int do_move_mount(struct path
*path
, char *old_name
)
1577 struct path old_path
, parent_path
;
1580 if (!capable(CAP_SYS_ADMIN
))
1582 if (!old_name
|| !*old_name
)
1584 err
= kern_path(old_name
, LOOKUP_FOLLOW
, &old_path
);
1588 down_write(&namespace_sem
);
1589 while (d_mountpoint(path
->dentry
) &&
1590 follow_down(&path
->mnt
, &path
->dentry
))
1593 if (!check_mnt(path
->mnt
) || !check_mnt(old_path
.mnt
))
1597 mutex_lock(&path
->dentry
->d_inode
->i_mutex
);
1598 if (IS_DEADDIR(path
->dentry
->d_inode
))
1601 if (!IS_ROOT(path
->dentry
) && d_unhashed(path
->dentry
))
1605 if (old_path
.dentry
!= old_path
.mnt
->mnt_root
)
1608 if (old_path
.mnt
== old_path
.mnt
->mnt_parent
)
1611 if (S_ISDIR(path
->dentry
->d_inode
->i_mode
) !=
1612 S_ISDIR(old_path
.dentry
->d_inode
->i_mode
))
1615 * Don't move a mount residing in a shared parent.
1617 if (old_path
.mnt
->mnt_parent
&&
1618 IS_MNT_SHARED(old_path
.mnt
->mnt_parent
))
1621 * Don't move a mount tree containing unbindable mounts to a destination
1622 * mount which is shared.
1624 if (IS_MNT_SHARED(path
->mnt
) &&
1625 tree_contains_unbindable(old_path
.mnt
))
1628 for (p
= path
->mnt
; p
->mnt_parent
!= p
; p
= p
->mnt_parent
)
1629 if (p
== old_path
.mnt
)
1632 err
= attach_recursive_mnt(old_path
.mnt
, path
, &parent_path
);
1636 /* if the mount is moved, it should no longer be expire
1638 list_del_init(&old_path
.mnt
->mnt_expire
);
1640 mutex_unlock(&path
->dentry
->d_inode
->i_mutex
);
1642 up_write(&namespace_sem
);
1644 path_put(&parent_path
);
1645 path_put(&old_path
);
1650 * create a new mount for userspace and request it to be added into the
1653 static int do_new_mount(struct path
*path
, char *type
, int flags
,
1654 int mnt_flags
, char *name
, void *data
)
1656 struct vfsmount
*mnt
;
1658 if (!type
|| !memchr(type
, 0, PAGE_SIZE
))
1661 /* we need capabilities... */
1662 if (!capable(CAP_SYS_ADMIN
))
1665 mnt
= do_kern_mount(type
, flags
, name
, data
);
1667 return PTR_ERR(mnt
);
1669 return do_add_mount(mnt
, path
, mnt_flags
, NULL
);
1673 * add a mount into a namespace's mount tree
1674 * - provide the option of adding the new mount to an expiration list
1676 int do_add_mount(struct vfsmount
*newmnt
, struct path
*path
,
1677 int mnt_flags
, struct list_head
*fslist
)
1681 down_write(&namespace_sem
);
1682 /* Something was mounted here while we slept */
1683 while (d_mountpoint(path
->dentry
) &&
1684 follow_down(&path
->mnt
, &path
->dentry
))
1687 if (!check_mnt(path
->mnt
))
1690 /* Refuse the same filesystem on the same mount point */
1692 if (path
->mnt
->mnt_sb
== newmnt
->mnt_sb
&&
1693 path
->mnt
->mnt_root
== path
->dentry
)
1697 if (S_ISLNK(newmnt
->mnt_root
->d_inode
->i_mode
))
1700 newmnt
->mnt_flags
= mnt_flags
;
1701 if ((err
= graft_tree(newmnt
, path
)))
1704 if (fslist
) /* add to the specified expiration list */
1705 list_add_tail(&newmnt
->mnt_expire
, fslist
);
1707 up_write(&namespace_sem
);
1711 up_write(&namespace_sem
);
1716 EXPORT_SYMBOL_GPL(do_add_mount
);
1719 * process a list of expirable mountpoints with the intent of discarding any
1720 * mountpoints that aren't in use and haven't been touched since last we came
1723 void mark_mounts_for_expiry(struct list_head
*mounts
)
1725 struct vfsmount
*mnt
, *next
;
1726 LIST_HEAD(graveyard
);
1729 if (list_empty(mounts
))
1732 down_write(&namespace_sem
);
1733 spin_lock(&vfsmount_lock
);
1735 /* extract from the expiration list every vfsmount that matches the
1736 * following criteria:
1737 * - only referenced by its parent vfsmount
1738 * - still marked for expiry (marked on the last call here; marks are
1739 * cleared by mntput())
1741 list_for_each_entry_safe(mnt
, next
, mounts
, mnt_expire
) {
1742 if (!xchg(&mnt
->mnt_expiry_mark
, 1) ||
1743 propagate_mount_busy(mnt
, 1))
1745 list_move(&mnt
->mnt_expire
, &graveyard
);
1747 while (!list_empty(&graveyard
)) {
1748 mnt
= list_first_entry(&graveyard
, struct vfsmount
, mnt_expire
);
1749 touch_mnt_namespace(mnt
->mnt_ns
);
1750 umount_tree(mnt
, 1, &umounts
);
1752 spin_unlock(&vfsmount_lock
);
1753 up_write(&namespace_sem
);
1755 release_mounts(&umounts
);
1758 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry
);
1761 * Ripoff of 'select_parent()'
1763 * search the list of submounts for a given mountpoint, and move any
1764 * shrinkable submounts to the 'graveyard' list.
1766 static int select_submounts(struct vfsmount
*parent
, struct list_head
*graveyard
)
1768 struct vfsmount
*this_parent
= parent
;
1769 struct list_head
*next
;
1773 next
= this_parent
->mnt_mounts
.next
;
1775 while (next
!= &this_parent
->mnt_mounts
) {
1776 struct list_head
*tmp
= next
;
1777 struct vfsmount
*mnt
= list_entry(tmp
, struct vfsmount
, mnt_child
);
1780 if (!(mnt
->mnt_flags
& MNT_SHRINKABLE
))
1783 * Descend a level if the d_mounts list is non-empty.
1785 if (!list_empty(&mnt
->mnt_mounts
)) {
1790 if (!propagate_mount_busy(mnt
, 1)) {
1791 list_move_tail(&mnt
->mnt_expire
, graveyard
);
1796 * All done at this level ... ascend and resume the search
1798 if (this_parent
!= parent
) {
1799 next
= this_parent
->mnt_child
.next
;
1800 this_parent
= this_parent
->mnt_parent
;
1807 * process a list of expirable mountpoints with the intent of discarding any
1808 * submounts of a specific parent mountpoint
1810 static void shrink_submounts(struct vfsmount
*mnt
, struct list_head
*umounts
)
1812 LIST_HEAD(graveyard
);
1815 /* extract submounts of 'mountpoint' from the expiration list */
1816 while (select_submounts(mnt
, &graveyard
)) {
1817 while (!list_empty(&graveyard
)) {
1818 m
= list_first_entry(&graveyard
, struct vfsmount
,
1820 touch_mnt_namespace(m
->mnt_ns
);
1821 umount_tree(m
, 1, umounts
);
1827 * Some copy_from_user() implementations do not return the exact number of
1828 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
1829 * Note that this function differs from copy_from_user() in that it will oops
1830 * on bad values of `to', rather than returning a short copy.
1832 static long exact_copy_from_user(void *to
, const void __user
* from
,
1836 const char __user
*f
= from
;
1839 if (!access_ok(VERIFY_READ
, from
, n
))
1843 if (__get_user(c
, f
)) {
1854 int copy_mount_options(const void __user
* data
, unsigned long *where
)
1864 if (!(page
= __get_free_page(GFP_KERNEL
)))
1867 /* We only care that *some* data at the address the user
1868 * gave us is valid. Just in case, we'll zero
1869 * the remainder of the page.
1871 /* copy_from_user cannot cross TASK_SIZE ! */
1872 size
= TASK_SIZE
- (unsigned long)data
;
1873 if (size
> PAGE_SIZE
)
1876 i
= size
- exact_copy_from_user((void *)page
, data
, size
);
1882 memset((char *)page
+ i
, 0, PAGE_SIZE
- i
);
1888 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
1889 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
1891 * data is a (void *) that can point to any structure up to
1892 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
1893 * information (or be NULL).
1895 * Pre-0.97 versions of mount() didn't have a flags word.
1896 * When the flags word was introduced its top half was required
1897 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
1898 * Therefore, if this magic number is present, it carries no information
1899 * and must be discarded.
1901 long do_mount(char *dev_name
, char *dir_name
, char *type_page
,
1902 unsigned long flags
, void *data_page
)
1909 if ((flags
& MS_MGC_MSK
) == MS_MGC_VAL
)
1910 flags
&= ~MS_MGC_MSK
;
1912 /* Basic sanity checks */
1914 if (!dir_name
|| !*dir_name
|| !memchr(dir_name
, 0, PAGE_SIZE
))
1916 if (dev_name
&& !memchr(dev_name
, 0, PAGE_SIZE
))
1920 ((char *)data_page
)[PAGE_SIZE
- 1] = 0;
1922 /* Default to relatime */
1923 mnt_flags
|= MNT_RELATIME
;
1925 /* Separate the per-mountpoint flags */
1926 if (flags
& MS_NOSUID
)
1927 mnt_flags
|= MNT_NOSUID
;
1928 if (flags
& MS_NODEV
)
1929 mnt_flags
|= MNT_NODEV
;
1930 if (flags
& MS_NOEXEC
)
1931 mnt_flags
|= MNT_NOEXEC
;
1932 if (flags
& MS_NOATIME
)
1933 mnt_flags
|= MNT_NOATIME
;
1934 if (flags
& MS_NODIRATIME
)
1935 mnt_flags
|= MNT_NODIRATIME
;
1936 if (flags
& MS_STRICTATIME
)
1937 mnt_flags
&= ~(MNT_RELATIME
| MNT_NOATIME
);
1938 if (flags
& MS_RDONLY
)
1939 mnt_flags
|= MNT_READONLY
;
1941 flags
&= ~(MS_NOSUID
| MS_NOEXEC
| MS_NODEV
| MS_ACTIVE
|
1942 MS_NOATIME
| MS_NODIRATIME
| MS_RELATIME
| MS_KERNMOUNT
|
1945 /* ... and get the mountpoint */
1946 retval
= kern_path(dir_name
, LOOKUP_FOLLOW
, &path
);
1950 retval
= security_sb_mount(dev_name
, &path
,
1951 type_page
, flags
, data_page
);
1955 if (flags
& MS_REMOUNT
)
1956 retval
= do_remount(&path
, flags
& ~MS_REMOUNT
, mnt_flags
,
1958 else if (flags
& MS_BIND
)
1959 retval
= do_loopback(&path
, dev_name
, flags
& MS_REC
);
1960 else if (flags
& (MS_SHARED
| MS_PRIVATE
| MS_SLAVE
| MS_UNBINDABLE
))
1961 retval
= do_change_type(&path
, flags
);
1962 else if (flags
& MS_MOVE
)
1963 retval
= do_move_mount(&path
, dev_name
);
1965 retval
= do_new_mount(&path
, type_page
, flags
, mnt_flags
,
1966 dev_name
, data_page
);
1973 * Allocate a new namespace structure and populate it with contents
1974 * copied from the namespace of the passed in task structure.
1976 static struct mnt_namespace
*dup_mnt_ns(struct mnt_namespace
*mnt_ns
,
1977 struct fs_struct
*fs
)
1979 struct mnt_namespace
*new_ns
;
1980 struct vfsmount
*rootmnt
= NULL
, *pwdmnt
= NULL
;
1981 struct vfsmount
*p
, *q
;
1983 new_ns
= kmalloc(sizeof(struct mnt_namespace
), GFP_KERNEL
);
1985 return ERR_PTR(-ENOMEM
);
1987 atomic_set(&new_ns
->count
, 1);
1988 INIT_LIST_HEAD(&new_ns
->list
);
1989 init_waitqueue_head(&new_ns
->poll
);
1992 down_write(&namespace_sem
);
1993 /* First pass: copy the tree topology */
1994 new_ns
->root
= copy_tree(mnt_ns
->root
, mnt_ns
->root
->mnt_root
,
1995 CL_COPY_ALL
| CL_EXPIRE
);
1996 if (!new_ns
->root
) {
1997 up_write(&namespace_sem
);
1999 return ERR_PTR(-ENOMEM
);
2001 spin_lock(&vfsmount_lock
);
2002 list_add_tail(&new_ns
->list
, &new_ns
->root
->mnt_list
);
2003 spin_unlock(&vfsmount_lock
);
2006 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2007 * as belonging to new namespace. We have already acquired a private
2008 * fs_struct, so tsk->fs->lock is not needed.
2015 if (p
== fs
->root
.mnt
) {
2017 fs
->root
.mnt
= mntget(q
);
2019 if (p
== fs
->pwd
.mnt
) {
2021 fs
->pwd
.mnt
= mntget(q
);
2024 p
= next_mnt(p
, mnt_ns
->root
);
2025 q
= next_mnt(q
, new_ns
->root
);
2027 up_write(&namespace_sem
);
2037 struct mnt_namespace
*copy_mnt_ns(unsigned long flags
, struct mnt_namespace
*ns
,
2038 struct fs_struct
*new_fs
)
2040 struct mnt_namespace
*new_ns
;
2045 if (!(flags
& CLONE_NEWNS
))
2048 new_ns
= dup_mnt_ns(ns
, new_fs
);
2054 SYSCALL_DEFINE5(mount
, char __user
*, dev_name
, char __user
*, dir_name
,
2055 char __user
*, type
, unsigned long, flags
, void __user
*, data
)
2058 unsigned long data_page
;
2059 unsigned long type_page
;
2060 unsigned long dev_page
;
2063 retval
= copy_mount_options(type
, &type_page
);
2067 dir_page
= getname(dir_name
);
2068 retval
= PTR_ERR(dir_page
);
2069 if (IS_ERR(dir_page
))
2072 retval
= copy_mount_options(dev_name
, &dev_page
);
2076 retval
= copy_mount_options(data
, &data_page
);
2081 retval
= do_mount((char *)dev_page
, dir_page
, (char *)type_page
,
2082 flags
, (void *)data_page
);
2084 free_page(data_page
);
2087 free_page(dev_page
);
2091 free_page(type_page
);
2096 * Replace the fs->{rootmnt,root} with {mnt,dentry}. Put the old values.
2097 * It can block. Requires the big lock held.
2099 void set_fs_root(struct fs_struct
*fs
, struct path
*path
)
2101 struct path old_root
;
2103 write_lock(&fs
->lock
);
2104 old_root
= fs
->root
;
2107 write_unlock(&fs
->lock
);
2108 if (old_root
.dentry
)
2109 path_put(&old_root
);
2113 * Replace the fs->{pwdmnt,pwd} with {mnt,dentry}. Put the old values.
2114 * It can block. Requires the big lock held.
2116 void set_fs_pwd(struct fs_struct
*fs
, struct path
*path
)
2118 struct path old_pwd
;
2120 write_lock(&fs
->lock
);
2124 write_unlock(&fs
->lock
);
2130 static void chroot_fs_refs(struct path
*old_root
, struct path
*new_root
)
2132 struct task_struct
*g
, *p
;
2133 struct fs_struct
*fs
;
2135 read_lock(&tasklist_lock
);
2136 do_each_thread(g
, p
) {
2140 atomic_inc(&fs
->count
);
2142 if (fs
->root
.dentry
== old_root
->dentry
2143 && fs
->root
.mnt
== old_root
->mnt
)
2144 set_fs_root(fs
, new_root
);
2145 if (fs
->pwd
.dentry
== old_root
->dentry
2146 && fs
->pwd
.mnt
== old_root
->mnt
)
2147 set_fs_pwd(fs
, new_root
);
2151 } while_each_thread(g
, p
);
2152 read_unlock(&tasklist_lock
);
2156 * pivot_root Semantics:
2157 * Moves the root file system of the current process to the directory put_old,
2158 * makes new_root as the new root file system of the current process, and sets
2159 * root/cwd of all processes which had them on the current root to new_root.
2162 * The new_root and put_old must be directories, and must not be on the
2163 * same file system as the current process root. The put_old must be
2164 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2165 * pointed to by put_old must yield the same directory as new_root. No other
2166 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2168 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2169 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2170 * in this situation.
2173 * - we don't move root/cwd if they are not at the root (reason: if something
2174 * cared enough to change them, it's probably wrong to force them elsewhere)
2175 * - it's okay to pick a root that isn't the root of a file system, e.g.
2176 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2177 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2180 SYSCALL_DEFINE2(pivot_root
, const char __user
*, new_root
,
2181 const char __user
*, put_old
)
2183 struct vfsmount
*tmp
;
2184 struct path
new, old
, parent_path
, root_parent
, root
;
2187 if (!capable(CAP_SYS_ADMIN
))
2190 error
= user_path_dir(new_root
, &new);
2194 if (!check_mnt(new.mnt
))
2197 error
= user_path_dir(put_old
, &old
);
2201 error
= security_sb_pivotroot(&old
, &new);
2207 read_lock(¤t
->fs
->lock
);
2208 root
= current
->fs
->root
;
2209 path_get(¤t
->fs
->root
);
2210 read_unlock(¤t
->fs
->lock
);
2211 down_write(&namespace_sem
);
2212 mutex_lock(&old
.dentry
->d_inode
->i_mutex
);
2214 if (IS_MNT_SHARED(old
.mnt
) ||
2215 IS_MNT_SHARED(new.mnt
->mnt_parent
) ||
2216 IS_MNT_SHARED(root
.mnt
->mnt_parent
))
2218 if (!check_mnt(root
.mnt
))
2221 if (IS_DEADDIR(new.dentry
->d_inode
))
2223 if (d_unhashed(new.dentry
) && !IS_ROOT(new.dentry
))
2225 if (d_unhashed(old
.dentry
) && !IS_ROOT(old
.dentry
))
2228 if (new.mnt
== root
.mnt
||
2229 old
.mnt
== root
.mnt
)
2230 goto out2
; /* loop, on the same file system */
2232 if (root
.mnt
->mnt_root
!= root
.dentry
)
2233 goto out2
; /* not a mountpoint */
2234 if (root
.mnt
->mnt_parent
== root
.mnt
)
2235 goto out2
; /* not attached */
2236 if (new.mnt
->mnt_root
!= new.dentry
)
2237 goto out2
; /* not a mountpoint */
2238 if (new.mnt
->mnt_parent
== new.mnt
)
2239 goto out2
; /* not attached */
2240 /* make sure we can reach put_old from new_root */
2242 spin_lock(&vfsmount_lock
);
2243 if (tmp
!= new.mnt
) {
2245 if (tmp
->mnt_parent
== tmp
)
2246 goto out3
; /* already mounted on put_old */
2247 if (tmp
->mnt_parent
== new.mnt
)
2249 tmp
= tmp
->mnt_parent
;
2251 if (!is_subdir(tmp
->mnt_mountpoint
, new.dentry
))
2253 } else if (!is_subdir(old
.dentry
, new.dentry
))
2255 detach_mnt(new.mnt
, &parent_path
);
2256 detach_mnt(root
.mnt
, &root_parent
);
2257 /* mount old root on put_old */
2258 attach_mnt(root
.mnt
, &old
);
2259 /* mount new_root on / */
2260 attach_mnt(new.mnt
, &root_parent
);
2261 touch_mnt_namespace(current
->nsproxy
->mnt_ns
);
2262 spin_unlock(&vfsmount_lock
);
2263 chroot_fs_refs(&root
, &new);
2264 security_sb_post_pivotroot(&root
, &new);
2266 path_put(&root_parent
);
2267 path_put(&parent_path
);
2269 mutex_unlock(&old
.dentry
->d_inode
->i_mutex
);
2270 up_write(&namespace_sem
);
2278 spin_unlock(&vfsmount_lock
);
2282 static void __init
init_mount_tree(void)
2284 struct vfsmount
*mnt
;
2285 struct mnt_namespace
*ns
;
2288 mnt
= do_kern_mount("rootfs", 0, "rootfs", NULL
);
2290 panic("Can't create rootfs");
2291 ns
= kmalloc(sizeof(*ns
), GFP_KERNEL
);
2293 panic("Can't allocate initial namespace");
2294 atomic_set(&ns
->count
, 1);
2295 INIT_LIST_HEAD(&ns
->list
);
2296 init_waitqueue_head(&ns
->poll
);
2298 list_add(&mnt
->mnt_list
, &ns
->list
);
2302 init_task
.nsproxy
->mnt_ns
= ns
;
2305 root
.mnt
= ns
->root
;
2306 root
.dentry
= ns
->root
->mnt_root
;
2308 set_fs_pwd(current
->fs
, &root
);
2309 set_fs_root(current
->fs
, &root
);
2312 void __init
mnt_init(void)
2317 init_rwsem(&namespace_sem
);
2319 mnt_cache
= kmem_cache_create("mnt_cache", sizeof(struct vfsmount
),
2320 0, SLAB_HWCACHE_ALIGN
| SLAB_PANIC
, NULL
);
2322 mount_hashtable
= (struct list_head
*)__get_free_page(GFP_ATOMIC
);
2324 if (!mount_hashtable
)
2325 panic("Failed to allocate mount hash table\n");
2327 printk("Mount-cache hash table entries: %lu\n", HASH_SIZE
);
2329 for (u
= 0; u
< HASH_SIZE
; u
++)
2330 INIT_LIST_HEAD(&mount_hashtable
[u
]);
2334 printk(KERN_WARNING
"%s: sysfs_init error: %d\n",
2336 fs_kobj
= kobject_create_and_add("fs", NULL
);
2338 printk(KERN_WARNING
"%s: kobj create error\n", __func__
);
2343 void __put_mnt_ns(struct mnt_namespace
*ns
)
2345 struct vfsmount
*root
= ns
->root
;
2346 LIST_HEAD(umount_list
);
2348 spin_unlock(&vfsmount_lock
);
2349 down_write(&namespace_sem
);
2350 spin_lock(&vfsmount_lock
);
2351 umount_tree(root
, 0, &umount_list
);
2352 spin_unlock(&vfsmount_lock
);
2353 up_write(&namespace_sem
);
2354 release_mounts(&umount_list
);