x86, NUMA: Move *_numa_init() invocations into initmem_init()
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / x86 / mm / init_64.c
blob4f1f461fc1e92dec34600f154e589dc01bc0df81
1 /*
2 * linux/arch/x86_64/mm/init.c
4 * Copyright (C) 1995 Linus Torvalds
5 * Copyright (C) 2000 Pavel Machek <pavel@ucw.cz>
6 * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7 */
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/proc_fs.h>
26 #include <linux/pci.h>
27 #include <linux/pfn.h>
28 #include <linux/poison.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/module.h>
31 #include <linux/memory_hotplug.h>
32 #include <linux/nmi.h>
33 #include <linux/gfp.h>
35 #include <asm/processor.h>
36 #include <asm/bios_ebda.h>
37 #include <asm/system.h>
38 #include <asm/uaccess.h>
39 #include <asm/pgtable.h>
40 #include <asm/pgalloc.h>
41 #include <asm/dma.h>
42 #include <asm/fixmap.h>
43 #include <asm/e820.h>
44 #include <asm/apic.h>
45 #include <asm/tlb.h>
46 #include <asm/mmu_context.h>
47 #include <asm/proto.h>
48 #include <asm/smp.h>
49 #include <asm/sections.h>
50 #include <asm/kdebug.h>
51 #include <asm/numa.h>
52 #include <asm/cacheflush.h>
53 #include <asm/init.h>
55 static int __init parse_direct_gbpages_off(char *arg)
57 direct_gbpages = 0;
58 return 0;
60 early_param("nogbpages", parse_direct_gbpages_off);
62 static int __init parse_direct_gbpages_on(char *arg)
64 direct_gbpages = 1;
65 return 0;
67 early_param("gbpages", parse_direct_gbpages_on);
70 * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
71 * physical space so we can cache the place of the first one and move
72 * around without checking the pgd every time.
75 pteval_t __supported_pte_mask __read_mostly = ~_PAGE_IOMAP;
76 EXPORT_SYMBOL_GPL(__supported_pte_mask);
78 int force_personality32;
81 * noexec32=on|off
82 * Control non executable heap for 32bit processes.
83 * To control the stack too use noexec=off
85 * on PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
86 * off PROT_READ implies PROT_EXEC
88 static int __init nonx32_setup(char *str)
90 if (!strcmp(str, "on"))
91 force_personality32 &= ~READ_IMPLIES_EXEC;
92 else if (!strcmp(str, "off"))
93 force_personality32 |= READ_IMPLIES_EXEC;
94 return 1;
96 __setup("noexec32=", nonx32_setup);
99 * When memory was added/removed make sure all the processes MM have
100 * suitable PGD entries in the local PGD level page.
102 void sync_global_pgds(unsigned long start, unsigned long end)
104 unsigned long address;
106 for (address = start; address <= end; address += PGDIR_SIZE) {
107 const pgd_t *pgd_ref = pgd_offset_k(address);
108 unsigned long flags;
109 struct page *page;
111 if (pgd_none(*pgd_ref))
112 continue;
114 spin_lock_irqsave(&pgd_lock, flags);
115 list_for_each_entry(page, &pgd_list, lru) {
116 pgd_t *pgd;
117 spinlock_t *pgt_lock;
119 pgd = (pgd_t *)page_address(page) + pgd_index(address);
120 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
121 spin_lock(pgt_lock);
123 if (pgd_none(*pgd))
124 set_pgd(pgd, *pgd_ref);
125 else
126 BUG_ON(pgd_page_vaddr(*pgd)
127 != pgd_page_vaddr(*pgd_ref));
129 spin_unlock(pgt_lock);
131 spin_unlock_irqrestore(&pgd_lock, flags);
136 * NOTE: This function is marked __ref because it calls __init function
137 * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
139 static __ref void *spp_getpage(void)
141 void *ptr;
143 if (after_bootmem)
144 ptr = (void *) get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
145 else
146 ptr = alloc_bootmem_pages(PAGE_SIZE);
148 if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
149 panic("set_pte_phys: cannot allocate page data %s\n",
150 after_bootmem ? "after bootmem" : "");
153 pr_debug("spp_getpage %p\n", ptr);
155 return ptr;
158 static pud_t *fill_pud(pgd_t *pgd, unsigned long vaddr)
160 if (pgd_none(*pgd)) {
161 pud_t *pud = (pud_t *)spp_getpage();
162 pgd_populate(&init_mm, pgd, pud);
163 if (pud != pud_offset(pgd, 0))
164 printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
165 pud, pud_offset(pgd, 0));
167 return pud_offset(pgd, vaddr);
170 static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
172 if (pud_none(*pud)) {
173 pmd_t *pmd = (pmd_t *) spp_getpage();
174 pud_populate(&init_mm, pud, pmd);
175 if (pmd != pmd_offset(pud, 0))
176 printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
177 pmd, pmd_offset(pud, 0));
179 return pmd_offset(pud, vaddr);
182 static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
184 if (pmd_none(*pmd)) {
185 pte_t *pte = (pte_t *) spp_getpage();
186 pmd_populate_kernel(&init_mm, pmd, pte);
187 if (pte != pte_offset_kernel(pmd, 0))
188 printk(KERN_ERR "PAGETABLE BUG #02!\n");
190 return pte_offset_kernel(pmd, vaddr);
193 void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
195 pud_t *pud;
196 pmd_t *pmd;
197 pte_t *pte;
199 pud = pud_page + pud_index(vaddr);
200 pmd = fill_pmd(pud, vaddr);
201 pte = fill_pte(pmd, vaddr);
203 set_pte(pte, new_pte);
206 * It's enough to flush this one mapping.
207 * (PGE mappings get flushed as well)
209 __flush_tlb_one(vaddr);
212 void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
214 pgd_t *pgd;
215 pud_t *pud_page;
217 pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
219 pgd = pgd_offset_k(vaddr);
220 if (pgd_none(*pgd)) {
221 printk(KERN_ERR
222 "PGD FIXMAP MISSING, it should be setup in head.S!\n");
223 return;
225 pud_page = (pud_t*)pgd_page_vaddr(*pgd);
226 set_pte_vaddr_pud(pud_page, vaddr, pteval);
229 pmd_t * __init populate_extra_pmd(unsigned long vaddr)
231 pgd_t *pgd;
232 pud_t *pud;
234 pgd = pgd_offset_k(vaddr);
235 pud = fill_pud(pgd, vaddr);
236 return fill_pmd(pud, vaddr);
239 pte_t * __init populate_extra_pte(unsigned long vaddr)
241 pmd_t *pmd;
243 pmd = populate_extra_pmd(vaddr);
244 return fill_pte(pmd, vaddr);
248 * Create large page table mappings for a range of physical addresses.
250 static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
251 pgprot_t prot)
253 pgd_t *pgd;
254 pud_t *pud;
255 pmd_t *pmd;
257 BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
258 for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
259 pgd = pgd_offset_k((unsigned long)__va(phys));
260 if (pgd_none(*pgd)) {
261 pud = (pud_t *) spp_getpage();
262 set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
263 _PAGE_USER));
265 pud = pud_offset(pgd, (unsigned long)__va(phys));
266 if (pud_none(*pud)) {
267 pmd = (pmd_t *) spp_getpage();
268 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
269 _PAGE_USER));
271 pmd = pmd_offset(pud, phys);
272 BUG_ON(!pmd_none(*pmd));
273 set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
277 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
279 __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE);
282 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
284 __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE);
288 * The head.S code sets up the kernel high mapping:
290 * from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
292 * phys_addr holds the negative offset to the kernel, which is added
293 * to the compile time generated pmds. This results in invalid pmds up
294 * to the point where we hit the physaddr 0 mapping.
296 * We limit the mappings to the region from _text to _end. _end is
297 * rounded up to the 2MB boundary. This catches the invalid pmds as
298 * well, as they are located before _text:
300 void __init cleanup_highmap(void)
302 unsigned long vaddr = __START_KERNEL_map;
303 unsigned long end = roundup((unsigned long)_end, PMD_SIZE) - 1;
304 pmd_t *pmd = level2_kernel_pgt;
305 pmd_t *last_pmd = pmd + PTRS_PER_PMD;
307 for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
308 if (pmd_none(*pmd))
309 continue;
310 if (vaddr < (unsigned long) _text || vaddr > end)
311 set_pmd(pmd, __pmd(0));
315 static __ref void *alloc_low_page(unsigned long *phys)
317 unsigned long pfn = e820_table_end++;
318 void *adr;
320 if (after_bootmem) {
321 adr = (void *)get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
322 *phys = __pa(adr);
324 return adr;
327 if (pfn >= e820_table_top)
328 panic("alloc_low_page: ran out of memory");
330 adr = early_memremap(pfn * PAGE_SIZE, PAGE_SIZE);
331 clear_page(adr);
332 *phys = pfn * PAGE_SIZE;
333 return adr;
336 static __ref void *map_low_page(void *virt)
338 void *adr;
339 unsigned long phys, left;
341 if (after_bootmem)
342 return virt;
344 phys = __pa(virt);
345 left = phys & (PAGE_SIZE - 1);
346 adr = early_memremap(phys & PAGE_MASK, PAGE_SIZE);
347 adr = (void *)(((unsigned long)adr) | left);
349 return adr;
352 static __ref void unmap_low_page(void *adr)
354 if (after_bootmem)
355 return;
357 early_iounmap((void *)((unsigned long)adr & PAGE_MASK), PAGE_SIZE);
360 static unsigned long __meminit
361 phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end,
362 pgprot_t prot)
364 unsigned pages = 0;
365 unsigned long last_map_addr = end;
366 int i;
368 pte_t *pte = pte_page + pte_index(addr);
370 for(i = pte_index(addr); i < PTRS_PER_PTE; i++, addr += PAGE_SIZE, pte++) {
372 if (addr >= end) {
373 if (!after_bootmem) {
374 for(; i < PTRS_PER_PTE; i++, pte++)
375 set_pte(pte, __pte(0));
377 break;
381 * We will re-use the existing mapping.
382 * Xen for example has some special requirements, like mapping
383 * pagetable pages as RO. So assume someone who pre-setup
384 * these mappings are more intelligent.
386 if (pte_val(*pte)) {
387 pages++;
388 continue;
391 if (0)
392 printk(" pte=%p addr=%lx pte=%016lx\n",
393 pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
394 pages++;
395 set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot));
396 last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
399 update_page_count(PG_LEVEL_4K, pages);
401 return last_map_addr;
404 static unsigned long __meminit
405 phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
406 unsigned long page_size_mask, pgprot_t prot)
408 unsigned long pages = 0;
409 unsigned long last_map_addr = end;
411 int i = pmd_index(address);
413 for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
414 unsigned long pte_phys;
415 pmd_t *pmd = pmd_page + pmd_index(address);
416 pte_t *pte;
417 pgprot_t new_prot = prot;
419 if (address >= end) {
420 if (!after_bootmem) {
421 for (; i < PTRS_PER_PMD; i++, pmd++)
422 set_pmd(pmd, __pmd(0));
424 break;
427 if (pmd_val(*pmd)) {
428 if (!pmd_large(*pmd)) {
429 spin_lock(&init_mm.page_table_lock);
430 pte = map_low_page((pte_t *)pmd_page_vaddr(*pmd));
431 last_map_addr = phys_pte_init(pte, address,
432 end, prot);
433 unmap_low_page(pte);
434 spin_unlock(&init_mm.page_table_lock);
435 continue;
438 * If we are ok with PG_LEVEL_2M mapping, then we will
439 * use the existing mapping,
441 * Otherwise, we will split the large page mapping but
442 * use the same existing protection bits except for
443 * large page, so that we don't violate Intel's TLB
444 * Application note (317080) which says, while changing
445 * the page sizes, new and old translations should
446 * not differ with respect to page frame and
447 * attributes.
449 if (page_size_mask & (1 << PG_LEVEL_2M)) {
450 pages++;
451 continue;
453 new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
456 if (page_size_mask & (1<<PG_LEVEL_2M)) {
457 pages++;
458 spin_lock(&init_mm.page_table_lock);
459 set_pte((pte_t *)pmd,
460 pfn_pte(address >> PAGE_SHIFT,
461 __pgprot(pgprot_val(prot) | _PAGE_PSE)));
462 spin_unlock(&init_mm.page_table_lock);
463 last_map_addr = (address & PMD_MASK) + PMD_SIZE;
464 continue;
467 pte = alloc_low_page(&pte_phys);
468 last_map_addr = phys_pte_init(pte, address, end, new_prot);
469 unmap_low_page(pte);
471 spin_lock(&init_mm.page_table_lock);
472 pmd_populate_kernel(&init_mm, pmd, __va(pte_phys));
473 spin_unlock(&init_mm.page_table_lock);
475 update_page_count(PG_LEVEL_2M, pages);
476 return last_map_addr;
479 static unsigned long __meminit
480 phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
481 unsigned long page_size_mask)
483 unsigned long pages = 0;
484 unsigned long last_map_addr = end;
485 int i = pud_index(addr);
487 for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
488 unsigned long pmd_phys;
489 pud_t *pud = pud_page + pud_index(addr);
490 pmd_t *pmd;
491 pgprot_t prot = PAGE_KERNEL;
493 if (addr >= end)
494 break;
496 if (!after_bootmem &&
497 !e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
498 set_pud(pud, __pud(0));
499 continue;
502 if (pud_val(*pud)) {
503 if (!pud_large(*pud)) {
504 pmd = map_low_page(pmd_offset(pud, 0));
505 last_map_addr = phys_pmd_init(pmd, addr, end,
506 page_size_mask, prot);
507 unmap_low_page(pmd);
508 __flush_tlb_all();
509 continue;
512 * If we are ok with PG_LEVEL_1G mapping, then we will
513 * use the existing mapping.
515 * Otherwise, we will split the gbpage mapping but use
516 * the same existing protection bits except for large
517 * page, so that we don't violate Intel's TLB
518 * Application note (317080) which says, while changing
519 * the page sizes, new and old translations should
520 * not differ with respect to page frame and
521 * attributes.
523 if (page_size_mask & (1 << PG_LEVEL_1G)) {
524 pages++;
525 continue;
527 prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
530 if (page_size_mask & (1<<PG_LEVEL_1G)) {
531 pages++;
532 spin_lock(&init_mm.page_table_lock);
533 set_pte((pte_t *)pud,
534 pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
535 spin_unlock(&init_mm.page_table_lock);
536 last_map_addr = (addr & PUD_MASK) + PUD_SIZE;
537 continue;
540 pmd = alloc_low_page(&pmd_phys);
541 last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask,
542 prot);
543 unmap_low_page(pmd);
545 spin_lock(&init_mm.page_table_lock);
546 pud_populate(&init_mm, pud, __va(pmd_phys));
547 spin_unlock(&init_mm.page_table_lock);
549 __flush_tlb_all();
551 update_page_count(PG_LEVEL_1G, pages);
553 return last_map_addr;
556 unsigned long __meminit
557 kernel_physical_mapping_init(unsigned long start,
558 unsigned long end,
559 unsigned long page_size_mask)
561 bool pgd_changed = false;
562 unsigned long next, last_map_addr = end;
563 unsigned long addr;
565 start = (unsigned long)__va(start);
566 end = (unsigned long)__va(end);
567 addr = start;
569 for (; start < end; start = next) {
570 pgd_t *pgd = pgd_offset_k(start);
571 unsigned long pud_phys;
572 pud_t *pud;
574 next = (start + PGDIR_SIZE) & PGDIR_MASK;
575 if (next > end)
576 next = end;
578 if (pgd_val(*pgd)) {
579 pud = map_low_page((pud_t *)pgd_page_vaddr(*pgd));
580 last_map_addr = phys_pud_init(pud, __pa(start),
581 __pa(end), page_size_mask);
582 unmap_low_page(pud);
583 continue;
586 pud = alloc_low_page(&pud_phys);
587 last_map_addr = phys_pud_init(pud, __pa(start), __pa(next),
588 page_size_mask);
589 unmap_low_page(pud);
591 spin_lock(&init_mm.page_table_lock);
592 pgd_populate(&init_mm, pgd, __va(pud_phys));
593 spin_unlock(&init_mm.page_table_lock);
594 pgd_changed = true;
597 if (pgd_changed)
598 sync_global_pgds(addr, end);
600 __flush_tlb_all();
602 return last_map_addr;
605 #ifndef CONFIG_NUMA
606 void __init initmem_init(void)
608 memblock_x86_register_active_regions(0, 0, max_pfn);
609 init_memory_mapping_high();
611 #endif
613 struct mapping_work_data {
614 unsigned long start;
615 unsigned long end;
616 unsigned long pfn_mapped;
619 static int __init_refok
620 mapping_work_fn(unsigned long start_pfn, unsigned long end_pfn, void *datax)
622 struct mapping_work_data *data = datax;
623 unsigned long pfn_mapped;
624 unsigned long final_start, final_end;
626 final_start = max_t(unsigned long, start_pfn<<PAGE_SHIFT, data->start);
627 final_end = min_t(unsigned long, end_pfn<<PAGE_SHIFT, data->end);
629 if (final_end <= final_start)
630 return 0;
632 pfn_mapped = init_memory_mapping(final_start, final_end);
634 if (pfn_mapped > data->pfn_mapped)
635 data->pfn_mapped = pfn_mapped;
637 return 0;
640 static unsigned long __init_refok
641 init_memory_mapping_active_regions(unsigned long start, unsigned long end)
643 struct mapping_work_data data;
645 data.start = start;
646 data.end = end;
647 data.pfn_mapped = 0;
649 work_with_active_regions(MAX_NUMNODES, mapping_work_fn, &data);
651 return data.pfn_mapped;
654 void __init_refok init_memory_mapping_high(void)
656 if (max_pfn > max_low_pfn) {
657 max_pfn_mapped = init_memory_mapping_active_regions(1UL<<32,
658 max_pfn<<PAGE_SHIFT);
659 /* can we preserve max_low_pfn ? */
660 max_low_pfn = max_pfn;
662 memblock.current_limit = get_max_mapped();
666 void __init paging_init(void)
668 unsigned long max_zone_pfns[MAX_NR_ZONES];
670 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
671 max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
672 max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
673 max_zone_pfns[ZONE_NORMAL] = max_pfn;
675 sparse_memory_present_with_active_regions(MAX_NUMNODES);
676 sparse_init();
679 * clear the default setting with node 0
680 * note: don't use nodes_clear here, that is really clearing when
681 * numa support is not compiled in, and later node_set_state
682 * will not set it back.
684 node_clear_state(0, N_NORMAL_MEMORY);
686 free_area_init_nodes(max_zone_pfns);
690 * Memory hotplug specific functions
692 #ifdef CONFIG_MEMORY_HOTPLUG
694 * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
695 * updating.
697 static void update_end_of_memory_vars(u64 start, u64 size)
699 unsigned long end_pfn = PFN_UP(start + size);
701 if (end_pfn > max_pfn) {
702 max_pfn = end_pfn;
703 max_low_pfn = end_pfn;
704 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
709 * Memory is added always to NORMAL zone. This means you will never get
710 * additional DMA/DMA32 memory.
712 int arch_add_memory(int nid, u64 start, u64 size)
714 struct pglist_data *pgdat = NODE_DATA(nid);
715 struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
716 unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
717 unsigned long nr_pages = size >> PAGE_SHIFT;
718 int ret;
720 last_mapped_pfn = init_memory_mapping(start, start + size);
721 if (last_mapped_pfn > max_pfn_mapped)
722 max_pfn_mapped = last_mapped_pfn;
724 ret = __add_pages(nid, zone, start_pfn, nr_pages);
725 WARN_ON_ONCE(ret);
727 /* update max_pfn, max_low_pfn and high_memory */
728 update_end_of_memory_vars(start, size);
730 return ret;
732 EXPORT_SYMBOL_GPL(arch_add_memory);
734 #if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
735 int memory_add_physaddr_to_nid(u64 start)
737 return 0;
739 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
740 #endif
742 #endif /* CONFIG_MEMORY_HOTPLUG */
744 static struct kcore_list kcore_vsyscall;
746 void __init mem_init(void)
748 long codesize, reservedpages, datasize, initsize;
749 unsigned long absent_pages;
751 pci_iommu_alloc();
753 /* clear_bss() already clear the empty_zero_page */
755 reservedpages = 0;
757 /* this will put all low memory onto the freelists */
758 #ifdef CONFIG_NUMA
759 totalram_pages = numa_free_all_bootmem();
760 #else
761 totalram_pages = free_all_bootmem();
762 #endif
764 absent_pages = absent_pages_in_range(0, max_pfn);
765 reservedpages = max_pfn - totalram_pages - absent_pages;
766 after_bootmem = 1;
768 codesize = (unsigned long) &_etext - (unsigned long) &_text;
769 datasize = (unsigned long) &_edata - (unsigned long) &_etext;
770 initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin;
772 /* Register memory areas for /proc/kcore */
773 kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
774 VSYSCALL_END - VSYSCALL_START, KCORE_OTHER);
776 printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
777 "%ldk absent, %ldk reserved, %ldk data, %ldk init)\n",
778 nr_free_pages() << (PAGE_SHIFT-10),
779 max_pfn << (PAGE_SHIFT-10),
780 codesize >> 10,
781 absent_pages << (PAGE_SHIFT-10),
782 reservedpages << (PAGE_SHIFT-10),
783 datasize >> 10,
784 initsize >> 10);
787 #ifdef CONFIG_DEBUG_RODATA
788 const int rodata_test_data = 0xC3;
789 EXPORT_SYMBOL_GPL(rodata_test_data);
791 int kernel_set_to_readonly;
793 void set_kernel_text_rw(void)
795 unsigned long start = PFN_ALIGN(_text);
796 unsigned long end = PFN_ALIGN(__stop___ex_table);
798 if (!kernel_set_to_readonly)
799 return;
801 pr_debug("Set kernel text: %lx - %lx for read write\n",
802 start, end);
805 * Make the kernel identity mapping for text RW. Kernel text
806 * mapping will always be RO. Refer to the comment in
807 * static_protections() in pageattr.c
809 set_memory_rw(start, (end - start) >> PAGE_SHIFT);
812 void set_kernel_text_ro(void)
814 unsigned long start = PFN_ALIGN(_text);
815 unsigned long end = PFN_ALIGN(__stop___ex_table);
817 if (!kernel_set_to_readonly)
818 return;
820 pr_debug("Set kernel text: %lx - %lx for read only\n",
821 start, end);
824 * Set the kernel identity mapping for text RO.
826 set_memory_ro(start, (end - start) >> PAGE_SHIFT);
829 void mark_rodata_ro(void)
831 unsigned long start = PFN_ALIGN(_text);
832 unsigned long rodata_start =
833 ((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
834 unsigned long end = (unsigned long) &__end_rodata_hpage_align;
835 unsigned long text_end = PAGE_ALIGN((unsigned long) &__stop___ex_table);
836 unsigned long rodata_end = PAGE_ALIGN((unsigned long) &__end_rodata);
837 unsigned long data_start = (unsigned long) &_sdata;
839 printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
840 (end - start) >> 10);
841 set_memory_ro(start, (end - start) >> PAGE_SHIFT);
843 kernel_set_to_readonly = 1;
846 * The rodata section (but not the kernel text!) should also be
847 * not-executable.
849 set_memory_nx(rodata_start, (end - rodata_start) >> PAGE_SHIFT);
851 rodata_test();
853 #ifdef CONFIG_CPA_DEBUG
854 printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
855 set_memory_rw(start, (end-start) >> PAGE_SHIFT);
857 printk(KERN_INFO "Testing CPA: again\n");
858 set_memory_ro(start, (end-start) >> PAGE_SHIFT);
859 #endif
861 free_init_pages("unused kernel memory",
862 (unsigned long) page_address(virt_to_page(text_end)),
863 (unsigned long)
864 page_address(virt_to_page(rodata_start)));
865 free_init_pages("unused kernel memory",
866 (unsigned long) page_address(virt_to_page(rodata_end)),
867 (unsigned long) page_address(virt_to_page(data_start)));
870 #endif
872 int kern_addr_valid(unsigned long addr)
874 unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
875 pgd_t *pgd;
876 pud_t *pud;
877 pmd_t *pmd;
878 pte_t *pte;
880 if (above != 0 && above != -1UL)
881 return 0;
883 pgd = pgd_offset_k(addr);
884 if (pgd_none(*pgd))
885 return 0;
887 pud = pud_offset(pgd, addr);
888 if (pud_none(*pud))
889 return 0;
891 pmd = pmd_offset(pud, addr);
892 if (pmd_none(*pmd))
893 return 0;
895 if (pmd_large(*pmd))
896 return pfn_valid(pmd_pfn(*pmd));
898 pte = pte_offset_kernel(pmd, addr);
899 if (pte_none(*pte))
900 return 0;
902 return pfn_valid(pte_pfn(*pte));
906 * A pseudo VMA to allow ptrace access for the vsyscall page. This only
907 * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
908 * not need special handling anymore:
910 static struct vm_area_struct gate_vma = {
911 .vm_start = VSYSCALL_START,
912 .vm_end = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
913 .vm_page_prot = PAGE_READONLY_EXEC,
914 .vm_flags = VM_READ | VM_EXEC
917 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
919 #ifdef CONFIG_IA32_EMULATION
920 if (test_tsk_thread_flag(tsk, TIF_IA32))
921 return NULL;
922 #endif
923 return &gate_vma;
926 int in_gate_area(struct task_struct *task, unsigned long addr)
928 struct vm_area_struct *vma = get_gate_vma(task);
930 if (!vma)
931 return 0;
933 return (addr >= vma->vm_start) && (addr < vma->vm_end);
937 * Use this when you have no reliable task/vma, typically from interrupt
938 * context. It is less reliable than using the task's vma and may give
939 * false positives:
941 int in_gate_area_no_task(unsigned long addr)
943 return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
946 const char *arch_vma_name(struct vm_area_struct *vma)
948 if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
949 return "[vdso]";
950 if (vma == &gate_vma)
951 return "[vsyscall]";
952 return NULL;
955 #ifdef CONFIG_SPARSEMEM_VMEMMAP
957 * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
959 static long __meminitdata addr_start, addr_end;
960 static void __meminitdata *p_start, *p_end;
961 static int __meminitdata node_start;
963 int __meminit
964 vmemmap_populate(struct page *start_page, unsigned long size, int node)
966 unsigned long addr = (unsigned long)start_page;
967 unsigned long end = (unsigned long)(start_page + size);
968 unsigned long next;
969 pgd_t *pgd;
970 pud_t *pud;
971 pmd_t *pmd;
973 for (; addr < end; addr = next) {
974 void *p = NULL;
976 pgd = vmemmap_pgd_populate(addr, node);
977 if (!pgd)
978 return -ENOMEM;
980 pud = vmemmap_pud_populate(pgd, addr, node);
981 if (!pud)
982 return -ENOMEM;
984 if (!cpu_has_pse) {
985 next = (addr + PAGE_SIZE) & PAGE_MASK;
986 pmd = vmemmap_pmd_populate(pud, addr, node);
988 if (!pmd)
989 return -ENOMEM;
991 p = vmemmap_pte_populate(pmd, addr, node);
993 if (!p)
994 return -ENOMEM;
996 addr_end = addr + PAGE_SIZE;
997 p_end = p + PAGE_SIZE;
998 } else {
999 next = pmd_addr_end(addr, end);
1001 pmd = pmd_offset(pud, addr);
1002 if (pmd_none(*pmd)) {
1003 pte_t entry;
1005 p = vmemmap_alloc_block_buf(PMD_SIZE, node);
1006 if (!p)
1007 return -ENOMEM;
1009 entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
1010 PAGE_KERNEL_LARGE);
1011 set_pmd(pmd, __pmd(pte_val(entry)));
1013 /* check to see if we have contiguous blocks */
1014 if (p_end != p || node_start != node) {
1015 if (p_start)
1016 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1017 addr_start, addr_end-1, p_start, p_end-1, node_start);
1018 addr_start = addr;
1019 node_start = node;
1020 p_start = p;
1023 addr_end = addr + PMD_SIZE;
1024 p_end = p + PMD_SIZE;
1025 } else
1026 vmemmap_verify((pte_t *)pmd, node, addr, next);
1030 sync_global_pgds((unsigned long)start_page, end);
1031 return 0;
1034 void __meminit vmemmap_populate_print_last(void)
1036 if (p_start) {
1037 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1038 addr_start, addr_end-1, p_start, p_end-1, node_start);
1039 p_start = NULL;
1040 p_end = NULL;
1041 node_start = 0;
1044 #endif