2 * linux/drivers/block/loop.c
4 * Written by Theodore Ts'o, 3/29/93
6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is
7 * permitted under the GNU General Public License.
9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
21 * Loadable modules and other fixes by AK, 1998
23 * Make real block number available to downstream transfer functions, enables
24 * CBC (and relatives) mode encryption requiring unique IVs per data block.
25 * Reed H. Petty, rhp@draper.net
27 * Maximum number of loop devices now dynamic via max_loop module parameter.
28 * Russell Kroll <rkroll@exploits.org> 19990701
30 * Maximum number of loop devices when compiled-in now selectable by passing
31 * max_loop=<1-255> to the kernel on boot.
32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
34 * Completely rewrite request handling to be make_request_fn style and
35 * non blocking, pushing work to a helper thread. Lots of fixes from
37 * Jens Axboe <axboe@suse.de>, Nov 2000
39 * Support up to 256 loop devices
40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
42 * Support for falling back on the write file operation when the address space
43 * operations write_begin is not available on the backing filesystem.
44 * Anton Altaparmakov, 16 Feb 2005
47 * - Advisory locking is ignored here.
48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/loop.h>
67 #include <linux/compat.h>
68 #include <linux/suspend.h>
69 #include <linux/freezer.h>
70 #include <linux/mutex.h>
71 #include <linux/writeback.h>
72 #include <linux/buffer_head.h> /* for invalidate_bdev() */
73 #include <linux/completion.h>
74 #include <linux/highmem.h>
75 #include <linux/kthread.h>
76 #include <linux/splice.h>
77 #include <linux/sysfs.h>
78 #include <linux/miscdevice.h>
79 #include <asm/uaccess.h>
81 static DEFINE_IDR(loop_index_idr
);
82 static DEFINE_MUTEX(loop_index_mutex
);
85 static int part_shift
;
90 static int transfer_none(struct loop_device
*lo
, int cmd
,
91 struct page
*raw_page
, unsigned raw_off
,
92 struct page
*loop_page
, unsigned loop_off
,
93 int size
, sector_t real_block
)
95 char *raw_buf
= kmap_atomic(raw_page
, KM_USER0
) + raw_off
;
96 char *loop_buf
= kmap_atomic(loop_page
, KM_USER1
) + loop_off
;
99 memcpy(loop_buf
, raw_buf
, size
);
101 memcpy(raw_buf
, loop_buf
, size
);
103 kunmap_atomic(loop_buf
, KM_USER1
);
104 kunmap_atomic(raw_buf
, KM_USER0
);
109 static int transfer_xor(struct loop_device
*lo
, int cmd
,
110 struct page
*raw_page
, unsigned raw_off
,
111 struct page
*loop_page
, unsigned loop_off
,
112 int size
, sector_t real_block
)
114 char *raw_buf
= kmap_atomic(raw_page
, KM_USER0
) + raw_off
;
115 char *loop_buf
= kmap_atomic(loop_page
, KM_USER1
) + loop_off
;
116 char *in
, *out
, *key
;
127 key
= lo
->lo_encrypt_key
;
128 keysize
= lo
->lo_encrypt_key_size
;
129 for (i
= 0; i
< size
; i
++)
130 *out
++ = *in
++ ^ key
[(i
& 511) % keysize
];
132 kunmap_atomic(loop_buf
, KM_USER1
);
133 kunmap_atomic(raw_buf
, KM_USER0
);
138 static int xor_init(struct loop_device
*lo
, const struct loop_info64
*info
)
140 if (unlikely(info
->lo_encrypt_key_size
<= 0))
145 static struct loop_func_table none_funcs
= {
146 .number
= LO_CRYPT_NONE
,
147 .transfer
= transfer_none
,
150 static struct loop_func_table xor_funcs
= {
151 .number
= LO_CRYPT_XOR
,
152 .transfer
= transfer_xor
,
156 /* xfer_funcs[0] is special - its release function is never called */
157 static struct loop_func_table
*xfer_funcs
[MAX_LO_CRYPT
] = {
162 static loff_t
get_loop_size(struct loop_device
*lo
, struct file
*file
)
164 loff_t size
, offset
, loopsize
;
166 /* Compute loopsize in bytes */
167 size
= i_size_read(file
->f_mapping
->host
);
168 offset
= lo
->lo_offset
;
169 loopsize
= size
- offset
;
170 if (lo
->lo_sizelimit
> 0 && lo
->lo_sizelimit
< loopsize
)
171 loopsize
= lo
->lo_sizelimit
;
174 * Unfortunately, if we want to do I/O on the device,
175 * the number of 512-byte sectors has to fit into a sector_t.
177 return loopsize
>> 9;
181 figure_loop_size(struct loop_device
*lo
)
183 loff_t size
= get_loop_size(lo
, lo
->lo_backing_file
);
184 sector_t x
= (sector_t
)size
;
186 if (unlikely((loff_t
)x
!= size
))
189 set_capacity(lo
->lo_disk
, x
);
194 lo_do_transfer(struct loop_device
*lo
, int cmd
,
195 struct page
*rpage
, unsigned roffs
,
196 struct page
*lpage
, unsigned loffs
,
197 int size
, sector_t rblock
)
199 if (unlikely(!lo
->transfer
))
202 return lo
->transfer(lo
, cmd
, rpage
, roffs
, lpage
, loffs
, size
, rblock
);
206 * do_lo_send_aops - helper for writing data to a loop device
208 * This is the fast version for backing filesystems which implement the address
209 * space operations write_begin and write_end.
211 static int do_lo_send_aops(struct loop_device
*lo
, struct bio_vec
*bvec
,
212 loff_t pos
, struct page
*unused
)
214 struct file
*file
= lo
->lo_backing_file
; /* kudos to NFsckingS */
215 struct address_space
*mapping
= file
->f_mapping
;
217 unsigned offset
, bv_offs
;
220 mutex_lock(&mapping
->host
->i_mutex
);
221 index
= pos
>> PAGE_CACHE_SHIFT
;
222 offset
= pos
& ((pgoff_t
)PAGE_CACHE_SIZE
- 1);
223 bv_offs
= bvec
->bv_offset
;
227 unsigned size
, copied
;
232 IV
= ((sector_t
)index
<< (PAGE_CACHE_SHIFT
- 9))+(offset
>> 9);
233 size
= PAGE_CACHE_SIZE
- offset
;
237 ret
= pagecache_write_begin(file
, mapping
, pos
, size
, 0,
242 file_update_time(file
);
244 transfer_result
= lo_do_transfer(lo
, WRITE
, page
, offset
,
245 bvec
->bv_page
, bv_offs
, size
, IV
);
247 if (unlikely(transfer_result
))
250 ret
= pagecache_write_end(file
, mapping
, pos
, size
, copied
,
252 if (ret
< 0 || ret
!= copied
)
255 if (unlikely(transfer_result
))
266 mutex_unlock(&mapping
->host
->i_mutex
);
274 * __do_lo_send_write - helper for writing data to a loop device
276 * This helper just factors out common code between do_lo_send_direct_write()
277 * and do_lo_send_write().
279 static int __do_lo_send_write(struct file
*file
,
280 u8
*buf
, const int len
, loff_t pos
)
283 mm_segment_t old_fs
= get_fs();
286 bw
= file
->f_op
->write(file
, buf
, len
, &pos
);
288 if (likely(bw
== len
))
290 printk(KERN_ERR
"loop: Write error at byte offset %llu, length %i.\n",
291 (unsigned long long)pos
, len
);
298 * do_lo_send_direct_write - helper for writing data to a loop device
300 * This is the fast, non-transforming version for backing filesystems which do
301 * not implement the address space operations write_begin and write_end.
302 * It uses the write file operation which should be present on all writeable
305 static int do_lo_send_direct_write(struct loop_device
*lo
,
306 struct bio_vec
*bvec
, loff_t pos
, struct page
*page
)
308 ssize_t bw
= __do_lo_send_write(lo
->lo_backing_file
,
309 kmap(bvec
->bv_page
) + bvec
->bv_offset
,
311 kunmap(bvec
->bv_page
);
317 * do_lo_send_write - helper for writing data to a loop device
319 * This is the slow, transforming version for filesystems which do not
320 * implement the address space operations write_begin and write_end. It
321 * uses the write file operation which should be present on all writeable
324 * Using fops->write is slower than using aops->{prepare,commit}_write in the
325 * transforming case because we need to double buffer the data as we cannot do
326 * the transformations in place as we do not have direct access to the
327 * destination pages of the backing file.
329 static int do_lo_send_write(struct loop_device
*lo
, struct bio_vec
*bvec
,
330 loff_t pos
, struct page
*page
)
332 int ret
= lo_do_transfer(lo
, WRITE
, page
, 0, bvec
->bv_page
,
333 bvec
->bv_offset
, bvec
->bv_len
, pos
>> 9);
335 return __do_lo_send_write(lo
->lo_backing_file
,
336 page_address(page
), bvec
->bv_len
,
338 printk(KERN_ERR
"loop: Transfer error at byte offset %llu, "
339 "length %i.\n", (unsigned long long)pos
, bvec
->bv_len
);
345 static int lo_send(struct loop_device
*lo
, struct bio
*bio
, loff_t pos
)
347 int (*do_lo_send
)(struct loop_device
*, struct bio_vec
*, loff_t
,
349 struct bio_vec
*bvec
;
350 struct page
*page
= NULL
;
353 do_lo_send
= do_lo_send_aops
;
354 if (!(lo
->lo_flags
& LO_FLAGS_USE_AOPS
)) {
355 do_lo_send
= do_lo_send_direct_write
;
356 if (lo
->transfer
!= transfer_none
) {
357 page
= alloc_page(GFP_NOIO
| __GFP_HIGHMEM
);
361 do_lo_send
= do_lo_send_write
;
364 bio_for_each_segment(bvec
, bio
, i
) {
365 ret
= do_lo_send(lo
, bvec
, pos
, page
);
377 printk(KERN_ERR
"loop: Failed to allocate temporary page for write.\n");
382 struct lo_read_data
{
383 struct loop_device
*lo
;
390 lo_splice_actor(struct pipe_inode_info
*pipe
, struct pipe_buffer
*buf
,
391 struct splice_desc
*sd
)
393 struct lo_read_data
*p
= sd
->u
.data
;
394 struct loop_device
*lo
= p
->lo
;
395 struct page
*page
= buf
->page
;
399 IV
= ((sector_t
) page
->index
<< (PAGE_CACHE_SHIFT
- 9)) +
405 if (lo_do_transfer(lo
, READ
, page
, buf
->offset
, p
->page
, p
->offset
, size
, IV
)) {
406 printk(KERN_ERR
"loop: transfer error block %ld\n",
411 flush_dcache_page(p
->page
);
420 lo_direct_splice_actor(struct pipe_inode_info
*pipe
, struct splice_desc
*sd
)
422 return __splice_from_pipe(pipe
, sd
, lo_splice_actor
);
426 do_lo_receive(struct loop_device
*lo
,
427 struct bio_vec
*bvec
, int bsize
, loff_t pos
)
429 struct lo_read_data cookie
;
430 struct splice_desc sd
;
435 cookie
.page
= bvec
->bv_page
;
436 cookie
.offset
= bvec
->bv_offset
;
437 cookie
.bsize
= bsize
;
440 sd
.total_len
= bvec
->bv_len
;
445 file
= lo
->lo_backing_file
;
446 retval
= splice_direct_to_actor(file
, &sd
, lo_direct_splice_actor
);
455 lo_receive(struct loop_device
*lo
, struct bio
*bio
, int bsize
, loff_t pos
)
457 struct bio_vec
*bvec
;
460 bio_for_each_segment(bvec
, bio
, i
) {
461 ret
= do_lo_receive(lo
, bvec
, bsize
, pos
);
469 static int do_bio_filebacked(struct loop_device
*lo
, struct bio
*bio
)
474 pos
= ((loff_t
) bio
->bi_sector
<< 9) + lo
->lo_offset
;
476 if (bio_rw(bio
) == WRITE
) {
477 struct file
*file
= lo
->lo_backing_file
;
479 if (bio
->bi_rw
& REQ_FLUSH
) {
480 ret
= vfs_fsync(file
, 0);
481 if (unlikely(ret
&& ret
!= -EINVAL
)) {
487 ret
= lo_send(lo
, bio
, pos
);
489 if ((bio
->bi_rw
& REQ_FUA
) && !ret
) {
490 ret
= vfs_fsync(file
, 0);
491 if (unlikely(ret
&& ret
!= -EINVAL
))
495 ret
= lo_receive(lo
, bio
, lo
->lo_blocksize
, pos
);
502 * Add bio to back of pending list
504 static void loop_add_bio(struct loop_device
*lo
, struct bio
*bio
)
506 bio_list_add(&lo
->lo_bio_list
, bio
);
510 * Grab first pending buffer
512 static struct bio
*loop_get_bio(struct loop_device
*lo
)
514 return bio_list_pop(&lo
->lo_bio_list
);
517 static int loop_make_request(struct request_queue
*q
, struct bio
*old_bio
)
519 struct loop_device
*lo
= q
->queuedata
;
520 int rw
= bio_rw(old_bio
);
525 BUG_ON(!lo
|| (rw
!= READ
&& rw
!= WRITE
));
527 spin_lock_irq(&lo
->lo_lock
);
528 if (lo
->lo_state
!= Lo_bound
)
530 if (unlikely(rw
== WRITE
&& (lo
->lo_flags
& LO_FLAGS_READ_ONLY
)))
532 loop_add_bio(lo
, old_bio
);
533 wake_up(&lo
->lo_event
);
534 spin_unlock_irq(&lo
->lo_lock
);
538 spin_unlock_irq(&lo
->lo_lock
);
539 bio_io_error(old_bio
);
543 struct switch_request
{
545 struct completion wait
;
548 static void do_loop_switch(struct loop_device
*, struct switch_request
*);
550 static inline void loop_handle_bio(struct loop_device
*lo
, struct bio
*bio
)
552 if (unlikely(!bio
->bi_bdev
)) {
553 do_loop_switch(lo
, bio
->bi_private
);
556 int ret
= do_bio_filebacked(lo
, bio
);
562 * worker thread that handles reads/writes to file backed loop devices,
563 * to avoid blocking in our make_request_fn. it also does loop decrypting
564 * on reads for block backed loop, as that is too heavy to do from
565 * b_end_io context where irqs may be disabled.
567 * Loop explanation: loop_clr_fd() sets lo_state to Lo_rundown before
568 * calling kthread_stop(). Therefore once kthread_should_stop() is
569 * true, make_request will not place any more requests. Therefore
570 * once kthread_should_stop() is true and lo_bio is NULL, we are
571 * done with the loop.
573 static int loop_thread(void *data
)
575 struct loop_device
*lo
= data
;
578 set_user_nice(current
, -20);
580 while (!kthread_should_stop() || !bio_list_empty(&lo
->lo_bio_list
)) {
582 wait_event_interruptible(lo
->lo_event
,
583 !bio_list_empty(&lo
->lo_bio_list
) ||
584 kthread_should_stop());
586 if (bio_list_empty(&lo
->lo_bio_list
))
588 spin_lock_irq(&lo
->lo_lock
);
589 bio
= loop_get_bio(lo
);
590 spin_unlock_irq(&lo
->lo_lock
);
593 loop_handle_bio(lo
, bio
);
600 * loop_switch performs the hard work of switching a backing store.
601 * First it needs to flush existing IO, it does this by sending a magic
602 * BIO down the pipe. The completion of this BIO does the actual switch.
604 static int loop_switch(struct loop_device
*lo
, struct file
*file
)
606 struct switch_request w
;
607 struct bio
*bio
= bio_alloc(GFP_KERNEL
, 0);
610 init_completion(&w
.wait
);
612 bio
->bi_private
= &w
;
614 loop_make_request(lo
->lo_queue
, bio
);
615 wait_for_completion(&w
.wait
);
620 * Helper to flush the IOs in loop, but keeping loop thread running
622 static int loop_flush(struct loop_device
*lo
)
624 /* loop not yet configured, no running thread, nothing to flush */
628 return loop_switch(lo
, NULL
);
632 * Do the actual switch; called from the BIO completion routine
634 static void do_loop_switch(struct loop_device
*lo
, struct switch_request
*p
)
636 struct file
*file
= p
->file
;
637 struct file
*old_file
= lo
->lo_backing_file
;
638 struct address_space
*mapping
;
640 /* if no new file, only flush of queued bios requested */
644 mapping
= file
->f_mapping
;
645 mapping_set_gfp_mask(old_file
->f_mapping
, lo
->old_gfp_mask
);
646 lo
->lo_backing_file
= file
;
647 lo
->lo_blocksize
= S_ISBLK(mapping
->host
->i_mode
) ?
648 mapping
->host
->i_bdev
->bd_block_size
: PAGE_SIZE
;
649 lo
->old_gfp_mask
= mapping_gfp_mask(mapping
);
650 mapping_set_gfp_mask(mapping
, lo
->old_gfp_mask
& ~(__GFP_IO
|__GFP_FS
));
657 * loop_change_fd switched the backing store of a loopback device to
658 * a new file. This is useful for operating system installers to free up
659 * the original file and in High Availability environments to switch to
660 * an alternative location for the content in case of server meltdown.
661 * This can only work if the loop device is used read-only, and if the
662 * new backing store is the same size and type as the old backing store.
664 static int loop_change_fd(struct loop_device
*lo
, struct block_device
*bdev
,
667 struct file
*file
, *old_file
;
672 if (lo
->lo_state
!= Lo_bound
)
675 /* the loop device has to be read-only */
677 if (!(lo
->lo_flags
& LO_FLAGS_READ_ONLY
))
685 inode
= file
->f_mapping
->host
;
686 old_file
= lo
->lo_backing_file
;
690 if (!S_ISREG(inode
->i_mode
) && !S_ISBLK(inode
->i_mode
))
693 /* size of the new backing store needs to be the same */
694 if (get_loop_size(lo
, file
) != get_loop_size(lo
, old_file
))
698 error
= loop_switch(lo
, file
);
704 ioctl_by_bdev(bdev
, BLKRRPART
, 0);
713 static inline int is_loop_device(struct file
*file
)
715 struct inode
*i
= file
->f_mapping
->host
;
717 return i
&& S_ISBLK(i
->i_mode
) && MAJOR(i
->i_rdev
) == LOOP_MAJOR
;
720 /* loop sysfs attributes */
722 static ssize_t
loop_attr_show(struct device
*dev
, char *page
,
723 ssize_t (*callback
)(struct loop_device
*, char *))
725 struct gendisk
*disk
= dev_to_disk(dev
);
726 struct loop_device
*lo
= disk
->private_data
;
728 return callback(lo
, page
);
731 #define LOOP_ATTR_RO(_name) \
732 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \
733 static ssize_t loop_attr_do_show_##_name(struct device *d, \
734 struct device_attribute *attr, char *b) \
736 return loop_attr_show(d, b, loop_attr_##_name##_show); \
738 static struct device_attribute loop_attr_##_name = \
739 __ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL);
741 static ssize_t
loop_attr_backing_file_show(struct loop_device
*lo
, char *buf
)
746 spin_lock_irq(&lo
->lo_lock
);
747 if (lo
->lo_backing_file
)
748 p
= d_path(&lo
->lo_backing_file
->f_path
, buf
, PAGE_SIZE
- 1);
749 spin_unlock_irq(&lo
->lo_lock
);
751 if (IS_ERR_OR_NULL(p
))
755 memmove(buf
, p
, ret
);
763 static ssize_t
loop_attr_offset_show(struct loop_device
*lo
, char *buf
)
765 return sprintf(buf
, "%llu\n", (unsigned long long)lo
->lo_offset
);
768 static ssize_t
loop_attr_sizelimit_show(struct loop_device
*lo
, char *buf
)
770 return sprintf(buf
, "%llu\n", (unsigned long long)lo
->lo_sizelimit
);
773 static ssize_t
loop_attr_autoclear_show(struct loop_device
*lo
, char *buf
)
775 int autoclear
= (lo
->lo_flags
& LO_FLAGS_AUTOCLEAR
);
777 return sprintf(buf
, "%s\n", autoclear
? "1" : "0");
780 LOOP_ATTR_RO(backing_file
);
781 LOOP_ATTR_RO(offset
);
782 LOOP_ATTR_RO(sizelimit
);
783 LOOP_ATTR_RO(autoclear
);
785 static struct attribute
*loop_attrs
[] = {
786 &loop_attr_backing_file
.attr
,
787 &loop_attr_offset
.attr
,
788 &loop_attr_sizelimit
.attr
,
789 &loop_attr_autoclear
.attr
,
793 static struct attribute_group loop_attribute_group
= {
798 static int loop_sysfs_init(struct loop_device
*lo
)
800 return sysfs_create_group(&disk_to_dev(lo
->lo_disk
)->kobj
,
801 &loop_attribute_group
);
804 static void loop_sysfs_exit(struct loop_device
*lo
)
806 sysfs_remove_group(&disk_to_dev(lo
->lo_disk
)->kobj
,
807 &loop_attribute_group
);
810 static int loop_set_fd(struct loop_device
*lo
, fmode_t mode
,
811 struct block_device
*bdev
, unsigned int arg
)
813 struct file
*file
, *f
;
815 struct address_space
*mapping
;
816 unsigned lo_blocksize
;
821 /* This is safe, since we have a reference from open(). */
822 __module_get(THIS_MODULE
);
830 if (lo
->lo_state
!= Lo_unbound
)
833 /* Avoid recursion */
835 while (is_loop_device(f
)) {
836 struct loop_device
*l
;
838 if (f
->f_mapping
->host
->i_bdev
== bdev
)
841 l
= f
->f_mapping
->host
->i_bdev
->bd_disk
->private_data
;
842 if (l
->lo_state
== Lo_unbound
) {
846 f
= l
->lo_backing_file
;
849 mapping
= file
->f_mapping
;
850 inode
= mapping
->host
;
852 if (!(file
->f_mode
& FMODE_WRITE
))
853 lo_flags
|= LO_FLAGS_READ_ONLY
;
856 if (S_ISREG(inode
->i_mode
) || S_ISBLK(inode
->i_mode
)) {
857 const struct address_space_operations
*aops
= mapping
->a_ops
;
859 if (aops
->write_begin
)
860 lo_flags
|= LO_FLAGS_USE_AOPS
;
861 if (!(lo_flags
& LO_FLAGS_USE_AOPS
) && !file
->f_op
->write
)
862 lo_flags
|= LO_FLAGS_READ_ONLY
;
864 lo_blocksize
= S_ISBLK(inode
->i_mode
) ?
865 inode
->i_bdev
->bd_block_size
: PAGE_SIZE
;
872 size
= get_loop_size(lo
, file
);
874 if ((loff_t
)(sector_t
)size
!= size
) {
879 if (!(mode
& FMODE_WRITE
))
880 lo_flags
|= LO_FLAGS_READ_ONLY
;
882 set_device_ro(bdev
, (lo_flags
& LO_FLAGS_READ_ONLY
) != 0);
884 lo
->lo_blocksize
= lo_blocksize
;
885 lo
->lo_device
= bdev
;
886 lo
->lo_flags
= lo_flags
;
887 lo
->lo_backing_file
= file
;
888 lo
->transfer
= transfer_none
;
890 lo
->lo_sizelimit
= 0;
891 lo
->old_gfp_mask
= mapping_gfp_mask(mapping
);
892 mapping_set_gfp_mask(mapping
, lo
->old_gfp_mask
& ~(__GFP_IO
|__GFP_FS
));
894 bio_list_init(&lo
->lo_bio_list
);
897 * set queue make_request_fn, and add limits based on lower level
900 blk_queue_make_request(lo
->lo_queue
, loop_make_request
);
901 lo
->lo_queue
->queuedata
= lo
;
903 if (!(lo_flags
& LO_FLAGS_READ_ONLY
) && file
->f_op
->fsync
)
904 blk_queue_flush(lo
->lo_queue
, REQ_FLUSH
);
906 set_capacity(lo
->lo_disk
, size
);
907 bd_set_size(bdev
, size
<< 9);
909 /* let user-space know about the new size */
910 kobject_uevent(&disk_to_dev(bdev
->bd_disk
)->kobj
, KOBJ_CHANGE
);
912 set_blocksize(bdev
, lo_blocksize
);
914 lo
->lo_thread
= kthread_create(loop_thread
, lo
, "loop%d",
916 if (IS_ERR(lo
->lo_thread
)) {
917 error
= PTR_ERR(lo
->lo_thread
);
920 lo
->lo_state
= Lo_bound
;
921 wake_up_process(lo
->lo_thread
);
923 ioctl_by_bdev(bdev
, BLKRRPART
, 0);
928 lo
->lo_thread
= NULL
;
929 lo
->lo_device
= NULL
;
930 lo
->lo_backing_file
= NULL
;
932 set_capacity(lo
->lo_disk
, 0);
933 invalidate_bdev(bdev
);
934 bd_set_size(bdev
, 0);
935 kobject_uevent(&disk_to_dev(bdev
->bd_disk
)->kobj
, KOBJ_CHANGE
);
936 mapping_set_gfp_mask(mapping
, lo
->old_gfp_mask
);
937 lo
->lo_state
= Lo_unbound
;
941 /* This is safe: open() is still holding a reference. */
942 module_put(THIS_MODULE
);
947 loop_release_xfer(struct loop_device
*lo
)
950 struct loop_func_table
*xfer
= lo
->lo_encryption
;
954 err
= xfer
->release(lo
);
956 lo
->lo_encryption
= NULL
;
957 module_put(xfer
->owner
);
963 loop_init_xfer(struct loop_device
*lo
, struct loop_func_table
*xfer
,
964 const struct loop_info64
*i
)
969 struct module
*owner
= xfer
->owner
;
971 if (!try_module_get(owner
))
974 err
= xfer
->init(lo
, i
);
978 lo
->lo_encryption
= xfer
;
983 static int loop_clr_fd(struct loop_device
*lo
, struct block_device
*bdev
)
985 struct file
*filp
= lo
->lo_backing_file
;
986 gfp_t gfp
= lo
->old_gfp_mask
;
988 if (lo
->lo_state
!= Lo_bound
)
991 if (lo
->lo_refcnt
> 1) /* we needed one fd for the ioctl */
997 spin_lock_irq(&lo
->lo_lock
);
998 lo
->lo_state
= Lo_rundown
;
999 spin_unlock_irq(&lo
->lo_lock
);
1001 kthread_stop(lo
->lo_thread
);
1003 spin_lock_irq(&lo
->lo_lock
);
1004 lo
->lo_backing_file
= NULL
;
1005 spin_unlock_irq(&lo
->lo_lock
);
1007 loop_release_xfer(lo
);
1008 lo
->transfer
= NULL
;
1010 lo
->lo_device
= NULL
;
1011 lo
->lo_encryption
= NULL
;
1013 lo
->lo_sizelimit
= 0;
1014 lo
->lo_encrypt_key_size
= 0;
1016 lo
->lo_thread
= NULL
;
1017 memset(lo
->lo_encrypt_key
, 0, LO_KEY_SIZE
);
1018 memset(lo
->lo_crypt_name
, 0, LO_NAME_SIZE
);
1019 memset(lo
->lo_file_name
, 0, LO_NAME_SIZE
);
1021 invalidate_bdev(bdev
);
1022 set_capacity(lo
->lo_disk
, 0);
1023 loop_sysfs_exit(lo
);
1025 bd_set_size(bdev
, 0);
1026 /* let user-space know about this change */
1027 kobject_uevent(&disk_to_dev(bdev
->bd_disk
)->kobj
, KOBJ_CHANGE
);
1029 mapping_set_gfp_mask(filp
->f_mapping
, gfp
);
1030 lo
->lo_state
= Lo_unbound
;
1031 /* This is safe: open() is still holding a reference. */
1032 module_put(THIS_MODULE
);
1033 if (max_part
> 0 && bdev
)
1034 ioctl_by_bdev(bdev
, BLKRRPART
, 0);
1035 mutex_unlock(&lo
->lo_ctl_mutex
);
1037 * Need not hold lo_ctl_mutex to fput backing file.
1038 * Calling fput holding lo_ctl_mutex triggers a circular
1039 * lock dependency possibility warning as fput can take
1040 * bd_mutex which is usually taken before lo_ctl_mutex.
1047 loop_set_status(struct loop_device
*lo
, const struct loop_info64
*info
)
1050 struct loop_func_table
*xfer
;
1051 uid_t uid
= current_uid();
1053 if (lo
->lo_encrypt_key_size
&&
1054 lo
->lo_key_owner
!= uid
&&
1055 !capable(CAP_SYS_ADMIN
))
1057 if (lo
->lo_state
!= Lo_bound
)
1059 if ((unsigned int) info
->lo_encrypt_key_size
> LO_KEY_SIZE
)
1062 err
= loop_release_xfer(lo
);
1066 if (info
->lo_encrypt_type
) {
1067 unsigned int type
= info
->lo_encrypt_type
;
1069 if (type
>= MAX_LO_CRYPT
)
1071 xfer
= xfer_funcs
[type
];
1077 err
= loop_init_xfer(lo
, xfer
, info
);
1081 if (lo
->lo_offset
!= info
->lo_offset
||
1082 lo
->lo_sizelimit
!= info
->lo_sizelimit
) {
1083 lo
->lo_offset
= info
->lo_offset
;
1084 lo
->lo_sizelimit
= info
->lo_sizelimit
;
1085 if (figure_loop_size(lo
))
1089 memcpy(lo
->lo_file_name
, info
->lo_file_name
, LO_NAME_SIZE
);
1090 memcpy(lo
->lo_crypt_name
, info
->lo_crypt_name
, LO_NAME_SIZE
);
1091 lo
->lo_file_name
[LO_NAME_SIZE
-1] = 0;
1092 lo
->lo_crypt_name
[LO_NAME_SIZE
-1] = 0;
1096 lo
->transfer
= xfer
->transfer
;
1097 lo
->ioctl
= xfer
->ioctl
;
1099 if ((lo
->lo_flags
& LO_FLAGS_AUTOCLEAR
) !=
1100 (info
->lo_flags
& LO_FLAGS_AUTOCLEAR
))
1101 lo
->lo_flags
^= LO_FLAGS_AUTOCLEAR
;
1103 lo
->lo_encrypt_key_size
= info
->lo_encrypt_key_size
;
1104 lo
->lo_init
[0] = info
->lo_init
[0];
1105 lo
->lo_init
[1] = info
->lo_init
[1];
1106 if (info
->lo_encrypt_key_size
) {
1107 memcpy(lo
->lo_encrypt_key
, info
->lo_encrypt_key
,
1108 info
->lo_encrypt_key_size
);
1109 lo
->lo_key_owner
= uid
;
1116 loop_get_status(struct loop_device
*lo
, struct loop_info64
*info
)
1118 struct file
*file
= lo
->lo_backing_file
;
1122 if (lo
->lo_state
!= Lo_bound
)
1124 error
= vfs_getattr(file
->f_path
.mnt
, file
->f_path
.dentry
, &stat
);
1127 memset(info
, 0, sizeof(*info
));
1128 info
->lo_number
= lo
->lo_number
;
1129 info
->lo_device
= huge_encode_dev(stat
.dev
);
1130 info
->lo_inode
= stat
.ino
;
1131 info
->lo_rdevice
= huge_encode_dev(lo
->lo_device
? stat
.rdev
: stat
.dev
);
1132 info
->lo_offset
= lo
->lo_offset
;
1133 info
->lo_sizelimit
= lo
->lo_sizelimit
;
1134 info
->lo_flags
= lo
->lo_flags
;
1135 memcpy(info
->lo_file_name
, lo
->lo_file_name
, LO_NAME_SIZE
);
1136 memcpy(info
->lo_crypt_name
, lo
->lo_crypt_name
, LO_NAME_SIZE
);
1137 info
->lo_encrypt_type
=
1138 lo
->lo_encryption
? lo
->lo_encryption
->number
: 0;
1139 if (lo
->lo_encrypt_key_size
&& capable(CAP_SYS_ADMIN
)) {
1140 info
->lo_encrypt_key_size
= lo
->lo_encrypt_key_size
;
1141 memcpy(info
->lo_encrypt_key
, lo
->lo_encrypt_key
,
1142 lo
->lo_encrypt_key_size
);
1148 loop_info64_from_old(const struct loop_info
*info
, struct loop_info64
*info64
)
1150 memset(info64
, 0, sizeof(*info64
));
1151 info64
->lo_number
= info
->lo_number
;
1152 info64
->lo_device
= info
->lo_device
;
1153 info64
->lo_inode
= info
->lo_inode
;
1154 info64
->lo_rdevice
= info
->lo_rdevice
;
1155 info64
->lo_offset
= info
->lo_offset
;
1156 info64
->lo_sizelimit
= 0;
1157 info64
->lo_encrypt_type
= info
->lo_encrypt_type
;
1158 info64
->lo_encrypt_key_size
= info
->lo_encrypt_key_size
;
1159 info64
->lo_flags
= info
->lo_flags
;
1160 info64
->lo_init
[0] = info
->lo_init
[0];
1161 info64
->lo_init
[1] = info
->lo_init
[1];
1162 if (info
->lo_encrypt_type
== LO_CRYPT_CRYPTOAPI
)
1163 memcpy(info64
->lo_crypt_name
, info
->lo_name
, LO_NAME_SIZE
);
1165 memcpy(info64
->lo_file_name
, info
->lo_name
, LO_NAME_SIZE
);
1166 memcpy(info64
->lo_encrypt_key
, info
->lo_encrypt_key
, LO_KEY_SIZE
);
1170 loop_info64_to_old(const struct loop_info64
*info64
, struct loop_info
*info
)
1172 memset(info
, 0, sizeof(*info
));
1173 info
->lo_number
= info64
->lo_number
;
1174 info
->lo_device
= info64
->lo_device
;
1175 info
->lo_inode
= info64
->lo_inode
;
1176 info
->lo_rdevice
= info64
->lo_rdevice
;
1177 info
->lo_offset
= info64
->lo_offset
;
1178 info
->lo_encrypt_type
= info64
->lo_encrypt_type
;
1179 info
->lo_encrypt_key_size
= info64
->lo_encrypt_key_size
;
1180 info
->lo_flags
= info64
->lo_flags
;
1181 info
->lo_init
[0] = info64
->lo_init
[0];
1182 info
->lo_init
[1] = info64
->lo_init
[1];
1183 if (info
->lo_encrypt_type
== LO_CRYPT_CRYPTOAPI
)
1184 memcpy(info
->lo_name
, info64
->lo_crypt_name
, LO_NAME_SIZE
);
1186 memcpy(info
->lo_name
, info64
->lo_file_name
, LO_NAME_SIZE
);
1187 memcpy(info
->lo_encrypt_key
, info64
->lo_encrypt_key
, LO_KEY_SIZE
);
1189 /* error in case values were truncated */
1190 if (info
->lo_device
!= info64
->lo_device
||
1191 info
->lo_rdevice
!= info64
->lo_rdevice
||
1192 info
->lo_inode
!= info64
->lo_inode
||
1193 info
->lo_offset
!= info64
->lo_offset
)
1200 loop_set_status_old(struct loop_device
*lo
, const struct loop_info __user
*arg
)
1202 struct loop_info info
;
1203 struct loop_info64 info64
;
1205 if (copy_from_user(&info
, arg
, sizeof (struct loop_info
)))
1207 loop_info64_from_old(&info
, &info64
);
1208 return loop_set_status(lo
, &info64
);
1212 loop_set_status64(struct loop_device
*lo
, const struct loop_info64 __user
*arg
)
1214 struct loop_info64 info64
;
1216 if (copy_from_user(&info64
, arg
, sizeof (struct loop_info64
)))
1218 return loop_set_status(lo
, &info64
);
1222 loop_get_status_old(struct loop_device
*lo
, struct loop_info __user
*arg
) {
1223 struct loop_info info
;
1224 struct loop_info64 info64
;
1230 err
= loop_get_status(lo
, &info64
);
1232 err
= loop_info64_to_old(&info64
, &info
);
1233 if (!err
&& copy_to_user(arg
, &info
, sizeof(info
)))
1240 loop_get_status64(struct loop_device
*lo
, struct loop_info64 __user
*arg
) {
1241 struct loop_info64 info64
;
1247 err
= loop_get_status(lo
, &info64
);
1248 if (!err
&& copy_to_user(arg
, &info64
, sizeof(info64
)))
1254 static int loop_set_capacity(struct loop_device
*lo
, struct block_device
*bdev
)
1261 if (unlikely(lo
->lo_state
!= Lo_bound
))
1263 err
= figure_loop_size(lo
);
1266 sec
= get_capacity(lo
->lo_disk
);
1267 /* the width of sector_t may be narrow for bit-shift */
1270 mutex_lock(&bdev
->bd_mutex
);
1271 bd_set_size(bdev
, sz
);
1272 /* let user-space know about the new size */
1273 kobject_uevent(&disk_to_dev(bdev
->bd_disk
)->kobj
, KOBJ_CHANGE
);
1274 mutex_unlock(&bdev
->bd_mutex
);
1280 static int lo_ioctl(struct block_device
*bdev
, fmode_t mode
,
1281 unsigned int cmd
, unsigned long arg
)
1283 struct loop_device
*lo
= bdev
->bd_disk
->private_data
;
1286 mutex_lock_nested(&lo
->lo_ctl_mutex
, 1);
1289 err
= loop_set_fd(lo
, mode
, bdev
, arg
);
1291 case LOOP_CHANGE_FD
:
1292 err
= loop_change_fd(lo
, bdev
, arg
);
1295 /* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1296 err
= loop_clr_fd(lo
, bdev
);
1300 case LOOP_SET_STATUS
:
1301 err
= loop_set_status_old(lo
, (struct loop_info __user
*) arg
);
1303 case LOOP_GET_STATUS
:
1304 err
= loop_get_status_old(lo
, (struct loop_info __user
*) arg
);
1306 case LOOP_SET_STATUS64
:
1307 err
= loop_set_status64(lo
, (struct loop_info64 __user
*) arg
);
1309 case LOOP_GET_STATUS64
:
1310 err
= loop_get_status64(lo
, (struct loop_info64 __user
*) arg
);
1312 case LOOP_SET_CAPACITY
:
1314 if ((mode
& FMODE_WRITE
) || capable(CAP_SYS_ADMIN
))
1315 err
= loop_set_capacity(lo
, bdev
);
1318 err
= lo
->ioctl
? lo
->ioctl(lo
, cmd
, arg
) : -EINVAL
;
1320 mutex_unlock(&lo
->lo_ctl_mutex
);
1326 #ifdef CONFIG_COMPAT
1327 struct compat_loop_info
{
1328 compat_int_t lo_number
; /* ioctl r/o */
1329 compat_dev_t lo_device
; /* ioctl r/o */
1330 compat_ulong_t lo_inode
; /* ioctl r/o */
1331 compat_dev_t lo_rdevice
; /* ioctl r/o */
1332 compat_int_t lo_offset
;
1333 compat_int_t lo_encrypt_type
;
1334 compat_int_t lo_encrypt_key_size
; /* ioctl w/o */
1335 compat_int_t lo_flags
; /* ioctl r/o */
1336 char lo_name
[LO_NAME_SIZE
];
1337 unsigned char lo_encrypt_key
[LO_KEY_SIZE
]; /* ioctl w/o */
1338 compat_ulong_t lo_init
[2];
1343 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1344 * - noinlined to reduce stack space usage in main part of driver
1347 loop_info64_from_compat(const struct compat_loop_info __user
*arg
,
1348 struct loop_info64
*info64
)
1350 struct compat_loop_info info
;
1352 if (copy_from_user(&info
, arg
, sizeof(info
)))
1355 memset(info64
, 0, sizeof(*info64
));
1356 info64
->lo_number
= info
.lo_number
;
1357 info64
->lo_device
= info
.lo_device
;
1358 info64
->lo_inode
= info
.lo_inode
;
1359 info64
->lo_rdevice
= info
.lo_rdevice
;
1360 info64
->lo_offset
= info
.lo_offset
;
1361 info64
->lo_sizelimit
= 0;
1362 info64
->lo_encrypt_type
= info
.lo_encrypt_type
;
1363 info64
->lo_encrypt_key_size
= info
.lo_encrypt_key_size
;
1364 info64
->lo_flags
= info
.lo_flags
;
1365 info64
->lo_init
[0] = info
.lo_init
[0];
1366 info64
->lo_init
[1] = info
.lo_init
[1];
1367 if (info
.lo_encrypt_type
== LO_CRYPT_CRYPTOAPI
)
1368 memcpy(info64
->lo_crypt_name
, info
.lo_name
, LO_NAME_SIZE
);
1370 memcpy(info64
->lo_file_name
, info
.lo_name
, LO_NAME_SIZE
);
1371 memcpy(info64
->lo_encrypt_key
, info
.lo_encrypt_key
, LO_KEY_SIZE
);
1376 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1377 * - noinlined to reduce stack space usage in main part of driver
1380 loop_info64_to_compat(const struct loop_info64
*info64
,
1381 struct compat_loop_info __user
*arg
)
1383 struct compat_loop_info info
;
1385 memset(&info
, 0, sizeof(info
));
1386 info
.lo_number
= info64
->lo_number
;
1387 info
.lo_device
= info64
->lo_device
;
1388 info
.lo_inode
= info64
->lo_inode
;
1389 info
.lo_rdevice
= info64
->lo_rdevice
;
1390 info
.lo_offset
= info64
->lo_offset
;
1391 info
.lo_encrypt_type
= info64
->lo_encrypt_type
;
1392 info
.lo_encrypt_key_size
= info64
->lo_encrypt_key_size
;
1393 info
.lo_flags
= info64
->lo_flags
;
1394 info
.lo_init
[0] = info64
->lo_init
[0];
1395 info
.lo_init
[1] = info64
->lo_init
[1];
1396 if (info
.lo_encrypt_type
== LO_CRYPT_CRYPTOAPI
)
1397 memcpy(info
.lo_name
, info64
->lo_crypt_name
, LO_NAME_SIZE
);
1399 memcpy(info
.lo_name
, info64
->lo_file_name
, LO_NAME_SIZE
);
1400 memcpy(info
.lo_encrypt_key
, info64
->lo_encrypt_key
, LO_KEY_SIZE
);
1402 /* error in case values were truncated */
1403 if (info
.lo_device
!= info64
->lo_device
||
1404 info
.lo_rdevice
!= info64
->lo_rdevice
||
1405 info
.lo_inode
!= info64
->lo_inode
||
1406 info
.lo_offset
!= info64
->lo_offset
||
1407 info
.lo_init
[0] != info64
->lo_init
[0] ||
1408 info
.lo_init
[1] != info64
->lo_init
[1])
1411 if (copy_to_user(arg
, &info
, sizeof(info
)))
1417 loop_set_status_compat(struct loop_device
*lo
,
1418 const struct compat_loop_info __user
*arg
)
1420 struct loop_info64 info64
;
1423 ret
= loop_info64_from_compat(arg
, &info64
);
1426 return loop_set_status(lo
, &info64
);
1430 loop_get_status_compat(struct loop_device
*lo
,
1431 struct compat_loop_info __user
*arg
)
1433 struct loop_info64 info64
;
1439 err
= loop_get_status(lo
, &info64
);
1441 err
= loop_info64_to_compat(&info64
, arg
);
1445 static int lo_compat_ioctl(struct block_device
*bdev
, fmode_t mode
,
1446 unsigned int cmd
, unsigned long arg
)
1448 struct loop_device
*lo
= bdev
->bd_disk
->private_data
;
1452 case LOOP_SET_STATUS
:
1453 mutex_lock(&lo
->lo_ctl_mutex
);
1454 err
= loop_set_status_compat(
1455 lo
, (const struct compat_loop_info __user
*) arg
);
1456 mutex_unlock(&lo
->lo_ctl_mutex
);
1458 case LOOP_GET_STATUS
:
1459 mutex_lock(&lo
->lo_ctl_mutex
);
1460 err
= loop_get_status_compat(
1461 lo
, (struct compat_loop_info __user
*) arg
);
1462 mutex_unlock(&lo
->lo_ctl_mutex
);
1464 case LOOP_SET_CAPACITY
:
1466 case LOOP_GET_STATUS64
:
1467 case LOOP_SET_STATUS64
:
1468 arg
= (unsigned long) compat_ptr(arg
);
1470 case LOOP_CHANGE_FD
:
1471 err
= lo_ioctl(bdev
, mode
, cmd
, arg
);
1481 static int lo_open(struct block_device
*bdev
, fmode_t mode
)
1483 struct loop_device
*lo
;
1486 mutex_lock(&loop_index_mutex
);
1487 lo
= bdev
->bd_disk
->private_data
;
1493 mutex_lock(&lo
->lo_ctl_mutex
);
1495 mutex_unlock(&lo
->lo_ctl_mutex
);
1497 mutex_unlock(&loop_index_mutex
);
1501 static int lo_release(struct gendisk
*disk
, fmode_t mode
)
1503 struct loop_device
*lo
= disk
->private_data
;
1506 mutex_lock(&lo
->lo_ctl_mutex
);
1508 if (--lo
->lo_refcnt
)
1511 if (lo
->lo_flags
& LO_FLAGS_AUTOCLEAR
) {
1513 * In autoclear mode, stop the loop thread
1514 * and remove configuration after last close.
1516 err
= loop_clr_fd(lo
, NULL
);
1521 * Otherwise keep thread (if running) and config,
1522 * but flush possible ongoing bios in thread.
1528 mutex_unlock(&lo
->lo_ctl_mutex
);
1533 static const struct block_device_operations lo_fops
= {
1534 .owner
= THIS_MODULE
,
1536 .release
= lo_release
,
1538 #ifdef CONFIG_COMPAT
1539 .compat_ioctl
= lo_compat_ioctl
,
1544 * And now the modules code and kernel interface.
1546 static int max_loop
;
1547 module_param(max_loop
, int, S_IRUGO
);
1548 MODULE_PARM_DESC(max_loop
, "Maximum number of loop devices");
1549 module_param(max_part
, int, S_IRUGO
);
1550 MODULE_PARM_DESC(max_part
, "Maximum number of partitions per loop device");
1551 MODULE_LICENSE("GPL");
1552 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR
);
1554 int loop_register_transfer(struct loop_func_table
*funcs
)
1556 unsigned int n
= funcs
->number
;
1558 if (n
>= MAX_LO_CRYPT
|| xfer_funcs
[n
])
1560 xfer_funcs
[n
] = funcs
;
1564 static int unregister_transfer_cb(int id
, void *ptr
, void *data
)
1566 struct loop_device
*lo
= ptr
;
1567 struct loop_func_table
*xfer
= data
;
1569 mutex_lock(&lo
->lo_ctl_mutex
);
1570 if (lo
->lo_encryption
== xfer
)
1571 loop_release_xfer(lo
);
1572 mutex_unlock(&lo
->lo_ctl_mutex
);
1576 int loop_unregister_transfer(int number
)
1578 unsigned int n
= number
;
1579 struct loop_func_table
*xfer
;
1581 if (n
== 0 || n
>= MAX_LO_CRYPT
|| (xfer
= xfer_funcs
[n
]) == NULL
)
1584 xfer_funcs
[n
] = NULL
;
1585 idr_for_each(&loop_index_idr
, &unregister_transfer_cb
, xfer
);
1589 EXPORT_SYMBOL(loop_register_transfer
);
1590 EXPORT_SYMBOL(loop_unregister_transfer
);
1592 static int loop_add(struct loop_device
**l
, int i
)
1594 struct loop_device
*lo
;
1595 struct gendisk
*disk
;
1598 lo
= kzalloc(sizeof(*lo
), GFP_KERNEL
);
1604 err
= idr_pre_get(&loop_index_idr
, GFP_KERNEL
);
1611 /* create specific i in the index */
1612 err
= idr_get_new_above(&loop_index_idr
, lo
, i
, &m
);
1613 if (err
>= 0 && i
!= m
) {
1614 idr_remove(&loop_index_idr
, m
);
1617 } else if (i
== -1) {
1620 /* get next free nr */
1621 err
= idr_get_new(&loop_index_idr
, lo
, &m
);
1630 lo
->lo_queue
= blk_alloc_queue(GFP_KERNEL
);
1634 disk
= lo
->lo_disk
= alloc_disk(1 << part_shift
);
1636 goto out_free_queue
;
1638 mutex_init(&lo
->lo_ctl_mutex
);
1640 lo
->lo_thread
= NULL
;
1641 init_waitqueue_head(&lo
->lo_event
);
1642 spin_lock_init(&lo
->lo_lock
);
1643 disk
->major
= LOOP_MAJOR
;
1644 disk
->first_minor
= i
<< part_shift
;
1645 disk
->fops
= &lo_fops
;
1646 disk
->private_data
= lo
;
1647 disk
->queue
= lo
->lo_queue
;
1648 sprintf(disk
->disk_name
, "loop%d", i
);
1651 return lo
->lo_number
;
1654 blk_cleanup_queue(lo
->lo_queue
);
1661 static void loop_remove(struct loop_device
*lo
)
1663 del_gendisk(lo
->lo_disk
);
1664 blk_cleanup_queue(lo
->lo_queue
);
1665 put_disk(lo
->lo_disk
);
1669 static int find_free_cb(int id
, void *ptr
, void *data
)
1671 struct loop_device
*lo
= ptr
;
1672 struct loop_device
**l
= data
;
1674 if (lo
->lo_state
== Lo_unbound
) {
1681 static int loop_lookup(struct loop_device
**l
, int i
)
1683 struct loop_device
*lo
;
1689 err
= idr_for_each(&loop_index_idr
, &find_free_cb
, &lo
);
1692 ret
= lo
->lo_number
;
1697 /* lookup and return a specific i */
1698 lo
= idr_find(&loop_index_idr
, i
);
1701 ret
= lo
->lo_number
;
1707 static struct kobject
*loop_probe(dev_t dev
, int *part
, void *data
)
1709 struct loop_device
*lo
;
1710 struct kobject
*kobj
;
1713 mutex_lock(&loop_index_mutex
);
1714 err
= loop_lookup(&lo
, MINOR(dev
) >> part_shift
);
1716 err
= loop_add(&lo
, MINOR(dev
) >> part_shift
);
1718 kobj
= ERR_PTR(err
);
1720 kobj
= get_disk(lo
->lo_disk
);
1721 mutex_unlock(&loop_index_mutex
);
1727 static long loop_control_ioctl(struct file
*file
, unsigned int cmd
,
1730 struct loop_device
*lo
;
1733 mutex_lock(&loop_index_mutex
);
1736 ret
= loop_lookup(&lo
, parm
);
1741 ret
= loop_add(&lo
, parm
);
1743 case LOOP_CTL_REMOVE
:
1744 ret
= loop_lookup(&lo
, parm
);
1747 mutex_lock(&lo
->lo_ctl_mutex
);
1748 if (lo
->lo_state
!= Lo_unbound
) {
1750 mutex_unlock(&lo
->lo_ctl_mutex
);
1753 if (lo
->lo_refcnt
> 0) {
1755 mutex_unlock(&lo
->lo_ctl_mutex
);
1758 lo
->lo_disk
->private_data
= NULL
;
1759 mutex_unlock(&lo
->lo_ctl_mutex
);
1760 idr_remove(&loop_index_idr
, lo
->lo_number
);
1763 case LOOP_CTL_GET_FREE
:
1764 ret
= loop_lookup(&lo
, -1);
1767 ret
= loop_add(&lo
, -1);
1769 mutex_unlock(&loop_index_mutex
);
1774 static const struct file_operations loop_ctl_fops
= {
1775 .open
= nonseekable_open
,
1776 .unlocked_ioctl
= loop_control_ioctl
,
1777 .compat_ioctl
= loop_control_ioctl
,
1778 .owner
= THIS_MODULE
,
1779 .llseek
= noop_llseek
,
1782 static struct miscdevice loop_misc
= {
1783 .minor
= LOOP_CTRL_MINOR
,
1784 .name
= "loop-control",
1785 .fops
= &loop_ctl_fops
,
1788 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR
);
1789 MODULE_ALIAS("devname:loop-control");
1791 static int __init
loop_init(void)
1794 unsigned long range
;
1795 struct loop_device
*lo
;
1798 err
= misc_register(&loop_misc
);
1804 part_shift
= fls(max_part
);
1807 * Adjust max_part according to part_shift as it is exported
1808 * to user space so that user can decide correct minor number
1809 * if [s]he want to create more devices.
1811 * Note that -1 is required because partition 0 is reserved
1812 * for the whole disk.
1814 max_part
= (1UL << part_shift
) - 1;
1817 if ((1UL << part_shift
) > DISK_MAX_PARTS
)
1820 if (max_loop
> 1UL << (MINORBITS
- part_shift
))
1824 * If max_loop is specified, create that many devices upfront.
1825 * This also becomes a hard limit. If max_loop is not specified,
1826 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
1827 * init time. Loop devices can be requested on-demand with the
1828 * /dev/loop-control interface, or be instantiated by accessing
1829 * a 'dead' device node.
1833 range
= max_loop
<< part_shift
;
1835 nr
= CONFIG_BLK_DEV_LOOP_MIN_COUNT
;
1836 range
= 1UL << MINORBITS
;
1839 if (register_blkdev(LOOP_MAJOR
, "loop"))
1842 blk_register_region(MKDEV(LOOP_MAJOR
, 0), range
,
1843 THIS_MODULE
, loop_probe
, NULL
, NULL
);
1845 /* pre-create number of devices given by config or max_loop */
1846 mutex_lock(&loop_index_mutex
);
1847 for (i
= 0; i
< nr
; i
++)
1849 mutex_unlock(&loop_index_mutex
);
1851 printk(KERN_INFO
"loop: module loaded\n");
1855 static int loop_exit_cb(int id
, void *ptr
, void *data
)
1857 struct loop_device
*lo
= ptr
;
1863 static void __exit
loop_exit(void)
1865 unsigned long range
;
1867 range
= max_loop
? max_loop
<< part_shift
: 1UL << MINORBITS
;
1869 idr_for_each(&loop_index_idr
, &loop_exit_cb
, NULL
);
1870 idr_remove_all(&loop_index_idr
);
1871 idr_destroy(&loop_index_idr
);
1873 blk_unregister_region(MKDEV(LOOP_MAJOR
, 0), range
);
1874 unregister_blkdev(LOOP_MAJOR
, "loop");
1876 misc_deregister(&loop_misc
);
1879 module_init(loop_init
);
1880 module_exit(loop_exit
);
1883 static int __init
max_loop_setup(char *str
)
1885 max_loop
= simple_strtol(str
, NULL
, 0);
1889 __setup("max_loop=", max_loop_setup
);