sparc64: Fix masking and shifting in VIS fpcmp emulation.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / arm / mach-exynos4 / platsmp.c
blob0c90896ad9a099da499439f14ecb7bc590839bfd
1 /* linux/arch/arm/mach-exynos4/platsmp.c
3 * Copyright (c) 2010-2011 Samsung Electronics Co., Ltd.
4 * http://www.samsung.com
6 * Cloned from linux/arch/arm/mach-vexpress/platsmp.c
8 * Copyright (C) 2002 ARM Ltd.
9 * All Rights Reserved
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License version 2 as
13 * published by the Free Software Foundation.
16 #include <linux/init.h>
17 #include <linux/errno.h>
18 #include <linux/delay.h>
19 #include <linux/device.h>
20 #include <linux/jiffies.h>
21 #include <linux/smp.h>
22 #include <linux/io.h>
24 #include <asm/cacheflush.h>
25 #include <asm/hardware/gic.h>
26 #include <asm/smp_scu.h>
27 #include <asm/unified.h>
29 #include <mach/hardware.h>
30 #include <mach/regs-clock.h>
31 #include <mach/regs-pmu.h>
33 extern void exynos4_secondary_startup(void);
35 #define CPU1_BOOT_REG S5P_VA_SYSRAM
38 * control for which core is the next to come out of the secondary
39 * boot "holding pen"
42 volatile int __cpuinitdata pen_release = -1;
45 * Write pen_release in a way that is guaranteed to be visible to all
46 * observers, irrespective of whether they're taking part in coherency
47 * or not. This is necessary for the hotplug code to work reliably.
49 static void write_pen_release(int val)
51 pen_release = val;
52 smp_wmb();
53 __cpuc_flush_dcache_area((void *)&pen_release, sizeof(pen_release));
54 outer_clean_range(__pa(&pen_release), __pa(&pen_release + 1));
57 static void __iomem *scu_base_addr(void)
59 return (void __iomem *)(S5P_VA_SCU);
62 static DEFINE_SPINLOCK(boot_lock);
64 static void __cpuinit exynos4_gic_secondary_init(void)
66 void __iomem *dist_base = S5P_VA_GIC_DIST +
67 (EXYNOS4_GIC_BANK_OFFSET * smp_processor_id());
68 void __iomem *cpu_base = S5P_VA_GIC_CPU +
69 (EXYNOS4_GIC_BANK_OFFSET * smp_processor_id());
70 int i;
73 * Deal with the banked PPI and SGI interrupts - disable all
74 * PPI interrupts, ensure all SGI interrupts are enabled.
76 __raw_writel(0xffff0000, dist_base + GIC_DIST_ENABLE_CLEAR);
77 __raw_writel(0x0000ffff, dist_base + GIC_DIST_ENABLE_SET);
80 * Set priority on PPI and SGI interrupts
82 for (i = 0; i < 32; i += 4)
83 __raw_writel(0xa0a0a0a0, dist_base + GIC_DIST_PRI + i * 4 / 4);
85 __raw_writel(0xf0, cpu_base + GIC_CPU_PRIMASK);
86 __raw_writel(1, cpu_base + GIC_CPU_CTRL);
89 void __cpuinit platform_secondary_init(unsigned int cpu)
92 * if any interrupts are already enabled for the primary
93 * core (e.g. timer irq), then they will not have been enabled
94 * for us: do so
96 exynos4_gic_secondary_init();
99 * let the primary processor know we're out of the
100 * pen, then head off into the C entry point
102 write_pen_release(-1);
105 * Synchronise with the boot thread.
107 spin_lock(&boot_lock);
108 spin_unlock(&boot_lock);
110 set_cpu_online(cpu, true);
113 int __cpuinit boot_secondary(unsigned int cpu, struct task_struct *idle)
115 unsigned long timeout;
118 * Set synchronisation state between this boot processor
119 * and the secondary one
121 spin_lock(&boot_lock);
124 * The secondary processor is waiting to be released from
125 * the holding pen - release it, then wait for it to flag
126 * that it has been released by resetting pen_release.
128 * Note that "pen_release" is the hardware CPU ID, whereas
129 * "cpu" is Linux's internal ID.
131 write_pen_release(cpu);
133 if (!(__raw_readl(S5P_ARM_CORE1_STATUS) & S5P_CORE_LOCAL_PWR_EN)) {
134 __raw_writel(S5P_CORE_LOCAL_PWR_EN,
135 S5P_ARM_CORE1_CONFIGURATION);
137 timeout = 10;
139 /* wait max 10 ms until cpu1 is on */
140 while ((__raw_readl(S5P_ARM_CORE1_STATUS)
141 & S5P_CORE_LOCAL_PWR_EN) != S5P_CORE_LOCAL_PWR_EN) {
142 if (timeout-- == 0)
143 break;
145 mdelay(1);
148 if (timeout == 0) {
149 printk(KERN_ERR "cpu1 power enable failed");
150 spin_unlock(&boot_lock);
151 return -ETIMEDOUT;
155 * Send the secondary CPU a soft interrupt, thereby causing
156 * the boot monitor to read the system wide flags register,
157 * and branch to the address found there.
160 timeout = jiffies + (1 * HZ);
161 while (time_before(jiffies, timeout)) {
162 smp_rmb();
164 __raw_writel(BSYM(virt_to_phys(exynos4_secondary_startup)),
165 CPU1_BOOT_REG);
166 gic_raise_softirq(cpumask_of(cpu), 1);
168 if (pen_release == -1)
169 break;
171 udelay(10);
175 * now the secondary core is starting up let it run its
176 * calibrations, then wait for it to finish
178 spin_unlock(&boot_lock);
180 return pen_release != -1 ? -ENOSYS : 0;
184 * Initialise the CPU possible map early - this describes the CPUs
185 * which may be present or become present in the system.
188 void __init smp_init_cpus(void)
190 void __iomem *scu_base = scu_base_addr();
191 unsigned int i, ncores;
193 ncores = scu_base ? scu_get_core_count(scu_base) : 1;
195 /* sanity check */
196 if (ncores > nr_cpu_ids) {
197 pr_warn("SMP: %u cores greater than maximum (%u), clipping\n",
198 ncores, nr_cpu_ids);
199 ncores = nr_cpu_ids;
202 for (i = 0; i < ncores; i++)
203 set_cpu_possible(i, true);
205 set_smp_cross_call(gic_raise_softirq);
208 void __init platform_smp_prepare_cpus(unsigned int max_cpus)
211 scu_enable(scu_base_addr());
214 * Write the address of secondary startup into the
215 * system-wide flags register. The boot monitor waits
216 * until it receives a soft interrupt, and then the
217 * secondary CPU branches to this address.
219 __raw_writel(BSYM(virt_to_phys(exynos4_secondary_startup)), S5P_VA_SYSRAM);