2 * Driver for Cirrus Logic EP93xx SPI controller.
4 * Copyright (c) 2010 Mika Westerberg
6 * Explicit FIFO handling code was inspired by amba-pl022 driver.
8 * Chip select support using other than built-in GPIOs by H. Hartley Sweeten.
10 * For more information about the SPI controller see documentation on Cirrus
12 * http://www.cirrus.com/en/pubs/manual/EP93xx_Users_Guide_UM1.pdf
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License version 2 as
16 * published by the Free Software Foundation.
20 #include <linux/clk.h>
21 #include <linux/err.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/bitops.h>
25 #include <linux/interrupt.h>
26 #include <linux/platform_device.h>
27 #include <linux/workqueue.h>
28 #include <linux/sched.h>
29 #include <linux/spi/spi.h>
31 #include <mach/ep93xx_spi.h>
34 #define SSPCR0_MODE_SHIFT 6
35 #define SSPCR0_SCR_SHIFT 8
38 #define SSPCR1_RIE BIT(0)
39 #define SSPCR1_TIE BIT(1)
40 #define SSPCR1_RORIE BIT(2)
41 #define SSPCR1_LBM BIT(3)
42 #define SSPCR1_SSE BIT(4)
43 #define SSPCR1_MS BIT(5)
44 #define SSPCR1_SOD BIT(6)
49 #define SSPSR_TFE BIT(0)
50 #define SSPSR_TNF BIT(1)
51 #define SSPSR_RNE BIT(2)
52 #define SSPSR_RFF BIT(3)
53 #define SSPSR_BSY BIT(4)
54 #define SSPCPSR 0x0010
57 #define SSPIIR_RIS BIT(0)
58 #define SSPIIR_TIS BIT(1)
59 #define SSPIIR_RORIS BIT(2)
62 /* timeout in milliseconds */
64 /* maximum depth of RX/TX FIFO */
65 #define SPI_FIFO_SIZE 8
68 * struct ep93xx_spi - EP93xx SPI controller structure
69 * @lock: spinlock that protects concurrent accesses to fields @running,
70 * @current_msg and @msg_queue
71 * @pdev: pointer to platform device
72 * @clk: clock for the controller
73 * @regs_base: pointer to ioremap()'d registers
74 * @irq: IRQ number used by the driver
75 * @min_rate: minimum clock rate (in Hz) supported by the controller
76 * @max_rate: maximum clock rate (in Hz) supported by the controller
77 * @running: is the queue running
78 * @wq: workqueue used by the driver
79 * @msg_work: work that is queued for the driver
80 * @wait: wait here until given transfer is completed
81 * @msg_queue: queue for the messages
82 * @current_msg: message that is currently processed (or %NULL if none)
83 * @tx: current byte in transfer to transmit
84 * @rx: current byte in transfer to receive
85 * @fifo_level: how full is FIFO (%0..%SPI_FIFO_SIZE - %1). Receiving one
86 * frame decreases this level and sending one frame increases it.
88 * This structure holds EP93xx SPI controller specific information. When
89 * @running is %true, driver accepts transfer requests from protocol drivers.
90 * @current_msg is used to hold pointer to the message that is currently
91 * processed. If @current_msg is %NULL, it means that no processing is going
94 * Most of the fields are only written once and they can be accessed without
95 * taking the @lock. Fields that are accessed concurrently are: @current_msg,
96 * @running, and @msg_queue.
100 const struct platform_device
*pdev
;
102 void __iomem
*regs_base
;
104 unsigned long min_rate
;
105 unsigned long max_rate
;
107 struct workqueue_struct
*wq
;
108 struct work_struct msg_work
;
109 struct completion wait
;
110 struct list_head msg_queue
;
111 struct spi_message
*current_msg
;
118 * struct ep93xx_spi_chip - SPI device hardware settings
119 * @spi: back pointer to the SPI device
120 * @rate: max rate in hz this chip supports
121 * @div_cpsr: cpsr (pre-scaler) divider
122 * @div_scr: scr divider
123 * @dss: bits per word (4 - 16 bits)
124 * @ops: private chip operations
126 * This structure is used to store hardware register specific settings for each
127 * SPI device. Settings are written to hardware by function
128 * ep93xx_spi_chip_setup().
130 struct ep93xx_spi_chip
{
131 const struct spi_device
*spi
;
136 struct ep93xx_spi_chip_ops
*ops
;
139 /* converts bits per word to CR0.DSS value */
140 #define bits_per_word_to_dss(bpw) ((bpw) - 1)
143 ep93xx_spi_write_u8(const struct ep93xx_spi
*espi
, u16 reg
, u8 value
)
145 __raw_writeb(value
, espi
->regs_base
+ reg
);
149 ep93xx_spi_read_u8(const struct ep93xx_spi
*spi
, u16 reg
)
151 return __raw_readb(spi
->regs_base
+ reg
);
155 ep93xx_spi_write_u16(const struct ep93xx_spi
*espi
, u16 reg
, u16 value
)
157 __raw_writew(value
, espi
->regs_base
+ reg
);
161 ep93xx_spi_read_u16(const struct ep93xx_spi
*spi
, u16 reg
)
163 return __raw_readw(spi
->regs_base
+ reg
);
166 static int ep93xx_spi_enable(const struct ep93xx_spi
*espi
)
171 err
= clk_enable(espi
->clk
);
175 regval
= ep93xx_spi_read_u8(espi
, SSPCR1
);
176 regval
|= SSPCR1_SSE
;
177 ep93xx_spi_write_u8(espi
, SSPCR1
, regval
);
182 static void ep93xx_spi_disable(const struct ep93xx_spi
*espi
)
186 regval
= ep93xx_spi_read_u8(espi
, SSPCR1
);
187 regval
&= ~SSPCR1_SSE
;
188 ep93xx_spi_write_u8(espi
, SSPCR1
, regval
);
190 clk_disable(espi
->clk
);
193 static void ep93xx_spi_enable_interrupts(const struct ep93xx_spi
*espi
)
197 regval
= ep93xx_spi_read_u8(espi
, SSPCR1
);
198 regval
|= (SSPCR1_RORIE
| SSPCR1_TIE
| SSPCR1_RIE
);
199 ep93xx_spi_write_u8(espi
, SSPCR1
, regval
);
202 static void ep93xx_spi_disable_interrupts(const struct ep93xx_spi
*espi
)
206 regval
= ep93xx_spi_read_u8(espi
, SSPCR1
);
207 regval
&= ~(SSPCR1_RORIE
| SSPCR1_TIE
| SSPCR1_RIE
);
208 ep93xx_spi_write_u8(espi
, SSPCR1
, regval
);
212 * ep93xx_spi_calc_divisors() - calculates SPI clock divisors
213 * @espi: ep93xx SPI controller struct
214 * @chip: divisors are calculated for this chip
215 * @rate: desired SPI output clock rate
217 * Function calculates cpsr (clock pre-scaler) and scr divisors based on
218 * given @rate and places them to @chip->div_cpsr and @chip->div_scr. If,
219 * for some reason, divisors cannot be calculated nothing is stored and
220 * %-EINVAL is returned.
222 static int ep93xx_spi_calc_divisors(const struct ep93xx_spi
*espi
,
223 struct ep93xx_spi_chip
*chip
,
226 unsigned long spi_clk_rate
= clk_get_rate(espi
->clk
);
230 * Make sure that max value is between values supported by the
231 * controller. Note that minimum value is already checked in
232 * ep93xx_spi_transfer().
234 rate
= clamp(rate
, espi
->min_rate
, espi
->max_rate
);
237 * Calculate divisors so that we can get speed according the
239 * rate = spi_clock_rate / (cpsr * (1 + scr))
241 * cpsr must be even number and starts from 2, scr can be any number
244 for (cpsr
= 2; cpsr
<= 254; cpsr
+= 2) {
245 for (scr
= 0; scr
<= 255; scr
++) {
246 if ((spi_clk_rate
/ (cpsr
* (scr
+ 1))) <= rate
) {
247 chip
->div_scr
= (u8
)scr
;
248 chip
->div_cpsr
= (u8
)cpsr
;
257 static void ep93xx_spi_cs_control(struct spi_device
*spi
, bool control
)
259 struct ep93xx_spi_chip
*chip
= spi_get_ctldata(spi
);
260 int value
= (spi
->mode
& SPI_CS_HIGH
) ? control
: !control
;
262 if (chip
->ops
&& chip
->ops
->cs_control
)
263 chip
->ops
->cs_control(spi
, value
);
267 * ep93xx_spi_setup() - setup an SPI device
268 * @spi: SPI device to setup
270 * This function sets up SPI device mode, speed etc. Can be called multiple
271 * times for a single device. Returns %0 in case of success, negative error in
272 * case of failure. When this function returns success, the device is
275 static int ep93xx_spi_setup(struct spi_device
*spi
)
277 struct ep93xx_spi
*espi
= spi_master_get_devdata(spi
->master
);
278 struct ep93xx_spi_chip
*chip
;
280 if (spi
->bits_per_word
< 4 || spi
->bits_per_word
> 16) {
281 dev_err(&espi
->pdev
->dev
, "invalid bits per word %d\n",
286 chip
= spi_get_ctldata(spi
);
288 dev_dbg(&espi
->pdev
->dev
, "initial setup for %s\n",
291 chip
= kzalloc(sizeof(*chip
), GFP_KERNEL
);
296 chip
->ops
= spi
->controller_data
;
298 if (chip
->ops
&& chip
->ops
->setup
) {
299 int ret
= chip
->ops
->setup(spi
);
306 spi_set_ctldata(spi
, chip
);
309 if (spi
->max_speed_hz
!= chip
->rate
) {
312 err
= ep93xx_spi_calc_divisors(espi
, chip
, spi
->max_speed_hz
);
314 spi_set_ctldata(spi
, NULL
);
318 chip
->rate
= spi
->max_speed_hz
;
321 chip
->dss
= bits_per_word_to_dss(spi
->bits_per_word
);
323 ep93xx_spi_cs_control(spi
, false);
328 * ep93xx_spi_transfer() - queue message to be transferred
329 * @spi: target SPI device
330 * @msg: message to be transferred
332 * This function is called by SPI device drivers when they are going to transfer
333 * a new message. It simply puts the message in the queue and schedules
334 * workqueue to perform the actual transfer later on.
336 * Returns %0 on success and negative error in case of failure.
338 static int ep93xx_spi_transfer(struct spi_device
*spi
, struct spi_message
*msg
)
340 struct ep93xx_spi
*espi
= spi_master_get_devdata(spi
->master
);
341 struct spi_transfer
*t
;
344 if (!msg
|| !msg
->complete
)
347 /* first validate each transfer */
348 list_for_each_entry(t
, &msg
->transfers
, transfer_list
) {
349 if (t
->bits_per_word
) {
350 if (t
->bits_per_word
< 4 || t
->bits_per_word
> 16)
353 if (t
->speed_hz
&& t
->speed_hz
< espi
->min_rate
)
358 * Now that we own the message, let's initialize it so that it is
359 * suitable for us. We use @msg->status to signal whether there was
360 * error in transfer and @msg->state is used to hold pointer to the
361 * current transfer (or %NULL if no active current transfer).
365 msg
->actual_length
= 0;
367 spin_lock_irqsave(&espi
->lock
, flags
);
368 if (!espi
->running
) {
369 spin_unlock_irqrestore(&espi
->lock
, flags
);
372 list_add_tail(&msg
->queue
, &espi
->msg_queue
);
373 queue_work(espi
->wq
, &espi
->msg_work
);
374 spin_unlock_irqrestore(&espi
->lock
, flags
);
380 * ep93xx_spi_cleanup() - cleans up master controller specific state
381 * @spi: SPI device to cleanup
383 * This function releases master controller specific state for given @spi
386 static void ep93xx_spi_cleanup(struct spi_device
*spi
)
388 struct ep93xx_spi_chip
*chip
;
390 chip
= spi_get_ctldata(spi
);
392 if (chip
->ops
&& chip
->ops
->cleanup
)
393 chip
->ops
->cleanup(spi
);
394 spi_set_ctldata(spi
, NULL
);
400 * ep93xx_spi_chip_setup() - configures hardware according to given @chip
401 * @espi: ep93xx SPI controller struct
402 * @chip: chip specific settings
404 * This function sets up the actual hardware registers with settings given in
405 * @chip. Note that no validation is done so make sure that callers validate
406 * settings before calling this.
408 static void ep93xx_spi_chip_setup(const struct ep93xx_spi
*espi
,
409 const struct ep93xx_spi_chip
*chip
)
413 cr0
= chip
->div_scr
<< SSPCR0_SCR_SHIFT
;
414 cr0
|= (chip
->spi
->mode
& (SPI_CPHA
|SPI_CPOL
)) << SSPCR0_MODE_SHIFT
;
417 dev_dbg(&espi
->pdev
->dev
, "setup: mode %d, cpsr %d, scr %d, dss %d\n",
418 chip
->spi
->mode
, chip
->div_cpsr
, chip
->div_scr
, chip
->dss
);
419 dev_dbg(&espi
->pdev
->dev
, "setup: cr0 %#x", cr0
);
421 ep93xx_spi_write_u8(espi
, SSPCPSR
, chip
->div_cpsr
);
422 ep93xx_spi_write_u16(espi
, SSPCR0
, cr0
);
425 static inline int bits_per_word(const struct ep93xx_spi
*espi
)
427 struct spi_message
*msg
= espi
->current_msg
;
428 struct spi_transfer
*t
= msg
->state
;
430 return t
->bits_per_word
? t
->bits_per_word
: msg
->spi
->bits_per_word
;
433 static void ep93xx_do_write(struct ep93xx_spi
*espi
, struct spi_transfer
*t
)
435 if (bits_per_word(espi
) > 8) {
439 tx_val
= ((u16
*)t
->tx_buf
)[espi
->tx
];
440 ep93xx_spi_write_u16(espi
, SSPDR
, tx_val
);
441 espi
->tx
+= sizeof(tx_val
);
446 tx_val
= ((u8
*)t
->tx_buf
)[espi
->tx
];
447 ep93xx_spi_write_u8(espi
, SSPDR
, tx_val
);
448 espi
->tx
+= sizeof(tx_val
);
452 static void ep93xx_do_read(struct ep93xx_spi
*espi
, struct spi_transfer
*t
)
454 if (bits_per_word(espi
) > 8) {
457 rx_val
= ep93xx_spi_read_u16(espi
, SSPDR
);
459 ((u16
*)t
->rx_buf
)[espi
->rx
] = rx_val
;
460 espi
->rx
+= sizeof(rx_val
);
464 rx_val
= ep93xx_spi_read_u8(espi
, SSPDR
);
466 ((u8
*)t
->rx_buf
)[espi
->rx
] = rx_val
;
467 espi
->rx
+= sizeof(rx_val
);
472 * ep93xx_spi_read_write() - perform next RX/TX transfer
473 * @espi: ep93xx SPI controller struct
475 * This function transfers next bytes (or half-words) to/from RX/TX FIFOs. If
476 * called several times, the whole transfer will be completed. Returns
477 * %-EINPROGRESS when current transfer was not yet completed otherwise %0.
479 * When this function is finished, RX FIFO should be empty and TX FIFO should be
482 static int ep93xx_spi_read_write(struct ep93xx_spi
*espi
)
484 struct spi_message
*msg
= espi
->current_msg
;
485 struct spi_transfer
*t
= msg
->state
;
487 /* read as long as RX FIFO has frames in it */
488 while ((ep93xx_spi_read_u8(espi
, SSPSR
) & SSPSR_RNE
)) {
489 ep93xx_do_read(espi
, t
);
493 /* write as long as TX FIFO has room */
494 while (espi
->fifo_level
< SPI_FIFO_SIZE
&& espi
->tx
< t
->len
) {
495 ep93xx_do_write(espi
, t
);
499 if (espi
->rx
== t
->len
) {
500 msg
->actual_length
+= t
->len
;
508 * ep93xx_spi_process_transfer() - processes one SPI transfer
509 * @espi: ep93xx SPI controller struct
510 * @msg: current message
511 * @t: transfer to process
513 * This function processes one SPI transfer given in @t. Function waits until
514 * transfer is complete (may sleep) and updates @msg->status based on whether
515 * transfer was succesfully processed or not.
517 static void ep93xx_spi_process_transfer(struct ep93xx_spi
*espi
,
518 struct spi_message
*msg
,
519 struct spi_transfer
*t
)
521 struct ep93xx_spi_chip
*chip
= spi_get_ctldata(msg
->spi
);
526 * Handle any transfer specific settings if needed. We use
527 * temporary chip settings here and restore original later when
528 * the transfer is finished.
530 if (t
->speed_hz
|| t
->bits_per_word
) {
531 struct ep93xx_spi_chip tmp_chip
= *chip
;
536 err
= ep93xx_spi_calc_divisors(espi
, &tmp_chip
,
539 dev_err(&espi
->pdev
->dev
,
540 "failed to adjust speed\n");
546 if (t
->bits_per_word
)
547 tmp_chip
.dss
= bits_per_word_to_dss(t
->bits_per_word
);
550 * Set up temporary new hw settings for this transfer.
552 ep93xx_spi_chip_setup(espi
, &tmp_chip
);
559 * Now everything is set up for the current transfer. We prime the TX
560 * FIFO, enable interrupts, and wait for the transfer to complete.
562 if (ep93xx_spi_read_write(espi
)) {
563 ep93xx_spi_enable_interrupts(espi
);
564 wait_for_completion(&espi
->wait
);
568 * In case of error during transmit, we bail out from processing
575 * After this transfer is finished, perform any possible
576 * post-transfer actions requested by the protocol driver.
578 if (t
->delay_usecs
) {
579 set_current_state(TASK_UNINTERRUPTIBLE
);
580 schedule_timeout(usecs_to_jiffies(t
->delay_usecs
));
583 if (!list_is_last(&t
->transfer_list
, &msg
->transfers
)) {
585 * In case protocol driver is asking us to drop the
586 * chipselect briefly, we let the scheduler to handle
589 ep93xx_spi_cs_control(msg
->spi
, false);
591 ep93xx_spi_cs_control(msg
->spi
, true);
595 if (t
->speed_hz
|| t
->bits_per_word
)
596 ep93xx_spi_chip_setup(espi
, chip
);
600 * ep93xx_spi_process_message() - process one SPI message
601 * @espi: ep93xx SPI controller struct
602 * @msg: message to process
604 * This function processes a single SPI message. We go through all transfers in
605 * the message and pass them to ep93xx_spi_process_transfer(). Chipselect is
606 * asserted during the whole message (unless per transfer cs_change is set).
608 * @msg->status contains %0 in case of success or negative error code in case of
611 static void ep93xx_spi_process_message(struct ep93xx_spi
*espi
,
612 struct spi_message
*msg
)
614 unsigned long timeout
;
615 struct spi_transfer
*t
;
619 * Enable the SPI controller and its clock.
621 err
= ep93xx_spi_enable(espi
);
623 dev_err(&espi
->pdev
->dev
, "failed to enable SPI controller\n");
629 * Just to be sure: flush any data from RX FIFO.
631 timeout
= jiffies
+ msecs_to_jiffies(SPI_TIMEOUT
);
632 while (ep93xx_spi_read_u16(espi
, SSPSR
) & SSPSR_RNE
) {
633 if (time_after(jiffies
, timeout
)) {
634 dev_warn(&espi
->pdev
->dev
,
635 "timeout while flushing RX FIFO\n");
636 msg
->status
= -ETIMEDOUT
;
639 ep93xx_spi_read_u16(espi
, SSPDR
);
643 * We explicitly handle FIFO level. This way we don't have to check TX
644 * FIFO status using %SSPSR_TNF bit which may cause RX FIFO overruns.
646 espi
->fifo_level
= 0;
649 * Update SPI controller registers according to spi device and assert
652 ep93xx_spi_chip_setup(espi
, spi_get_ctldata(msg
->spi
));
653 ep93xx_spi_cs_control(msg
->spi
, true);
655 list_for_each_entry(t
, &msg
->transfers
, transfer_list
) {
656 ep93xx_spi_process_transfer(espi
, msg
, t
);
662 * Now the whole message is transferred (or failed for some reason). We
663 * deselect the device and disable the SPI controller.
665 ep93xx_spi_cs_control(msg
->spi
, false);
666 ep93xx_spi_disable(espi
);
669 #define work_to_espi(work) (container_of((work), struct ep93xx_spi, msg_work))
672 * ep93xx_spi_work() - EP93xx SPI workqueue worker function
675 * Workqueue worker function. This function is called when there are new
676 * SPI messages to be processed. Message is taken out from the queue and then
677 * passed to ep93xx_spi_process_message().
679 * After message is transferred, protocol driver is notified by calling
680 * @msg->complete(). In case of error, @msg->status is set to negative error
681 * number, otherwise it contains zero (and @msg->actual_length is updated).
683 static void ep93xx_spi_work(struct work_struct
*work
)
685 struct ep93xx_spi
*espi
= work_to_espi(work
);
686 struct spi_message
*msg
;
688 spin_lock_irq(&espi
->lock
);
689 if (!espi
->running
|| espi
->current_msg
||
690 list_empty(&espi
->msg_queue
)) {
691 spin_unlock_irq(&espi
->lock
);
694 msg
= list_first_entry(&espi
->msg_queue
, struct spi_message
, queue
);
695 list_del_init(&msg
->queue
);
696 espi
->current_msg
= msg
;
697 spin_unlock_irq(&espi
->lock
);
699 ep93xx_spi_process_message(espi
, msg
);
702 * Update the current message and re-schedule ourselves if there are
703 * more messages in the queue.
705 spin_lock_irq(&espi
->lock
);
706 espi
->current_msg
= NULL
;
707 if (espi
->running
&& !list_empty(&espi
->msg_queue
))
708 queue_work(espi
->wq
, &espi
->msg_work
);
709 spin_unlock_irq(&espi
->lock
);
711 /* notify the protocol driver that we are done with this message */
712 msg
->complete(msg
->context
);
715 static irqreturn_t
ep93xx_spi_interrupt(int irq
, void *dev_id
)
717 struct ep93xx_spi
*espi
= dev_id
;
718 u8 irq_status
= ep93xx_spi_read_u8(espi
, SSPIIR
);
721 * If we got ROR (receive overrun) interrupt we know that something is
722 * wrong. Just abort the message.
724 if (unlikely(irq_status
& SSPIIR_RORIS
)) {
725 /* clear the overrun interrupt */
726 ep93xx_spi_write_u8(espi
, SSPICR
, 0);
727 dev_warn(&espi
->pdev
->dev
,
728 "receive overrun, aborting the message\n");
729 espi
->current_msg
->status
= -EIO
;
732 * Interrupt is either RX (RIS) or TX (TIS). For both cases we
733 * simply execute next data transfer.
735 if (ep93xx_spi_read_write(espi
)) {
737 * In normal case, there still is some processing left
738 * for current transfer. Let's wait for the next
746 * Current transfer is finished, either with error or with success. In
747 * any case we disable interrupts and notify the worker to handle
748 * any post-processing of the message.
750 ep93xx_spi_disable_interrupts(espi
);
751 complete(&espi
->wait
);
755 static int __init
ep93xx_spi_probe(struct platform_device
*pdev
)
757 struct spi_master
*master
;
758 struct ep93xx_spi_info
*info
;
759 struct ep93xx_spi
*espi
;
760 struct resource
*res
;
763 info
= pdev
->dev
.platform_data
;
765 master
= spi_alloc_master(&pdev
->dev
, sizeof(*espi
));
767 dev_err(&pdev
->dev
, "failed to allocate spi master\n");
771 master
->setup
= ep93xx_spi_setup
;
772 master
->transfer
= ep93xx_spi_transfer
;
773 master
->cleanup
= ep93xx_spi_cleanup
;
774 master
->bus_num
= pdev
->id
;
775 master
->num_chipselect
= info
->num_chipselect
;
776 master
->mode_bits
= SPI_CPOL
| SPI_CPHA
| SPI_CS_HIGH
;
778 platform_set_drvdata(pdev
, master
);
780 espi
= spi_master_get_devdata(master
);
782 espi
->clk
= clk_get(&pdev
->dev
, NULL
);
783 if (IS_ERR(espi
->clk
)) {
784 dev_err(&pdev
->dev
, "unable to get spi clock\n");
785 error
= PTR_ERR(espi
->clk
);
786 goto fail_release_master
;
789 spin_lock_init(&espi
->lock
);
790 init_completion(&espi
->wait
);
793 * Calculate maximum and minimum supported clock rates
794 * for the controller.
796 espi
->max_rate
= clk_get_rate(espi
->clk
) / 2;
797 espi
->min_rate
= clk_get_rate(espi
->clk
) / (254 * 256);
800 espi
->irq
= platform_get_irq(pdev
, 0);
803 dev_err(&pdev
->dev
, "failed to get irq resources\n");
807 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
809 dev_err(&pdev
->dev
, "unable to get iomem resource\n");
814 res
= request_mem_region(res
->start
, resource_size(res
), pdev
->name
);
816 dev_err(&pdev
->dev
, "unable to request iomem resources\n");
821 espi
->regs_base
= ioremap(res
->start
, resource_size(res
));
822 if (!espi
->regs_base
) {
823 dev_err(&pdev
->dev
, "failed to map resources\n");
828 error
= request_irq(espi
->irq
, ep93xx_spi_interrupt
, 0,
831 dev_err(&pdev
->dev
, "failed to request irq\n");
832 goto fail_unmap_regs
;
835 espi
->wq
= create_singlethread_workqueue("ep93xx_spid");
837 dev_err(&pdev
->dev
, "unable to create workqueue\n");
840 INIT_WORK(&espi
->msg_work
, ep93xx_spi_work
);
841 INIT_LIST_HEAD(&espi
->msg_queue
);
842 espi
->running
= true;
844 /* make sure that the hardware is disabled */
845 ep93xx_spi_write_u8(espi
, SSPCR1
, 0);
847 error
= spi_register_master(master
);
849 dev_err(&pdev
->dev
, "failed to register SPI master\n");
850 goto fail_free_queue
;
853 dev_info(&pdev
->dev
, "EP93xx SPI Controller at 0x%08lx irq %d\n",
854 (unsigned long)res
->start
, espi
->irq
);
859 destroy_workqueue(espi
->wq
);
861 free_irq(espi
->irq
, espi
);
863 iounmap(espi
->regs_base
);
865 release_mem_region(res
->start
, resource_size(res
));
869 spi_master_put(master
);
870 platform_set_drvdata(pdev
, NULL
);
875 static int __exit
ep93xx_spi_remove(struct platform_device
*pdev
)
877 struct spi_master
*master
= platform_get_drvdata(pdev
);
878 struct ep93xx_spi
*espi
= spi_master_get_devdata(master
);
879 struct resource
*res
;
881 spin_lock_irq(&espi
->lock
);
882 espi
->running
= false;
883 spin_unlock_irq(&espi
->lock
);
885 destroy_workqueue(espi
->wq
);
888 * Complete remaining messages with %-ESHUTDOWN status.
890 spin_lock_irq(&espi
->lock
);
891 while (!list_empty(&espi
->msg_queue
)) {
892 struct spi_message
*msg
;
894 msg
= list_first_entry(&espi
->msg_queue
,
895 struct spi_message
, queue
);
896 list_del_init(&msg
->queue
);
897 msg
->status
= -ESHUTDOWN
;
898 spin_unlock_irq(&espi
->lock
);
899 msg
->complete(msg
->context
);
900 spin_lock_irq(&espi
->lock
);
902 spin_unlock_irq(&espi
->lock
);
904 free_irq(espi
->irq
, espi
);
905 iounmap(espi
->regs_base
);
906 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
907 release_mem_region(res
->start
, resource_size(res
));
909 platform_set_drvdata(pdev
, NULL
);
911 spi_unregister_master(master
);
915 static struct platform_driver ep93xx_spi_driver
= {
917 .name
= "ep93xx-spi",
918 .owner
= THIS_MODULE
,
920 .remove
= __exit_p(ep93xx_spi_remove
),
923 static int __init
ep93xx_spi_init(void)
925 return platform_driver_probe(&ep93xx_spi_driver
, ep93xx_spi_probe
);
927 module_init(ep93xx_spi_init
);
929 static void __exit
ep93xx_spi_exit(void)
931 platform_driver_unregister(&ep93xx_spi_driver
);
933 module_exit(ep93xx_spi_exit
);
935 MODULE_DESCRIPTION("EP93xx SPI Controller driver");
936 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
937 MODULE_LICENSE("GPL");
938 MODULE_ALIAS("platform:ep93xx-spi");