2 * core.c -- Voltage/Current Regulator framework.
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/slab.h>
20 #include <linux/err.h>
21 #include <linux/mutex.h>
22 #include <linux/suspend.h>
23 #include <linux/delay.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/regulator/driver.h>
26 #include <linux/regulator/machine.h>
30 #define REGULATOR_VERSION "0.5"
32 static DEFINE_MUTEX(regulator_list_mutex
);
33 static LIST_HEAD(regulator_list
);
34 static LIST_HEAD(regulator_map_list
);
35 static int has_full_constraints
;
38 * struct regulator_map
40 * Used to provide symbolic supply names to devices.
42 struct regulator_map
{
43 struct list_head list
;
44 const char *dev_name
; /* The dev_name() for the consumer */
46 struct regulator_dev
*regulator
;
52 * One for each consumer device.
56 struct list_head list
;
61 struct device_attribute dev_attr
;
62 struct regulator_dev
*rdev
;
65 static int _regulator_is_enabled(struct regulator_dev
*rdev
);
66 static int _regulator_disable(struct regulator_dev
*rdev
);
67 static int _regulator_get_voltage(struct regulator_dev
*rdev
);
68 static int _regulator_get_current_limit(struct regulator_dev
*rdev
);
69 static unsigned int _regulator_get_mode(struct regulator_dev
*rdev
);
70 static void _notifier_call_chain(struct regulator_dev
*rdev
,
71 unsigned long event
, void *data
);
73 static const char *rdev_get_name(struct regulator_dev
*rdev
)
75 if (rdev
->constraints
&& rdev
->constraints
->name
)
76 return rdev
->constraints
->name
;
77 else if (rdev
->desc
->name
)
78 return rdev
->desc
->name
;
83 /* gets the regulator for a given consumer device */
84 static struct regulator
*get_device_regulator(struct device
*dev
)
86 struct regulator
*regulator
= NULL
;
87 struct regulator_dev
*rdev
;
89 mutex_lock(®ulator_list_mutex
);
90 list_for_each_entry(rdev
, ®ulator_list
, list
) {
91 mutex_lock(&rdev
->mutex
);
92 list_for_each_entry(regulator
, &rdev
->consumer_list
, list
) {
93 if (regulator
->dev
== dev
) {
94 mutex_unlock(&rdev
->mutex
);
95 mutex_unlock(®ulator_list_mutex
);
99 mutex_unlock(&rdev
->mutex
);
101 mutex_unlock(®ulator_list_mutex
);
105 /* Platform voltage constraint check */
106 static int regulator_check_voltage(struct regulator_dev
*rdev
,
107 int *min_uV
, int *max_uV
)
109 BUG_ON(*min_uV
> *max_uV
);
111 if (!rdev
->constraints
) {
112 printk(KERN_ERR
"%s: no constraints for %s\n", __func__
,
113 rdev_get_name(rdev
));
116 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_VOLTAGE
)) {
117 printk(KERN_ERR
"%s: operation not allowed for %s\n",
118 __func__
, rdev_get_name(rdev
));
122 if (*max_uV
> rdev
->constraints
->max_uV
)
123 *max_uV
= rdev
->constraints
->max_uV
;
124 if (*min_uV
< rdev
->constraints
->min_uV
)
125 *min_uV
= rdev
->constraints
->min_uV
;
127 if (*min_uV
> *max_uV
)
133 /* current constraint check */
134 static int regulator_check_current_limit(struct regulator_dev
*rdev
,
135 int *min_uA
, int *max_uA
)
137 BUG_ON(*min_uA
> *max_uA
);
139 if (!rdev
->constraints
) {
140 printk(KERN_ERR
"%s: no constraints for %s\n", __func__
,
141 rdev_get_name(rdev
));
144 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_CURRENT
)) {
145 printk(KERN_ERR
"%s: operation not allowed for %s\n",
146 __func__
, rdev_get_name(rdev
));
150 if (*max_uA
> rdev
->constraints
->max_uA
)
151 *max_uA
= rdev
->constraints
->max_uA
;
152 if (*min_uA
< rdev
->constraints
->min_uA
)
153 *min_uA
= rdev
->constraints
->min_uA
;
155 if (*min_uA
> *max_uA
)
161 /* operating mode constraint check */
162 static int regulator_check_mode(struct regulator_dev
*rdev
, int mode
)
165 case REGULATOR_MODE_FAST
:
166 case REGULATOR_MODE_NORMAL
:
167 case REGULATOR_MODE_IDLE
:
168 case REGULATOR_MODE_STANDBY
:
174 if (!rdev
->constraints
) {
175 printk(KERN_ERR
"%s: no constraints for %s\n", __func__
,
176 rdev_get_name(rdev
));
179 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_MODE
)) {
180 printk(KERN_ERR
"%s: operation not allowed for %s\n",
181 __func__
, rdev_get_name(rdev
));
184 if (!(rdev
->constraints
->valid_modes_mask
& mode
)) {
185 printk(KERN_ERR
"%s: invalid mode %x for %s\n",
186 __func__
, mode
, rdev_get_name(rdev
));
192 /* dynamic regulator mode switching constraint check */
193 static int regulator_check_drms(struct regulator_dev
*rdev
)
195 if (!rdev
->constraints
) {
196 printk(KERN_ERR
"%s: no constraints for %s\n", __func__
,
197 rdev_get_name(rdev
));
200 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_DRMS
)) {
201 printk(KERN_ERR
"%s: operation not allowed for %s\n",
202 __func__
, rdev_get_name(rdev
));
208 static ssize_t
device_requested_uA_show(struct device
*dev
,
209 struct device_attribute
*attr
, char *buf
)
211 struct regulator
*regulator
;
213 regulator
= get_device_regulator(dev
);
214 if (regulator
== NULL
)
217 return sprintf(buf
, "%d\n", regulator
->uA_load
);
220 static ssize_t
regulator_uV_show(struct device
*dev
,
221 struct device_attribute
*attr
, char *buf
)
223 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
226 mutex_lock(&rdev
->mutex
);
227 ret
= sprintf(buf
, "%d\n", _regulator_get_voltage(rdev
));
228 mutex_unlock(&rdev
->mutex
);
232 static DEVICE_ATTR(microvolts
, 0444, regulator_uV_show
, NULL
);
234 static ssize_t
regulator_uA_show(struct device
*dev
,
235 struct device_attribute
*attr
, char *buf
)
237 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
239 return sprintf(buf
, "%d\n", _regulator_get_current_limit(rdev
));
241 static DEVICE_ATTR(microamps
, 0444, regulator_uA_show
, NULL
);
243 static ssize_t
regulator_name_show(struct device
*dev
,
244 struct device_attribute
*attr
, char *buf
)
246 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
248 return sprintf(buf
, "%s\n", rdev_get_name(rdev
));
251 static ssize_t
regulator_print_opmode(char *buf
, int mode
)
254 case REGULATOR_MODE_FAST
:
255 return sprintf(buf
, "fast\n");
256 case REGULATOR_MODE_NORMAL
:
257 return sprintf(buf
, "normal\n");
258 case REGULATOR_MODE_IDLE
:
259 return sprintf(buf
, "idle\n");
260 case REGULATOR_MODE_STANDBY
:
261 return sprintf(buf
, "standby\n");
263 return sprintf(buf
, "unknown\n");
266 static ssize_t
regulator_opmode_show(struct device
*dev
,
267 struct device_attribute
*attr
, char *buf
)
269 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
271 return regulator_print_opmode(buf
, _regulator_get_mode(rdev
));
273 static DEVICE_ATTR(opmode
, 0444, regulator_opmode_show
, NULL
);
275 static ssize_t
regulator_print_state(char *buf
, int state
)
278 return sprintf(buf
, "enabled\n");
280 return sprintf(buf
, "disabled\n");
282 return sprintf(buf
, "unknown\n");
285 static ssize_t
regulator_state_show(struct device
*dev
,
286 struct device_attribute
*attr
, char *buf
)
288 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
291 mutex_lock(&rdev
->mutex
);
292 ret
= regulator_print_state(buf
, _regulator_is_enabled(rdev
));
293 mutex_unlock(&rdev
->mutex
);
297 static DEVICE_ATTR(state
, 0444, regulator_state_show
, NULL
);
299 static ssize_t
regulator_status_show(struct device
*dev
,
300 struct device_attribute
*attr
, char *buf
)
302 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
306 status
= rdev
->desc
->ops
->get_status(rdev
);
311 case REGULATOR_STATUS_OFF
:
314 case REGULATOR_STATUS_ON
:
317 case REGULATOR_STATUS_ERROR
:
320 case REGULATOR_STATUS_FAST
:
323 case REGULATOR_STATUS_NORMAL
:
326 case REGULATOR_STATUS_IDLE
:
329 case REGULATOR_STATUS_STANDBY
:
336 return sprintf(buf
, "%s\n", label
);
338 static DEVICE_ATTR(status
, 0444, regulator_status_show
, NULL
);
340 static ssize_t
regulator_min_uA_show(struct device
*dev
,
341 struct device_attribute
*attr
, char *buf
)
343 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
345 if (!rdev
->constraints
)
346 return sprintf(buf
, "constraint not defined\n");
348 return sprintf(buf
, "%d\n", rdev
->constraints
->min_uA
);
350 static DEVICE_ATTR(min_microamps
, 0444, regulator_min_uA_show
, NULL
);
352 static ssize_t
regulator_max_uA_show(struct device
*dev
,
353 struct device_attribute
*attr
, char *buf
)
355 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
357 if (!rdev
->constraints
)
358 return sprintf(buf
, "constraint not defined\n");
360 return sprintf(buf
, "%d\n", rdev
->constraints
->max_uA
);
362 static DEVICE_ATTR(max_microamps
, 0444, regulator_max_uA_show
, NULL
);
364 static ssize_t
regulator_min_uV_show(struct device
*dev
,
365 struct device_attribute
*attr
, char *buf
)
367 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
369 if (!rdev
->constraints
)
370 return sprintf(buf
, "constraint not defined\n");
372 return sprintf(buf
, "%d\n", rdev
->constraints
->min_uV
);
374 static DEVICE_ATTR(min_microvolts
, 0444, regulator_min_uV_show
, NULL
);
376 static ssize_t
regulator_max_uV_show(struct device
*dev
,
377 struct device_attribute
*attr
, char *buf
)
379 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
381 if (!rdev
->constraints
)
382 return sprintf(buf
, "constraint not defined\n");
384 return sprintf(buf
, "%d\n", rdev
->constraints
->max_uV
);
386 static DEVICE_ATTR(max_microvolts
, 0444, regulator_max_uV_show
, NULL
);
388 static ssize_t
regulator_total_uA_show(struct device
*dev
,
389 struct device_attribute
*attr
, char *buf
)
391 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
392 struct regulator
*regulator
;
395 mutex_lock(&rdev
->mutex
);
396 list_for_each_entry(regulator
, &rdev
->consumer_list
, list
)
397 uA
+= regulator
->uA_load
;
398 mutex_unlock(&rdev
->mutex
);
399 return sprintf(buf
, "%d\n", uA
);
401 static DEVICE_ATTR(requested_microamps
, 0444, regulator_total_uA_show
, NULL
);
403 static ssize_t
regulator_num_users_show(struct device
*dev
,
404 struct device_attribute
*attr
, char *buf
)
406 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
407 return sprintf(buf
, "%d\n", rdev
->use_count
);
410 static ssize_t
regulator_type_show(struct device
*dev
,
411 struct device_attribute
*attr
, char *buf
)
413 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
415 switch (rdev
->desc
->type
) {
416 case REGULATOR_VOLTAGE
:
417 return sprintf(buf
, "voltage\n");
418 case REGULATOR_CURRENT
:
419 return sprintf(buf
, "current\n");
421 return sprintf(buf
, "unknown\n");
424 static ssize_t
regulator_suspend_mem_uV_show(struct device
*dev
,
425 struct device_attribute
*attr
, char *buf
)
427 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
429 return sprintf(buf
, "%d\n", rdev
->constraints
->state_mem
.uV
);
431 static DEVICE_ATTR(suspend_mem_microvolts
, 0444,
432 regulator_suspend_mem_uV_show
, NULL
);
434 static ssize_t
regulator_suspend_disk_uV_show(struct device
*dev
,
435 struct device_attribute
*attr
, char *buf
)
437 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
439 return sprintf(buf
, "%d\n", rdev
->constraints
->state_disk
.uV
);
441 static DEVICE_ATTR(suspend_disk_microvolts
, 0444,
442 regulator_suspend_disk_uV_show
, NULL
);
444 static ssize_t
regulator_suspend_standby_uV_show(struct device
*dev
,
445 struct device_attribute
*attr
, char *buf
)
447 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
449 return sprintf(buf
, "%d\n", rdev
->constraints
->state_standby
.uV
);
451 static DEVICE_ATTR(suspend_standby_microvolts
, 0444,
452 regulator_suspend_standby_uV_show
, NULL
);
454 static ssize_t
regulator_suspend_mem_mode_show(struct device
*dev
,
455 struct device_attribute
*attr
, char *buf
)
457 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
459 return regulator_print_opmode(buf
,
460 rdev
->constraints
->state_mem
.mode
);
462 static DEVICE_ATTR(suspend_mem_mode
, 0444,
463 regulator_suspend_mem_mode_show
, NULL
);
465 static ssize_t
regulator_suspend_disk_mode_show(struct device
*dev
,
466 struct device_attribute
*attr
, char *buf
)
468 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
470 return regulator_print_opmode(buf
,
471 rdev
->constraints
->state_disk
.mode
);
473 static DEVICE_ATTR(suspend_disk_mode
, 0444,
474 regulator_suspend_disk_mode_show
, NULL
);
476 static ssize_t
regulator_suspend_standby_mode_show(struct device
*dev
,
477 struct device_attribute
*attr
, char *buf
)
479 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
481 return regulator_print_opmode(buf
,
482 rdev
->constraints
->state_standby
.mode
);
484 static DEVICE_ATTR(suspend_standby_mode
, 0444,
485 regulator_suspend_standby_mode_show
, NULL
);
487 static ssize_t
regulator_suspend_mem_state_show(struct device
*dev
,
488 struct device_attribute
*attr
, char *buf
)
490 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
492 return regulator_print_state(buf
,
493 rdev
->constraints
->state_mem
.enabled
);
495 static DEVICE_ATTR(suspend_mem_state
, 0444,
496 regulator_suspend_mem_state_show
, NULL
);
498 static ssize_t
regulator_suspend_disk_state_show(struct device
*dev
,
499 struct device_attribute
*attr
, char *buf
)
501 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
503 return regulator_print_state(buf
,
504 rdev
->constraints
->state_disk
.enabled
);
506 static DEVICE_ATTR(suspend_disk_state
, 0444,
507 regulator_suspend_disk_state_show
, NULL
);
509 static ssize_t
regulator_suspend_standby_state_show(struct device
*dev
,
510 struct device_attribute
*attr
, char *buf
)
512 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
514 return regulator_print_state(buf
,
515 rdev
->constraints
->state_standby
.enabled
);
517 static DEVICE_ATTR(suspend_standby_state
, 0444,
518 regulator_suspend_standby_state_show
, NULL
);
522 * These are the only attributes are present for all regulators.
523 * Other attributes are a function of regulator functionality.
525 static struct device_attribute regulator_dev_attrs
[] = {
526 __ATTR(name
, 0444, regulator_name_show
, NULL
),
527 __ATTR(num_users
, 0444, regulator_num_users_show
, NULL
),
528 __ATTR(type
, 0444, regulator_type_show
, NULL
),
532 static void regulator_dev_release(struct device
*dev
)
534 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
538 static struct class regulator_class
= {
540 .dev_release
= regulator_dev_release
,
541 .dev_attrs
= regulator_dev_attrs
,
544 /* Calculate the new optimum regulator operating mode based on the new total
545 * consumer load. All locks held by caller */
546 static void drms_uA_update(struct regulator_dev
*rdev
)
548 struct regulator
*sibling
;
549 int current_uA
= 0, output_uV
, input_uV
, err
;
552 err
= regulator_check_drms(rdev
);
553 if (err
< 0 || !rdev
->desc
->ops
->get_optimum_mode
||
554 !rdev
->desc
->ops
->get_voltage
|| !rdev
->desc
->ops
->set_mode
)
557 /* get output voltage */
558 output_uV
= rdev
->desc
->ops
->get_voltage(rdev
);
562 /* get input voltage */
563 if (rdev
->supply
&& rdev
->supply
->desc
->ops
->get_voltage
)
564 input_uV
= rdev
->supply
->desc
->ops
->get_voltage(rdev
->supply
);
566 input_uV
= rdev
->constraints
->input_uV
;
570 /* calc total requested load */
571 list_for_each_entry(sibling
, &rdev
->consumer_list
, list
)
572 current_uA
+= sibling
->uA_load
;
574 /* now get the optimum mode for our new total regulator load */
575 mode
= rdev
->desc
->ops
->get_optimum_mode(rdev
, input_uV
,
576 output_uV
, current_uA
);
578 /* check the new mode is allowed */
579 err
= regulator_check_mode(rdev
, mode
);
581 rdev
->desc
->ops
->set_mode(rdev
, mode
);
584 static int suspend_set_state(struct regulator_dev
*rdev
,
585 struct regulator_state
*rstate
)
590 can_set_state
= rdev
->desc
->ops
->set_suspend_enable
&&
591 rdev
->desc
->ops
->set_suspend_disable
;
593 /* If we have no suspend mode configration don't set anything;
594 * only warn if the driver actually makes the suspend mode
597 if (!rstate
->enabled
&& !rstate
->disabled
) {
599 printk(KERN_WARNING
"%s: No configuration for %s\n",
600 __func__
, rdev_get_name(rdev
));
604 if (rstate
->enabled
&& rstate
->disabled
) {
605 printk(KERN_ERR
"%s: invalid configuration for %s\n",
606 __func__
, rdev_get_name(rdev
));
610 if (!can_set_state
) {
611 printk(KERN_ERR
"%s: no way to set suspend state\n",
617 ret
= rdev
->desc
->ops
->set_suspend_enable(rdev
);
619 ret
= rdev
->desc
->ops
->set_suspend_disable(rdev
);
621 printk(KERN_ERR
"%s: failed to enabled/disable\n", __func__
);
625 if (rdev
->desc
->ops
->set_suspend_voltage
&& rstate
->uV
> 0) {
626 ret
= rdev
->desc
->ops
->set_suspend_voltage(rdev
, rstate
->uV
);
628 printk(KERN_ERR
"%s: failed to set voltage\n",
634 if (rdev
->desc
->ops
->set_suspend_mode
&& rstate
->mode
> 0) {
635 ret
= rdev
->desc
->ops
->set_suspend_mode(rdev
, rstate
->mode
);
637 printk(KERN_ERR
"%s: failed to set mode\n", __func__
);
644 /* locks held by caller */
645 static int suspend_prepare(struct regulator_dev
*rdev
, suspend_state_t state
)
647 if (!rdev
->constraints
)
651 case PM_SUSPEND_STANDBY
:
652 return suspend_set_state(rdev
,
653 &rdev
->constraints
->state_standby
);
655 return suspend_set_state(rdev
,
656 &rdev
->constraints
->state_mem
);
658 return suspend_set_state(rdev
,
659 &rdev
->constraints
->state_disk
);
665 static void print_constraints(struct regulator_dev
*rdev
)
667 struct regulation_constraints
*constraints
= rdev
->constraints
;
672 if (constraints
->min_uV
&& constraints
->max_uV
) {
673 if (constraints
->min_uV
== constraints
->max_uV
)
674 count
+= sprintf(buf
+ count
, "%d mV ",
675 constraints
->min_uV
/ 1000);
677 count
+= sprintf(buf
+ count
, "%d <--> %d mV ",
678 constraints
->min_uV
/ 1000,
679 constraints
->max_uV
/ 1000);
682 if (!constraints
->min_uV
||
683 constraints
->min_uV
!= constraints
->max_uV
) {
684 ret
= _regulator_get_voltage(rdev
);
686 count
+= sprintf(buf
+ count
, "at %d mV ", ret
/ 1000);
689 if (constraints
->min_uA
&& constraints
->max_uA
) {
690 if (constraints
->min_uA
== constraints
->max_uA
)
691 count
+= sprintf(buf
+ count
, "%d mA ",
692 constraints
->min_uA
/ 1000);
694 count
+= sprintf(buf
+ count
, "%d <--> %d mA ",
695 constraints
->min_uA
/ 1000,
696 constraints
->max_uA
/ 1000);
699 if (!constraints
->min_uA
||
700 constraints
->min_uA
!= constraints
->max_uA
) {
701 ret
= _regulator_get_current_limit(rdev
);
703 count
+= sprintf(buf
+ count
, "at %d uA ", ret
/ 1000);
706 if (constraints
->valid_modes_mask
& REGULATOR_MODE_FAST
)
707 count
+= sprintf(buf
+ count
, "fast ");
708 if (constraints
->valid_modes_mask
& REGULATOR_MODE_NORMAL
)
709 count
+= sprintf(buf
+ count
, "normal ");
710 if (constraints
->valid_modes_mask
& REGULATOR_MODE_IDLE
)
711 count
+= sprintf(buf
+ count
, "idle ");
712 if (constraints
->valid_modes_mask
& REGULATOR_MODE_STANDBY
)
713 count
+= sprintf(buf
+ count
, "standby");
715 printk(KERN_INFO
"regulator: %s: %s\n", rdev_get_name(rdev
), buf
);
718 static int machine_constraints_voltage(struct regulator_dev
*rdev
,
719 struct regulation_constraints
*constraints
)
721 struct regulator_ops
*ops
= rdev
->desc
->ops
;
722 const char *name
= rdev_get_name(rdev
);
725 /* do we need to apply the constraint voltage */
726 if (rdev
->constraints
->apply_uV
&&
727 rdev
->constraints
->min_uV
== rdev
->constraints
->max_uV
&&
729 ret
= ops
->set_voltage(rdev
,
730 rdev
->constraints
->min_uV
, rdev
->constraints
->max_uV
);
732 printk(KERN_ERR
"%s: failed to apply %duV constraint to %s\n",
734 rdev
->constraints
->min_uV
, name
);
735 rdev
->constraints
= NULL
;
740 /* constrain machine-level voltage specs to fit
741 * the actual range supported by this regulator.
743 if (ops
->list_voltage
&& rdev
->desc
->n_voltages
) {
744 int count
= rdev
->desc
->n_voltages
;
746 int min_uV
= INT_MAX
;
747 int max_uV
= INT_MIN
;
748 int cmin
= constraints
->min_uV
;
749 int cmax
= constraints
->max_uV
;
751 /* it's safe to autoconfigure fixed-voltage supplies
752 and the constraints are used by list_voltage. */
753 if (count
== 1 && !cmin
) {
756 constraints
->min_uV
= cmin
;
757 constraints
->max_uV
= cmax
;
760 /* voltage constraints are optional */
761 if ((cmin
== 0) && (cmax
== 0))
764 /* else require explicit machine-level constraints */
765 if (cmin
<= 0 || cmax
<= 0 || cmax
< cmin
) {
766 pr_err("%s: %s '%s' voltage constraints\n",
767 __func__
, "invalid", name
);
771 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
772 for (i
= 0; i
< count
; i
++) {
775 value
= ops
->list_voltage(rdev
, i
);
779 /* maybe adjust [min_uV..max_uV] */
780 if (value
>= cmin
&& value
< min_uV
)
782 if (value
<= cmax
&& value
> max_uV
)
786 /* final: [min_uV..max_uV] valid iff constraints valid */
787 if (max_uV
< min_uV
) {
788 pr_err("%s: %s '%s' voltage constraints\n",
789 __func__
, "unsupportable", name
);
793 /* use regulator's subset of machine constraints */
794 if (constraints
->min_uV
< min_uV
) {
795 pr_debug("%s: override '%s' %s, %d -> %d\n",
796 __func__
, name
, "min_uV",
797 constraints
->min_uV
, min_uV
);
798 constraints
->min_uV
= min_uV
;
800 if (constraints
->max_uV
> max_uV
) {
801 pr_debug("%s: override '%s' %s, %d -> %d\n",
802 __func__
, name
, "max_uV",
803 constraints
->max_uV
, max_uV
);
804 constraints
->max_uV
= max_uV
;
812 * set_machine_constraints - sets regulator constraints
813 * @rdev: regulator source
814 * @constraints: constraints to apply
816 * Allows platform initialisation code to define and constrain
817 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
818 * Constraints *must* be set by platform code in order for some
819 * regulator operations to proceed i.e. set_voltage, set_current_limit,
822 static int set_machine_constraints(struct regulator_dev
*rdev
,
823 struct regulation_constraints
*constraints
)
827 struct regulator_ops
*ops
= rdev
->desc
->ops
;
829 rdev
->constraints
= constraints
;
831 name
= rdev_get_name(rdev
);
833 ret
= machine_constraints_voltage(rdev
, constraints
);
837 /* do we need to setup our suspend state */
838 if (constraints
->initial_state
) {
839 ret
= suspend_prepare(rdev
, constraints
->initial_state
);
841 printk(KERN_ERR
"%s: failed to set suspend state for %s\n",
843 rdev
->constraints
= NULL
;
848 if (constraints
->initial_mode
) {
849 if (!ops
->set_mode
) {
850 printk(KERN_ERR
"%s: no set_mode operation for %s\n",
856 ret
= ops
->set_mode(rdev
, constraints
->initial_mode
);
859 "%s: failed to set initial mode for %s: %d\n",
860 __func__
, name
, ret
);
865 /* If the constraints say the regulator should be on at this point
866 * and we have control then make sure it is enabled.
868 if ((constraints
->always_on
|| constraints
->boot_on
) && ops
->enable
) {
869 ret
= ops
->enable(rdev
);
871 printk(KERN_ERR
"%s: failed to enable %s\n",
873 rdev
->constraints
= NULL
;
878 print_constraints(rdev
);
884 * set_supply - set regulator supply regulator
885 * @rdev: regulator name
886 * @supply_rdev: supply regulator name
888 * Called by platform initialisation code to set the supply regulator for this
889 * regulator. This ensures that a regulators supply will also be enabled by the
890 * core if it's child is enabled.
892 static int set_supply(struct regulator_dev
*rdev
,
893 struct regulator_dev
*supply_rdev
)
897 err
= sysfs_create_link(&rdev
->dev
.kobj
, &supply_rdev
->dev
.kobj
,
901 "%s: could not add device link %s err %d\n",
902 __func__
, supply_rdev
->dev
.kobj
.name
, err
);
905 rdev
->supply
= supply_rdev
;
906 list_add(&rdev
->slist
, &supply_rdev
->supply_list
);
912 * set_consumer_device_supply: Bind a regulator to a symbolic supply
913 * @rdev: regulator source
914 * @consumer_dev: device the supply applies to
915 * @consumer_dev_name: dev_name() string for device supply applies to
916 * @supply: symbolic name for supply
918 * Allows platform initialisation code to map physical regulator
919 * sources to symbolic names for supplies for use by devices. Devices
920 * should use these symbolic names to request regulators, avoiding the
921 * need to provide board-specific regulator names as platform data.
923 * Only one of consumer_dev and consumer_dev_name may be specified.
925 static int set_consumer_device_supply(struct regulator_dev
*rdev
,
926 struct device
*consumer_dev
, const char *consumer_dev_name
,
929 struct regulator_map
*node
;
932 if (consumer_dev
&& consumer_dev_name
)
935 if (!consumer_dev_name
&& consumer_dev
)
936 consumer_dev_name
= dev_name(consumer_dev
);
941 if (consumer_dev_name
!= NULL
)
946 list_for_each_entry(node
, ®ulator_map_list
, list
) {
947 if (node
->dev_name
&& consumer_dev_name
) {
948 if (strcmp(node
->dev_name
, consumer_dev_name
) != 0)
950 } else if (node
->dev_name
|| consumer_dev_name
) {
954 if (strcmp(node
->supply
, supply
) != 0)
957 dev_dbg(consumer_dev
, "%s/%s is '%s' supply; fail %s/%s\n",
958 dev_name(&node
->regulator
->dev
),
959 node
->regulator
->desc
->name
,
961 dev_name(&rdev
->dev
), rdev_get_name(rdev
));
965 node
= kzalloc(sizeof(struct regulator_map
), GFP_KERNEL
);
969 node
->regulator
= rdev
;
970 node
->supply
= supply
;
973 node
->dev_name
= kstrdup(consumer_dev_name
, GFP_KERNEL
);
974 if (node
->dev_name
== NULL
) {
980 list_add(&node
->list
, ®ulator_map_list
);
984 static void unset_regulator_supplies(struct regulator_dev
*rdev
)
986 struct regulator_map
*node
, *n
;
988 list_for_each_entry_safe(node
, n
, ®ulator_map_list
, list
) {
989 if (rdev
== node
->regulator
) {
990 list_del(&node
->list
);
991 kfree(node
->dev_name
);
997 #define REG_STR_SIZE 32
999 static struct regulator
*create_regulator(struct regulator_dev
*rdev
,
1001 const char *supply_name
)
1003 struct regulator
*regulator
;
1004 char buf
[REG_STR_SIZE
];
1007 regulator
= kzalloc(sizeof(*regulator
), GFP_KERNEL
);
1008 if (regulator
== NULL
)
1011 mutex_lock(&rdev
->mutex
);
1012 regulator
->rdev
= rdev
;
1013 list_add(®ulator
->list
, &rdev
->consumer_list
);
1016 /* create a 'requested_microamps_name' sysfs entry */
1017 size
= scnprintf(buf
, REG_STR_SIZE
, "microamps_requested_%s",
1019 if (size
>= REG_STR_SIZE
)
1022 regulator
->dev
= dev
;
1023 sysfs_attr_init(®ulator
->dev_attr
.attr
);
1024 regulator
->dev_attr
.attr
.name
= kstrdup(buf
, GFP_KERNEL
);
1025 if (regulator
->dev_attr
.attr
.name
== NULL
)
1028 regulator
->dev_attr
.attr
.owner
= THIS_MODULE
;
1029 regulator
->dev_attr
.attr
.mode
= 0444;
1030 regulator
->dev_attr
.show
= device_requested_uA_show
;
1031 err
= device_create_file(dev
, ®ulator
->dev_attr
);
1033 printk(KERN_WARNING
"%s: could not add regulator_dev"
1034 " load sysfs\n", __func__
);
1038 /* also add a link to the device sysfs entry */
1039 size
= scnprintf(buf
, REG_STR_SIZE
, "%s-%s",
1040 dev
->kobj
.name
, supply_name
);
1041 if (size
>= REG_STR_SIZE
)
1044 regulator
->supply_name
= kstrdup(buf
, GFP_KERNEL
);
1045 if (regulator
->supply_name
== NULL
)
1048 err
= sysfs_create_link(&rdev
->dev
.kobj
, &dev
->kobj
,
1052 "%s: could not add device link %s err %d\n",
1053 __func__
, dev
->kobj
.name
, err
);
1054 device_remove_file(dev
, ®ulator
->dev_attr
);
1058 mutex_unlock(&rdev
->mutex
);
1061 kfree(regulator
->supply_name
);
1063 device_remove_file(regulator
->dev
, ®ulator
->dev_attr
);
1065 kfree(regulator
->dev_attr
.attr
.name
);
1067 list_del(®ulator
->list
);
1069 mutex_unlock(&rdev
->mutex
);
1073 static int _regulator_get_enable_time(struct regulator_dev
*rdev
)
1075 if (!rdev
->desc
->ops
->enable_time
)
1077 return rdev
->desc
->ops
->enable_time(rdev
);
1080 /* Internal regulator request function */
1081 static struct regulator
*_regulator_get(struct device
*dev
, const char *id
,
1084 struct regulator_dev
*rdev
;
1085 struct regulator_map
*map
;
1086 struct regulator
*regulator
= ERR_PTR(-ENODEV
);
1087 const char *devname
= NULL
;
1091 printk(KERN_ERR
"regulator: get() with no identifier\n");
1096 devname
= dev_name(dev
);
1098 mutex_lock(®ulator_list_mutex
);
1100 list_for_each_entry(map
, ®ulator_map_list
, list
) {
1101 /* If the mapping has a device set up it must match */
1102 if (map
->dev_name
&&
1103 (!devname
|| strcmp(map
->dev_name
, devname
)))
1106 if (strcmp(map
->supply
, id
) == 0) {
1107 rdev
= map
->regulator
;
1112 #ifdef CONFIG_REGULATOR_DUMMY
1114 devname
= "deviceless";
1116 /* If the board didn't flag that it was fully constrained then
1117 * substitute in a dummy regulator so consumers can continue.
1119 if (!has_full_constraints
) {
1120 pr_warning("%s supply %s not found, using dummy regulator\n",
1122 rdev
= dummy_regulator_rdev
;
1127 mutex_unlock(®ulator_list_mutex
);
1131 if (rdev
->exclusive
) {
1132 regulator
= ERR_PTR(-EPERM
);
1136 if (exclusive
&& rdev
->open_count
) {
1137 regulator
= ERR_PTR(-EBUSY
);
1141 if (!try_module_get(rdev
->owner
))
1144 regulator
= create_regulator(rdev
, dev
, id
);
1145 if (regulator
== NULL
) {
1146 regulator
= ERR_PTR(-ENOMEM
);
1147 module_put(rdev
->owner
);
1152 rdev
->exclusive
= 1;
1154 ret
= _regulator_is_enabled(rdev
);
1156 rdev
->use_count
= 1;
1158 rdev
->use_count
= 0;
1162 mutex_unlock(®ulator_list_mutex
);
1168 * regulator_get - lookup and obtain a reference to a regulator.
1169 * @dev: device for regulator "consumer"
1170 * @id: Supply name or regulator ID.
1172 * Returns a struct regulator corresponding to the regulator producer,
1173 * or IS_ERR() condition containing errno.
1175 * Use of supply names configured via regulator_set_device_supply() is
1176 * strongly encouraged. It is recommended that the supply name used
1177 * should match the name used for the supply and/or the relevant
1178 * device pins in the datasheet.
1180 struct regulator
*regulator_get(struct device
*dev
, const char *id
)
1182 return _regulator_get(dev
, id
, 0);
1184 EXPORT_SYMBOL_GPL(regulator_get
);
1187 * regulator_get_exclusive - obtain exclusive access to a regulator.
1188 * @dev: device for regulator "consumer"
1189 * @id: Supply name or regulator ID.
1191 * Returns a struct regulator corresponding to the regulator producer,
1192 * or IS_ERR() condition containing errno. Other consumers will be
1193 * unable to obtain this reference is held and the use count for the
1194 * regulator will be initialised to reflect the current state of the
1197 * This is intended for use by consumers which cannot tolerate shared
1198 * use of the regulator such as those which need to force the
1199 * regulator off for correct operation of the hardware they are
1202 * Use of supply names configured via regulator_set_device_supply() is
1203 * strongly encouraged. It is recommended that the supply name used
1204 * should match the name used for the supply and/or the relevant
1205 * device pins in the datasheet.
1207 struct regulator
*regulator_get_exclusive(struct device
*dev
, const char *id
)
1209 return _regulator_get(dev
, id
, 1);
1211 EXPORT_SYMBOL_GPL(regulator_get_exclusive
);
1214 * regulator_put - "free" the regulator source
1215 * @regulator: regulator source
1217 * Note: drivers must ensure that all regulator_enable calls made on this
1218 * regulator source are balanced by regulator_disable calls prior to calling
1221 void regulator_put(struct regulator
*regulator
)
1223 struct regulator_dev
*rdev
;
1225 if (regulator
== NULL
|| IS_ERR(regulator
))
1228 mutex_lock(®ulator_list_mutex
);
1229 rdev
= regulator
->rdev
;
1231 /* remove any sysfs entries */
1232 if (regulator
->dev
) {
1233 sysfs_remove_link(&rdev
->dev
.kobj
, regulator
->supply_name
);
1234 kfree(regulator
->supply_name
);
1235 device_remove_file(regulator
->dev
, ®ulator
->dev_attr
);
1236 kfree(regulator
->dev_attr
.attr
.name
);
1238 list_del(®ulator
->list
);
1242 rdev
->exclusive
= 0;
1244 module_put(rdev
->owner
);
1245 mutex_unlock(®ulator_list_mutex
);
1247 EXPORT_SYMBOL_GPL(regulator_put
);
1249 static int _regulator_can_change_status(struct regulator_dev
*rdev
)
1251 if (!rdev
->constraints
)
1254 if (rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_STATUS
)
1260 /* locks held by regulator_enable() */
1261 static int _regulator_enable(struct regulator_dev
*rdev
)
1265 /* do we need to enable the supply regulator first */
1267 ret
= _regulator_enable(rdev
->supply
);
1269 printk(KERN_ERR
"%s: failed to enable %s: %d\n",
1270 __func__
, rdev_get_name(rdev
), ret
);
1275 /* check voltage and requested load before enabling */
1276 if (rdev
->constraints
&&
1277 (rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_DRMS
))
1278 drms_uA_update(rdev
);
1280 if (rdev
->use_count
== 0) {
1281 /* The regulator may on if it's not switchable or left on */
1282 ret
= _regulator_is_enabled(rdev
);
1283 if (ret
== -EINVAL
|| ret
== 0) {
1284 if (!_regulator_can_change_status(rdev
))
1287 if (!rdev
->desc
->ops
->enable
)
1290 /* Query before enabling in case configuration
1292 ret
= _regulator_get_enable_time(rdev
);
1297 "%s: enable_time() failed for %s: %d\n",
1298 __func__
, rdev_get_name(rdev
),
1303 /* Allow the regulator to ramp; it would be useful
1304 * to extend this for bulk operations so that the
1305 * regulators can ramp together. */
1306 ret
= rdev
->desc
->ops
->enable(rdev
);
1311 mdelay(delay
/ 1000);
1315 } else if (ret
< 0) {
1316 printk(KERN_ERR
"%s: is_enabled() failed for %s: %d\n",
1317 __func__
, rdev_get_name(rdev
), ret
);
1320 /* Fallthrough on positive return values - already enabled */
1329 * regulator_enable - enable regulator output
1330 * @regulator: regulator source
1332 * Request that the regulator be enabled with the regulator output at
1333 * the predefined voltage or current value. Calls to regulator_enable()
1334 * must be balanced with calls to regulator_disable().
1336 * NOTE: the output value can be set by other drivers, boot loader or may be
1337 * hardwired in the regulator.
1339 int regulator_enable(struct regulator
*regulator
)
1341 struct regulator_dev
*rdev
= regulator
->rdev
;
1344 mutex_lock(&rdev
->mutex
);
1345 ret
= _regulator_enable(rdev
);
1346 mutex_unlock(&rdev
->mutex
);
1349 EXPORT_SYMBOL_GPL(regulator_enable
);
1351 /* locks held by regulator_disable() */
1352 static int _regulator_disable(struct regulator_dev
*rdev
)
1356 if (WARN(rdev
->use_count
<= 0,
1357 "unbalanced disables for %s\n",
1358 rdev_get_name(rdev
)))
1361 /* are we the last user and permitted to disable ? */
1362 if (rdev
->use_count
== 1 &&
1363 (rdev
->constraints
&& !rdev
->constraints
->always_on
)) {
1365 /* we are last user */
1366 if (_regulator_can_change_status(rdev
) &&
1367 rdev
->desc
->ops
->disable
) {
1368 ret
= rdev
->desc
->ops
->disable(rdev
);
1370 printk(KERN_ERR
"%s: failed to disable %s\n",
1371 __func__
, rdev_get_name(rdev
));
1375 _notifier_call_chain(rdev
, REGULATOR_EVENT_DISABLE
,
1379 /* decrease our supplies ref count and disable if required */
1381 _regulator_disable(rdev
->supply
);
1383 rdev
->use_count
= 0;
1384 } else if (rdev
->use_count
> 1) {
1386 if (rdev
->constraints
&&
1387 (rdev
->constraints
->valid_ops_mask
&
1388 REGULATOR_CHANGE_DRMS
))
1389 drms_uA_update(rdev
);
1397 * regulator_disable - disable regulator output
1398 * @regulator: regulator source
1400 * Disable the regulator output voltage or current. Calls to
1401 * regulator_enable() must be balanced with calls to
1402 * regulator_disable().
1404 * NOTE: this will only disable the regulator output if no other consumer
1405 * devices have it enabled, the regulator device supports disabling and
1406 * machine constraints permit this operation.
1408 int regulator_disable(struct regulator
*regulator
)
1410 struct regulator_dev
*rdev
= regulator
->rdev
;
1413 mutex_lock(&rdev
->mutex
);
1414 ret
= _regulator_disable(rdev
);
1415 mutex_unlock(&rdev
->mutex
);
1418 EXPORT_SYMBOL_GPL(regulator_disable
);
1420 /* locks held by regulator_force_disable() */
1421 static int _regulator_force_disable(struct regulator_dev
*rdev
)
1426 if (rdev
->desc
->ops
->disable
) {
1427 /* ah well, who wants to live forever... */
1428 ret
= rdev
->desc
->ops
->disable(rdev
);
1430 printk(KERN_ERR
"%s: failed to force disable %s\n",
1431 __func__
, rdev_get_name(rdev
));
1434 /* notify other consumers that power has been forced off */
1435 _notifier_call_chain(rdev
, REGULATOR_EVENT_FORCE_DISABLE
|
1436 REGULATOR_EVENT_DISABLE
, NULL
);
1439 /* decrease our supplies ref count and disable if required */
1441 _regulator_disable(rdev
->supply
);
1443 rdev
->use_count
= 0;
1448 * regulator_force_disable - force disable regulator output
1449 * @regulator: regulator source
1451 * Forcibly disable the regulator output voltage or current.
1452 * NOTE: this *will* disable the regulator output even if other consumer
1453 * devices have it enabled. This should be used for situations when device
1454 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1456 int regulator_force_disable(struct regulator
*regulator
)
1460 mutex_lock(®ulator
->rdev
->mutex
);
1461 regulator
->uA_load
= 0;
1462 ret
= _regulator_force_disable(regulator
->rdev
);
1463 mutex_unlock(®ulator
->rdev
->mutex
);
1466 EXPORT_SYMBOL_GPL(regulator_force_disable
);
1468 static int _regulator_is_enabled(struct regulator_dev
*rdev
)
1470 /* If we don't know then assume that the regulator is always on */
1471 if (!rdev
->desc
->ops
->is_enabled
)
1474 return rdev
->desc
->ops
->is_enabled(rdev
);
1478 * regulator_is_enabled - is the regulator output enabled
1479 * @regulator: regulator source
1481 * Returns positive if the regulator driver backing the source/client
1482 * has requested that the device be enabled, zero if it hasn't, else a
1483 * negative errno code.
1485 * Note that the device backing this regulator handle can have multiple
1486 * users, so it might be enabled even if regulator_enable() was never
1487 * called for this particular source.
1489 int regulator_is_enabled(struct regulator
*regulator
)
1493 mutex_lock(®ulator
->rdev
->mutex
);
1494 ret
= _regulator_is_enabled(regulator
->rdev
);
1495 mutex_unlock(®ulator
->rdev
->mutex
);
1499 EXPORT_SYMBOL_GPL(regulator_is_enabled
);
1502 * regulator_count_voltages - count regulator_list_voltage() selectors
1503 * @regulator: regulator source
1505 * Returns number of selectors, or negative errno. Selectors are
1506 * numbered starting at zero, and typically correspond to bitfields
1507 * in hardware registers.
1509 int regulator_count_voltages(struct regulator
*regulator
)
1511 struct regulator_dev
*rdev
= regulator
->rdev
;
1513 return rdev
->desc
->n_voltages
? : -EINVAL
;
1515 EXPORT_SYMBOL_GPL(regulator_count_voltages
);
1518 * regulator_list_voltage - enumerate supported voltages
1519 * @regulator: regulator source
1520 * @selector: identify voltage to list
1521 * Context: can sleep
1523 * Returns a voltage that can be passed to @regulator_set_voltage(),
1524 * zero if this selector code can't be used on this system, or a
1527 int regulator_list_voltage(struct regulator
*regulator
, unsigned selector
)
1529 struct regulator_dev
*rdev
= regulator
->rdev
;
1530 struct regulator_ops
*ops
= rdev
->desc
->ops
;
1533 if (!ops
->list_voltage
|| selector
>= rdev
->desc
->n_voltages
)
1536 mutex_lock(&rdev
->mutex
);
1537 ret
= ops
->list_voltage(rdev
, selector
);
1538 mutex_unlock(&rdev
->mutex
);
1541 if (ret
< rdev
->constraints
->min_uV
)
1543 else if (ret
> rdev
->constraints
->max_uV
)
1549 EXPORT_SYMBOL_GPL(regulator_list_voltage
);
1552 * regulator_is_supported_voltage - check if a voltage range can be supported
1554 * @regulator: Regulator to check.
1555 * @min_uV: Minimum required voltage in uV.
1556 * @max_uV: Maximum required voltage in uV.
1558 * Returns a boolean or a negative error code.
1560 int regulator_is_supported_voltage(struct regulator
*regulator
,
1561 int min_uV
, int max_uV
)
1563 int i
, voltages
, ret
;
1565 ret
= regulator_count_voltages(regulator
);
1570 for (i
= 0; i
< voltages
; i
++) {
1571 ret
= regulator_list_voltage(regulator
, i
);
1573 if (ret
>= min_uV
&& ret
<= max_uV
)
1581 * regulator_set_voltage - set regulator output voltage
1582 * @regulator: regulator source
1583 * @min_uV: Minimum required voltage in uV
1584 * @max_uV: Maximum acceptable voltage in uV
1586 * Sets a voltage regulator to the desired output voltage. This can be set
1587 * during any regulator state. IOW, regulator can be disabled or enabled.
1589 * If the regulator is enabled then the voltage will change to the new value
1590 * immediately otherwise if the regulator is disabled the regulator will
1591 * output at the new voltage when enabled.
1593 * NOTE: If the regulator is shared between several devices then the lowest
1594 * request voltage that meets the system constraints will be used.
1595 * Regulator system constraints must be set for this regulator before
1596 * calling this function otherwise this call will fail.
1598 int regulator_set_voltage(struct regulator
*regulator
, int min_uV
, int max_uV
)
1600 struct regulator_dev
*rdev
= regulator
->rdev
;
1603 mutex_lock(&rdev
->mutex
);
1606 if (!rdev
->desc
->ops
->set_voltage
) {
1611 /* constraints check */
1612 ret
= regulator_check_voltage(rdev
, &min_uV
, &max_uV
);
1615 regulator
->min_uV
= min_uV
;
1616 regulator
->max_uV
= max_uV
;
1617 ret
= rdev
->desc
->ops
->set_voltage(rdev
, min_uV
, max_uV
);
1620 _notifier_call_chain(rdev
, REGULATOR_EVENT_VOLTAGE_CHANGE
, NULL
);
1621 mutex_unlock(&rdev
->mutex
);
1624 EXPORT_SYMBOL_GPL(regulator_set_voltage
);
1626 static int _regulator_get_voltage(struct regulator_dev
*rdev
)
1629 if (rdev
->desc
->ops
->get_voltage
)
1630 return rdev
->desc
->ops
->get_voltage(rdev
);
1636 * regulator_get_voltage - get regulator output voltage
1637 * @regulator: regulator source
1639 * This returns the current regulator voltage in uV.
1641 * NOTE: If the regulator is disabled it will return the voltage value. This
1642 * function should not be used to determine regulator state.
1644 int regulator_get_voltage(struct regulator
*regulator
)
1648 mutex_lock(®ulator
->rdev
->mutex
);
1650 ret
= _regulator_get_voltage(regulator
->rdev
);
1652 mutex_unlock(®ulator
->rdev
->mutex
);
1656 EXPORT_SYMBOL_GPL(regulator_get_voltage
);
1659 * regulator_set_current_limit - set regulator output current limit
1660 * @regulator: regulator source
1661 * @min_uA: Minimuum supported current in uA
1662 * @max_uA: Maximum supported current in uA
1664 * Sets current sink to the desired output current. This can be set during
1665 * any regulator state. IOW, regulator can be disabled or enabled.
1667 * If the regulator is enabled then the current will change to the new value
1668 * immediately otherwise if the regulator is disabled the regulator will
1669 * output at the new current when enabled.
1671 * NOTE: Regulator system constraints must be set for this regulator before
1672 * calling this function otherwise this call will fail.
1674 int regulator_set_current_limit(struct regulator
*regulator
,
1675 int min_uA
, int max_uA
)
1677 struct regulator_dev
*rdev
= regulator
->rdev
;
1680 mutex_lock(&rdev
->mutex
);
1683 if (!rdev
->desc
->ops
->set_current_limit
) {
1688 /* constraints check */
1689 ret
= regulator_check_current_limit(rdev
, &min_uA
, &max_uA
);
1693 ret
= rdev
->desc
->ops
->set_current_limit(rdev
, min_uA
, max_uA
);
1695 mutex_unlock(&rdev
->mutex
);
1698 EXPORT_SYMBOL_GPL(regulator_set_current_limit
);
1700 static int _regulator_get_current_limit(struct regulator_dev
*rdev
)
1704 mutex_lock(&rdev
->mutex
);
1707 if (!rdev
->desc
->ops
->get_current_limit
) {
1712 ret
= rdev
->desc
->ops
->get_current_limit(rdev
);
1714 mutex_unlock(&rdev
->mutex
);
1719 * regulator_get_current_limit - get regulator output current
1720 * @regulator: regulator source
1722 * This returns the current supplied by the specified current sink in uA.
1724 * NOTE: If the regulator is disabled it will return the current value. This
1725 * function should not be used to determine regulator state.
1727 int regulator_get_current_limit(struct regulator
*regulator
)
1729 return _regulator_get_current_limit(regulator
->rdev
);
1731 EXPORT_SYMBOL_GPL(regulator_get_current_limit
);
1734 * regulator_set_mode - set regulator operating mode
1735 * @regulator: regulator source
1736 * @mode: operating mode - one of the REGULATOR_MODE constants
1738 * Set regulator operating mode to increase regulator efficiency or improve
1739 * regulation performance.
1741 * NOTE: Regulator system constraints must be set for this regulator before
1742 * calling this function otherwise this call will fail.
1744 int regulator_set_mode(struct regulator
*regulator
, unsigned int mode
)
1746 struct regulator_dev
*rdev
= regulator
->rdev
;
1748 int regulator_curr_mode
;
1750 mutex_lock(&rdev
->mutex
);
1753 if (!rdev
->desc
->ops
->set_mode
) {
1758 /* return if the same mode is requested */
1759 if (rdev
->desc
->ops
->get_mode
) {
1760 regulator_curr_mode
= rdev
->desc
->ops
->get_mode(rdev
);
1761 if (regulator_curr_mode
== mode
) {
1767 /* constraints check */
1768 ret
= regulator_check_mode(rdev
, mode
);
1772 ret
= rdev
->desc
->ops
->set_mode(rdev
, mode
);
1774 mutex_unlock(&rdev
->mutex
);
1777 EXPORT_SYMBOL_GPL(regulator_set_mode
);
1779 static unsigned int _regulator_get_mode(struct regulator_dev
*rdev
)
1783 mutex_lock(&rdev
->mutex
);
1786 if (!rdev
->desc
->ops
->get_mode
) {
1791 ret
= rdev
->desc
->ops
->get_mode(rdev
);
1793 mutex_unlock(&rdev
->mutex
);
1798 * regulator_get_mode - get regulator operating mode
1799 * @regulator: regulator source
1801 * Get the current regulator operating mode.
1803 unsigned int regulator_get_mode(struct regulator
*regulator
)
1805 return _regulator_get_mode(regulator
->rdev
);
1807 EXPORT_SYMBOL_GPL(regulator_get_mode
);
1810 * regulator_set_optimum_mode - set regulator optimum operating mode
1811 * @regulator: regulator source
1812 * @uA_load: load current
1814 * Notifies the regulator core of a new device load. This is then used by
1815 * DRMS (if enabled by constraints) to set the most efficient regulator
1816 * operating mode for the new regulator loading.
1818 * Consumer devices notify their supply regulator of the maximum power
1819 * they will require (can be taken from device datasheet in the power
1820 * consumption tables) when they change operational status and hence power
1821 * state. Examples of operational state changes that can affect power
1822 * consumption are :-
1824 * o Device is opened / closed.
1825 * o Device I/O is about to begin or has just finished.
1826 * o Device is idling in between work.
1828 * This information is also exported via sysfs to userspace.
1830 * DRMS will sum the total requested load on the regulator and change
1831 * to the most efficient operating mode if platform constraints allow.
1833 * Returns the new regulator mode or error.
1835 int regulator_set_optimum_mode(struct regulator
*regulator
, int uA_load
)
1837 struct regulator_dev
*rdev
= regulator
->rdev
;
1838 struct regulator
*consumer
;
1839 int ret
, output_uV
, input_uV
, total_uA_load
= 0;
1842 mutex_lock(&rdev
->mutex
);
1844 regulator
->uA_load
= uA_load
;
1845 ret
= regulator_check_drms(rdev
);
1851 if (!rdev
->desc
->ops
->get_optimum_mode
)
1854 /* get output voltage */
1855 output_uV
= rdev
->desc
->ops
->get_voltage(rdev
);
1856 if (output_uV
<= 0) {
1857 printk(KERN_ERR
"%s: invalid output voltage found for %s\n",
1858 __func__
, rdev_get_name(rdev
));
1862 /* get input voltage */
1863 if (rdev
->supply
&& rdev
->supply
->desc
->ops
->get_voltage
)
1864 input_uV
= rdev
->supply
->desc
->ops
->get_voltage(rdev
->supply
);
1866 input_uV
= rdev
->constraints
->input_uV
;
1867 if (input_uV
<= 0) {
1868 printk(KERN_ERR
"%s: invalid input voltage found for %s\n",
1869 __func__
, rdev_get_name(rdev
));
1873 /* calc total requested load for this regulator */
1874 list_for_each_entry(consumer
, &rdev
->consumer_list
, list
)
1875 total_uA_load
+= consumer
->uA_load
;
1877 mode
= rdev
->desc
->ops
->get_optimum_mode(rdev
,
1878 input_uV
, output_uV
,
1880 ret
= regulator_check_mode(rdev
, mode
);
1882 printk(KERN_ERR
"%s: failed to get optimum mode for %s @"
1883 " %d uA %d -> %d uV\n", __func__
, rdev_get_name(rdev
),
1884 total_uA_load
, input_uV
, output_uV
);
1888 ret
= rdev
->desc
->ops
->set_mode(rdev
, mode
);
1890 printk(KERN_ERR
"%s: failed to set optimum mode %x for %s\n",
1891 __func__
, mode
, rdev_get_name(rdev
));
1896 mutex_unlock(&rdev
->mutex
);
1899 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode
);
1902 * regulator_register_notifier - register regulator event notifier
1903 * @regulator: regulator source
1904 * @nb: notifier block
1906 * Register notifier block to receive regulator events.
1908 int regulator_register_notifier(struct regulator
*regulator
,
1909 struct notifier_block
*nb
)
1911 return blocking_notifier_chain_register(®ulator
->rdev
->notifier
,
1914 EXPORT_SYMBOL_GPL(regulator_register_notifier
);
1917 * regulator_unregister_notifier - unregister regulator event notifier
1918 * @regulator: regulator source
1919 * @nb: notifier block
1921 * Unregister regulator event notifier block.
1923 int regulator_unregister_notifier(struct regulator
*regulator
,
1924 struct notifier_block
*nb
)
1926 return blocking_notifier_chain_unregister(®ulator
->rdev
->notifier
,
1929 EXPORT_SYMBOL_GPL(regulator_unregister_notifier
);
1931 /* notify regulator consumers and downstream regulator consumers.
1932 * Note mutex must be held by caller.
1934 static void _notifier_call_chain(struct regulator_dev
*rdev
,
1935 unsigned long event
, void *data
)
1937 struct regulator_dev
*_rdev
;
1939 /* call rdev chain first */
1940 blocking_notifier_call_chain(&rdev
->notifier
, event
, NULL
);
1942 /* now notify regulator we supply */
1943 list_for_each_entry(_rdev
, &rdev
->supply_list
, slist
) {
1944 mutex_lock(&_rdev
->mutex
);
1945 _notifier_call_chain(_rdev
, event
, data
);
1946 mutex_unlock(&_rdev
->mutex
);
1951 * regulator_bulk_get - get multiple regulator consumers
1953 * @dev: Device to supply
1954 * @num_consumers: Number of consumers to register
1955 * @consumers: Configuration of consumers; clients are stored here.
1957 * @return 0 on success, an errno on failure.
1959 * This helper function allows drivers to get several regulator
1960 * consumers in one operation. If any of the regulators cannot be
1961 * acquired then any regulators that were allocated will be freed
1962 * before returning to the caller.
1964 int regulator_bulk_get(struct device
*dev
, int num_consumers
,
1965 struct regulator_bulk_data
*consumers
)
1970 for (i
= 0; i
< num_consumers
; i
++)
1971 consumers
[i
].consumer
= NULL
;
1973 for (i
= 0; i
< num_consumers
; i
++) {
1974 consumers
[i
].consumer
= regulator_get(dev
,
1975 consumers
[i
].supply
);
1976 if (IS_ERR(consumers
[i
].consumer
)) {
1977 ret
= PTR_ERR(consumers
[i
].consumer
);
1978 dev_err(dev
, "Failed to get supply '%s': %d\n",
1979 consumers
[i
].supply
, ret
);
1980 consumers
[i
].consumer
= NULL
;
1988 for (i
= 0; i
< num_consumers
&& consumers
[i
].consumer
; i
++)
1989 regulator_put(consumers
[i
].consumer
);
1993 EXPORT_SYMBOL_GPL(regulator_bulk_get
);
1996 * regulator_bulk_enable - enable multiple regulator consumers
1998 * @num_consumers: Number of consumers
1999 * @consumers: Consumer data; clients are stored here.
2000 * @return 0 on success, an errno on failure
2002 * This convenience API allows consumers to enable multiple regulator
2003 * clients in a single API call. If any consumers cannot be enabled
2004 * then any others that were enabled will be disabled again prior to
2007 int regulator_bulk_enable(int num_consumers
,
2008 struct regulator_bulk_data
*consumers
)
2013 for (i
= 0; i
< num_consumers
; i
++) {
2014 ret
= regulator_enable(consumers
[i
].consumer
);
2022 printk(KERN_ERR
"Failed to enable %s: %d\n", consumers
[i
].supply
, ret
);
2023 for (--i
; i
>= 0; --i
)
2024 regulator_disable(consumers
[i
].consumer
);
2028 EXPORT_SYMBOL_GPL(regulator_bulk_enable
);
2031 * regulator_bulk_disable - disable multiple regulator consumers
2033 * @num_consumers: Number of consumers
2034 * @consumers: Consumer data; clients are stored here.
2035 * @return 0 on success, an errno on failure
2037 * This convenience API allows consumers to disable multiple regulator
2038 * clients in a single API call. If any consumers cannot be enabled
2039 * then any others that were disabled will be disabled again prior to
2042 int regulator_bulk_disable(int num_consumers
,
2043 struct regulator_bulk_data
*consumers
)
2048 for (i
= 0; i
< num_consumers
; i
++) {
2049 ret
= regulator_disable(consumers
[i
].consumer
);
2057 printk(KERN_ERR
"Failed to disable %s: %d\n", consumers
[i
].supply
,
2059 for (--i
; i
>= 0; --i
)
2060 regulator_enable(consumers
[i
].consumer
);
2064 EXPORT_SYMBOL_GPL(regulator_bulk_disable
);
2067 * regulator_bulk_free - free multiple regulator consumers
2069 * @num_consumers: Number of consumers
2070 * @consumers: Consumer data; clients are stored here.
2072 * This convenience API allows consumers to free multiple regulator
2073 * clients in a single API call.
2075 void regulator_bulk_free(int num_consumers
,
2076 struct regulator_bulk_data
*consumers
)
2080 for (i
= 0; i
< num_consumers
; i
++) {
2081 regulator_put(consumers
[i
].consumer
);
2082 consumers
[i
].consumer
= NULL
;
2085 EXPORT_SYMBOL_GPL(regulator_bulk_free
);
2088 * regulator_notifier_call_chain - call regulator event notifier
2089 * @rdev: regulator source
2090 * @event: notifier block
2091 * @data: callback-specific data.
2093 * Called by regulator drivers to notify clients a regulator event has
2094 * occurred. We also notify regulator clients downstream.
2095 * Note lock must be held by caller.
2097 int regulator_notifier_call_chain(struct regulator_dev
*rdev
,
2098 unsigned long event
, void *data
)
2100 _notifier_call_chain(rdev
, event
, data
);
2104 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain
);
2107 * regulator_mode_to_status - convert a regulator mode into a status
2109 * @mode: Mode to convert
2111 * Convert a regulator mode into a status.
2113 int regulator_mode_to_status(unsigned int mode
)
2116 case REGULATOR_MODE_FAST
:
2117 return REGULATOR_STATUS_FAST
;
2118 case REGULATOR_MODE_NORMAL
:
2119 return REGULATOR_STATUS_NORMAL
;
2120 case REGULATOR_MODE_IDLE
:
2121 return REGULATOR_STATUS_IDLE
;
2122 case REGULATOR_STATUS_STANDBY
:
2123 return REGULATOR_STATUS_STANDBY
;
2128 EXPORT_SYMBOL_GPL(regulator_mode_to_status
);
2131 * To avoid cluttering sysfs (and memory) with useless state, only
2132 * create attributes that can be meaningfully displayed.
2134 static int add_regulator_attributes(struct regulator_dev
*rdev
)
2136 struct device
*dev
= &rdev
->dev
;
2137 struct regulator_ops
*ops
= rdev
->desc
->ops
;
2140 /* some attributes need specific methods to be displayed */
2141 if (ops
->get_voltage
) {
2142 status
= device_create_file(dev
, &dev_attr_microvolts
);
2146 if (ops
->get_current_limit
) {
2147 status
= device_create_file(dev
, &dev_attr_microamps
);
2151 if (ops
->get_mode
) {
2152 status
= device_create_file(dev
, &dev_attr_opmode
);
2156 if (ops
->is_enabled
) {
2157 status
= device_create_file(dev
, &dev_attr_state
);
2161 if (ops
->get_status
) {
2162 status
= device_create_file(dev
, &dev_attr_status
);
2167 /* some attributes are type-specific */
2168 if (rdev
->desc
->type
== REGULATOR_CURRENT
) {
2169 status
= device_create_file(dev
, &dev_attr_requested_microamps
);
2174 /* all the other attributes exist to support constraints;
2175 * don't show them if there are no constraints, or if the
2176 * relevant supporting methods are missing.
2178 if (!rdev
->constraints
)
2181 /* constraints need specific supporting methods */
2182 if (ops
->set_voltage
) {
2183 status
= device_create_file(dev
, &dev_attr_min_microvolts
);
2186 status
= device_create_file(dev
, &dev_attr_max_microvolts
);
2190 if (ops
->set_current_limit
) {
2191 status
= device_create_file(dev
, &dev_attr_min_microamps
);
2194 status
= device_create_file(dev
, &dev_attr_max_microamps
);
2199 /* suspend mode constraints need multiple supporting methods */
2200 if (!(ops
->set_suspend_enable
&& ops
->set_suspend_disable
))
2203 status
= device_create_file(dev
, &dev_attr_suspend_standby_state
);
2206 status
= device_create_file(dev
, &dev_attr_suspend_mem_state
);
2209 status
= device_create_file(dev
, &dev_attr_suspend_disk_state
);
2213 if (ops
->set_suspend_voltage
) {
2214 status
= device_create_file(dev
,
2215 &dev_attr_suspend_standby_microvolts
);
2218 status
= device_create_file(dev
,
2219 &dev_attr_suspend_mem_microvolts
);
2222 status
= device_create_file(dev
,
2223 &dev_attr_suspend_disk_microvolts
);
2228 if (ops
->set_suspend_mode
) {
2229 status
= device_create_file(dev
,
2230 &dev_attr_suspend_standby_mode
);
2233 status
= device_create_file(dev
,
2234 &dev_attr_suspend_mem_mode
);
2237 status
= device_create_file(dev
,
2238 &dev_attr_suspend_disk_mode
);
2247 * regulator_register - register regulator
2248 * @regulator_desc: regulator to register
2249 * @dev: struct device for the regulator
2250 * @init_data: platform provided init data, passed through by driver
2251 * @driver_data: private regulator data
2253 * Called by regulator drivers to register a regulator.
2254 * Returns 0 on success.
2256 struct regulator_dev
*regulator_register(struct regulator_desc
*regulator_desc
,
2257 struct device
*dev
, struct regulator_init_data
*init_data
,
2260 static atomic_t regulator_no
= ATOMIC_INIT(0);
2261 struct regulator_dev
*rdev
;
2264 if (regulator_desc
== NULL
)
2265 return ERR_PTR(-EINVAL
);
2267 if (regulator_desc
->name
== NULL
|| regulator_desc
->ops
== NULL
)
2268 return ERR_PTR(-EINVAL
);
2270 if (regulator_desc
->type
!= REGULATOR_VOLTAGE
&&
2271 regulator_desc
->type
!= REGULATOR_CURRENT
)
2272 return ERR_PTR(-EINVAL
);
2275 return ERR_PTR(-EINVAL
);
2277 rdev
= kzalloc(sizeof(struct regulator_dev
), GFP_KERNEL
);
2279 return ERR_PTR(-ENOMEM
);
2281 mutex_lock(®ulator_list_mutex
);
2283 mutex_init(&rdev
->mutex
);
2284 rdev
->reg_data
= driver_data
;
2285 rdev
->owner
= regulator_desc
->owner
;
2286 rdev
->desc
= regulator_desc
;
2287 INIT_LIST_HEAD(&rdev
->consumer_list
);
2288 INIT_LIST_HEAD(&rdev
->supply_list
);
2289 INIT_LIST_HEAD(&rdev
->list
);
2290 INIT_LIST_HEAD(&rdev
->slist
);
2291 BLOCKING_INIT_NOTIFIER_HEAD(&rdev
->notifier
);
2293 /* preform any regulator specific init */
2294 if (init_data
->regulator_init
) {
2295 ret
= init_data
->regulator_init(rdev
->reg_data
);
2300 /* register with sysfs */
2301 rdev
->dev
.class = ®ulator_class
;
2302 rdev
->dev
.parent
= dev
;
2303 dev_set_name(&rdev
->dev
, "regulator.%d",
2304 atomic_inc_return(®ulator_no
) - 1);
2305 ret
= device_register(&rdev
->dev
);
2309 dev_set_drvdata(&rdev
->dev
, rdev
);
2311 /* set regulator constraints */
2312 ret
= set_machine_constraints(rdev
, &init_data
->constraints
);
2316 /* add attributes supported by this regulator */
2317 ret
= add_regulator_attributes(rdev
);
2321 /* set supply regulator if it exists */
2322 if (init_data
->supply_regulator
&& init_data
->supply_regulator_dev
) {
2324 "Supply regulator specified by both name and dev\n");
2328 if (init_data
->supply_regulator
) {
2329 struct regulator_dev
*r
;
2332 list_for_each_entry(r
, ®ulator_list
, list
) {
2333 if (strcmp(rdev_get_name(r
),
2334 init_data
->supply_regulator
) == 0) {
2341 dev_err(dev
, "Failed to find supply %s\n",
2342 init_data
->supply_regulator
);
2346 ret
= set_supply(rdev
, r
);
2351 if (init_data
->supply_regulator_dev
) {
2352 dev_warn(dev
, "Uses supply_regulator_dev instead of regulator_supply\n");
2353 ret
= set_supply(rdev
,
2354 dev_get_drvdata(init_data
->supply_regulator_dev
));
2359 /* add consumers devices */
2360 for (i
= 0; i
< init_data
->num_consumer_supplies
; i
++) {
2361 ret
= set_consumer_device_supply(rdev
,
2362 init_data
->consumer_supplies
[i
].dev
,
2363 init_data
->consumer_supplies
[i
].dev_name
,
2364 init_data
->consumer_supplies
[i
].supply
);
2366 goto unset_supplies
;
2369 list_add(&rdev
->list
, ®ulator_list
);
2371 mutex_unlock(®ulator_list_mutex
);
2375 unset_regulator_supplies(rdev
);
2378 device_unregister(&rdev
->dev
);
2379 /* device core frees rdev */
2380 rdev
= ERR_PTR(ret
);
2385 rdev
= ERR_PTR(ret
);
2388 EXPORT_SYMBOL_GPL(regulator_register
);
2391 * regulator_unregister - unregister regulator
2392 * @rdev: regulator to unregister
2394 * Called by regulator drivers to unregister a regulator.
2396 void regulator_unregister(struct regulator_dev
*rdev
)
2401 mutex_lock(®ulator_list_mutex
);
2402 WARN_ON(rdev
->open_count
);
2403 unset_regulator_supplies(rdev
);
2404 list_del(&rdev
->list
);
2406 sysfs_remove_link(&rdev
->dev
.kobj
, "supply");
2407 device_unregister(&rdev
->dev
);
2408 mutex_unlock(®ulator_list_mutex
);
2410 EXPORT_SYMBOL_GPL(regulator_unregister
);
2413 * regulator_suspend_prepare - prepare regulators for system wide suspend
2414 * @state: system suspend state
2416 * Configure each regulator with it's suspend operating parameters for state.
2417 * This will usually be called by machine suspend code prior to supending.
2419 int regulator_suspend_prepare(suspend_state_t state
)
2421 struct regulator_dev
*rdev
;
2424 /* ON is handled by regulator active state */
2425 if (state
== PM_SUSPEND_ON
)
2428 mutex_lock(®ulator_list_mutex
);
2429 list_for_each_entry(rdev
, ®ulator_list
, list
) {
2431 mutex_lock(&rdev
->mutex
);
2432 ret
= suspend_prepare(rdev
, state
);
2433 mutex_unlock(&rdev
->mutex
);
2436 printk(KERN_ERR
"%s: failed to prepare %s\n",
2437 __func__
, rdev_get_name(rdev
));
2442 mutex_unlock(®ulator_list_mutex
);
2445 EXPORT_SYMBOL_GPL(regulator_suspend_prepare
);
2448 * regulator_has_full_constraints - the system has fully specified constraints
2450 * Calling this function will cause the regulator API to disable all
2451 * regulators which have a zero use count and don't have an always_on
2452 * constraint in a late_initcall.
2454 * The intention is that this will become the default behaviour in a
2455 * future kernel release so users are encouraged to use this facility
2458 void regulator_has_full_constraints(void)
2460 has_full_constraints
= 1;
2462 EXPORT_SYMBOL_GPL(regulator_has_full_constraints
);
2465 * rdev_get_drvdata - get rdev regulator driver data
2468 * Get rdev regulator driver private data. This call can be used in the
2469 * regulator driver context.
2471 void *rdev_get_drvdata(struct regulator_dev
*rdev
)
2473 return rdev
->reg_data
;
2475 EXPORT_SYMBOL_GPL(rdev_get_drvdata
);
2478 * regulator_get_drvdata - get regulator driver data
2479 * @regulator: regulator
2481 * Get regulator driver private data. This call can be used in the consumer
2482 * driver context when non API regulator specific functions need to be called.
2484 void *regulator_get_drvdata(struct regulator
*regulator
)
2486 return regulator
->rdev
->reg_data
;
2488 EXPORT_SYMBOL_GPL(regulator_get_drvdata
);
2491 * regulator_set_drvdata - set regulator driver data
2492 * @regulator: regulator
2495 void regulator_set_drvdata(struct regulator
*regulator
, void *data
)
2497 regulator
->rdev
->reg_data
= data
;
2499 EXPORT_SYMBOL_GPL(regulator_set_drvdata
);
2502 * regulator_get_id - get regulator ID
2505 int rdev_get_id(struct regulator_dev
*rdev
)
2507 return rdev
->desc
->id
;
2509 EXPORT_SYMBOL_GPL(rdev_get_id
);
2511 struct device
*rdev_get_dev(struct regulator_dev
*rdev
)
2515 EXPORT_SYMBOL_GPL(rdev_get_dev
);
2517 void *regulator_get_init_drvdata(struct regulator_init_data
*reg_init_data
)
2519 return reg_init_data
->driver_data
;
2521 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata
);
2523 static int __init
regulator_init(void)
2527 printk(KERN_INFO
"regulator: core version %s\n", REGULATOR_VERSION
);
2529 ret
= class_register(®ulator_class
);
2531 regulator_dummy_init();
2536 /* init early to allow our consumers to complete system booting */
2537 core_initcall(regulator_init
);
2539 static int __init
regulator_init_complete(void)
2541 struct regulator_dev
*rdev
;
2542 struct regulator_ops
*ops
;
2543 struct regulation_constraints
*c
;
2547 mutex_lock(®ulator_list_mutex
);
2549 /* If we have a full configuration then disable any regulators
2550 * which are not in use or always_on. This will become the
2551 * default behaviour in the future.
2553 list_for_each_entry(rdev
, ®ulator_list
, list
) {
2554 ops
= rdev
->desc
->ops
;
2555 c
= rdev
->constraints
;
2557 name
= rdev_get_name(rdev
);
2559 if (!ops
->disable
|| (c
&& c
->always_on
))
2562 mutex_lock(&rdev
->mutex
);
2564 if (rdev
->use_count
)
2567 /* If we can't read the status assume it's on. */
2568 if (ops
->is_enabled
)
2569 enabled
= ops
->is_enabled(rdev
);
2576 if (has_full_constraints
) {
2577 /* We log since this may kill the system if it
2579 printk(KERN_INFO
"%s: disabling %s\n",
2581 ret
= ops
->disable(rdev
);
2584 "%s: couldn't disable %s: %d\n",
2585 __func__
, name
, ret
);
2588 /* The intention is that in future we will
2589 * assume that full constraints are provided
2590 * so warn even if we aren't going to do
2594 "%s: incomplete constraints, leaving %s on\n",
2599 mutex_unlock(&rdev
->mutex
);
2602 mutex_unlock(®ulator_list_mutex
);
2606 late_initcall(regulator_init_complete
);