2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_types.h"
24 #include "xfs_trans.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_error.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_dir2_sf.h"
35 #include "xfs_attr_sf.h"
36 #include "xfs_dinode.h"
37 #include "xfs_inode.h"
38 #include "xfs_inode_item.h"
39 #include "xfs_alloc.h"
40 #include "xfs_ialloc.h"
41 #include "xfs_log_priv.h"
42 #include "xfs_buf_item.h"
43 #include "xfs_log_recover.h"
44 #include "xfs_extfree_item.h"
45 #include "xfs_trans_priv.h"
46 #include "xfs_quota.h"
48 #include "xfs_utils.h"
50 STATIC
int xlog_find_zeroed(xlog_t
*, xfs_daddr_t
*);
51 STATIC
int xlog_clear_stale_blocks(xlog_t
*, xfs_lsn_t
);
52 STATIC
void xlog_recover_insert_item_backq(xlog_recover_item_t
**q
,
53 xlog_recover_item_t
*item
);
55 STATIC
void xlog_recover_check_summary(xlog_t
*);
57 #define xlog_recover_check_summary(log)
62 * Sector aligned buffer routines for buffer create/read/write/access
65 #define XLOG_SECTOR_ROUNDUP_BBCOUNT(log, bbs) \
66 ( ((log)->l_sectbb_mask && (bbs & (log)->l_sectbb_mask)) ? \
67 ((bbs + (log)->l_sectbb_mask + 1) & ~(log)->l_sectbb_mask) : (bbs) )
68 #define XLOG_SECTOR_ROUNDDOWN_BLKNO(log, bno) ((bno) & ~(log)->l_sectbb_mask)
75 if (nbblks
<= 0 || nbblks
> log
->l_logBBsize
) {
76 xlog_warn("XFS: Invalid block length (0x%x) given for buffer", nbblks
);
77 XFS_ERROR_REPORT("xlog_get_bp(1)",
78 XFS_ERRLEVEL_HIGH
, log
->l_mp
);
82 if (log
->l_sectbb_log
) {
84 nbblks
+= XLOG_SECTOR_ROUNDUP_BBCOUNT(log
, 1);
85 nbblks
= XLOG_SECTOR_ROUNDUP_BBCOUNT(log
, nbblks
);
87 return xfs_buf_get_noaddr(BBTOB(nbblks
), log
->l_mp
->m_logdev_targp
);
106 if (!log
->l_sectbb_log
)
107 return XFS_BUF_PTR(bp
);
109 ptr
= XFS_BUF_PTR(bp
) + BBTOB((int)blk_no
& log
->l_sectbb_mask
);
110 ASSERT(XFS_BUF_SIZE(bp
) >=
111 BBTOB(nbblks
+ (blk_no
& log
->l_sectbb_mask
)));
117 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
128 if (nbblks
<= 0 || nbblks
> log
->l_logBBsize
) {
129 xlog_warn("XFS: Invalid block length (0x%x) given for buffer", nbblks
);
130 XFS_ERROR_REPORT("xlog_bread(1)",
131 XFS_ERRLEVEL_HIGH
, log
->l_mp
);
135 if (log
->l_sectbb_log
) {
136 blk_no
= XLOG_SECTOR_ROUNDDOWN_BLKNO(log
, blk_no
);
137 nbblks
= XLOG_SECTOR_ROUNDUP_BBCOUNT(log
, nbblks
);
141 ASSERT(BBTOB(nbblks
) <= XFS_BUF_SIZE(bp
));
144 XFS_BUF_SET_ADDR(bp
, log
->l_logBBstart
+ blk_no
);
147 XFS_BUF_SET_COUNT(bp
, BBTOB(nbblks
));
148 XFS_BUF_SET_TARGET(bp
, log
->l_mp
->m_logdev_targp
);
150 xfsbdstrat(log
->l_mp
, bp
);
151 error
= xfs_iowait(bp
);
153 xfs_ioerror_alert("xlog_bread", log
->l_mp
,
154 bp
, XFS_BUF_ADDR(bp
));
168 error
= xlog_bread_noalign(log
, blk_no
, nbblks
, bp
);
172 *offset
= xlog_align(log
, blk_no
, nbblks
, bp
);
177 * Write out the buffer at the given block for the given number of blocks.
178 * The buffer is kept locked across the write and is returned locked.
179 * This can only be used for synchronous log writes.
190 if (nbblks
<= 0 || nbblks
> log
->l_logBBsize
) {
191 xlog_warn("XFS: Invalid block length (0x%x) given for buffer", nbblks
);
192 XFS_ERROR_REPORT("xlog_bwrite(1)",
193 XFS_ERRLEVEL_HIGH
, log
->l_mp
);
197 if (log
->l_sectbb_log
) {
198 blk_no
= XLOG_SECTOR_ROUNDDOWN_BLKNO(log
, blk_no
);
199 nbblks
= XLOG_SECTOR_ROUNDUP_BBCOUNT(log
, nbblks
);
203 ASSERT(BBTOB(nbblks
) <= XFS_BUF_SIZE(bp
));
205 XFS_BUF_SET_ADDR(bp
, log
->l_logBBstart
+ blk_no
);
206 XFS_BUF_ZEROFLAGS(bp
);
209 XFS_BUF_PSEMA(bp
, PRIBIO
);
210 XFS_BUF_SET_COUNT(bp
, BBTOB(nbblks
));
211 XFS_BUF_SET_TARGET(bp
, log
->l_mp
->m_logdev_targp
);
213 if ((error
= xfs_bwrite(log
->l_mp
, bp
)))
214 xfs_ioerror_alert("xlog_bwrite", log
->l_mp
,
215 bp
, XFS_BUF_ADDR(bp
));
221 * dump debug superblock and log record information
224 xlog_header_check_dump(
226 xlog_rec_header_t
*head
)
230 cmn_err(CE_DEBUG
, "%s: SB : uuid = ", __func__
);
231 for (b
= 0; b
< 16; b
++)
232 cmn_err(CE_DEBUG
, "%02x", ((__uint8_t
*)&mp
->m_sb
.sb_uuid
)[b
]);
233 cmn_err(CE_DEBUG
, ", fmt = %d\n", XLOG_FMT
);
234 cmn_err(CE_DEBUG
, " log : uuid = ");
235 for (b
= 0; b
< 16; b
++)
236 cmn_err(CE_DEBUG
, "%02x", ((__uint8_t
*)&head
->h_fs_uuid
)[b
]);
237 cmn_err(CE_DEBUG
, ", fmt = %d\n", be32_to_cpu(head
->h_fmt
));
240 #define xlog_header_check_dump(mp, head)
244 * check log record header for recovery
247 xlog_header_check_recover(
249 xlog_rec_header_t
*head
)
251 ASSERT(be32_to_cpu(head
->h_magicno
) == XLOG_HEADER_MAGIC_NUM
);
254 * IRIX doesn't write the h_fmt field and leaves it zeroed
255 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
256 * a dirty log created in IRIX.
258 if (unlikely(be32_to_cpu(head
->h_fmt
) != XLOG_FMT
)) {
260 "XFS: dirty log written in incompatible format - can't recover");
261 xlog_header_check_dump(mp
, head
);
262 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
263 XFS_ERRLEVEL_HIGH
, mp
);
264 return XFS_ERROR(EFSCORRUPTED
);
265 } else if (unlikely(!uuid_equal(&mp
->m_sb
.sb_uuid
, &head
->h_fs_uuid
))) {
267 "XFS: dirty log entry has mismatched uuid - can't recover");
268 xlog_header_check_dump(mp
, head
);
269 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
270 XFS_ERRLEVEL_HIGH
, mp
);
271 return XFS_ERROR(EFSCORRUPTED
);
277 * read the head block of the log and check the header
280 xlog_header_check_mount(
282 xlog_rec_header_t
*head
)
284 ASSERT(be32_to_cpu(head
->h_magicno
) == XLOG_HEADER_MAGIC_NUM
);
286 if (uuid_is_nil(&head
->h_fs_uuid
)) {
288 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
289 * h_fs_uuid is nil, we assume this log was last mounted
290 * by IRIX and continue.
292 xlog_warn("XFS: nil uuid in log - IRIX style log");
293 } else if (unlikely(!uuid_equal(&mp
->m_sb
.sb_uuid
, &head
->h_fs_uuid
))) {
294 xlog_warn("XFS: log has mismatched uuid - can't recover");
295 xlog_header_check_dump(mp
, head
);
296 XFS_ERROR_REPORT("xlog_header_check_mount",
297 XFS_ERRLEVEL_HIGH
, mp
);
298 return XFS_ERROR(EFSCORRUPTED
);
307 if (XFS_BUF_GETERROR(bp
)) {
309 * We're not going to bother about retrying
310 * this during recovery. One strike!
312 xfs_ioerror_alert("xlog_recover_iodone",
313 bp
->b_mount
, bp
, XFS_BUF_ADDR(bp
));
314 xfs_force_shutdown(bp
->b_mount
, SHUTDOWN_META_IO_ERROR
);
317 XFS_BUF_CLR_IODONE_FUNC(bp
);
322 * This routine finds (to an approximation) the first block in the physical
323 * log which contains the given cycle. It uses a binary search algorithm.
324 * Note that the algorithm can not be perfect because the disk will not
325 * necessarily be perfect.
328 xlog_find_cycle_start(
331 xfs_daddr_t first_blk
,
332 xfs_daddr_t
*last_blk
,
340 mid_blk
= BLK_AVG(first_blk
, *last_blk
);
341 while (mid_blk
!= first_blk
&& mid_blk
!= *last_blk
) {
342 error
= xlog_bread(log
, mid_blk
, 1, bp
, &offset
);
345 mid_cycle
= xlog_get_cycle(offset
);
346 if (mid_cycle
== cycle
) {
348 /* last_half_cycle == mid_cycle */
351 /* first_half_cycle == mid_cycle */
353 mid_blk
= BLK_AVG(first_blk
, *last_blk
);
355 ASSERT((mid_blk
== first_blk
&& mid_blk
+1 == *last_blk
) ||
356 (mid_blk
== *last_blk
&& mid_blk
-1 == first_blk
));
362 * Check that the range of blocks does not contain the cycle number
363 * given. The scan needs to occur from front to back and the ptr into the
364 * region must be updated since a later routine will need to perform another
365 * test. If the region is completely good, we end up returning the same
368 * Set blkno to -1 if we encounter no errors. This is an invalid block number
369 * since we don't ever expect logs to get this large.
372 xlog_find_verify_cycle(
374 xfs_daddr_t start_blk
,
376 uint stop_on_cycle_no
,
377 xfs_daddr_t
*new_blk
)
383 xfs_caddr_t buf
= NULL
;
386 bufblks
= 1 << ffs(nbblks
);
388 while (!(bp
= xlog_get_bp(log
, bufblks
))) {
389 /* can't get enough memory to do everything in one big buffer */
391 if (bufblks
<= log
->l_sectbb_log
)
395 for (i
= start_blk
; i
< start_blk
+ nbblks
; i
+= bufblks
) {
398 bcount
= min(bufblks
, (start_blk
+ nbblks
- i
));
400 error
= xlog_bread(log
, i
, bcount
, bp
, &buf
);
404 for (j
= 0; j
< bcount
; j
++) {
405 cycle
= xlog_get_cycle(buf
);
406 if (cycle
== stop_on_cycle_no
) {
423 * Potentially backup over partial log record write.
425 * In the typical case, last_blk is the number of the block directly after
426 * a good log record. Therefore, we subtract one to get the block number
427 * of the last block in the given buffer. extra_bblks contains the number
428 * of blocks we would have read on a previous read. This happens when the
429 * last log record is split over the end of the physical log.
431 * extra_bblks is the number of blocks potentially verified on a previous
432 * call to this routine.
435 xlog_find_verify_log_record(
437 xfs_daddr_t start_blk
,
438 xfs_daddr_t
*last_blk
,
443 xfs_caddr_t offset
= NULL
;
444 xlog_rec_header_t
*head
= NULL
;
447 int num_blks
= *last_blk
- start_blk
;
450 ASSERT(start_blk
!= 0 || *last_blk
!= start_blk
);
452 if (!(bp
= xlog_get_bp(log
, num_blks
))) {
453 if (!(bp
= xlog_get_bp(log
, 1)))
457 error
= xlog_bread(log
, start_blk
, num_blks
, bp
, &offset
);
460 offset
+= ((num_blks
- 1) << BBSHIFT
);
463 for (i
= (*last_blk
) - 1; i
>= 0; i
--) {
465 /* valid log record not found */
467 "XFS: Log inconsistent (didn't find previous header)");
469 error
= XFS_ERROR(EIO
);
474 error
= xlog_bread(log
, i
, 1, bp
, &offset
);
479 head
= (xlog_rec_header_t
*)offset
;
481 if (XLOG_HEADER_MAGIC_NUM
== be32_to_cpu(head
->h_magicno
))
489 * We hit the beginning of the physical log & still no header. Return
490 * to caller. If caller can handle a return of -1, then this routine
491 * will be called again for the end of the physical log.
499 * We have the final block of the good log (the first block
500 * of the log record _before_ the head. So we check the uuid.
502 if ((error
= xlog_header_check_mount(log
->l_mp
, head
)))
506 * We may have found a log record header before we expected one.
507 * last_blk will be the 1st block # with a given cycle #. We may end
508 * up reading an entire log record. In this case, we don't want to
509 * reset last_blk. Only when last_blk points in the middle of a log
510 * record do we update last_blk.
512 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
513 uint h_size
= be32_to_cpu(head
->h_size
);
515 xhdrs
= h_size
/ XLOG_HEADER_CYCLE_SIZE
;
516 if (h_size
% XLOG_HEADER_CYCLE_SIZE
)
522 if (*last_blk
- i
+ extra_bblks
!=
523 BTOBB(be32_to_cpu(head
->h_len
)) + xhdrs
)
532 * Head is defined to be the point of the log where the next log write
533 * write could go. This means that incomplete LR writes at the end are
534 * eliminated when calculating the head. We aren't guaranteed that previous
535 * LR have complete transactions. We only know that a cycle number of
536 * current cycle number -1 won't be present in the log if we start writing
537 * from our current block number.
539 * last_blk contains the block number of the first block with a given
542 * Return: zero if normal, non-zero if error.
547 xfs_daddr_t
*return_head_blk
)
551 xfs_daddr_t new_blk
, first_blk
, start_blk
, last_blk
, head_blk
;
553 uint first_half_cycle
, last_half_cycle
;
555 int error
, log_bbnum
= log
->l_logBBsize
;
557 /* Is the end of the log device zeroed? */
558 if ((error
= xlog_find_zeroed(log
, &first_blk
)) == -1) {
559 *return_head_blk
= first_blk
;
561 /* Is the whole lot zeroed? */
563 /* Linux XFS shouldn't generate totally zeroed logs -
564 * mkfs etc write a dummy unmount record to a fresh
565 * log so we can store the uuid in there
567 xlog_warn("XFS: totally zeroed log");
572 xlog_warn("XFS: empty log check failed");
576 first_blk
= 0; /* get cycle # of 1st block */
577 bp
= xlog_get_bp(log
, 1);
581 error
= xlog_bread(log
, 0, 1, bp
, &offset
);
585 first_half_cycle
= xlog_get_cycle(offset
);
587 last_blk
= head_blk
= log_bbnum
- 1; /* get cycle # of last block */
588 error
= xlog_bread(log
, last_blk
, 1, bp
, &offset
);
592 last_half_cycle
= xlog_get_cycle(offset
);
593 ASSERT(last_half_cycle
!= 0);
596 * If the 1st half cycle number is equal to the last half cycle number,
597 * then the entire log is stamped with the same cycle number. In this
598 * case, head_blk can't be set to zero (which makes sense). The below
599 * math doesn't work out properly with head_blk equal to zero. Instead,
600 * we set it to log_bbnum which is an invalid block number, but this
601 * value makes the math correct. If head_blk doesn't changed through
602 * all the tests below, *head_blk is set to zero at the very end rather
603 * than log_bbnum. In a sense, log_bbnum and zero are the same block
604 * in a circular file.
606 if (first_half_cycle
== last_half_cycle
) {
608 * In this case we believe that the entire log should have
609 * cycle number last_half_cycle. We need to scan backwards
610 * from the end verifying that there are no holes still
611 * containing last_half_cycle - 1. If we find such a hole,
612 * then the start of that hole will be the new head. The
613 * simple case looks like
614 * x | x ... | x - 1 | x
615 * Another case that fits this picture would be
616 * x | x + 1 | x ... | x
617 * In this case the head really is somewhere at the end of the
618 * log, as one of the latest writes at the beginning was
621 * x | x + 1 | x ... | x - 1 | x
622 * This is really the combination of the above two cases, and
623 * the head has to end up at the start of the x-1 hole at the
626 * In the 256k log case, we will read from the beginning to the
627 * end of the log and search for cycle numbers equal to x-1.
628 * We don't worry about the x+1 blocks that we encounter,
629 * because we know that they cannot be the head since the log
632 head_blk
= log_bbnum
;
633 stop_on_cycle
= last_half_cycle
- 1;
636 * In this case we want to find the first block with cycle
637 * number matching last_half_cycle. We expect the log to be
640 * The first block with cycle number x (last_half_cycle) will
641 * be where the new head belongs. First we do a binary search
642 * for the first occurrence of last_half_cycle. The binary
643 * search may not be totally accurate, so then we scan back
644 * from there looking for occurrences of last_half_cycle before
645 * us. If that backwards scan wraps around the beginning of
646 * the log, then we look for occurrences of last_half_cycle - 1
647 * at the end of the log. The cases we're looking for look
649 * x + 1 ... | x | x + 1 | x ...
650 * ^ binary search stopped here
652 * x + 1 ... | x ... | x - 1 | x
653 * <---------> less than scan distance
655 stop_on_cycle
= last_half_cycle
;
656 if ((error
= xlog_find_cycle_start(log
, bp
, first_blk
,
657 &head_blk
, last_half_cycle
)))
662 * Now validate the answer. Scan back some number of maximum possible
663 * blocks and make sure each one has the expected cycle number. The
664 * maximum is determined by the total possible amount of buffering
665 * in the in-core log. The following number can be made tighter if
666 * we actually look at the block size of the filesystem.
668 num_scan_bblks
= XLOG_TOTAL_REC_SHIFT(log
);
669 if (head_blk
>= num_scan_bblks
) {
671 * We are guaranteed that the entire check can be performed
674 start_blk
= head_blk
- num_scan_bblks
;
675 if ((error
= xlog_find_verify_cycle(log
,
676 start_blk
, num_scan_bblks
,
677 stop_on_cycle
, &new_blk
)))
681 } else { /* need to read 2 parts of log */
683 * We are going to scan backwards in the log in two parts.
684 * First we scan the physical end of the log. In this part
685 * of the log, we are looking for blocks with cycle number
686 * last_half_cycle - 1.
687 * If we find one, then we know that the log starts there, as
688 * we've found a hole that didn't get written in going around
689 * the end of the physical log. The simple case for this is
690 * x + 1 ... | x ... | x - 1 | x
691 * <---------> less than scan distance
692 * If all of the blocks at the end of the log have cycle number
693 * last_half_cycle, then we check the blocks at the start of
694 * the log looking for occurrences of last_half_cycle. If we
695 * find one, then our current estimate for the location of the
696 * first occurrence of last_half_cycle is wrong and we move
697 * back to the hole we've found. This case looks like
698 * x + 1 ... | x | x + 1 | x ...
699 * ^ binary search stopped here
700 * Another case we need to handle that only occurs in 256k
702 * x + 1 ... | x ... | x+1 | x ...
703 * ^ binary search stops here
704 * In a 256k log, the scan at the end of the log will see the
705 * x + 1 blocks. We need to skip past those since that is
706 * certainly not the head of the log. By searching for
707 * last_half_cycle-1 we accomplish that.
709 start_blk
= log_bbnum
- num_scan_bblks
+ head_blk
;
710 ASSERT(head_blk
<= INT_MAX
&&
711 (xfs_daddr_t
) num_scan_bblks
- head_blk
>= 0);
712 if ((error
= xlog_find_verify_cycle(log
, start_blk
,
713 num_scan_bblks
- (int)head_blk
,
714 (stop_on_cycle
- 1), &new_blk
)))
722 * Scan beginning of log now. The last part of the physical
723 * log is good. This scan needs to verify that it doesn't find
724 * the last_half_cycle.
727 ASSERT(head_blk
<= INT_MAX
);
728 if ((error
= xlog_find_verify_cycle(log
,
729 start_blk
, (int)head_blk
,
730 stop_on_cycle
, &new_blk
)))
738 * Now we need to make sure head_blk is not pointing to a block in
739 * the middle of a log record.
741 num_scan_bblks
= XLOG_REC_SHIFT(log
);
742 if (head_blk
>= num_scan_bblks
) {
743 start_blk
= head_blk
- num_scan_bblks
; /* don't read head_blk */
745 /* start ptr at last block ptr before head_blk */
746 if ((error
= xlog_find_verify_log_record(log
, start_blk
,
747 &head_blk
, 0)) == -1) {
748 error
= XFS_ERROR(EIO
);
754 ASSERT(head_blk
<= INT_MAX
);
755 if ((error
= xlog_find_verify_log_record(log
, start_blk
,
756 &head_blk
, 0)) == -1) {
757 /* We hit the beginning of the log during our search */
758 start_blk
= log_bbnum
- num_scan_bblks
+ head_blk
;
760 ASSERT(start_blk
<= INT_MAX
&&
761 (xfs_daddr_t
) log_bbnum
-start_blk
>= 0);
762 ASSERT(head_blk
<= INT_MAX
);
763 if ((error
= xlog_find_verify_log_record(log
,
765 (int)head_blk
)) == -1) {
766 error
= XFS_ERROR(EIO
);
770 if (new_blk
!= log_bbnum
)
777 if (head_blk
== log_bbnum
)
778 *return_head_blk
= 0;
780 *return_head_blk
= head_blk
;
782 * When returning here, we have a good block number. Bad block
783 * means that during a previous crash, we didn't have a clean break
784 * from cycle number N to cycle number N-1. In this case, we need
785 * to find the first block with cycle number N-1.
793 xlog_warn("XFS: failed to find log head");
798 * Find the sync block number or the tail of the log.
800 * This will be the block number of the last record to have its
801 * associated buffers synced to disk. Every log record header has
802 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
803 * to get a sync block number. The only concern is to figure out which
804 * log record header to believe.
806 * The following algorithm uses the log record header with the largest
807 * lsn. The entire log record does not need to be valid. We only care
808 * that the header is valid.
810 * We could speed up search by using current head_blk buffer, but it is not
816 xfs_daddr_t
*head_blk
,
817 xfs_daddr_t
*tail_blk
)
819 xlog_rec_header_t
*rhead
;
820 xlog_op_header_t
*op_head
;
821 xfs_caddr_t offset
= NULL
;
824 xfs_daddr_t umount_data_blk
;
825 xfs_daddr_t after_umount_blk
;
832 * Find previous log record
834 if ((error
= xlog_find_head(log
, head_blk
)))
837 bp
= xlog_get_bp(log
, 1);
840 if (*head_blk
== 0) { /* special case */
841 error
= xlog_bread(log
, 0, 1, bp
, &offset
);
845 if (xlog_get_cycle(offset
) == 0) {
847 /* leave all other log inited values alone */
853 * Search backwards looking for log record header block
855 ASSERT(*head_blk
< INT_MAX
);
856 for (i
= (int)(*head_blk
) - 1; i
>= 0; i
--) {
857 error
= xlog_bread(log
, i
, 1, bp
, &offset
);
861 if (XLOG_HEADER_MAGIC_NUM
== be32_to_cpu(*(__be32
*)offset
)) {
867 * If we haven't found the log record header block, start looking
868 * again from the end of the physical log. XXXmiken: There should be
869 * a check here to make sure we didn't search more than N blocks in
873 for (i
= log
->l_logBBsize
- 1; i
>= (int)(*head_blk
); i
--) {
874 error
= xlog_bread(log
, i
, 1, bp
, &offset
);
878 if (XLOG_HEADER_MAGIC_NUM
==
879 be32_to_cpu(*(__be32
*)offset
)) {
886 xlog_warn("XFS: xlog_find_tail: couldn't find sync record");
888 return XFS_ERROR(EIO
);
891 /* find blk_no of tail of log */
892 rhead
= (xlog_rec_header_t
*)offset
;
893 *tail_blk
= BLOCK_LSN(be64_to_cpu(rhead
->h_tail_lsn
));
896 * Reset log values according to the state of the log when we
897 * crashed. In the case where head_blk == 0, we bump curr_cycle
898 * one because the next write starts a new cycle rather than
899 * continuing the cycle of the last good log record. At this
900 * point we have guaranteed that all partial log records have been
901 * accounted for. Therefore, we know that the last good log record
902 * written was complete and ended exactly on the end boundary
903 * of the physical log.
905 log
->l_prev_block
= i
;
906 log
->l_curr_block
= (int)*head_blk
;
907 log
->l_curr_cycle
= be32_to_cpu(rhead
->h_cycle
);
910 log
->l_tail_lsn
= be64_to_cpu(rhead
->h_tail_lsn
);
911 log
->l_last_sync_lsn
= be64_to_cpu(rhead
->h_lsn
);
912 log
->l_grant_reserve_cycle
= log
->l_curr_cycle
;
913 log
->l_grant_reserve_bytes
= BBTOB(log
->l_curr_block
);
914 log
->l_grant_write_cycle
= log
->l_curr_cycle
;
915 log
->l_grant_write_bytes
= BBTOB(log
->l_curr_block
);
918 * Look for unmount record. If we find it, then we know there
919 * was a clean unmount. Since 'i' could be the last block in
920 * the physical log, we convert to a log block before comparing
923 * Save the current tail lsn to use to pass to
924 * xlog_clear_stale_blocks() below. We won't want to clear the
925 * unmount record if there is one, so we pass the lsn of the
926 * unmount record rather than the block after it.
928 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
929 int h_size
= be32_to_cpu(rhead
->h_size
);
930 int h_version
= be32_to_cpu(rhead
->h_version
);
932 if ((h_version
& XLOG_VERSION_2
) &&
933 (h_size
> XLOG_HEADER_CYCLE_SIZE
)) {
934 hblks
= h_size
/ XLOG_HEADER_CYCLE_SIZE
;
935 if (h_size
% XLOG_HEADER_CYCLE_SIZE
)
943 after_umount_blk
= (i
+ hblks
+ (int)
944 BTOBB(be32_to_cpu(rhead
->h_len
))) % log
->l_logBBsize
;
945 tail_lsn
= log
->l_tail_lsn
;
946 if (*head_blk
== after_umount_blk
&&
947 be32_to_cpu(rhead
->h_num_logops
) == 1) {
948 umount_data_blk
= (i
+ hblks
) % log
->l_logBBsize
;
949 error
= xlog_bread(log
, umount_data_blk
, 1, bp
, &offset
);
953 op_head
= (xlog_op_header_t
*)offset
;
954 if (op_head
->oh_flags
& XLOG_UNMOUNT_TRANS
) {
956 * Set tail and last sync so that newly written
957 * log records will point recovery to after the
958 * current unmount record.
961 xlog_assign_lsn(log
->l_curr_cycle
,
963 log
->l_last_sync_lsn
=
964 xlog_assign_lsn(log
->l_curr_cycle
,
966 *tail_blk
= after_umount_blk
;
969 * Note that the unmount was clean. If the unmount
970 * was not clean, we need to know this to rebuild the
971 * superblock counters from the perag headers if we
972 * have a filesystem using non-persistent counters.
974 log
->l_mp
->m_flags
|= XFS_MOUNT_WAS_CLEAN
;
979 * Make sure that there are no blocks in front of the head
980 * with the same cycle number as the head. This can happen
981 * because we allow multiple outstanding log writes concurrently,
982 * and the later writes might make it out before earlier ones.
984 * We use the lsn from before modifying it so that we'll never
985 * overwrite the unmount record after a clean unmount.
987 * Do this only if we are going to recover the filesystem
989 * NOTE: This used to say "if (!readonly)"
990 * However on Linux, we can & do recover a read-only filesystem.
991 * We only skip recovery if NORECOVERY is specified on mount,
992 * in which case we would not be here.
994 * But... if the -device- itself is readonly, just skip this.
995 * We can't recover this device anyway, so it won't matter.
997 if (!xfs_readonly_buftarg(log
->l_mp
->m_logdev_targp
)) {
998 error
= xlog_clear_stale_blocks(log
, tail_lsn
);
1006 xlog_warn("XFS: failed to locate log tail");
1011 * Is the log zeroed at all?
1013 * The last binary search should be changed to perform an X block read
1014 * once X becomes small enough. You can then search linearly through
1015 * the X blocks. This will cut down on the number of reads we need to do.
1017 * If the log is partially zeroed, this routine will pass back the blkno
1018 * of the first block with cycle number 0. It won't have a complete LR
1022 * 0 => the log is completely written to
1023 * -1 => use *blk_no as the first block of the log
1024 * >0 => error has occurred
1029 xfs_daddr_t
*blk_no
)
1033 uint first_cycle
, last_cycle
;
1034 xfs_daddr_t new_blk
, last_blk
, start_blk
;
1035 xfs_daddr_t num_scan_bblks
;
1036 int error
, log_bbnum
= log
->l_logBBsize
;
1040 /* check totally zeroed log */
1041 bp
= xlog_get_bp(log
, 1);
1044 error
= xlog_bread(log
, 0, 1, bp
, &offset
);
1048 first_cycle
= xlog_get_cycle(offset
);
1049 if (first_cycle
== 0) { /* completely zeroed log */
1055 /* check partially zeroed log */
1056 error
= xlog_bread(log
, log_bbnum
-1, 1, bp
, &offset
);
1060 last_cycle
= xlog_get_cycle(offset
);
1061 if (last_cycle
!= 0) { /* log completely written to */
1064 } else if (first_cycle
!= 1) {
1066 * If the cycle of the last block is zero, the cycle of
1067 * the first block must be 1. If it's not, maybe we're
1068 * not looking at a log... Bail out.
1070 xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)");
1071 return XFS_ERROR(EINVAL
);
1074 /* we have a partially zeroed log */
1075 last_blk
= log_bbnum
-1;
1076 if ((error
= xlog_find_cycle_start(log
, bp
, 0, &last_blk
, 0)))
1080 * Validate the answer. Because there is no way to guarantee that
1081 * the entire log is made up of log records which are the same size,
1082 * we scan over the defined maximum blocks. At this point, the maximum
1083 * is not chosen to mean anything special. XXXmiken
1085 num_scan_bblks
= XLOG_TOTAL_REC_SHIFT(log
);
1086 ASSERT(num_scan_bblks
<= INT_MAX
);
1088 if (last_blk
< num_scan_bblks
)
1089 num_scan_bblks
= last_blk
;
1090 start_blk
= last_blk
- num_scan_bblks
;
1093 * We search for any instances of cycle number 0 that occur before
1094 * our current estimate of the head. What we're trying to detect is
1095 * 1 ... | 0 | 1 | 0...
1096 * ^ binary search ends here
1098 if ((error
= xlog_find_verify_cycle(log
, start_blk
,
1099 (int)num_scan_bblks
, 0, &new_blk
)))
1105 * Potentially backup over partial log record write. We don't need
1106 * to search the end of the log because we know it is zero.
1108 if ((error
= xlog_find_verify_log_record(log
, start_blk
,
1109 &last_blk
, 0)) == -1) {
1110 error
= XFS_ERROR(EIO
);
1124 * These are simple subroutines used by xlog_clear_stale_blocks() below
1125 * to initialize a buffer full of empty log record headers and write
1126 * them into the log.
1137 xlog_rec_header_t
*recp
= (xlog_rec_header_t
*)buf
;
1139 memset(buf
, 0, BBSIZE
);
1140 recp
->h_magicno
= cpu_to_be32(XLOG_HEADER_MAGIC_NUM
);
1141 recp
->h_cycle
= cpu_to_be32(cycle
);
1142 recp
->h_version
= cpu_to_be32(
1143 xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
) ? 2 : 1);
1144 recp
->h_lsn
= cpu_to_be64(xlog_assign_lsn(cycle
, block
));
1145 recp
->h_tail_lsn
= cpu_to_be64(xlog_assign_lsn(tail_cycle
, tail_block
));
1146 recp
->h_fmt
= cpu_to_be32(XLOG_FMT
);
1147 memcpy(&recp
->h_fs_uuid
, &log
->l_mp
->m_sb
.sb_uuid
, sizeof(uuid_t
));
1151 xlog_write_log_records(
1162 int sectbb
= XLOG_SECTOR_ROUNDUP_BBCOUNT(log
, 1);
1163 int end_block
= start_block
+ blocks
;
1168 bufblks
= 1 << ffs(blocks
);
1169 while (!(bp
= xlog_get_bp(log
, bufblks
))) {
1171 if (bufblks
<= log
->l_sectbb_log
)
1175 /* We may need to do a read at the start to fill in part of
1176 * the buffer in the starting sector not covered by the first
1179 balign
= XLOG_SECTOR_ROUNDDOWN_BLKNO(log
, start_block
);
1180 if (balign
!= start_block
) {
1181 error
= xlog_bread_noalign(log
, start_block
, 1, bp
);
1185 j
= start_block
- balign
;
1188 for (i
= start_block
; i
< end_block
; i
+= bufblks
) {
1189 int bcount
, endcount
;
1191 bcount
= min(bufblks
, end_block
- start_block
);
1192 endcount
= bcount
- j
;
1194 /* We may need to do a read at the end to fill in part of
1195 * the buffer in the final sector not covered by the write.
1196 * If this is the same sector as the above read, skip it.
1198 ealign
= XLOG_SECTOR_ROUNDDOWN_BLKNO(log
, end_block
);
1199 if (j
== 0 && (start_block
+ endcount
> ealign
)) {
1200 offset
= XFS_BUF_PTR(bp
);
1201 balign
= BBTOB(ealign
- start_block
);
1202 error
= XFS_BUF_SET_PTR(bp
, offset
+ balign
,
1207 error
= xlog_bread_noalign(log
, ealign
, sectbb
, bp
);
1211 error
= XFS_BUF_SET_PTR(bp
, offset
, bufblks
);
1216 offset
= xlog_align(log
, start_block
, endcount
, bp
);
1217 for (; j
< endcount
; j
++) {
1218 xlog_add_record(log
, offset
, cycle
, i
+j
,
1219 tail_cycle
, tail_block
);
1222 error
= xlog_bwrite(log
, start_block
, endcount
, bp
);
1225 start_block
+= endcount
;
1235 * This routine is called to blow away any incomplete log writes out
1236 * in front of the log head. We do this so that we won't become confused
1237 * if we come up, write only a little bit more, and then crash again.
1238 * If we leave the partial log records out there, this situation could
1239 * cause us to think those partial writes are valid blocks since they
1240 * have the current cycle number. We get rid of them by overwriting them
1241 * with empty log records with the old cycle number rather than the
1244 * The tail lsn is passed in rather than taken from
1245 * the log so that we will not write over the unmount record after a
1246 * clean unmount in a 512 block log. Doing so would leave the log without
1247 * any valid log records in it until a new one was written. If we crashed
1248 * during that time we would not be able to recover.
1251 xlog_clear_stale_blocks(
1255 int tail_cycle
, head_cycle
;
1256 int tail_block
, head_block
;
1257 int tail_distance
, max_distance
;
1261 tail_cycle
= CYCLE_LSN(tail_lsn
);
1262 tail_block
= BLOCK_LSN(tail_lsn
);
1263 head_cycle
= log
->l_curr_cycle
;
1264 head_block
= log
->l_curr_block
;
1267 * Figure out the distance between the new head of the log
1268 * and the tail. We want to write over any blocks beyond the
1269 * head that we may have written just before the crash, but
1270 * we don't want to overwrite the tail of the log.
1272 if (head_cycle
== tail_cycle
) {
1274 * The tail is behind the head in the physical log,
1275 * so the distance from the head to the tail is the
1276 * distance from the head to the end of the log plus
1277 * the distance from the beginning of the log to the
1280 if (unlikely(head_block
< tail_block
|| head_block
>= log
->l_logBBsize
)) {
1281 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1282 XFS_ERRLEVEL_LOW
, log
->l_mp
);
1283 return XFS_ERROR(EFSCORRUPTED
);
1285 tail_distance
= tail_block
+ (log
->l_logBBsize
- head_block
);
1288 * The head is behind the tail in the physical log,
1289 * so the distance from the head to the tail is just
1290 * the tail block minus the head block.
1292 if (unlikely(head_block
>= tail_block
|| head_cycle
!= (tail_cycle
+ 1))){
1293 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1294 XFS_ERRLEVEL_LOW
, log
->l_mp
);
1295 return XFS_ERROR(EFSCORRUPTED
);
1297 tail_distance
= tail_block
- head_block
;
1301 * If the head is right up against the tail, we can't clear
1304 if (tail_distance
<= 0) {
1305 ASSERT(tail_distance
== 0);
1309 max_distance
= XLOG_TOTAL_REC_SHIFT(log
);
1311 * Take the smaller of the maximum amount of outstanding I/O
1312 * we could have and the distance to the tail to clear out.
1313 * We take the smaller so that we don't overwrite the tail and
1314 * we don't waste all day writing from the head to the tail
1317 max_distance
= MIN(max_distance
, tail_distance
);
1319 if ((head_block
+ max_distance
) <= log
->l_logBBsize
) {
1321 * We can stomp all the blocks we need to without
1322 * wrapping around the end of the log. Just do it
1323 * in a single write. Use the cycle number of the
1324 * current cycle minus one so that the log will look like:
1327 error
= xlog_write_log_records(log
, (head_cycle
- 1),
1328 head_block
, max_distance
, tail_cycle
,
1334 * We need to wrap around the end of the physical log in
1335 * order to clear all the blocks. Do it in two separate
1336 * I/Os. The first write should be from the head to the
1337 * end of the physical log, and it should use the current
1338 * cycle number minus one just like above.
1340 distance
= log
->l_logBBsize
- head_block
;
1341 error
= xlog_write_log_records(log
, (head_cycle
- 1),
1342 head_block
, distance
, tail_cycle
,
1349 * Now write the blocks at the start of the physical log.
1350 * This writes the remainder of the blocks we want to clear.
1351 * It uses the current cycle number since we're now on the
1352 * same cycle as the head so that we get:
1353 * n ... n ... | n - 1 ...
1354 * ^^^^^ blocks we're writing
1356 distance
= max_distance
- (log
->l_logBBsize
- head_block
);
1357 error
= xlog_write_log_records(log
, head_cycle
, 0, distance
,
1358 tail_cycle
, tail_block
);
1366 /******************************************************************************
1368 * Log recover routines
1370 ******************************************************************************
1373 STATIC xlog_recover_t
*
1374 xlog_recover_find_tid(
1378 xlog_recover_t
*p
= q
;
1381 if (p
->r_log_tid
== tid
)
1389 xlog_recover_put_hashq(
1391 xlog_recover_t
*trans
)
1398 xlog_recover_add_item(
1399 xlog_recover_item_t
**itemq
)
1401 xlog_recover_item_t
*item
;
1403 item
= kmem_zalloc(sizeof(xlog_recover_item_t
), KM_SLEEP
);
1404 xlog_recover_insert_item_backq(itemq
, item
);
1408 xlog_recover_add_to_cont_trans(
1409 xlog_recover_t
*trans
,
1413 xlog_recover_item_t
*item
;
1414 xfs_caddr_t ptr
, old_ptr
;
1417 item
= trans
->r_itemq
;
1419 /* finish copying rest of trans header */
1420 xlog_recover_add_item(&trans
->r_itemq
);
1421 ptr
= (xfs_caddr_t
) &trans
->r_theader
+
1422 sizeof(xfs_trans_header_t
) - len
;
1423 memcpy(ptr
, dp
, len
); /* d, s, l */
1426 item
= item
->ri_prev
;
1428 old_ptr
= item
->ri_buf
[item
->ri_cnt
-1].i_addr
;
1429 old_len
= item
->ri_buf
[item
->ri_cnt
-1].i_len
;
1431 ptr
= kmem_realloc(old_ptr
, len
+old_len
, old_len
, 0u);
1432 memcpy(&ptr
[old_len
], dp
, len
); /* d, s, l */
1433 item
->ri_buf
[item
->ri_cnt
-1].i_len
+= len
;
1434 item
->ri_buf
[item
->ri_cnt
-1].i_addr
= ptr
;
1439 * The next region to add is the start of a new region. It could be
1440 * a whole region or it could be the first part of a new region. Because
1441 * of this, the assumption here is that the type and size fields of all
1442 * format structures fit into the first 32 bits of the structure.
1444 * This works because all regions must be 32 bit aligned. Therefore, we
1445 * either have both fields or we have neither field. In the case we have
1446 * neither field, the data part of the region is zero length. We only have
1447 * a log_op_header and can throw away the header since a new one will appear
1448 * later. If we have at least 4 bytes, then we can determine how many regions
1449 * will appear in the current log item.
1452 xlog_recover_add_to_trans(
1453 xlog_recover_t
*trans
,
1457 xfs_inode_log_format_t
*in_f
; /* any will do */
1458 xlog_recover_item_t
*item
;
1463 item
= trans
->r_itemq
;
1465 /* we need to catch log corruptions here */
1466 if (*(uint
*)dp
!= XFS_TRANS_HEADER_MAGIC
) {
1467 xlog_warn("XFS: xlog_recover_add_to_trans: "
1468 "bad header magic number");
1470 return XFS_ERROR(EIO
);
1472 if (len
== sizeof(xfs_trans_header_t
))
1473 xlog_recover_add_item(&trans
->r_itemq
);
1474 memcpy(&trans
->r_theader
, dp
, len
); /* d, s, l */
1478 ptr
= kmem_alloc(len
, KM_SLEEP
);
1479 memcpy(ptr
, dp
, len
);
1480 in_f
= (xfs_inode_log_format_t
*)ptr
;
1482 if (item
->ri_prev
->ri_total
!= 0 &&
1483 item
->ri_prev
->ri_total
== item
->ri_prev
->ri_cnt
) {
1484 xlog_recover_add_item(&trans
->r_itemq
);
1486 item
= trans
->r_itemq
;
1487 item
= item
->ri_prev
;
1489 if (item
->ri_total
== 0) { /* first region to be added */
1490 if (in_f
->ilf_size
== 0 ||
1491 in_f
->ilf_size
> XLOG_MAX_REGIONS_IN_ITEM
) {
1493 "XFS: bad number of regions (%d) in inode log format",
1496 return XFS_ERROR(EIO
);
1499 item
->ri_total
= in_f
->ilf_size
;
1501 kmem_zalloc(item
->ri_total
* sizeof(xfs_log_iovec_t
),
1504 ASSERT(item
->ri_total
> item
->ri_cnt
);
1505 /* Description region is ri_buf[0] */
1506 item
->ri_buf
[item
->ri_cnt
].i_addr
= ptr
;
1507 item
->ri_buf
[item
->ri_cnt
].i_len
= len
;
1513 xlog_recover_new_tid(
1518 xlog_recover_t
*trans
;
1520 trans
= kmem_zalloc(sizeof(xlog_recover_t
), KM_SLEEP
);
1521 trans
->r_log_tid
= tid
;
1523 xlog_recover_put_hashq(q
, trans
);
1527 xlog_recover_unlink_tid(
1529 xlog_recover_t
*trans
)
1534 ASSERT(trans
!= NULL
);
1540 if (tp
->r_next
== trans
) {
1548 "XFS: xlog_recover_unlink_tid: trans not found");
1550 return XFS_ERROR(EIO
);
1552 tp
->r_next
= tp
->r_next
->r_next
;
1558 xlog_recover_insert_item_backq(
1559 xlog_recover_item_t
**q
,
1560 xlog_recover_item_t
*item
)
1563 item
->ri_prev
= item
->ri_next
= item
;
1567 item
->ri_prev
= (*q
)->ri_prev
;
1568 (*q
)->ri_prev
= item
;
1569 item
->ri_prev
->ri_next
= item
;
1574 xlog_recover_insert_item_frontq(
1575 xlog_recover_item_t
**q
,
1576 xlog_recover_item_t
*item
)
1578 xlog_recover_insert_item_backq(q
, item
);
1583 xlog_recover_reorder_trans(
1584 xlog_recover_t
*trans
)
1586 xlog_recover_item_t
*first_item
, *itemq
, *itemq_next
;
1587 xfs_buf_log_format_t
*buf_f
;
1590 first_item
= itemq
= trans
->r_itemq
;
1591 trans
->r_itemq
= NULL
;
1593 itemq_next
= itemq
->ri_next
;
1594 buf_f
= (xfs_buf_log_format_t
*)itemq
->ri_buf
[0].i_addr
;
1596 switch (ITEM_TYPE(itemq
)) {
1598 flags
= buf_f
->blf_flags
;
1599 if (!(flags
& XFS_BLI_CANCEL
)) {
1600 xlog_recover_insert_item_frontq(&trans
->r_itemq
,
1606 case XFS_LI_QUOTAOFF
:
1609 xlog_recover_insert_item_backq(&trans
->r_itemq
, itemq
);
1613 "XFS: xlog_recover_reorder_trans: unrecognized type of log operation");
1615 return XFS_ERROR(EIO
);
1618 } while (first_item
!= itemq
);
1623 * Build up the table of buf cancel records so that we don't replay
1624 * cancelled data in the second pass. For buffer records that are
1625 * not cancel records, there is nothing to do here so we just return.
1627 * If we get a cancel record which is already in the table, this indicates
1628 * that the buffer was cancelled multiple times. In order to ensure
1629 * that during pass 2 we keep the record in the table until we reach its
1630 * last occurrence in the log, we keep a reference count in the cancel
1631 * record in the table to tell us how many times we expect to see this
1632 * record during the second pass.
1635 xlog_recover_do_buffer_pass1(
1637 xfs_buf_log_format_t
*buf_f
)
1639 xfs_buf_cancel_t
*bcp
;
1640 xfs_buf_cancel_t
*nextp
;
1641 xfs_buf_cancel_t
*prevp
;
1642 xfs_buf_cancel_t
**bucket
;
1643 xfs_daddr_t blkno
= 0;
1647 switch (buf_f
->blf_type
) {
1649 blkno
= buf_f
->blf_blkno
;
1650 len
= buf_f
->blf_len
;
1651 flags
= buf_f
->blf_flags
;
1656 * If this isn't a cancel buffer item, then just return.
1658 if (!(flags
& XFS_BLI_CANCEL
))
1662 * Insert an xfs_buf_cancel record into the hash table of
1663 * them. If there is already an identical record, bump
1664 * its reference count.
1666 bucket
= &log
->l_buf_cancel_table
[(__uint64_t
)blkno
%
1667 XLOG_BC_TABLE_SIZE
];
1669 * If the hash bucket is empty then just insert a new record into
1672 if (*bucket
== NULL
) {
1673 bcp
= (xfs_buf_cancel_t
*)kmem_alloc(sizeof(xfs_buf_cancel_t
),
1675 bcp
->bc_blkno
= blkno
;
1677 bcp
->bc_refcount
= 1;
1678 bcp
->bc_next
= NULL
;
1684 * The hash bucket is not empty, so search for duplicates of our
1685 * record. If we find one them just bump its refcount. If not
1686 * then add us at the end of the list.
1690 while (nextp
!= NULL
) {
1691 if (nextp
->bc_blkno
== blkno
&& nextp
->bc_len
== len
) {
1692 nextp
->bc_refcount
++;
1696 nextp
= nextp
->bc_next
;
1698 ASSERT(prevp
!= NULL
);
1699 bcp
= (xfs_buf_cancel_t
*)kmem_alloc(sizeof(xfs_buf_cancel_t
),
1701 bcp
->bc_blkno
= blkno
;
1703 bcp
->bc_refcount
= 1;
1704 bcp
->bc_next
= NULL
;
1705 prevp
->bc_next
= bcp
;
1709 * Check to see whether the buffer being recovered has a corresponding
1710 * entry in the buffer cancel record table. If it does then return 1
1711 * so that it will be cancelled, otherwise return 0. If the buffer is
1712 * actually a buffer cancel item (XFS_BLI_CANCEL is set), then decrement
1713 * the refcount on the entry in the table and remove it from the table
1714 * if this is the last reference.
1716 * We remove the cancel record from the table when we encounter its
1717 * last occurrence in the log so that if the same buffer is re-used
1718 * again after its last cancellation we actually replay the changes
1719 * made at that point.
1722 xlog_check_buffer_cancelled(
1728 xfs_buf_cancel_t
*bcp
;
1729 xfs_buf_cancel_t
*prevp
;
1730 xfs_buf_cancel_t
**bucket
;
1732 if (log
->l_buf_cancel_table
== NULL
) {
1734 * There is nothing in the table built in pass one,
1735 * so this buffer must not be cancelled.
1737 ASSERT(!(flags
& XFS_BLI_CANCEL
));
1741 bucket
= &log
->l_buf_cancel_table
[(__uint64_t
)blkno
%
1742 XLOG_BC_TABLE_SIZE
];
1746 * There is no corresponding entry in the table built
1747 * in pass one, so this buffer has not been cancelled.
1749 ASSERT(!(flags
& XFS_BLI_CANCEL
));
1754 * Search for an entry in the buffer cancel table that
1755 * matches our buffer.
1758 while (bcp
!= NULL
) {
1759 if (bcp
->bc_blkno
== blkno
&& bcp
->bc_len
== len
) {
1761 * We've go a match, so return 1 so that the
1762 * recovery of this buffer is cancelled.
1763 * If this buffer is actually a buffer cancel
1764 * log item, then decrement the refcount on the
1765 * one in the table and remove it if this is the
1768 if (flags
& XFS_BLI_CANCEL
) {
1770 if (bcp
->bc_refcount
== 0) {
1771 if (prevp
== NULL
) {
1772 *bucket
= bcp
->bc_next
;
1774 prevp
->bc_next
= bcp
->bc_next
;
1785 * We didn't find a corresponding entry in the table, so
1786 * return 0 so that the buffer is NOT cancelled.
1788 ASSERT(!(flags
& XFS_BLI_CANCEL
));
1793 xlog_recover_do_buffer_pass2(
1795 xfs_buf_log_format_t
*buf_f
)
1797 xfs_daddr_t blkno
= 0;
1801 switch (buf_f
->blf_type
) {
1803 blkno
= buf_f
->blf_blkno
;
1804 flags
= buf_f
->blf_flags
;
1805 len
= buf_f
->blf_len
;
1809 return xlog_check_buffer_cancelled(log
, blkno
, len
, flags
);
1813 * Perform recovery for a buffer full of inodes. In these buffers,
1814 * the only data which should be recovered is that which corresponds
1815 * to the di_next_unlinked pointers in the on disk inode structures.
1816 * The rest of the data for the inodes is always logged through the
1817 * inodes themselves rather than the inode buffer and is recovered
1818 * in xlog_recover_do_inode_trans().
1820 * The only time when buffers full of inodes are fully recovered is
1821 * when the buffer is full of newly allocated inodes. In this case
1822 * the buffer will not be marked as an inode buffer and so will be
1823 * sent to xlog_recover_do_reg_buffer() below during recovery.
1826 xlog_recover_do_inode_buffer(
1828 xlog_recover_item_t
*item
,
1830 xfs_buf_log_format_t
*buf_f
)
1838 int next_unlinked_offset
;
1840 xfs_agino_t
*logged_nextp
;
1841 xfs_agino_t
*buffer_nextp
;
1842 unsigned int *data_map
= NULL
;
1843 unsigned int map_size
= 0;
1845 switch (buf_f
->blf_type
) {
1847 data_map
= buf_f
->blf_data_map
;
1848 map_size
= buf_f
->blf_map_size
;
1852 * Set the variables corresponding to the current region to
1853 * 0 so that we'll initialize them on the first pass through
1861 inodes_per_buf
= XFS_BUF_COUNT(bp
) >> mp
->m_sb
.sb_inodelog
;
1862 for (i
= 0; i
< inodes_per_buf
; i
++) {
1863 next_unlinked_offset
= (i
* mp
->m_sb
.sb_inodesize
) +
1864 offsetof(xfs_dinode_t
, di_next_unlinked
);
1866 while (next_unlinked_offset
>=
1867 (reg_buf_offset
+ reg_buf_bytes
)) {
1869 * The next di_next_unlinked field is beyond
1870 * the current logged region. Find the next
1871 * logged region that contains or is beyond
1872 * the current di_next_unlinked field.
1875 bit
= xfs_next_bit(data_map
, map_size
, bit
);
1878 * If there are no more logged regions in the
1879 * buffer, then we're done.
1885 nbits
= xfs_contig_bits(data_map
, map_size
,
1888 reg_buf_offset
= bit
<< XFS_BLI_SHIFT
;
1889 reg_buf_bytes
= nbits
<< XFS_BLI_SHIFT
;
1894 * If the current logged region starts after the current
1895 * di_next_unlinked field, then move on to the next
1896 * di_next_unlinked field.
1898 if (next_unlinked_offset
< reg_buf_offset
) {
1902 ASSERT(item
->ri_buf
[item_index
].i_addr
!= NULL
);
1903 ASSERT((item
->ri_buf
[item_index
].i_len
% XFS_BLI_CHUNK
) == 0);
1904 ASSERT((reg_buf_offset
+ reg_buf_bytes
) <= XFS_BUF_COUNT(bp
));
1907 * The current logged region contains a copy of the
1908 * current di_next_unlinked field. Extract its value
1909 * and copy it to the buffer copy.
1911 logged_nextp
= (xfs_agino_t
*)
1912 ((char *)(item
->ri_buf
[item_index
].i_addr
) +
1913 (next_unlinked_offset
- reg_buf_offset
));
1914 if (unlikely(*logged_nextp
== 0)) {
1915 xfs_fs_cmn_err(CE_ALERT
, mp
,
1916 "bad inode buffer log record (ptr = 0x%p, bp = 0x%p). XFS trying to replay bad (0) inode di_next_unlinked field",
1918 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1919 XFS_ERRLEVEL_LOW
, mp
);
1920 return XFS_ERROR(EFSCORRUPTED
);
1923 buffer_nextp
= (xfs_agino_t
*)xfs_buf_offset(bp
,
1924 next_unlinked_offset
);
1925 *buffer_nextp
= *logged_nextp
;
1932 * Perform a 'normal' buffer recovery. Each logged region of the
1933 * buffer should be copied over the corresponding region in the
1934 * given buffer. The bitmap in the buf log format structure indicates
1935 * where to place the logged data.
1939 xlog_recover_do_reg_buffer(
1940 xlog_recover_item_t
*item
,
1942 xfs_buf_log_format_t
*buf_f
)
1947 unsigned int *data_map
= NULL
;
1948 unsigned int map_size
= 0;
1951 switch (buf_f
->blf_type
) {
1953 data_map
= buf_f
->blf_data_map
;
1954 map_size
= buf_f
->blf_map_size
;
1958 i
= 1; /* 0 is the buf format structure */
1960 bit
= xfs_next_bit(data_map
, map_size
, bit
);
1963 nbits
= xfs_contig_bits(data_map
, map_size
, bit
);
1965 ASSERT(item
->ri_buf
[i
].i_addr
!= NULL
);
1966 ASSERT(item
->ri_buf
[i
].i_len
% XFS_BLI_CHUNK
== 0);
1967 ASSERT(XFS_BUF_COUNT(bp
) >=
1968 ((uint
)bit
<< XFS_BLI_SHIFT
)+(nbits
<<XFS_BLI_SHIFT
));
1971 * Do a sanity check if this is a dquot buffer. Just checking
1972 * the first dquot in the buffer should do. XXXThis is
1973 * probably a good thing to do for other buf types also.
1976 if (buf_f
->blf_flags
&
1977 (XFS_BLI_UDQUOT_BUF
|XFS_BLI_PDQUOT_BUF
|XFS_BLI_GDQUOT_BUF
)) {
1978 if (item
->ri_buf
[i
].i_addr
== NULL
) {
1980 "XFS: NULL dquot in %s.", __func__
);
1983 if (item
->ri_buf
[i
].i_len
< sizeof(xfs_dqblk_t
)) {
1985 "XFS: dquot too small (%d) in %s.",
1986 item
->ri_buf
[i
].i_len
, __func__
);
1989 error
= xfs_qm_dqcheck((xfs_disk_dquot_t
*)
1990 item
->ri_buf
[i
].i_addr
,
1991 -1, 0, XFS_QMOPT_DOWARN
,
1992 "dquot_buf_recover");
1997 memcpy(xfs_buf_offset(bp
,
1998 (uint
)bit
<< XFS_BLI_SHIFT
), /* dest */
1999 item
->ri_buf
[i
].i_addr
, /* source */
2000 nbits
<<XFS_BLI_SHIFT
); /* length */
2006 /* Shouldn't be any more regions */
2007 ASSERT(i
== item
->ri_total
);
2011 * Do some primitive error checking on ondisk dquot data structures.
2015 xfs_disk_dquot_t
*ddq
,
2017 uint type
, /* used only when IO_dorepair is true */
2021 xfs_dqblk_t
*d
= (xfs_dqblk_t
*)ddq
;
2025 * We can encounter an uninitialized dquot buffer for 2 reasons:
2026 * 1. If we crash while deleting the quotainode(s), and those blks got
2027 * used for user data. This is because we take the path of regular
2028 * file deletion; however, the size field of quotainodes is never
2029 * updated, so all the tricks that we play in itruncate_finish
2030 * don't quite matter.
2032 * 2. We don't play the quota buffers when there's a quotaoff logitem.
2033 * But the allocation will be replayed so we'll end up with an
2034 * uninitialized quota block.
2036 * This is all fine; things are still consistent, and we haven't lost
2037 * any quota information. Just don't complain about bad dquot blks.
2039 if (be16_to_cpu(ddq
->d_magic
) != XFS_DQUOT_MAGIC
) {
2040 if (flags
& XFS_QMOPT_DOWARN
)
2042 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
2043 str
, id
, be16_to_cpu(ddq
->d_magic
), XFS_DQUOT_MAGIC
);
2046 if (ddq
->d_version
!= XFS_DQUOT_VERSION
) {
2047 if (flags
& XFS_QMOPT_DOWARN
)
2049 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
2050 str
, id
, ddq
->d_version
, XFS_DQUOT_VERSION
);
2054 if (ddq
->d_flags
!= XFS_DQ_USER
&&
2055 ddq
->d_flags
!= XFS_DQ_PROJ
&&
2056 ddq
->d_flags
!= XFS_DQ_GROUP
) {
2057 if (flags
& XFS_QMOPT_DOWARN
)
2059 "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
2060 str
, id
, ddq
->d_flags
);
2064 if (id
!= -1 && id
!= be32_to_cpu(ddq
->d_id
)) {
2065 if (flags
& XFS_QMOPT_DOWARN
)
2067 "%s : ondisk-dquot 0x%p, ID mismatch: "
2068 "0x%x expected, found id 0x%x",
2069 str
, ddq
, id
, be32_to_cpu(ddq
->d_id
));
2073 if (!errs
&& ddq
->d_id
) {
2074 if (ddq
->d_blk_softlimit
&&
2075 be64_to_cpu(ddq
->d_bcount
) >=
2076 be64_to_cpu(ddq
->d_blk_softlimit
)) {
2077 if (!ddq
->d_btimer
) {
2078 if (flags
& XFS_QMOPT_DOWARN
)
2080 "%s : Dquot ID 0x%x (0x%p) "
2081 "BLK TIMER NOT STARTED",
2082 str
, (int)be32_to_cpu(ddq
->d_id
), ddq
);
2086 if (ddq
->d_ino_softlimit
&&
2087 be64_to_cpu(ddq
->d_icount
) >=
2088 be64_to_cpu(ddq
->d_ino_softlimit
)) {
2089 if (!ddq
->d_itimer
) {
2090 if (flags
& XFS_QMOPT_DOWARN
)
2092 "%s : Dquot ID 0x%x (0x%p) "
2093 "INODE TIMER NOT STARTED",
2094 str
, (int)be32_to_cpu(ddq
->d_id
), ddq
);
2098 if (ddq
->d_rtb_softlimit
&&
2099 be64_to_cpu(ddq
->d_rtbcount
) >=
2100 be64_to_cpu(ddq
->d_rtb_softlimit
)) {
2101 if (!ddq
->d_rtbtimer
) {
2102 if (flags
& XFS_QMOPT_DOWARN
)
2104 "%s : Dquot ID 0x%x (0x%p) "
2105 "RTBLK TIMER NOT STARTED",
2106 str
, (int)be32_to_cpu(ddq
->d_id
), ddq
);
2112 if (!errs
|| !(flags
& XFS_QMOPT_DQREPAIR
))
2115 if (flags
& XFS_QMOPT_DOWARN
)
2116 cmn_err(CE_NOTE
, "Re-initializing dquot ID 0x%x", id
);
2119 * Typically, a repair is only requested by quotacheck.
2122 ASSERT(flags
& XFS_QMOPT_DQREPAIR
);
2123 memset(d
, 0, sizeof(xfs_dqblk_t
));
2125 d
->dd_diskdq
.d_magic
= cpu_to_be16(XFS_DQUOT_MAGIC
);
2126 d
->dd_diskdq
.d_version
= XFS_DQUOT_VERSION
;
2127 d
->dd_diskdq
.d_flags
= type
;
2128 d
->dd_diskdq
.d_id
= cpu_to_be32(id
);
2134 * Perform a dquot buffer recovery.
2135 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2136 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2137 * Else, treat it as a regular buffer and do recovery.
2140 xlog_recover_do_dquot_buffer(
2143 xlog_recover_item_t
*item
,
2145 xfs_buf_log_format_t
*buf_f
)
2150 * Filesystems are required to send in quota flags at mount time.
2152 if (mp
->m_qflags
== 0) {
2157 if (buf_f
->blf_flags
& XFS_BLI_UDQUOT_BUF
)
2158 type
|= XFS_DQ_USER
;
2159 if (buf_f
->blf_flags
& XFS_BLI_PDQUOT_BUF
)
2160 type
|= XFS_DQ_PROJ
;
2161 if (buf_f
->blf_flags
& XFS_BLI_GDQUOT_BUF
)
2162 type
|= XFS_DQ_GROUP
;
2164 * This type of quotas was turned off, so ignore this buffer
2166 if (log
->l_quotaoffs_flag
& type
)
2169 xlog_recover_do_reg_buffer(item
, bp
, buf_f
);
2173 * This routine replays a modification made to a buffer at runtime.
2174 * There are actually two types of buffer, regular and inode, which
2175 * are handled differently. Inode buffers are handled differently
2176 * in that we only recover a specific set of data from them, namely
2177 * the inode di_next_unlinked fields. This is because all other inode
2178 * data is actually logged via inode records and any data we replay
2179 * here which overlaps that may be stale.
2181 * When meta-data buffers are freed at run time we log a buffer item
2182 * with the XFS_BLI_CANCEL bit set to indicate that previous copies
2183 * of the buffer in the log should not be replayed at recovery time.
2184 * This is so that if the blocks covered by the buffer are reused for
2185 * file data before we crash we don't end up replaying old, freed
2186 * meta-data into a user's file.
2188 * To handle the cancellation of buffer log items, we make two passes
2189 * over the log during recovery. During the first we build a table of
2190 * those buffers which have been cancelled, and during the second we
2191 * only replay those buffers which do not have corresponding cancel
2192 * records in the table. See xlog_recover_do_buffer_pass[1,2] above
2193 * for more details on the implementation of the table of cancel records.
2196 xlog_recover_do_buffer_trans(
2198 xlog_recover_item_t
*item
,
2201 xfs_buf_log_format_t
*buf_f
;
2210 buf_f
= (xfs_buf_log_format_t
*)item
->ri_buf
[0].i_addr
;
2212 if (pass
== XLOG_RECOVER_PASS1
) {
2214 * In this pass we're only looking for buf items
2215 * with the XFS_BLI_CANCEL bit set.
2217 xlog_recover_do_buffer_pass1(log
, buf_f
);
2221 * In this pass we want to recover all the buffers
2222 * which have not been cancelled and are not
2223 * cancellation buffers themselves. The routine
2224 * we call here will tell us whether or not to
2225 * continue with the replay of this buffer.
2227 cancel
= xlog_recover_do_buffer_pass2(log
, buf_f
);
2232 switch (buf_f
->blf_type
) {
2234 blkno
= buf_f
->blf_blkno
;
2235 len
= buf_f
->blf_len
;
2236 flags
= buf_f
->blf_flags
;
2239 xfs_fs_cmn_err(CE_ALERT
, log
->l_mp
,
2240 "xfs_log_recover: unknown buffer type 0x%x, logdev %s",
2241 buf_f
->blf_type
, log
->l_mp
->m_logname
?
2242 log
->l_mp
->m_logname
: "internal");
2243 XFS_ERROR_REPORT("xlog_recover_do_buffer_trans",
2244 XFS_ERRLEVEL_LOW
, log
->l_mp
);
2245 return XFS_ERROR(EFSCORRUPTED
);
2249 if (flags
& XFS_BLI_INODE_BUF
) {
2250 bp
= xfs_buf_read_flags(mp
->m_ddev_targp
, blkno
, len
,
2253 bp
= xfs_buf_read(mp
->m_ddev_targp
, blkno
, len
, 0);
2255 if (XFS_BUF_ISERROR(bp
)) {
2256 xfs_ioerror_alert("xlog_recover_do..(read#1)", log
->l_mp
,
2258 error
= XFS_BUF_GETERROR(bp
);
2264 if (flags
& XFS_BLI_INODE_BUF
) {
2265 error
= xlog_recover_do_inode_buffer(mp
, item
, bp
, buf_f
);
2267 (XFS_BLI_UDQUOT_BUF
|XFS_BLI_PDQUOT_BUF
|XFS_BLI_GDQUOT_BUF
)) {
2268 xlog_recover_do_dquot_buffer(mp
, log
, item
, bp
, buf_f
);
2270 xlog_recover_do_reg_buffer(item
, bp
, buf_f
);
2273 return XFS_ERROR(error
);
2276 * Perform delayed write on the buffer. Asynchronous writes will be
2277 * slower when taking into account all the buffers to be flushed.
2279 * Also make sure that only inode buffers with good sizes stay in
2280 * the buffer cache. The kernel moves inodes in buffers of 1 block
2281 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
2282 * buffers in the log can be a different size if the log was generated
2283 * by an older kernel using unclustered inode buffers or a newer kernel
2284 * running with a different inode cluster size. Regardless, if the
2285 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2286 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2287 * the buffer out of the buffer cache so that the buffer won't
2288 * overlap with future reads of those inodes.
2290 if (XFS_DINODE_MAGIC
==
2291 be16_to_cpu(*((__be16
*)xfs_buf_offset(bp
, 0))) &&
2292 (XFS_BUF_COUNT(bp
) != MAX(log
->l_mp
->m_sb
.sb_blocksize
,
2293 (__uint32_t
)XFS_INODE_CLUSTER_SIZE(log
->l_mp
)))) {
2295 error
= xfs_bwrite(mp
, bp
);
2297 ASSERT(bp
->b_mount
== NULL
|| bp
->b_mount
== mp
);
2299 XFS_BUF_SET_IODONE_FUNC(bp
, xlog_recover_iodone
);
2300 xfs_bdwrite(mp
, bp
);
2307 xlog_recover_do_inode_trans(
2309 xlog_recover_item_t
*item
,
2312 xfs_inode_log_format_t
*in_f
;
2323 xfs_icdinode_t
*dicp
;
2326 if (pass
== XLOG_RECOVER_PASS1
) {
2330 if (item
->ri_buf
[0].i_len
== sizeof(xfs_inode_log_format_t
)) {
2331 in_f
= (xfs_inode_log_format_t
*)item
->ri_buf
[0].i_addr
;
2333 in_f
= (xfs_inode_log_format_t
*)kmem_alloc(
2334 sizeof(xfs_inode_log_format_t
), KM_SLEEP
);
2336 error
= xfs_inode_item_format_convert(&item
->ri_buf
[0], in_f
);
2340 ino
= in_f
->ilf_ino
;
2344 * Inode buffers can be freed, look out for it,
2345 * and do not replay the inode.
2347 if (xlog_check_buffer_cancelled(log
, in_f
->ilf_blkno
,
2348 in_f
->ilf_len
, 0)) {
2353 bp
= xfs_buf_read_flags(mp
->m_ddev_targp
, in_f
->ilf_blkno
,
2354 in_f
->ilf_len
, XFS_BUF_LOCK
);
2355 if (XFS_BUF_ISERROR(bp
)) {
2356 xfs_ioerror_alert("xlog_recover_do..(read#2)", mp
,
2357 bp
, in_f
->ilf_blkno
);
2358 error
= XFS_BUF_GETERROR(bp
);
2363 ASSERT(in_f
->ilf_fields
& XFS_ILOG_CORE
);
2364 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
, in_f
->ilf_boffset
);
2367 * Make sure the place we're flushing out to really looks
2370 if (unlikely(be16_to_cpu(dip
->di_magic
) != XFS_DINODE_MAGIC
)) {
2372 xfs_fs_cmn_err(CE_ALERT
, mp
,
2373 "xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld",
2375 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)",
2376 XFS_ERRLEVEL_LOW
, mp
);
2377 error
= EFSCORRUPTED
;
2380 dicp
= (xfs_icdinode_t
*)(item
->ri_buf
[1].i_addr
);
2381 if (unlikely(dicp
->di_magic
!= XFS_DINODE_MAGIC
)) {
2383 xfs_fs_cmn_err(CE_ALERT
, mp
,
2384 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld",
2386 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)",
2387 XFS_ERRLEVEL_LOW
, mp
);
2388 error
= EFSCORRUPTED
;
2392 /* Skip replay when the on disk inode is newer than the log one */
2393 if (dicp
->di_flushiter
< be16_to_cpu(dip
->di_flushiter
)) {
2395 * Deal with the wrap case, DI_MAX_FLUSH is less
2396 * than smaller numbers
2398 if (be16_to_cpu(dip
->di_flushiter
) == DI_MAX_FLUSH
&&
2399 dicp
->di_flushiter
< (DI_MAX_FLUSH
>> 1)) {
2407 /* Take the opportunity to reset the flush iteration count */
2408 dicp
->di_flushiter
= 0;
2410 if (unlikely((dicp
->di_mode
& S_IFMT
) == S_IFREG
)) {
2411 if ((dicp
->di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
2412 (dicp
->di_format
!= XFS_DINODE_FMT_BTREE
)) {
2413 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)",
2414 XFS_ERRLEVEL_LOW
, mp
, dicp
);
2416 xfs_fs_cmn_err(CE_ALERT
, mp
,
2417 "xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2418 item
, dip
, bp
, ino
);
2419 error
= EFSCORRUPTED
;
2422 } else if (unlikely((dicp
->di_mode
& S_IFMT
) == S_IFDIR
)) {
2423 if ((dicp
->di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
2424 (dicp
->di_format
!= XFS_DINODE_FMT_BTREE
) &&
2425 (dicp
->di_format
!= XFS_DINODE_FMT_LOCAL
)) {
2426 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)",
2427 XFS_ERRLEVEL_LOW
, mp
, dicp
);
2429 xfs_fs_cmn_err(CE_ALERT
, mp
,
2430 "xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2431 item
, dip
, bp
, ino
);
2432 error
= EFSCORRUPTED
;
2436 if (unlikely(dicp
->di_nextents
+ dicp
->di_anextents
> dicp
->di_nblocks
)){
2437 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)",
2438 XFS_ERRLEVEL_LOW
, mp
, dicp
);
2440 xfs_fs_cmn_err(CE_ALERT
, mp
,
2441 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2443 dicp
->di_nextents
+ dicp
->di_anextents
,
2445 error
= EFSCORRUPTED
;
2448 if (unlikely(dicp
->di_forkoff
> mp
->m_sb
.sb_inodesize
)) {
2449 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)",
2450 XFS_ERRLEVEL_LOW
, mp
, dicp
);
2452 xfs_fs_cmn_err(CE_ALERT
, mp
,
2453 "xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x",
2454 item
, dip
, bp
, ino
, dicp
->di_forkoff
);
2455 error
= EFSCORRUPTED
;
2458 if (unlikely(item
->ri_buf
[1].i_len
> sizeof(struct xfs_icdinode
))) {
2459 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)",
2460 XFS_ERRLEVEL_LOW
, mp
, dicp
);
2462 xfs_fs_cmn_err(CE_ALERT
, mp
,
2463 "xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p",
2464 item
->ri_buf
[1].i_len
, item
);
2465 error
= EFSCORRUPTED
;
2469 /* The core is in in-core format */
2470 xfs_dinode_to_disk(dip
, (xfs_icdinode_t
*)item
->ri_buf
[1].i_addr
);
2472 /* the rest is in on-disk format */
2473 if (item
->ri_buf
[1].i_len
> sizeof(struct xfs_icdinode
)) {
2474 memcpy((xfs_caddr_t
) dip
+ sizeof(struct xfs_icdinode
),
2475 item
->ri_buf
[1].i_addr
+ sizeof(struct xfs_icdinode
),
2476 item
->ri_buf
[1].i_len
- sizeof(struct xfs_icdinode
));
2479 fields
= in_f
->ilf_fields
;
2480 switch (fields
& (XFS_ILOG_DEV
| XFS_ILOG_UUID
)) {
2482 xfs_dinode_put_rdev(dip
, in_f
->ilf_u
.ilfu_rdev
);
2485 memcpy(XFS_DFORK_DPTR(dip
),
2486 &in_f
->ilf_u
.ilfu_uuid
,
2491 if (in_f
->ilf_size
== 2)
2492 goto write_inode_buffer
;
2493 len
= item
->ri_buf
[2].i_len
;
2494 src
= item
->ri_buf
[2].i_addr
;
2495 ASSERT(in_f
->ilf_size
<= 4);
2496 ASSERT((in_f
->ilf_size
== 3) || (fields
& XFS_ILOG_AFORK
));
2497 ASSERT(!(fields
& XFS_ILOG_DFORK
) ||
2498 (len
== in_f
->ilf_dsize
));
2500 switch (fields
& XFS_ILOG_DFORK
) {
2501 case XFS_ILOG_DDATA
:
2503 memcpy(XFS_DFORK_DPTR(dip
), src
, len
);
2506 case XFS_ILOG_DBROOT
:
2507 xfs_bmbt_to_bmdr(mp
, (struct xfs_btree_block
*)src
, len
,
2508 (xfs_bmdr_block_t
*)XFS_DFORK_DPTR(dip
),
2509 XFS_DFORK_DSIZE(dip
, mp
));
2514 * There are no data fork flags set.
2516 ASSERT((fields
& XFS_ILOG_DFORK
) == 0);
2521 * If we logged any attribute data, recover it. There may or
2522 * may not have been any other non-core data logged in this
2525 if (in_f
->ilf_fields
& XFS_ILOG_AFORK
) {
2526 if (in_f
->ilf_fields
& XFS_ILOG_DFORK
) {
2531 len
= item
->ri_buf
[attr_index
].i_len
;
2532 src
= item
->ri_buf
[attr_index
].i_addr
;
2533 ASSERT(len
== in_f
->ilf_asize
);
2535 switch (in_f
->ilf_fields
& XFS_ILOG_AFORK
) {
2536 case XFS_ILOG_ADATA
:
2538 dest
= XFS_DFORK_APTR(dip
);
2539 ASSERT(len
<= XFS_DFORK_ASIZE(dip
, mp
));
2540 memcpy(dest
, src
, len
);
2543 case XFS_ILOG_ABROOT
:
2544 dest
= XFS_DFORK_APTR(dip
);
2545 xfs_bmbt_to_bmdr(mp
, (struct xfs_btree_block
*)src
,
2546 len
, (xfs_bmdr_block_t
*)dest
,
2547 XFS_DFORK_ASIZE(dip
, mp
));
2551 xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag");
2560 ASSERT(bp
->b_mount
== NULL
|| bp
->b_mount
== mp
);
2562 XFS_BUF_SET_IODONE_FUNC(bp
, xlog_recover_iodone
);
2563 xfs_bdwrite(mp
, bp
);
2567 return XFS_ERROR(error
);
2571 * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
2572 * structure, so that we know not to do any dquot item or dquot buffer recovery,
2576 xlog_recover_do_quotaoff_trans(
2578 xlog_recover_item_t
*item
,
2581 xfs_qoff_logformat_t
*qoff_f
;
2583 if (pass
== XLOG_RECOVER_PASS2
) {
2587 qoff_f
= (xfs_qoff_logformat_t
*)item
->ri_buf
[0].i_addr
;
2591 * The logitem format's flag tells us if this was user quotaoff,
2592 * group/project quotaoff or both.
2594 if (qoff_f
->qf_flags
& XFS_UQUOTA_ACCT
)
2595 log
->l_quotaoffs_flag
|= XFS_DQ_USER
;
2596 if (qoff_f
->qf_flags
& XFS_PQUOTA_ACCT
)
2597 log
->l_quotaoffs_flag
|= XFS_DQ_PROJ
;
2598 if (qoff_f
->qf_flags
& XFS_GQUOTA_ACCT
)
2599 log
->l_quotaoffs_flag
|= XFS_DQ_GROUP
;
2605 * Recover a dquot record
2608 xlog_recover_do_dquot_trans(
2610 xlog_recover_item_t
*item
,
2615 struct xfs_disk_dquot
*ddq
, *recddq
;
2617 xfs_dq_logformat_t
*dq_f
;
2620 if (pass
== XLOG_RECOVER_PASS1
) {
2626 * Filesystems are required to send in quota flags at mount time.
2628 if (mp
->m_qflags
== 0)
2631 recddq
= (xfs_disk_dquot_t
*)item
->ri_buf
[1].i_addr
;
2633 if (item
->ri_buf
[1].i_addr
== NULL
) {
2635 "XFS: NULL dquot in %s.", __func__
);
2636 return XFS_ERROR(EIO
);
2638 if (item
->ri_buf
[1].i_len
< sizeof(xfs_dqblk_t
)) {
2640 "XFS: dquot too small (%d) in %s.",
2641 item
->ri_buf
[1].i_len
, __func__
);
2642 return XFS_ERROR(EIO
);
2646 * This type of quotas was turned off, so ignore this record.
2648 type
= recddq
->d_flags
& (XFS_DQ_USER
| XFS_DQ_PROJ
| XFS_DQ_GROUP
);
2650 if (log
->l_quotaoffs_flag
& type
)
2654 * At this point we know that quota was _not_ turned off.
2655 * Since the mount flags are not indicating to us otherwise, this
2656 * must mean that quota is on, and the dquot needs to be replayed.
2657 * Remember that we may not have fully recovered the superblock yet,
2658 * so we can't do the usual trick of looking at the SB quota bits.
2660 * The other possibility, of course, is that the quota subsystem was
2661 * removed since the last mount - ENOSYS.
2663 dq_f
= (xfs_dq_logformat_t
*)item
->ri_buf
[0].i_addr
;
2665 if ((error
= xfs_qm_dqcheck(recddq
,
2667 0, XFS_QMOPT_DOWARN
,
2668 "xlog_recover_do_dquot_trans (log copy)"))) {
2669 return XFS_ERROR(EIO
);
2671 ASSERT(dq_f
->qlf_len
== 1);
2673 error
= xfs_read_buf(mp
, mp
->m_ddev_targp
,
2675 XFS_FSB_TO_BB(mp
, dq_f
->qlf_len
),
2678 xfs_ioerror_alert("xlog_recover_do..(read#3)", mp
,
2679 bp
, dq_f
->qlf_blkno
);
2683 ddq
= (xfs_disk_dquot_t
*)xfs_buf_offset(bp
, dq_f
->qlf_boffset
);
2686 * At least the magic num portion should be on disk because this
2687 * was among a chunk of dquots created earlier, and we did some
2688 * minimal initialization then.
2690 if (xfs_qm_dqcheck(ddq
, dq_f
->qlf_id
, 0, XFS_QMOPT_DOWARN
,
2691 "xlog_recover_do_dquot_trans")) {
2693 return XFS_ERROR(EIO
);
2696 memcpy(ddq
, recddq
, item
->ri_buf
[1].i_len
);
2698 ASSERT(dq_f
->qlf_size
== 2);
2699 ASSERT(bp
->b_mount
== NULL
|| bp
->b_mount
== mp
);
2701 XFS_BUF_SET_IODONE_FUNC(bp
, xlog_recover_iodone
);
2702 xfs_bdwrite(mp
, bp
);
2708 * This routine is called to create an in-core extent free intent
2709 * item from the efi format structure which was logged on disk.
2710 * It allocates an in-core efi, copies the extents from the format
2711 * structure into it, and adds the efi to the AIL with the given
2715 xlog_recover_do_efi_trans(
2717 xlog_recover_item_t
*item
,
2723 xfs_efi_log_item_t
*efip
;
2724 xfs_efi_log_format_t
*efi_formatp
;
2726 if (pass
== XLOG_RECOVER_PASS1
) {
2730 efi_formatp
= (xfs_efi_log_format_t
*)item
->ri_buf
[0].i_addr
;
2733 efip
= xfs_efi_init(mp
, efi_formatp
->efi_nextents
);
2734 if ((error
= xfs_efi_copy_format(&(item
->ri_buf
[0]),
2735 &(efip
->efi_format
)))) {
2736 xfs_efi_item_free(efip
);
2739 efip
->efi_next_extent
= efi_formatp
->efi_nextents
;
2740 efip
->efi_flags
|= XFS_EFI_COMMITTED
;
2742 spin_lock(&log
->l_ailp
->xa_lock
);
2744 * xfs_trans_ail_update() drops the AIL lock.
2746 xfs_trans_ail_update(log
->l_ailp
, (xfs_log_item_t
*)efip
, lsn
);
2752 * This routine is called when an efd format structure is found in
2753 * a committed transaction in the log. It's purpose is to cancel
2754 * the corresponding efi if it was still in the log. To do this
2755 * it searches the AIL for the efi with an id equal to that in the
2756 * efd format structure. If we find it, we remove the efi from the
2760 xlog_recover_do_efd_trans(
2762 xlog_recover_item_t
*item
,
2765 xfs_efd_log_format_t
*efd_formatp
;
2766 xfs_efi_log_item_t
*efip
= NULL
;
2767 xfs_log_item_t
*lip
;
2769 struct xfs_ail_cursor cur
;
2770 struct xfs_ail
*ailp
= log
->l_ailp
;
2772 if (pass
== XLOG_RECOVER_PASS1
) {
2776 efd_formatp
= (xfs_efd_log_format_t
*)item
->ri_buf
[0].i_addr
;
2777 ASSERT((item
->ri_buf
[0].i_len
== (sizeof(xfs_efd_log_format_32_t
) +
2778 ((efd_formatp
->efd_nextents
- 1) * sizeof(xfs_extent_32_t
)))) ||
2779 (item
->ri_buf
[0].i_len
== (sizeof(xfs_efd_log_format_64_t
) +
2780 ((efd_formatp
->efd_nextents
- 1) * sizeof(xfs_extent_64_t
)))));
2781 efi_id
= efd_formatp
->efd_efi_id
;
2784 * Search for the efi with the id in the efd format structure
2787 spin_lock(&ailp
->xa_lock
);
2788 lip
= xfs_trans_ail_cursor_first(ailp
, &cur
, 0);
2789 while (lip
!= NULL
) {
2790 if (lip
->li_type
== XFS_LI_EFI
) {
2791 efip
= (xfs_efi_log_item_t
*)lip
;
2792 if (efip
->efi_format
.efi_id
== efi_id
) {
2794 * xfs_trans_ail_delete() drops the
2797 xfs_trans_ail_delete(ailp
, lip
);
2798 xfs_efi_item_free(efip
);
2799 spin_lock(&ailp
->xa_lock
);
2803 lip
= xfs_trans_ail_cursor_next(ailp
, &cur
);
2805 xfs_trans_ail_cursor_done(ailp
, &cur
);
2806 spin_unlock(&ailp
->xa_lock
);
2810 * Perform the transaction
2812 * If the transaction modifies a buffer or inode, do it now. Otherwise,
2813 * EFIs and EFDs get queued up by adding entries into the AIL for them.
2816 xlog_recover_do_trans(
2818 xlog_recover_t
*trans
,
2822 xlog_recover_item_t
*item
, *first_item
;
2824 error
= xlog_recover_reorder_trans(trans
);
2828 first_item
= item
= trans
->r_itemq
;
2830 switch (ITEM_TYPE(item
)) {
2832 error
= xlog_recover_do_buffer_trans(log
, item
, pass
);
2835 error
= xlog_recover_do_inode_trans(log
, item
, pass
);
2838 error
= xlog_recover_do_efi_trans(log
, item
,
2839 trans
->r_lsn
, pass
);
2842 xlog_recover_do_efd_trans(log
, item
, pass
);
2846 error
= xlog_recover_do_dquot_trans(log
, item
, pass
);
2848 case XFS_LI_QUOTAOFF
:
2849 error
= xlog_recover_do_quotaoff_trans(log
, item
,
2854 "XFS: invalid item type (%d) xlog_recover_do_trans", ITEM_TYPE(item
));
2856 error
= XFS_ERROR(EIO
);
2862 item
= item
->ri_next
;
2863 } while (first_item
!= item
);
2869 * Free up any resources allocated by the transaction
2871 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2874 xlog_recover_free_trans(
2875 xlog_recover_t
*trans
)
2877 xlog_recover_item_t
*first_item
, *item
, *free_item
;
2880 item
= first_item
= trans
->r_itemq
;
2883 item
= item
->ri_next
;
2884 /* Free the regions in the item. */
2885 for (i
= 0; i
< free_item
->ri_cnt
; i
++) {
2886 kmem_free(free_item
->ri_buf
[i
].i_addr
);
2888 /* Free the item itself */
2889 kmem_free(free_item
->ri_buf
);
2890 kmem_free(free_item
);
2891 } while (first_item
!= item
);
2892 /* Free the transaction recover structure */
2897 xlog_recover_commit_trans(
2900 xlog_recover_t
*trans
,
2905 if ((error
= xlog_recover_unlink_tid(q
, trans
)))
2907 if ((error
= xlog_recover_do_trans(log
, trans
, pass
)))
2909 xlog_recover_free_trans(trans
); /* no error */
2914 xlog_recover_unmount_trans(
2915 xlog_recover_t
*trans
)
2917 /* Do nothing now */
2918 xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR");
2923 * There are two valid states of the r_state field. 0 indicates that the
2924 * transaction structure is in a normal state. We have either seen the
2925 * start of the transaction or the last operation we added was not a partial
2926 * operation. If the last operation we added to the transaction was a
2927 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2929 * NOTE: skip LRs with 0 data length.
2932 xlog_recover_process_data(
2934 xlog_recover_t
*rhash
[],
2935 xlog_rec_header_t
*rhead
,
2941 xlog_op_header_t
*ohead
;
2942 xlog_recover_t
*trans
;
2948 lp
= dp
+ be32_to_cpu(rhead
->h_len
);
2949 num_logops
= be32_to_cpu(rhead
->h_num_logops
);
2951 /* check the log format matches our own - else we can't recover */
2952 if (xlog_header_check_recover(log
->l_mp
, rhead
))
2953 return (XFS_ERROR(EIO
));
2955 while ((dp
< lp
) && num_logops
) {
2956 ASSERT(dp
+ sizeof(xlog_op_header_t
) <= lp
);
2957 ohead
= (xlog_op_header_t
*)dp
;
2958 dp
+= sizeof(xlog_op_header_t
);
2959 if (ohead
->oh_clientid
!= XFS_TRANSACTION
&&
2960 ohead
->oh_clientid
!= XFS_LOG
) {
2962 "XFS: xlog_recover_process_data: bad clientid");
2964 return (XFS_ERROR(EIO
));
2966 tid
= be32_to_cpu(ohead
->oh_tid
);
2967 hash
= XLOG_RHASH(tid
);
2968 trans
= xlog_recover_find_tid(rhash
[hash
], tid
);
2969 if (trans
== NULL
) { /* not found; add new tid */
2970 if (ohead
->oh_flags
& XLOG_START_TRANS
)
2971 xlog_recover_new_tid(&rhash
[hash
], tid
,
2972 be64_to_cpu(rhead
->h_lsn
));
2974 if (dp
+ be32_to_cpu(ohead
->oh_len
) > lp
) {
2976 "XFS: xlog_recover_process_data: bad length");
2978 return (XFS_ERROR(EIO
));
2980 flags
= ohead
->oh_flags
& ~XLOG_END_TRANS
;
2981 if (flags
& XLOG_WAS_CONT_TRANS
)
2982 flags
&= ~XLOG_CONTINUE_TRANS
;
2984 case XLOG_COMMIT_TRANS
:
2985 error
= xlog_recover_commit_trans(log
,
2986 &rhash
[hash
], trans
, pass
);
2988 case XLOG_UNMOUNT_TRANS
:
2989 error
= xlog_recover_unmount_trans(trans
);
2991 case XLOG_WAS_CONT_TRANS
:
2992 error
= xlog_recover_add_to_cont_trans(trans
,
2993 dp
, be32_to_cpu(ohead
->oh_len
));
2995 case XLOG_START_TRANS
:
2997 "XFS: xlog_recover_process_data: bad transaction");
2999 error
= XFS_ERROR(EIO
);
3002 case XLOG_CONTINUE_TRANS
:
3003 error
= xlog_recover_add_to_trans(trans
,
3004 dp
, be32_to_cpu(ohead
->oh_len
));
3008 "XFS: xlog_recover_process_data: bad flag");
3010 error
= XFS_ERROR(EIO
);
3016 dp
+= be32_to_cpu(ohead
->oh_len
);
3023 * Process an extent free intent item that was recovered from
3024 * the log. We need to free the extents that it describes.
3027 xlog_recover_process_efi(
3029 xfs_efi_log_item_t
*efip
)
3031 xfs_efd_log_item_t
*efdp
;
3036 xfs_fsblock_t startblock_fsb
;
3038 ASSERT(!(efip
->efi_flags
& XFS_EFI_RECOVERED
));
3041 * First check the validity of the extents described by the
3042 * EFI. If any are bad, then assume that all are bad and
3043 * just toss the EFI.
3045 for (i
= 0; i
< efip
->efi_format
.efi_nextents
; i
++) {
3046 extp
= &(efip
->efi_format
.efi_extents
[i
]);
3047 startblock_fsb
= XFS_BB_TO_FSB(mp
,
3048 XFS_FSB_TO_DADDR(mp
, extp
->ext_start
));
3049 if ((startblock_fsb
== 0) ||
3050 (extp
->ext_len
== 0) ||
3051 (startblock_fsb
>= mp
->m_sb
.sb_dblocks
) ||
3052 (extp
->ext_len
>= mp
->m_sb
.sb_agblocks
)) {
3054 * This will pull the EFI from the AIL and
3055 * free the memory associated with it.
3057 xfs_efi_release(efip
, efip
->efi_format
.efi_nextents
);
3058 return XFS_ERROR(EIO
);
3062 tp
= xfs_trans_alloc(mp
, 0);
3063 error
= xfs_trans_reserve(tp
, 0, XFS_ITRUNCATE_LOG_RES(mp
), 0, 0, 0);
3066 efdp
= xfs_trans_get_efd(tp
, efip
, efip
->efi_format
.efi_nextents
);
3068 for (i
= 0; i
< efip
->efi_format
.efi_nextents
; i
++) {
3069 extp
= &(efip
->efi_format
.efi_extents
[i
]);
3070 error
= xfs_free_extent(tp
, extp
->ext_start
, extp
->ext_len
);
3073 xfs_trans_log_efd_extent(tp
, efdp
, extp
->ext_start
,
3077 efip
->efi_flags
|= XFS_EFI_RECOVERED
;
3078 error
= xfs_trans_commit(tp
, 0);
3082 xfs_trans_cancel(tp
, XFS_TRANS_ABORT
);
3087 * When this is called, all of the EFIs which did not have
3088 * corresponding EFDs should be in the AIL. What we do now
3089 * is free the extents associated with each one.
3091 * Since we process the EFIs in normal transactions, they
3092 * will be removed at some point after the commit. This prevents
3093 * us from just walking down the list processing each one.
3094 * We'll use a flag in the EFI to skip those that we've already
3095 * processed and use the AIL iteration mechanism's generation
3096 * count to try to speed this up at least a bit.
3098 * When we start, we know that the EFIs are the only things in
3099 * the AIL. As we process them, however, other items are added
3100 * to the AIL. Since everything added to the AIL must come after
3101 * everything already in the AIL, we stop processing as soon as
3102 * we see something other than an EFI in the AIL.
3105 xlog_recover_process_efis(
3108 xfs_log_item_t
*lip
;
3109 xfs_efi_log_item_t
*efip
;
3111 struct xfs_ail_cursor cur
;
3112 struct xfs_ail
*ailp
;
3115 spin_lock(&ailp
->xa_lock
);
3116 lip
= xfs_trans_ail_cursor_first(ailp
, &cur
, 0);
3117 while (lip
!= NULL
) {
3119 * We're done when we see something other than an EFI.
3120 * There should be no EFIs left in the AIL now.
3122 if (lip
->li_type
!= XFS_LI_EFI
) {
3124 for (; lip
; lip
= xfs_trans_ail_cursor_next(ailp
, &cur
))
3125 ASSERT(lip
->li_type
!= XFS_LI_EFI
);
3131 * Skip EFIs that we've already processed.
3133 efip
= (xfs_efi_log_item_t
*)lip
;
3134 if (efip
->efi_flags
& XFS_EFI_RECOVERED
) {
3135 lip
= xfs_trans_ail_cursor_next(ailp
, &cur
);
3139 spin_unlock(&ailp
->xa_lock
);
3140 error
= xlog_recover_process_efi(log
->l_mp
, efip
);
3141 spin_lock(&ailp
->xa_lock
);
3144 lip
= xfs_trans_ail_cursor_next(ailp
, &cur
);
3147 xfs_trans_ail_cursor_done(ailp
, &cur
);
3148 spin_unlock(&ailp
->xa_lock
);
3153 * This routine performs a transaction to null out a bad inode pointer
3154 * in an agi unlinked inode hash bucket.
3157 xlog_recover_clear_agi_bucket(
3159 xfs_agnumber_t agno
,
3168 tp
= xfs_trans_alloc(mp
, XFS_TRANS_CLEAR_AGI_BUCKET
);
3169 error
= xfs_trans_reserve(tp
, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp
),
3174 error
= xfs_read_agi(mp
, tp
, agno
, &agibp
);
3178 agi
= XFS_BUF_TO_AGI(agibp
);
3179 agi
->agi_unlinked
[bucket
] = cpu_to_be32(NULLAGINO
);
3180 offset
= offsetof(xfs_agi_t
, agi_unlinked
) +
3181 (sizeof(xfs_agino_t
) * bucket
);
3182 xfs_trans_log_buf(tp
, agibp
, offset
,
3183 (offset
+ sizeof(xfs_agino_t
) - 1));
3185 error
= xfs_trans_commit(tp
, 0);
3191 xfs_trans_cancel(tp
, XFS_TRANS_ABORT
);
3193 xfs_fs_cmn_err(CE_WARN
, mp
, "xlog_recover_clear_agi_bucket: "
3194 "failed to clear agi %d. Continuing.", agno
);
3199 xlog_recover_process_one_iunlink(
3200 struct xfs_mount
*mp
,
3201 xfs_agnumber_t agno
,
3205 struct xfs_buf
*ibp
;
3206 struct xfs_dinode
*dip
;
3207 struct xfs_inode
*ip
;
3211 ino
= XFS_AGINO_TO_INO(mp
, agno
, agino
);
3212 error
= xfs_iget(mp
, NULL
, ino
, 0, 0, &ip
, 0);
3217 * Get the on disk inode to find the next inode in the bucket.
3219 error
= xfs_itobp(mp
, NULL
, ip
, &dip
, &ibp
, XFS_BUF_LOCK
);
3223 ASSERT(ip
->i_d
.di_nlink
== 0);
3224 ASSERT(ip
->i_d
.di_mode
!= 0);
3226 /* setup for the next pass */
3227 agino
= be32_to_cpu(dip
->di_next_unlinked
);
3231 * Prevent any DMAPI event from being sent when the reference on
3232 * the inode is dropped.
3234 ip
->i_d
.di_dmevmask
= 0;
3243 * We can't read in the inode this bucket points to, or this inode
3244 * is messed up. Just ditch this bucket of inodes. We will lose
3245 * some inodes and space, but at least we won't hang.
3247 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3248 * clear the inode pointer in the bucket.
3250 xlog_recover_clear_agi_bucket(mp
, agno
, bucket
);
3255 * xlog_iunlink_recover
3257 * This is called during recovery to process any inodes which
3258 * we unlinked but not freed when the system crashed. These
3259 * inodes will be on the lists in the AGI blocks. What we do
3260 * here is scan all the AGIs and fully truncate and free any
3261 * inodes found on the lists. Each inode is removed from the
3262 * lists when it has been fully truncated and is freed. The
3263 * freeing of the inode and its removal from the list must be
3267 xlog_recover_process_iunlinks(
3271 xfs_agnumber_t agno
;
3282 * Prevent any DMAPI event from being sent while in this function.
3284 mp_dmevmask
= mp
->m_dmevmask
;
3287 for (agno
= 0; agno
< mp
->m_sb
.sb_agcount
; agno
++) {
3289 * Find the agi for this ag.
3291 error
= xfs_read_agi(mp
, NULL
, agno
, &agibp
);
3294 * AGI is b0rked. Don't process it.
3296 * We should probably mark the filesystem as corrupt
3297 * after we've recovered all the ag's we can....
3301 agi
= XFS_BUF_TO_AGI(agibp
);
3303 for (bucket
= 0; bucket
< XFS_AGI_UNLINKED_BUCKETS
; bucket
++) {
3304 agino
= be32_to_cpu(agi
->agi_unlinked
[bucket
]);
3305 while (agino
!= NULLAGINO
) {
3307 * Release the agi buffer so that it can
3308 * be acquired in the normal course of the
3309 * transaction to truncate and free the inode.
3311 xfs_buf_relse(agibp
);
3313 agino
= xlog_recover_process_one_iunlink(mp
,
3314 agno
, agino
, bucket
);
3317 * Reacquire the agibuffer and continue around
3318 * the loop. This should never fail as we know
3319 * the buffer was good earlier on.
3321 error
= xfs_read_agi(mp
, NULL
, agno
, &agibp
);
3323 agi
= XFS_BUF_TO_AGI(agibp
);
3328 * Release the buffer for the current agi so we can
3329 * go on to the next one.
3331 xfs_buf_relse(agibp
);
3334 mp
->m_dmevmask
= mp_dmevmask
;
3340 xlog_pack_data_checksum(
3342 xlog_in_core_t
*iclog
,
3349 up
= (__be32
*)iclog
->ic_datap
;
3350 /* divide length by 4 to get # words */
3351 for (i
= 0; i
< (size
>> 2); i
++) {
3352 chksum
^= be32_to_cpu(*up
);
3355 iclog
->ic_header
.h_chksum
= cpu_to_be32(chksum
);
3358 #define xlog_pack_data_checksum(log, iclog, size)
3362 * Stamp cycle number in every block
3367 xlog_in_core_t
*iclog
,
3371 int size
= iclog
->ic_offset
+ roundoff
;
3375 xlog_pack_data_checksum(log
, iclog
, size
);
3377 cycle_lsn
= CYCLE_LSN_DISK(iclog
->ic_header
.h_lsn
);
3379 dp
= iclog
->ic_datap
;
3380 for (i
= 0; i
< BTOBB(size
) &&
3381 i
< (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
); i
++) {
3382 iclog
->ic_header
.h_cycle_data
[i
] = *(__be32
*)dp
;
3383 *(__be32
*)dp
= cycle_lsn
;
3387 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
3388 xlog_in_core_2_t
*xhdr
= iclog
->ic_data
;
3390 for ( ; i
< BTOBB(size
); i
++) {
3391 j
= i
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3392 k
= i
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3393 xhdr
[j
].hic_xheader
.xh_cycle_data
[k
] = *(__be32
*)dp
;
3394 *(__be32
*)dp
= cycle_lsn
;
3398 for (i
= 1; i
< log
->l_iclog_heads
; i
++) {
3399 xhdr
[i
].hic_xheader
.xh_cycle
= cycle_lsn
;
3404 #if defined(DEBUG) && defined(XFS_LOUD_RECOVERY)
3406 xlog_unpack_data_checksum(
3407 xlog_rec_header_t
*rhead
,
3411 __be32
*up
= (__be32
*)dp
;
3415 /* divide length by 4 to get # words */
3416 for (i
=0; i
< be32_to_cpu(rhead
->h_len
) >> 2; i
++) {
3417 chksum
^= be32_to_cpu(*up
);
3420 if (chksum
!= be32_to_cpu(rhead
->h_chksum
)) {
3421 if (rhead
->h_chksum
||
3422 ((log
->l_flags
& XLOG_CHKSUM_MISMATCH
) == 0)) {
3424 "XFS: LogR chksum mismatch: was (0x%x) is (0x%x)\n",
3425 be32_to_cpu(rhead
->h_chksum
), chksum
);
3427 "XFS: Disregard message if filesystem was created with non-DEBUG kernel");
3428 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
3430 "XFS: LogR this is a LogV2 filesystem\n");
3432 log
->l_flags
|= XLOG_CHKSUM_MISMATCH
;
3437 #define xlog_unpack_data_checksum(rhead, dp, log)
3442 xlog_rec_header_t
*rhead
,
3448 for (i
= 0; i
< BTOBB(be32_to_cpu(rhead
->h_len
)) &&
3449 i
< (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
); i
++) {
3450 *(__be32
*)dp
= *(__be32
*)&rhead
->h_cycle_data
[i
];
3454 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
3455 xlog_in_core_2_t
*xhdr
= (xlog_in_core_2_t
*)rhead
;
3456 for ( ; i
< BTOBB(be32_to_cpu(rhead
->h_len
)); i
++) {
3457 j
= i
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3458 k
= i
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3459 *(__be32
*)dp
= xhdr
[j
].hic_xheader
.xh_cycle_data
[k
];
3464 xlog_unpack_data_checksum(rhead
, dp
, log
);
3468 xlog_valid_rec_header(
3470 xlog_rec_header_t
*rhead
,
3475 if (unlikely(be32_to_cpu(rhead
->h_magicno
) != XLOG_HEADER_MAGIC_NUM
)) {
3476 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3477 XFS_ERRLEVEL_LOW
, log
->l_mp
);
3478 return XFS_ERROR(EFSCORRUPTED
);
3481 (!rhead
->h_version
||
3482 (be32_to_cpu(rhead
->h_version
) & (~XLOG_VERSION_OKBITS
))))) {
3483 xlog_warn("XFS: %s: unrecognised log version (%d).",
3484 __func__
, be32_to_cpu(rhead
->h_version
));
3485 return XFS_ERROR(EIO
);
3488 /* LR body must have data or it wouldn't have been written */
3489 hlen
= be32_to_cpu(rhead
->h_len
);
3490 if (unlikely( hlen
<= 0 || hlen
> INT_MAX
)) {
3491 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3492 XFS_ERRLEVEL_LOW
, log
->l_mp
);
3493 return XFS_ERROR(EFSCORRUPTED
);
3495 if (unlikely( blkno
> log
->l_logBBsize
|| blkno
> INT_MAX
)) {
3496 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3497 XFS_ERRLEVEL_LOW
, log
->l_mp
);
3498 return XFS_ERROR(EFSCORRUPTED
);
3504 * Read the log from tail to head and process the log records found.
3505 * Handle the two cases where the tail and head are in the same cycle
3506 * and where the active portion of the log wraps around the end of
3507 * the physical log separately. The pass parameter is passed through
3508 * to the routines called to process the data and is not looked at
3512 xlog_do_recovery_pass(
3514 xfs_daddr_t head_blk
,
3515 xfs_daddr_t tail_blk
,
3518 xlog_rec_header_t
*rhead
;
3520 xfs_caddr_t bufaddr
, offset
;
3521 xfs_buf_t
*hbp
, *dbp
;
3522 int error
= 0, h_size
;
3523 int bblks
, split_bblks
;
3524 int hblks
, split_hblks
, wrapped_hblks
;
3525 xlog_recover_t
*rhash
[XLOG_RHASH_SIZE
];
3527 ASSERT(head_blk
!= tail_blk
);
3530 * Read the header of the tail block and get the iclog buffer size from
3531 * h_size. Use this to tell how many sectors make up the log header.
3533 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
3535 * When using variable length iclogs, read first sector of
3536 * iclog header and extract the header size from it. Get a
3537 * new hbp that is the correct size.
3539 hbp
= xlog_get_bp(log
, 1);
3543 error
= xlog_bread(log
, tail_blk
, 1, hbp
, &offset
);
3547 rhead
= (xlog_rec_header_t
*)offset
;
3548 error
= xlog_valid_rec_header(log
, rhead
, tail_blk
);
3551 h_size
= be32_to_cpu(rhead
->h_size
);
3552 if ((be32_to_cpu(rhead
->h_version
) & XLOG_VERSION_2
) &&
3553 (h_size
> XLOG_HEADER_CYCLE_SIZE
)) {
3554 hblks
= h_size
/ XLOG_HEADER_CYCLE_SIZE
;
3555 if (h_size
% XLOG_HEADER_CYCLE_SIZE
)
3558 hbp
= xlog_get_bp(log
, hblks
);
3563 ASSERT(log
->l_sectbb_log
== 0);
3565 hbp
= xlog_get_bp(log
, 1);
3566 h_size
= XLOG_BIG_RECORD_BSIZE
;
3571 dbp
= xlog_get_bp(log
, BTOBB(h_size
));
3577 memset(rhash
, 0, sizeof(rhash
));
3578 if (tail_blk
<= head_blk
) {
3579 for (blk_no
= tail_blk
; blk_no
< head_blk
; ) {
3580 error
= xlog_bread(log
, blk_no
, hblks
, hbp
, &offset
);
3584 rhead
= (xlog_rec_header_t
*)offset
;
3585 error
= xlog_valid_rec_header(log
, rhead
, blk_no
);
3589 /* blocks in data section */
3590 bblks
= (int)BTOBB(be32_to_cpu(rhead
->h_len
));
3591 error
= xlog_bread(log
, blk_no
+ hblks
, bblks
, dbp
,
3596 xlog_unpack_data(rhead
, offset
, log
);
3597 if ((error
= xlog_recover_process_data(log
,
3598 rhash
, rhead
, offset
, pass
)))
3600 blk_no
+= bblks
+ hblks
;
3604 * Perform recovery around the end of the physical log.
3605 * When the head is not on the same cycle number as the tail,
3606 * we can't do a sequential recovery as above.
3609 while (blk_no
< log
->l_logBBsize
) {
3611 * Check for header wrapping around physical end-of-log
3616 if (blk_no
+ hblks
<= log
->l_logBBsize
) {
3617 /* Read header in one read */
3618 error
= xlog_bread(log
, blk_no
, hblks
, hbp
,
3623 /* This LR is split across physical log end */
3624 if (blk_no
!= log
->l_logBBsize
) {
3625 /* some data before physical log end */
3626 ASSERT(blk_no
<= INT_MAX
);
3627 split_hblks
= log
->l_logBBsize
- (int)blk_no
;
3628 ASSERT(split_hblks
> 0);
3629 error
= xlog_bread(log
, blk_no
,
3637 * Note: this black magic still works with
3638 * large sector sizes (non-512) only because:
3639 * - we increased the buffer size originally
3640 * by 1 sector giving us enough extra space
3641 * for the second read;
3642 * - the log start is guaranteed to be sector
3644 * - we read the log end (LR header start)
3645 * _first_, then the log start (LR header end)
3646 * - order is important.
3648 wrapped_hblks
= hblks
- split_hblks
;
3649 bufaddr
= XFS_BUF_PTR(hbp
);
3650 error
= XFS_BUF_SET_PTR(hbp
,
3651 bufaddr
+ BBTOB(split_hblks
),
3652 BBTOB(hblks
- split_hblks
));
3656 error
= xlog_bread_noalign(log
, 0,
3657 wrapped_hblks
, hbp
);
3661 error
= XFS_BUF_SET_PTR(hbp
, bufaddr
,
3667 offset
= xlog_align(log
, 0,
3668 wrapped_hblks
, hbp
);
3670 rhead
= (xlog_rec_header_t
*)offset
;
3671 error
= xlog_valid_rec_header(log
, rhead
,
3672 split_hblks
? blk_no
: 0);
3676 bblks
= (int)BTOBB(be32_to_cpu(rhead
->h_len
));
3679 /* Read in data for log record */
3680 if (blk_no
+ bblks
<= log
->l_logBBsize
) {
3681 error
= xlog_bread(log
, blk_no
, bblks
, dbp
,
3686 /* This log record is split across the
3687 * physical end of log */
3690 if (blk_no
!= log
->l_logBBsize
) {
3691 /* some data is before the physical
3693 ASSERT(!wrapped_hblks
);
3694 ASSERT(blk_no
<= INT_MAX
);
3696 log
->l_logBBsize
- (int)blk_no
;
3697 ASSERT(split_bblks
> 0);
3698 error
= xlog_bread(log
, blk_no
,
3706 * Note: this black magic still works with
3707 * large sector sizes (non-512) only because:
3708 * - we increased the buffer size originally
3709 * by 1 sector giving us enough extra space
3710 * for the second read;
3711 * - the log start is guaranteed to be sector
3713 * - we read the log end (LR header start)
3714 * _first_, then the log start (LR header end)
3715 * - order is important.
3717 bufaddr
= XFS_BUF_PTR(dbp
);
3718 error
= XFS_BUF_SET_PTR(dbp
,
3719 bufaddr
+ BBTOB(split_bblks
),
3720 BBTOB(bblks
- split_bblks
));
3724 error
= xlog_bread_noalign(log
, wrapped_hblks
,
3725 bblks
- split_bblks
,
3730 error
= XFS_BUF_SET_PTR(dbp
, bufaddr
, h_size
);
3735 offset
= xlog_align(log
, wrapped_hblks
,
3736 bblks
- split_bblks
, dbp
);
3738 xlog_unpack_data(rhead
, offset
, log
);
3739 if ((error
= xlog_recover_process_data(log
, rhash
,
3740 rhead
, offset
, pass
)))
3745 ASSERT(blk_no
>= log
->l_logBBsize
);
3746 blk_no
-= log
->l_logBBsize
;
3748 /* read first part of physical log */
3749 while (blk_no
< head_blk
) {
3750 error
= xlog_bread(log
, blk_no
, hblks
, hbp
, &offset
);
3754 rhead
= (xlog_rec_header_t
*)offset
;
3755 error
= xlog_valid_rec_header(log
, rhead
, blk_no
);
3759 bblks
= (int)BTOBB(be32_to_cpu(rhead
->h_len
));
3760 error
= xlog_bread(log
, blk_no
+hblks
, bblks
, dbp
,
3765 xlog_unpack_data(rhead
, offset
, log
);
3766 if ((error
= xlog_recover_process_data(log
, rhash
,
3767 rhead
, offset
, pass
)))
3769 blk_no
+= bblks
+ hblks
;
3781 * Do the recovery of the log. We actually do this in two phases.
3782 * The two passes are necessary in order to implement the function
3783 * of cancelling a record written into the log. The first pass
3784 * determines those things which have been cancelled, and the
3785 * second pass replays log items normally except for those which
3786 * have been cancelled. The handling of the replay and cancellations
3787 * takes place in the log item type specific routines.
3789 * The table of items which have cancel records in the log is allocated
3790 * and freed at this level, since only here do we know when all of
3791 * the log recovery has been completed.
3794 xlog_do_log_recovery(
3796 xfs_daddr_t head_blk
,
3797 xfs_daddr_t tail_blk
)
3801 ASSERT(head_blk
!= tail_blk
);
3804 * First do a pass to find all of the cancelled buf log items.
3805 * Store them in the buf_cancel_table for use in the second pass.
3807 log
->l_buf_cancel_table
=
3808 (xfs_buf_cancel_t
**)kmem_zalloc(XLOG_BC_TABLE_SIZE
*
3809 sizeof(xfs_buf_cancel_t
*),
3811 error
= xlog_do_recovery_pass(log
, head_blk
, tail_blk
,
3812 XLOG_RECOVER_PASS1
);
3814 kmem_free(log
->l_buf_cancel_table
);
3815 log
->l_buf_cancel_table
= NULL
;
3819 * Then do a second pass to actually recover the items in the log.
3820 * When it is complete free the table of buf cancel items.
3822 error
= xlog_do_recovery_pass(log
, head_blk
, tail_blk
,
3823 XLOG_RECOVER_PASS2
);
3828 for (i
= 0; i
< XLOG_BC_TABLE_SIZE
; i
++)
3829 ASSERT(log
->l_buf_cancel_table
[i
] == NULL
);
3833 kmem_free(log
->l_buf_cancel_table
);
3834 log
->l_buf_cancel_table
= NULL
;
3840 * Do the actual recovery
3845 xfs_daddr_t head_blk
,
3846 xfs_daddr_t tail_blk
)
3853 * First replay the images in the log.
3855 error
= xlog_do_log_recovery(log
, head_blk
, tail_blk
);
3860 XFS_bflush(log
->l_mp
->m_ddev_targp
);
3863 * If IO errors happened during recovery, bail out.
3865 if (XFS_FORCED_SHUTDOWN(log
->l_mp
)) {
3870 * We now update the tail_lsn since much of the recovery has completed
3871 * and there may be space available to use. If there were no extent
3872 * or iunlinks, we can free up the entire log and set the tail_lsn to
3873 * be the last_sync_lsn. This was set in xlog_find_tail to be the
3874 * lsn of the last known good LR on disk. If there are extent frees
3875 * or iunlinks they will have some entries in the AIL; so we look at
3876 * the AIL to determine how to set the tail_lsn.
3878 xlog_assign_tail_lsn(log
->l_mp
);
3881 * Now that we've finished replaying all buffer and inode
3882 * updates, re-read in the superblock.
3884 bp
= xfs_getsb(log
->l_mp
, 0);
3886 ASSERT(!(XFS_BUF_ISWRITE(bp
)));
3887 ASSERT(!(XFS_BUF_ISDELAYWRITE(bp
)));
3889 XFS_BUF_UNASYNC(bp
);
3890 xfsbdstrat(log
->l_mp
, bp
);
3891 error
= xfs_iowait(bp
);
3893 xfs_ioerror_alert("xlog_do_recover",
3894 log
->l_mp
, bp
, XFS_BUF_ADDR(bp
));
3900 /* Convert superblock from on-disk format */
3901 sbp
= &log
->l_mp
->m_sb
;
3902 xfs_sb_from_disk(sbp
, XFS_BUF_TO_SBP(bp
));
3903 ASSERT(sbp
->sb_magicnum
== XFS_SB_MAGIC
);
3904 ASSERT(xfs_sb_good_version(sbp
));
3907 /* We've re-read the superblock so re-initialize per-cpu counters */
3908 xfs_icsb_reinit_counters(log
->l_mp
);
3910 xlog_recover_check_summary(log
);
3912 /* Normal transactions can now occur */
3913 log
->l_flags
&= ~XLOG_ACTIVE_RECOVERY
;
3918 * Perform recovery and re-initialize some log variables in xlog_find_tail.
3920 * Return error or zero.
3926 xfs_daddr_t head_blk
, tail_blk
;
3929 /* find the tail of the log */
3930 if ((error
= xlog_find_tail(log
, &head_blk
, &tail_blk
)))
3933 if (tail_blk
!= head_blk
) {
3934 /* There used to be a comment here:
3936 * disallow recovery on read-only mounts. note -- mount
3937 * checks for ENOSPC and turns it into an intelligent
3939 * ...but this is no longer true. Now, unless you specify
3940 * NORECOVERY (in which case this function would never be
3941 * called), we just go ahead and recover. We do this all
3942 * under the vfs layer, so we can get away with it unless
3943 * the device itself is read-only, in which case we fail.
3945 if ((error
= xfs_dev_is_read_only(log
->l_mp
, "recovery"))) {
3950 "Starting XFS recovery on filesystem: %s (logdev: %s)",
3951 log
->l_mp
->m_fsname
, log
->l_mp
->m_logname
?
3952 log
->l_mp
->m_logname
: "internal");
3954 error
= xlog_do_recover(log
, head_blk
, tail_blk
);
3955 log
->l_flags
|= XLOG_RECOVERY_NEEDED
;
3961 * In the first part of recovery we replay inodes and buffers and build
3962 * up the list of extent free items which need to be processed. Here
3963 * we process the extent free items and clean up the on disk unlinked
3964 * inode lists. This is separated from the first part of recovery so
3965 * that the root and real-time bitmap inodes can be read in from disk in
3966 * between the two stages. This is necessary so that we can free space
3967 * in the real-time portion of the file system.
3970 xlog_recover_finish(
3974 * Now we're ready to do the transactions needed for the
3975 * rest of recovery. Start with completing all the extent
3976 * free intent records and then process the unlinked inode
3977 * lists. At this point, we essentially run in normal mode
3978 * except that we're still performing recovery actions
3979 * rather than accepting new requests.
3981 if (log
->l_flags
& XLOG_RECOVERY_NEEDED
) {
3983 error
= xlog_recover_process_efis(log
);
3986 "Failed to recover EFIs on filesystem: %s",
3987 log
->l_mp
->m_fsname
);
3991 * Sync the log to get all the EFIs out of the AIL.
3992 * This isn't absolutely necessary, but it helps in
3993 * case the unlink transactions would have problems
3994 * pushing the EFIs out of the way.
3996 xfs_log_force(log
->l_mp
, (xfs_lsn_t
)0,
3997 (XFS_LOG_FORCE
| XFS_LOG_SYNC
));
3999 xlog_recover_process_iunlinks(log
);
4001 xlog_recover_check_summary(log
);
4004 "Ending XFS recovery on filesystem: %s (logdev: %s)",
4005 log
->l_mp
->m_fsname
, log
->l_mp
->m_logname
?
4006 log
->l_mp
->m_logname
: "internal");
4007 log
->l_flags
&= ~XLOG_RECOVERY_NEEDED
;
4010 "!Ending clean XFS mount for filesystem: %s\n",
4011 log
->l_mp
->m_fsname
);
4019 * Read all of the agf and agi counters and check that they
4020 * are consistent with the superblock counters.
4023 xlog_recover_check_summary(
4031 #ifdef XFS_LOUD_RECOVERY
4034 xfs_agnumber_t agno
;
4035 __uint64_t freeblks
;
4045 for (agno
= 0; agno
< mp
->m_sb
.sb_agcount
; agno
++) {
4046 error
= xfs_read_agf(mp
, NULL
, agno
, 0, &agfbp
);
4048 xfs_fs_cmn_err(CE_ALERT
, mp
,
4049 "xlog_recover_check_summary(agf)"
4050 "agf read failed agno %d error %d",
4053 agfp
= XFS_BUF_TO_AGF(agfbp
);
4054 freeblks
+= be32_to_cpu(agfp
->agf_freeblks
) +
4055 be32_to_cpu(agfp
->agf_flcount
);
4056 xfs_buf_relse(agfbp
);
4059 error
= xfs_read_agi(mp
, NULL
, agno
, &agibp
);
4061 struct xfs_agi
*agi
= XFS_BUF_TO_AGI(agibp
);
4063 itotal
+= be32_to_cpu(agi
->agi_count
);
4064 ifree
+= be32_to_cpu(agi
->agi_freecount
);
4065 xfs_buf_relse(agibp
);
4069 sbbp
= xfs_getsb(mp
, 0);
4070 #ifdef XFS_LOUD_RECOVERY
4072 xfs_sb_from_disk(sbp
, XFS_BUF_TO_SBP(sbbp
));
4074 "xlog_recover_check_summary: sb_icount %Lu itotal %Lu",
4075 sbp
->sb_icount
, itotal
);
4077 "xlog_recover_check_summary: sb_ifree %Lu itotal %Lu",
4078 sbp
->sb_ifree
, ifree
);
4080 "xlog_recover_check_summary: sb_fdblocks %Lu freeblks %Lu",
4081 sbp
->sb_fdblocks
, freeblks
);
4084 * This is turned off until I account for the allocation
4085 * btree blocks which live in free space.
4087 ASSERT(sbp
->sb_icount
== itotal
);
4088 ASSERT(sbp
->sb_ifree
== ifree
);
4089 ASSERT(sbp
->sb_fdblocks
== freeblks
);
4092 xfs_buf_relse(sbbp
);