4 * Copyright (C) 1991, 1992 Linus Torvalds
7 #include <linux/module.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/smp_lock.h>
12 #include <linux/notifier.h>
13 #include <linux/reboot.h>
14 #include <linux/prctl.h>
15 #include <linux/highuid.h>
17 #include <linux/resource.h>
18 #include <linux/kernel.h>
19 #include <linux/kexec.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
36 #include <linux/ptrace.h>
37 #include <linux/fs_struct.h>
39 #include <linux/compat.h>
40 #include <linux/syscalls.h>
41 #include <linux/kprobes.h>
42 #include <linux/user_namespace.h>
44 #include <asm/uaccess.h>
46 #include <asm/unistd.h>
48 #ifndef SET_UNALIGN_CTL
49 # define SET_UNALIGN_CTL(a,b) (-EINVAL)
51 #ifndef GET_UNALIGN_CTL
52 # define GET_UNALIGN_CTL(a,b) (-EINVAL)
55 # define SET_FPEMU_CTL(a,b) (-EINVAL)
58 # define GET_FPEMU_CTL(a,b) (-EINVAL)
61 # define SET_FPEXC_CTL(a,b) (-EINVAL)
64 # define GET_FPEXC_CTL(a,b) (-EINVAL)
67 # define GET_ENDIAN(a,b) (-EINVAL)
70 # define SET_ENDIAN(a,b) (-EINVAL)
73 # define GET_TSC_CTL(a) (-EINVAL)
76 # define SET_TSC_CTL(a) (-EINVAL)
80 * this is where the system-wide overflow UID and GID are defined, for
81 * architectures that now have 32-bit UID/GID but didn't in the past
84 int overflowuid
= DEFAULT_OVERFLOWUID
;
85 int overflowgid
= DEFAULT_OVERFLOWGID
;
88 EXPORT_SYMBOL(overflowuid
);
89 EXPORT_SYMBOL(overflowgid
);
93 * the same as above, but for filesystems which can only store a 16-bit
94 * UID and GID. as such, this is needed on all architectures
97 int fs_overflowuid
= DEFAULT_FS_OVERFLOWUID
;
98 int fs_overflowgid
= DEFAULT_FS_OVERFLOWUID
;
100 EXPORT_SYMBOL(fs_overflowuid
);
101 EXPORT_SYMBOL(fs_overflowgid
);
104 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
109 EXPORT_SYMBOL(cad_pid
);
112 * If set, this is used for preparing the system to power off.
115 void (*pm_power_off_prepare
)(void);
118 * set the priority of a task
119 * - the caller must hold the RCU read lock
121 static int set_one_prio(struct task_struct
*p
, int niceval
, int error
)
123 const struct cred
*cred
= current_cred(), *pcred
= __task_cred(p
);
126 if (pcred
->uid
!= cred
->euid
&&
127 pcred
->euid
!= cred
->euid
&& !capable(CAP_SYS_NICE
)) {
131 if (niceval
< task_nice(p
) && !can_nice(p
, niceval
)) {
135 no_nice
= security_task_setnice(p
, niceval
);
142 set_user_nice(p
, niceval
);
147 SYSCALL_DEFINE3(setpriority
, int, which
, int, who
, int, niceval
)
149 struct task_struct
*g
, *p
;
150 struct user_struct
*user
;
151 const struct cred
*cred
= current_cred();
155 if (which
> PRIO_USER
|| which
< PRIO_PROCESS
)
158 /* normalize: avoid signed division (rounding problems) */
165 read_lock(&tasklist_lock
);
169 p
= find_task_by_vpid(who
);
173 error
= set_one_prio(p
, niceval
, error
);
177 pgrp
= find_vpid(who
);
179 pgrp
= task_pgrp(current
);
180 do_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
) {
181 error
= set_one_prio(p
, niceval
, error
);
182 } while_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
);
185 user
= (struct user_struct
*) cred
->user
;
188 else if ((who
!= cred
->uid
) &&
189 !(user
= find_user(who
)))
190 goto out_unlock
; /* No processes for this user */
193 if (__task_cred(p
)->uid
== who
)
194 error
= set_one_prio(p
, niceval
, error
);
195 while_each_thread(g
, p
);
196 if (who
!= cred
->uid
)
197 free_uid(user
); /* For find_user() */
201 read_unlock(&tasklist_lock
);
207 * Ugh. To avoid negative return values, "getpriority()" will
208 * not return the normal nice-value, but a negated value that
209 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
210 * to stay compatible.
212 SYSCALL_DEFINE2(getpriority
, int, which
, int, who
)
214 struct task_struct
*g
, *p
;
215 struct user_struct
*user
;
216 const struct cred
*cred
= current_cred();
217 long niceval
, retval
= -ESRCH
;
220 if (which
> PRIO_USER
|| which
< PRIO_PROCESS
)
223 read_lock(&tasklist_lock
);
227 p
= find_task_by_vpid(who
);
231 niceval
= 20 - task_nice(p
);
232 if (niceval
> retval
)
238 pgrp
= find_vpid(who
);
240 pgrp
= task_pgrp(current
);
241 do_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
) {
242 niceval
= 20 - task_nice(p
);
243 if (niceval
> retval
)
245 } while_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
);
248 user
= (struct user_struct
*) cred
->user
;
251 else if ((who
!= cred
->uid
) &&
252 !(user
= find_user(who
)))
253 goto out_unlock
; /* No processes for this user */
256 if (__task_cred(p
)->uid
== who
) {
257 niceval
= 20 - task_nice(p
);
258 if (niceval
> retval
)
261 while_each_thread(g
, p
);
262 if (who
!= cred
->uid
)
263 free_uid(user
); /* for find_user() */
267 read_unlock(&tasklist_lock
);
273 * emergency_restart - reboot the system
275 * Without shutting down any hardware or taking any locks
276 * reboot the system. This is called when we know we are in
277 * trouble so this is our best effort to reboot. This is
278 * safe to call in interrupt context.
280 void emergency_restart(void)
282 machine_emergency_restart();
284 EXPORT_SYMBOL_GPL(emergency_restart
);
286 void kernel_restart_prepare(char *cmd
)
288 blocking_notifier_call_chain(&reboot_notifier_list
, SYS_RESTART
, cmd
);
289 system_state
= SYSTEM_RESTART
;
295 * kernel_restart - reboot the system
296 * @cmd: pointer to buffer containing command to execute for restart
299 * Shutdown everything and perform a clean reboot.
300 * This is not safe to call in interrupt context.
302 void kernel_restart(char *cmd
)
304 kernel_restart_prepare(cmd
);
306 printk(KERN_EMERG
"Restarting system.\n");
308 printk(KERN_EMERG
"Restarting system with command '%s'.\n", cmd
);
309 machine_restart(cmd
);
311 EXPORT_SYMBOL_GPL(kernel_restart
);
313 static void kernel_shutdown_prepare(enum system_states state
)
315 blocking_notifier_call_chain(&reboot_notifier_list
,
316 (state
== SYSTEM_HALT
)?SYS_HALT
:SYS_POWER_OFF
, NULL
);
317 system_state
= state
;
321 * kernel_halt - halt the system
323 * Shutdown everything and perform a clean system halt.
325 void kernel_halt(void)
327 kernel_shutdown_prepare(SYSTEM_HALT
);
329 printk(KERN_EMERG
"System halted.\n");
333 EXPORT_SYMBOL_GPL(kernel_halt
);
336 * kernel_power_off - power_off the system
338 * Shutdown everything and perform a clean system power_off.
340 void kernel_power_off(void)
342 kernel_shutdown_prepare(SYSTEM_POWER_OFF
);
343 if (pm_power_off_prepare
)
344 pm_power_off_prepare();
345 disable_nonboot_cpus();
347 printk(KERN_EMERG
"Power down.\n");
350 EXPORT_SYMBOL_GPL(kernel_power_off
);
352 * Reboot system call: for obvious reasons only root may call it,
353 * and even root needs to set up some magic numbers in the registers
354 * so that some mistake won't make this reboot the whole machine.
355 * You can also set the meaning of the ctrl-alt-del-key here.
357 * reboot doesn't sync: do that yourself before calling this.
359 SYSCALL_DEFINE4(reboot
, int, magic1
, int, magic2
, unsigned int, cmd
,
364 /* We only trust the superuser with rebooting the system. */
365 if (!capable(CAP_SYS_BOOT
))
368 /* For safety, we require "magic" arguments. */
369 if (magic1
!= LINUX_REBOOT_MAGIC1
||
370 (magic2
!= LINUX_REBOOT_MAGIC2
&&
371 magic2
!= LINUX_REBOOT_MAGIC2A
&&
372 magic2
!= LINUX_REBOOT_MAGIC2B
&&
373 magic2
!= LINUX_REBOOT_MAGIC2C
))
376 /* Instead of trying to make the power_off code look like
377 * halt when pm_power_off is not set do it the easy way.
379 if ((cmd
== LINUX_REBOOT_CMD_POWER_OFF
) && !pm_power_off
)
380 cmd
= LINUX_REBOOT_CMD_HALT
;
384 case LINUX_REBOOT_CMD_RESTART
:
385 kernel_restart(NULL
);
388 case LINUX_REBOOT_CMD_CAD_ON
:
392 case LINUX_REBOOT_CMD_CAD_OFF
:
396 case LINUX_REBOOT_CMD_HALT
:
402 case LINUX_REBOOT_CMD_POWER_OFF
:
408 case LINUX_REBOOT_CMD_RESTART2
:
409 if (strncpy_from_user(&buffer
[0], arg
, sizeof(buffer
) - 1) < 0) {
413 buffer
[sizeof(buffer
) - 1] = '\0';
415 kernel_restart(buffer
);
419 case LINUX_REBOOT_CMD_KEXEC
:
422 ret
= kernel_kexec();
428 #ifdef CONFIG_HIBERNATION
429 case LINUX_REBOOT_CMD_SW_SUSPEND
:
431 int ret
= hibernate();
445 static void deferred_cad(struct work_struct
*dummy
)
447 kernel_restart(NULL
);
451 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
452 * As it's called within an interrupt, it may NOT sync: the only choice
453 * is whether to reboot at once, or just ignore the ctrl-alt-del.
455 void ctrl_alt_del(void)
457 static DECLARE_WORK(cad_work
, deferred_cad
);
460 schedule_work(&cad_work
);
462 kill_cad_pid(SIGINT
, 1);
466 * Unprivileged users may change the real gid to the effective gid
467 * or vice versa. (BSD-style)
469 * If you set the real gid at all, or set the effective gid to a value not
470 * equal to the real gid, then the saved gid is set to the new effective gid.
472 * This makes it possible for a setgid program to completely drop its
473 * privileges, which is often a useful assertion to make when you are doing
474 * a security audit over a program.
476 * The general idea is that a program which uses just setregid() will be
477 * 100% compatible with BSD. A program which uses just setgid() will be
478 * 100% compatible with POSIX with saved IDs.
480 * SMP: There are not races, the GIDs are checked only by filesystem
481 * operations (as far as semantic preservation is concerned).
483 SYSCALL_DEFINE2(setregid
, gid_t
, rgid
, gid_t
, egid
)
485 const struct cred
*old
;
489 new = prepare_creds();
492 old
= current_cred();
494 retval
= security_task_setgid(rgid
, egid
, (gid_t
)-1, LSM_SETID_RE
);
499 if (rgid
!= (gid_t
) -1) {
500 if (old
->gid
== rgid
||
507 if (egid
!= (gid_t
) -1) {
508 if (old
->gid
== egid
||
517 if (rgid
!= (gid_t
) -1 ||
518 (egid
!= (gid_t
) -1 && egid
!= old
->gid
))
519 new->sgid
= new->egid
;
520 new->fsgid
= new->egid
;
522 return commit_creds(new);
530 * setgid() is implemented like SysV w/ SAVED_IDS
532 * SMP: Same implicit races as above.
534 SYSCALL_DEFINE1(setgid
, gid_t
, gid
)
536 const struct cred
*old
;
540 new = prepare_creds();
543 old
= current_cred();
545 retval
= security_task_setgid(gid
, (gid_t
)-1, (gid_t
)-1, LSM_SETID_ID
);
550 if (capable(CAP_SETGID
))
551 new->gid
= new->egid
= new->sgid
= new->fsgid
= gid
;
552 else if (gid
== old
->gid
|| gid
== old
->sgid
)
553 new->egid
= new->fsgid
= gid
;
557 return commit_creds(new);
565 * change the user struct in a credentials set to match the new UID
567 static int set_user(struct cred
*new)
569 struct user_struct
*new_user
;
571 new_user
= alloc_uid(current_user_ns(), new->uid
);
575 if (!task_can_switch_user(new_user
, current
)) {
580 if (atomic_read(&new_user
->processes
) >=
581 current
->signal
->rlim
[RLIMIT_NPROC
].rlim_cur
&&
582 new_user
!= INIT_USER
) {
588 new->user
= new_user
;
593 * Unprivileged users may change the real uid to the effective uid
594 * or vice versa. (BSD-style)
596 * If you set the real uid at all, or set the effective uid to a value not
597 * equal to the real uid, then the saved uid is set to the new effective uid.
599 * This makes it possible for a setuid program to completely drop its
600 * privileges, which is often a useful assertion to make when you are doing
601 * a security audit over a program.
603 * The general idea is that a program which uses just setreuid() will be
604 * 100% compatible with BSD. A program which uses just setuid() will be
605 * 100% compatible with POSIX with saved IDs.
607 SYSCALL_DEFINE2(setreuid
, uid_t
, ruid
, uid_t
, euid
)
609 const struct cred
*old
;
613 new = prepare_creds();
616 old
= current_cred();
618 retval
= security_task_setuid(ruid
, euid
, (uid_t
)-1, LSM_SETID_RE
);
623 if (ruid
!= (uid_t
) -1) {
625 if (old
->uid
!= ruid
&&
627 !capable(CAP_SETUID
))
631 if (euid
!= (uid_t
) -1) {
633 if (old
->uid
!= euid
&&
636 !capable(CAP_SETUID
))
640 if (new->uid
!= old
->uid
) {
641 retval
= set_user(new);
645 if (ruid
!= (uid_t
) -1 ||
646 (euid
!= (uid_t
) -1 && euid
!= old
->uid
))
647 new->suid
= new->euid
;
648 new->fsuid
= new->euid
;
650 retval
= security_task_fix_setuid(new, old
, LSM_SETID_RE
);
654 return commit_creds(new);
662 * setuid() is implemented like SysV with SAVED_IDS
664 * Note that SAVED_ID's is deficient in that a setuid root program
665 * like sendmail, for example, cannot set its uid to be a normal
666 * user and then switch back, because if you're root, setuid() sets
667 * the saved uid too. If you don't like this, blame the bright people
668 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
669 * will allow a root program to temporarily drop privileges and be able to
670 * regain them by swapping the real and effective uid.
672 SYSCALL_DEFINE1(setuid
, uid_t
, uid
)
674 const struct cred
*old
;
678 new = prepare_creds();
681 old
= current_cred();
683 retval
= security_task_setuid(uid
, (uid_t
)-1, (uid_t
)-1, LSM_SETID_ID
);
688 if (capable(CAP_SETUID
)) {
689 new->suid
= new->uid
= uid
;
690 if (uid
!= old
->uid
) {
691 retval
= set_user(new);
695 } else if (uid
!= old
->uid
&& uid
!= new->suid
) {
699 new->fsuid
= new->euid
= uid
;
701 retval
= security_task_fix_setuid(new, old
, LSM_SETID_ID
);
705 return commit_creds(new);
714 * This function implements a generic ability to update ruid, euid,
715 * and suid. This allows you to implement the 4.4 compatible seteuid().
717 SYSCALL_DEFINE3(setresuid
, uid_t
, ruid
, uid_t
, euid
, uid_t
, suid
)
719 const struct cred
*old
;
723 new = prepare_creds();
727 retval
= security_task_setuid(ruid
, euid
, suid
, LSM_SETID_RES
);
730 old
= current_cred();
733 if (!capable(CAP_SETUID
)) {
734 if (ruid
!= (uid_t
) -1 && ruid
!= old
->uid
&&
735 ruid
!= old
->euid
&& ruid
!= old
->suid
)
737 if (euid
!= (uid_t
) -1 && euid
!= old
->uid
&&
738 euid
!= old
->euid
&& euid
!= old
->suid
)
740 if (suid
!= (uid_t
) -1 && suid
!= old
->uid
&&
741 suid
!= old
->euid
&& suid
!= old
->suid
)
745 if (ruid
!= (uid_t
) -1) {
747 if (ruid
!= old
->uid
) {
748 retval
= set_user(new);
753 if (euid
!= (uid_t
) -1)
755 if (suid
!= (uid_t
) -1)
757 new->fsuid
= new->euid
;
759 retval
= security_task_fix_setuid(new, old
, LSM_SETID_RES
);
763 return commit_creds(new);
770 SYSCALL_DEFINE3(getresuid
, uid_t __user
*, ruid
, uid_t __user
*, euid
, uid_t __user
*, suid
)
772 const struct cred
*cred
= current_cred();
775 if (!(retval
= put_user(cred
->uid
, ruid
)) &&
776 !(retval
= put_user(cred
->euid
, euid
)))
777 retval
= put_user(cred
->suid
, suid
);
783 * Same as above, but for rgid, egid, sgid.
785 SYSCALL_DEFINE3(setresgid
, gid_t
, rgid
, gid_t
, egid
, gid_t
, sgid
)
787 const struct cred
*old
;
791 new = prepare_creds();
794 old
= current_cred();
796 retval
= security_task_setgid(rgid
, egid
, sgid
, LSM_SETID_RES
);
801 if (!capable(CAP_SETGID
)) {
802 if (rgid
!= (gid_t
) -1 && rgid
!= old
->gid
&&
803 rgid
!= old
->egid
&& rgid
!= old
->sgid
)
805 if (egid
!= (gid_t
) -1 && egid
!= old
->gid
&&
806 egid
!= old
->egid
&& egid
!= old
->sgid
)
808 if (sgid
!= (gid_t
) -1 && sgid
!= old
->gid
&&
809 sgid
!= old
->egid
&& sgid
!= old
->sgid
)
813 if (rgid
!= (gid_t
) -1)
815 if (egid
!= (gid_t
) -1)
817 if (sgid
!= (gid_t
) -1)
819 new->fsgid
= new->egid
;
821 return commit_creds(new);
828 SYSCALL_DEFINE3(getresgid
, gid_t __user
*, rgid
, gid_t __user
*, egid
, gid_t __user
*, sgid
)
830 const struct cred
*cred
= current_cred();
833 if (!(retval
= put_user(cred
->gid
, rgid
)) &&
834 !(retval
= put_user(cred
->egid
, egid
)))
835 retval
= put_user(cred
->sgid
, sgid
);
842 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
843 * is used for "access()" and for the NFS daemon (letting nfsd stay at
844 * whatever uid it wants to). It normally shadows "euid", except when
845 * explicitly set by setfsuid() or for access..
847 SYSCALL_DEFINE1(setfsuid
, uid_t
, uid
)
849 const struct cred
*old
;
853 new = prepare_creds();
855 return current_fsuid();
856 old
= current_cred();
857 old_fsuid
= old
->fsuid
;
859 if (security_task_setuid(uid
, (uid_t
)-1, (uid_t
)-1, LSM_SETID_FS
) < 0)
862 if (uid
== old
->uid
|| uid
== old
->euid
||
863 uid
== old
->suid
|| uid
== old
->fsuid
||
864 capable(CAP_SETUID
)) {
865 if (uid
!= old_fsuid
) {
867 if (security_task_fix_setuid(new, old
, LSM_SETID_FS
) == 0)
882 * Samma på svenska..
884 SYSCALL_DEFINE1(setfsgid
, gid_t
, gid
)
886 const struct cred
*old
;
890 new = prepare_creds();
892 return current_fsgid();
893 old
= current_cred();
894 old_fsgid
= old
->fsgid
;
896 if (security_task_setgid(gid
, (gid_t
)-1, (gid_t
)-1, LSM_SETID_FS
))
899 if (gid
== old
->gid
|| gid
== old
->egid
||
900 gid
== old
->sgid
|| gid
== old
->fsgid
||
901 capable(CAP_SETGID
)) {
902 if (gid
!= old_fsgid
) {
917 void do_sys_times(struct tms
*tms
)
919 struct task_cputime cputime
;
920 cputime_t cutime
, cstime
;
922 thread_group_cputime(current
, &cputime
);
923 spin_lock_irq(¤t
->sighand
->siglock
);
924 cutime
= current
->signal
->cutime
;
925 cstime
= current
->signal
->cstime
;
926 spin_unlock_irq(¤t
->sighand
->siglock
);
927 tms
->tms_utime
= cputime_to_clock_t(cputime
.utime
);
928 tms
->tms_stime
= cputime_to_clock_t(cputime
.stime
);
929 tms
->tms_cutime
= cputime_to_clock_t(cutime
);
930 tms
->tms_cstime
= cputime_to_clock_t(cstime
);
933 SYSCALL_DEFINE1(times
, struct tms __user
*, tbuf
)
939 if (copy_to_user(tbuf
, &tmp
, sizeof(struct tms
)))
942 force_successful_syscall_return();
943 return (long) jiffies_64_to_clock_t(get_jiffies_64());
947 * This needs some heavy checking ...
948 * I just haven't the stomach for it. I also don't fully
949 * understand sessions/pgrp etc. Let somebody who does explain it.
951 * OK, I think I have the protection semantics right.... this is really
952 * only important on a multi-user system anyway, to make sure one user
953 * can't send a signal to a process owned by another. -TYT, 12/12/91
955 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
958 SYSCALL_DEFINE2(setpgid
, pid_t
, pid
, pid_t
, pgid
)
960 struct task_struct
*p
;
961 struct task_struct
*group_leader
= current
->group_leader
;
966 pid
= task_pid_vnr(group_leader
);
972 /* From this point forward we keep holding onto the tasklist lock
973 * so that our parent does not change from under us. -DaveM
975 write_lock_irq(&tasklist_lock
);
978 p
= find_task_by_vpid(pid
);
983 if (!thread_group_leader(p
))
986 if (same_thread_group(p
->real_parent
, group_leader
)) {
988 if (task_session(p
) != task_session(group_leader
))
995 if (p
!= group_leader
)
1000 if (p
->signal
->leader
)
1005 struct task_struct
*g
;
1007 pgrp
= find_vpid(pgid
);
1008 g
= pid_task(pgrp
, PIDTYPE_PGID
);
1009 if (!g
|| task_session(g
) != task_session(group_leader
))
1013 err
= security_task_setpgid(p
, pgid
);
1017 if (task_pgrp(p
) != pgrp
)
1018 change_pid(p
, PIDTYPE_PGID
, pgrp
);
1022 /* All paths lead to here, thus we are safe. -DaveM */
1023 write_unlock_irq(&tasklist_lock
);
1027 SYSCALL_DEFINE1(getpgid
, pid_t
, pid
)
1029 struct task_struct
*p
;
1035 grp
= task_pgrp(current
);
1038 p
= find_task_by_vpid(pid
);
1045 retval
= security_task_getpgid(p
);
1049 retval
= pid_vnr(grp
);
1055 #ifdef __ARCH_WANT_SYS_GETPGRP
1057 SYSCALL_DEFINE0(getpgrp
)
1059 return sys_getpgid(0);
1064 SYSCALL_DEFINE1(getsid
, pid_t
, pid
)
1066 struct task_struct
*p
;
1072 sid
= task_session(current
);
1075 p
= find_task_by_vpid(pid
);
1078 sid
= task_session(p
);
1082 retval
= security_task_getsid(p
);
1086 retval
= pid_vnr(sid
);
1092 SYSCALL_DEFINE0(setsid
)
1094 struct task_struct
*group_leader
= current
->group_leader
;
1095 struct pid
*sid
= task_pid(group_leader
);
1096 pid_t session
= pid_vnr(sid
);
1099 write_lock_irq(&tasklist_lock
);
1100 /* Fail if I am already a session leader */
1101 if (group_leader
->signal
->leader
)
1104 /* Fail if a process group id already exists that equals the
1105 * proposed session id.
1107 if (pid_task(sid
, PIDTYPE_PGID
))
1110 group_leader
->signal
->leader
= 1;
1111 __set_special_pids(sid
);
1113 proc_clear_tty(group_leader
);
1117 write_unlock_irq(&tasklist_lock
);
1122 * Supplementary group IDs
1125 /* init to 2 - one for init_task, one to ensure it is never freed */
1126 struct group_info init_groups
= { .usage
= ATOMIC_INIT(2) };
1128 struct group_info
*groups_alloc(int gidsetsize
)
1130 struct group_info
*group_info
;
1134 nblocks
= (gidsetsize
+ NGROUPS_PER_BLOCK
- 1) / NGROUPS_PER_BLOCK
;
1135 /* Make sure we always allocate at least one indirect block pointer */
1136 nblocks
= nblocks
? : 1;
1137 group_info
= kmalloc(sizeof(*group_info
) + nblocks
*sizeof(gid_t
*), GFP_USER
);
1140 group_info
->ngroups
= gidsetsize
;
1141 group_info
->nblocks
= nblocks
;
1142 atomic_set(&group_info
->usage
, 1);
1144 if (gidsetsize
<= NGROUPS_SMALL
)
1145 group_info
->blocks
[0] = group_info
->small_block
;
1147 for (i
= 0; i
< nblocks
; i
++) {
1149 b
= (void *)__get_free_page(GFP_USER
);
1151 goto out_undo_partial_alloc
;
1152 group_info
->blocks
[i
] = b
;
1157 out_undo_partial_alloc
:
1159 free_page((unsigned long)group_info
->blocks
[i
]);
1165 EXPORT_SYMBOL(groups_alloc
);
1167 void groups_free(struct group_info
*group_info
)
1169 if (group_info
->blocks
[0] != group_info
->small_block
) {
1171 for (i
= 0; i
< group_info
->nblocks
; i
++)
1172 free_page((unsigned long)group_info
->blocks
[i
]);
1177 EXPORT_SYMBOL(groups_free
);
1179 /* export the group_info to a user-space array */
1180 static int groups_to_user(gid_t __user
*grouplist
,
1181 const struct group_info
*group_info
)
1184 unsigned int count
= group_info
->ngroups
;
1186 for (i
= 0; i
< group_info
->nblocks
; i
++) {
1187 unsigned int cp_count
= min(NGROUPS_PER_BLOCK
, count
);
1188 unsigned int len
= cp_count
* sizeof(*grouplist
);
1190 if (copy_to_user(grouplist
, group_info
->blocks
[i
], len
))
1193 grouplist
+= NGROUPS_PER_BLOCK
;
1199 /* fill a group_info from a user-space array - it must be allocated already */
1200 static int groups_from_user(struct group_info
*group_info
,
1201 gid_t __user
*grouplist
)
1204 unsigned int count
= group_info
->ngroups
;
1206 for (i
= 0; i
< group_info
->nblocks
; i
++) {
1207 unsigned int cp_count
= min(NGROUPS_PER_BLOCK
, count
);
1208 unsigned int len
= cp_count
* sizeof(*grouplist
);
1210 if (copy_from_user(group_info
->blocks
[i
], grouplist
, len
))
1213 grouplist
+= NGROUPS_PER_BLOCK
;
1219 /* a simple Shell sort */
1220 static void groups_sort(struct group_info
*group_info
)
1222 int base
, max
, stride
;
1223 int gidsetsize
= group_info
->ngroups
;
1225 for (stride
= 1; stride
< gidsetsize
; stride
= 3 * stride
+ 1)
1230 max
= gidsetsize
- stride
;
1231 for (base
= 0; base
< max
; base
++) {
1233 int right
= left
+ stride
;
1234 gid_t tmp
= GROUP_AT(group_info
, right
);
1236 while (left
>= 0 && GROUP_AT(group_info
, left
) > tmp
) {
1237 GROUP_AT(group_info
, right
) =
1238 GROUP_AT(group_info
, left
);
1242 GROUP_AT(group_info
, right
) = tmp
;
1248 /* a simple bsearch */
1249 int groups_search(const struct group_info
*group_info
, gid_t grp
)
1251 unsigned int left
, right
;
1257 right
= group_info
->ngroups
;
1258 while (left
< right
) {
1259 unsigned int mid
= (left
+right
)/2;
1260 int cmp
= grp
- GROUP_AT(group_info
, mid
);
1272 * set_groups - Change a group subscription in a set of credentials
1273 * @new: The newly prepared set of credentials to alter
1274 * @group_info: The group list to install
1276 * Validate a group subscription and, if valid, insert it into a set
1279 int set_groups(struct cred
*new, struct group_info
*group_info
)
1283 retval
= security_task_setgroups(group_info
);
1287 put_group_info(new->group_info
);
1288 groups_sort(group_info
);
1289 get_group_info(group_info
);
1290 new->group_info
= group_info
;
1294 EXPORT_SYMBOL(set_groups
);
1297 * set_current_groups - Change current's group subscription
1298 * @group_info: The group list to impose
1300 * Validate a group subscription and, if valid, impose it upon current's task
1303 int set_current_groups(struct group_info
*group_info
)
1308 new = prepare_creds();
1312 ret
= set_groups(new, group_info
);
1318 return commit_creds(new);
1321 EXPORT_SYMBOL(set_current_groups
);
1323 SYSCALL_DEFINE2(getgroups
, int, gidsetsize
, gid_t __user
*, grouplist
)
1325 const struct cred
*cred
= current_cred();
1331 /* no need to grab task_lock here; it cannot change */
1332 i
= cred
->group_info
->ngroups
;
1334 if (i
> gidsetsize
) {
1338 if (groups_to_user(grouplist
, cred
->group_info
)) {
1348 * SMP: Our groups are copy-on-write. We can set them safely
1349 * without another task interfering.
1352 SYSCALL_DEFINE2(setgroups
, int, gidsetsize
, gid_t __user
*, grouplist
)
1354 struct group_info
*group_info
;
1357 if (!capable(CAP_SETGID
))
1359 if ((unsigned)gidsetsize
> NGROUPS_MAX
)
1362 group_info
= groups_alloc(gidsetsize
);
1365 retval
= groups_from_user(group_info
, grouplist
);
1367 put_group_info(group_info
);
1371 retval
= set_current_groups(group_info
);
1372 put_group_info(group_info
);
1378 * Check whether we're fsgid/egid or in the supplemental group..
1380 int in_group_p(gid_t grp
)
1382 const struct cred
*cred
= current_cred();
1385 if (grp
!= cred
->fsgid
)
1386 retval
= groups_search(cred
->group_info
, grp
);
1390 EXPORT_SYMBOL(in_group_p
);
1392 int in_egroup_p(gid_t grp
)
1394 const struct cred
*cred
= current_cred();
1397 if (grp
!= cred
->egid
)
1398 retval
= groups_search(cred
->group_info
, grp
);
1402 EXPORT_SYMBOL(in_egroup_p
);
1404 DECLARE_RWSEM(uts_sem
);
1406 SYSCALL_DEFINE1(newuname
, struct new_utsname __user
*, name
)
1410 down_read(&uts_sem
);
1411 if (copy_to_user(name
, utsname(), sizeof *name
))
1417 SYSCALL_DEFINE2(sethostname
, char __user
*, name
, int, len
)
1420 char tmp
[__NEW_UTS_LEN
];
1422 if (!capable(CAP_SYS_ADMIN
))
1424 if (len
< 0 || len
> __NEW_UTS_LEN
)
1426 down_write(&uts_sem
);
1428 if (!copy_from_user(tmp
, name
, len
)) {
1429 struct new_utsname
*u
= utsname();
1431 memcpy(u
->nodename
, tmp
, len
);
1432 memset(u
->nodename
+ len
, 0, sizeof(u
->nodename
) - len
);
1439 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1441 SYSCALL_DEFINE2(gethostname
, char __user
*, name
, int, len
)
1444 struct new_utsname
*u
;
1448 down_read(&uts_sem
);
1450 i
= 1 + strlen(u
->nodename
);
1454 if (copy_to_user(name
, u
->nodename
, i
))
1463 * Only setdomainname; getdomainname can be implemented by calling
1466 SYSCALL_DEFINE2(setdomainname
, char __user
*, name
, int, len
)
1469 char tmp
[__NEW_UTS_LEN
];
1471 if (!capable(CAP_SYS_ADMIN
))
1473 if (len
< 0 || len
> __NEW_UTS_LEN
)
1476 down_write(&uts_sem
);
1478 if (!copy_from_user(tmp
, name
, len
)) {
1479 struct new_utsname
*u
= utsname();
1481 memcpy(u
->domainname
, tmp
, len
);
1482 memset(u
->domainname
+ len
, 0, sizeof(u
->domainname
) - len
);
1489 SYSCALL_DEFINE2(getrlimit
, unsigned int, resource
, struct rlimit __user
*, rlim
)
1491 if (resource
>= RLIM_NLIMITS
)
1494 struct rlimit value
;
1495 task_lock(current
->group_leader
);
1496 value
= current
->signal
->rlim
[resource
];
1497 task_unlock(current
->group_leader
);
1498 return copy_to_user(rlim
, &value
, sizeof(*rlim
)) ? -EFAULT
: 0;
1502 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1505 * Back compatibility for getrlimit. Needed for some apps.
1508 SYSCALL_DEFINE2(old_getrlimit
, unsigned int, resource
,
1509 struct rlimit __user
*, rlim
)
1512 if (resource
>= RLIM_NLIMITS
)
1515 task_lock(current
->group_leader
);
1516 x
= current
->signal
->rlim
[resource
];
1517 task_unlock(current
->group_leader
);
1518 if (x
.rlim_cur
> 0x7FFFFFFF)
1519 x
.rlim_cur
= 0x7FFFFFFF;
1520 if (x
.rlim_max
> 0x7FFFFFFF)
1521 x
.rlim_max
= 0x7FFFFFFF;
1522 return copy_to_user(rlim
, &x
, sizeof(x
))?-EFAULT
:0;
1527 SYSCALL_DEFINE2(setrlimit
, unsigned int, resource
, struct rlimit __user
*, rlim
)
1529 struct rlimit new_rlim
, *old_rlim
;
1532 if (resource
>= RLIM_NLIMITS
)
1534 if (copy_from_user(&new_rlim
, rlim
, sizeof(*rlim
)))
1536 if (new_rlim
.rlim_cur
> new_rlim
.rlim_max
)
1538 old_rlim
= current
->signal
->rlim
+ resource
;
1539 if ((new_rlim
.rlim_max
> old_rlim
->rlim_max
) &&
1540 !capable(CAP_SYS_RESOURCE
))
1542 if (resource
== RLIMIT_NOFILE
&& new_rlim
.rlim_max
> sysctl_nr_open
)
1545 retval
= security_task_setrlimit(resource
, &new_rlim
);
1549 if (resource
== RLIMIT_CPU
&& new_rlim
.rlim_cur
== 0) {
1551 * The caller is asking for an immediate RLIMIT_CPU
1552 * expiry. But we use the zero value to mean "it was
1553 * never set". So let's cheat and make it one second
1556 new_rlim
.rlim_cur
= 1;
1559 task_lock(current
->group_leader
);
1560 *old_rlim
= new_rlim
;
1561 task_unlock(current
->group_leader
);
1563 if (resource
!= RLIMIT_CPU
)
1567 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1568 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1569 * very long-standing error, and fixing it now risks breakage of
1570 * applications, so we live with it
1572 if (new_rlim
.rlim_cur
== RLIM_INFINITY
)
1575 update_rlimit_cpu(new_rlim
.rlim_cur
);
1581 * It would make sense to put struct rusage in the task_struct,
1582 * except that would make the task_struct be *really big*. After
1583 * task_struct gets moved into malloc'ed memory, it would
1584 * make sense to do this. It will make moving the rest of the information
1585 * a lot simpler! (Which we're not doing right now because we're not
1586 * measuring them yet).
1588 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1589 * races with threads incrementing their own counters. But since word
1590 * reads are atomic, we either get new values or old values and we don't
1591 * care which for the sums. We always take the siglock to protect reading
1592 * the c* fields from p->signal from races with exit.c updating those
1593 * fields when reaping, so a sample either gets all the additions of a
1594 * given child after it's reaped, or none so this sample is before reaping.
1597 * We need to take the siglock for CHILDEREN, SELF and BOTH
1598 * for the cases current multithreaded, non-current single threaded
1599 * non-current multithreaded. Thread traversal is now safe with
1601 * Strictly speaking, we donot need to take the siglock if we are current and
1602 * single threaded, as no one else can take our signal_struct away, no one
1603 * else can reap the children to update signal->c* counters, and no one else
1604 * can race with the signal-> fields. If we do not take any lock, the
1605 * signal-> fields could be read out of order while another thread was just
1606 * exiting. So we should place a read memory barrier when we avoid the lock.
1607 * On the writer side, write memory barrier is implied in __exit_signal
1608 * as __exit_signal releases the siglock spinlock after updating the signal->
1609 * fields. But we don't do this yet to keep things simple.
1613 static void accumulate_thread_rusage(struct task_struct
*t
, struct rusage
*r
)
1615 r
->ru_nvcsw
+= t
->nvcsw
;
1616 r
->ru_nivcsw
+= t
->nivcsw
;
1617 r
->ru_minflt
+= t
->min_flt
;
1618 r
->ru_majflt
+= t
->maj_flt
;
1619 r
->ru_inblock
+= task_io_get_inblock(t
);
1620 r
->ru_oublock
+= task_io_get_oublock(t
);
1623 static void k_getrusage(struct task_struct
*p
, int who
, struct rusage
*r
)
1625 struct task_struct
*t
;
1626 unsigned long flags
;
1627 cputime_t utime
, stime
;
1628 struct task_cputime cputime
;
1630 memset((char *) r
, 0, sizeof *r
);
1631 utime
= stime
= cputime_zero
;
1633 if (who
== RUSAGE_THREAD
) {
1634 utime
= task_utime(current
);
1635 stime
= task_stime(current
);
1636 accumulate_thread_rusage(p
, r
);
1640 if (!lock_task_sighand(p
, &flags
))
1645 case RUSAGE_CHILDREN
:
1646 utime
= p
->signal
->cutime
;
1647 stime
= p
->signal
->cstime
;
1648 r
->ru_nvcsw
= p
->signal
->cnvcsw
;
1649 r
->ru_nivcsw
= p
->signal
->cnivcsw
;
1650 r
->ru_minflt
= p
->signal
->cmin_flt
;
1651 r
->ru_majflt
= p
->signal
->cmaj_flt
;
1652 r
->ru_inblock
= p
->signal
->cinblock
;
1653 r
->ru_oublock
= p
->signal
->coublock
;
1655 if (who
== RUSAGE_CHILDREN
)
1659 thread_group_cputime(p
, &cputime
);
1660 utime
= cputime_add(utime
, cputime
.utime
);
1661 stime
= cputime_add(stime
, cputime
.stime
);
1662 r
->ru_nvcsw
+= p
->signal
->nvcsw
;
1663 r
->ru_nivcsw
+= p
->signal
->nivcsw
;
1664 r
->ru_minflt
+= p
->signal
->min_flt
;
1665 r
->ru_majflt
+= p
->signal
->maj_flt
;
1666 r
->ru_inblock
+= p
->signal
->inblock
;
1667 r
->ru_oublock
+= p
->signal
->oublock
;
1670 accumulate_thread_rusage(t
, r
);
1678 unlock_task_sighand(p
, &flags
);
1681 cputime_to_timeval(utime
, &r
->ru_utime
);
1682 cputime_to_timeval(stime
, &r
->ru_stime
);
1685 int getrusage(struct task_struct
*p
, int who
, struct rusage __user
*ru
)
1688 k_getrusage(p
, who
, &r
);
1689 return copy_to_user(ru
, &r
, sizeof(r
)) ? -EFAULT
: 0;
1692 SYSCALL_DEFINE2(getrusage
, int, who
, struct rusage __user
*, ru
)
1694 if (who
!= RUSAGE_SELF
&& who
!= RUSAGE_CHILDREN
&&
1695 who
!= RUSAGE_THREAD
)
1697 return getrusage(current
, who
, ru
);
1700 SYSCALL_DEFINE1(umask
, int, mask
)
1702 mask
= xchg(¤t
->fs
->umask
, mask
& S_IRWXUGO
);
1706 SYSCALL_DEFINE5(prctl
, int, option
, unsigned long, arg2
, unsigned long, arg3
,
1707 unsigned long, arg4
, unsigned long, arg5
)
1709 struct task_struct
*me
= current
;
1710 unsigned char comm
[sizeof(me
->comm
)];
1713 error
= security_task_prctl(option
, arg2
, arg3
, arg4
, arg5
);
1714 if (error
!= -ENOSYS
)
1719 case PR_SET_PDEATHSIG
:
1720 if (!valid_signal(arg2
)) {
1724 me
->pdeath_signal
= arg2
;
1727 case PR_GET_PDEATHSIG
:
1728 error
= put_user(me
->pdeath_signal
, (int __user
*)arg2
);
1730 case PR_GET_DUMPABLE
:
1731 error
= get_dumpable(me
->mm
);
1733 case PR_SET_DUMPABLE
:
1734 if (arg2
< 0 || arg2
> 1) {
1738 set_dumpable(me
->mm
, arg2
);
1742 case PR_SET_UNALIGN
:
1743 error
= SET_UNALIGN_CTL(me
, arg2
);
1745 case PR_GET_UNALIGN
:
1746 error
= GET_UNALIGN_CTL(me
, arg2
);
1749 error
= SET_FPEMU_CTL(me
, arg2
);
1752 error
= GET_FPEMU_CTL(me
, arg2
);
1755 error
= SET_FPEXC_CTL(me
, arg2
);
1758 error
= GET_FPEXC_CTL(me
, arg2
);
1761 error
= PR_TIMING_STATISTICAL
;
1764 if (arg2
!= PR_TIMING_STATISTICAL
)
1771 comm
[sizeof(me
->comm
)-1] = 0;
1772 if (strncpy_from_user(comm
, (char __user
*)arg2
,
1773 sizeof(me
->comm
) - 1) < 0)
1775 set_task_comm(me
, comm
);
1778 get_task_comm(comm
, me
);
1779 if (copy_to_user((char __user
*)arg2
, comm
,
1784 error
= GET_ENDIAN(me
, arg2
);
1787 error
= SET_ENDIAN(me
, arg2
);
1790 case PR_GET_SECCOMP
:
1791 error
= prctl_get_seccomp();
1793 case PR_SET_SECCOMP
:
1794 error
= prctl_set_seccomp(arg2
);
1797 error
= GET_TSC_CTL(arg2
);
1800 error
= SET_TSC_CTL(arg2
);
1802 case PR_GET_TIMERSLACK
:
1803 error
= current
->timer_slack_ns
;
1805 case PR_SET_TIMERSLACK
:
1807 current
->timer_slack_ns
=
1808 current
->default_timer_slack_ns
;
1810 current
->timer_slack_ns
= arg2
;
1820 SYSCALL_DEFINE3(getcpu
, unsigned __user
*, cpup
, unsigned __user
*, nodep
,
1821 struct getcpu_cache __user
*, unused
)
1824 int cpu
= raw_smp_processor_id();
1826 err
|= put_user(cpu
, cpup
);
1828 err
|= put_user(cpu_to_node(cpu
), nodep
);
1829 return err
? -EFAULT
: 0;
1832 char poweroff_cmd
[POWEROFF_CMD_PATH_LEN
] = "/sbin/poweroff";
1834 static void argv_cleanup(char **argv
, char **envp
)
1840 * orderly_poweroff - Trigger an orderly system poweroff
1841 * @force: force poweroff if command execution fails
1843 * This may be called from any context to trigger a system shutdown.
1844 * If the orderly shutdown fails, it will force an immediate shutdown.
1846 int orderly_poweroff(bool force
)
1849 char **argv
= argv_split(GFP_ATOMIC
, poweroff_cmd
, &argc
);
1850 static char *envp
[] = {
1852 "PATH=/sbin:/bin:/usr/sbin:/usr/bin",
1856 struct subprocess_info
*info
;
1859 printk(KERN_WARNING
"%s failed to allocate memory for \"%s\"\n",
1860 __func__
, poweroff_cmd
);
1864 info
= call_usermodehelper_setup(argv
[0], argv
, envp
, GFP_ATOMIC
);
1870 call_usermodehelper_setcleanup(info
, argv_cleanup
);
1872 ret
= call_usermodehelper_exec(info
, UMH_NO_WAIT
);
1876 printk(KERN_WARNING
"Failed to start orderly shutdown: "
1877 "forcing the issue\n");
1879 /* I guess this should try to kick off some daemon to
1880 sync and poweroff asap. Or not even bother syncing
1881 if we're doing an emergency shutdown? */
1888 EXPORT_SYMBOL_GPL(orderly_poweroff
);