Driver core: convert sound core to use struct device
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / jffs2 / fs.c
blob7bc1a4201c0c233437dd5e60d45159620b39e57c
1 /*
2 * JFFS2 -- Journalling Flash File System, Version 2.
4 * Copyright (C) 2001-2003 Red Hat, Inc.
6 * Created by David Woodhouse <dwmw2@infradead.org>
8 * For licensing information, see the file 'LICENCE' in this directory.
10 * $Id: fs.c,v 1.66 2005/09/27 13:17:29 dedekind Exp $
14 #include <linux/capability.h>
15 #include <linux/kernel.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/list.h>
19 #include <linux/mtd/mtd.h>
20 #include <linux/pagemap.h>
21 #include <linux/slab.h>
22 #include <linux/vmalloc.h>
23 #include <linux/vfs.h>
24 #include <linux/crc32.h>
25 #include "nodelist.h"
27 static int jffs2_flash_setup(struct jffs2_sb_info *c);
29 static int jffs2_do_setattr (struct inode *inode, struct iattr *iattr)
31 struct jffs2_full_dnode *old_metadata, *new_metadata;
32 struct jffs2_inode_info *f = JFFS2_INODE_INFO(inode);
33 struct jffs2_sb_info *c = JFFS2_SB_INFO(inode->i_sb);
34 struct jffs2_raw_inode *ri;
35 union jffs2_device_node dev;
36 unsigned char *mdata = NULL;
37 int mdatalen = 0;
38 unsigned int ivalid;
39 uint32_t alloclen;
40 int ret;
41 D1(printk(KERN_DEBUG "jffs2_setattr(): ino #%lu\n", inode->i_ino));
42 ret = inode_change_ok(inode, iattr);
43 if (ret)
44 return ret;
46 /* Special cases - we don't want more than one data node
47 for these types on the medium at any time. So setattr
48 must read the original data associated with the node
49 (i.e. the device numbers or the target name) and write
50 it out again with the appropriate data attached */
51 if (S_ISBLK(inode->i_mode) || S_ISCHR(inode->i_mode)) {
52 /* For these, we don't actually need to read the old node */
53 mdatalen = jffs2_encode_dev(&dev, inode->i_rdev);
54 mdata = (char *)&dev;
55 D1(printk(KERN_DEBUG "jffs2_setattr(): Writing %d bytes of kdev_t\n", mdatalen));
56 } else if (S_ISLNK(inode->i_mode)) {
57 down(&f->sem);
58 mdatalen = f->metadata->size;
59 mdata = kmalloc(f->metadata->size, GFP_USER);
60 if (!mdata) {
61 up(&f->sem);
62 return -ENOMEM;
64 ret = jffs2_read_dnode(c, f, f->metadata, mdata, 0, mdatalen);
65 if (ret) {
66 up(&f->sem);
67 kfree(mdata);
68 return ret;
70 up(&f->sem);
71 D1(printk(KERN_DEBUG "jffs2_setattr(): Writing %d bytes of symlink target\n", mdatalen));
74 ri = jffs2_alloc_raw_inode();
75 if (!ri) {
76 if (S_ISLNK(inode->i_mode))
77 kfree(mdata);
78 return -ENOMEM;
81 ret = jffs2_reserve_space(c, sizeof(*ri) + mdatalen, &alloclen,
82 ALLOC_NORMAL, JFFS2_SUMMARY_INODE_SIZE);
83 if (ret) {
84 jffs2_free_raw_inode(ri);
85 if (S_ISLNK(inode->i_mode & S_IFMT))
86 kfree(mdata);
87 return ret;
89 down(&f->sem);
90 ivalid = iattr->ia_valid;
92 ri->magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
93 ri->nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
94 ri->totlen = cpu_to_je32(sizeof(*ri) + mdatalen);
95 ri->hdr_crc = cpu_to_je32(crc32(0, ri, sizeof(struct jffs2_unknown_node)-4));
97 ri->ino = cpu_to_je32(inode->i_ino);
98 ri->version = cpu_to_je32(++f->highest_version);
100 ri->uid = cpu_to_je16((ivalid & ATTR_UID)?iattr->ia_uid:inode->i_uid);
101 ri->gid = cpu_to_je16((ivalid & ATTR_GID)?iattr->ia_gid:inode->i_gid);
103 if (ivalid & ATTR_MODE)
104 if (iattr->ia_mode & S_ISGID &&
105 !in_group_p(je16_to_cpu(ri->gid)) && !capable(CAP_FSETID))
106 ri->mode = cpu_to_jemode(iattr->ia_mode & ~S_ISGID);
107 else
108 ri->mode = cpu_to_jemode(iattr->ia_mode);
109 else
110 ri->mode = cpu_to_jemode(inode->i_mode);
113 ri->isize = cpu_to_je32((ivalid & ATTR_SIZE)?iattr->ia_size:inode->i_size);
114 ri->atime = cpu_to_je32(I_SEC((ivalid & ATTR_ATIME)?iattr->ia_atime:inode->i_atime));
115 ri->mtime = cpu_to_je32(I_SEC((ivalid & ATTR_MTIME)?iattr->ia_mtime:inode->i_mtime));
116 ri->ctime = cpu_to_je32(I_SEC((ivalid & ATTR_CTIME)?iattr->ia_ctime:inode->i_ctime));
118 ri->offset = cpu_to_je32(0);
119 ri->csize = ri->dsize = cpu_to_je32(mdatalen);
120 ri->compr = JFFS2_COMPR_NONE;
121 if (ivalid & ATTR_SIZE && inode->i_size < iattr->ia_size) {
122 /* It's an extension. Make it a hole node */
123 ri->compr = JFFS2_COMPR_ZERO;
124 ri->dsize = cpu_to_je32(iattr->ia_size - inode->i_size);
125 ri->offset = cpu_to_je32(inode->i_size);
127 ri->node_crc = cpu_to_je32(crc32(0, ri, sizeof(*ri)-8));
128 if (mdatalen)
129 ri->data_crc = cpu_to_je32(crc32(0, mdata, mdatalen));
130 else
131 ri->data_crc = cpu_to_je32(0);
133 new_metadata = jffs2_write_dnode(c, f, ri, mdata, mdatalen, ALLOC_NORMAL);
134 if (S_ISLNK(inode->i_mode))
135 kfree(mdata);
137 if (IS_ERR(new_metadata)) {
138 jffs2_complete_reservation(c);
139 jffs2_free_raw_inode(ri);
140 up(&f->sem);
141 return PTR_ERR(new_metadata);
143 /* It worked. Update the inode */
144 inode->i_atime = ITIME(je32_to_cpu(ri->atime));
145 inode->i_ctime = ITIME(je32_to_cpu(ri->ctime));
146 inode->i_mtime = ITIME(je32_to_cpu(ri->mtime));
147 inode->i_mode = jemode_to_cpu(ri->mode);
148 inode->i_uid = je16_to_cpu(ri->uid);
149 inode->i_gid = je16_to_cpu(ri->gid);
152 old_metadata = f->metadata;
154 if (ivalid & ATTR_SIZE && inode->i_size > iattr->ia_size)
155 jffs2_truncate_fragtree (c, &f->fragtree, iattr->ia_size);
157 if (ivalid & ATTR_SIZE && inode->i_size < iattr->ia_size) {
158 jffs2_add_full_dnode_to_inode(c, f, new_metadata);
159 inode->i_size = iattr->ia_size;
160 f->metadata = NULL;
161 } else {
162 f->metadata = new_metadata;
164 if (old_metadata) {
165 jffs2_mark_node_obsolete(c, old_metadata->raw);
166 jffs2_free_full_dnode(old_metadata);
168 jffs2_free_raw_inode(ri);
170 up(&f->sem);
171 jffs2_complete_reservation(c);
173 /* We have to do the vmtruncate() without f->sem held, since
174 some pages may be locked and waiting for it in readpage().
175 We are protected from a simultaneous write() extending i_size
176 back past iattr->ia_size, because do_truncate() holds the
177 generic inode semaphore. */
178 if (ivalid & ATTR_SIZE && inode->i_size > iattr->ia_size)
179 vmtruncate(inode, iattr->ia_size);
181 return 0;
184 int jffs2_setattr(struct dentry *dentry, struct iattr *iattr)
186 int rc;
188 rc = jffs2_do_setattr(dentry->d_inode, iattr);
189 if (!rc && (iattr->ia_valid & ATTR_MODE))
190 rc = jffs2_acl_chmod(dentry->d_inode);
191 return rc;
194 int jffs2_statfs(struct dentry *dentry, struct kstatfs *buf)
196 struct jffs2_sb_info *c = JFFS2_SB_INFO(dentry->d_sb);
197 unsigned long avail;
199 buf->f_type = JFFS2_SUPER_MAGIC;
200 buf->f_bsize = 1 << PAGE_SHIFT;
201 buf->f_blocks = c->flash_size >> PAGE_SHIFT;
202 buf->f_files = 0;
203 buf->f_ffree = 0;
204 buf->f_namelen = JFFS2_MAX_NAME_LEN;
206 spin_lock(&c->erase_completion_lock);
207 avail = c->dirty_size + c->free_size;
208 if (avail > c->sector_size * c->resv_blocks_write)
209 avail -= c->sector_size * c->resv_blocks_write;
210 else
211 avail = 0;
212 spin_unlock(&c->erase_completion_lock);
214 buf->f_bavail = buf->f_bfree = avail >> PAGE_SHIFT;
216 return 0;
220 void jffs2_clear_inode (struct inode *inode)
222 /* We can forget about this inode for now - drop all
223 * the nodelists associated with it, etc.
225 struct jffs2_sb_info *c = JFFS2_SB_INFO(inode->i_sb);
226 struct jffs2_inode_info *f = JFFS2_INODE_INFO(inode);
228 D1(printk(KERN_DEBUG "jffs2_clear_inode(): ino #%lu mode %o\n", inode->i_ino, inode->i_mode));
229 jffs2_do_clear_inode(c, f);
232 void jffs2_read_inode (struct inode *inode)
234 struct jffs2_inode_info *f;
235 struct jffs2_sb_info *c;
236 struct jffs2_raw_inode latest_node;
237 union jffs2_device_node jdev;
238 dev_t rdev = 0;
239 int ret;
241 D1(printk(KERN_DEBUG "jffs2_read_inode(): inode->i_ino == %lu\n", inode->i_ino));
243 f = JFFS2_INODE_INFO(inode);
244 c = JFFS2_SB_INFO(inode->i_sb);
246 jffs2_init_inode_info(f);
247 down(&f->sem);
249 ret = jffs2_do_read_inode(c, f, inode->i_ino, &latest_node);
251 if (ret) {
252 make_bad_inode(inode);
253 up(&f->sem);
254 return;
256 inode->i_mode = jemode_to_cpu(latest_node.mode);
257 inode->i_uid = je16_to_cpu(latest_node.uid);
258 inode->i_gid = je16_to_cpu(latest_node.gid);
259 inode->i_size = je32_to_cpu(latest_node.isize);
260 inode->i_atime = ITIME(je32_to_cpu(latest_node.atime));
261 inode->i_mtime = ITIME(je32_to_cpu(latest_node.mtime));
262 inode->i_ctime = ITIME(je32_to_cpu(latest_node.ctime));
264 inode->i_nlink = f->inocache->nlink;
266 inode->i_blocks = (inode->i_size + 511) >> 9;
268 switch (inode->i_mode & S_IFMT) {
270 case S_IFLNK:
271 inode->i_op = &jffs2_symlink_inode_operations;
272 break;
274 case S_IFDIR:
276 struct jffs2_full_dirent *fd;
278 for (fd=f->dents; fd; fd = fd->next) {
279 if (fd->type == DT_DIR && fd->ino)
280 inc_nlink(inode);
282 /* and '..' */
283 inc_nlink(inode);
284 /* Root dir gets i_nlink 3 for some reason */
285 if (inode->i_ino == 1)
286 inc_nlink(inode);
288 inode->i_op = &jffs2_dir_inode_operations;
289 inode->i_fop = &jffs2_dir_operations;
290 break;
292 case S_IFREG:
293 inode->i_op = &jffs2_file_inode_operations;
294 inode->i_fop = &jffs2_file_operations;
295 inode->i_mapping->a_ops = &jffs2_file_address_operations;
296 inode->i_mapping->nrpages = 0;
297 break;
299 case S_IFBLK:
300 case S_IFCHR:
301 /* Read the device numbers from the media */
302 if (f->metadata->size != sizeof(jdev.old) &&
303 f->metadata->size != sizeof(jdev.new)) {
304 printk(KERN_NOTICE "Device node has strange size %d\n", f->metadata->size);
305 up(&f->sem);
306 jffs2_do_clear_inode(c, f);
307 make_bad_inode(inode);
308 return;
310 D1(printk(KERN_DEBUG "Reading device numbers from flash\n"));
311 if (jffs2_read_dnode(c, f, f->metadata, (char *)&jdev, 0, f->metadata->size) < 0) {
312 /* Eep */
313 printk(KERN_NOTICE "Read device numbers for inode %lu failed\n", (unsigned long)inode->i_ino);
314 up(&f->sem);
315 jffs2_do_clear_inode(c, f);
316 make_bad_inode(inode);
317 return;
319 if (f->metadata->size == sizeof(jdev.old))
320 rdev = old_decode_dev(je16_to_cpu(jdev.old));
321 else
322 rdev = new_decode_dev(je32_to_cpu(jdev.new));
324 case S_IFSOCK:
325 case S_IFIFO:
326 inode->i_op = &jffs2_file_inode_operations;
327 init_special_inode(inode, inode->i_mode, rdev);
328 break;
330 default:
331 printk(KERN_WARNING "jffs2_read_inode(): Bogus imode %o for ino %lu\n", inode->i_mode, (unsigned long)inode->i_ino);
334 up(&f->sem);
336 D1(printk(KERN_DEBUG "jffs2_read_inode() returning\n"));
339 void jffs2_dirty_inode(struct inode *inode)
341 struct iattr iattr;
343 if (!(inode->i_state & I_DIRTY_DATASYNC)) {
344 D2(printk(KERN_DEBUG "jffs2_dirty_inode() not calling setattr() for ino #%lu\n", inode->i_ino));
345 return;
348 D1(printk(KERN_DEBUG "jffs2_dirty_inode() calling setattr() for ino #%lu\n", inode->i_ino));
350 iattr.ia_valid = ATTR_MODE|ATTR_UID|ATTR_GID|ATTR_ATIME|ATTR_MTIME|ATTR_CTIME;
351 iattr.ia_mode = inode->i_mode;
352 iattr.ia_uid = inode->i_uid;
353 iattr.ia_gid = inode->i_gid;
354 iattr.ia_atime = inode->i_atime;
355 iattr.ia_mtime = inode->i_mtime;
356 iattr.ia_ctime = inode->i_ctime;
358 jffs2_do_setattr(inode, &iattr);
361 int jffs2_remount_fs (struct super_block *sb, int *flags, char *data)
363 struct jffs2_sb_info *c = JFFS2_SB_INFO(sb);
365 if (c->flags & JFFS2_SB_FLAG_RO && !(sb->s_flags & MS_RDONLY))
366 return -EROFS;
368 /* We stop if it was running, then restart if it needs to.
369 This also catches the case where it was stopped and this
370 is just a remount to restart it.
371 Flush the writebuffer, if neccecary, else we loose it */
372 if (!(sb->s_flags & MS_RDONLY)) {
373 jffs2_stop_garbage_collect_thread(c);
374 down(&c->alloc_sem);
375 jffs2_flush_wbuf_pad(c);
376 up(&c->alloc_sem);
379 if (!(*flags & MS_RDONLY))
380 jffs2_start_garbage_collect_thread(c);
382 *flags |= MS_NOATIME;
384 return 0;
387 void jffs2_write_super (struct super_block *sb)
389 struct jffs2_sb_info *c = JFFS2_SB_INFO(sb);
390 sb->s_dirt = 0;
392 if (sb->s_flags & MS_RDONLY)
393 return;
395 D1(printk(KERN_DEBUG "jffs2_write_super()\n"));
396 jffs2_garbage_collect_trigger(c);
397 jffs2_erase_pending_blocks(c, 0);
398 jffs2_flush_wbuf_gc(c, 0);
402 /* jffs2_new_inode: allocate a new inode and inocache, add it to the hash,
403 fill in the raw_inode while you're at it. */
404 struct inode *jffs2_new_inode (struct inode *dir_i, int mode, struct jffs2_raw_inode *ri)
406 struct inode *inode;
407 struct super_block *sb = dir_i->i_sb;
408 struct jffs2_sb_info *c;
409 struct jffs2_inode_info *f;
410 int ret;
412 D1(printk(KERN_DEBUG "jffs2_new_inode(): dir_i %ld, mode 0x%x\n", dir_i->i_ino, mode));
414 c = JFFS2_SB_INFO(sb);
416 inode = new_inode(sb);
418 if (!inode)
419 return ERR_PTR(-ENOMEM);
421 f = JFFS2_INODE_INFO(inode);
422 jffs2_init_inode_info(f);
423 down(&f->sem);
425 memset(ri, 0, sizeof(*ri));
426 /* Set OS-specific defaults for new inodes */
427 ri->uid = cpu_to_je16(current->fsuid);
429 if (dir_i->i_mode & S_ISGID) {
430 ri->gid = cpu_to_je16(dir_i->i_gid);
431 if (S_ISDIR(mode))
432 mode |= S_ISGID;
433 } else {
434 ri->gid = cpu_to_je16(current->fsgid);
436 ri->mode = cpu_to_jemode(mode);
437 ret = jffs2_do_new_inode (c, f, mode, ri);
438 if (ret) {
439 make_bad_inode(inode);
440 iput(inode);
441 return ERR_PTR(ret);
443 inode->i_nlink = 1;
444 inode->i_ino = je32_to_cpu(ri->ino);
445 inode->i_mode = jemode_to_cpu(ri->mode);
446 inode->i_gid = je16_to_cpu(ri->gid);
447 inode->i_uid = je16_to_cpu(ri->uid);
448 inode->i_atime = inode->i_ctime = inode->i_mtime = CURRENT_TIME_SEC;
449 ri->atime = ri->mtime = ri->ctime = cpu_to_je32(I_SEC(inode->i_mtime));
451 inode->i_blocks = 0;
452 inode->i_size = 0;
454 insert_inode_hash(inode);
456 return inode;
460 int jffs2_do_fill_super(struct super_block *sb, void *data, int silent)
462 struct jffs2_sb_info *c;
463 struct inode *root_i;
464 int ret;
465 size_t blocks;
467 c = JFFS2_SB_INFO(sb);
469 #ifndef CONFIG_JFFS2_FS_WRITEBUFFER
470 if (c->mtd->type == MTD_NANDFLASH) {
471 printk(KERN_ERR "jffs2: Cannot operate on NAND flash unless jffs2 NAND support is compiled in.\n");
472 return -EINVAL;
474 if (c->mtd->type == MTD_DATAFLASH) {
475 printk(KERN_ERR "jffs2: Cannot operate on DataFlash unless jffs2 DataFlash support is compiled in.\n");
476 return -EINVAL;
478 #endif
480 c->flash_size = c->mtd->size;
481 c->sector_size = c->mtd->erasesize;
482 blocks = c->flash_size / c->sector_size;
485 * Size alignment check
487 if ((c->sector_size * blocks) != c->flash_size) {
488 c->flash_size = c->sector_size * blocks;
489 printk(KERN_INFO "jffs2: Flash size not aligned to erasesize, reducing to %dKiB\n",
490 c->flash_size / 1024);
493 if (c->flash_size < 5*c->sector_size) {
494 printk(KERN_ERR "jffs2: Too few erase blocks (%d)\n", c->flash_size / c->sector_size);
495 return -EINVAL;
498 c->cleanmarker_size = sizeof(struct jffs2_unknown_node);
500 /* NAND (or other bizarre) flash... do setup accordingly */
501 ret = jffs2_flash_setup(c);
502 if (ret)
503 return ret;
505 c->inocache_list = kmalloc(INOCACHE_HASHSIZE * sizeof(struct jffs2_inode_cache *), GFP_KERNEL);
506 if (!c->inocache_list) {
507 ret = -ENOMEM;
508 goto out_wbuf;
510 memset(c->inocache_list, 0, INOCACHE_HASHSIZE * sizeof(struct jffs2_inode_cache *));
512 jffs2_init_xattr_subsystem(c);
514 if ((ret = jffs2_do_mount_fs(c)))
515 goto out_inohash;
517 ret = -EINVAL;
519 D1(printk(KERN_DEBUG "jffs2_do_fill_super(): Getting root inode\n"));
520 root_i = iget(sb, 1);
521 if (is_bad_inode(root_i)) {
522 D1(printk(KERN_WARNING "get root inode failed\n"));
523 goto out_root_i;
526 D1(printk(KERN_DEBUG "jffs2_do_fill_super(): d_alloc_root()\n"));
527 sb->s_root = d_alloc_root(root_i);
528 if (!sb->s_root)
529 goto out_root_i;
531 sb->s_maxbytes = 0xFFFFFFFF;
532 sb->s_blocksize = PAGE_CACHE_SIZE;
533 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
534 sb->s_magic = JFFS2_SUPER_MAGIC;
535 if (!(sb->s_flags & MS_RDONLY))
536 jffs2_start_garbage_collect_thread(c);
537 return 0;
539 out_root_i:
540 iput(root_i);
541 jffs2_free_ino_caches(c);
542 jffs2_free_raw_node_refs(c);
543 if (jffs2_blocks_use_vmalloc(c))
544 vfree(c->blocks);
545 else
546 kfree(c->blocks);
547 out_inohash:
548 jffs2_clear_xattr_subsystem(c);
549 kfree(c->inocache_list);
550 out_wbuf:
551 jffs2_flash_cleanup(c);
553 return ret;
556 void jffs2_gc_release_inode(struct jffs2_sb_info *c,
557 struct jffs2_inode_info *f)
559 iput(OFNI_EDONI_2SFFJ(f));
562 struct jffs2_inode_info *jffs2_gc_fetch_inode(struct jffs2_sb_info *c,
563 int inum, int nlink)
565 struct inode *inode;
566 struct jffs2_inode_cache *ic;
567 if (!nlink) {
568 /* The inode has zero nlink but its nodes weren't yet marked
569 obsolete. This has to be because we're still waiting for
570 the final (close() and) iput() to happen.
572 There's a possibility that the final iput() could have
573 happened while we were contemplating. In order to ensure
574 that we don't cause a new read_inode() (which would fail)
575 for the inode in question, we use ilookup() in this case
576 instead of iget().
578 The nlink can't _become_ zero at this point because we're
579 holding the alloc_sem, and jffs2_do_unlink() would also
580 need that while decrementing nlink on any inode.
582 inode = ilookup(OFNI_BS_2SFFJ(c), inum);
583 if (!inode) {
584 D1(printk(KERN_DEBUG "ilookup() failed for ino #%u; inode is probably deleted.\n",
585 inum));
587 spin_lock(&c->inocache_lock);
588 ic = jffs2_get_ino_cache(c, inum);
589 if (!ic) {
590 D1(printk(KERN_DEBUG "Inode cache for ino #%u is gone.\n", inum));
591 spin_unlock(&c->inocache_lock);
592 return NULL;
594 if (ic->state != INO_STATE_CHECKEDABSENT) {
595 /* Wait for progress. Don't just loop */
596 D1(printk(KERN_DEBUG "Waiting for ino #%u in state %d\n",
597 ic->ino, ic->state));
598 sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock);
599 } else {
600 spin_unlock(&c->inocache_lock);
603 return NULL;
605 } else {
606 /* Inode has links to it still; they're not going away because
607 jffs2_do_unlink() would need the alloc_sem and we have it.
608 Just iget() it, and if read_inode() is necessary that's OK.
610 inode = iget(OFNI_BS_2SFFJ(c), inum);
611 if (!inode)
612 return ERR_PTR(-ENOMEM);
614 if (is_bad_inode(inode)) {
615 printk(KERN_NOTICE "Eep. read_inode() failed for ino #%u. nlink %d\n",
616 inum, nlink);
617 /* NB. This will happen again. We need to do something appropriate here. */
618 iput(inode);
619 return ERR_PTR(-EIO);
622 return JFFS2_INODE_INFO(inode);
625 unsigned char *jffs2_gc_fetch_page(struct jffs2_sb_info *c,
626 struct jffs2_inode_info *f,
627 unsigned long offset,
628 unsigned long *priv)
630 struct inode *inode = OFNI_EDONI_2SFFJ(f);
631 struct page *pg;
633 pg = read_cache_page(inode->i_mapping, offset >> PAGE_CACHE_SHIFT,
634 (void *)jffs2_do_readpage_unlock, inode);
635 if (IS_ERR(pg))
636 return (void *)pg;
638 *priv = (unsigned long)pg;
639 return kmap(pg);
642 void jffs2_gc_release_page(struct jffs2_sb_info *c,
643 unsigned char *ptr,
644 unsigned long *priv)
646 struct page *pg = (void *)*priv;
648 kunmap(pg);
649 page_cache_release(pg);
652 static int jffs2_flash_setup(struct jffs2_sb_info *c) {
653 int ret = 0;
655 if (jffs2_cleanmarker_oob(c)) {
656 /* NAND flash... do setup accordingly */
657 ret = jffs2_nand_flash_setup(c);
658 if (ret)
659 return ret;
662 /* and Dataflash */
663 if (jffs2_dataflash(c)) {
664 ret = jffs2_dataflash_setup(c);
665 if (ret)
666 return ret;
669 /* and Intel "Sibley" flash */
670 if (jffs2_nor_wbuf_flash(c)) {
671 ret = jffs2_nor_wbuf_flash_setup(c);
672 if (ret)
673 return ret;
676 return ret;
679 void jffs2_flash_cleanup(struct jffs2_sb_info *c) {
681 if (jffs2_cleanmarker_oob(c)) {
682 jffs2_nand_flash_cleanup(c);
685 /* and DataFlash */
686 if (jffs2_dataflash(c)) {
687 jffs2_dataflash_cleanup(c);
690 /* and Intel "Sibley" flash */
691 if (jffs2_nor_wbuf_flash(c)) {
692 jffs2_nor_wbuf_flash_cleanup(c);