2 * NTP state machine interfaces and logic.
4 * This code was mainly moved from kernel/timer.c and kernel/time.c
5 * Please see those files for relevant copyright info and historical
8 #include <linux/capability.h>
9 #include <linux/clocksource.h>
10 #include <linux/workqueue.h>
11 #include <linux/hrtimer.h>
12 #include <linux/jiffies.h>
13 #include <linux/math64.h>
14 #include <linux/timex.h>
15 #include <linux/time.h>
19 * NTP timekeeping variables:
22 /* USER_HZ period (usecs): */
23 unsigned long tick_usec
= TICK_USEC
;
25 /* ACTHZ period (nsecs): */
26 unsigned long tick_nsec
;
29 static u64 tick_length_base
;
31 static struct hrtimer leap_timer
;
33 #define MAX_TICKADJ 500LL /* usecs */
34 #define MAX_TICKADJ_SCALED \
35 (((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
38 * phase-lock loop variables
42 * clock synchronization status
44 * (TIME_ERROR prevents overwriting the CMOS clock)
46 static int time_state
= TIME_OK
;
48 /* clock status bits: */
49 int time_status
= STA_UNSYNC
;
51 /* TAI offset (secs): */
54 /* time adjustment (nsecs): */
55 static s64 time_offset
;
57 /* pll time constant: */
58 static long time_constant
= 2;
60 /* maximum error (usecs): */
61 long time_maxerror
= NTP_PHASE_LIMIT
;
63 /* estimated error (usecs): */
64 long time_esterror
= NTP_PHASE_LIMIT
;
66 /* frequency offset (scaled nsecs/secs): */
69 /* time at last adjustment (secs): */
70 static long time_reftime
;
74 /* constant (boot-param configurable) NTP tick adjustment (upscaled) */
75 static s64 ntp_tick_adj
;
82 * Update (tick_length, tick_length_base, tick_nsec), based
83 * on (tick_usec, ntp_tick_adj, time_freq):
85 static void ntp_update_frequency(void)
90 second_length
= (u64
)(tick_usec
* NSEC_PER_USEC
* USER_HZ
)
93 second_length
+= ntp_tick_adj
;
94 second_length
+= time_freq
;
96 tick_nsec
= div_u64(second_length
, HZ
) >> NTP_SCALE_SHIFT
;
97 new_base
= div_u64(second_length
, NTP_INTERVAL_FREQ
);
100 * Don't wait for the next second_overflow, apply
101 * the change to the tick length immediately:
103 tick_length
+= new_base
- tick_length_base
;
104 tick_length_base
= new_base
;
107 static inline s64
ntp_update_offset_fll(s64 offset64
, long secs
)
109 time_status
&= ~STA_MODE
;
114 if (!(time_status
& STA_FLL
) && (secs
<= MAXSEC
))
117 time_status
|= STA_MODE
;
119 return div_s64(offset64
<< (NTP_SCALE_SHIFT
- SHIFT_FLL
), secs
);
122 static void ntp_update_offset(long offset
)
128 if (!(time_status
& STA_PLL
))
131 if (!(time_status
& STA_NANO
))
132 offset
*= NSEC_PER_USEC
;
135 * Scale the phase adjustment and
136 * clamp to the operating range.
138 offset
= min(offset
, MAXPHASE
);
139 offset
= max(offset
, -MAXPHASE
);
142 * Select how the frequency is to be controlled
143 * and in which mode (PLL or FLL).
145 secs
= xtime
.tv_sec
- time_reftime
;
146 if (unlikely(time_status
& STA_FREQHOLD
))
149 time_reftime
= xtime
.tv_sec
;
152 freq_adj
= (offset64
* secs
) <<
153 (NTP_SCALE_SHIFT
- 2 * (SHIFT_PLL
+ 2 + time_constant
));
155 freq_adj
+= ntp_update_offset_fll(offset64
, secs
);
157 freq_adj
= min(freq_adj
+ time_freq
, MAXFREQ_SCALED
);
159 time_freq
= max(freq_adj
, -MAXFREQ_SCALED
);
161 time_offset
= div_s64(offset64
<< NTP_SCALE_SHIFT
, NTP_INTERVAL_FREQ
);
165 * ntp_clear - Clears the NTP state variables
167 * Must be called while holding a write on the xtime_lock
171 time_adjust
= 0; /* stop active adjtime() */
172 time_status
|= STA_UNSYNC
;
173 time_maxerror
= NTP_PHASE_LIMIT
;
174 time_esterror
= NTP_PHASE_LIMIT
;
176 ntp_update_frequency();
178 tick_length
= tick_length_base
;
183 * Leap second processing. If in leap-insert state at the end of the
184 * day, the system clock is set back one second; if in leap-delete
185 * state, the system clock is set ahead one second.
187 static enum hrtimer_restart
ntp_leap_second(struct hrtimer
*timer
)
189 enum hrtimer_restart res
= HRTIMER_NORESTART
;
191 write_seqlock(&xtime_lock
);
193 switch (time_state
) {
197 timekeeping_leap_insert(-1);
198 time_state
= TIME_OOP
;
200 "Clock: inserting leap second 23:59:60 UTC\n");
201 hrtimer_add_expires_ns(&leap_timer
, NSEC_PER_SEC
);
202 res
= HRTIMER_RESTART
;
205 timekeeping_leap_insert(1);
207 time_state
= TIME_WAIT
;
209 "Clock: deleting leap second 23:59:59 UTC\n");
213 time_state
= TIME_WAIT
;
216 if (!(time_status
& (STA_INS
| STA_DEL
)))
217 time_state
= TIME_OK
;
221 write_sequnlock(&xtime_lock
);
227 * this routine handles the overflow of the microsecond field
229 * The tricky bits of code to handle the accurate clock support
230 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
231 * They were originally developed for SUN and DEC kernels.
232 * All the kudos should go to Dave for this stuff.
234 void second_overflow(void)
238 /* Bump the maxerror field */
239 time_maxerror
+= MAXFREQ
/ NSEC_PER_USEC
;
240 if (time_maxerror
> NTP_PHASE_LIMIT
) {
241 time_maxerror
= NTP_PHASE_LIMIT
;
242 time_status
|= STA_UNSYNC
;
246 * Compute the phase adjustment for the next second. The offset is
247 * reduced by a fixed factor times the time constant.
249 tick_length
= tick_length_base
;
251 delta
= shift_right(time_offset
, SHIFT_PLL
+ time_constant
);
252 time_offset
-= delta
;
253 tick_length
+= delta
;
258 if (time_adjust
> MAX_TICKADJ
) {
259 time_adjust
-= MAX_TICKADJ
;
260 tick_length
+= MAX_TICKADJ_SCALED
;
264 if (time_adjust
< -MAX_TICKADJ
) {
265 time_adjust
+= MAX_TICKADJ
;
266 tick_length
-= MAX_TICKADJ_SCALED
;
270 tick_length
+= (s64
)(time_adjust
* NSEC_PER_USEC
/ NTP_INTERVAL_FREQ
)
275 #ifdef CONFIG_GENERIC_CMOS_UPDATE
277 /* Disable the cmos update - used by virtualization and embedded */
278 int no_sync_cmos_clock __read_mostly
;
280 static void sync_cmos_clock(struct work_struct
*work
);
282 static DECLARE_DELAYED_WORK(sync_cmos_work
, sync_cmos_clock
);
284 static void sync_cmos_clock(struct work_struct
*work
)
286 struct timespec now
, next
;
290 * If we have an externally synchronized Linux clock, then update
291 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
292 * called as close as possible to 500 ms before the new second starts.
293 * This code is run on a timer. If the clock is set, that timer
294 * may not expire at the correct time. Thus, we adjust...
298 * Not synced, exit, do not restart a timer (if one is
299 * running, let it run out).
304 getnstimeofday(&now
);
305 if (abs(now
.tv_nsec
- (NSEC_PER_SEC
/ 2)) <= tick_nsec
/ 2)
306 fail
= update_persistent_clock(now
);
308 next
.tv_nsec
= (NSEC_PER_SEC
/ 2) - now
.tv_nsec
- (TICK_NSEC
/ 2);
309 if (next
.tv_nsec
<= 0)
310 next
.tv_nsec
+= NSEC_PER_SEC
;
317 if (next
.tv_nsec
>= NSEC_PER_SEC
) {
319 next
.tv_nsec
-= NSEC_PER_SEC
;
321 schedule_delayed_work(&sync_cmos_work
, timespec_to_jiffies(&next
));
324 static void notify_cmos_timer(void)
326 if (!no_sync_cmos_clock
)
327 schedule_delayed_work(&sync_cmos_work
, 0);
331 static inline void notify_cmos_timer(void) { }
335 * Start the leap seconds timer:
337 static inline void ntp_start_leap_timer(struct timespec
*ts
)
339 long now
= ts
->tv_sec
;
341 if (time_status
& STA_INS
) {
342 time_state
= TIME_INS
;
343 now
+= 86400 - now
% 86400;
344 hrtimer_start(&leap_timer
, ktime_set(now
, 0), HRTIMER_MODE_ABS
);
349 if (time_status
& STA_DEL
) {
350 time_state
= TIME_DEL
;
351 now
+= 86400 - (now
+ 1) % 86400;
352 hrtimer_start(&leap_timer
, ktime_set(now
, 0), HRTIMER_MODE_ABS
);
357 * Propagate a new txc->status value into the NTP state:
359 static inline void process_adj_status(struct timex
*txc
, struct timespec
*ts
)
361 if ((time_status
& STA_PLL
) && !(txc
->status
& STA_PLL
)) {
362 time_state
= TIME_OK
;
363 time_status
= STA_UNSYNC
;
367 * If we turn on PLL adjustments then reset the
368 * reference time to current time.
370 if (!(time_status
& STA_PLL
) && (txc
->status
& STA_PLL
))
371 time_reftime
= xtime
.tv_sec
;
373 /* only set allowed bits */
374 time_status
&= STA_RONLY
;
375 time_status
|= txc
->status
& ~STA_RONLY
;
377 switch (time_state
) {
379 ntp_start_leap_timer(ts
);
383 time_state
= TIME_OK
;
384 ntp_start_leap_timer(ts
);
386 if (!(time_status
& (STA_INS
| STA_DEL
)))
387 time_state
= TIME_OK
;
390 hrtimer_restart(&leap_timer
);
395 * Called with the xtime lock held, so we can access and modify
396 * all the global NTP state:
398 static inline void process_adjtimex_modes(struct timex
*txc
, struct timespec
*ts
)
400 if (txc
->modes
& ADJ_STATUS
)
401 process_adj_status(txc
, ts
);
403 if (txc
->modes
& ADJ_NANO
)
404 time_status
|= STA_NANO
;
406 if (txc
->modes
& ADJ_MICRO
)
407 time_status
&= ~STA_NANO
;
409 if (txc
->modes
& ADJ_FREQUENCY
) {
410 time_freq
= txc
->freq
* PPM_SCALE
;
411 time_freq
= min(time_freq
, MAXFREQ_SCALED
);
412 time_freq
= max(time_freq
, -MAXFREQ_SCALED
);
415 if (txc
->modes
& ADJ_MAXERROR
)
416 time_maxerror
= txc
->maxerror
;
418 if (txc
->modes
& ADJ_ESTERROR
)
419 time_esterror
= txc
->esterror
;
421 if (txc
->modes
& ADJ_TIMECONST
) {
422 time_constant
= txc
->constant
;
423 if (!(time_status
& STA_NANO
))
425 time_constant
= min(time_constant
, (long)MAXTC
);
426 time_constant
= max(time_constant
, 0l);
429 if (txc
->modes
& ADJ_TAI
&& txc
->constant
> 0)
430 time_tai
= txc
->constant
;
432 if (txc
->modes
& ADJ_OFFSET
)
433 ntp_update_offset(txc
->offset
);
435 if (txc
->modes
& ADJ_TICK
)
436 tick_usec
= txc
->tick
;
438 if (txc
->modes
& (ADJ_TICK
|ADJ_FREQUENCY
|ADJ_OFFSET
))
439 ntp_update_frequency();
443 * adjtimex mainly allows reading (and writing, if superuser) of
444 * kernel time-keeping variables. used by xntpd.
446 int do_adjtimex(struct timex
*txc
)
451 /* Validate the data before disabling interrupts */
452 if (txc
->modes
& ADJ_ADJTIME
) {
453 /* singleshot must not be used with any other mode bits */
454 if (!(txc
->modes
& ADJ_OFFSET_SINGLESHOT
))
456 if (!(txc
->modes
& ADJ_OFFSET_READONLY
) &&
457 !capable(CAP_SYS_TIME
))
460 /* In order to modify anything, you gotta be super-user! */
461 if (txc
->modes
&& !capable(CAP_SYS_TIME
))
465 * if the quartz is off by more than 10% then
466 * something is VERY wrong!
468 if (txc
->modes
& ADJ_TICK
&&
469 (txc
->tick
< 900000/USER_HZ
||
470 txc
->tick
> 1100000/USER_HZ
))
473 if (txc
->modes
& ADJ_STATUS
&& time_state
!= TIME_OK
)
474 hrtimer_cancel(&leap_timer
);
479 write_seqlock_irq(&xtime_lock
);
481 if (txc
->modes
& ADJ_ADJTIME
) {
482 long save_adjust
= time_adjust
;
484 if (!(txc
->modes
& ADJ_OFFSET_READONLY
)) {
485 /* adjtime() is independent from ntp_adjtime() */
486 time_adjust
= txc
->offset
;
487 ntp_update_frequency();
489 txc
->offset
= save_adjust
;
492 /* If there are input parameters, then process them: */
494 process_adjtimex_modes(txc
, &ts
);
496 txc
->offset
= shift_right(time_offset
* NTP_INTERVAL_FREQ
,
498 if (!(time_status
& STA_NANO
))
499 txc
->offset
/= NSEC_PER_USEC
;
502 result
= time_state
; /* mostly `TIME_OK' */
503 if (time_status
& (STA_UNSYNC
|STA_CLOCKERR
))
506 txc
->freq
= shift_right((time_freq
>> PPM_SCALE_INV_SHIFT
) *
507 PPM_SCALE_INV
, NTP_SCALE_SHIFT
);
508 txc
->maxerror
= time_maxerror
;
509 txc
->esterror
= time_esterror
;
510 txc
->status
= time_status
;
511 txc
->constant
= time_constant
;
513 txc
->tolerance
= MAXFREQ_SCALED
/ PPM_SCALE
;
514 txc
->tick
= tick_usec
;
517 /* PPS is not implemented, so these are zero */
527 write_sequnlock_irq(&xtime_lock
);
529 txc
->time
.tv_sec
= ts
.tv_sec
;
530 txc
->time
.tv_usec
= ts
.tv_nsec
;
531 if (!(time_status
& STA_NANO
))
532 txc
->time
.tv_usec
/= NSEC_PER_USEC
;
539 static int __init
ntp_tick_adj_setup(char *str
)
541 ntp_tick_adj
= simple_strtol(str
, NULL
, 0);
542 ntp_tick_adj
<<= NTP_SCALE_SHIFT
;
547 __setup("ntp_tick_adj=", ntp_tick_adj_setup
);
549 void __init
ntp_init(void)
552 hrtimer_init(&leap_timer
, CLOCK_REALTIME
, HRTIMER_MODE_ABS
);
553 leap_timer
.function
= ntp_leap_second
;