syslog: use defined constants instead of raw numbers
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / time / ntp.c
blob4800f933910ea4ed8f0f2d8ad4d2f660eb4a3467
1 /*
2 * NTP state machine interfaces and logic.
4 * This code was mainly moved from kernel/timer.c and kernel/time.c
5 * Please see those files for relevant copyright info and historical
6 * changelogs.
7 */
8 #include <linux/capability.h>
9 #include <linux/clocksource.h>
10 #include <linux/workqueue.h>
11 #include <linux/hrtimer.h>
12 #include <linux/jiffies.h>
13 #include <linux/math64.h>
14 #include <linux/timex.h>
15 #include <linux/time.h>
16 #include <linux/mm.h>
19 * NTP timekeeping variables:
22 /* USER_HZ period (usecs): */
23 unsigned long tick_usec = TICK_USEC;
25 /* ACTHZ period (nsecs): */
26 unsigned long tick_nsec;
28 u64 tick_length;
29 static u64 tick_length_base;
31 static struct hrtimer leap_timer;
33 #define MAX_TICKADJ 500LL /* usecs */
34 #define MAX_TICKADJ_SCALED \
35 (((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
38 * phase-lock loop variables
42 * clock synchronization status
44 * (TIME_ERROR prevents overwriting the CMOS clock)
46 static int time_state = TIME_OK;
48 /* clock status bits: */
49 int time_status = STA_UNSYNC;
51 /* TAI offset (secs): */
52 static long time_tai;
54 /* time adjustment (nsecs): */
55 static s64 time_offset;
57 /* pll time constant: */
58 static long time_constant = 2;
60 /* maximum error (usecs): */
61 long time_maxerror = NTP_PHASE_LIMIT;
63 /* estimated error (usecs): */
64 long time_esterror = NTP_PHASE_LIMIT;
66 /* frequency offset (scaled nsecs/secs): */
67 static s64 time_freq;
69 /* time at last adjustment (secs): */
70 static long time_reftime;
72 long time_adjust;
74 /* constant (boot-param configurable) NTP tick adjustment (upscaled) */
75 static s64 ntp_tick_adj;
78 * NTP methods:
82 * Update (tick_length, tick_length_base, tick_nsec), based
83 * on (tick_usec, ntp_tick_adj, time_freq):
85 static void ntp_update_frequency(void)
87 u64 second_length;
88 u64 new_base;
90 second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
91 << NTP_SCALE_SHIFT;
93 second_length += ntp_tick_adj;
94 second_length += time_freq;
96 tick_nsec = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
97 new_base = div_u64(second_length, NTP_INTERVAL_FREQ);
100 * Don't wait for the next second_overflow, apply
101 * the change to the tick length immediately:
103 tick_length += new_base - tick_length_base;
104 tick_length_base = new_base;
107 static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
109 time_status &= ~STA_MODE;
111 if (secs < MINSEC)
112 return 0;
114 if (!(time_status & STA_FLL) && (secs <= MAXSEC))
115 return 0;
117 time_status |= STA_MODE;
119 return div_s64(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
122 static void ntp_update_offset(long offset)
124 s64 freq_adj;
125 s64 offset64;
126 long secs;
128 if (!(time_status & STA_PLL))
129 return;
131 if (!(time_status & STA_NANO))
132 offset *= NSEC_PER_USEC;
135 * Scale the phase adjustment and
136 * clamp to the operating range.
138 offset = min(offset, MAXPHASE);
139 offset = max(offset, -MAXPHASE);
142 * Select how the frequency is to be controlled
143 * and in which mode (PLL or FLL).
145 secs = xtime.tv_sec - time_reftime;
146 if (unlikely(time_status & STA_FREQHOLD))
147 secs = 0;
149 time_reftime = xtime.tv_sec;
151 offset64 = offset;
152 freq_adj = (offset64 * secs) <<
153 (NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
155 freq_adj += ntp_update_offset_fll(offset64, secs);
157 freq_adj = min(freq_adj + time_freq, MAXFREQ_SCALED);
159 time_freq = max(freq_adj, -MAXFREQ_SCALED);
161 time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
165 * ntp_clear - Clears the NTP state variables
167 * Must be called while holding a write on the xtime_lock
169 void ntp_clear(void)
171 time_adjust = 0; /* stop active adjtime() */
172 time_status |= STA_UNSYNC;
173 time_maxerror = NTP_PHASE_LIMIT;
174 time_esterror = NTP_PHASE_LIMIT;
176 ntp_update_frequency();
178 tick_length = tick_length_base;
179 time_offset = 0;
183 * Leap second processing. If in leap-insert state at the end of the
184 * day, the system clock is set back one second; if in leap-delete
185 * state, the system clock is set ahead one second.
187 static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer)
189 enum hrtimer_restart res = HRTIMER_NORESTART;
191 write_seqlock(&xtime_lock);
193 switch (time_state) {
194 case TIME_OK:
195 break;
196 case TIME_INS:
197 timekeeping_leap_insert(-1);
198 time_state = TIME_OOP;
199 printk(KERN_NOTICE
200 "Clock: inserting leap second 23:59:60 UTC\n");
201 hrtimer_add_expires_ns(&leap_timer, NSEC_PER_SEC);
202 res = HRTIMER_RESTART;
203 break;
204 case TIME_DEL:
205 timekeeping_leap_insert(1);
206 time_tai--;
207 time_state = TIME_WAIT;
208 printk(KERN_NOTICE
209 "Clock: deleting leap second 23:59:59 UTC\n");
210 break;
211 case TIME_OOP:
212 time_tai++;
213 time_state = TIME_WAIT;
214 /* fall through */
215 case TIME_WAIT:
216 if (!(time_status & (STA_INS | STA_DEL)))
217 time_state = TIME_OK;
218 break;
221 write_sequnlock(&xtime_lock);
223 return res;
227 * this routine handles the overflow of the microsecond field
229 * The tricky bits of code to handle the accurate clock support
230 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
231 * They were originally developed for SUN and DEC kernels.
232 * All the kudos should go to Dave for this stuff.
234 void second_overflow(void)
236 s64 delta;
238 /* Bump the maxerror field */
239 time_maxerror += MAXFREQ / NSEC_PER_USEC;
240 if (time_maxerror > NTP_PHASE_LIMIT) {
241 time_maxerror = NTP_PHASE_LIMIT;
242 time_status |= STA_UNSYNC;
246 * Compute the phase adjustment for the next second. The offset is
247 * reduced by a fixed factor times the time constant.
249 tick_length = tick_length_base;
251 delta = shift_right(time_offset, SHIFT_PLL + time_constant);
252 time_offset -= delta;
253 tick_length += delta;
255 if (!time_adjust)
256 return;
258 if (time_adjust > MAX_TICKADJ) {
259 time_adjust -= MAX_TICKADJ;
260 tick_length += MAX_TICKADJ_SCALED;
261 return;
264 if (time_adjust < -MAX_TICKADJ) {
265 time_adjust += MAX_TICKADJ;
266 tick_length -= MAX_TICKADJ_SCALED;
267 return;
270 tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
271 << NTP_SCALE_SHIFT;
272 time_adjust = 0;
275 #ifdef CONFIG_GENERIC_CMOS_UPDATE
277 /* Disable the cmos update - used by virtualization and embedded */
278 int no_sync_cmos_clock __read_mostly;
280 static void sync_cmos_clock(struct work_struct *work);
282 static DECLARE_DELAYED_WORK(sync_cmos_work, sync_cmos_clock);
284 static void sync_cmos_clock(struct work_struct *work)
286 struct timespec now, next;
287 int fail = 1;
290 * If we have an externally synchronized Linux clock, then update
291 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
292 * called as close as possible to 500 ms before the new second starts.
293 * This code is run on a timer. If the clock is set, that timer
294 * may not expire at the correct time. Thus, we adjust...
296 if (!ntp_synced()) {
298 * Not synced, exit, do not restart a timer (if one is
299 * running, let it run out).
301 return;
304 getnstimeofday(&now);
305 if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec / 2)
306 fail = update_persistent_clock(now);
308 next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec - (TICK_NSEC / 2);
309 if (next.tv_nsec <= 0)
310 next.tv_nsec += NSEC_PER_SEC;
312 if (!fail)
313 next.tv_sec = 659;
314 else
315 next.tv_sec = 0;
317 if (next.tv_nsec >= NSEC_PER_SEC) {
318 next.tv_sec++;
319 next.tv_nsec -= NSEC_PER_SEC;
321 schedule_delayed_work(&sync_cmos_work, timespec_to_jiffies(&next));
324 static void notify_cmos_timer(void)
326 if (!no_sync_cmos_clock)
327 schedule_delayed_work(&sync_cmos_work, 0);
330 #else
331 static inline void notify_cmos_timer(void) { }
332 #endif
335 * Start the leap seconds timer:
337 static inline void ntp_start_leap_timer(struct timespec *ts)
339 long now = ts->tv_sec;
341 if (time_status & STA_INS) {
342 time_state = TIME_INS;
343 now += 86400 - now % 86400;
344 hrtimer_start(&leap_timer, ktime_set(now, 0), HRTIMER_MODE_ABS);
346 return;
349 if (time_status & STA_DEL) {
350 time_state = TIME_DEL;
351 now += 86400 - (now + 1) % 86400;
352 hrtimer_start(&leap_timer, ktime_set(now, 0), HRTIMER_MODE_ABS);
357 * Propagate a new txc->status value into the NTP state:
359 static inline void process_adj_status(struct timex *txc, struct timespec *ts)
361 if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
362 time_state = TIME_OK;
363 time_status = STA_UNSYNC;
367 * If we turn on PLL adjustments then reset the
368 * reference time to current time.
370 if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
371 time_reftime = xtime.tv_sec;
373 /* only set allowed bits */
374 time_status &= STA_RONLY;
375 time_status |= txc->status & ~STA_RONLY;
377 switch (time_state) {
378 case TIME_OK:
379 ntp_start_leap_timer(ts);
380 break;
381 case TIME_INS:
382 case TIME_DEL:
383 time_state = TIME_OK;
384 ntp_start_leap_timer(ts);
385 case TIME_WAIT:
386 if (!(time_status & (STA_INS | STA_DEL)))
387 time_state = TIME_OK;
388 break;
389 case TIME_OOP:
390 hrtimer_restart(&leap_timer);
391 break;
395 * Called with the xtime lock held, so we can access and modify
396 * all the global NTP state:
398 static inline void process_adjtimex_modes(struct timex *txc, struct timespec *ts)
400 if (txc->modes & ADJ_STATUS)
401 process_adj_status(txc, ts);
403 if (txc->modes & ADJ_NANO)
404 time_status |= STA_NANO;
406 if (txc->modes & ADJ_MICRO)
407 time_status &= ~STA_NANO;
409 if (txc->modes & ADJ_FREQUENCY) {
410 time_freq = txc->freq * PPM_SCALE;
411 time_freq = min(time_freq, MAXFREQ_SCALED);
412 time_freq = max(time_freq, -MAXFREQ_SCALED);
415 if (txc->modes & ADJ_MAXERROR)
416 time_maxerror = txc->maxerror;
418 if (txc->modes & ADJ_ESTERROR)
419 time_esterror = txc->esterror;
421 if (txc->modes & ADJ_TIMECONST) {
422 time_constant = txc->constant;
423 if (!(time_status & STA_NANO))
424 time_constant += 4;
425 time_constant = min(time_constant, (long)MAXTC);
426 time_constant = max(time_constant, 0l);
429 if (txc->modes & ADJ_TAI && txc->constant > 0)
430 time_tai = txc->constant;
432 if (txc->modes & ADJ_OFFSET)
433 ntp_update_offset(txc->offset);
435 if (txc->modes & ADJ_TICK)
436 tick_usec = txc->tick;
438 if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
439 ntp_update_frequency();
443 * adjtimex mainly allows reading (and writing, if superuser) of
444 * kernel time-keeping variables. used by xntpd.
446 int do_adjtimex(struct timex *txc)
448 struct timespec ts;
449 int result;
451 /* Validate the data before disabling interrupts */
452 if (txc->modes & ADJ_ADJTIME) {
453 /* singleshot must not be used with any other mode bits */
454 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
455 return -EINVAL;
456 if (!(txc->modes & ADJ_OFFSET_READONLY) &&
457 !capable(CAP_SYS_TIME))
458 return -EPERM;
459 } else {
460 /* In order to modify anything, you gotta be super-user! */
461 if (txc->modes && !capable(CAP_SYS_TIME))
462 return -EPERM;
465 * if the quartz is off by more than 10% then
466 * something is VERY wrong!
468 if (txc->modes & ADJ_TICK &&
469 (txc->tick < 900000/USER_HZ ||
470 txc->tick > 1100000/USER_HZ))
471 return -EINVAL;
473 if (txc->modes & ADJ_STATUS && time_state != TIME_OK)
474 hrtimer_cancel(&leap_timer);
477 getnstimeofday(&ts);
479 write_seqlock_irq(&xtime_lock);
481 if (txc->modes & ADJ_ADJTIME) {
482 long save_adjust = time_adjust;
484 if (!(txc->modes & ADJ_OFFSET_READONLY)) {
485 /* adjtime() is independent from ntp_adjtime() */
486 time_adjust = txc->offset;
487 ntp_update_frequency();
489 txc->offset = save_adjust;
490 } else {
492 /* If there are input parameters, then process them: */
493 if (txc->modes)
494 process_adjtimex_modes(txc, &ts);
496 txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
497 NTP_SCALE_SHIFT);
498 if (!(time_status & STA_NANO))
499 txc->offset /= NSEC_PER_USEC;
502 result = time_state; /* mostly `TIME_OK' */
503 if (time_status & (STA_UNSYNC|STA_CLOCKERR))
504 result = TIME_ERROR;
506 txc->freq = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
507 PPM_SCALE_INV, NTP_SCALE_SHIFT);
508 txc->maxerror = time_maxerror;
509 txc->esterror = time_esterror;
510 txc->status = time_status;
511 txc->constant = time_constant;
512 txc->precision = 1;
513 txc->tolerance = MAXFREQ_SCALED / PPM_SCALE;
514 txc->tick = tick_usec;
515 txc->tai = time_tai;
517 /* PPS is not implemented, so these are zero */
518 txc->ppsfreq = 0;
519 txc->jitter = 0;
520 txc->shift = 0;
521 txc->stabil = 0;
522 txc->jitcnt = 0;
523 txc->calcnt = 0;
524 txc->errcnt = 0;
525 txc->stbcnt = 0;
527 write_sequnlock_irq(&xtime_lock);
529 txc->time.tv_sec = ts.tv_sec;
530 txc->time.tv_usec = ts.tv_nsec;
531 if (!(time_status & STA_NANO))
532 txc->time.tv_usec /= NSEC_PER_USEC;
534 notify_cmos_timer();
536 return result;
539 static int __init ntp_tick_adj_setup(char *str)
541 ntp_tick_adj = simple_strtol(str, NULL, 0);
542 ntp_tick_adj <<= NTP_SCALE_SHIFT;
544 return 1;
547 __setup("ntp_tick_adj=", ntp_tick_adj_setup);
549 void __init ntp_init(void)
551 ntp_clear();
552 hrtimer_init(&leap_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
553 leap_timer.function = ntp_leap_second;