2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter
12 #include <linux/swap.h> /* struct reclaim_state */
13 #include <linux/module.h>
14 #include <linux/bit_spinlock.h>
15 #include <linux/interrupt.h>
16 #include <linux/bitops.h>
17 #include <linux/slab.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/kmemtrace.h>
21 #include <linux/cpu.h>
22 #include <linux/cpuset.h>
23 #include <linux/kmemleak.h>
24 #include <linux/mempolicy.h>
25 #include <linux/ctype.h>
26 #include <linux/debugobjects.h>
27 #include <linux/kallsyms.h>
28 #include <linux/memory.h>
29 #include <linux/math64.h>
30 #include <linux/fault-inject.h>
37 * The slab_lock protects operations on the object of a particular
38 * slab and its metadata in the page struct. If the slab lock
39 * has been taken then no allocations nor frees can be performed
40 * on the objects in the slab nor can the slab be added or removed
41 * from the partial or full lists since this would mean modifying
42 * the page_struct of the slab.
44 * The list_lock protects the partial and full list on each node and
45 * the partial slab counter. If taken then no new slabs may be added or
46 * removed from the lists nor make the number of partial slabs be modified.
47 * (Note that the total number of slabs is an atomic value that may be
48 * modified without taking the list lock).
50 * The list_lock is a centralized lock and thus we avoid taking it as
51 * much as possible. As long as SLUB does not have to handle partial
52 * slabs, operations can continue without any centralized lock. F.e.
53 * allocating a long series of objects that fill up slabs does not require
56 * The lock order is sometimes inverted when we are trying to get a slab
57 * off a list. We take the list_lock and then look for a page on the list
58 * to use. While we do that objects in the slabs may be freed. We can
59 * only operate on the slab if we have also taken the slab_lock. So we use
60 * a slab_trylock() on the slab. If trylock was successful then no frees
61 * can occur anymore and we can use the slab for allocations etc. If the
62 * slab_trylock() does not succeed then frees are in progress in the slab and
63 * we must stay away from it for a while since we may cause a bouncing
64 * cacheline if we try to acquire the lock. So go onto the next slab.
65 * If all pages are busy then we may allocate a new slab instead of reusing
66 * a partial slab. A new slab has noone operating on it and thus there is
67 * no danger of cacheline contention.
69 * Interrupts are disabled during allocation and deallocation in order to
70 * make the slab allocator safe to use in the context of an irq. In addition
71 * interrupts are disabled to ensure that the processor does not change
72 * while handling per_cpu slabs, due to kernel preemption.
74 * SLUB assigns one slab for allocation to each processor.
75 * Allocations only occur from these slabs called cpu slabs.
77 * Slabs with free elements are kept on a partial list and during regular
78 * operations no list for full slabs is used. If an object in a full slab is
79 * freed then the slab will show up again on the partial lists.
80 * We track full slabs for debugging purposes though because otherwise we
81 * cannot scan all objects.
83 * Slabs are freed when they become empty. Teardown and setup is
84 * minimal so we rely on the page allocators per cpu caches for
85 * fast frees and allocs.
87 * Overloading of page flags that are otherwise used for LRU management.
89 * PageActive The slab is frozen and exempt from list processing.
90 * This means that the slab is dedicated to a purpose
91 * such as satisfying allocations for a specific
92 * processor. Objects may be freed in the slab while
93 * it is frozen but slab_free will then skip the usual
94 * list operations. It is up to the processor holding
95 * the slab to integrate the slab into the slab lists
96 * when the slab is no longer needed.
98 * One use of this flag is to mark slabs that are
99 * used for allocations. Then such a slab becomes a cpu
100 * slab. The cpu slab may be equipped with an additional
101 * freelist that allows lockless access to
102 * free objects in addition to the regular freelist
103 * that requires the slab lock.
105 * PageError Slab requires special handling due to debug
106 * options set. This moves slab handling out of
107 * the fast path and disables lockless freelists.
110 #ifdef CONFIG_SLUB_DEBUG
117 * Issues still to be resolved:
119 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
121 * - Variable sizing of the per node arrays
124 /* Enable to test recovery from slab corruption on boot */
125 #undef SLUB_RESILIENCY_TEST
128 * Mininum number of partial slabs. These will be left on the partial
129 * lists even if they are empty. kmem_cache_shrink may reclaim them.
131 #define MIN_PARTIAL 5
134 * Maximum number of desirable partial slabs.
135 * The existence of more partial slabs makes kmem_cache_shrink
136 * sort the partial list by the number of objects in the.
138 #define MAX_PARTIAL 10
140 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
141 SLAB_POISON | SLAB_STORE_USER)
144 * Set of flags that will prevent slab merging
146 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
147 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE)
149 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
152 #ifndef ARCH_KMALLOC_MINALIGN
153 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
156 #ifndef ARCH_SLAB_MINALIGN
157 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
161 #define OO_MASK ((1 << OO_SHIFT) - 1)
162 #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
164 /* Internal SLUB flags */
165 #define __OBJECT_POISON 0x80000000 /* Poison object */
166 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
168 static int kmem_size
= sizeof(struct kmem_cache
);
171 static struct notifier_block slab_notifier
;
175 DOWN
, /* No slab functionality available */
176 PARTIAL
, /* kmem_cache_open() works but kmalloc does not */
177 UP
, /* Everything works but does not show up in sysfs */
182 * The slab allocator is initialized with interrupts disabled. Therefore, make
183 * sure early boot allocations don't accidentally enable interrupts.
185 static gfp_t slab_gfp_mask __read_mostly
= SLAB_GFP_BOOT_MASK
;
187 /* A list of all slab caches on the system */
188 static DECLARE_RWSEM(slub_lock
);
189 static LIST_HEAD(slab_caches
);
192 * Tracking user of a slab.
195 unsigned long addr
; /* Called from address */
196 int cpu
; /* Was running on cpu */
197 int pid
; /* Pid context */
198 unsigned long when
; /* When did the operation occur */
201 enum track_item
{ TRACK_ALLOC
, TRACK_FREE
};
203 #ifdef CONFIG_SLUB_DEBUG
204 static int sysfs_slab_add(struct kmem_cache
*);
205 static int sysfs_slab_alias(struct kmem_cache
*, const char *);
206 static void sysfs_slab_remove(struct kmem_cache
*);
209 static inline int sysfs_slab_add(struct kmem_cache
*s
) { return 0; }
210 static inline int sysfs_slab_alias(struct kmem_cache
*s
, const char *p
)
212 static inline void sysfs_slab_remove(struct kmem_cache
*s
)
219 static inline void stat(struct kmem_cache_cpu
*c
, enum stat_item si
)
221 #ifdef CONFIG_SLUB_STATS
226 /********************************************************************
227 * Core slab cache functions
228 *******************************************************************/
230 int slab_is_available(void)
232 return slab_state
>= UP
;
235 static inline struct kmem_cache_node
*get_node(struct kmem_cache
*s
, int node
)
238 return s
->node
[node
];
240 return &s
->local_node
;
244 static inline struct kmem_cache_cpu
*get_cpu_slab(struct kmem_cache
*s
, int cpu
)
247 return s
->cpu_slab
[cpu
];
253 /* Verify that a pointer has an address that is valid within a slab page */
254 static inline int check_valid_pointer(struct kmem_cache
*s
,
255 struct page
*page
, const void *object
)
262 base
= page_address(page
);
263 if (object
< base
|| object
>= base
+ page
->objects
* s
->size
||
264 (object
- base
) % s
->size
) {
272 * Slow version of get and set free pointer.
274 * This version requires touching the cache lines of kmem_cache which
275 * we avoid to do in the fast alloc free paths. There we obtain the offset
276 * from the page struct.
278 static inline void *get_freepointer(struct kmem_cache
*s
, void *object
)
280 return *(void **)(object
+ s
->offset
);
283 static inline void set_freepointer(struct kmem_cache
*s
, void *object
, void *fp
)
285 *(void **)(object
+ s
->offset
) = fp
;
288 /* Loop over all objects in a slab */
289 #define for_each_object(__p, __s, __addr, __objects) \
290 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
294 #define for_each_free_object(__p, __s, __free) \
295 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
297 /* Determine object index from a given position */
298 static inline int slab_index(void *p
, struct kmem_cache
*s
, void *addr
)
300 return (p
- addr
) / s
->size
;
303 static inline struct kmem_cache_order_objects
oo_make(int order
,
306 struct kmem_cache_order_objects x
= {
307 (order
<< OO_SHIFT
) + (PAGE_SIZE
<< order
) / size
313 static inline int oo_order(struct kmem_cache_order_objects x
)
315 return x
.x
>> OO_SHIFT
;
318 static inline int oo_objects(struct kmem_cache_order_objects x
)
320 return x
.x
& OO_MASK
;
323 #ifdef CONFIG_SLUB_DEBUG
327 #ifdef CONFIG_SLUB_DEBUG_ON
328 static int slub_debug
= DEBUG_DEFAULT_FLAGS
;
330 static int slub_debug
;
333 static char *slub_debug_slabs
;
338 static void print_section(char *text
, u8
*addr
, unsigned int length
)
346 for (i
= 0; i
< length
; i
++) {
348 printk(KERN_ERR
"%8s 0x%p: ", text
, addr
+ i
);
351 printk(KERN_CONT
" %02x", addr
[i
]);
353 ascii
[offset
] = isgraph(addr
[i
]) ? addr
[i
] : '.';
355 printk(KERN_CONT
" %s\n", ascii
);
362 printk(KERN_CONT
" ");
366 printk(KERN_CONT
" %s\n", ascii
);
370 static struct track
*get_track(struct kmem_cache
*s
, void *object
,
371 enum track_item alloc
)
376 p
= object
+ s
->offset
+ sizeof(void *);
378 p
= object
+ s
->inuse
;
383 static void set_track(struct kmem_cache
*s
, void *object
,
384 enum track_item alloc
, unsigned long addr
)
386 struct track
*p
= get_track(s
, object
, alloc
);
390 p
->cpu
= smp_processor_id();
391 p
->pid
= current
->pid
;
394 memset(p
, 0, sizeof(struct track
));
397 static void init_tracking(struct kmem_cache
*s
, void *object
)
399 if (!(s
->flags
& SLAB_STORE_USER
))
402 set_track(s
, object
, TRACK_FREE
, 0UL);
403 set_track(s
, object
, TRACK_ALLOC
, 0UL);
406 static void print_track(const char *s
, struct track
*t
)
411 printk(KERN_ERR
"INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
412 s
, (void *)t
->addr
, jiffies
- t
->when
, t
->cpu
, t
->pid
);
415 static void print_tracking(struct kmem_cache
*s
, void *object
)
417 if (!(s
->flags
& SLAB_STORE_USER
))
420 print_track("Allocated", get_track(s
, object
, TRACK_ALLOC
));
421 print_track("Freed", get_track(s
, object
, TRACK_FREE
));
424 static void print_page_info(struct page
*page
)
426 printk(KERN_ERR
"INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
427 page
, page
->objects
, page
->inuse
, page
->freelist
, page
->flags
);
431 static void slab_bug(struct kmem_cache
*s
, char *fmt
, ...)
437 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
439 printk(KERN_ERR
"========================================"
440 "=====================================\n");
441 printk(KERN_ERR
"BUG %s: %s\n", s
->name
, buf
);
442 printk(KERN_ERR
"----------------------------------------"
443 "-------------------------------------\n\n");
446 static void slab_fix(struct kmem_cache
*s
, char *fmt
, ...)
452 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
454 printk(KERN_ERR
"FIX %s: %s\n", s
->name
, buf
);
457 static void print_trailer(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
459 unsigned int off
; /* Offset of last byte */
460 u8
*addr
= page_address(page
);
462 print_tracking(s
, p
);
464 print_page_info(page
);
466 printk(KERN_ERR
"INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
467 p
, p
- addr
, get_freepointer(s
, p
));
470 print_section("Bytes b4", p
- 16, 16);
472 print_section("Object", p
, min_t(unsigned long, s
->objsize
, PAGE_SIZE
));
474 if (s
->flags
& SLAB_RED_ZONE
)
475 print_section("Redzone", p
+ s
->objsize
,
476 s
->inuse
- s
->objsize
);
479 off
= s
->offset
+ sizeof(void *);
483 if (s
->flags
& SLAB_STORE_USER
)
484 off
+= 2 * sizeof(struct track
);
487 /* Beginning of the filler is the free pointer */
488 print_section("Padding", p
+ off
, s
->size
- off
);
493 static void object_err(struct kmem_cache
*s
, struct page
*page
,
494 u8
*object
, char *reason
)
496 slab_bug(s
, "%s", reason
);
497 print_trailer(s
, page
, object
);
500 static void slab_err(struct kmem_cache
*s
, struct page
*page
, char *fmt
, ...)
506 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
508 slab_bug(s
, "%s", buf
);
509 print_page_info(page
);
513 static void init_object(struct kmem_cache
*s
, void *object
, int active
)
517 if (s
->flags
& __OBJECT_POISON
) {
518 memset(p
, POISON_FREE
, s
->objsize
- 1);
519 p
[s
->objsize
- 1] = POISON_END
;
522 if (s
->flags
& SLAB_RED_ZONE
)
523 memset(p
+ s
->objsize
,
524 active
? SLUB_RED_ACTIVE
: SLUB_RED_INACTIVE
,
525 s
->inuse
- s
->objsize
);
528 static u8
*check_bytes(u8
*start
, unsigned int value
, unsigned int bytes
)
531 if (*start
!= (u8
)value
)
539 static void restore_bytes(struct kmem_cache
*s
, char *message
, u8 data
,
540 void *from
, void *to
)
542 slab_fix(s
, "Restoring 0x%p-0x%p=0x%x\n", from
, to
- 1, data
);
543 memset(from
, data
, to
- from
);
546 static int check_bytes_and_report(struct kmem_cache
*s
, struct page
*page
,
547 u8
*object
, char *what
,
548 u8
*start
, unsigned int value
, unsigned int bytes
)
553 fault
= check_bytes(start
, value
, bytes
);
558 while (end
> fault
&& end
[-1] == value
)
561 slab_bug(s
, "%s overwritten", what
);
562 printk(KERN_ERR
"INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
563 fault
, end
- 1, fault
[0], value
);
564 print_trailer(s
, page
, object
);
566 restore_bytes(s
, what
, value
, fault
, end
);
574 * Bytes of the object to be managed.
575 * If the freepointer may overlay the object then the free
576 * pointer is the first word of the object.
578 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
581 * object + s->objsize
582 * Padding to reach word boundary. This is also used for Redzoning.
583 * Padding is extended by another word if Redzoning is enabled and
586 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
587 * 0xcc (RED_ACTIVE) for objects in use.
590 * Meta data starts here.
592 * A. Free pointer (if we cannot overwrite object on free)
593 * B. Tracking data for SLAB_STORE_USER
594 * C. Padding to reach required alignment boundary or at mininum
595 * one word if debugging is on to be able to detect writes
596 * before the word boundary.
598 * Padding is done using 0x5a (POISON_INUSE)
601 * Nothing is used beyond s->size.
603 * If slabcaches are merged then the objsize and inuse boundaries are mostly
604 * ignored. And therefore no slab options that rely on these boundaries
605 * may be used with merged slabcaches.
608 static int check_pad_bytes(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
610 unsigned long off
= s
->inuse
; /* The end of info */
613 /* Freepointer is placed after the object. */
614 off
+= sizeof(void *);
616 if (s
->flags
& SLAB_STORE_USER
)
617 /* We also have user information there */
618 off
+= 2 * sizeof(struct track
);
623 return check_bytes_and_report(s
, page
, p
, "Object padding",
624 p
+ off
, POISON_INUSE
, s
->size
- off
);
627 /* Check the pad bytes at the end of a slab page */
628 static int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
636 if (!(s
->flags
& SLAB_POISON
))
639 start
= page_address(page
);
640 length
= (PAGE_SIZE
<< compound_order(page
));
641 end
= start
+ length
;
642 remainder
= length
% s
->size
;
646 fault
= check_bytes(end
- remainder
, POISON_INUSE
, remainder
);
649 while (end
> fault
&& end
[-1] == POISON_INUSE
)
652 slab_err(s
, page
, "Padding overwritten. 0x%p-0x%p", fault
, end
- 1);
653 print_section("Padding", end
- remainder
, remainder
);
655 restore_bytes(s
, "slab padding", POISON_INUSE
, start
, end
);
659 static int check_object(struct kmem_cache
*s
, struct page
*page
,
660 void *object
, int active
)
663 u8
*endobject
= object
+ s
->objsize
;
665 if (s
->flags
& SLAB_RED_ZONE
) {
667 active
? SLUB_RED_ACTIVE
: SLUB_RED_INACTIVE
;
669 if (!check_bytes_and_report(s
, page
, object
, "Redzone",
670 endobject
, red
, s
->inuse
- s
->objsize
))
673 if ((s
->flags
& SLAB_POISON
) && s
->objsize
< s
->inuse
) {
674 check_bytes_and_report(s
, page
, p
, "Alignment padding",
675 endobject
, POISON_INUSE
, s
->inuse
- s
->objsize
);
679 if (s
->flags
& SLAB_POISON
) {
680 if (!active
&& (s
->flags
& __OBJECT_POISON
) &&
681 (!check_bytes_and_report(s
, page
, p
, "Poison", p
,
682 POISON_FREE
, s
->objsize
- 1) ||
683 !check_bytes_and_report(s
, page
, p
, "Poison",
684 p
+ s
->objsize
- 1, POISON_END
, 1)))
687 * check_pad_bytes cleans up on its own.
689 check_pad_bytes(s
, page
, p
);
692 if (!s
->offset
&& active
)
694 * Object and freepointer overlap. Cannot check
695 * freepointer while object is allocated.
699 /* Check free pointer validity */
700 if (!check_valid_pointer(s
, page
, get_freepointer(s
, p
))) {
701 object_err(s
, page
, p
, "Freepointer corrupt");
703 * No choice but to zap it and thus lose the remainder
704 * of the free objects in this slab. May cause
705 * another error because the object count is now wrong.
707 set_freepointer(s
, p
, NULL
);
713 static int check_slab(struct kmem_cache
*s
, struct page
*page
)
717 VM_BUG_ON(!irqs_disabled());
719 if (!PageSlab(page
)) {
720 slab_err(s
, page
, "Not a valid slab page");
724 maxobj
= (PAGE_SIZE
<< compound_order(page
)) / s
->size
;
725 if (page
->objects
> maxobj
) {
726 slab_err(s
, page
, "objects %u > max %u",
727 s
->name
, page
->objects
, maxobj
);
730 if (page
->inuse
> page
->objects
) {
731 slab_err(s
, page
, "inuse %u > max %u",
732 s
->name
, page
->inuse
, page
->objects
);
735 /* Slab_pad_check fixes things up after itself */
736 slab_pad_check(s
, page
);
741 * Determine if a certain object on a page is on the freelist. Must hold the
742 * slab lock to guarantee that the chains are in a consistent state.
744 static int on_freelist(struct kmem_cache
*s
, struct page
*page
, void *search
)
747 void *fp
= page
->freelist
;
749 unsigned long max_objects
;
751 while (fp
&& nr
<= page
->objects
) {
754 if (!check_valid_pointer(s
, page
, fp
)) {
756 object_err(s
, page
, object
,
757 "Freechain corrupt");
758 set_freepointer(s
, object
, NULL
);
761 slab_err(s
, page
, "Freepointer corrupt");
762 page
->freelist
= NULL
;
763 page
->inuse
= page
->objects
;
764 slab_fix(s
, "Freelist cleared");
770 fp
= get_freepointer(s
, object
);
774 max_objects
= (PAGE_SIZE
<< compound_order(page
)) / s
->size
;
775 if (max_objects
> MAX_OBJS_PER_PAGE
)
776 max_objects
= MAX_OBJS_PER_PAGE
;
778 if (page
->objects
!= max_objects
) {
779 slab_err(s
, page
, "Wrong number of objects. Found %d but "
780 "should be %d", page
->objects
, max_objects
);
781 page
->objects
= max_objects
;
782 slab_fix(s
, "Number of objects adjusted.");
784 if (page
->inuse
!= page
->objects
- nr
) {
785 slab_err(s
, page
, "Wrong object count. Counter is %d but "
786 "counted were %d", page
->inuse
, page
->objects
- nr
);
787 page
->inuse
= page
->objects
- nr
;
788 slab_fix(s
, "Object count adjusted.");
790 return search
== NULL
;
793 static void trace(struct kmem_cache
*s
, struct page
*page
, void *object
,
796 if (s
->flags
& SLAB_TRACE
) {
797 printk(KERN_INFO
"TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
799 alloc
? "alloc" : "free",
804 print_section("Object", (void *)object
, s
->objsize
);
811 * Tracking of fully allocated slabs for debugging purposes.
813 static void add_full(struct kmem_cache_node
*n
, struct page
*page
)
815 spin_lock(&n
->list_lock
);
816 list_add(&page
->lru
, &n
->full
);
817 spin_unlock(&n
->list_lock
);
820 static void remove_full(struct kmem_cache
*s
, struct page
*page
)
822 struct kmem_cache_node
*n
;
824 if (!(s
->flags
& SLAB_STORE_USER
))
827 n
= get_node(s
, page_to_nid(page
));
829 spin_lock(&n
->list_lock
);
830 list_del(&page
->lru
);
831 spin_unlock(&n
->list_lock
);
834 /* Tracking of the number of slabs for debugging purposes */
835 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
837 struct kmem_cache_node
*n
= get_node(s
, node
);
839 return atomic_long_read(&n
->nr_slabs
);
842 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
844 struct kmem_cache_node
*n
= get_node(s
, node
);
847 * May be called early in order to allocate a slab for the
848 * kmem_cache_node structure. Solve the chicken-egg
849 * dilemma by deferring the increment of the count during
850 * bootstrap (see early_kmem_cache_node_alloc).
852 if (!NUMA_BUILD
|| n
) {
853 atomic_long_inc(&n
->nr_slabs
);
854 atomic_long_add(objects
, &n
->total_objects
);
857 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
859 struct kmem_cache_node
*n
= get_node(s
, node
);
861 atomic_long_dec(&n
->nr_slabs
);
862 atomic_long_sub(objects
, &n
->total_objects
);
865 /* Object debug checks for alloc/free paths */
866 static void setup_object_debug(struct kmem_cache
*s
, struct page
*page
,
869 if (!(s
->flags
& (SLAB_STORE_USER
|SLAB_RED_ZONE
|__OBJECT_POISON
)))
872 init_object(s
, object
, 0);
873 init_tracking(s
, object
);
876 static int alloc_debug_processing(struct kmem_cache
*s
, struct page
*page
,
877 void *object
, unsigned long addr
)
879 if (!check_slab(s
, page
))
882 if (!on_freelist(s
, page
, object
)) {
883 object_err(s
, page
, object
, "Object already allocated");
887 if (!check_valid_pointer(s
, page
, object
)) {
888 object_err(s
, page
, object
, "Freelist Pointer check fails");
892 if (!check_object(s
, page
, object
, 0))
895 /* Success perform special debug activities for allocs */
896 if (s
->flags
& SLAB_STORE_USER
)
897 set_track(s
, object
, TRACK_ALLOC
, addr
);
898 trace(s
, page
, object
, 1);
899 init_object(s
, object
, 1);
903 if (PageSlab(page
)) {
905 * If this is a slab page then lets do the best we can
906 * to avoid issues in the future. Marking all objects
907 * as used avoids touching the remaining objects.
909 slab_fix(s
, "Marking all objects used");
910 page
->inuse
= page
->objects
;
911 page
->freelist
= NULL
;
916 static int free_debug_processing(struct kmem_cache
*s
, struct page
*page
,
917 void *object
, unsigned long addr
)
919 if (!check_slab(s
, page
))
922 if (!check_valid_pointer(s
, page
, object
)) {
923 slab_err(s
, page
, "Invalid object pointer 0x%p", object
);
927 if (on_freelist(s
, page
, object
)) {
928 object_err(s
, page
, object
, "Object already free");
932 if (!check_object(s
, page
, object
, 1))
935 if (unlikely(s
!= page
->slab
)) {
936 if (!PageSlab(page
)) {
937 slab_err(s
, page
, "Attempt to free object(0x%p) "
938 "outside of slab", object
);
939 } else if (!page
->slab
) {
941 "SLUB <none>: no slab for object 0x%p.\n",
945 object_err(s
, page
, object
,
946 "page slab pointer corrupt.");
950 /* Special debug activities for freeing objects */
951 if (!PageSlubFrozen(page
) && !page
->freelist
)
952 remove_full(s
, page
);
953 if (s
->flags
& SLAB_STORE_USER
)
954 set_track(s
, object
, TRACK_FREE
, addr
);
955 trace(s
, page
, object
, 0);
956 init_object(s
, object
, 0);
960 slab_fix(s
, "Object at 0x%p not freed", object
);
964 static int __init
setup_slub_debug(char *str
)
966 slub_debug
= DEBUG_DEFAULT_FLAGS
;
967 if (*str
++ != '=' || !*str
)
969 * No options specified. Switch on full debugging.
975 * No options but restriction on slabs. This means full
976 * debugging for slabs matching a pattern.
983 * Switch off all debugging measures.
988 * Determine which debug features should be switched on
990 for (; *str
&& *str
!= ','; str
++) {
991 switch (tolower(*str
)) {
993 slub_debug
|= SLAB_DEBUG_FREE
;
996 slub_debug
|= SLAB_RED_ZONE
;
999 slub_debug
|= SLAB_POISON
;
1002 slub_debug
|= SLAB_STORE_USER
;
1005 slub_debug
|= SLAB_TRACE
;
1008 printk(KERN_ERR
"slub_debug option '%c' "
1009 "unknown. skipped\n", *str
);
1015 slub_debug_slabs
= str
+ 1;
1020 __setup("slub_debug", setup_slub_debug
);
1022 static unsigned long kmem_cache_flags(unsigned long objsize
,
1023 unsigned long flags
, const char *name
,
1024 void (*ctor
)(void *))
1027 * Enable debugging if selected on the kernel commandline.
1029 if (slub_debug
&& (!slub_debug_slabs
||
1030 strncmp(slub_debug_slabs
, name
, strlen(slub_debug_slabs
)) == 0))
1031 flags
|= slub_debug
;
1036 static inline void setup_object_debug(struct kmem_cache
*s
,
1037 struct page
*page
, void *object
) {}
1039 static inline int alloc_debug_processing(struct kmem_cache
*s
,
1040 struct page
*page
, void *object
, unsigned long addr
) { return 0; }
1042 static inline int free_debug_processing(struct kmem_cache
*s
,
1043 struct page
*page
, void *object
, unsigned long addr
) { return 0; }
1045 static inline int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
1047 static inline int check_object(struct kmem_cache
*s
, struct page
*page
,
1048 void *object
, int active
) { return 1; }
1049 static inline void add_full(struct kmem_cache_node
*n
, struct page
*page
) {}
1050 static inline unsigned long kmem_cache_flags(unsigned long objsize
,
1051 unsigned long flags
, const char *name
,
1052 void (*ctor
)(void *))
1056 #define slub_debug 0
1058 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
1060 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
,
1062 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
,
1067 * Slab allocation and freeing
1069 static inline struct page
*alloc_slab_page(gfp_t flags
, int node
,
1070 struct kmem_cache_order_objects oo
)
1072 int order
= oo_order(oo
);
1075 return alloc_pages(flags
, order
);
1077 return alloc_pages_node(node
, flags
, order
);
1080 static struct page
*allocate_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1083 struct kmem_cache_order_objects oo
= s
->oo
;
1085 flags
|= s
->allocflags
;
1087 page
= alloc_slab_page(flags
| __GFP_NOWARN
| __GFP_NORETRY
, node
,
1089 if (unlikely(!page
)) {
1092 * Allocation may have failed due to fragmentation.
1093 * Try a lower order alloc if possible
1095 page
= alloc_slab_page(flags
, node
, oo
);
1099 stat(get_cpu_slab(s
, raw_smp_processor_id()), ORDER_FALLBACK
);
1101 page
->objects
= oo_objects(oo
);
1102 mod_zone_page_state(page_zone(page
),
1103 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1104 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1110 static void setup_object(struct kmem_cache
*s
, struct page
*page
,
1113 setup_object_debug(s
, page
, object
);
1114 if (unlikely(s
->ctor
))
1118 static struct page
*new_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1125 BUG_ON(flags
& GFP_SLAB_BUG_MASK
);
1127 page
= allocate_slab(s
,
1128 flags
& (GFP_RECLAIM_MASK
| GFP_CONSTRAINT_MASK
), node
);
1132 inc_slabs_node(s
, page_to_nid(page
), page
->objects
);
1134 page
->flags
|= 1 << PG_slab
;
1135 if (s
->flags
& (SLAB_DEBUG_FREE
| SLAB_RED_ZONE
| SLAB_POISON
|
1136 SLAB_STORE_USER
| SLAB_TRACE
))
1137 __SetPageSlubDebug(page
);
1139 start
= page_address(page
);
1141 if (unlikely(s
->flags
& SLAB_POISON
))
1142 memset(start
, POISON_INUSE
, PAGE_SIZE
<< compound_order(page
));
1145 for_each_object(p
, s
, start
, page
->objects
) {
1146 setup_object(s
, page
, last
);
1147 set_freepointer(s
, last
, p
);
1150 setup_object(s
, page
, last
);
1151 set_freepointer(s
, last
, NULL
);
1153 page
->freelist
= start
;
1159 static void __free_slab(struct kmem_cache
*s
, struct page
*page
)
1161 int order
= compound_order(page
);
1162 int pages
= 1 << order
;
1164 if (unlikely(SLABDEBUG
&& PageSlubDebug(page
))) {
1167 slab_pad_check(s
, page
);
1168 for_each_object(p
, s
, page_address(page
),
1170 check_object(s
, page
, p
, 0);
1171 __ClearPageSlubDebug(page
);
1174 mod_zone_page_state(page_zone(page
),
1175 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1176 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1179 __ClearPageSlab(page
);
1180 reset_page_mapcount(page
);
1181 if (current
->reclaim_state
)
1182 current
->reclaim_state
->reclaimed_slab
+= pages
;
1183 __free_pages(page
, order
);
1186 static void rcu_free_slab(struct rcu_head
*h
)
1190 page
= container_of((struct list_head
*)h
, struct page
, lru
);
1191 __free_slab(page
->slab
, page
);
1194 static void free_slab(struct kmem_cache
*s
, struct page
*page
)
1196 if (unlikely(s
->flags
& SLAB_DESTROY_BY_RCU
)) {
1198 * RCU free overloads the RCU head over the LRU
1200 struct rcu_head
*head
= (void *)&page
->lru
;
1202 call_rcu(head
, rcu_free_slab
);
1204 __free_slab(s
, page
);
1207 static void discard_slab(struct kmem_cache
*s
, struct page
*page
)
1209 dec_slabs_node(s
, page_to_nid(page
), page
->objects
);
1214 * Per slab locking using the pagelock
1216 static __always_inline
void slab_lock(struct page
*page
)
1218 bit_spin_lock(PG_locked
, &page
->flags
);
1221 static __always_inline
void slab_unlock(struct page
*page
)
1223 __bit_spin_unlock(PG_locked
, &page
->flags
);
1226 static __always_inline
int slab_trylock(struct page
*page
)
1230 rc
= bit_spin_trylock(PG_locked
, &page
->flags
);
1235 * Management of partially allocated slabs
1237 static void add_partial(struct kmem_cache_node
*n
,
1238 struct page
*page
, int tail
)
1240 spin_lock(&n
->list_lock
);
1243 list_add_tail(&page
->lru
, &n
->partial
);
1245 list_add(&page
->lru
, &n
->partial
);
1246 spin_unlock(&n
->list_lock
);
1249 static void remove_partial(struct kmem_cache
*s
, struct page
*page
)
1251 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1253 spin_lock(&n
->list_lock
);
1254 list_del(&page
->lru
);
1256 spin_unlock(&n
->list_lock
);
1260 * Lock slab and remove from the partial list.
1262 * Must hold list_lock.
1264 static inline int lock_and_freeze_slab(struct kmem_cache_node
*n
,
1267 if (slab_trylock(page
)) {
1268 list_del(&page
->lru
);
1270 __SetPageSlubFrozen(page
);
1277 * Try to allocate a partial slab from a specific node.
1279 static struct page
*get_partial_node(struct kmem_cache_node
*n
)
1284 * Racy check. If we mistakenly see no partial slabs then we
1285 * just allocate an empty slab. If we mistakenly try to get a
1286 * partial slab and there is none available then get_partials()
1289 if (!n
|| !n
->nr_partial
)
1292 spin_lock(&n
->list_lock
);
1293 list_for_each_entry(page
, &n
->partial
, lru
)
1294 if (lock_and_freeze_slab(n
, page
))
1298 spin_unlock(&n
->list_lock
);
1303 * Get a page from somewhere. Search in increasing NUMA distances.
1305 static struct page
*get_any_partial(struct kmem_cache
*s
, gfp_t flags
)
1308 struct zonelist
*zonelist
;
1311 enum zone_type high_zoneidx
= gfp_zone(flags
);
1315 * The defrag ratio allows a configuration of the tradeoffs between
1316 * inter node defragmentation and node local allocations. A lower
1317 * defrag_ratio increases the tendency to do local allocations
1318 * instead of attempting to obtain partial slabs from other nodes.
1320 * If the defrag_ratio is set to 0 then kmalloc() always
1321 * returns node local objects. If the ratio is higher then kmalloc()
1322 * may return off node objects because partial slabs are obtained
1323 * from other nodes and filled up.
1325 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1326 * defrag_ratio = 1000) then every (well almost) allocation will
1327 * first attempt to defrag slab caches on other nodes. This means
1328 * scanning over all nodes to look for partial slabs which may be
1329 * expensive if we do it every time we are trying to find a slab
1330 * with available objects.
1332 if (!s
->remote_node_defrag_ratio
||
1333 get_cycles() % 1024 > s
->remote_node_defrag_ratio
)
1336 zonelist
= node_zonelist(slab_node(current
->mempolicy
), flags
);
1337 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1338 struct kmem_cache_node
*n
;
1340 n
= get_node(s
, zone_to_nid(zone
));
1342 if (n
&& cpuset_zone_allowed_hardwall(zone
, flags
) &&
1343 n
->nr_partial
> s
->min_partial
) {
1344 page
= get_partial_node(n
);
1354 * Get a partial page, lock it and return it.
1356 static struct page
*get_partial(struct kmem_cache
*s
, gfp_t flags
, int node
)
1359 int searchnode
= (node
== -1) ? numa_node_id() : node
;
1361 page
= get_partial_node(get_node(s
, searchnode
));
1362 if (page
|| (flags
& __GFP_THISNODE
))
1365 return get_any_partial(s
, flags
);
1369 * Move a page back to the lists.
1371 * Must be called with the slab lock held.
1373 * On exit the slab lock will have been dropped.
1375 static void unfreeze_slab(struct kmem_cache
*s
, struct page
*page
, int tail
)
1377 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1378 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, smp_processor_id());
1380 __ClearPageSlubFrozen(page
);
1383 if (page
->freelist
) {
1384 add_partial(n
, page
, tail
);
1385 stat(c
, tail
? DEACTIVATE_TO_TAIL
: DEACTIVATE_TO_HEAD
);
1387 stat(c
, DEACTIVATE_FULL
);
1388 if (SLABDEBUG
&& PageSlubDebug(page
) &&
1389 (s
->flags
& SLAB_STORE_USER
))
1394 stat(c
, DEACTIVATE_EMPTY
);
1395 if (n
->nr_partial
< s
->min_partial
) {
1397 * Adding an empty slab to the partial slabs in order
1398 * to avoid page allocator overhead. This slab needs
1399 * to come after the other slabs with objects in
1400 * so that the others get filled first. That way the
1401 * size of the partial list stays small.
1403 * kmem_cache_shrink can reclaim any empty slabs from
1406 add_partial(n
, page
, 1);
1410 stat(get_cpu_slab(s
, raw_smp_processor_id()), FREE_SLAB
);
1411 discard_slab(s
, page
);
1417 * Remove the cpu slab
1419 static void deactivate_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
1421 struct page
*page
= c
->page
;
1425 stat(c
, DEACTIVATE_REMOTE_FREES
);
1427 * Merge cpu freelist into slab freelist. Typically we get here
1428 * because both freelists are empty. So this is unlikely
1431 while (unlikely(c
->freelist
)) {
1434 tail
= 0; /* Hot objects. Put the slab first */
1436 /* Retrieve object from cpu_freelist */
1437 object
= c
->freelist
;
1438 c
->freelist
= c
->freelist
[c
->offset
];
1440 /* And put onto the regular freelist */
1441 object
[c
->offset
] = page
->freelist
;
1442 page
->freelist
= object
;
1446 unfreeze_slab(s
, page
, tail
);
1449 static inline void flush_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
1451 stat(c
, CPUSLAB_FLUSH
);
1453 deactivate_slab(s
, c
);
1459 * Called from IPI handler with interrupts disabled.
1461 static inline void __flush_cpu_slab(struct kmem_cache
*s
, int cpu
)
1463 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
1465 if (likely(c
&& c
->page
))
1469 static void flush_cpu_slab(void *d
)
1471 struct kmem_cache
*s
= d
;
1473 __flush_cpu_slab(s
, smp_processor_id());
1476 static void flush_all(struct kmem_cache
*s
)
1478 on_each_cpu(flush_cpu_slab
, s
, 1);
1482 * Check if the objects in a per cpu structure fit numa
1483 * locality expectations.
1485 static inline int node_match(struct kmem_cache_cpu
*c
, int node
)
1488 if (node
!= -1 && c
->node
!= node
)
1495 * Slow path. The lockless freelist is empty or we need to perform
1498 * Interrupts are disabled.
1500 * Processing is still very fast if new objects have been freed to the
1501 * regular freelist. In that case we simply take over the regular freelist
1502 * as the lockless freelist and zap the regular freelist.
1504 * If that is not working then we fall back to the partial lists. We take the
1505 * first element of the freelist as the object to allocate now and move the
1506 * rest of the freelist to the lockless freelist.
1508 * And if we were unable to get a new slab from the partial slab lists then
1509 * we need to allocate a new slab. This is the slowest path since it involves
1510 * a call to the page allocator and the setup of a new slab.
1512 static void *__slab_alloc(struct kmem_cache
*s
, gfp_t gfpflags
, int node
,
1513 unsigned long addr
, struct kmem_cache_cpu
*c
)
1518 /* We handle __GFP_ZERO in the caller */
1519 gfpflags
&= ~__GFP_ZERO
;
1525 if (unlikely(!node_match(c
, node
)))
1528 stat(c
, ALLOC_REFILL
);
1531 object
= c
->page
->freelist
;
1532 if (unlikely(!object
))
1534 if (unlikely(SLABDEBUG
&& PageSlubDebug(c
->page
)))
1537 c
->freelist
= object
[c
->offset
];
1538 c
->page
->inuse
= c
->page
->objects
;
1539 c
->page
->freelist
= NULL
;
1540 c
->node
= page_to_nid(c
->page
);
1542 slab_unlock(c
->page
);
1543 stat(c
, ALLOC_SLOWPATH
);
1547 deactivate_slab(s
, c
);
1550 new = get_partial(s
, gfpflags
, node
);
1553 stat(c
, ALLOC_FROM_PARTIAL
);
1557 if (gfpflags
& __GFP_WAIT
)
1560 new = new_slab(s
, gfpflags
, node
);
1562 if (gfpflags
& __GFP_WAIT
)
1563 local_irq_disable();
1566 c
= get_cpu_slab(s
, smp_processor_id());
1567 stat(c
, ALLOC_SLAB
);
1571 __SetPageSlubFrozen(new);
1577 if (!alloc_debug_processing(s
, c
->page
, object
, addr
))
1581 c
->page
->freelist
= object
[c
->offset
];
1587 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1588 * have the fastpath folded into their functions. So no function call
1589 * overhead for requests that can be satisfied on the fastpath.
1591 * The fastpath works by first checking if the lockless freelist can be used.
1592 * If not then __slab_alloc is called for slow processing.
1594 * Otherwise we can simply pick the next object from the lockless free list.
1596 static __always_inline
void *slab_alloc(struct kmem_cache
*s
,
1597 gfp_t gfpflags
, int node
, unsigned long addr
)
1600 struct kmem_cache_cpu
*c
;
1601 unsigned long flags
;
1602 unsigned int objsize
;
1604 gfpflags
&= slab_gfp_mask
;
1606 lockdep_trace_alloc(gfpflags
);
1607 might_sleep_if(gfpflags
& __GFP_WAIT
);
1609 if (should_failslab(s
->objsize
, gfpflags
))
1612 local_irq_save(flags
);
1613 c
= get_cpu_slab(s
, smp_processor_id());
1614 objsize
= c
->objsize
;
1615 if (unlikely(!c
->freelist
|| !node_match(c
, node
)))
1617 object
= __slab_alloc(s
, gfpflags
, node
, addr
, c
);
1620 object
= c
->freelist
;
1621 c
->freelist
= object
[c
->offset
];
1622 stat(c
, ALLOC_FASTPATH
);
1624 local_irq_restore(flags
);
1626 if (unlikely((gfpflags
& __GFP_ZERO
) && object
))
1627 memset(object
, 0, objsize
);
1629 kmemleak_alloc_recursive(object
, objsize
, 1, s
->flags
, gfpflags
);
1633 void *kmem_cache_alloc(struct kmem_cache
*s
, gfp_t gfpflags
)
1635 void *ret
= slab_alloc(s
, gfpflags
, -1, _RET_IP_
);
1637 trace_kmem_cache_alloc(_RET_IP_
, ret
, s
->objsize
, s
->size
, gfpflags
);
1641 EXPORT_SYMBOL(kmem_cache_alloc
);
1643 #ifdef CONFIG_KMEMTRACE
1644 void *kmem_cache_alloc_notrace(struct kmem_cache
*s
, gfp_t gfpflags
)
1646 return slab_alloc(s
, gfpflags
, -1, _RET_IP_
);
1648 EXPORT_SYMBOL(kmem_cache_alloc_notrace
);
1652 void *kmem_cache_alloc_node(struct kmem_cache
*s
, gfp_t gfpflags
, int node
)
1654 void *ret
= slab_alloc(s
, gfpflags
, node
, _RET_IP_
);
1656 trace_kmem_cache_alloc_node(_RET_IP_
, ret
,
1657 s
->objsize
, s
->size
, gfpflags
, node
);
1661 EXPORT_SYMBOL(kmem_cache_alloc_node
);
1664 #ifdef CONFIG_KMEMTRACE
1665 void *kmem_cache_alloc_node_notrace(struct kmem_cache
*s
,
1669 return slab_alloc(s
, gfpflags
, node
, _RET_IP_
);
1671 EXPORT_SYMBOL(kmem_cache_alloc_node_notrace
);
1675 * Slow patch handling. This may still be called frequently since objects
1676 * have a longer lifetime than the cpu slabs in most processing loads.
1678 * So we still attempt to reduce cache line usage. Just take the slab
1679 * lock and free the item. If there is no additional partial page
1680 * handling required then we can return immediately.
1682 static void __slab_free(struct kmem_cache
*s
, struct page
*page
,
1683 void *x
, unsigned long addr
, unsigned int offset
)
1686 void **object
= (void *)x
;
1687 struct kmem_cache_cpu
*c
;
1689 c
= get_cpu_slab(s
, raw_smp_processor_id());
1690 stat(c
, FREE_SLOWPATH
);
1693 if (unlikely(SLABDEBUG
&& PageSlubDebug(page
)))
1697 prior
= object
[offset
] = page
->freelist
;
1698 page
->freelist
= object
;
1701 if (unlikely(PageSlubFrozen(page
))) {
1702 stat(c
, FREE_FROZEN
);
1706 if (unlikely(!page
->inuse
))
1710 * Objects left in the slab. If it was not on the partial list before
1713 if (unlikely(!prior
)) {
1714 add_partial(get_node(s
, page_to_nid(page
)), page
, 1);
1715 stat(c
, FREE_ADD_PARTIAL
);
1725 * Slab still on the partial list.
1727 remove_partial(s
, page
);
1728 stat(c
, FREE_REMOVE_PARTIAL
);
1732 discard_slab(s
, page
);
1736 if (!free_debug_processing(s
, page
, x
, addr
))
1742 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1743 * can perform fastpath freeing without additional function calls.
1745 * The fastpath is only possible if we are freeing to the current cpu slab
1746 * of this processor. This typically the case if we have just allocated
1749 * If fastpath is not possible then fall back to __slab_free where we deal
1750 * with all sorts of special processing.
1752 static __always_inline
void slab_free(struct kmem_cache
*s
,
1753 struct page
*page
, void *x
, unsigned long addr
)
1755 void **object
= (void *)x
;
1756 struct kmem_cache_cpu
*c
;
1757 unsigned long flags
;
1759 kmemleak_free_recursive(x
, s
->flags
);
1760 local_irq_save(flags
);
1761 c
= get_cpu_slab(s
, smp_processor_id());
1762 debug_check_no_locks_freed(object
, c
->objsize
);
1763 if (!(s
->flags
& SLAB_DEBUG_OBJECTS
))
1764 debug_check_no_obj_freed(object
, c
->objsize
);
1765 if (likely(page
== c
->page
&& c
->node
>= 0)) {
1766 object
[c
->offset
] = c
->freelist
;
1767 c
->freelist
= object
;
1768 stat(c
, FREE_FASTPATH
);
1770 __slab_free(s
, page
, x
, addr
, c
->offset
);
1772 local_irq_restore(flags
);
1775 void kmem_cache_free(struct kmem_cache
*s
, void *x
)
1779 page
= virt_to_head_page(x
);
1781 slab_free(s
, page
, x
, _RET_IP_
);
1783 trace_kmem_cache_free(_RET_IP_
, x
);
1785 EXPORT_SYMBOL(kmem_cache_free
);
1787 /* Figure out on which slab page the object resides */
1788 static struct page
*get_object_page(const void *x
)
1790 struct page
*page
= virt_to_head_page(x
);
1792 if (!PageSlab(page
))
1799 * Object placement in a slab is made very easy because we always start at
1800 * offset 0. If we tune the size of the object to the alignment then we can
1801 * get the required alignment by putting one properly sized object after
1804 * Notice that the allocation order determines the sizes of the per cpu
1805 * caches. Each processor has always one slab available for allocations.
1806 * Increasing the allocation order reduces the number of times that slabs
1807 * must be moved on and off the partial lists and is therefore a factor in
1812 * Mininum / Maximum order of slab pages. This influences locking overhead
1813 * and slab fragmentation. A higher order reduces the number of partial slabs
1814 * and increases the number of allocations possible without having to
1815 * take the list_lock.
1817 static int slub_min_order
;
1818 static int slub_max_order
= PAGE_ALLOC_COSTLY_ORDER
;
1819 static int slub_min_objects
;
1822 * Merge control. If this is set then no merging of slab caches will occur.
1823 * (Could be removed. This was introduced to pacify the merge skeptics.)
1825 static int slub_nomerge
;
1828 * Calculate the order of allocation given an slab object size.
1830 * The order of allocation has significant impact on performance and other
1831 * system components. Generally order 0 allocations should be preferred since
1832 * order 0 does not cause fragmentation in the page allocator. Larger objects
1833 * be problematic to put into order 0 slabs because there may be too much
1834 * unused space left. We go to a higher order if more than 1/16th of the slab
1837 * In order to reach satisfactory performance we must ensure that a minimum
1838 * number of objects is in one slab. Otherwise we may generate too much
1839 * activity on the partial lists which requires taking the list_lock. This is
1840 * less a concern for large slabs though which are rarely used.
1842 * slub_max_order specifies the order where we begin to stop considering the
1843 * number of objects in a slab as critical. If we reach slub_max_order then
1844 * we try to keep the page order as low as possible. So we accept more waste
1845 * of space in favor of a small page order.
1847 * Higher order allocations also allow the placement of more objects in a
1848 * slab and thereby reduce object handling overhead. If the user has
1849 * requested a higher mininum order then we start with that one instead of
1850 * the smallest order which will fit the object.
1852 static inline int slab_order(int size
, int min_objects
,
1853 int max_order
, int fract_leftover
)
1857 int min_order
= slub_min_order
;
1859 if ((PAGE_SIZE
<< min_order
) / size
> MAX_OBJS_PER_PAGE
)
1860 return get_order(size
* MAX_OBJS_PER_PAGE
) - 1;
1862 for (order
= max(min_order
,
1863 fls(min_objects
* size
- 1) - PAGE_SHIFT
);
1864 order
<= max_order
; order
++) {
1866 unsigned long slab_size
= PAGE_SIZE
<< order
;
1868 if (slab_size
< min_objects
* size
)
1871 rem
= slab_size
% size
;
1873 if (rem
<= slab_size
/ fract_leftover
)
1881 static inline int calculate_order(int size
)
1889 * Attempt to find best configuration for a slab. This
1890 * works by first attempting to generate a layout with
1891 * the best configuration and backing off gradually.
1893 * First we reduce the acceptable waste in a slab. Then
1894 * we reduce the minimum objects required in a slab.
1896 min_objects
= slub_min_objects
;
1898 min_objects
= 4 * (fls(nr_cpu_ids
) + 1);
1899 max_objects
= (PAGE_SIZE
<< slub_max_order
)/size
;
1900 min_objects
= min(min_objects
, max_objects
);
1902 while (min_objects
> 1) {
1904 while (fraction
>= 4) {
1905 order
= slab_order(size
, min_objects
,
1906 slub_max_order
, fraction
);
1907 if (order
<= slub_max_order
)
1915 * We were unable to place multiple objects in a slab. Now
1916 * lets see if we can place a single object there.
1918 order
= slab_order(size
, 1, slub_max_order
, 1);
1919 if (order
<= slub_max_order
)
1923 * Doh this slab cannot be placed using slub_max_order.
1925 order
= slab_order(size
, 1, MAX_ORDER
, 1);
1926 if (order
< MAX_ORDER
)
1932 * Figure out what the alignment of the objects will be.
1934 static unsigned long calculate_alignment(unsigned long flags
,
1935 unsigned long align
, unsigned long size
)
1938 * If the user wants hardware cache aligned objects then follow that
1939 * suggestion if the object is sufficiently large.
1941 * The hardware cache alignment cannot override the specified
1942 * alignment though. If that is greater then use it.
1944 if (flags
& SLAB_HWCACHE_ALIGN
) {
1945 unsigned long ralign
= cache_line_size();
1946 while (size
<= ralign
/ 2)
1948 align
= max(align
, ralign
);
1951 if (align
< ARCH_SLAB_MINALIGN
)
1952 align
= ARCH_SLAB_MINALIGN
;
1954 return ALIGN(align
, sizeof(void *));
1957 static void init_kmem_cache_cpu(struct kmem_cache
*s
,
1958 struct kmem_cache_cpu
*c
)
1963 c
->offset
= s
->offset
/ sizeof(void *);
1964 c
->objsize
= s
->objsize
;
1965 #ifdef CONFIG_SLUB_STATS
1966 memset(c
->stat
, 0, NR_SLUB_STAT_ITEMS
* sizeof(unsigned));
1971 init_kmem_cache_node(struct kmem_cache_node
*n
, struct kmem_cache
*s
)
1974 spin_lock_init(&n
->list_lock
);
1975 INIT_LIST_HEAD(&n
->partial
);
1976 #ifdef CONFIG_SLUB_DEBUG
1977 atomic_long_set(&n
->nr_slabs
, 0);
1978 atomic_long_set(&n
->total_objects
, 0);
1979 INIT_LIST_HEAD(&n
->full
);
1985 * Per cpu array for per cpu structures.
1987 * The per cpu array places all kmem_cache_cpu structures from one processor
1988 * close together meaning that it becomes possible that multiple per cpu
1989 * structures are contained in one cacheline. This may be particularly
1990 * beneficial for the kmalloc caches.
1992 * A desktop system typically has around 60-80 slabs. With 100 here we are
1993 * likely able to get per cpu structures for all caches from the array defined
1994 * here. We must be able to cover all kmalloc caches during bootstrap.
1996 * If the per cpu array is exhausted then fall back to kmalloc
1997 * of individual cachelines. No sharing is possible then.
1999 #define NR_KMEM_CACHE_CPU 100
2001 static DEFINE_PER_CPU(struct kmem_cache_cpu
,
2002 kmem_cache_cpu
)[NR_KMEM_CACHE_CPU
];
2004 static DEFINE_PER_CPU(struct kmem_cache_cpu
*, kmem_cache_cpu_free
);
2005 static DECLARE_BITMAP(kmem_cach_cpu_free_init_once
, CONFIG_NR_CPUS
);
2007 static struct kmem_cache_cpu
*alloc_kmem_cache_cpu(struct kmem_cache
*s
,
2008 int cpu
, gfp_t flags
)
2010 struct kmem_cache_cpu
*c
= per_cpu(kmem_cache_cpu_free
, cpu
);
2013 per_cpu(kmem_cache_cpu_free
, cpu
) =
2014 (void *)c
->freelist
;
2016 /* Table overflow: So allocate ourselves */
2018 ALIGN(sizeof(struct kmem_cache_cpu
), cache_line_size()),
2019 flags
, cpu_to_node(cpu
));
2024 init_kmem_cache_cpu(s
, c
);
2028 static void free_kmem_cache_cpu(struct kmem_cache_cpu
*c
, int cpu
)
2030 if (c
< per_cpu(kmem_cache_cpu
, cpu
) ||
2031 c
>= per_cpu(kmem_cache_cpu
, cpu
) + NR_KMEM_CACHE_CPU
) {
2035 c
->freelist
= (void *)per_cpu(kmem_cache_cpu_free
, cpu
);
2036 per_cpu(kmem_cache_cpu_free
, cpu
) = c
;
2039 static void free_kmem_cache_cpus(struct kmem_cache
*s
)
2043 for_each_online_cpu(cpu
) {
2044 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
2047 s
->cpu_slab
[cpu
] = NULL
;
2048 free_kmem_cache_cpu(c
, cpu
);
2053 static int alloc_kmem_cache_cpus(struct kmem_cache
*s
, gfp_t flags
)
2057 for_each_online_cpu(cpu
) {
2058 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
2063 c
= alloc_kmem_cache_cpu(s
, cpu
, flags
);
2065 free_kmem_cache_cpus(s
);
2068 s
->cpu_slab
[cpu
] = c
;
2074 * Initialize the per cpu array.
2076 static void init_alloc_cpu_cpu(int cpu
)
2080 if (cpumask_test_cpu(cpu
, to_cpumask(kmem_cach_cpu_free_init_once
)))
2083 for (i
= NR_KMEM_CACHE_CPU
- 1; i
>= 0; i
--)
2084 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu
, cpu
)[i
], cpu
);
2086 cpumask_set_cpu(cpu
, to_cpumask(kmem_cach_cpu_free_init_once
));
2089 static void __init
init_alloc_cpu(void)
2093 for_each_online_cpu(cpu
)
2094 init_alloc_cpu_cpu(cpu
);
2098 static inline void free_kmem_cache_cpus(struct kmem_cache
*s
) {}
2099 static inline void init_alloc_cpu(void) {}
2101 static inline int alloc_kmem_cache_cpus(struct kmem_cache
*s
, gfp_t flags
)
2103 init_kmem_cache_cpu(s
, &s
->cpu_slab
);
2110 * No kmalloc_node yet so do it by hand. We know that this is the first
2111 * slab on the node for this slabcache. There are no concurrent accesses
2114 * Note that this function only works on the kmalloc_node_cache
2115 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2116 * memory on a fresh node that has no slab structures yet.
2118 static void early_kmem_cache_node_alloc(gfp_t gfpflags
, int node
)
2121 struct kmem_cache_node
*n
;
2122 unsigned long flags
;
2124 BUG_ON(kmalloc_caches
->size
< sizeof(struct kmem_cache_node
));
2126 page
= new_slab(kmalloc_caches
, gfpflags
, node
);
2129 if (page_to_nid(page
) != node
) {
2130 printk(KERN_ERR
"SLUB: Unable to allocate memory from "
2132 printk(KERN_ERR
"SLUB: Allocating a useless per node structure "
2133 "in order to be able to continue\n");
2138 page
->freelist
= get_freepointer(kmalloc_caches
, n
);
2140 kmalloc_caches
->node
[node
] = n
;
2141 #ifdef CONFIG_SLUB_DEBUG
2142 init_object(kmalloc_caches
, n
, 1);
2143 init_tracking(kmalloc_caches
, n
);
2145 init_kmem_cache_node(n
, kmalloc_caches
);
2146 inc_slabs_node(kmalloc_caches
, node
, page
->objects
);
2149 * lockdep requires consistent irq usage for each lock
2150 * so even though there cannot be a race this early in
2151 * the boot sequence, we still disable irqs.
2153 local_irq_save(flags
);
2154 add_partial(n
, page
, 0);
2155 local_irq_restore(flags
);
2158 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
2162 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2163 struct kmem_cache_node
*n
= s
->node
[node
];
2164 if (n
&& n
!= &s
->local_node
)
2165 kmem_cache_free(kmalloc_caches
, n
);
2166 s
->node
[node
] = NULL
;
2170 static int init_kmem_cache_nodes(struct kmem_cache
*s
, gfp_t gfpflags
)
2175 if (slab_state
>= UP
)
2176 local_node
= page_to_nid(virt_to_page(s
));
2180 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2181 struct kmem_cache_node
*n
;
2183 if (local_node
== node
)
2186 if (slab_state
== DOWN
) {
2187 early_kmem_cache_node_alloc(gfpflags
, node
);
2190 n
= kmem_cache_alloc_node(kmalloc_caches
,
2194 free_kmem_cache_nodes(s
);
2200 init_kmem_cache_node(n
, s
);
2205 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
2209 static int init_kmem_cache_nodes(struct kmem_cache
*s
, gfp_t gfpflags
)
2211 init_kmem_cache_node(&s
->local_node
, s
);
2216 static void set_min_partial(struct kmem_cache
*s
, unsigned long min
)
2218 if (min
< MIN_PARTIAL
)
2220 else if (min
> MAX_PARTIAL
)
2222 s
->min_partial
= min
;
2226 * calculate_sizes() determines the order and the distribution of data within
2229 static int calculate_sizes(struct kmem_cache
*s
, int forced_order
)
2231 unsigned long flags
= s
->flags
;
2232 unsigned long size
= s
->objsize
;
2233 unsigned long align
= s
->align
;
2237 * Round up object size to the next word boundary. We can only
2238 * place the free pointer at word boundaries and this determines
2239 * the possible location of the free pointer.
2241 size
= ALIGN(size
, sizeof(void *));
2243 #ifdef CONFIG_SLUB_DEBUG
2245 * Determine if we can poison the object itself. If the user of
2246 * the slab may touch the object after free or before allocation
2247 * then we should never poison the object itself.
2249 if ((flags
& SLAB_POISON
) && !(flags
& SLAB_DESTROY_BY_RCU
) &&
2251 s
->flags
|= __OBJECT_POISON
;
2253 s
->flags
&= ~__OBJECT_POISON
;
2257 * If we are Redzoning then check if there is some space between the
2258 * end of the object and the free pointer. If not then add an
2259 * additional word to have some bytes to store Redzone information.
2261 if ((flags
& SLAB_RED_ZONE
) && size
== s
->objsize
)
2262 size
+= sizeof(void *);
2266 * With that we have determined the number of bytes in actual use
2267 * by the object. This is the potential offset to the free pointer.
2271 if (((flags
& (SLAB_DESTROY_BY_RCU
| SLAB_POISON
)) ||
2274 * Relocate free pointer after the object if it is not
2275 * permitted to overwrite the first word of the object on
2278 * This is the case if we do RCU, have a constructor or
2279 * destructor or are poisoning the objects.
2282 size
+= sizeof(void *);
2285 #ifdef CONFIG_SLUB_DEBUG
2286 if (flags
& SLAB_STORE_USER
)
2288 * Need to store information about allocs and frees after
2291 size
+= 2 * sizeof(struct track
);
2293 if (flags
& SLAB_RED_ZONE
)
2295 * Add some empty padding so that we can catch
2296 * overwrites from earlier objects rather than let
2297 * tracking information or the free pointer be
2298 * corrupted if a user writes before the start
2301 size
+= sizeof(void *);
2305 * Determine the alignment based on various parameters that the
2306 * user specified and the dynamic determination of cache line size
2309 align
= calculate_alignment(flags
, align
, s
->objsize
);
2312 * SLUB stores one object immediately after another beginning from
2313 * offset 0. In order to align the objects we have to simply size
2314 * each object to conform to the alignment.
2316 size
= ALIGN(size
, align
);
2318 if (forced_order
>= 0)
2319 order
= forced_order
;
2321 order
= calculate_order(size
);
2328 s
->allocflags
|= __GFP_COMP
;
2330 if (s
->flags
& SLAB_CACHE_DMA
)
2331 s
->allocflags
|= SLUB_DMA
;
2333 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
2334 s
->allocflags
|= __GFP_RECLAIMABLE
;
2337 * Determine the number of objects per slab
2339 s
->oo
= oo_make(order
, size
);
2340 s
->min
= oo_make(get_order(size
), size
);
2341 if (oo_objects(s
->oo
) > oo_objects(s
->max
))
2344 return !!oo_objects(s
->oo
);
2348 static int kmem_cache_open(struct kmem_cache
*s
, gfp_t gfpflags
,
2349 const char *name
, size_t size
,
2350 size_t align
, unsigned long flags
,
2351 void (*ctor
)(void *))
2353 memset(s
, 0, kmem_size
);
2358 s
->flags
= kmem_cache_flags(size
, flags
, name
, ctor
);
2360 if (!calculate_sizes(s
, -1))
2364 * The larger the object size is, the more pages we want on the partial
2365 * list to avoid pounding the page allocator excessively.
2367 set_min_partial(s
, ilog2(s
->size
));
2370 s
->remote_node_defrag_ratio
= 1000;
2372 if (!init_kmem_cache_nodes(s
, gfpflags
& ~SLUB_DMA
))
2375 if (alloc_kmem_cache_cpus(s
, gfpflags
& ~SLUB_DMA
))
2377 free_kmem_cache_nodes(s
);
2379 if (flags
& SLAB_PANIC
)
2380 panic("Cannot create slab %s size=%lu realsize=%u "
2381 "order=%u offset=%u flags=%lx\n",
2382 s
->name
, (unsigned long)size
, s
->size
, oo_order(s
->oo
),
2388 * Check if a given pointer is valid
2390 int kmem_ptr_validate(struct kmem_cache
*s
, const void *object
)
2394 page
= get_object_page(object
);
2396 if (!page
|| s
!= page
->slab
)
2397 /* No slab or wrong slab */
2400 if (!check_valid_pointer(s
, page
, object
))
2404 * We could also check if the object is on the slabs freelist.
2405 * But this would be too expensive and it seems that the main
2406 * purpose of kmem_ptr_valid() is to check if the object belongs
2407 * to a certain slab.
2411 EXPORT_SYMBOL(kmem_ptr_validate
);
2414 * Determine the size of a slab object
2416 unsigned int kmem_cache_size(struct kmem_cache
*s
)
2420 EXPORT_SYMBOL(kmem_cache_size
);
2422 const char *kmem_cache_name(struct kmem_cache
*s
)
2426 EXPORT_SYMBOL(kmem_cache_name
);
2428 static void list_slab_objects(struct kmem_cache
*s
, struct page
*page
,
2431 #ifdef CONFIG_SLUB_DEBUG
2432 void *addr
= page_address(page
);
2434 DECLARE_BITMAP(map
, page
->objects
);
2436 bitmap_zero(map
, page
->objects
);
2437 slab_err(s
, page
, "%s", text
);
2439 for_each_free_object(p
, s
, page
->freelist
)
2440 set_bit(slab_index(p
, s
, addr
), map
);
2442 for_each_object(p
, s
, addr
, page
->objects
) {
2444 if (!test_bit(slab_index(p
, s
, addr
), map
)) {
2445 printk(KERN_ERR
"INFO: Object 0x%p @offset=%tu\n",
2447 print_tracking(s
, p
);
2455 * Attempt to free all partial slabs on a node.
2457 static void free_partial(struct kmem_cache
*s
, struct kmem_cache_node
*n
)
2459 unsigned long flags
;
2460 struct page
*page
, *h
;
2462 spin_lock_irqsave(&n
->list_lock
, flags
);
2463 list_for_each_entry_safe(page
, h
, &n
->partial
, lru
) {
2465 list_del(&page
->lru
);
2466 discard_slab(s
, page
);
2469 list_slab_objects(s
, page
,
2470 "Objects remaining on kmem_cache_close()");
2473 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2477 * Release all resources used by a slab cache.
2479 static inline int kmem_cache_close(struct kmem_cache
*s
)
2485 /* Attempt to free all objects */
2486 free_kmem_cache_cpus(s
);
2487 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2488 struct kmem_cache_node
*n
= get_node(s
, node
);
2491 if (n
->nr_partial
|| slabs_node(s
, node
))
2494 free_kmem_cache_nodes(s
);
2499 * Close a cache and release the kmem_cache structure
2500 * (must be used for caches created using kmem_cache_create)
2502 void kmem_cache_destroy(struct kmem_cache
*s
)
2504 down_write(&slub_lock
);
2508 up_write(&slub_lock
);
2509 if (kmem_cache_close(s
)) {
2510 printk(KERN_ERR
"SLUB %s: %s called for cache that "
2511 "still has objects.\n", s
->name
, __func__
);
2514 sysfs_slab_remove(s
);
2516 up_write(&slub_lock
);
2518 EXPORT_SYMBOL(kmem_cache_destroy
);
2520 /********************************************************************
2522 *******************************************************************/
2524 struct kmem_cache kmalloc_caches
[SLUB_PAGE_SHIFT
] __cacheline_aligned
;
2525 EXPORT_SYMBOL(kmalloc_caches
);
2527 static int __init
setup_slub_min_order(char *str
)
2529 get_option(&str
, &slub_min_order
);
2534 __setup("slub_min_order=", setup_slub_min_order
);
2536 static int __init
setup_slub_max_order(char *str
)
2538 get_option(&str
, &slub_max_order
);
2539 slub_max_order
= min(slub_max_order
, MAX_ORDER
- 1);
2544 __setup("slub_max_order=", setup_slub_max_order
);
2546 static int __init
setup_slub_min_objects(char *str
)
2548 get_option(&str
, &slub_min_objects
);
2553 __setup("slub_min_objects=", setup_slub_min_objects
);
2555 static int __init
setup_slub_nomerge(char *str
)
2561 __setup("slub_nomerge", setup_slub_nomerge
);
2563 static struct kmem_cache
*create_kmalloc_cache(struct kmem_cache
*s
,
2564 const char *name
, int size
, gfp_t gfp_flags
)
2566 unsigned int flags
= 0;
2568 if (gfp_flags
& SLUB_DMA
)
2569 flags
= SLAB_CACHE_DMA
;
2572 * This function is called with IRQs disabled during early-boot on
2573 * single CPU so there's no need to take slub_lock here.
2575 if (!kmem_cache_open(s
, gfp_flags
, name
, size
, ARCH_KMALLOC_MINALIGN
,
2579 list_add(&s
->list
, &slab_caches
);
2581 if (sysfs_slab_add(s
))
2586 panic("Creation of kmalloc slab %s size=%d failed.\n", name
, size
);
2589 #ifdef CONFIG_ZONE_DMA
2590 static struct kmem_cache
*kmalloc_caches_dma
[SLUB_PAGE_SHIFT
];
2592 static void sysfs_add_func(struct work_struct
*w
)
2594 struct kmem_cache
*s
;
2596 down_write(&slub_lock
);
2597 list_for_each_entry(s
, &slab_caches
, list
) {
2598 if (s
->flags
& __SYSFS_ADD_DEFERRED
) {
2599 s
->flags
&= ~__SYSFS_ADD_DEFERRED
;
2603 up_write(&slub_lock
);
2606 static DECLARE_WORK(sysfs_add_work
, sysfs_add_func
);
2608 static noinline
struct kmem_cache
*dma_kmalloc_cache(int index
, gfp_t flags
)
2610 struct kmem_cache
*s
;
2614 s
= kmalloc_caches_dma
[index
];
2618 /* Dynamically create dma cache */
2619 if (flags
& __GFP_WAIT
)
2620 down_write(&slub_lock
);
2622 if (!down_write_trylock(&slub_lock
))
2626 if (kmalloc_caches_dma
[index
])
2629 realsize
= kmalloc_caches
[index
].objsize
;
2630 text
= kasprintf(flags
& ~SLUB_DMA
, "kmalloc_dma-%d",
2631 (unsigned int)realsize
);
2632 s
= kmalloc(kmem_size
, flags
& ~SLUB_DMA
);
2634 if (!s
|| !text
|| !kmem_cache_open(s
, flags
, text
,
2635 realsize
, ARCH_KMALLOC_MINALIGN
,
2636 SLAB_CACHE_DMA
|__SYSFS_ADD_DEFERRED
, NULL
)) {
2642 list_add(&s
->list
, &slab_caches
);
2643 kmalloc_caches_dma
[index
] = s
;
2645 schedule_work(&sysfs_add_work
);
2648 up_write(&slub_lock
);
2650 return kmalloc_caches_dma
[index
];
2655 * Conversion table for small slabs sizes / 8 to the index in the
2656 * kmalloc array. This is necessary for slabs < 192 since we have non power
2657 * of two cache sizes there. The size of larger slabs can be determined using
2660 static s8 size_index
[24] = {
2687 static struct kmem_cache
*get_slab(size_t size
, gfp_t flags
)
2693 return ZERO_SIZE_PTR
;
2695 index
= size_index
[(size
- 1) / 8];
2697 index
= fls(size
- 1);
2699 #ifdef CONFIG_ZONE_DMA
2700 if (unlikely((flags
& SLUB_DMA
)))
2701 return dma_kmalloc_cache(index
, flags
);
2704 return &kmalloc_caches
[index
];
2707 void *__kmalloc(size_t size
, gfp_t flags
)
2709 struct kmem_cache
*s
;
2712 if (unlikely(size
> SLUB_MAX_SIZE
))
2713 return kmalloc_large(size
, flags
);
2715 s
= get_slab(size
, flags
);
2717 if (unlikely(ZERO_OR_NULL_PTR(s
)))
2720 ret
= slab_alloc(s
, flags
, -1, _RET_IP_
);
2722 trace_kmalloc(_RET_IP_
, ret
, size
, s
->size
, flags
);
2726 EXPORT_SYMBOL(__kmalloc
);
2728 static void *kmalloc_large_node(size_t size
, gfp_t flags
, int node
)
2730 struct page
*page
= alloc_pages_node(node
, flags
| __GFP_COMP
,
2734 return page_address(page
);
2740 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
2742 struct kmem_cache
*s
;
2745 if (unlikely(size
> SLUB_MAX_SIZE
)) {
2746 ret
= kmalloc_large_node(size
, flags
, node
);
2748 trace_kmalloc_node(_RET_IP_
, ret
,
2749 size
, PAGE_SIZE
<< get_order(size
),
2755 s
= get_slab(size
, flags
);
2757 if (unlikely(ZERO_OR_NULL_PTR(s
)))
2760 ret
= slab_alloc(s
, flags
, node
, _RET_IP_
);
2762 trace_kmalloc_node(_RET_IP_
, ret
, size
, s
->size
, flags
, node
);
2766 EXPORT_SYMBOL(__kmalloc_node
);
2769 size_t ksize(const void *object
)
2772 struct kmem_cache
*s
;
2774 if (unlikely(object
== ZERO_SIZE_PTR
))
2777 page
= virt_to_head_page(object
);
2779 if (unlikely(!PageSlab(page
))) {
2780 WARN_ON(!PageCompound(page
));
2781 return PAGE_SIZE
<< compound_order(page
);
2785 #ifdef CONFIG_SLUB_DEBUG
2787 * Debugging requires use of the padding between object
2788 * and whatever may come after it.
2790 if (s
->flags
& (SLAB_RED_ZONE
| SLAB_POISON
))
2795 * If we have the need to store the freelist pointer
2796 * back there or track user information then we can
2797 * only use the space before that information.
2799 if (s
->flags
& (SLAB_DESTROY_BY_RCU
| SLAB_STORE_USER
))
2802 * Else we can use all the padding etc for the allocation
2806 EXPORT_SYMBOL(ksize
);
2808 void kfree(const void *x
)
2811 void *object
= (void *)x
;
2813 trace_kfree(_RET_IP_
, x
);
2815 if (unlikely(ZERO_OR_NULL_PTR(x
)))
2818 page
= virt_to_head_page(x
);
2819 if (unlikely(!PageSlab(page
))) {
2820 BUG_ON(!PageCompound(page
));
2824 slab_free(page
->slab
, page
, object
, _RET_IP_
);
2826 EXPORT_SYMBOL(kfree
);
2829 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2830 * the remaining slabs by the number of items in use. The slabs with the
2831 * most items in use come first. New allocations will then fill those up
2832 * and thus they can be removed from the partial lists.
2834 * The slabs with the least items are placed last. This results in them
2835 * being allocated from last increasing the chance that the last objects
2836 * are freed in them.
2838 int kmem_cache_shrink(struct kmem_cache
*s
)
2842 struct kmem_cache_node
*n
;
2845 int objects
= oo_objects(s
->max
);
2846 struct list_head
*slabs_by_inuse
=
2847 kmalloc(sizeof(struct list_head
) * objects
, GFP_KERNEL
);
2848 unsigned long flags
;
2850 if (!slabs_by_inuse
)
2854 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2855 n
= get_node(s
, node
);
2860 for (i
= 0; i
< objects
; i
++)
2861 INIT_LIST_HEAD(slabs_by_inuse
+ i
);
2863 spin_lock_irqsave(&n
->list_lock
, flags
);
2866 * Build lists indexed by the items in use in each slab.
2868 * Note that concurrent frees may occur while we hold the
2869 * list_lock. page->inuse here is the upper limit.
2871 list_for_each_entry_safe(page
, t
, &n
->partial
, lru
) {
2872 if (!page
->inuse
&& slab_trylock(page
)) {
2874 * Must hold slab lock here because slab_free
2875 * may have freed the last object and be
2876 * waiting to release the slab.
2878 list_del(&page
->lru
);
2881 discard_slab(s
, page
);
2883 list_move(&page
->lru
,
2884 slabs_by_inuse
+ page
->inuse
);
2889 * Rebuild the partial list with the slabs filled up most
2890 * first and the least used slabs at the end.
2892 for (i
= objects
- 1; i
>= 0; i
--)
2893 list_splice(slabs_by_inuse
+ i
, n
->partial
.prev
);
2895 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2898 kfree(slabs_by_inuse
);
2901 EXPORT_SYMBOL(kmem_cache_shrink
);
2903 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2904 static int slab_mem_going_offline_callback(void *arg
)
2906 struct kmem_cache
*s
;
2908 down_read(&slub_lock
);
2909 list_for_each_entry(s
, &slab_caches
, list
)
2910 kmem_cache_shrink(s
);
2911 up_read(&slub_lock
);
2916 static void slab_mem_offline_callback(void *arg
)
2918 struct kmem_cache_node
*n
;
2919 struct kmem_cache
*s
;
2920 struct memory_notify
*marg
= arg
;
2923 offline_node
= marg
->status_change_nid
;
2926 * If the node still has available memory. we need kmem_cache_node
2929 if (offline_node
< 0)
2932 down_read(&slub_lock
);
2933 list_for_each_entry(s
, &slab_caches
, list
) {
2934 n
= get_node(s
, offline_node
);
2937 * if n->nr_slabs > 0, slabs still exist on the node
2938 * that is going down. We were unable to free them,
2939 * and offline_pages() function shoudn't call this
2940 * callback. So, we must fail.
2942 BUG_ON(slabs_node(s
, offline_node
));
2944 s
->node
[offline_node
] = NULL
;
2945 kmem_cache_free(kmalloc_caches
, n
);
2948 up_read(&slub_lock
);
2951 static int slab_mem_going_online_callback(void *arg
)
2953 struct kmem_cache_node
*n
;
2954 struct kmem_cache
*s
;
2955 struct memory_notify
*marg
= arg
;
2956 int nid
= marg
->status_change_nid
;
2960 * If the node's memory is already available, then kmem_cache_node is
2961 * already created. Nothing to do.
2967 * We are bringing a node online. No memory is available yet. We must
2968 * allocate a kmem_cache_node structure in order to bring the node
2971 down_read(&slub_lock
);
2972 list_for_each_entry(s
, &slab_caches
, list
) {
2974 * XXX: kmem_cache_alloc_node will fallback to other nodes
2975 * since memory is not yet available from the node that
2978 n
= kmem_cache_alloc(kmalloc_caches
, GFP_KERNEL
);
2983 init_kmem_cache_node(n
, s
);
2987 up_read(&slub_lock
);
2991 static int slab_memory_callback(struct notifier_block
*self
,
2992 unsigned long action
, void *arg
)
2997 case MEM_GOING_ONLINE
:
2998 ret
= slab_mem_going_online_callback(arg
);
3000 case MEM_GOING_OFFLINE
:
3001 ret
= slab_mem_going_offline_callback(arg
);
3004 case MEM_CANCEL_ONLINE
:
3005 slab_mem_offline_callback(arg
);
3008 case MEM_CANCEL_OFFLINE
:
3012 ret
= notifier_from_errno(ret
);
3018 #endif /* CONFIG_MEMORY_HOTPLUG */
3020 /********************************************************************
3021 * Basic setup of slabs
3022 *******************************************************************/
3024 void __init
kmem_cache_init(void)
3033 * Must first have the slab cache available for the allocations of the
3034 * struct kmem_cache_node's. There is special bootstrap code in
3035 * kmem_cache_open for slab_state == DOWN.
3037 create_kmalloc_cache(&kmalloc_caches
[0], "kmem_cache_node",
3038 sizeof(struct kmem_cache_node
), GFP_NOWAIT
);
3039 kmalloc_caches
[0].refcount
= -1;
3042 hotplug_memory_notifier(slab_memory_callback
, SLAB_CALLBACK_PRI
);
3045 /* Able to allocate the per node structures */
3046 slab_state
= PARTIAL
;
3048 /* Caches that are not of the two-to-the-power-of size */
3049 if (KMALLOC_MIN_SIZE
<= 64) {
3050 create_kmalloc_cache(&kmalloc_caches
[1],
3051 "kmalloc-96", 96, GFP_NOWAIT
);
3053 create_kmalloc_cache(&kmalloc_caches
[2],
3054 "kmalloc-192", 192, GFP_NOWAIT
);
3058 for (i
= KMALLOC_SHIFT_LOW
; i
< SLUB_PAGE_SHIFT
; i
++) {
3059 create_kmalloc_cache(&kmalloc_caches
[i
],
3060 "kmalloc", 1 << i
, GFP_NOWAIT
);
3066 * Patch up the size_index table if we have strange large alignment
3067 * requirements for the kmalloc array. This is only the case for
3068 * MIPS it seems. The standard arches will not generate any code here.
3070 * Largest permitted alignment is 256 bytes due to the way we
3071 * handle the index determination for the smaller caches.
3073 * Make sure that nothing crazy happens if someone starts tinkering
3074 * around with ARCH_KMALLOC_MINALIGN
3076 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 256 ||
3077 (KMALLOC_MIN_SIZE
& (KMALLOC_MIN_SIZE
- 1)));
3079 for (i
= 8; i
< KMALLOC_MIN_SIZE
; i
+= 8)
3080 size_index
[(i
- 1) / 8] = KMALLOC_SHIFT_LOW
;
3082 if (KMALLOC_MIN_SIZE
== 128) {
3084 * The 192 byte sized cache is not used if the alignment
3085 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3088 for (i
= 128 + 8; i
<= 192; i
+= 8)
3089 size_index
[(i
- 1) / 8] = 8;
3094 /* Provide the correct kmalloc names now that the caches are up */
3095 for (i
= KMALLOC_SHIFT_LOW
; i
< SLUB_PAGE_SHIFT
; i
++)
3096 kmalloc_caches
[i
]. name
=
3097 kasprintf(GFP_NOWAIT
, "kmalloc-%d", 1 << i
);
3100 register_cpu_notifier(&slab_notifier
);
3101 kmem_size
= offsetof(struct kmem_cache
, cpu_slab
) +
3102 nr_cpu_ids
* sizeof(struct kmem_cache_cpu
*);
3104 kmem_size
= sizeof(struct kmem_cache
);
3108 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3109 " CPUs=%d, Nodes=%d\n",
3110 caches
, cache_line_size(),
3111 slub_min_order
, slub_max_order
, slub_min_objects
,
3112 nr_cpu_ids
, nr_node_ids
);
3115 void __init
kmem_cache_init_late(void)
3118 * Interrupts are enabled now so all GFP allocations are safe.
3120 slab_gfp_mask
= __GFP_BITS_MASK
;
3124 * Find a mergeable slab cache
3126 static int slab_unmergeable(struct kmem_cache
*s
)
3128 if (slub_nomerge
|| (s
->flags
& SLUB_NEVER_MERGE
))
3135 * We may have set a slab to be unmergeable during bootstrap.
3137 if (s
->refcount
< 0)
3143 static struct kmem_cache
*find_mergeable(size_t size
,
3144 size_t align
, unsigned long flags
, const char *name
,
3145 void (*ctor
)(void *))
3147 struct kmem_cache
*s
;
3149 if (slub_nomerge
|| (flags
& SLUB_NEVER_MERGE
))
3155 size
= ALIGN(size
, sizeof(void *));
3156 align
= calculate_alignment(flags
, align
, size
);
3157 size
= ALIGN(size
, align
);
3158 flags
= kmem_cache_flags(size
, flags
, name
, NULL
);
3160 list_for_each_entry(s
, &slab_caches
, list
) {
3161 if (slab_unmergeable(s
))
3167 if ((flags
& SLUB_MERGE_SAME
) != (s
->flags
& SLUB_MERGE_SAME
))
3170 * Check if alignment is compatible.
3171 * Courtesy of Adrian Drzewiecki
3173 if ((s
->size
& ~(align
- 1)) != s
->size
)
3176 if (s
->size
- size
>= sizeof(void *))
3184 struct kmem_cache
*kmem_cache_create(const char *name
, size_t size
,
3185 size_t align
, unsigned long flags
, void (*ctor
)(void *))
3187 struct kmem_cache
*s
;
3189 down_write(&slub_lock
);
3190 s
= find_mergeable(size
, align
, flags
, name
, ctor
);
3196 * Adjust the object sizes so that we clear
3197 * the complete object on kzalloc.
3199 s
->objsize
= max(s
->objsize
, (int)size
);
3202 * And then we need to update the object size in the
3203 * per cpu structures
3205 for_each_online_cpu(cpu
)
3206 get_cpu_slab(s
, cpu
)->objsize
= s
->objsize
;
3208 s
->inuse
= max_t(int, s
->inuse
, ALIGN(size
, sizeof(void *)));
3209 up_write(&slub_lock
);
3211 if (sysfs_slab_alias(s
, name
)) {
3212 down_write(&slub_lock
);
3214 up_write(&slub_lock
);
3220 s
= kmalloc(kmem_size
, GFP_KERNEL
);
3222 if (kmem_cache_open(s
, GFP_KERNEL
, name
,
3223 size
, align
, flags
, ctor
)) {
3224 list_add(&s
->list
, &slab_caches
);
3225 up_write(&slub_lock
);
3226 if (sysfs_slab_add(s
)) {
3227 down_write(&slub_lock
);
3229 up_write(&slub_lock
);
3237 up_write(&slub_lock
);
3240 if (flags
& SLAB_PANIC
)
3241 panic("Cannot create slabcache %s\n", name
);
3246 EXPORT_SYMBOL(kmem_cache_create
);
3250 * Use the cpu notifier to insure that the cpu slabs are flushed when
3253 static int __cpuinit
slab_cpuup_callback(struct notifier_block
*nfb
,
3254 unsigned long action
, void *hcpu
)
3256 long cpu
= (long)hcpu
;
3257 struct kmem_cache
*s
;
3258 unsigned long flags
;
3261 case CPU_UP_PREPARE
:
3262 case CPU_UP_PREPARE_FROZEN
:
3263 init_alloc_cpu_cpu(cpu
);
3264 down_read(&slub_lock
);
3265 list_for_each_entry(s
, &slab_caches
, list
)
3266 s
->cpu_slab
[cpu
] = alloc_kmem_cache_cpu(s
, cpu
,
3268 up_read(&slub_lock
);
3271 case CPU_UP_CANCELED
:
3272 case CPU_UP_CANCELED_FROZEN
:
3274 case CPU_DEAD_FROZEN
:
3275 down_read(&slub_lock
);
3276 list_for_each_entry(s
, &slab_caches
, list
) {
3277 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
3279 local_irq_save(flags
);
3280 __flush_cpu_slab(s
, cpu
);
3281 local_irq_restore(flags
);
3282 free_kmem_cache_cpu(c
, cpu
);
3283 s
->cpu_slab
[cpu
] = NULL
;
3285 up_read(&slub_lock
);
3293 static struct notifier_block __cpuinitdata slab_notifier
= {
3294 .notifier_call
= slab_cpuup_callback
3299 void *__kmalloc_track_caller(size_t size
, gfp_t gfpflags
, unsigned long caller
)
3301 struct kmem_cache
*s
;
3304 if (unlikely(size
> SLUB_MAX_SIZE
))
3305 return kmalloc_large(size
, gfpflags
);
3307 s
= get_slab(size
, gfpflags
);
3309 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3312 ret
= slab_alloc(s
, gfpflags
, -1, caller
);
3314 /* Honor the call site pointer we recieved. */
3315 trace_kmalloc(caller
, ret
, size
, s
->size
, gfpflags
);
3320 void *__kmalloc_node_track_caller(size_t size
, gfp_t gfpflags
,
3321 int node
, unsigned long caller
)
3323 struct kmem_cache
*s
;
3326 if (unlikely(size
> SLUB_MAX_SIZE
))
3327 return kmalloc_large_node(size
, gfpflags
, node
);
3329 s
= get_slab(size
, gfpflags
);
3331 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3334 ret
= slab_alloc(s
, gfpflags
, node
, caller
);
3336 /* Honor the call site pointer we recieved. */
3337 trace_kmalloc_node(caller
, ret
, size
, s
->size
, gfpflags
, node
);
3342 #ifdef CONFIG_SLUB_DEBUG
3343 static unsigned long count_partial(struct kmem_cache_node
*n
,
3344 int (*get_count
)(struct page
*))
3346 unsigned long flags
;
3347 unsigned long x
= 0;
3350 spin_lock_irqsave(&n
->list_lock
, flags
);
3351 list_for_each_entry(page
, &n
->partial
, lru
)
3352 x
+= get_count(page
);
3353 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3357 static int count_inuse(struct page
*page
)
3362 static int count_total(struct page
*page
)
3364 return page
->objects
;
3367 static int count_free(struct page
*page
)
3369 return page
->objects
- page
->inuse
;
3372 static int validate_slab(struct kmem_cache
*s
, struct page
*page
,
3376 void *addr
= page_address(page
);
3378 if (!check_slab(s
, page
) ||
3379 !on_freelist(s
, page
, NULL
))
3382 /* Now we know that a valid freelist exists */
3383 bitmap_zero(map
, page
->objects
);
3385 for_each_free_object(p
, s
, page
->freelist
) {
3386 set_bit(slab_index(p
, s
, addr
), map
);
3387 if (!check_object(s
, page
, p
, 0))
3391 for_each_object(p
, s
, addr
, page
->objects
)
3392 if (!test_bit(slab_index(p
, s
, addr
), map
))
3393 if (!check_object(s
, page
, p
, 1))
3398 static void validate_slab_slab(struct kmem_cache
*s
, struct page
*page
,
3401 if (slab_trylock(page
)) {
3402 validate_slab(s
, page
, map
);
3405 printk(KERN_INFO
"SLUB %s: Skipped busy slab 0x%p\n",
3408 if (s
->flags
& DEBUG_DEFAULT_FLAGS
) {
3409 if (!PageSlubDebug(page
))
3410 printk(KERN_ERR
"SLUB %s: SlubDebug not set "
3411 "on slab 0x%p\n", s
->name
, page
);
3413 if (PageSlubDebug(page
))
3414 printk(KERN_ERR
"SLUB %s: SlubDebug set on "
3415 "slab 0x%p\n", s
->name
, page
);
3419 static int validate_slab_node(struct kmem_cache
*s
,
3420 struct kmem_cache_node
*n
, unsigned long *map
)
3422 unsigned long count
= 0;
3424 unsigned long flags
;
3426 spin_lock_irqsave(&n
->list_lock
, flags
);
3428 list_for_each_entry(page
, &n
->partial
, lru
) {
3429 validate_slab_slab(s
, page
, map
);
3432 if (count
!= n
->nr_partial
)
3433 printk(KERN_ERR
"SLUB %s: %ld partial slabs counted but "
3434 "counter=%ld\n", s
->name
, count
, n
->nr_partial
);
3436 if (!(s
->flags
& SLAB_STORE_USER
))
3439 list_for_each_entry(page
, &n
->full
, lru
) {
3440 validate_slab_slab(s
, page
, map
);
3443 if (count
!= atomic_long_read(&n
->nr_slabs
))
3444 printk(KERN_ERR
"SLUB: %s %ld slabs counted but "
3445 "counter=%ld\n", s
->name
, count
,
3446 atomic_long_read(&n
->nr_slabs
));
3449 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3453 static long validate_slab_cache(struct kmem_cache
*s
)
3456 unsigned long count
= 0;
3457 unsigned long *map
= kmalloc(BITS_TO_LONGS(oo_objects(s
->max
)) *
3458 sizeof(unsigned long), GFP_KERNEL
);
3464 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3465 struct kmem_cache_node
*n
= get_node(s
, node
);
3467 count
+= validate_slab_node(s
, n
, map
);
3473 #ifdef SLUB_RESILIENCY_TEST
3474 static void resiliency_test(void)
3478 printk(KERN_ERR
"SLUB resiliency testing\n");
3479 printk(KERN_ERR
"-----------------------\n");
3480 printk(KERN_ERR
"A. Corruption after allocation\n");
3482 p
= kzalloc(16, GFP_KERNEL
);
3484 printk(KERN_ERR
"\n1. kmalloc-16: Clobber Redzone/next pointer"
3485 " 0x12->0x%p\n\n", p
+ 16);
3487 validate_slab_cache(kmalloc_caches
+ 4);
3489 /* Hmmm... The next two are dangerous */
3490 p
= kzalloc(32, GFP_KERNEL
);
3491 p
[32 + sizeof(void *)] = 0x34;
3492 printk(KERN_ERR
"\n2. kmalloc-32: Clobber next pointer/next slab"
3493 " 0x34 -> -0x%p\n", p
);
3495 "If allocated object is overwritten then not detectable\n\n");
3497 validate_slab_cache(kmalloc_caches
+ 5);
3498 p
= kzalloc(64, GFP_KERNEL
);
3499 p
+= 64 + (get_cycles() & 0xff) * sizeof(void *);
3501 printk(KERN_ERR
"\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3504 "If allocated object is overwritten then not detectable\n\n");
3505 validate_slab_cache(kmalloc_caches
+ 6);
3507 printk(KERN_ERR
"\nB. Corruption after free\n");
3508 p
= kzalloc(128, GFP_KERNEL
);
3511 printk(KERN_ERR
"1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p
);
3512 validate_slab_cache(kmalloc_caches
+ 7);
3514 p
= kzalloc(256, GFP_KERNEL
);
3517 printk(KERN_ERR
"\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3519 validate_slab_cache(kmalloc_caches
+ 8);
3521 p
= kzalloc(512, GFP_KERNEL
);
3524 printk(KERN_ERR
"\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p
);
3525 validate_slab_cache(kmalloc_caches
+ 9);
3528 static void resiliency_test(void) {};
3532 * Generate lists of code addresses where slabcache objects are allocated
3537 unsigned long count
;
3544 DECLARE_BITMAP(cpus
, NR_CPUS
);
3550 unsigned long count
;
3551 struct location
*loc
;
3554 static void free_loc_track(struct loc_track
*t
)
3557 free_pages((unsigned long)t
->loc
,
3558 get_order(sizeof(struct location
) * t
->max
));
3561 static int alloc_loc_track(struct loc_track
*t
, unsigned long max
, gfp_t flags
)
3566 order
= get_order(sizeof(struct location
) * max
);
3568 l
= (void *)__get_free_pages(flags
, order
);
3573 memcpy(l
, t
->loc
, sizeof(struct location
) * t
->count
);
3581 static int add_location(struct loc_track
*t
, struct kmem_cache
*s
,
3582 const struct track
*track
)
3584 long start
, end
, pos
;
3586 unsigned long caddr
;
3587 unsigned long age
= jiffies
- track
->when
;
3593 pos
= start
+ (end
- start
+ 1) / 2;
3596 * There is nothing at "end". If we end up there
3597 * we need to add something to before end.
3602 caddr
= t
->loc
[pos
].addr
;
3603 if (track
->addr
== caddr
) {
3609 if (age
< l
->min_time
)
3611 if (age
> l
->max_time
)
3614 if (track
->pid
< l
->min_pid
)
3615 l
->min_pid
= track
->pid
;
3616 if (track
->pid
> l
->max_pid
)
3617 l
->max_pid
= track
->pid
;
3619 cpumask_set_cpu(track
->cpu
,
3620 to_cpumask(l
->cpus
));
3622 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
3626 if (track
->addr
< caddr
)
3633 * Not found. Insert new tracking element.
3635 if (t
->count
>= t
->max
&& !alloc_loc_track(t
, 2 * t
->max
, GFP_ATOMIC
))
3641 (t
->count
- pos
) * sizeof(struct location
));
3644 l
->addr
= track
->addr
;
3648 l
->min_pid
= track
->pid
;
3649 l
->max_pid
= track
->pid
;
3650 cpumask_clear(to_cpumask(l
->cpus
));
3651 cpumask_set_cpu(track
->cpu
, to_cpumask(l
->cpus
));
3652 nodes_clear(l
->nodes
);
3653 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
3657 static void process_slab(struct loc_track
*t
, struct kmem_cache
*s
,
3658 struct page
*page
, enum track_item alloc
)
3660 void *addr
= page_address(page
);
3661 DECLARE_BITMAP(map
, page
->objects
);
3664 bitmap_zero(map
, page
->objects
);
3665 for_each_free_object(p
, s
, page
->freelist
)
3666 set_bit(slab_index(p
, s
, addr
), map
);
3668 for_each_object(p
, s
, addr
, page
->objects
)
3669 if (!test_bit(slab_index(p
, s
, addr
), map
))
3670 add_location(t
, s
, get_track(s
, p
, alloc
));
3673 static int list_locations(struct kmem_cache
*s
, char *buf
,
3674 enum track_item alloc
)
3678 struct loc_track t
= { 0, 0, NULL
};
3681 if (!alloc_loc_track(&t
, PAGE_SIZE
/ sizeof(struct location
),
3683 return sprintf(buf
, "Out of memory\n");
3685 /* Push back cpu slabs */
3688 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3689 struct kmem_cache_node
*n
= get_node(s
, node
);
3690 unsigned long flags
;
3693 if (!atomic_long_read(&n
->nr_slabs
))
3696 spin_lock_irqsave(&n
->list_lock
, flags
);
3697 list_for_each_entry(page
, &n
->partial
, lru
)
3698 process_slab(&t
, s
, page
, alloc
);
3699 list_for_each_entry(page
, &n
->full
, lru
)
3700 process_slab(&t
, s
, page
, alloc
);
3701 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3704 for (i
= 0; i
< t
.count
; i
++) {
3705 struct location
*l
= &t
.loc
[i
];
3707 if (len
> PAGE_SIZE
- KSYM_SYMBOL_LEN
- 100)
3709 len
+= sprintf(buf
+ len
, "%7ld ", l
->count
);
3712 len
+= sprint_symbol(buf
+ len
, (unsigned long)l
->addr
);
3714 len
+= sprintf(buf
+ len
, "<not-available>");
3716 if (l
->sum_time
!= l
->min_time
) {
3717 len
+= sprintf(buf
+ len
, " age=%ld/%ld/%ld",
3719 (long)div_u64(l
->sum_time
, l
->count
),
3722 len
+= sprintf(buf
+ len
, " age=%ld",
3725 if (l
->min_pid
!= l
->max_pid
)
3726 len
+= sprintf(buf
+ len
, " pid=%ld-%ld",
3727 l
->min_pid
, l
->max_pid
);
3729 len
+= sprintf(buf
+ len
, " pid=%ld",
3732 if (num_online_cpus() > 1 &&
3733 !cpumask_empty(to_cpumask(l
->cpus
)) &&
3734 len
< PAGE_SIZE
- 60) {
3735 len
+= sprintf(buf
+ len
, " cpus=");
3736 len
+= cpulist_scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
3737 to_cpumask(l
->cpus
));
3740 if (num_online_nodes() > 1 && !nodes_empty(l
->nodes
) &&
3741 len
< PAGE_SIZE
- 60) {
3742 len
+= sprintf(buf
+ len
, " nodes=");
3743 len
+= nodelist_scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
3747 len
+= sprintf(buf
+ len
, "\n");
3752 len
+= sprintf(buf
, "No data\n");
3756 enum slab_stat_type
{
3757 SL_ALL
, /* All slabs */
3758 SL_PARTIAL
, /* Only partially allocated slabs */
3759 SL_CPU
, /* Only slabs used for cpu caches */
3760 SL_OBJECTS
, /* Determine allocated objects not slabs */
3761 SL_TOTAL
/* Determine object capacity not slabs */
3764 #define SO_ALL (1 << SL_ALL)
3765 #define SO_PARTIAL (1 << SL_PARTIAL)
3766 #define SO_CPU (1 << SL_CPU)
3767 #define SO_OBJECTS (1 << SL_OBJECTS)
3768 #define SO_TOTAL (1 << SL_TOTAL)
3770 static ssize_t
show_slab_objects(struct kmem_cache
*s
,
3771 char *buf
, unsigned long flags
)
3773 unsigned long total
= 0;
3776 unsigned long *nodes
;
3777 unsigned long *per_cpu
;
3779 nodes
= kzalloc(2 * sizeof(unsigned long) * nr_node_ids
, GFP_KERNEL
);
3782 per_cpu
= nodes
+ nr_node_ids
;
3784 if (flags
& SO_CPU
) {
3787 for_each_possible_cpu(cpu
) {
3788 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
3790 if (!c
|| c
->node
< 0)
3794 if (flags
& SO_TOTAL
)
3795 x
= c
->page
->objects
;
3796 else if (flags
& SO_OBJECTS
)
3802 nodes
[c
->node
] += x
;
3808 if (flags
& SO_ALL
) {
3809 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3810 struct kmem_cache_node
*n
= get_node(s
, node
);
3812 if (flags
& SO_TOTAL
)
3813 x
= atomic_long_read(&n
->total_objects
);
3814 else if (flags
& SO_OBJECTS
)
3815 x
= atomic_long_read(&n
->total_objects
) -
3816 count_partial(n
, count_free
);
3819 x
= atomic_long_read(&n
->nr_slabs
);
3824 } else if (flags
& SO_PARTIAL
) {
3825 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3826 struct kmem_cache_node
*n
= get_node(s
, node
);
3828 if (flags
& SO_TOTAL
)
3829 x
= count_partial(n
, count_total
);
3830 else if (flags
& SO_OBJECTS
)
3831 x
= count_partial(n
, count_inuse
);
3838 x
= sprintf(buf
, "%lu", total
);
3840 for_each_node_state(node
, N_NORMAL_MEMORY
)
3842 x
+= sprintf(buf
+ x
, " N%d=%lu",
3846 return x
+ sprintf(buf
+ x
, "\n");
3849 static int any_slab_objects(struct kmem_cache
*s
)
3853 for_each_online_node(node
) {
3854 struct kmem_cache_node
*n
= get_node(s
, node
);
3859 if (atomic_long_read(&n
->total_objects
))
3865 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3866 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3868 struct slab_attribute
{
3869 struct attribute attr
;
3870 ssize_t (*show
)(struct kmem_cache
*s
, char *buf
);
3871 ssize_t (*store
)(struct kmem_cache
*s
, const char *x
, size_t count
);
3874 #define SLAB_ATTR_RO(_name) \
3875 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3877 #define SLAB_ATTR(_name) \
3878 static struct slab_attribute _name##_attr = \
3879 __ATTR(_name, 0644, _name##_show, _name##_store)
3881 static ssize_t
slab_size_show(struct kmem_cache
*s
, char *buf
)
3883 return sprintf(buf
, "%d\n", s
->size
);
3885 SLAB_ATTR_RO(slab_size
);
3887 static ssize_t
align_show(struct kmem_cache
*s
, char *buf
)
3889 return sprintf(buf
, "%d\n", s
->align
);
3891 SLAB_ATTR_RO(align
);
3893 static ssize_t
object_size_show(struct kmem_cache
*s
, char *buf
)
3895 return sprintf(buf
, "%d\n", s
->objsize
);
3897 SLAB_ATTR_RO(object_size
);
3899 static ssize_t
objs_per_slab_show(struct kmem_cache
*s
, char *buf
)
3901 return sprintf(buf
, "%d\n", oo_objects(s
->oo
));
3903 SLAB_ATTR_RO(objs_per_slab
);
3905 static ssize_t
order_store(struct kmem_cache
*s
,
3906 const char *buf
, size_t length
)
3908 unsigned long order
;
3911 err
= strict_strtoul(buf
, 10, &order
);
3915 if (order
> slub_max_order
|| order
< slub_min_order
)
3918 calculate_sizes(s
, order
);
3922 static ssize_t
order_show(struct kmem_cache
*s
, char *buf
)
3924 return sprintf(buf
, "%d\n", oo_order(s
->oo
));
3928 static ssize_t
min_partial_show(struct kmem_cache
*s
, char *buf
)
3930 return sprintf(buf
, "%lu\n", s
->min_partial
);
3933 static ssize_t
min_partial_store(struct kmem_cache
*s
, const char *buf
,
3939 err
= strict_strtoul(buf
, 10, &min
);
3943 set_min_partial(s
, min
);
3946 SLAB_ATTR(min_partial
);
3948 static ssize_t
ctor_show(struct kmem_cache
*s
, char *buf
)
3951 int n
= sprint_symbol(buf
, (unsigned long)s
->ctor
);
3953 return n
+ sprintf(buf
+ n
, "\n");
3959 static ssize_t
aliases_show(struct kmem_cache
*s
, char *buf
)
3961 return sprintf(buf
, "%d\n", s
->refcount
- 1);
3963 SLAB_ATTR_RO(aliases
);
3965 static ssize_t
slabs_show(struct kmem_cache
*s
, char *buf
)
3967 return show_slab_objects(s
, buf
, SO_ALL
);
3969 SLAB_ATTR_RO(slabs
);
3971 static ssize_t
partial_show(struct kmem_cache
*s
, char *buf
)
3973 return show_slab_objects(s
, buf
, SO_PARTIAL
);
3975 SLAB_ATTR_RO(partial
);
3977 static ssize_t
cpu_slabs_show(struct kmem_cache
*s
, char *buf
)
3979 return show_slab_objects(s
, buf
, SO_CPU
);
3981 SLAB_ATTR_RO(cpu_slabs
);
3983 static ssize_t
objects_show(struct kmem_cache
*s
, char *buf
)
3985 return show_slab_objects(s
, buf
, SO_ALL
|SO_OBJECTS
);
3987 SLAB_ATTR_RO(objects
);
3989 static ssize_t
objects_partial_show(struct kmem_cache
*s
, char *buf
)
3991 return show_slab_objects(s
, buf
, SO_PARTIAL
|SO_OBJECTS
);
3993 SLAB_ATTR_RO(objects_partial
);
3995 static ssize_t
total_objects_show(struct kmem_cache
*s
, char *buf
)
3997 return show_slab_objects(s
, buf
, SO_ALL
|SO_TOTAL
);
3999 SLAB_ATTR_RO(total_objects
);
4001 static ssize_t
sanity_checks_show(struct kmem_cache
*s
, char *buf
)
4003 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DEBUG_FREE
));
4006 static ssize_t
sanity_checks_store(struct kmem_cache
*s
,
4007 const char *buf
, size_t length
)
4009 s
->flags
&= ~SLAB_DEBUG_FREE
;
4011 s
->flags
|= SLAB_DEBUG_FREE
;
4014 SLAB_ATTR(sanity_checks
);
4016 static ssize_t
trace_show(struct kmem_cache
*s
, char *buf
)
4018 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_TRACE
));
4021 static ssize_t
trace_store(struct kmem_cache
*s
, const char *buf
,
4024 s
->flags
&= ~SLAB_TRACE
;
4026 s
->flags
|= SLAB_TRACE
;
4031 static ssize_t
reclaim_account_show(struct kmem_cache
*s
, char *buf
)
4033 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RECLAIM_ACCOUNT
));
4036 static ssize_t
reclaim_account_store(struct kmem_cache
*s
,
4037 const char *buf
, size_t length
)
4039 s
->flags
&= ~SLAB_RECLAIM_ACCOUNT
;
4041 s
->flags
|= SLAB_RECLAIM_ACCOUNT
;
4044 SLAB_ATTR(reclaim_account
);
4046 static ssize_t
hwcache_align_show(struct kmem_cache
*s
, char *buf
)
4048 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_HWCACHE_ALIGN
));
4050 SLAB_ATTR_RO(hwcache_align
);
4052 #ifdef CONFIG_ZONE_DMA
4053 static ssize_t
cache_dma_show(struct kmem_cache
*s
, char *buf
)
4055 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_CACHE_DMA
));
4057 SLAB_ATTR_RO(cache_dma
);
4060 static ssize_t
destroy_by_rcu_show(struct kmem_cache
*s
, char *buf
)
4062 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DESTROY_BY_RCU
));
4064 SLAB_ATTR_RO(destroy_by_rcu
);
4066 static ssize_t
red_zone_show(struct kmem_cache
*s
, char *buf
)
4068 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RED_ZONE
));
4071 static ssize_t
red_zone_store(struct kmem_cache
*s
,
4072 const char *buf
, size_t length
)
4074 if (any_slab_objects(s
))
4077 s
->flags
&= ~SLAB_RED_ZONE
;
4079 s
->flags
|= SLAB_RED_ZONE
;
4080 calculate_sizes(s
, -1);
4083 SLAB_ATTR(red_zone
);
4085 static ssize_t
poison_show(struct kmem_cache
*s
, char *buf
)
4087 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_POISON
));
4090 static ssize_t
poison_store(struct kmem_cache
*s
,
4091 const char *buf
, size_t length
)
4093 if (any_slab_objects(s
))
4096 s
->flags
&= ~SLAB_POISON
;
4098 s
->flags
|= SLAB_POISON
;
4099 calculate_sizes(s
, -1);
4104 static ssize_t
store_user_show(struct kmem_cache
*s
, char *buf
)
4106 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_STORE_USER
));
4109 static ssize_t
store_user_store(struct kmem_cache
*s
,
4110 const char *buf
, size_t length
)
4112 if (any_slab_objects(s
))
4115 s
->flags
&= ~SLAB_STORE_USER
;
4117 s
->flags
|= SLAB_STORE_USER
;
4118 calculate_sizes(s
, -1);
4121 SLAB_ATTR(store_user
);
4123 static ssize_t
validate_show(struct kmem_cache
*s
, char *buf
)
4128 static ssize_t
validate_store(struct kmem_cache
*s
,
4129 const char *buf
, size_t length
)
4133 if (buf
[0] == '1') {
4134 ret
= validate_slab_cache(s
);
4140 SLAB_ATTR(validate
);
4142 static ssize_t
shrink_show(struct kmem_cache
*s
, char *buf
)
4147 static ssize_t
shrink_store(struct kmem_cache
*s
,
4148 const char *buf
, size_t length
)
4150 if (buf
[0] == '1') {
4151 int rc
= kmem_cache_shrink(s
);
4161 static ssize_t
alloc_calls_show(struct kmem_cache
*s
, char *buf
)
4163 if (!(s
->flags
& SLAB_STORE_USER
))
4165 return list_locations(s
, buf
, TRACK_ALLOC
);
4167 SLAB_ATTR_RO(alloc_calls
);
4169 static ssize_t
free_calls_show(struct kmem_cache
*s
, char *buf
)
4171 if (!(s
->flags
& SLAB_STORE_USER
))
4173 return list_locations(s
, buf
, TRACK_FREE
);
4175 SLAB_ATTR_RO(free_calls
);
4178 static ssize_t
remote_node_defrag_ratio_show(struct kmem_cache
*s
, char *buf
)
4180 return sprintf(buf
, "%d\n", s
->remote_node_defrag_ratio
/ 10);
4183 static ssize_t
remote_node_defrag_ratio_store(struct kmem_cache
*s
,
4184 const char *buf
, size_t length
)
4186 unsigned long ratio
;
4189 err
= strict_strtoul(buf
, 10, &ratio
);
4194 s
->remote_node_defrag_ratio
= ratio
* 10;
4198 SLAB_ATTR(remote_node_defrag_ratio
);
4201 #ifdef CONFIG_SLUB_STATS
4202 static int show_stat(struct kmem_cache
*s
, char *buf
, enum stat_item si
)
4204 unsigned long sum
= 0;
4207 int *data
= kmalloc(nr_cpu_ids
* sizeof(int), GFP_KERNEL
);
4212 for_each_online_cpu(cpu
) {
4213 unsigned x
= get_cpu_slab(s
, cpu
)->stat
[si
];
4219 len
= sprintf(buf
, "%lu", sum
);
4222 for_each_online_cpu(cpu
) {
4223 if (data
[cpu
] && len
< PAGE_SIZE
- 20)
4224 len
+= sprintf(buf
+ len
, " C%d=%u", cpu
, data
[cpu
]);
4228 return len
+ sprintf(buf
+ len
, "\n");
4231 #define STAT_ATTR(si, text) \
4232 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4234 return show_stat(s, buf, si); \
4236 SLAB_ATTR_RO(text); \
4238 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4239 STAT_ATTR(ALLOC_SLOWPATH
, alloc_slowpath
);
4240 STAT_ATTR(FREE_FASTPATH
, free_fastpath
);
4241 STAT_ATTR(FREE_SLOWPATH
, free_slowpath
);
4242 STAT_ATTR(FREE_FROZEN
, free_frozen
);
4243 STAT_ATTR(FREE_ADD_PARTIAL
, free_add_partial
);
4244 STAT_ATTR(FREE_REMOVE_PARTIAL
, free_remove_partial
);
4245 STAT_ATTR(ALLOC_FROM_PARTIAL
, alloc_from_partial
);
4246 STAT_ATTR(ALLOC_SLAB
, alloc_slab
);
4247 STAT_ATTR(ALLOC_REFILL
, alloc_refill
);
4248 STAT_ATTR(FREE_SLAB
, free_slab
);
4249 STAT_ATTR(CPUSLAB_FLUSH
, cpuslab_flush
);
4250 STAT_ATTR(DEACTIVATE_FULL
, deactivate_full
);
4251 STAT_ATTR(DEACTIVATE_EMPTY
, deactivate_empty
);
4252 STAT_ATTR(DEACTIVATE_TO_HEAD
, deactivate_to_head
);
4253 STAT_ATTR(DEACTIVATE_TO_TAIL
, deactivate_to_tail
);
4254 STAT_ATTR(DEACTIVATE_REMOTE_FREES
, deactivate_remote_frees
);
4255 STAT_ATTR(ORDER_FALLBACK
, order_fallback
);
4258 static struct attribute
*slab_attrs
[] = {
4259 &slab_size_attr
.attr
,
4260 &object_size_attr
.attr
,
4261 &objs_per_slab_attr
.attr
,
4263 &min_partial_attr
.attr
,
4265 &objects_partial_attr
.attr
,
4266 &total_objects_attr
.attr
,
4269 &cpu_slabs_attr
.attr
,
4273 &sanity_checks_attr
.attr
,
4275 &hwcache_align_attr
.attr
,
4276 &reclaim_account_attr
.attr
,
4277 &destroy_by_rcu_attr
.attr
,
4278 &red_zone_attr
.attr
,
4280 &store_user_attr
.attr
,
4281 &validate_attr
.attr
,
4283 &alloc_calls_attr
.attr
,
4284 &free_calls_attr
.attr
,
4285 #ifdef CONFIG_ZONE_DMA
4286 &cache_dma_attr
.attr
,
4289 &remote_node_defrag_ratio_attr
.attr
,
4291 #ifdef CONFIG_SLUB_STATS
4292 &alloc_fastpath_attr
.attr
,
4293 &alloc_slowpath_attr
.attr
,
4294 &free_fastpath_attr
.attr
,
4295 &free_slowpath_attr
.attr
,
4296 &free_frozen_attr
.attr
,
4297 &free_add_partial_attr
.attr
,
4298 &free_remove_partial_attr
.attr
,
4299 &alloc_from_partial_attr
.attr
,
4300 &alloc_slab_attr
.attr
,
4301 &alloc_refill_attr
.attr
,
4302 &free_slab_attr
.attr
,
4303 &cpuslab_flush_attr
.attr
,
4304 &deactivate_full_attr
.attr
,
4305 &deactivate_empty_attr
.attr
,
4306 &deactivate_to_head_attr
.attr
,
4307 &deactivate_to_tail_attr
.attr
,
4308 &deactivate_remote_frees_attr
.attr
,
4309 &order_fallback_attr
.attr
,
4314 static struct attribute_group slab_attr_group
= {
4315 .attrs
= slab_attrs
,
4318 static ssize_t
slab_attr_show(struct kobject
*kobj
,
4319 struct attribute
*attr
,
4322 struct slab_attribute
*attribute
;
4323 struct kmem_cache
*s
;
4326 attribute
= to_slab_attr(attr
);
4329 if (!attribute
->show
)
4332 err
= attribute
->show(s
, buf
);
4337 static ssize_t
slab_attr_store(struct kobject
*kobj
,
4338 struct attribute
*attr
,
4339 const char *buf
, size_t len
)
4341 struct slab_attribute
*attribute
;
4342 struct kmem_cache
*s
;
4345 attribute
= to_slab_attr(attr
);
4348 if (!attribute
->store
)
4351 err
= attribute
->store(s
, buf
, len
);
4356 static void kmem_cache_release(struct kobject
*kobj
)
4358 struct kmem_cache
*s
= to_slab(kobj
);
4363 static struct sysfs_ops slab_sysfs_ops
= {
4364 .show
= slab_attr_show
,
4365 .store
= slab_attr_store
,
4368 static struct kobj_type slab_ktype
= {
4369 .sysfs_ops
= &slab_sysfs_ops
,
4370 .release
= kmem_cache_release
4373 static int uevent_filter(struct kset
*kset
, struct kobject
*kobj
)
4375 struct kobj_type
*ktype
= get_ktype(kobj
);
4377 if (ktype
== &slab_ktype
)
4382 static struct kset_uevent_ops slab_uevent_ops
= {
4383 .filter
= uevent_filter
,
4386 static struct kset
*slab_kset
;
4388 #define ID_STR_LENGTH 64
4390 /* Create a unique string id for a slab cache:
4392 * Format :[flags-]size
4394 static char *create_unique_id(struct kmem_cache
*s
)
4396 char *name
= kmalloc(ID_STR_LENGTH
, GFP_KERNEL
);
4403 * First flags affecting slabcache operations. We will only
4404 * get here for aliasable slabs so we do not need to support
4405 * too many flags. The flags here must cover all flags that
4406 * are matched during merging to guarantee that the id is
4409 if (s
->flags
& SLAB_CACHE_DMA
)
4411 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
4413 if (s
->flags
& SLAB_DEBUG_FREE
)
4417 p
+= sprintf(p
, "%07d", s
->size
);
4418 BUG_ON(p
> name
+ ID_STR_LENGTH
- 1);
4422 static int sysfs_slab_add(struct kmem_cache
*s
)
4428 if (slab_state
< SYSFS
)
4429 /* Defer until later */
4432 unmergeable
= slab_unmergeable(s
);
4435 * Slabcache can never be merged so we can use the name proper.
4436 * This is typically the case for debug situations. In that
4437 * case we can catch duplicate names easily.
4439 sysfs_remove_link(&slab_kset
->kobj
, s
->name
);
4443 * Create a unique name for the slab as a target
4446 name
= create_unique_id(s
);
4449 s
->kobj
.kset
= slab_kset
;
4450 err
= kobject_init_and_add(&s
->kobj
, &slab_ktype
, NULL
, name
);
4452 kobject_put(&s
->kobj
);
4456 err
= sysfs_create_group(&s
->kobj
, &slab_attr_group
);
4459 kobject_uevent(&s
->kobj
, KOBJ_ADD
);
4461 /* Setup first alias */
4462 sysfs_slab_alias(s
, s
->name
);
4468 static void sysfs_slab_remove(struct kmem_cache
*s
)
4470 kobject_uevent(&s
->kobj
, KOBJ_REMOVE
);
4471 kobject_del(&s
->kobj
);
4472 kobject_put(&s
->kobj
);
4476 * Need to buffer aliases during bootup until sysfs becomes
4477 * available lest we lose that information.
4479 struct saved_alias
{
4480 struct kmem_cache
*s
;
4482 struct saved_alias
*next
;
4485 static struct saved_alias
*alias_list
;
4487 static int sysfs_slab_alias(struct kmem_cache
*s
, const char *name
)
4489 struct saved_alias
*al
;
4491 if (slab_state
== SYSFS
) {
4493 * If we have a leftover link then remove it.
4495 sysfs_remove_link(&slab_kset
->kobj
, name
);
4496 return sysfs_create_link(&slab_kset
->kobj
, &s
->kobj
, name
);
4499 al
= kmalloc(sizeof(struct saved_alias
), GFP_KERNEL
);
4505 al
->next
= alias_list
;
4510 static int __init
slab_sysfs_init(void)
4512 struct kmem_cache
*s
;
4515 slab_kset
= kset_create_and_add("slab", &slab_uevent_ops
, kernel_kobj
);
4517 printk(KERN_ERR
"Cannot register slab subsystem.\n");
4523 list_for_each_entry(s
, &slab_caches
, list
) {
4524 err
= sysfs_slab_add(s
);
4526 printk(KERN_ERR
"SLUB: Unable to add boot slab %s"
4527 " to sysfs\n", s
->name
);
4530 while (alias_list
) {
4531 struct saved_alias
*al
= alias_list
;
4533 alias_list
= alias_list
->next
;
4534 err
= sysfs_slab_alias(al
->s
, al
->name
);
4536 printk(KERN_ERR
"SLUB: Unable to add boot slab alias"
4537 " %s to sysfs\n", s
->name
);
4545 __initcall(slab_sysfs_init
);
4549 * The /proc/slabinfo ABI
4551 #ifdef CONFIG_SLABINFO
4552 static void print_slabinfo_header(struct seq_file
*m
)
4554 seq_puts(m
, "slabinfo - version: 2.1\n");
4555 seq_puts(m
, "# name <active_objs> <num_objs> <objsize> "
4556 "<objperslab> <pagesperslab>");
4557 seq_puts(m
, " : tunables <limit> <batchcount> <sharedfactor>");
4558 seq_puts(m
, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4562 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
4566 down_read(&slub_lock
);
4568 print_slabinfo_header(m
);
4570 return seq_list_start(&slab_caches
, *pos
);
4573 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
4575 return seq_list_next(p
, &slab_caches
, pos
);
4578 static void s_stop(struct seq_file
*m
, void *p
)
4580 up_read(&slub_lock
);
4583 static int s_show(struct seq_file
*m
, void *p
)
4585 unsigned long nr_partials
= 0;
4586 unsigned long nr_slabs
= 0;
4587 unsigned long nr_inuse
= 0;
4588 unsigned long nr_objs
= 0;
4589 unsigned long nr_free
= 0;
4590 struct kmem_cache
*s
;
4593 s
= list_entry(p
, struct kmem_cache
, list
);
4595 for_each_online_node(node
) {
4596 struct kmem_cache_node
*n
= get_node(s
, node
);
4601 nr_partials
+= n
->nr_partial
;
4602 nr_slabs
+= atomic_long_read(&n
->nr_slabs
);
4603 nr_objs
+= atomic_long_read(&n
->total_objects
);
4604 nr_free
+= count_partial(n
, count_free
);
4607 nr_inuse
= nr_objs
- nr_free
;
4609 seq_printf(m
, "%-17s %6lu %6lu %6u %4u %4d", s
->name
, nr_inuse
,
4610 nr_objs
, s
->size
, oo_objects(s
->oo
),
4611 (1 << oo_order(s
->oo
)));
4612 seq_printf(m
, " : tunables %4u %4u %4u", 0, 0, 0);
4613 seq_printf(m
, " : slabdata %6lu %6lu %6lu", nr_slabs
, nr_slabs
,
4619 static const struct seq_operations slabinfo_op
= {
4626 static int slabinfo_open(struct inode
*inode
, struct file
*file
)
4628 return seq_open(file
, &slabinfo_op
);
4631 static const struct file_operations proc_slabinfo_operations
= {
4632 .open
= slabinfo_open
,
4634 .llseek
= seq_lseek
,
4635 .release
= seq_release
,
4638 static int __init
slab_proc_init(void)
4640 proc_create("slabinfo",S_IWUSR
|S_IRUGO
,NULL
,&proc_slabinfo_operations
);
4643 module_init(slab_proc_init
);
4644 #endif /* CONFIG_SLABINFO */