4 * Copyright (C) 2002, Linus Torvalds.
5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Contains functions related to writing back dirty pages at the
10 * 10Apr2002 Andrew Morton
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h>
36 #include <linux/pagevec.h>
39 * The maximum number of pages to writeout in a single bdflush/kupdate
40 * operation. We do this so we don't hold I_SYNC against an inode for
41 * enormous amounts of time, which would block a userspace task which has
42 * been forced to throttle against that inode. Also, the code reevaluates
43 * the dirty each time it has written this many pages.
45 #define MAX_WRITEBACK_PAGES 1024
48 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
49 * will look to see if it needs to force writeback or throttling.
51 static long ratelimit_pages
= 32;
54 * When balance_dirty_pages decides that the caller needs to perform some
55 * non-background writeback, this is how many pages it will attempt to write.
56 * It should be somewhat larger than RATELIMIT_PAGES to ensure that reasonably
57 * large amounts of I/O are submitted.
59 static inline long sync_writeback_pages(void)
61 return ratelimit_pages
+ ratelimit_pages
/ 2;
64 /* The following parameters are exported via /proc/sys/vm */
67 * Start background writeback (via pdflush) at this percentage
69 int dirty_background_ratio
= 10;
72 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
73 * dirty_background_ratio * the amount of dirtyable memory
75 unsigned long dirty_background_bytes
;
78 * free highmem will not be subtracted from the total free memory
79 * for calculating free ratios if vm_highmem_is_dirtyable is true
81 int vm_highmem_is_dirtyable
;
84 * The generator of dirty data starts writeback at this percentage
86 int vm_dirty_ratio
= 20;
89 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
90 * vm_dirty_ratio * the amount of dirtyable memory
92 unsigned long vm_dirty_bytes
;
95 * The interval between `kupdate'-style writebacks
97 unsigned int dirty_writeback_interval
= 5 * 100; /* centiseconds */
100 * The longest time for which data is allowed to remain dirty
102 unsigned int dirty_expire_interval
= 30 * 100; /* centiseconds */
105 * Flag that makes the machine dump writes/reads and block dirtyings.
110 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
111 * a full sync is triggered after this time elapses without any disk activity.
115 EXPORT_SYMBOL(laptop_mode
);
117 /* End of sysctl-exported parameters */
120 static void background_writeout(unsigned long _min_pages
);
123 * Scale the writeback cache size proportional to the relative writeout speeds.
125 * We do this by keeping a floating proportion between BDIs, based on page
126 * writeback completions [end_page_writeback()]. Those devices that write out
127 * pages fastest will get the larger share, while the slower will get a smaller
130 * We use page writeout completions because we are interested in getting rid of
131 * dirty pages. Having them written out is the primary goal.
133 * We introduce a concept of time, a period over which we measure these events,
134 * because demand can/will vary over time. The length of this period itself is
135 * measured in page writeback completions.
138 static struct prop_descriptor vm_completions
;
139 static struct prop_descriptor vm_dirties
;
142 * couple the period to the dirty_ratio:
144 * period/2 ~ roundup_pow_of_two(dirty limit)
146 static int calc_period_shift(void)
148 unsigned long dirty_total
;
151 dirty_total
= vm_dirty_bytes
/ PAGE_SIZE
;
153 dirty_total
= (vm_dirty_ratio
* determine_dirtyable_memory()) /
155 return 2 + ilog2(dirty_total
- 1);
159 * update the period when the dirty threshold changes.
161 static void update_completion_period(void)
163 int shift
= calc_period_shift();
164 prop_change_shift(&vm_completions
, shift
);
165 prop_change_shift(&vm_dirties
, shift
);
168 int dirty_background_ratio_handler(struct ctl_table
*table
, int write
,
169 struct file
*filp
, void __user
*buffer
, size_t *lenp
,
174 ret
= proc_dointvec_minmax(table
, write
, filp
, buffer
, lenp
, ppos
);
175 if (ret
== 0 && write
)
176 dirty_background_bytes
= 0;
180 int dirty_background_bytes_handler(struct ctl_table
*table
, int write
,
181 struct file
*filp
, void __user
*buffer
, size_t *lenp
,
186 ret
= proc_doulongvec_minmax(table
, write
, filp
, buffer
, lenp
, ppos
);
187 if (ret
== 0 && write
)
188 dirty_background_ratio
= 0;
192 int dirty_ratio_handler(struct ctl_table
*table
, int write
,
193 struct file
*filp
, void __user
*buffer
, size_t *lenp
,
196 int old_ratio
= vm_dirty_ratio
;
199 ret
= proc_dointvec_minmax(table
, write
, filp
, buffer
, lenp
, ppos
);
200 if (ret
== 0 && write
&& vm_dirty_ratio
!= old_ratio
) {
201 update_completion_period();
208 int dirty_bytes_handler(struct ctl_table
*table
, int write
,
209 struct file
*filp
, void __user
*buffer
, size_t *lenp
,
212 unsigned long old_bytes
= vm_dirty_bytes
;
215 ret
= proc_doulongvec_minmax(table
, write
, filp
, buffer
, lenp
, ppos
);
216 if (ret
== 0 && write
&& vm_dirty_bytes
!= old_bytes
) {
217 update_completion_period();
224 * Increment the BDI's writeout completion count and the global writeout
225 * completion count. Called from test_clear_page_writeback().
227 static inline void __bdi_writeout_inc(struct backing_dev_info
*bdi
)
229 __prop_inc_percpu_max(&vm_completions
, &bdi
->completions
,
233 void bdi_writeout_inc(struct backing_dev_info
*bdi
)
237 local_irq_save(flags
);
238 __bdi_writeout_inc(bdi
);
239 local_irq_restore(flags
);
241 EXPORT_SYMBOL_GPL(bdi_writeout_inc
);
243 void task_dirty_inc(struct task_struct
*tsk
)
245 prop_inc_single(&vm_dirties
, &tsk
->dirties
);
249 * Obtain an accurate fraction of the BDI's portion.
251 static void bdi_writeout_fraction(struct backing_dev_info
*bdi
,
252 long *numerator
, long *denominator
)
254 if (bdi_cap_writeback_dirty(bdi
)) {
255 prop_fraction_percpu(&vm_completions
, &bdi
->completions
,
256 numerator
, denominator
);
264 * Clip the earned share of dirty pages to that which is actually available.
265 * This avoids exceeding the total dirty_limit when the floating averages
266 * fluctuate too quickly.
269 clip_bdi_dirty_limit(struct backing_dev_info
*bdi
, long dirty
, long *pbdi_dirty
)
273 avail_dirty
= dirty
-
274 (global_page_state(NR_FILE_DIRTY
) +
275 global_page_state(NR_WRITEBACK
) +
276 global_page_state(NR_UNSTABLE_NFS
) +
277 global_page_state(NR_WRITEBACK_TEMP
));
282 avail_dirty
+= bdi_stat(bdi
, BDI_RECLAIMABLE
) +
283 bdi_stat(bdi
, BDI_WRITEBACK
);
285 *pbdi_dirty
= min(*pbdi_dirty
, avail_dirty
);
288 static inline void task_dirties_fraction(struct task_struct
*tsk
,
289 long *numerator
, long *denominator
)
291 prop_fraction_single(&vm_dirties
, &tsk
->dirties
,
292 numerator
, denominator
);
296 * scale the dirty limit
298 * task specific dirty limit:
300 * dirty -= (dirty/8) * p_{t}
302 static void task_dirty_limit(struct task_struct
*tsk
, long *pdirty
)
304 long numerator
, denominator
;
305 long dirty
= *pdirty
;
306 u64 inv
= dirty
>> 3;
308 task_dirties_fraction(tsk
, &numerator
, &denominator
);
310 do_div(inv
, denominator
);
313 if (dirty
< *pdirty
/2)
322 static DEFINE_SPINLOCK(bdi_lock
);
323 static unsigned int bdi_min_ratio
;
325 int bdi_set_min_ratio(struct backing_dev_info
*bdi
, unsigned int min_ratio
)
330 spin_lock_irqsave(&bdi_lock
, flags
);
331 if (min_ratio
> bdi
->max_ratio
) {
334 min_ratio
-= bdi
->min_ratio
;
335 if (bdi_min_ratio
+ min_ratio
< 100) {
336 bdi_min_ratio
+= min_ratio
;
337 bdi
->min_ratio
+= min_ratio
;
342 spin_unlock_irqrestore(&bdi_lock
, flags
);
347 int bdi_set_max_ratio(struct backing_dev_info
*bdi
, unsigned max_ratio
)
355 spin_lock_irqsave(&bdi_lock
, flags
);
356 if (bdi
->min_ratio
> max_ratio
) {
359 bdi
->max_ratio
= max_ratio
;
360 bdi
->max_prop_frac
= (PROP_FRAC_BASE
* max_ratio
) / 100;
362 spin_unlock_irqrestore(&bdi_lock
, flags
);
366 EXPORT_SYMBOL(bdi_set_max_ratio
);
369 * Work out the current dirty-memory clamping and background writeout
372 * The main aim here is to lower them aggressively if there is a lot of mapped
373 * memory around. To avoid stressing page reclaim with lots of unreclaimable
374 * pages. It is better to clamp down on writers than to start swapping, and
375 * performing lots of scanning.
377 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
379 * We don't permit the clamping level to fall below 5% - that is getting rather
382 * We make sure that the background writeout level is below the adjusted
386 static unsigned long highmem_dirtyable_memory(unsigned long total
)
388 #ifdef CONFIG_HIGHMEM
392 for_each_node_state(node
, N_HIGH_MEMORY
) {
394 &NODE_DATA(node
)->node_zones
[ZONE_HIGHMEM
];
396 x
+= zone_page_state(z
, NR_FREE_PAGES
) + zone_lru_pages(z
);
399 * Make sure that the number of highmem pages is never larger
400 * than the number of the total dirtyable memory. This can only
401 * occur in very strange VM situations but we want to make sure
402 * that this does not occur.
404 return min(x
, total
);
411 * determine_dirtyable_memory - amount of memory that may be used
413 * Returns the numebr of pages that can currently be freed and used
414 * by the kernel for direct mappings.
416 unsigned long determine_dirtyable_memory(void)
420 x
= global_page_state(NR_FREE_PAGES
) + global_lru_pages();
422 if (!vm_highmem_is_dirtyable
)
423 x
-= highmem_dirtyable_memory(x
);
425 return x
+ 1; /* Ensure that we never return 0 */
429 get_dirty_limits(unsigned long *pbackground
, unsigned long *pdirty
,
430 unsigned long *pbdi_dirty
, struct backing_dev_info
*bdi
)
432 unsigned long background
;
434 unsigned long available_memory
= determine_dirtyable_memory();
435 struct task_struct
*tsk
;
438 dirty
= DIV_ROUND_UP(vm_dirty_bytes
, PAGE_SIZE
);
442 dirty_ratio
= vm_dirty_ratio
;
445 dirty
= (dirty_ratio
* available_memory
) / 100;
448 if (dirty_background_bytes
)
449 background
= DIV_ROUND_UP(dirty_background_bytes
, PAGE_SIZE
);
451 background
= (dirty_background_ratio
* available_memory
) / 100;
453 if (background
>= dirty
)
454 background
= dirty
/ 2;
456 if (tsk
->flags
& PF_LESS_THROTTLE
|| rt_task(tsk
)) {
457 background
+= background
/ 4;
460 *pbackground
= background
;
465 long numerator
, denominator
;
468 * Calculate this BDI's share of the dirty ratio.
470 bdi_writeout_fraction(bdi
, &numerator
, &denominator
);
472 bdi_dirty
= (dirty
* (100 - bdi_min_ratio
)) / 100;
473 bdi_dirty
*= numerator
;
474 do_div(bdi_dirty
, denominator
);
475 bdi_dirty
+= (dirty
* bdi
->min_ratio
) / 100;
476 if (bdi_dirty
> (dirty
* bdi
->max_ratio
) / 100)
477 bdi_dirty
= dirty
* bdi
->max_ratio
/ 100;
479 *pbdi_dirty
= bdi_dirty
;
480 clip_bdi_dirty_limit(bdi
, dirty
, pbdi_dirty
);
481 task_dirty_limit(current
, pbdi_dirty
);
486 * balance_dirty_pages() must be called by processes which are generating dirty
487 * data. It looks at the number of dirty pages in the machine and will force
488 * the caller to perform writeback if the system is over `vm_dirty_ratio'.
489 * If we're over `background_thresh' then pdflush is woken to perform some
492 static void balance_dirty_pages(struct address_space
*mapping
)
494 long nr_reclaimable
, bdi_nr_reclaimable
;
495 long nr_writeback
, bdi_nr_writeback
;
496 unsigned long background_thresh
;
497 unsigned long dirty_thresh
;
498 unsigned long bdi_thresh
;
499 unsigned long pages_written
= 0;
500 unsigned long write_chunk
= sync_writeback_pages();
502 struct backing_dev_info
*bdi
= mapping
->backing_dev_info
;
505 struct writeback_control wbc
= {
507 .sync_mode
= WB_SYNC_NONE
,
508 .older_than_this
= NULL
,
509 .nr_to_write
= write_chunk
,
513 get_dirty_limits(&background_thresh
, &dirty_thresh
,
516 nr_reclaimable
= global_page_state(NR_FILE_DIRTY
) +
517 global_page_state(NR_UNSTABLE_NFS
);
518 nr_writeback
= global_page_state(NR_WRITEBACK
);
520 bdi_nr_reclaimable
= bdi_stat(bdi
, BDI_RECLAIMABLE
);
521 bdi_nr_writeback
= bdi_stat(bdi
, BDI_WRITEBACK
);
523 if (bdi_nr_reclaimable
+ bdi_nr_writeback
<= bdi_thresh
)
527 * Throttle it only when the background writeback cannot
528 * catch-up. This avoids (excessively) small writeouts
529 * when the bdi limits are ramping up.
531 if (nr_reclaimable
+ nr_writeback
<
532 (background_thresh
+ dirty_thresh
) / 2)
535 if (!bdi
->dirty_exceeded
)
536 bdi
->dirty_exceeded
= 1;
538 /* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
539 * Unstable writes are a feature of certain networked
540 * filesystems (i.e. NFS) in which data may have been
541 * written to the server's write cache, but has not yet
542 * been flushed to permanent storage.
544 if (bdi_nr_reclaimable
) {
545 writeback_inodes(&wbc
);
546 pages_written
+= write_chunk
- wbc
.nr_to_write
;
547 get_dirty_limits(&background_thresh
, &dirty_thresh
,
552 * In order to avoid the stacked BDI deadlock we need
553 * to ensure we accurately count the 'dirty' pages when
554 * the threshold is low.
556 * Otherwise it would be possible to get thresh+n pages
557 * reported dirty, even though there are thresh-m pages
558 * actually dirty; with m+n sitting in the percpu
561 if (bdi_thresh
< 2*bdi_stat_error(bdi
)) {
562 bdi_nr_reclaimable
= bdi_stat_sum(bdi
, BDI_RECLAIMABLE
);
563 bdi_nr_writeback
= bdi_stat_sum(bdi
, BDI_WRITEBACK
);
564 } else if (bdi_nr_reclaimable
) {
565 bdi_nr_reclaimable
= bdi_stat(bdi
, BDI_RECLAIMABLE
);
566 bdi_nr_writeback
= bdi_stat(bdi
, BDI_WRITEBACK
);
569 if (bdi_nr_reclaimable
+ bdi_nr_writeback
<= bdi_thresh
)
571 if (pages_written
>= write_chunk
)
572 break; /* We've done our duty */
574 congestion_wait(WRITE
, HZ
/10);
577 if (bdi_nr_reclaimable
+ bdi_nr_writeback
< bdi_thresh
&&
579 bdi
->dirty_exceeded
= 0;
581 if (writeback_in_progress(bdi
))
582 return; /* pdflush is already working this queue */
585 * In laptop mode, we wait until hitting the higher threshold before
586 * starting background writeout, and then write out all the way down
587 * to the lower threshold. So slow writers cause minimal disk activity.
589 * In normal mode, we start background writeout at the lower
590 * background_thresh, to keep the amount of dirty memory low.
592 if ((laptop_mode
&& pages_written
) ||
593 (!laptop_mode
&& (global_page_state(NR_FILE_DIRTY
)
594 + global_page_state(NR_UNSTABLE_NFS
)
595 > background_thresh
)))
596 pdflush_operation(background_writeout
, 0);
599 void set_page_dirty_balance(struct page
*page
, int page_mkwrite
)
601 if (set_page_dirty(page
) || page_mkwrite
) {
602 struct address_space
*mapping
= page_mapping(page
);
605 balance_dirty_pages_ratelimited(mapping
);
610 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
611 * @mapping: address_space which was dirtied
612 * @nr_pages_dirtied: number of pages which the caller has just dirtied
614 * Processes which are dirtying memory should call in here once for each page
615 * which was newly dirtied. The function will periodically check the system's
616 * dirty state and will initiate writeback if needed.
618 * On really big machines, get_writeback_state is expensive, so try to avoid
619 * calling it too often (ratelimiting). But once we're over the dirty memory
620 * limit we decrease the ratelimiting by a lot, to prevent individual processes
621 * from overshooting the limit by (ratelimit_pages) each.
623 void balance_dirty_pages_ratelimited_nr(struct address_space
*mapping
,
624 unsigned long nr_pages_dirtied
)
626 static DEFINE_PER_CPU(unsigned long, ratelimits
) = 0;
627 unsigned long ratelimit
;
630 ratelimit
= ratelimit_pages
;
631 if (mapping
->backing_dev_info
->dirty_exceeded
)
635 * Check the rate limiting. Also, we do not want to throttle real-time
636 * tasks in balance_dirty_pages(). Period.
639 p
= &__get_cpu_var(ratelimits
);
640 *p
+= nr_pages_dirtied
;
641 if (unlikely(*p
>= ratelimit
)) {
644 balance_dirty_pages(mapping
);
649 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr
);
651 void throttle_vm_writeout(gfp_t gfp_mask
)
653 unsigned long background_thresh
;
654 unsigned long dirty_thresh
;
657 get_dirty_limits(&background_thresh
, &dirty_thresh
, NULL
, NULL
);
660 * Boost the allowable dirty threshold a bit for page
661 * allocators so they don't get DoS'ed by heavy writers
663 dirty_thresh
+= dirty_thresh
/ 10; /* wheeee... */
665 if (global_page_state(NR_UNSTABLE_NFS
) +
666 global_page_state(NR_WRITEBACK
) <= dirty_thresh
)
668 congestion_wait(WRITE
, HZ
/10);
671 * The caller might hold locks which can prevent IO completion
672 * or progress in the filesystem. So we cannot just sit here
673 * waiting for IO to complete.
675 if ((gfp_mask
& (__GFP_FS
|__GFP_IO
)) != (__GFP_FS
|__GFP_IO
))
681 * writeback at least _min_pages, and keep writing until the amount of dirty
682 * memory is less than the background threshold, or until we're all clean.
684 static void background_writeout(unsigned long _min_pages
)
686 long min_pages
= _min_pages
;
687 struct writeback_control wbc
= {
689 .sync_mode
= WB_SYNC_NONE
,
690 .older_than_this
= NULL
,
697 unsigned long background_thresh
;
698 unsigned long dirty_thresh
;
700 get_dirty_limits(&background_thresh
, &dirty_thresh
, NULL
, NULL
);
701 if (global_page_state(NR_FILE_DIRTY
) +
702 global_page_state(NR_UNSTABLE_NFS
) < background_thresh
706 wbc
.encountered_congestion
= 0;
707 wbc
.nr_to_write
= MAX_WRITEBACK_PAGES
;
708 wbc
.pages_skipped
= 0;
709 writeback_inodes(&wbc
);
710 min_pages
-= MAX_WRITEBACK_PAGES
- wbc
.nr_to_write
;
711 if (wbc
.nr_to_write
> 0 || wbc
.pages_skipped
> 0) {
712 /* Wrote less than expected */
713 if (wbc
.encountered_congestion
|| wbc
.more_io
)
714 congestion_wait(WRITE
, HZ
/10);
722 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
723 * the whole world. Returns 0 if a pdflush thread was dispatched. Returns
724 * -1 if all pdflush threads were busy.
726 int wakeup_pdflush(long nr_pages
)
729 nr_pages
= global_page_state(NR_FILE_DIRTY
) +
730 global_page_state(NR_UNSTABLE_NFS
);
731 return pdflush_operation(background_writeout
, nr_pages
);
734 static void wb_timer_fn(unsigned long unused
);
735 static void laptop_timer_fn(unsigned long unused
);
737 static DEFINE_TIMER(wb_timer
, wb_timer_fn
, 0, 0);
738 static DEFINE_TIMER(laptop_mode_wb_timer
, laptop_timer_fn
, 0, 0);
741 * Periodic writeback of "old" data.
743 * Define "old": the first time one of an inode's pages is dirtied, we mark the
744 * dirtying-time in the inode's address_space. So this periodic writeback code
745 * just walks the superblock inode list, writing back any inodes which are
746 * older than a specific point in time.
748 * Try to run once per dirty_writeback_interval. But if a writeback event
749 * takes longer than a dirty_writeback_interval interval, then leave a
752 * older_than_this takes precedence over nr_to_write. So we'll only write back
753 * all dirty pages if they are all attached to "old" mappings.
755 static void wb_kupdate(unsigned long arg
)
757 unsigned long oldest_jif
;
758 unsigned long start_jif
;
759 unsigned long next_jif
;
761 struct writeback_control wbc
= {
763 .sync_mode
= WB_SYNC_NONE
,
764 .older_than_this
= &oldest_jif
,
773 oldest_jif
= jiffies
- msecs_to_jiffies(dirty_expire_interval
* 10);
775 next_jif
= start_jif
+ msecs_to_jiffies(dirty_writeback_interval
* 10);
776 nr_to_write
= global_page_state(NR_FILE_DIRTY
) +
777 global_page_state(NR_UNSTABLE_NFS
) +
778 (inodes_stat
.nr_inodes
- inodes_stat
.nr_unused
);
779 while (nr_to_write
> 0) {
781 wbc
.encountered_congestion
= 0;
782 wbc
.nr_to_write
= MAX_WRITEBACK_PAGES
;
783 writeback_inodes(&wbc
);
784 if (wbc
.nr_to_write
> 0) {
785 if (wbc
.encountered_congestion
|| wbc
.more_io
)
786 congestion_wait(WRITE
, HZ
/10);
788 break; /* All the old data is written */
790 nr_to_write
-= MAX_WRITEBACK_PAGES
- wbc
.nr_to_write
;
792 if (time_before(next_jif
, jiffies
+ HZ
))
793 next_jif
= jiffies
+ HZ
;
794 if (dirty_writeback_interval
)
795 mod_timer(&wb_timer
, next_jif
);
799 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
801 int dirty_writeback_centisecs_handler(ctl_table
*table
, int write
,
802 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
804 proc_dointvec(table
, write
, file
, buffer
, length
, ppos
);
805 if (dirty_writeback_interval
)
806 mod_timer(&wb_timer
, jiffies
+
807 msecs_to_jiffies(dirty_writeback_interval
* 10));
809 del_timer(&wb_timer
);
813 static void wb_timer_fn(unsigned long unused
)
815 if (pdflush_operation(wb_kupdate
, 0) < 0)
816 mod_timer(&wb_timer
, jiffies
+ HZ
); /* delay 1 second */
819 static void laptop_flush(unsigned long unused
)
824 static void laptop_timer_fn(unsigned long unused
)
826 pdflush_operation(laptop_flush
, 0);
830 * We've spun up the disk and we're in laptop mode: schedule writeback
831 * of all dirty data a few seconds from now. If the flush is already scheduled
832 * then push it back - the user is still using the disk.
834 void laptop_io_completion(void)
836 mod_timer(&laptop_mode_wb_timer
, jiffies
+ laptop_mode
);
840 * We're in laptop mode and we've just synced. The sync's writes will have
841 * caused another writeback to be scheduled by laptop_io_completion.
842 * Nothing needs to be written back anymore, so we unschedule the writeback.
844 void laptop_sync_completion(void)
846 del_timer(&laptop_mode_wb_timer
);
850 * If ratelimit_pages is too high then we can get into dirty-data overload
851 * if a large number of processes all perform writes at the same time.
852 * If it is too low then SMP machines will call the (expensive)
853 * get_writeback_state too often.
855 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
856 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
857 * thresholds before writeback cuts in.
859 * But the limit should not be set too high. Because it also controls the
860 * amount of memory which the balance_dirty_pages() caller has to write back.
861 * If this is too large then the caller will block on the IO queue all the
862 * time. So limit it to four megabytes - the balance_dirty_pages() caller
863 * will write six megabyte chunks, max.
866 void writeback_set_ratelimit(void)
868 ratelimit_pages
= vm_total_pages
/ (num_online_cpus() * 32);
869 if (ratelimit_pages
< 16)
870 ratelimit_pages
= 16;
871 if (ratelimit_pages
* PAGE_CACHE_SIZE
> 4096 * 1024)
872 ratelimit_pages
= (4096 * 1024) / PAGE_CACHE_SIZE
;
876 ratelimit_handler(struct notifier_block
*self
, unsigned long u
, void *v
)
878 writeback_set_ratelimit();
882 static struct notifier_block __cpuinitdata ratelimit_nb
= {
883 .notifier_call
= ratelimit_handler
,
888 * Called early on to tune the page writeback dirty limits.
890 * We used to scale dirty pages according to how total memory
891 * related to pages that could be allocated for buffers (by
892 * comparing nr_free_buffer_pages() to vm_total_pages.
894 * However, that was when we used "dirty_ratio" to scale with
895 * all memory, and we don't do that any more. "dirty_ratio"
896 * is now applied to total non-HIGHPAGE memory (by subtracting
897 * totalhigh_pages from vm_total_pages), and as such we can't
898 * get into the old insane situation any more where we had
899 * large amounts of dirty pages compared to a small amount of
900 * non-HIGHMEM memory.
902 * But we might still want to scale the dirty_ratio by how
903 * much memory the box has..
905 void __init
page_writeback_init(void)
910 jiffies
+ msecs_to_jiffies(dirty_writeback_interval
* 10));
911 writeback_set_ratelimit();
912 register_cpu_notifier(&ratelimit_nb
);
914 shift
= calc_period_shift();
915 prop_descriptor_init(&vm_completions
, shift
);
916 prop_descriptor_init(&vm_dirties
, shift
);
920 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
921 * @mapping: address space structure to write
922 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
923 * @writepage: function called for each page
924 * @data: data passed to writepage function
926 * If a page is already under I/O, write_cache_pages() skips it, even
927 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
928 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
929 * and msync() need to guarantee that all the data which was dirty at the time
930 * the call was made get new I/O started against them. If wbc->sync_mode is
931 * WB_SYNC_ALL then we were called for data integrity and we must wait for
932 * existing IO to complete.
934 int write_cache_pages(struct address_space
*mapping
,
935 struct writeback_control
*wbc
, writepage_t writepage
,
938 struct backing_dev_info
*bdi
= mapping
->backing_dev_info
;
943 pgoff_t
uninitialized_var(writeback_index
);
945 pgoff_t end
; /* Inclusive */
949 long nr_to_write
= wbc
->nr_to_write
;
951 if (wbc
->nonblocking
&& bdi_write_congested(bdi
)) {
952 wbc
->encountered_congestion
= 1;
956 pagevec_init(&pvec
, 0);
957 if (wbc
->range_cyclic
) {
958 writeback_index
= mapping
->writeback_index
; /* prev offset */
959 index
= writeback_index
;
966 index
= wbc
->range_start
>> PAGE_CACHE_SHIFT
;
967 end
= wbc
->range_end
>> PAGE_CACHE_SHIFT
;
968 if (wbc
->range_start
== 0 && wbc
->range_end
== LLONG_MAX
)
970 cycled
= 1; /* ignore range_cyclic tests */
974 while (!done
&& (index
<= end
)) {
977 nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
,
979 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1);
983 for (i
= 0; i
< nr_pages
; i
++) {
984 struct page
*page
= pvec
.pages
[i
];
987 * At this point, the page may be truncated or
988 * invalidated (changing page->mapping to NULL), or
989 * even swizzled back from swapper_space to tmpfs file
990 * mapping. However, page->index will not change
991 * because we have a reference on the page.
993 if (page
->index
> end
) {
995 * can't be range_cyclic (1st pass) because
996 * end == -1 in that case.
1002 done_index
= page
->index
+ 1;
1007 * Page truncated or invalidated. We can freely skip it
1008 * then, even for data integrity operations: the page
1009 * has disappeared concurrently, so there could be no
1010 * real expectation of this data interity operation
1011 * even if there is now a new, dirty page at the same
1012 * pagecache address.
1014 if (unlikely(page
->mapping
!= mapping
)) {
1020 if (!PageDirty(page
)) {
1021 /* someone wrote it for us */
1022 goto continue_unlock
;
1025 if (PageWriteback(page
)) {
1026 if (wbc
->sync_mode
!= WB_SYNC_NONE
)
1027 wait_on_page_writeback(page
);
1029 goto continue_unlock
;
1032 BUG_ON(PageWriteback(page
));
1033 if (!clear_page_dirty_for_io(page
))
1034 goto continue_unlock
;
1036 ret
= (*writepage
)(page
, wbc
, data
);
1037 if (unlikely(ret
)) {
1038 if (ret
== AOP_WRITEPAGE_ACTIVATE
) {
1043 * done_index is set past this page,
1044 * so media errors will not choke
1045 * background writeout for the entire
1046 * file. This has consequences for
1047 * range_cyclic semantics (ie. it may
1048 * not be suitable for data integrity
1056 if (nr_to_write
> 0) {
1058 if (nr_to_write
== 0 &&
1059 wbc
->sync_mode
== WB_SYNC_NONE
) {
1061 * We stop writing back only if we are
1062 * not doing integrity sync. In case of
1063 * integrity sync we have to keep going
1064 * because someone may be concurrently
1065 * dirtying pages, and we might have
1066 * synced a lot of newly appeared dirty
1067 * pages, but have not synced all of the
1075 if (wbc
->nonblocking
&& bdi_write_congested(bdi
)) {
1076 wbc
->encountered_congestion
= 1;
1081 pagevec_release(&pvec
);
1084 if (!cycled
&& !done
) {
1087 * We hit the last page and there is more work to be done: wrap
1088 * back to the start of the file
1092 end
= writeback_index
- 1;
1095 if (!wbc
->no_nrwrite_index_update
) {
1096 if (wbc
->range_cyclic
|| (range_whole
&& nr_to_write
> 0))
1097 mapping
->writeback_index
= done_index
;
1098 wbc
->nr_to_write
= nr_to_write
;
1103 EXPORT_SYMBOL(write_cache_pages
);
1106 * Function used by generic_writepages to call the real writepage
1107 * function and set the mapping flags on error
1109 static int __writepage(struct page
*page
, struct writeback_control
*wbc
,
1112 struct address_space
*mapping
= data
;
1113 int ret
= mapping
->a_ops
->writepage(page
, wbc
);
1114 mapping_set_error(mapping
, ret
);
1119 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1120 * @mapping: address space structure to write
1121 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1123 * This is a library function, which implements the writepages()
1124 * address_space_operation.
1126 int generic_writepages(struct address_space
*mapping
,
1127 struct writeback_control
*wbc
)
1129 /* deal with chardevs and other special file */
1130 if (!mapping
->a_ops
->writepage
)
1133 return write_cache_pages(mapping
, wbc
, __writepage
, mapping
);
1136 EXPORT_SYMBOL(generic_writepages
);
1138 int do_writepages(struct address_space
*mapping
, struct writeback_control
*wbc
)
1142 if (wbc
->nr_to_write
<= 0)
1144 wbc
->for_writepages
= 1;
1145 if (mapping
->a_ops
->writepages
)
1146 ret
= mapping
->a_ops
->writepages(mapping
, wbc
);
1148 ret
= generic_writepages(mapping
, wbc
);
1149 wbc
->for_writepages
= 0;
1154 * write_one_page - write out a single page and optionally wait on I/O
1155 * @page: the page to write
1156 * @wait: if true, wait on writeout
1158 * The page must be locked by the caller and will be unlocked upon return.
1160 * write_one_page() returns a negative error code if I/O failed.
1162 int write_one_page(struct page
*page
, int wait
)
1164 struct address_space
*mapping
= page
->mapping
;
1166 struct writeback_control wbc
= {
1167 .sync_mode
= WB_SYNC_ALL
,
1171 BUG_ON(!PageLocked(page
));
1174 wait_on_page_writeback(page
);
1176 if (clear_page_dirty_for_io(page
)) {
1177 page_cache_get(page
);
1178 ret
= mapping
->a_ops
->writepage(page
, &wbc
);
1179 if (ret
== 0 && wait
) {
1180 wait_on_page_writeback(page
);
1181 if (PageError(page
))
1184 page_cache_release(page
);
1190 EXPORT_SYMBOL(write_one_page
);
1193 * For address_spaces which do not use buffers nor write back.
1195 int __set_page_dirty_no_writeback(struct page
*page
)
1197 if (!PageDirty(page
))
1203 * Helper function for set_page_dirty family.
1204 * NOTE: This relies on being atomic wrt interrupts.
1206 void account_page_dirtied(struct page
*page
, struct address_space
*mapping
)
1208 if (mapping_cap_account_dirty(mapping
)) {
1209 __inc_zone_page_state(page
, NR_FILE_DIRTY
);
1210 __inc_bdi_stat(mapping
->backing_dev_info
, BDI_RECLAIMABLE
);
1211 task_dirty_inc(current
);
1212 task_io_account_write(PAGE_CACHE_SIZE
);
1217 * For address_spaces which do not use buffers. Just tag the page as dirty in
1220 * This is also used when a single buffer is being dirtied: we want to set the
1221 * page dirty in that case, but not all the buffers. This is a "bottom-up"
1222 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1224 * Most callers have locked the page, which pins the address_space in memory.
1225 * But zap_pte_range() does not lock the page, however in that case the
1226 * mapping is pinned by the vma's ->vm_file reference.
1228 * We take care to handle the case where the page was truncated from the
1229 * mapping by re-checking page_mapping() inside tree_lock.
1231 int __set_page_dirty_nobuffers(struct page
*page
)
1233 if (!TestSetPageDirty(page
)) {
1234 struct address_space
*mapping
= page_mapping(page
);
1235 struct address_space
*mapping2
;
1240 spin_lock_irq(&mapping
->tree_lock
);
1241 mapping2
= page_mapping(page
);
1242 if (mapping2
) { /* Race with truncate? */
1243 BUG_ON(mapping2
!= mapping
);
1244 WARN_ON_ONCE(!PagePrivate(page
) && !PageUptodate(page
));
1245 account_page_dirtied(page
, mapping
);
1246 radix_tree_tag_set(&mapping
->page_tree
,
1247 page_index(page
), PAGECACHE_TAG_DIRTY
);
1249 spin_unlock_irq(&mapping
->tree_lock
);
1250 if (mapping
->host
) {
1251 /* !PageAnon && !swapper_space */
1252 __mark_inode_dirty(mapping
->host
, I_DIRTY_PAGES
);
1258 EXPORT_SYMBOL(__set_page_dirty_nobuffers
);
1261 * When a writepage implementation decides that it doesn't want to write this
1262 * page for some reason, it should redirty the locked page via
1263 * redirty_page_for_writepage() and it should then unlock the page and return 0
1265 int redirty_page_for_writepage(struct writeback_control
*wbc
, struct page
*page
)
1267 wbc
->pages_skipped
++;
1268 return __set_page_dirty_nobuffers(page
);
1270 EXPORT_SYMBOL(redirty_page_for_writepage
);
1273 * If the mapping doesn't provide a set_page_dirty a_op, then
1274 * just fall through and assume that it wants buffer_heads.
1276 int set_page_dirty(struct page
*page
)
1278 struct address_space
*mapping
= page_mapping(page
);
1280 if (likely(mapping
)) {
1281 int (*spd
)(struct page
*) = mapping
->a_ops
->set_page_dirty
;
1284 spd
= __set_page_dirty_buffers
;
1286 return (*spd
)(page
);
1288 if (!PageDirty(page
)) {
1289 if (!TestSetPageDirty(page
))
1294 EXPORT_SYMBOL(set_page_dirty
);
1297 * set_page_dirty() is racy if the caller has no reference against
1298 * page->mapping->host, and if the page is unlocked. This is because another
1299 * CPU could truncate the page off the mapping and then free the mapping.
1301 * Usually, the page _is_ locked, or the caller is a user-space process which
1302 * holds a reference on the inode by having an open file.
1304 * In other cases, the page should be locked before running set_page_dirty().
1306 int set_page_dirty_lock(struct page
*page
)
1310 lock_page_nosync(page
);
1311 ret
= set_page_dirty(page
);
1315 EXPORT_SYMBOL(set_page_dirty_lock
);
1318 * Clear a page's dirty flag, while caring for dirty memory accounting.
1319 * Returns true if the page was previously dirty.
1321 * This is for preparing to put the page under writeout. We leave the page
1322 * tagged as dirty in the radix tree so that a concurrent write-for-sync
1323 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
1324 * implementation will run either set_page_writeback() or set_page_dirty(),
1325 * at which stage we bring the page's dirty flag and radix-tree dirty tag
1328 * This incoherency between the page's dirty flag and radix-tree tag is
1329 * unfortunate, but it only exists while the page is locked.
1331 int clear_page_dirty_for_io(struct page
*page
)
1333 struct address_space
*mapping
= page_mapping(page
);
1335 BUG_ON(!PageLocked(page
));
1337 ClearPageReclaim(page
);
1338 if (mapping
&& mapping_cap_account_dirty(mapping
)) {
1340 * Yes, Virginia, this is indeed insane.
1342 * We use this sequence to make sure that
1343 * (a) we account for dirty stats properly
1344 * (b) we tell the low-level filesystem to
1345 * mark the whole page dirty if it was
1346 * dirty in a pagetable. Only to then
1347 * (c) clean the page again and return 1 to
1348 * cause the writeback.
1350 * This way we avoid all nasty races with the
1351 * dirty bit in multiple places and clearing
1352 * them concurrently from different threads.
1354 * Note! Normally the "set_page_dirty(page)"
1355 * has no effect on the actual dirty bit - since
1356 * that will already usually be set. But we
1357 * need the side effects, and it can help us
1360 * We basically use the page "master dirty bit"
1361 * as a serialization point for all the different
1362 * threads doing their things.
1364 if (page_mkclean(page
))
1365 set_page_dirty(page
);
1367 * We carefully synchronise fault handlers against
1368 * installing a dirty pte and marking the page dirty
1369 * at this point. We do this by having them hold the
1370 * page lock at some point after installing their
1371 * pte, but before marking the page dirty.
1372 * Pages are always locked coming in here, so we get
1373 * the desired exclusion. See mm/memory.c:do_wp_page()
1374 * for more comments.
1376 if (TestClearPageDirty(page
)) {
1377 dec_zone_page_state(page
, NR_FILE_DIRTY
);
1378 dec_bdi_stat(mapping
->backing_dev_info
,
1384 return TestClearPageDirty(page
);
1386 EXPORT_SYMBOL(clear_page_dirty_for_io
);
1388 int test_clear_page_writeback(struct page
*page
)
1390 struct address_space
*mapping
= page_mapping(page
);
1394 struct backing_dev_info
*bdi
= mapping
->backing_dev_info
;
1395 unsigned long flags
;
1397 spin_lock_irqsave(&mapping
->tree_lock
, flags
);
1398 ret
= TestClearPageWriteback(page
);
1400 radix_tree_tag_clear(&mapping
->page_tree
,
1402 PAGECACHE_TAG_WRITEBACK
);
1403 if (bdi_cap_account_writeback(bdi
)) {
1404 __dec_bdi_stat(bdi
, BDI_WRITEBACK
);
1405 __bdi_writeout_inc(bdi
);
1408 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
1410 ret
= TestClearPageWriteback(page
);
1413 dec_zone_page_state(page
, NR_WRITEBACK
);
1417 int test_set_page_writeback(struct page
*page
)
1419 struct address_space
*mapping
= page_mapping(page
);
1423 struct backing_dev_info
*bdi
= mapping
->backing_dev_info
;
1424 unsigned long flags
;
1426 spin_lock_irqsave(&mapping
->tree_lock
, flags
);
1427 ret
= TestSetPageWriteback(page
);
1429 radix_tree_tag_set(&mapping
->page_tree
,
1431 PAGECACHE_TAG_WRITEBACK
);
1432 if (bdi_cap_account_writeback(bdi
))
1433 __inc_bdi_stat(bdi
, BDI_WRITEBACK
);
1435 if (!PageDirty(page
))
1436 radix_tree_tag_clear(&mapping
->page_tree
,
1438 PAGECACHE_TAG_DIRTY
);
1439 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
1441 ret
= TestSetPageWriteback(page
);
1444 inc_zone_page_state(page
, NR_WRITEBACK
);
1448 EXPORT_SYMBOL(test_set_page_writeback
);
1451 * Return true if any of the pages in the mapping are marked with the
1454 int mapping_tagged(struct address_space
*mapping
, int tag
)
1458 ret
= radix_tree_tagged(&mapping
->page_tree
, tag
);
1462 EXPORT_SYMBOL(mapping_tagged
);