ext4: Use correct locking for ext4_end_io_nolock()
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / ext4 / page-io.c
blobaed40966f3425a1318d7d3663c054b9c949589b5
1 /*
2 * linux/fs/ext4/page-io.c
4 * This contains the new page_io functions for ext4
6 * Written by Theodore Ts'o, 2010.
7 */
9 #include <linux/module.h>
10 #include <linux/fs.h>
11 #include <linux/time.h>
12 #include <linux/jbd2.h>
13 #include <linux/highuid.h>
14 #include <linux/pagemap.h>
15 #include <linux/quotaops.h>
16 #include <linux/string.h>
17 #include <linux/buffer_head.h>
18 #include <linux/writeback.h>
19 #include <linux/pagevec.h>
20 #include <linux/mpage.h>
21 #include <linux/namei.h>
22 #include <linux/uio.h>
23 #include <linux/bio.h>
24 #include <linux/workqueue.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
28 #include "ext4_jbd2.h"
29 #include "xattr.h"
30 #include "acl.h"
31 #include "ext4_extents.h"
33 static struct kmem_cache *io_page_cachep, *io_end_cachep;
35 int __init ext4_init_pageio(void)
37 io_page_cachep = KMEM_CACHE(ext4_io_page, SLAB_RECLAIM_ACCOUNT);
38 if (io_page_cachep == NULL)
39 return -ENOMEM;
40 io_end_cachep = KMEM_CACHE(ext4_io_end, SLAB_RECLAIM_ACCOUNT);
41 if (io_end_cachep == NULL) {
42 kmem_cache_destroy(io_page_cachep);
43 return -ENOMEM;
45 return 0;
48 void ext4_exit_pageio(void)
50 kmem_cache_destroy(io_end_cachep);
51 kmem_cache_destroy(io_page_cachep);
54 void ext4_ioend_wait(struct inode *inode)
56 wait_queue_head_t *wq = ext4_ioend_wq(inode);
58 wait_event(*wq, (atomic_read(&EXT4_I(inode)->i_ioend_count) == 0));
61 static void put_io_page(struct ext4_io_page *io_page)
63 if (atomic_dec_and_test(&io_page->p_count)) {
64 end_page_writeback(io_page->p_page);
65 put_page(io_page->p_page);
66 kmem_cache_free(io_page_cachep, io_page);
70 void ext4_free_io_end(ext4_io_end_t *io)
72 int i;
73 wait_queue_head_t *wq;
75 BUG_ON(!io);
76 if (io->page)
77 put_page(io->page);
78 for (i = 0; i < io->num_io_pages; i++)
79 put_io_page(io->pages[i]);
80 io->num_io_pages = 0;
81 wq = ext4_ioend_wq(io->inode);
82 if (atomic_dec_and_test(&EXT4_I(io->inode)->i_ioend_count) &&
83 waitqueue_active(wq))
84 wake_up_all(wq);
85 kmem_cache_free(io_end_cachep, io);
89 * check a range of space and convert unwritten extents to written.
91 * Called with inode->i_mutex; we depend on this when we manipulate
92 * io->flag, since we could otherwise race with ext4_flush_completed_IO()
94 int ext4_end_io_nolock(ext4_io_end_t *io)
96 struct inode *inode = io->inode;
97 loff_t offset = io->offset;
98 ssize_t size = io->size;
99 wait_queue_head_t *wq;
100 int ret = 0;
102 ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p,"
103 "list->prev 0x%p\n",
104 io, inode->i_ino, io->list.next, io->list.prev);
106 if (!(io->flag & EXT4_IO_END_UNWRITTEN))
107 return ret;
109 ret = ext4_convert_unwritten_extents(inode, offset, size);
110 if (ret < 0) {
111 printk(KERN_EMERG "%s: failed to convert unwritten "
112 "extents to written extents, error is %d "
113 "io is still on inode %lu aio dio list\n",
114 __func__, ret, inode->i_ino);
115 return ret;
118 if (io->iocb)
119 aio_complete(io->iocb, io->result, 0);
120 /* clear the DIO AIO unwritten flag */
121 if (io->flag & EXT4_IO_END_UNWRITTEN) {
122 io->flag &= ~EXT4_IO_END_UNWRITTEN;
123 /* Wake up anyone waiting on unwritten extent conversion */
124 wq = ext4_ioend_wq(io->inode);
125 if (atomic_dec_and_test(&EXT4_I(inode)->i_aiodio_unwritten) &&
126 waitqueue_active(wq)) {
127 wake_up_all(wq);
131 return ret;
135 * work on completed aio dio IO, to convert unwritten extents to extents
137 static void ext4_end_io_work(struct work_struct *work)
139 ext4_io_end_t *io = container_of(work, ext4_io_end_t, work);
140 struct inode *inode = io->inode;
141 struct ext4_inode_info *ei = EXT4_I(inode);
142 unsigned long flags;
143 int ret;
145 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
146 if (list_empty(&io->list)) {
147 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
148 goto free;
150 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
152 if (!mutex_trylock(&inode->i_mutex)) {
154 * Requeue the work instead of waiting so that the work
155 * items queued after this can be processed.
157 queue_work(EXT4_SB(inode->i_sb)->dio_unwritten_wq, &io->work);
159 * To prevent the ext4-dio-unwritten thread from keeping
160 * requeueing end_io requests and occupying cpu for too long,
161 * yield the cpu if it sees an end_io request that has already
162 * been requeued.
164 if (io->flag & EXT4_IO_END_QUEUED)
165 yield();
166 io->flag |= EXT4_IO_END_QUEUED;
167 return;
169 ret = ext4_end_io_nolock(io);
170 if (ret < 0) {
171 mutex_unlock(&inode->i_mutex);
172 return;
175 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
176 if (!list_empty(&io->list))
177 list_del_init(&io->list);
178 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
179 mutex_unlock(&inode->i_mutex);
180 free:
181 ext4_free_io_end(io);
184 ext4_io_end_t *ext4_init_io_end(struct inode *inode, gfp_t flags)
186 ext4_io_end_t *io = kmem_cache_zalloc(io_end_cachep, flags);
187 if (io) {
188 atomic_inc(&EXT4_I(inode)->i_ioend_count);
189 io->inode = inode;
190 INIT_WORK(&io->work, ext4_end_io_work);
191 INIT_LIST_HEAD(&io->list);
193 return io;
197 * Print an buffer I/O error compatible with the fs/buffer.c. This
198 * provides compatibility with dmesg scrapers that look for a specific
199 * buffer I/O error message. We really need a unified error reporting
200 * structure to userspace ala Digital Unix's uerf system, but it's
201 * probably not going to happen in my lifetime, due to LKML politics...
203 static void buffer_io_error(struct buffer_head *bh)
205 char b[BDEVNAME_SIZE];
206 printk(KERN_ERR "Buffer I/O error on device %s, logical block %llu\n",
207 bdevname(bh->b_bdev, b),
208 (unsigned long long)bh->b_blocknr);
211 static void ext4_end_bio(struct bio *bio, int error)
213 ext4_io_end_t *io_end = bio->bi_private;
214 struct workqueue_struct *wq;
215 struct inode *inode;
216 unsigned long flags;
217 int i;
218 sector_t bi_sector = bio->bi_sector;
220 BUG_ON(!io_end);
221 bio->bi_private = NULL;
222 bio->bi_end_io = NULL;
223 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
224 error = 0;
225 bio_put(bio);
227 for (i = 0; i < io_end->num_io_pages; i++) {
228 struct page *page = io_end->pages[i]->p_page;
229 struct buffer_head *bh, *head;
230 loff_t offset;
231 loff_t io_end_offset;
233 if (error) {
234 SetPageError(page);
235 set_bit(AS_EIO, &page->mapping->flags);
236 head = page_buffers(page);
237 BUG_ON(!head);
239 io_end_offset = io_end->offset + io_end->size;
241 offset = (sector_t) page->index << PAGE_CACHE_SHIFT;
242 bh = head;
243 do {
244 if ((offset >= io_end->offset) &&
245 (offset+bh->b_size <= io_end_offset))
246 buffer_io_error(bh);
248 offset += bh->b_size;
249 bh = bh->b_this_page;
250 } while (bh != head);
253 put_io_page(io_end->pages[i]);
255 io_end->num_io_pages = 0;
256 inode = io_end->inode;
258 if (error) {
259 io_end->flag |= EXT4_IO_END_ERROR;
260 ext4_warning(inode->i_sb, "I/O error writing to inode %lu "
261 "(offset %llu size %ld starting block %llu)",
262 inode->i_ino,
263 (unsigned long long) io_end->offset,
264 (long) io_end->size,
265 (unsigned long long)
266 bi_sector >> (inode->i_blkbits - 9));
269 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
270 ext4_free_io_end(io_end);
271 return;
274 /* Add the io_end to per-inode completed io list*/
275 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
276 list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
277 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
279 wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
280 /* queue the work to convert unwritten extents to written */
281 queue_work(wq, &io_end->work);
284 void ext4_io_submit(struct ext4_io_submit *io)
286 struct bio *bio = io->io_bio;
288 if (bio) {
289 bio_get(io->io_bio);
290 submit_bio(io->io_op, io->io_bio);
291 BUG_ON(bio_flagged(io->io_bio, BIO_EOPNOTSUPP));
292 bio_put(io->io_bio);
294 io->io_bio = NULL;
295 io->io_op = 0;
296 io->io_end = NULL;
299 static int io_submit_init(struct ext4_io_submit *io,
300 struct inode *inode,
301 struct writeback_control *wbc,
302 struct buffer_head *bh)
304 ext4_io_end_t *io_end;
305 struct page *page = bh->b_page;
306 int nvecs = bio_get_nr_vecs(bh->b_bdev);
307 struct bio *bio;
309 io_end = ext4_init_io_end(inode, GFP_NOFS);
310 if (!io_end)
311 return -ENOMEM;
312 bio = bio_alloc(GFP_NOIO, min(nvecs, BIO_MAX_PAGES));
313 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
314 bio->bi_bdev = bh->b_bdev;
315 bio->bi_private = io->io_end = io_end;
316 bio->bi_end_io = ext4_end_bio;
318 io_end->offset = (page->index << PAGE_CACHE_SHIFT) + bh_offset(bh);
320 io->io_bio = bio;
321 io->io_op = (wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE);
322 io->io_next_block = bh->b_blocknr;
323 return 0;
326 static int io_submit_add_bh(struct ext4_io_submit *io,
327 struct ext4_io_page *io_page,
328 struct inode *inode,
329 struct writeback_control *wbc,
330 struct buffer_head *bh)
332 ext4_io_end_t *io_end;
333 int ret;
335 if (buffer_new(bh)) {
336 clear_buffer_new(bh);
337 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
340 if (!buffer_mapped(bh) || buffer_delay(bh)) {
341 if (!buffer_mapped(bh))
342 clear_buffer_dirty(bh);
343 if (io->io_bio)
344 ext4_io_submit(io);
345 return 0;
348 if (io->io_bio && bh->b_blocknr != io->io_next_block) {
349 submit_and_retry:
350 ext4_io_submit(io);
352 if (io->io_bio == NULL) {
353 ret = io_submit_init(io, inode, wbc, bh);
354 if (ret)
355 return ret;
357 io_end = io->io_end;
358 if ((io_end->num_io_pages >= MAX_IO_PAGES) &&
359 (io_end->pages[io_end->num_io_pages-1] != io_page))
360 goto submit_and_retry;
361 if (buffer_uninit(bh) && !(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
362 io_end->flag |= EXT4_IO_END_UNWRITTEN;
363 atomic_inc(&EXT4_I(inode)->i_aiodio_unwritten);
365 io->io_end->size += bh->b_size;
366 io->io_next_block++;
367 ret = bio_add_page(io->io_bio, bh->b_page, bh->b_size, bh_offset(bh));
368 if (ret != bh->b_size)
369 goto submit_and_retry;
370 if ((io_end->num_io_pages == 0) ||
371 (io_end->pages[io_end->num_io_pages-1] != io_page)) {
372 io_end->pages[io_end->num_io_pages++] = io_page;
373 atomic_inc(&io_page->p_count);
375 return 0;
378 int ext4_bio_write_page(struct ext4_io_submit *io,
379 struct page *page,
380 int len,
381 struct writeback_control *wbc)
383 struct inode *inode = page->mapping->host;
384 unsigned block_start, block_end, blocksize;
385 struct ext4_io_page *io_page;
386 struct buffer_head *bh, *head;
387 int ret = 0;
389 blocksize = 1 << inode->i_blkbits;
391 BUG_ON(!PageLocked(page));
392 BUG_ON(PageWriteback(page));
394 io_page = kmem_cache_alloc(io_page_cachep, GFP_NOFS);
395 if (!io_page) {
396 set_page_dirty(page);
397 unlock_page(page);
398 return -ENOMEM;
400 io_page->p_page = page;
401 atomic_set(&io_page->p_count, 1);
402 get_page(page);
403 set_page_writeback(page);
404 ClearPageError(page);
406 for (bh = head = page_buffers(page), block_start = 0;
407 bh != head || !block_start;
408 block_start = block_end, bh = bh->b_this_page) {
410 block_end = block_start + blocksize;
411 if (block_start >= len) {
412 clear_buffer_dirty(bh);
413 set_buffer_uptodate(bh);
414 continue;
416 clear_buffer_dirty(bh);
417 ret = io_submit_add_bh(io, io_page, inode, wbc, bh);
418 if (ret) {
420 * We only get here on ENOMEM. Not much else
421 * we can do but mark the page as dirty, and
422 * better luck next time.
424 set_page_dirty(page);
425 break;
428 unlock_page(page);
430 * If the page was truncated before we could do the writeback,
431 * or we had a memory allocation error while trying to write
432 * the first buffer head, we won't have submitted any pages for
433 * I/O. In that case we need to make sure we've cleared the
434 * PageWriteback bit from the page to prevent the system from
435 * wedging later on.
437 put_io_page(io_page);
438 return ret;