2 * sata_mv.c - Marvell SATA support
4 * Copyright 2008: Marvell Corporation, all rights reserved.
5 * Copyright 2005: EMC Corporation, all rights reserved.
6 * Copyright 2005 Red Hat, Inc. All rights reserved.
8 * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; version 2 of the License.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
28 * --> Errata workaround for NCQ device errors.
30 * --> More errata workarounds for PCI-X.
32 * --> Complete a full errata audit for all chipsets to identify others.
34 * --> ATAPI support (Marvell claims the 60xx/70xx chips can do it).
36 * --> Develop a low-power-consumption strategy, and implement it.
38 * --> [Experiment, low priority] Investigate interrupt coalescing.
39 * Quite often, especially with PCI Message Signalled Interrupts (MSI),
40 * the overhead reduced by interrupt mitigation is quite often not
41 * worth the latency cost.
43 * --> [Experiment, Marvell value added] Is it possible to use target
44 * mode to cross-connect two Linux boxes with Marvell cards? If so,
45 * creating LibATA target mode support would be very interesting.
47 * Target mode, for those without docs, is the ability to directly
48 * connect two SATA ports.
51 #include <linux/kernel.h>
52 #include <linux/module.h>
53 #include <linux/pci.h>
54 #include <linux/init.h>
55 #include <linux/blkdev.h>
56 #include <linux/delay.h>
57 #include <linux/interrupt.h>
58 #include <linux/dmapool.h>
59 #include <linux/dma-mapping.h>
60 #include <linux/device.h>
61 #include <linux/platform_device.h>
62 #include <linux/ata_platform.h>
63 #include <linux/mbus.h>
64 #include <linux/bitops.h>
65 #include <scsi/scsi_host.h>
66 #include <scsi/scsi_cmnd.h>
67 #include <scsi/scsi_device.h>
68 #include <linux/libata.h>
70 #define DRV_NAME "sata_mv"
71 #define DRV_VERSION "1.25"
74 /* BAR's are enumerated in terms of pci_resource_start() terms */
75 MV_PRIMARY_BAR
= 0, /* offset 0x10: memory space */
76 MV_IO_BAR
= 2, /* offset 0x18: IO space */
77 MV_MISC_BAR
= 3, /* offset 0x1c: FLASH, NVRAM, SRAM */
79 MV_MAJOR_REG_AREA_SZ
= 0x10000, /* 64KB */
80 MV_MINOR_REG_AREA_SZ
= 0x2000, /* 8KB */
83 MV_IRQ_COAL_REG_BASE
= 0x18000, /* 6xxx part only */
84 MV_IRQ_COAL_CAUSE
= (MV_IRQ_COAL_REG_BASE
+ 0x08),
85 MV_IRQ_COAL_CAUSE_LO
= (MV_IRQ_COAL_REG_BASE
+ 0x88),
86 MV_IRQ_COAL_CAUSE_HI
= (MV_IRQ_COAL_REG_BASE
+ 0x8c),
87 MV_IRQ_COAL_THRESHOLD
= (MV_IRQ_COAL_REG_BASE
+ 0xcc),
88 MV_IRQ_COAL_TIME_THRESHOLD
= (MV_IRQ_COAL_REG_BASE
+ 0xd0),
90 MV_SATAHC0_REG_BASE
= 0x20000,
91 MV_FLASH_CTL_OFS
= 0x1046c,
92 MV_GPIO_PORT_CTL_OFS
= 0x104f0,
93 MV_RESET_CFG_OFS
= 0x180d8,
95 MV_PCI_REG_SZ
= MV_MAJOR_REG_AREA_SZ
,
96 MV_SATAHC_REG_SZ
= MV_MAJOR_REG_AREA_SZ
,
97 MV_SATAHC_ARBTR_REG_SZ
= MV_MINOR_REG_AREA_SZ
, /* arbiter */
98 MV_PORT_REG_SZ
= MV_MINOR_REG_AREA_SZ
,
101 MV_MAX_Q_DEPTH_MASK
= MV_MAX_Q_DEPTH
- 1,
103 /* CRQB needs alignment on a 1KB boundary. Size == 1KB
104 * CRPB needs alignment on a 256B boundary. Size == 256B
105 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
107 MV_CRQB_Q_SZ
= (32 * MV_MAX_Q_DEPTH
),
108 MV_CRPB_Q_SZ
= (8 * MV_MAX_Q_DEPTH
),
110 MV_SG_TBL_SZ
= (16 * MV_MAX_SG_CT
),
112 /* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */
113 MV_PORT_HC_SHIFT
= 2,
114 MV_PORTS_PER_HC
= (1 << MV_PORT_HC_SHIFT
), /* 4 */
115 /* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */
116 MV_PORT_MASK
= (MV_PORTS_PER_HC
- 1), /* 3 */
119 MV_FLAG_DUAL_HC
= (1 << 30), /* two SATA Host Controllers */
120 MV_FLAG_IRQ_COALESCE
= (1 << 29), /* IRQ coalescing capability */
122 MV_COMMON_FLAGS
= ATA_FLAG_SATA
| ATA_FLAG_NO_LEGACY
|
123 ATA_FLAG_MMIO
| ATA_FLAG_NO_ATAPI
|
124 ATA_FLAG_PIO_POLLING
,
126 MV_6XXX_FLAGS
= MV_FLAG_IRQ_COALESCE
,
128 MV_GENIIE_FLAGS
= MV_COMMON_FLAGS
| MV_6XXX_FLAGS
|
129 ATA_FLAG_PMP
| ATA_FLAG_ACPI_SATA
|
130 ATA_FLAG_NCQ
| ATA_FLAG_AN
,
132 CRQB_FLAG_READ
= (1 << 0),
134 CRQB_IOID_SHIFT
= 6, /* CRQB Gen-II/IIE IO Id shift */
135 CRQB_PMP_SHIFT
= 12, /* CRQB Gen-II/IIE PMP shift */
136 CRQB_HOSTQ_SHIFT
= 17, /* CRQB Gen-II/IIE HostQueTag shift */
137 CRQB_CMD_ADDR_SHIFT
= 8,
138 CRQB_CMD_CS
= (0x2 << 11),
139 CRQB_CMD_LAST
= (1 << 15),
141 CRPB_FLAG_STATUS_SHIFT
= 8,
142 CRPB_IOID_SHIFT_6
= 5, /* CRPB Gen-II IO Id shift */
143 CRPB_IOID_SHIFT_7
= 7, /* CRPB Gen-IIE IO Id shift */
145 EPRD_FLAG_END_OF_TBL
= (1 << 31),
147 /* PCI interface registers */
149 PCI_COMMAND_OFS
= 0xc00,
150 PCI_COMMAND_MRDTRIG
= (1 << 7), /* PCI Master Read Trigger */
152 PCI_MAIN_CMD_STS_OFS
= 0xd30,
153 STOP_PCI_MASTER
= (1 << 2),
154 PCI_MASTER_EMPTY
= (1 << 3),
155 GLOB_SFT_RST
= (1 << 4),
157 MV_PCI_MODE_OFS
= 0xd00,
158 MV_PCI_MODE_MASK
= 0x30,
160 MV_PCI_EXP_ROM_BAR_CTL
= 0xd2c,
161 MV_PCI_DISC_TIMER
= 0xd04,
162 MV_PCI_MSI_TRIGGER
= 0xc38,
163 MV_PCI_SERR_MASK
= 0xc28,
164 MV_PCI_XBAR_TMOUT_OFS
= 0x1d04,
165 MV_PCI_ERR_LOW_ADDRESS
= 0x1d40,
166 MV_PCI_ERR_HIGH_ADDRESS
= 0x1d44,
167 MV_PCI_ERR_ATTRIBUTE
= 0x1d48,
168 MV_PCI_ERR_COMMAND
= 0x1d50,
170 PCI_IRQ_CAUSE_OFS
= 0x1d58,
171 PCI_IRQ_MASK_OFS
= 0x1d5c,
172 PCI_UNMASK_ALL_IRQS
= 0x7fffff, /* bits 22-0 */
174 PCIE_IRQ_CAUSE_OFS
= 0x1900,
175 PCIE_IRQ_MASK_OFS
= 0x1910,
176 PCIE_UNMASK_ALL_IRQS
= 0x40a, /* assorted bits */
178 /* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */
179 PCI_HC_MAIN_IRQ_CAUSE_OFS
= 0x1d60,
180 PCI_HC_MAIN_IRQ_MASK_OFS
= 0x1d64,
181 SOC_HC_MAIN_IRQ_CAUSE_OFS
= 0x20020,
182 SOC_HC_MAIN_IRQ_MASK_OFS
= 0x20024,
183 ERR_IRQ
= (1 << 0), /* shift by port # */
184 DONE_IRQ
= (1 << 1), /* shift by port # */
185 HC0_IRQ_PEND
= 0x1ff, /* bits 0-8 = HC0's ports */
186 HC_SHIFT
= 9, /* bits 9-17 = HC1's ports */
188 TRAN_LO_DONE
= (1 << 19), /* 6xxx: IRQ coalescing */
189 TRAN_HI_DONE
= (1 << 20), /* 6xxx: IRQ coalescing */
190 PORTS_0_3_COAL_DONE
= (1 << 8),
191 PORTS_4_7_COAL_DONE
= (1 << 17),
192 PORTS_0_7_COAL_DONE
= (1 << 21), /* 6xxx: IRQ coalescing */
193 GPIO_INT
= (1 << 22),
194 SELF_INT
= (1 << 23),
195 TWSI_INT
= (1 << 24),
196 HC_MAIN_RSVD
= (0x7f << 25), /* bits 31-25 */
197 HC_MAIN_RSVD_5
= (0x1fff << 19), /* bits 31-19 */
198 HC_MAIN_RSVD_SOC
= (0x3fffffb << 6), /* bits 31-9, 7-6 */
200 /* SATAHC registers */
203 HC_IRQ_CAUSE_OFS
= 0x14,
204 DMA_IRQ
= (1 << 0), /* shift by port # */
205 HC_COAL_IRQ
= (1 << 4), /* IRQ coalescing */
206 DEV_IRQ
= (1 << 8), /* shift by port # */
208 /* Shadow block registers */
210 SHD_CTL_AST_OFS
= 0x20, /* ofs from SHD_BLK_OFS */
213 SATA_STATUS_OFS
= 0x300, /* ctrl, err regs follow status */
214 SATA_ACTIVE_OFS
= 0x350,
215 SATA_FIS_IRQ_CAUSE_OFS
= 0x364,
216 SATA_FIS_IRQ_AN
= (1 << 9), /* async notification */
219 LTMODE_BIT8
= (1 << 8), /* unknown, but necessary */
223 PHY_MODE4_CFG_MASK
= 0x00000003, /* phy internal config field */
224 PHY_MODE4_CFG_VALUE
= 0x00000001, /* phy internal config field */
225 PHY_MODE4_RSVD_ZEROS
= 0x5de3fffa, /* Gen2e always write zeros */
226 PHY_MODE4_RSVD_ONES
= 0x00000005, /* Gen2e always write ones */
229 SATA_IFCTL_OFS
= 0x344,
230 SATA_TESTCTL_OFS
= 0x348,
231 SATA_IFSTAT_OFS
= 0x34c,
232 VENDOR_UNIQUE_FIS_OFS
= 0x35c,
235 FISCFG_WAIT_DEV_ERR
= (1 << 8), /* wait for host on DevErr */
236 FISCFG_SINGLE_SYNC
= (1 << 16), /* SYNC on DMA activation */
239 MV5_LTMODE_OFS
= 0x30,
240 MV5_PHY_CTL_OFS
= 0x0C,
241 SATA_INTERFACE_CFG_OFS
= 0x050,
243 MV_M2_PREAMP_MASK
= 0x7e0,
247 EDMA_CFG_Q_DEPTH
= 0x1f, /* max device queue depth */
248 EDMA_CFG_NCQ
= (1 << 5), /* for R/W FPDMA queued */
249 EDMA_CFG_NCQ_GO_ON_ERR
= (1 << 14), /* continue on error */
250 EDMA_CFG_RD_BRST_EXT
= (1 << 11), /* read burst 512B */
251 EDMA_CFG_WR_BUFF_LEN
= (1 << 13), /* write buffer 512B */
252 EDMA_CFG_EDMA_FBS
= (1 << 16), /* EDMA FIS-Based Switching */
253 EDMA_CFG_FBS
= (1 << 26), /* FIS-Based Switching */
255 EDMA_ERR_IRQ_CAUSE_OFS
= 0x8,
256 EDMA_ERR_IRQ_MASK_OFS
= 0xc,
257 EDMA_ERR_D_PAR
= (1 << 0), /* UDMA data parity err */
258 EDMA_ERR_PRD_PAR
= (1 << 1), /* UDMA PRD parity err */
259 EDMA_ERR_DEV
= (1 << 2), /* device error */
260 EDMA_ERR_DEV_DCON
= (1 << 3), /* device disconnect */
261 EDMA_ERR_DEV_CON
= (1 << 4), /* device connected */
262 EDMA_ERR_SERR
= (1 << 5), /* SError bits [WBDST] raised */
263 EDMA_ERR_SELF_DIS
= (1 << 7), /* Gen II/IIE self-disable */
264 EDMA_ERR_SELF_DIS_5
= (1 << 8), /* Gen I self-disable */
265 EDMA_ERR_BIST_ASYNC
= (1 << 8), /* BIST FIS or Async Notify */
266 EDMA_ERR_TRANS_IRQ_7
= (1 << 8), /* Gen IIE transprt layer irq */
267 EDMA_ERR_CRQB_PAR
= (1 << 9), /* CRQB parity error */
268 EDMA_ERR_CRPB_PAR
= (1 << 10), /* CRPB parity error */
269 EDMA_ERR_INTRL_PAR
= (1 << 11), /* internal parity error */
270 EDMA_ERR_IORDY
= (1 << 12), /* IORdy timeout */
272 EDMA_ERR_LNK_CTRL_RX
= (0xf << 13), /* link ctrl rx error */
273 EDMA_ERR_LNK_CTRL_RX_0
= (1 << 13), /* transient: CRC err */
274 EDMA_ERR_LNK_CTRL_RX_1
= (1 << 14), /* transient: FIFO err */
275 EDMA_ERR_LNK_CTRL_RX_2
= (1 << 15), /* fatal: caught SYNC */
276 EDMA_ERR_LNK_CTRL_RX_3
= (1 << 16), /* transient: FIS rx err */
278 EDMA_ERR_LNK_DATA_RX
= (0xf << 17), /* link data rx error */
280 EDMA_ERR_LNK_CTRL_TX
= (0x1f << 21), /* link ctrl tx error */
281 EDMA_ERR_LNK_CTRL_TX_0
= (1 << 21), /* transient: CRC err */
282 EDMA_ERR_LNK_CTRL_TX_1
= (1 << 22), /* transient: FIFO err */
283 EDMA_ERR_LNK_CTRL_TX_2
= (1 << 23), /* transient: caught SYNC */
284 EDMA_ERR_LNK_CTRL_TX_3
= (1 << 24), /* transient: caught DMAT */
285 EDMA_ERR_LNK_CTRL_TX_4
= (1 << 25), /* transient: FIS collision */
287 EDMA_ERR_LNK_DATA_TX
= (0x1f << 26), /* link data tx error */
289 EDMA_ERR_TRANS_PROTO
= (1 << 31), /* transport protocol error */
290 EDMA_ERR_OVERRUN_5
= (1 << 5),
291 EDMA_ERR_UNDERRUN_5
= (1 << 6),
293 EDMA_ERR_IRQ_TRANSIENT
= EDMA_ERR_LNK_CTRL_RX_0
|
294 EDMA_ERR_LNK_CTRL_RX_1
|
295 EDMA_ERR_LNK_CTRL_RX_3
|
296 EDMA_ERR_LNK_CTRL_TX
,
298 EDMA_EH_FREEZE
= EDMA_ERR_D_PAR
|
308 EDMA_ERR_LNK_CTRL_RX_2
|
309 EDMA_ERR_LNK_DATA_RX
|
310 EDMA_ERR_LNK_DATA_TX
|
311 EDMA_ERR_TRANS_PROTO
,
313 EDMA_EH_FREEZE_5
= EDMA_ERR_D_PAR
|
318 EDMA_ERR_UNDERRUN_5
|
319 EDMA_ERR_SELF_DIS_5
|
325 EDMA_REQ_Q_BASE_HI_OFS
= 0x10,
326 EDMA_REQ_Q_IN_PTR_OFS
= 0x14, /* also contains BASE_LO */
328 EDMA_REQ_Q_OUT_PTR_OFS
= 0x18,
329 EDMA_REQ_Q_PTR_SHIFT
= 5,
331 EDMA_RSP_Q_BASE_HI_OFS
= 0x1c,
332 EDMA_RSP_Q_IN_PTR_OFS
= 0x20,
333 EDMA_RSP_Q_OUT_PTR_OFS
= 0x24, /* also contains BASE_LO */
334 EDMA_RSP_Q_PTR_SHIFT
= 3,
336 EDMA_CMD_OFS
= 0x28, /* EDMA command register */
337 EDMA_EN
= (1 << 0), /* enable EDMA */
338 EDMA_DS
= (1 << 1), /* disable EDMA; self-negated */
339 EDMA_RESET
= (1 << 2), /* reset eng/trans/link/phy */
341 EDMA_STATUS_OFS
= 0x30, /* EDMA engine status */
342 EDMA_STATUS_CACHE_EMPTY
= (1 << 6), /* GenIIe command cache empty */
343 EDMA_STATUS_IDLE
= (1 << 7), /* GenIIe EDMA enabled/idle */
345 EDMA_IORDY_TMOUT_OFS
= 0x34,
346 EDMA_ARB_CFG_OFS
= 0x38,
348 EDMA_HALTCOND_OFS
= 0x60, /* GenIIe halt conditions */
350 /* Host private flags (hp_flags) */
351 MV_HP_FLAG_MSI
= (1 << 0),
352 MV_HP_ERRATA_50XXB0
= (1 << 1),
353 MV_HP_ERRATA_50XXB2
= (1 << 2),
354 MV_HP_ERRATA_60X1B2
= (1 << 3),
355 MV_HP_ERRATA_60X1C0
= (1 << 4),
356 MV_HP_GEN_I
= (1 << 6), /* Generation I: 50xx */
357 MV_HP_GEN_II
= (1 << 7), /* Generation II: 60xx */
358 MV_HP_GEN_IIE
= (1 << 8), /* Generation IIE: 6042/7042 */
359 MV_HP_PCIE
= (1 << 9), /* PCIe bus/regs: 7042 */
360 MV_HP_CUT_THROUGH
= (1 << 10), /* can use EDMA cut-through */
361 MV_HP_FLAG_SOC
= (1 << 11), /* SystemOnChip, no PCI */
363 /* Port private flags (pp_flags) */
364 MV_PP_FLAG_EDMA_EN
= (1 << 0), /* is EDMA engine enabled? */
365 MV_PP_FLAG_NCQ_EN
= (1 << 1), /* is EDMA set up for NCQ? */
366 MV_PP_FLAG_FBS_EN
= (1 << 2), /* is EDMA set up for FBS? */
367 MV_PP_FLAG_DELAYED_EH
= (1 << 3), /* delayed dev err handling */
370 #define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I)
371 #define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II)
372 #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
373 #define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE)
374 #define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC)
376 #define WINDOW_CTRL(i) (0x20030 + ((i) << 4))
377 #define WINDOW_BASE(i) (0x20034 + ((i) << 4))
380 /* DMA boundary 0xffff is required by the s/g splitting
381 * we need on /length/ in mv_fill-sg().
383 MV_DMA_BOUNDARY
= 0xffffU
,
385 /* mask of register bits containing lower 32 bits
386 * of EDMA request queue DMA address
388 EDMA_REQ_Q_BASE_LO_MASK
= 0xfffffc00U
,
390 /* ditto, for response queue */
391 EDMA_RSP_Q_BASE_LO_MASK
= 0xffffff00U
,
405 /* Command ReQuest Block: 32B */
421 /* Command ResPonse Block: 8B */
428 /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
436 struct mv_port_priv
{
437 struct mv_crqb
*crqb
;
439 struct mv_crpb
*crpb
;
441 struct mv_sg
*sg_tbl
[MV_MAX_Q_DEPTH
];
442 dma_addr_t sg_tbl_dma
[MV_MAX_Q_DEPTH
];
444 unsigned int req_idx
;
445 unsigned int resp_idx
;
448 unsigned int delayed_eh_pmp_map
;
451 struct mv_port_signal
{
456 struct mv_host_priv
{
459 struct mv_port_signal signal
[8];
460 const struct mv_hw_ops
*ops
;
463 void __iomem
*main_irq_cause_addr
;
464 void __iomem
*main_irq_mask_addr
;
469 * These consistent DMA memory pools give us guaranteed
470 * alignment for hardware-accessed data structures,
471 * and less memory waste in accomplishing the alignment.
473 struct dma_pool
*crqb_pool
;
474 struct dma_pool
*crpb_pool
;
475 struct dma_pool
*sg_tbl_pool
;
479 void (*phy_errata
)(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
481 void (*enable_leds
)(struct mv_host_priv
*hpriv
, void __iomem
*mmio
);
482 void (*read_preamp
)(struct mv_host_priv
*hpriv
, int idx
,
484 int (*reset_hc
)(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
486 void (*reset_flash
)(struct mv_host_priv
*hpriv
, void __iomem
*mmio
);
487 void (*reset_bus
)(struct ata_host
*host
, void __iomem
*mmio
);
490 static int mv_scr_read(struct ata_link
*link
, unsigned int sc_reg_in
, u32
*val
);
491 static int mv_scr_write(struct ata_link
*link
, unsigned int sc_reg_in
, u32 val
);
492 static int mv5_scr_read(struct ata_link
*link
, unsigned int sc_reg_in
, u32
*val
);
493 static int mv5_scr_write(struct ata_link
*link
, unsigned int sc_reg_in
, u32 val
);
494 static int mv_port_start(struct ata_port
*ap
);
495 static void mv_port_stop(struct ata_port
*ap
);
496 static int mv_qc_defer(struct ata_queued_cmd
*qc
);
497 static void mv_qc_prep(struct ata_queued_cmd
*qc
);
498 static void mv_qc_prep_iie(struct ata_queued_cmd
*qc
);
499 static unsigned int mv_qc_issue(struct ata_queued_cmd
*qc
);
500 static int mv_hardreset(struct ata_link
*link
, unsigned int *class,
501 unsigned long deadline
);
502 static void mv_eh_freeze(struct ata_port
*ap
);
503 static void mv_eh_thaw(struct ata_port
*ap
);
504 static void mv6_dev_config(struct ata_device
*dev
);
506 static void mv5_phy_errata(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
508 static void mv5_enable_leds(struct mv_host_priv
*hpriv
, void __iomem
*mmio
);
509 static void mv5_read_preamp(struct mv_host_priv
*hpriv
, int idx
,
511 static int mv5_reset_hc(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
513 static void mv5_reset_flash(struct mv_host_priv
*hpriv
, void __iomem
*mmio
);
514 static void mv5_reset_bus(struct ata_host
*host
, void __iomem
*mmio
);
516 static void mv6_phy_errata(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
518 static void mv6_enable_leds(struct mv_host_priv
*hpriv
, void __iomem
*mmio
);
519 static void mv6_read_preamp(struct mv_host_priv
*hpriv
, int idx
,
521 static int mv6_reset_hc(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
523 static void mv6_reset_flash(struct mv_host_priv
*hpriv
, void __iomem
*mmio
);
524 static void mv_soc_enable_leds(struct mv_host_priv
*hpriv
,
526 static void mv_soc_read_preamp(struct mv_host_priv
*hpriv
, int idx
,
528 static int mv_soc_reset_hc(struct mv_host_priv
*hpriv
,
529 void __iomem
*mmio
, unsigned int n_hc
);
530 static void mv_soc_reset_flash(struct mv_host_priv
*hpriv
,
532 static void mv_soc_reset_bus(struct ata_host
*host
, void __iomem
*mmio
);
533 static void mv_reset_pci_bus(struct ata_host
*host
, void __iomem
*mmio
);
534 static void mv_reset_channel(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
535 unsigned int port_no
);
536 static int mv_stop_edma(struct ata_port
*ap
);
537 static int mv_stop_edma_engine(void __iomem
*port_mmio
);
538 static void mv_edma_cfg(struct ata_port
*ap
, int want_ncq
);
540 static void mv_pmp_select(struct ata_port
*ap
, int pmp
);
541 static int mv_pmp_hardreset(struct ata_link
*link
, unsigned int *class,
542 unsigned long deadline
);
543 static int mv_softreset(struct ata_link
*link
, unsigned int *class,
544 unsigned long deadline
);
545 static void mv_pmp_error_handler(struct ata_port
*ap
);
546 static void mv_process_crpb_entries(struct ata_port
*ap
,
547 struct mv_port_priv
*pp
);
549 /* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below
550 * because we have to allow room for worst case splitting of
551 * PRDs for 64K boundaries in mv_fill_sg().
553 static struct scsi_host_template mv5_sht
= {
554 ATA_BASE_SHT(DRV_NAME
),
555 .sg_tablesize
= MV_MAX_SG_CT
/ 2,
556 .dma_boundary
= MV_DMA_BOUNDARY
,
559 static struct scsi_host_template mv6_sht
= {
560 ATA_NCQ_SHT(DRV_NAME
),
561 .can_queue
= MV_MAX_Q_DEPTH
- 1,
562 .sg_tablesize
= MV_MAX_SG_CT
/ 2,
563 .dma_boundary
= MV_DMA_BOUNDARY
,
566 static struct ata_port_operations mv5_ops
= {
567 .inherits
= &ata_sff_port_ops
,
569 .qc_defer
= mv_qc_defer
,
570 .qc_prep
= mv_qc_prep
,
571 .qc_issue
= mv_qc_issue
,
573 .freeze
= mv_eh_freeze
,
575 .hardreset
= mv_hardreset
,
576 .error_handler
= ata_std_error_handler
, /* avoid SFF EH */
577 .post_internal_cmd
= ATA_OP_NULL
,
579 .scr_read
= mv5_scr_read
,
580 .scr_write
= mv5_scr_write
,
582 .port_start
= mv_port_start
,
583 .port_stop
= mv_port_stop
,
586 static struct ata_port_operations mv6_ops
= {
587 .inherits
= &mv5_ops
,
588 .dev_config
= mv6_dev_config
,
589 .scr_read
= mv_scr_read
,
590 .scr_write
= mv_scr_write
,
592 .pmp_hardreset
= mv_pmp_hardreset
,
593 .pmp_softreset
= mv_softreset
,
594 .softreset
= mv_softreset
,
595 .error_handler
= mv_pmp_error_handler
,
598 static struct ata_port_operations mv_iie_ops
= {
599 .inherits
= &mv6_ops
,
600 .dev_config
= ATA_OP_NULL
,
601 .qc_prep
= mv_qc_prep_iie
,
604 static const struct ata_port_info mv_port_info
[] = {
606 .flags
= MV_COMMON_FLAGS
,
607 .pio_mask
= 0x1f, /* pio0-4 */
608 .udma_mask
= ATA_UDMA6
,
609 .port_ops
= &mv5_ops
,
612 .flags
= MV_COMMON_FLAGS
| MV_FLAG_DUAL_HC
,
613 .pio_mask
= 0x1f, /* pio0-4 */
614 .udma_mask
= ATA_UDMA6
,
615 .port_ops
= &mv5_ops
,
618 .flags
= MV_COMMON_FLAGS
| MV_FLAG_DUAL_HC
,
619 .pio_mask
= 0x1f, /* pio0-4 */
620 .udma_mask
= ATA_UDMA6
,
621 .port_ops
= &mv5_ops
,
624 .flags
= MV_COMMON_FLAGS
| MV_6XXX_FLAGS
|
625 ATA_FLAG_PMP
| ATA_FLAG_ACPI_SATA
|
627 .pio_mask
= 0x1f, /* pio0-4 */
628 .udma_mask
= ATA_UDMA6
,
629 .port_ops
= &mv6_ops
,
632 .flags
= MV_COMMON_FLAGS
| MV_6XXX_FLAGS
|
633 ATA_FLAG_PMP
| ATA_FLAG_ACPI_SATA
|
634 ATA_FLAG_NCQ
| MV_FLAG_DUAL_HC
,
635 .pio_mask
= 0x1f, /* pio0-4 */
636 .udma_mask
= ATA_UDMA6
,
637 .port_ops
= &mv6_ops
,
640 .flags
= MV_GENIIE_FLAGS
,
641 .pio_mask
= 0x1f, /* pio0-4 */
642 .udma_mask
= ATA_UDMA6
,
643 .port_ops
= &mv_iie_ops
,
646 .flags
= MV_GENIIE_FLAGS
,
647 .pio_mask
= 0x1f, /* pio0-4 */
648 .udma_mask
= ATA_UDMA6
,
649 .port_ops
= &mv_iie_ops
,
652 .flags
= MV_GENIIE_FLAGS
,
653 .pio_mask
= 0x1f, /* pio0-4 */
654 .udma_mask
= ATA_UDMA6
,
655 .port_ops
= &mv_iie_ops
,
659 static const struct pci_device_id mv_pci_tbl
[] = {
660 { PCI_VDEVICE(MARVELL
, 0x5040), chip_504x
},
661 { PCI_VDEVICE(MARVELL
, 0x5041), chip_504x
},
662 { PCI_VDEVICE(MARVELL
, 0x5080), chip_5080
},
663 { PCI_VDEVICE(MARVELL
, 0x5081), chip_508x
},
664 /* RocketRAID 1720/174x have different identifiers */
665 { PCI_VDEVICE(TTI
, 0x1720), chip_6042
},
666 { PCI_VDEVICE(TTI
, 0x1740), chip_6042
},
667 { PCI_VDEVICE(TTI
, 0x1742), chip_6042
},
669 { PCI_VDEVICE(MARVELL
, 0x6040), chip_604x
},
670 { PCI_VDEVICE(MARVELL
, 0x6041), chip_604x
},
671 { PCI_VDEVICE(MARVELL
, 0x6042), chip_6042
},
672 { PCI_VDEVICE(MARVELL
, 0x6080), chip_608x
},
673 { PCI_VDEVICE(MARVELL
, 0x6081), chip_608x
},
675 { PCI_VDEVICE(ADAPTEC2
, 0x0241), chip_604x
},
678 { PCI_VDEVICE(ADAPTEC2
, 0x0243), chip_7042
},
680 /* Marvell 7042 support */
681 { PCI_VDEVICE(MARVELL
, 0x7042), chip_7042
},
683 /* Highpoint RocketRAID PCIe series */
684 { PCI_VDEVICE(TTI
, 0x2300), chip_7042
},
685 { PCI_VDEVICE(TTI
, 0x2310), chip_7042
},
687 { } /* terminate list */
690 static const struct mv_hw_ops mv5xxx_ops
= {
691 .phy_errata
= mv5_phy_errata
,
692 .enable_leds
= mv5_enable_leds
,
693 .read_preamp
= mv5_read_preamp
,
694 .reset_hc
= mv5_reset_hc
,
695 .reset_flash
= mv5_reset_flash
,
696 .reset_bus
= mv5_reset_bus
,
699 static const struct mv_hw_ops mv6xxx_ops
= {
700 .phy_errata
= mv6_phy_errata
,
701 .enable_leds
= mv6_enable_leds
,
702 .read_preamp
= mv6_read_preamp
,
703 .reset_hc
= mv6_reset_hc
,
704 .reset_flash
= mv6_reset_flash
,
705 .reset_bus
= mv_reset_pci_bus
,
708 static const struct mv_hw_ops mv_soc_ops
= {
709 .phy_errata
= mv6_phy_errata
,
710 .enable_leds
= mv_soc_enable_leds
,
711 .read_preamp
= mv_soc_read_preamp
,
712 .reset_hc
= mv_soc_reset_hc
,
713 .reset_flash
= mv_soc_reset_flash
,
714 .reset_bus
= mv_soc_reset_bus
,
721 static inline void writelfl(unsigned long data
, void __iomem
*addr
)
724 (void) readl(addr
); /* flush to avoid PCI posted write */
727 static inline unsigned int mv_hc_from_port(unsigned int port
)
729 return port
>> MV_PORT_HC_SHIFT
;
732 static inline unsigned int mv_hardport_from_port(unsigned int port
)
734 return port
& MV_PORT_MASK
;
738 * Consolidate some rather tricky bit shift calculations.
739 * This is hot-path stuff, so not a function.
740 * Simple code, with two return values, so macro rather than inline.
742 * port is the sole input, in range 0..7.
743 * shift is one output, for use with main_irq_cause / main_irq_mask registers.
744 * hardport is the other output, in range 0..3.
746 * Note that port and hardport may be the same variable in some cases.
748 #define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport) \
750 shift = mv_hc_from_port(port) * HC_SHIFT; \
751 hardport = mv_hardport_from_port(port); \
752 shift += hardport * 2; \
755 static inline void __iomem
*mv_hc_base(void __iomem
*base
, unsigned int hc
)
757 return (base
+ MV_SATAHC0_REG_BASE
+ (hc
* MV_SATAHC_REG_SZ
));
760 static inline void __iomem
*mv_hc_base_from_port(void __iomem
*base
,
763 return mv_hc_base(base
, mv_hc_from_port(port
));
766 static inline void __iomem
*mv_port_base(void __iomem
*base
, unsigned int port
)
768 return mv_hc_base_from_port(base
, port
) +
769 MV_SATAHC_ARBTR_REG_SZ
+
770 (mv_hardport_from_port(port
) * MV_PORT_REG_SZ
);
773 static void __iomem
*mv5_phy_base(void __iomem
*mmio
, unsigned int port
)
775 void __iomem
*hc_mmio
= mv_hc_base_from_port(mmio
, port
);
776 unsigned long ofs
= (mv_hardport_from_port(port
) + 1) * 0x100UL
;
778 return hc_mmio
+ ofs
;
781 static inline void __iomem
*mv_host_base(struct ata_host
*host
)
783 struct mv_host_priv
*hpriv
= host
->private_data
;
787 static inline void __iomem
*mv_ap_base(struct ata_port
*ap
)
789 return mv_port_base(mv_host_base(ap
->host
), ap
->port_no
);
792 static inline int mv_get_hc_count(unsigned long port_flags
)
794 return ((port_flags
& MV_FLAG_DUAL_HC
) ? 2 : 1);
797 static void mv_set_edma_ptrs(void __iomem
*port_mmio
,
798 struct mv_host_priv
*hpriv
,
799 struct mv_port_priv
*pp
)
804 * initialize request queue
806 pp
->req_idx
&= MV_MAX_Q_DEPTH_MASK
; /* paranoia */
807 index
= pp
->req_idx
<< EDMA_REQ_Q_PTR_SHIFT
;
809 WARN_ON(pp
->crqb_dma
& 0x3ff);
810 writel((pp
->crqb_dma
>> 16) >> 16, port_mmio
+ EDMA_REQ_Q_BASE_HI_OFS
);
811 writelfl((pp
->crqb_dma
& EDMA_REQ_Q_BASE_LO_MASK
) | index
,
812 port_mmio
+ EDMA_REQ_Q_IN_PTR_OFS
);
813 writelfl(index
, port_mmio
+ EDMA_REQ_Q_OUT_PTR_OFS
);
816 * initialize response queue
818 pp
->resp_idx
&= MV_MAX_Q_DEPTH_MASK
; /* paranoia */
819 index
= pp
->resp_idx
<< EDMA_RSP_Q_PTR_SHIFT
;
821 WARN_ON(pp
->crpb_dma
& 0xff);
822 writel((pp
->crpb_dma
>> 16) >> 16, port_mmio
+ EDMA_RSP_Q_BASE_HI_OFS
);
823 writelfl(index
, port_mmio
+ EDMA_RSP_Q_IN_PTR_OFS
);
824 writelfl((pp
->crpb_dma
& EDMA_RSP_Q_BASE_LO_MASK
) | index
,
825 port_mmio
+ EDMA_RSP_Q_OUT_PTR_OFS
);
828 static void mv_set_main_irq_mask(struct ata_host
*host
,
829 u32 disable_bits
, u32 enable_bits
)
831 struct mv_host_priv
*hpriv
= host
->private_data
;
832 u32 old_mask
, new_mask
;
834 old_mask
= hpriv
->main_irq_mask
;
835 new_mask
= (old_mask
& ~disable_bits
) | enable_bits
;
836 if (new_mask
!= old_mask
) {
837 hpriv
->main_irq_mask
= new_mask
;
838 writelfl(new_mask
, hpriv
->main_irq_mask_addr
);
842 static void mv_enable_port_irqs(struct ata_port
*ap
,
843 unsigned int port_bits
)
845 unsigned int shift
, hardport
, port
= ap
->port_no
;
846 u32 disable_bits
, enable_bits
;
848 MV_PORT_TO_SHIFT_AND_HARDPORT(port
, shift
, hardport
);
850 disable_bits
= (DONE_IRQ
| ERR_IRQ
) << shift
;
851 enable_bits
= port_bits
<< shift
;
852 mv_set_main_irq_mask(ap
->host
, disable_bits
, enable_bits
);
856 * mv_start_dma - Enable eDMA engine
857 * @base: port base address
858 * @pp: port private data
860 * Verify the local cache of the eDMA state is accurate with a
864 * Inherited from caller.
866 static void mv_start_dma(struct ata_port
*ap
, void __iomem
*port_mmio
,
867 struct mv_port_priv
*pp
, u8 protocol
)
869 int want_ncq
= (protocol
== ATA_PROT_NCQ
);
871 if (pp
->pp_flags
& MV_PP_FLAG_EDMA_EN
) {
872 int using_ncq
= ((pp
->pp_flags
& MV_PP_FLAG_NCQ_EN
) != 0);
873 if (want_ncq
!= using_ncq
)
876 if (!(pp
->pp_flags
& MV_PP_FLAG_EDMA_EN
)) {
877 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
878 int hardport
= mv_hardport_from_port(ap
->port_no
);
879 void __iomem
*hc_mmio
= mv_hc_base_from_port(
880 mv_host_base(ap
->host
), ap
->port_no
);
883 /* clear EDMA event indicators, if any */
884 writelfl(0, port_mmio
+ EDMA_ERR_IRQ_CAUSE_OFS
);
886 /* clear pending irq events */
887 hc_irq_cause
= ~((DEV_IRQ
| DMA_IRQ
) << hardport
);
888 writelfl(hc_irq_cause
, hc_mmio
+ HC_IRQ_CAUSE_OFS
);
890 mv_edma_cfg(ap
, want_ncq
);
892 /* clear FIS IRQ Cause */
893 if (IS_GEN_IIE(hpriv
))
894 writelfl(0, port_mmio
+ SATA_FIS_IRQ_CAUSE_OFS
);
896 mv_set_edma_ptrs(port_mmio
, hpriv
, pp
);
897 mv_enable_port_irqs(ap
, DONE_IRQ
|ERR_IRQ
);
899 writelfl(EDMA_EN
, port_mmio
+ EDMA_CMD_OFS
);
900 pp
->pp_flags
|= MV_PP_FLAG_EDMA_EN
;
904 static void mv_wait_for_edma_empty_idle(struct ata_port
*ap
)
906 void __iomem
*port_mmio
= mv_ap_base(ap
);
907 const u32 empty_idle
= (EDMA_STATUS_CACHE_EMPTY
| EDMA_STATUS_IDLE
);
908 const int per_loop
= 5, timeout
= (15 * 1000 / per_loop
);
912 * Wait for the EDMA engine to finish transactions in progress.
913 * No idea what a good "timeout" value might be, but measurements
914 * indicate that it often requires hundreds of microseconds
915 * with two drives in-use. So we use the 15msec value above
916 * as a rough guess at what even more drives might require.
918 for (i
= 0; i
< timeout
; ++i
) {
919 u32 edma_stat
= readl(port_mmio
+ EDMA_STATUS_OFS
);
920 if ((edma_stat
& empty_idle
) == empty_idle
)
924 /* ata_port_printk(ap, KERN_INFO, "%s: %u+ usecs\n", __func__, i); */
928 * mv_stop_edma_engine - Disable eDMA engine
929 * @port_mmio: io base address
932 * Inherited from caller.
934 static int mv_stop_edma_engine(void __iomem
*port_mmio
)
938 /* Disable eDMA. The disable bit auto clears. */
939 writelfl(EDMA_DS
, port_mmio
+ EDMA_CMD_OFS
);
941 /* Wait for the chip to confirm eDMA is off. */
942 for (i
= 10000; i
> 0; i
--) {
943 u32 reg
= readl(port_mmio
+ EDMA_CMD_OFS
);
944 if (!(reg
& EDMA_EN
))
951 static int mv_stop_edma(struct ata_port
*ap
)
953 void __iomem
*port_mmio
= mv_ap_base(ap
);
954 struct mv_port_priv
*pp
= ap
->private_data
;
956 if (!(pp
->pp_flags
& MV_PP_FLAG_EDMA_EN
))
958 pp
->pp_flags
&= ~MV_PP_FLAG_EDMA_EN
;
959 mv_wait_for_edma_empty_idle(ap
);
960 if (mv_stop_edma_engine(port_mmio
)) {
961 ata_port_printk(ap
, KERN_ERR
, "Unable to stop eDMA\n");
968 static void mv_dump_mem(void __iomem
*start
, unsigned bytes
)
971 for (b
= 0; b
< bytes
; ) {
972 DPRINTK("%p: ", start
+ b
);
973 for (w
= 0; b
< bytes
&& w
< 4; w
++) {
974 printk("%08x ", readl(start
+ b
));
982 static void mv_dump_pci_cfg(struct pci_dev
*pdev
, unsigned bytes
)
987 for (b
= 0; b
< bytes
; ) {
988 DPRINTK("%02x: ", b
);
989 for (w
= 0; b
< bytes
&& w
< 4; w
++) {
990 (void) pci_read_config_dword(pdev
, b
, &dw
);
998 static void mv_dump_all_regs(void __iomem
*mmio_base
, int port
,
999 struct pci_dev
*pdev
)
1002 void __iomem
*hc_base
= mv_hc_base(mmio_base
,
1003 port
>> MV_PORT_HC_SHIFT
);
1004 void __iomem
*port_base
;
1005 int start_port
, num_ports
, p
, start_hc
, num_hcs
, hc
;
1008 start_hc
= start_port
= 0;
1009 num_ports
= 8; /* shld be benign for 4 port devs */
1012 start_hc
= port
>> MV_PORT_HC_SHIFT
;
1014 num_ports
= num_hcs
= 1;
1016 DPRINTK("All registers for port(s) %u-%u:\n", start_port
,
1017 num_ports
> 1 ? num_ports
- 1 : start_port
);
1020 DPRINTK("PCI config space regs:\n");
1021 mv_dump_pci_cfg(pdev
, 0x68);
1023 DPRINTK("PCI regs:\n");
1024 mv_dump_mem(mmio_base
+0xc00, 0x3c);
1025 mv_dump_mem(mmio_base
+0xd00, 0x34);
1026 mv_dump_mem(mmio_base
+0xf00, 0x4);
1027 mv_dump_mem(mmio_base
+0x1d00, 0x6c);
1028 for (hc
= start_hc
; hc
< start_hc
+ num_hcs
; hc
++) {
1029 hc_base
= mv_hc_base(mmio_base
, hc
);
1030 DPRINTK("HC regs (HC %i):\n", hc
);
1031 mv_dump_mem(hc_base
, 0x1c);
1033 for (p
= start_port
; p
< start_port
+ num_ports
; p
++) {
1034 port_base
= mv_port_base(mmio_base
, p
);
1035 DPRINTK("EDMA regs (port %i):\n", p
);
1036 mv_dump_mem(port_base
, 0x54);
1037 DPRINTK("SATA regs (port %i):\n", p
);
1038 mv_dump_mem(port_base
+0x300, 0x60);
1043 static unsigned int mv_scr_offset(unsigned int sc_reg_in
)
1047 switch (sc_reg_in
) {
1051 ofs
= SATA_STATUS_OFS
+ (sc_reg_in
* sizeof(u32
));
1054 ofs
= SATA_ACTIVE_OFS
; /* active is not with the others */
1063 static int mv_scr_read(struct ata_link
*link
, unsigned int sc_reg_in
, u32
*val
)
1065 unsigned int ofs
= mv_scr_offset(sc_reg_in
);
1067 if (ofs
!= 0xffffffffU
) {
1068 *val
= readl(mv_ap_base(link
->ap
) + ofs
);
1074 static int mv_scr_write(struct ata_link
*link
, unsigned int sc_reg_in
, u32 val
)
1076 unsigned int ofs
= mv_scr_offset(sc_reg_in
);
1078 if (ofs
!= 0xffffffffU
) {
1079 writelfl(val
, mv_ap_base(link
->ap
) + ofs
);
1085 static void mv6_dev_config(struct ata_device
*adev
)
1088 * Deal with Gen-II ("mv6") hardware quirks/restrictions:
1090 * Gen-II does not support NCQ over a port multiplier
1091 * (no FIS-based switching).
1093 if (adev
->flags
& ATA_DFLAG_NCQ
) {
1094 if (sata_pmp_attached(adev
->link
->ap
)) {
1095 adev
->flags
&= ~ATA_DFLAG_NCQ
;
1096 ata_dev_printk(adev
, KERN_INFO
,
1097 "NCQ disabled for command-based switching\n");
1102 static int mv_qc_defer(struct ata_queued_cmd
*qc
)
1104 struct ata_link
*link
= qc
->dev
->link
;
1105 struct ata_port
*ap
= link
->ap
;
1106 struct mv_port_priv
*pp
= ap
->private_data
;
1109 * Don't allow new commands if we're in a delayed EH state
1110 * for NCQ and/or FIS-based switching.
1112 if (pp
->pp_flags
& MV_PP_FLAG_DELAYED_EH
)
1113 return ATA_DEFER_PORT
;
1115 * If the port is completely idle, then allow the new qc.
1117 if (ap
->nr_active_links
== 0)
1121 * The port is operating in host queuing mode (EDMA) with NCQ
1122 * enabled, allow multiple NCQ commands. EDMA also allows
1123 * queueing multiple DMA commands but libata core currently
1126 if ((pp
->pp_flags
& MV_PP_FLAG_EDMA_EN
) &&
1127 (pp
->pp_flags
& MV_PP_FLAG_NCQ_EN
) && ata_is_ncq(qc
->tf
.protocol
))
1130 return ATA_DEFER_PORT
;
1133 static void mv_config_fbs(void __iomem
*port_mmio
, int want_ncq
, int want_fbs
)
1135 u32 new_fiscfg
, old_fiscfg
;
1136 u32 new_ltmode
, old_ltmode
;
1137 u32 new_haltcond
, old_haltcond
;
1139 old_fiscfg
= readl(port_mmio
+ FISCFG_OFS
);
1140 old_ltmode
= readl(port_mmio
+ LTMODE_OFS
);
1141 old_haltcond
= readl(port_mmio
+ EDMA_HALTCOND_OFS
);
1143 new_fiscfg
= old_fiscfg
& ~(FISCFG_SINGLE_SYNC
| FISCFG_WAIT_DEV_ERR
);
1144 new_ltmode
= old_ltmode
& ~LTMODE_BIT8
;
1145 new_haltcond
= old_haltcond
| EDMA_ERR_DEV
;
1148 new_fiscfg
= old_fiscfg
| FISCFG_SINGLE_SYNC
;
1149 new_ltmode
= old_ltmode
| LTMODE_BIT8
;
1151 new_haltcond
&= ~EDMA_ERR_DEV
;
1153 new_fiscfg
|= FISCFG_WAIT_DEV_ERR
;
1156 if (new_fiscfg
!= old_fiscfg
)
1157 writelfl(new_fiscfg
, port_mmio
+ FISCFG_OFS
);
1158 if (new_ltmode
!= old_ltmode
)
1159 writelfl(new_ltmode
, port_mmio
+ LTMODE_OFS
);
1160 if (new_haltcond
!= old_haltcond
)
1161 writelfl(new_haltcond
, port_mmio
+ EDMA_HALTCOND_OFS
);
1164 static void mv_60x1_errata_sata25(struct ata_port
*ap
, int want_ncq
)
1166 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
1169 /* workaround for 88SX60x1 FEr SATA#25 (part 1) */
1170 old
= readl(hpriv
->base
+ MV_GPIO_PORT_CTL_OFS
);
1172 new = old
| (1 << 22);
1174 new = old
& ~(1 << 22);
1176 writel(new, hpriv
->base
+ MV_GPIO_PORT_CTL_OFS
);
1179 static void mv_edma_cfg(struct ata_port
*ap
, int want_ncq
)
1182 struct mv_port_priv
*pp
= ap
->private_data
;
1183 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
1184 void __iomem
*port_mmio
= mv_ap_base(ap
);
1186 /* set up non-NCQ EDMA configuration */
1187 cfg
= EDMA_CFG_Q_DEPTH
; /* always 0x1f for *all* chips */
1188 pp
->pp_flags
&= ~MV_PP_FLAG_FBS_EN
;
1190 if (IS_GEN_I(hpriv
))
1191 cfg
|= (1 << 8); /* enab config burst size mask */
1193 else if (IS_GEN_II(hpriv
)) {
1194 cfg
|= EDMA_CFG_RD_BRST_EXT
| EDMA_CFG_WR_BUFF_LEN
;
1195 mv_60x1_errata_sata25(ap
, want_ncq
);
1197 } else if (IS_GEN_IIE(hpriv
)) {
1198 int want_fbs
= sata_pmp_attached(ap
);
1200 * Possible future enhancement:
1202 * The chip can use FBS with non-NCQ, if we allow it,
1203 * But first we need to have the error handling in place
1204 * for this mode (datasheet section 7.3.15.4.2.3).
1205 * So disallow non-NCQ FBS for now.
1207 want_fbs
&= want_ncq
;
1209 mv_config_fbs(port_mmio
, want_ncq
, want_fbs
);
1212 pp
->pp_flags
|= MV_PP_FLAG_FBS_EN
;
1213 cfg
|= EDMA_CFG_EDMA_FBS
; /* FIS-based switching */
1216 cfg
|= (1 << 23); /* do not mask PM field in rx'd FIS */
1217 cfg
|= (1 << 22); /* enab 4-entry host queue cache */
1219 cfg
|= (1 << 18); /* enab early completion */
1220 if (hpriv
->hp_flags
& MV_HP_CUT_THROUGH
)
1221 cfg
|= (1 << 17); /* enab cut-thru (dis stor&forwrd) */
1225 cfg
|= EDMA_CFG_NCQ
;
1226 pp
->pp_flags
|= MV_PP_FLAG_NCQ_EN
;
1228 pp
->pp_flags
&= ~MV_PP_FLAG_NCQ_EN
;
1230 writelfl(cfg
, port_mmio
+ EDMA_CFG_OFS
);
1233 static void mv_port_free_dma_mem(struct ata_port
*ap
)
1235 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
1236 struct mv_port_priv
*pp
= ap
->private_data
;
1240 dma_pool_free(hpriv
->crqb_pool
, pp
->crqb
, pp
->crqb_dma
);
1244 dma_pool_free(hpriv
->crpb_pool
, pp
->crpb
, pp
->crpb_dma
);
1248 * For GEN_I, there's no NCQ, so we have only a single sg_tbl.
1249 * For later hardware, we have one unique sg_tbl per NCQ tag.
1251 for (tag
= 0; tag
< MV_MAX_Q_DEPTH
; ++tag
) {
1252 if (pp
->sg_tbl
[tag
]) {
1253 if (tag
== 0 || !IS_GEN_I(hpriv
))
1254 dma_pool_free(hpriv
->sg_tbl_pool
,
1256 pp
->sg_tbl_dma
[tag
]);
1257 pp
->sg_tbl
[tag
] = NULL
;
1263 * mv_port_start - Port specific init/start routine.
1264 * @ap: ATA channel to manipulate
1266 * Allocate and point to DMA memory, init port private memory,
1270 * Inherited from caller.
1272 static int mv_port_start(struct ata_port
*ap
)
1274 struct device
*dev
= ap
->host
->dev
;
1275 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
1276 struct mv_port_priv
*pp
;
1279 pp
= devm_kzalloc(dev
, sizeof(*pp
), GFP_KERNEL
);
1282 ap
->private_data
= pp
;
1284 pp
->crqb
= dma_pool_alloc(hpriv
->crqb_pool
, GFP_KERNEL
, &pp
->crqb_dma
);
1287 memset(pp
->crqb
, 0, MV_CRQB_Q_SZ
);
1289 pp
->crpb
= dma_pool_alloc(hpriv
->crpb_pool
, GFP_KERNEL
, &pp
->crpb_dma
);
1291 goto out_port_free_dma_mem
;
1292 memset(pp
->crpb
, 0, MV_CRPB_Q_SZ
);
1294 /* 6041/6081 Rev. "C0" (and newer) are okay with async notify */
1295 if (hpriv
->hp_flags
& MV_HP_ERRATA_60X1C0
)
1296 ap
->flags
|= ATA_FLAG_AN
;
1298 * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl.
1299 * For later hardware, we need one unique sg_tbl per NCQ tag.
1301 for (tag
= 0; tag
< MV_MAX_Q_DEPTH
; ++tag
) {
1302 if (tag
== 0 || !IS_GEN_I(hpriv
)) {
1303 pp
->sg_tbl
[tag
] = dma_pool_alloc(hpriv
->sg_tbl_pool
,
1304 GFP_KERNEL
, &pp
->sg_tbl_dma
[tag
]);
1305 if (!pp
->sg_tbl
[tag
])
1306 goto out_port_free_dma_mem
;
1308 pp
->sg_tbl
[tag
] = pp
->sg_tbl
[0];
1309 pp
->sg_tbl_dma
[tag
] = pp
->sg_tbl_dma
[0];
1314 out_port_free_dma_mem
:
1315 mv_port_free_dma_mem(ap
);
1320 * mv_port_stop - Port specific cleanup/stop routine.
1321 * @ap: ATA channel to manipulate
1323 * Stop DMA, cleanup port memory.
1326 * This routine uses the host lock to protect the DMA stop.
1328 static void mv_port_stop(struct ata_port
*ap
)
1331 mv_enable_port_irqs(ap
, 0);
1332 mv_port_free_dma_mem(ap
);
1336 * mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
1337 * @qc: queued command whose SG list to source from
1339 * Populate the SG list and mark the last entry.
1342 * Inherited from caller.
1344 static void mv_fill_sg(struct ata_queued_cmd
*qc
)
1346 struct mv_port_priv
*pp
= qc
->ap
->private_data
;
1347 struct scatterlist
*sg
;
1348 struct mv_sg
*mv_sg
, *last_sg
= NULL
;
1351 mv_sg
= pp
->sg_tbl
[qc
->tag
];
1352 for_each_sg(qc
->sg
, sg
, qc
->n_elem
, si
) {
1353 dma_addr_t addr
= sg_dma_address(sg
);
1354 u32 sg_len
= sg_dma_len(sg
);
1357 u32 offset
= addr
& 0xffff;
1360 if ((offset
+ sg_len
> 0x10000))
1361 len
= 0x10000 - offset
;
1363 mv_sg
->addr
= cpu_to_le32(addr
& 0xffffffff);
1364 mv_sg
->addr_hi
= cpu_to_le32((addr
>> 16) >> 16);
1365 mv_sg
->flags_size
= cpu_to_le32(len
& 0xffff);
1375 if (likely(last_sg
))
1376 last_sg
->flags_size
|= cpu_to_le32(EPRD_FLAG_END_OF_TBL
);
1379 static void mv_crqb_pack_cmd(__le16
*cmdw
, u8 data
, u8 addr
, unsigned last
)
1381 u16 tmp
= data
| (addr
<< CRQB_CMD_ADDR_SHIFT
) | CRQB_CMD_CS
|
1382 (last
? CRQB_CMD_LAST
: 0);
1383 *cmdw
= cpu_to_le16(tmp
);
1387 * mv_qc_prep - Host specific command preparation.
1388 * @qc: queued command to prepare
1390 * This routine simply redirects to the general purpose routine
1391 * if command is not DMA. Else, it handles prep of the CRQB
1392 * (command request block), does some sanity checking, and calls
1393 * the SG load routine.
1396 * Inherited from caller.
1398 static void mv_qc_prep(struct ata_queued_cmd
*qc
)
1400 struct ata_port
*ap
= qc
->ap
;
1401 struct mv_port_priv
*pp
= ap
->private_data
;
1403 struct ata_taskfile
*tf
;
1407 if ((qc
->tf
.protocol
!= ATA_PROT_DMA
) &&
1408 (qc
->tf
.protocol
!= ATA_PROT_NCQ
))
1411 /* Fill in command request block
1413 if (!(qc
->tf
.flags
& ATA_TFLAG_WRITE
))
1414 flags
|= CRQB_FLAG_READ
;
1415 WARN_ON(MV_MAX_Q_DEPTH
<= qc
->tag
);
1416 flags
|= qc
->tag
<< CRQB_TAG_SHIFT
;
1417 flags
|= (qc
->dev
->link
->pmp
& 0xf) << CRQB_PMP_SHIFT
;
1419 /* get current queue index from software */
1420 in_index
= pp
->req_idx
;
1422 pp
->crqb
[in_index
].sg_addr
=
1423 cpu_to_le32(pp
->sg_tbl_dma
[qc
->tag
] & 0xffffffff);
1424 pp
->crqb
[in_index
].sg_addr_hi
=
1425 cpu_to_le32((pp
->sg_tbl_dma
[qc
->tag
] >> 16) >> 16);
1426 pp
->crqb
[in_index
].ctrl_flags
= cpu_to_le16(flags
);
1428 cw
= &pp
->crqb
[in_index
].ata_cmd
[0];
1431 /* Sadly, the CRQB cannot accomodate all registers--there are
1432 * only 11 bytes...so we must pick and choose required
1433 * registers based on the command. So, we drop feature and
1434 * hob_feature for [RW] DMA commands, but they are needed for
1435 * NCQ. NCQ will drop hob_nsect, which is not needed there
1436 * (nsect is used only for the tag; feat/hob_feat hold true nsect).
1438 switch (tf
->command
) {
1440 case ATA_CMD_READ_EXT
:
1442 case ATA_CMD_WRITE_EXT
:
1443 case ATA_CMD_WRITE_FUA_EXT
:
1444 mv_crqb_pack_cmd(cw
++, tf
->hob_nsect
, ATA_REG_NSECT
, 0);
1446 case ATA_CMD_FPDMA_READ
:
1447 case ATA_CMD_FPDMA_WRITE
:
1448 mv_crqb_pack_cmd(cw
++, tf
->hob_feature
, ATA_REG_FEATURE
, 0);
1449 mv_crqb_pack_cmd(cw
++, tf
->feature
, ATA_REG_FEATURE
, 0);
1452 /* The only other commands EDMA supports in non-queued and
1453 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
1454 * of which are defined/used by Linux. If we get here, this
1455 * driver needs work.
1457 * FIXME: modify libata to give qc_prep a return value and
1458 * return error here.
1460 BUG_ON(tf
->command
);
1463 mv_crqb_pack_cmd(cw
++, tf
->nsect
, ATA_REG_NSECT
, 0);
1464 mv_crqb_pack_cmd(cw
++, tf
->hob_lbal
, ATA_REG_LBAL
, 0);
1465 mv_crqb_pack_cmd(cw
++, tf
->lbal
, ATA_REG_LBAL
, 0);
1466 mv_crqb_pack_cmd(cw
++, tf
->hob_lbam
, ATA_REG_LBAM
, 0);
1467 mv_crqb_pack_cmd(cw
++, tf
->lbam
, ATA_REG_LBAM
, 0);
1468 mv_crqb_pack_cmd(cw
++, tf
->hob_lbah
, ATA_REG_LBAH
, 0);
1469 mv_crqb_pack_cmd(cw
++, tf
->lbah
, ATA_REG_LBAH
, 0);
1470 mv_crqb_pack_cmd(cw
++, tf
->device
, ATA_REG_DEVICE
, 0);
1471 mv_crqb_pack_cmd(cw
++, tf
->command
, ATA_REG_CMD
, 1); /* last */
1473 if (!(qc
->flags
& ATA_QCFLAG_DMAMAP
))
1479 * mv_qc_prep_iie - Host specific command preparation.
1480 * @qc: queued command to prepare
1482 * This routine simply redirects to the general purpose routine
1483 * if command is not DMA. Else, it handles prep of the CRQB
1484 * (command request block), does some sanity checking, and calls
1485 * the SG load routine.
1488 * Inherited from caller.
1490 static void mv_qc_prep_iie(struct ata_queued_cmd
*qc
)
1492 struct ata_port
*ap
= qc
->ap
;
1493 struct mv_port_priv
*pp
= ap
->private_data
;
1494 struct mv_crqb_iie
*crqb
;
1495 struct ata_taskfile
*tf
;
1499 if ((qc
->tf
.protocol
!= ATA_PROT_DMA
) &&
1500 (qc
->tf
.protocol
!= ATA_PROT_NCQ
))
1503 /* Fill in Gen IIE command request block */
1504 if (!(qc
->tf
.flags
& ATA_TFLAG_WRITE
))
1505 flags
|= CRQB_FLAG_READ
;
1507 WARN_ON(MV_MAX_Q_DEPTH
<= qc
->tag
);
1508 flags
|= qc
->tag
<< CRQB_TAG_SHIFT
;
1509 flags
|= qc
->tag
<< CRQB_HOSTQ_SHIFT
;
1510 flags
|= (qc
->dev
->link
->pmp
& 0xf) << CRQB_PMP_SHIFT
;
1512 /* get current queue index from software */
1513 in_index
= pp
->req_idx
;
1515 crqb
= (struct mv_crqb_iie
*) &pp
->crqb
[in_index
];
1516 crqb
->addr
= cpu_to_le32(pp
->sg_tbl_dma
[qc
->tag
] & 0xffffffff);
1517 crqb
->addr_hi
= cpu_to_le32((pp
->sg_tbl_dma
[qc
->tag
] >> 16) >> 16);
1518 crqb
->flags
= cpu_to_le32(flags
);
1521 crqb
->ata_cmd
[0] = cpu_to_le32(
1522 (tf
->command
<< 16) |
1525 crqb
->ata_cmd
[1] = cpu_to_le32(
1531 crqb
->ata_cmd
[2] = cpu_to_le32(
1532 (tf
->hob_lbal
<< 0) |
1533 (tf
->hob_lbam
<< 8) |
1534 (tf
->hob_lbah
<< 16) |
1535 (tf
->hob_feature
<< 24)
1537 crqb
->ata_cmd
[3] = cpu_to_le32(
1539 (tf
->hob_nsect
<< 8)
1542 if (!(qc
->flags
& ATA_QCFLAG_DMAMAP
))
1548 * mv_qc_issue - Initiate a command to the host
1549 * @qc: queued command to start
1551 * This routine simply redirects to the general purpose routine
1552 * if command is not DMA. Else, it sanity checks our local
1553 * caches of the request producer/consumer indices then enables
1554 * DMA and bumps the request producer index.
1557 * Inherited from caller.
1559 static unsigned int mv_qc_issue(struct ata_queued_cmd
*qc
)
1561 struct ata_port
*ap
= qc
->ap
;
1562 void __iomem
*port_mmio
= mv_ap_base(ap
);
1563 struct mv_port_priv
*pp
= ap
->private_data
;
1566 if ((qc
->tf
.protocol
!= ATA_PROT_DMA
) &&
1567 (qc
->tf
.protocol
!= ATA_PROT_NCQ
)) {
1568 static int limit_warnings
= 10;
1570 * Errata SATA#16, SATA#24: warn if multiple DRQs expected.
1572 * Someday, we might implement special polling workarounds
1573 * for these, but it all seems rather unnecessary since we
1574 * normally use only DMA for commands which transfer more
1575 * than a single block of data.
1577 * Much of the time, this could just work regardless.
1578 * So for now, just log the incident, and allow the attempt.
1580 if (limit_warnings
> 0 && (qc
->nbytes
/ qc
->sect_size
) > 1) {
1582 ata_link_printk(qc
->dev
->link
, KERN_WARNING
, DRV_NAME
1583 ": attempting PIO w/multiple DRQ: "
1584 "this may fail due to h/w errata\n");
1587 * We're about to send a non-EDMA capable command to the
1588 * port. Turn off EDMA so there won't be problems accessing
1589 * shadow block, etc registers.
1592 mv_enable_port_irqs(ap
, ERR_IRQ
);
1593 mv_pmp_select(ap
, qc
->dev
->link
->pmp
);
1594 return ata_sff_qc_issue(qc
);
1597 mv_start_dma(ap
, port_mmio
, pp
, qc
->tf
.protocol
);
1599 pp
->req_idx
= (pp
->req_idx
+ 1) & MV_MAX_Q_DEPTH_MASK
;
1600 in_index
= pp
->req_idx
<< EDMA_REQ_Q_PTR_SHIFT
;
1602 /* and write the request in pointer to kick the EDMA to life */
1603 writelfl((pp
->crqb_dma
& EDMA_REQ_Q_BASE_LO_MASK
) | in_index
,
1604 port_mmio
+ EDMA_REQ_Q_IN_PTR_OFS
);
1609 static struct ata_queued_cmd
*mv_get_active_qc(struct ata_port
*ap
)
1611 struct mv_port_priv
*pp
= ap
->private_data
;
1612 struct ata_queued_cmd
*qc
;
1614 if (pp
->pp_flags
& MV_PP_FLAG_NCQ_EN
)
1616 qc
= ata_qc_from_tag(ap
, ap
->link
.active_tag
);
1617 if (qc
&& (qc
->tf
.flags
& ATA_TFLAG_POLLING
))
1622 static void mv_pmp_error_handler(struct ata_port
*ap
)
1624 unsigned int pmp
, pmp_map
;
1625 struct mv_port_priv
*pp
= ap
->private_data
;
1627 if (pp
->pp_flags
& MV_PP_FLAG_DELAYED_EH
) {
1629 * Perform NCQ error analysis on failed PMPs
1630 * before we freeze the port entirely.
1632 * The failed PMPs are marked earlier by mv_pmp_eh_prep().
1634 pmp_map
= pp
->delayed_eh_pmp_map
;
1635 pp
->pp_flags
&= ~MV_PP_FLAG_DELAYED_EH
;
1636 for (pmp
= 0; pmp_map
!= 0; pmp
++) {
1637 unsigned int this_pmp
= (1 << pmp
);
1638 if (pmp_map
& this_pmp
) {
1639 struct ata_link
*link
= &ap
->pmp_link
[pmp
];
1640 pmp_map
&= ~this_pmp
;
1641 ata_eh_analyze_ncq_error(link
);
1644 ata_port_freeze(ap
);
1646 sata_pmp_error_handler(ap
);
1649 static unsigned int mv_get_err_pmp_map(struct ata_port
*ap
)
1651 void __iomem
*port_mmio
= mv_ap_base(ap
);
1653 return readl(port_mmio
+ SATA_TESTCTL_OFS
) >> 16;
1656 static void mv_pmp_eh_prep(struct ata_port
*ap
, unsigned int pmp_map
)
1658 struct ata_eh_info
*ehi
;
1662 * Initialize EH info for PMPs which saw device errors
1664 ehi
= &ap
->link
.eh_info
;
1665 for (pmp
= 0; pmp_map
!= 0; pmp
++) {
1666 unsigned int this_pmp
= (1 << pmp
);
1667 if (pmp_map
& this_pmp
) {
1668 struct ata_link
*link
= &ap
->pmp_link
[pmp
];
1670 pmp_map
&= ~this_pmp
;
1671 ehi
= &link
->eh_info
;
1672 ata_ehi_clear_desc(ehi
);
1673 ata_ehi_push_desc(ehi
, "dev err");
1674 ehi
->err_mask
|= AC_ERR_DEV
;
1675 ehi
->action
|= ATA_EH_RESET
;
1676 ata_link_abort(link
);
1681 static int mv_req_q_empty(struct ata_port
*ap
)
1683 void __iomem
*port_mmio
= mv_ap_base(ap
);
1684 u32 in_ptr
, out_ptr
;
1686 in_ptr
= (readl(port_mmio
+ EDMA_REQ_Q_IN_PTR_OFS
)
1687 >> EDMA_REQ_Q_PTR_SHIFT
) & MV_MAX_Q_DEPTH_MASK
;
1688 out_ptr
= (readl(port_mmio
+ EDMA_REQ_Q_OUT_PTR_OFS
)
1689 >> EDMA_REQ_Q_PTR_SHIFT
) & MV_MAX_Q_DEPTH_MASK
;
1690 return (in_ptr
== out_ptr
); /* 1 == queue_is_empty */
1693 static int mv_handle_fbs_ncq_dev_err(struct ata_port
*ap
)
1695 struct mv_port_priv
*pp
= ap
->private_data
;
1697 unsigned int old_map
, new_map
;
1700 * Device error during FBS+NCQ operation:
1702 * Set a port flag to prevent further I/O being enqueued.
1703 * Leave the EDMA running to drain outstanding commands from this port.
1704 * Perform the post-mortem/EH only when all responses are complete.
1705 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2).
1707 if (!(pp
->pp_flags
& MV_PP_FLAG_DELAYED_EH
)) {
1708 pp
->pp_flags
|= MV_PP_FLAG_DELAYED_EH
;
1709 pp
->delayed_eh_pmp_map
= 0;
1711 old_map
= pp
->delayed_eh_pmp_map
;
1712 new_map
= old_map
| mv_get_err_pmp_map(ap
);
1714 if (old_map
!= new_map
) {
1715 pp
->delayed_eh_pmp_map
= new_map
;
1716 mv_pmp_eh_prep(ap
, new_map
& ~old_map
);
1718 failed_links
= hweight16(new_map
);
1720 ata_port_printk(ap
, KERN_INFO
, "%s: pmp_map=%04x qc_map=%04x "
1721 "failed_links=%d nr_active_links=%d\n",
1722 __func__
, pp
->delayed_eh_pmp_map
,
1723 ap
->qc_active
, failed_links
,
1724 ap
->nr_active_links
);
1726 if (ap
->nr_active_links
<= failed_links
&& mv_req_q_empty(ap
)) {
1727 mv_process_crpb_entries(ap
, pp
);
1730 ata_port_printk(ap
, KERN_INFO
, "%s: done\n", __func__
);
1731 return 1; /* handled */
1733 ata_port_printk(ap
, KERN_INFO
, "%s: waiting\n", __func__
);
1734 return 1; /* handled */
1737 static int mv_handle_fbs_non_ncq_dev_err(struct ata_port
*ap
)
1740 * Possible future enhancement:
1742 * FBS+non-NCQ operation is not yet implemented.
1743 * See related notes in mv_edma_cfg().
1745 * Device error during FBS+non-NCQ operation:
1747 * We need to snapshot the shadow registers for each failed command.
1748 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3).
1750 return 0; /* not handled */
1753 static int mv_handle_dev_err(struct ata_port
*ap
, u32 edma_err_cause
)
1755 struct mv_port_priv
*pp
= ap
->private_data
;
1757 if (!(pp
->pp_flags
& MV_PP_FLAG_EDMA_EN
))
1758 return 0; /* EDMA was not active: not handled */
1759 if (!(pp
->pp_flags
& MV_PP_FLAG_FBS_EN
))
1760 return 0; /* FBS was not active: not handled */
1762 if (!(edma_err_cause
& EDMA_ERR_DEV
))
1763 return 0; /* non DEV error: not handled */
1764 edma_err_cause
&= ~EDMA_ERR_IRQ_TRANSIENT
;
1765 if (edma_err_cause
& ~(EDMA_ERR_DEV
| EDMA_ERR_SELF_DIS
))
1766 return 0; /* other problems: not handled */
1768 if (pp
->pp_flags
& MV_PP_FLAG_NCQ_EN
) {
1770 * EDMA should NOT have self-disabled for this case.
1771 * If it did, then something is wrong elsewhere,
1772 * and we cannot handle it here.
1774 if (edma_err_cause
& EDMA_ERR_SELF_DIS
) {
1775 ata_port_printk(ap
, KERN_WARNING
,
1776 "%s: err_cause=0x%x pp_flags=0x%x\n",
1777 __func__
, edma_err_cause
, pp
->pp_flags
);
1778 return 0; /* not handled */
1780 return mv_handle_fbs_ncq_dev_err(ap
);
1783 * EDMA should have self-disabled for this case.
1784 * If it did not, then something is wrong elsewhere,
1785 * and we cannot handle it here.
1787 if (!(edma_err_cause
& EDMA_ERR_SELF_DIS
)) {
1788 ata_port_printk(ap
, KERN_WARNING
,
1789 "%s: err_cause=0x%x pp_flags=0x%x\n",
1790 __func__
, edma_err_cause
, pp
->pp_flags
);
1791 return 0; /* not handled */
1793 return mv_handle_fbs_non_ncq_dev_err(ap
);
1795 return 0; /* not handled */
1798 static void mv_unexpected_intr(struct ata_port
*ap
, int edma_was_enabled
)
1800 struct ata_eh_info
*ehi
= &ap
->link
.eh_info
;
1801 char *when
= "idle";
1803 ata_ehi_clear_desc(ehi
);
1804 if (!ap
|| (ap
->flags
& ATA_FLAG_DISABLED
)) {
1806 } else if (edma_was_enabled
) {
1807 when
= "EDMA enabled";
1809 struct ata_queued_cmd
*qc
= ata_qc_from_tag(ap
, ap
->link
.active_tag
);
1810 if (qc
&& (qc
->tf
.flags
& ATA_TFLAG_POLLING
))
1813 ata_ehi_push_desc(ehi
, "unexpected device interrupt while %s", when
);
1814 ehi
->err_mask
|= AC_ERR_OTHER
;
1815 ehi
->action
|= ATA_EH_RESET
;
1816 ata_port_freeze(ap
);
1820 * mv_err_intr - Handle error interrupts on the port
1821 * @ap: ATA channel to manipulate
1823 * Most cases require a full reset of the chip's state machine,
1824 * which also performs a COMRESET.
1825 * Also, if the port disabled DMA, update our cached copy to match.
1828 * Inherited from caller.
1830 static void mv_err_intr(struct ata_port
*ap
)
1832 void __iomem
*port_mmio
= mv_ap_base(ap
);
1833 u32 edma_err_cause
, eh_freeze_mask
, serr
= 0;
1835 struct mv_port_priv
*pp
= ap
->private_data
;
1836 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
1837 unsigned int action
= 0, err_mask
= 0;
1838 struct ata_eh_info
*ehi
= &ap
->link
.eh_info
;
1839 struct ata_queued_cmd
*qc
;
1843 * Read and clear the SError and err_cause bits.
1844 * For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear
1845 * the FIS_IRQ_CAUSE register before clearing edma_err_cause.
1847 sata_scr_read(&ap
->link
, SCR_ERROR
, &serr
);
1848 sata_scr_write_flush(&ap
->link
, SCR_ERROR
, serr
);
1850 edma_err_cause
= readl(port_mmio
+ EDMA_ERR_IRQ_CAUSE_OFS
);
1851 if (IS_GEN_IIE(hpriv
) && (edma_err_cause
& EDMA_ERR_TRANS_IRQ_7
)) {
1852 fis_cause
= readl(port_mmio
+ SATA_FIS_IRQ_CAUSE_OFS
);
1853 writelfl(~fis_cause
, port_mmio
+ SATA_FIS_IRQ_CAUSE_OFS
);
1855 writelfl(~edma_err_cause
, port_mmio
+ EDMA_ERR_IRQ_CAUSE_OFS
);
1857 if (edma_err_cause
& EDMA_ERR_DEV
) {
1859 * Device errors during FIS-based switching operation
1860 * require special handling.
1862 if (mv_handle_dev_err(ap
, edma_err_cause
))
1866 qc
= mv_get_active_qc(ap
);
1867 ata_ehi_clear_desc(ehi
);
1868 ata_ehi_push_desc(ehi
, "edma_err_cause=%08x pp_flags=%08x",
1869 edma_err_cause
, pp
->pp_flags
);
1871 if (IS_GEN_IIE(hpriv
) && (edma_err_cause
& EDMA_ERR_TRANS_IRQ_7
)) {
1872 ata_ehi_push_desc(ehi
, "fis_cause=%08x", fis_cause
);
1873 if (fis_cause
& SATA_FIS_IRQ_AN
) {
1874 u32 ec
= edma_err_cause
&
1875 ~(EDMA_ERR_TRANS_IRQ_7
| EDMA_ERR_IRQ_TRANSIENT
);
1876 sata_async_notification(ap
);
1878 return; /* Just an AN; no need for the nukes */
1879 ata_ehi_push_desc(ehi
, "SDB notify");
1883 * All generations share these EDMA error cause bits:
1885 if (edma_err_cause
& EDMA_ERR_DEV
) {
1886 err_mask
|= AC_ERR_DEV
;
1887 action
|= ATA_EH_RESET
;
1888 ata_ehi_push_desc(ehi
, "dev error");
1890 if (edma_err_cause
& (EDMA_ERR_D_PAR
| EDMA_ERR_PRD_PAR
|
1891 EDMA_ERR_CRQB_PAR
| EDMA_ERR_CRPB_PAR
|
1892 EDMA_ERR_INTRL_PAR
)) {
1893 err_mask
|= AC_ERR_ATA_BUS
;
1894 action
|= ATA_EH_RESET
;
1895 ata_ehi_push_desc(ehi
, "parity error");
1897 if (edma_err_cause
& (EDMA_ERR_DEV_DCON
| EDMA_ERR_DEV_CON
)) {
1898 ata_ehi_hotplugged(ehi
);
1899 ata_ehi_push_desc(ehi
, edma_err_cause
& EDMA_ERR_DEV_DCON
?
1900 "dev disconnect" : "dev connect");
1901 action
|= ATA_EH_RESET
;
1905 * Gen-I has a different SELF_DIS bit,
1906 * different FREEZE bits, and no SERR bit:
1908 if (IS_GEN_I(hpriv
)) {
1909 eh_freeze_mask
= EDMA_EH_FREEZE_5
;
1910 if (edma_err_cause
& EDMA_ERR_SELF_DIS_5
) {
1911 pp
->pp_flags
&= ~MV_PP_FLAG_EDMA_EN
;
1912 ata_ehi_push_desc(ehi
, "EDMA self-disable");
1915 eh_freeze_mask
= EDMA_EH_FREEZE
;
1916 if (edma_err_cause
& EDMA_ERR_SELF_DIS
) {
1917 pp
->pp_flags
&= ~MV_PP_FLAG_EDMA_EN
;
1918 ata_ehi_push_desc(ehi
, "EDMA self-disable");
1920 if (edma_err_cause
& EDMA_ERR_SERR
) {
1921 ata_ehi_push_desc(ehi
, "SError=%08x", serr
);
1922 err_mask
|= AC_ERR_ATA_BUS
;
1923 action
|= ATA_EH_RESET
;
1928 err_mask
= AC_ERR_OTHER
;
1929 action
|= ATA_EH_RESET
;
1932 ehi
->serror
|= serr
;
1933 ehi
->action
|= action
;
1936 qc
->err_mask
|= err_mask
;
1938 ehi
->err_mask
|= err_mask
;
1940 if (err_mask
== AC_ERR_DEV
) {
1942 * Cannot do ata_port_freeze() here,
1943 * because it would kill PIO access,
1944 * which is needed for further diagnosis.
1948 } else if (edma_err_cause
& eh_freeze_mask
) {
1950 * Note to self: ata_port_freeze() calls ata_port_abort()
1952 ata_port_freeze(ap
);
1959 ata_link_abort(qc
->dev
->link
);
1965 static void mv_process_crpb_response(struct ata_port
*ap
,
1966 struct mv_crpb
*response
, unsigned int tag
, int ncq_enabled
)
1968 struct ata_queued_cmd
*qc
= ata_qc_from_tag(ap
, tag
);
1972 u16 edma_status
= le16_to_cpu(response
->flags
);
1974 * edma_status from a response queue entry:
1975 * LSB is from EDMA_ERR_IRQ_CAUSE_OFS (non-NCQ only).
1976 * MSB is saved ATA status from command completion.
1979 u8 err_cause
= edma_status
& 0xff & ~EDMA_ERR_DEV
;
1982 * Error will be seen/handled by mv_err_intr().
1983 * So do nothing at all here.
1988 ata_status
= edma_status
>> CRPB_FLAG_STATUS_SHIFT
;
1989 if (!ac_err_mask(ata_status
))
1990 ata_qc_complete(qc
);
1991 /* else: leave it for mv_err_intr() */
1993 ata_port_printk(ap
, KERN_ERR
, "%s: no qc for tag=%d\n",
1998 static void mv_process_crpb_entries(struct ata_port
*ap
, struct mv_port_priv
*pp
)
2000 void __iomem
*port_mmio
= mv_ap_base(ap
);
2001 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
2003 bool work_done
= false;
2004 int ncq_enabled
= (pp
->pp_flags
& MV_PP_FLAG_NCQ_EN
);
2006 /* Get the hardware queue position index */
2007 in_index
= (readl(port_mmio
+ EDMA_RSP_Q_IN_PTR_OFS
)
2008 >> EDMA_RSP_Q_PTR_SHIFT
) & MV_MAX_Q_DEPTH_MASK
;
2010 /* Process new responses from since the last time we looked */
2011 while (in_index
!= pp
->resp_idx
) {
2013 struct mv_crpb
*response
= &pp
->crpb
[pp
->resp_idx
];
2015 pp
->resp_idx
= (pp
->resp_idx
+ 1) & MV_MAX_Q_DEPTH_MASK
;
2017 if (IS_GEN_I(hpriv
)) {
2018 /* 50xx: no NCQ, only one command active at a time */
2019 tag
= ap
->link
.active_tag
;
2021 /* Gen II/IIE: get command tag from CRPB entry */
2022 tag
= le16_to_cpu(response
->id
) & 0x1f;
2024 mv_process_crpb_response(ap
, response
, tag
, ncq_enabled
);
2028 /* Update the software queue position index in hardware */
2030 writelfl((pp
->crpb_dma
& EDMA_RSP_Q_BASE_LO_MASK
) |
2031 (pp
->resp_idx
<< EDMA_RSP_Q_PTR_SHIFT
),
2032 port_mmio
+ EDMA_RSP_Q_OUT_PTR_OFS
);
2035 static void mv_port_intr(struct ata_port
*ap
, u32 port_cause
)
2037 struct mv_port_priv
*pp
;
2038 int edma_was_enabled
;
2040 if (!ap
|| (ap
->flags
& ATA_FLAG_DISABLED
)) {
2041 mv_unexpected_intr(ap
, 0);
2045 * Grab a snapshot of the EDMA_EN flag setting,
2046 * so that we have a consistent view for this port,
2047 * even if something we call of our routines changes it.
2049 pp
= ap
->private_data
;
2050 edma_was_enabled
= (pp
->pp_flags
& MV_PP_FLAG_EDMA_EN
);
2052 * Process completed CRPB response(s) before other events.
2054 if (edma_was_enabled
&& (port_cause
& DONE_IRQ
)) {
2055 mv_process_crpb_entries(ap
, pp
);
2056 if (pp
->pp_flags
& MV_PP_FLAG_DELAYED_EH
)
2057 mv_handle_fbs_ncq_dev_err(ap
);
2060 * Handle chip-reported errors, or continue on to handle PIO.
2062 if (unlikely(port_cause
& ERR_IRQ
)) {
2064 } else if (!edma_was_enabled
) {
2065 struct ata_queued_cmd
*qc
= mv_get_active_qc(ap
);
2067 ata_sff_host_intr(ap
, qc
);
2069 mv_unexpected_intr(ap
, edma_was_enabled
);
2074 * mv_host_intr - Handle all interrupts on the given host controller
2075 * @host: host specific structure
2076 * @main_irq_cause: Main interrupt cause register for the chip.
2079 * Inherited from caller.
2081 static int mv_host_intr(struct ata_host
*host
, u32 main_irq_cause
)
2083 struct mv_host_priv
*hpriv
= host
->private_data
;
2084 void __iomem
*mmio
= hpriv
->base
, *hc_mmio
;
2085 unsigned int handled
= 0, port
;
2087 for (port
= 0; port
< hpriv
->n_ports
; port
++) {
2088 struct ata_port
*ap
= host
->ports
[port
];
2089 unsigned int p
, shift
, hardport
, port_cause
;
2091 MV_PORT_TO_SHIFT_AND_HARDPORT(port
, shift
, hardport
);
2093 * Each hc within the host has its own hc_irq_cause register,
2094 * where the interrupting ports bits get ack'd.
2096 if (hardport
== 0) { /* first port on this hc ? */
2097 u32 hc_cause
= (main_irq_cause
>> shift
) & HC0_IRQ_PEND
;
2098 u32 port_mask
, ack_irqs
;
2100 * Skip this entire hc if nothing pending for any ports
2103 port
+= MV_PORTS_PER_HC
- 1;
2107 * We don't need/want to read the hc_irq_cause register,
2108 * because doing so hurts performance, and
2109 * main_irq_cause already gives us everything we need.
2111 * But we do have to *write* to the hc_irq_cause to ack
2112 * the ports that we are handling this time through.
2114 * This requires that we create a bitmap for those
2115 * ports which interrupted us, and use that bitmap
2116 * to ack (only) those ports via hc_irq_cause.
2119 for (p
= 0; p
< MV_PORTS_PER_HC
; ++p
) {
2120 if ((port
+ p
) >= hpriv
->n_ports
)
2122 port_mask
= (DONE_IRQ
| ERR_IRQ
) << (p
* 2);
2123 if (hc_cause
& port_mask
)
2124 ack_irqs
|= (DMA_IRQ
| DEV_IRQ
) << p
;
2126 hc_mmio
= mv_hc_base_from_port(mmio
, port
);
2127 writelfl(~ack_irqs
, hc_mmio
+ HC_IRQ_CAUSE_OFS
);
2131 * Handle interrupts signalled for this port:
2133 port_cause
= (main_irq_cause
>> shift
) & (DONE_IRQ
| ERR_IRQ
);
2135 mv_port_intr(ap
, port_cause
);
2140 static int mv_pci_error(struct ata_host
*host
, void __iomem
*mmio
)
2142 struct mv_host_priv
*hpriv
= host
->private_data
;
2143 struct ata_port
*ap
;
2144 struct ata_queued_cmd
*qc
;
2145 struct ata_eh_info
*ehi
;
2146 unsigned int i
, err_mask
, printed
= 0;
2149 err_cause
= readl(mmio
+ hpriv
->irq_cause_ofs
);
2151 dev_printk(KERN_ERR
, host
->dev
, "PCI ERROR; PCI IRQ cause=0x%08x\n",
2154 DPRINTK("All regs @ PCI error\n");
2155 mv_dump_all_regs(mmio
, -1, to_pci_dev(host
->dev
));
2157 writelfl(0, mmio
+ hpriv
->irq_cause_ofs
);
2159 for (i
= 0; i
< host
->n_ports
; i
++) {
2160 ap
= host
->ports
[i
];
2161 if (!ata_link_offline(&ap
->link
)) {
2162 ehi
= &ap
->link
.eh_info
;
2163 ata_ehi_clear_desc(ehi
);
2165 ata_ehi_push_desc(ehi
,
2166 "PCI err cause 0x%08x", err_cause
);
2167 err_mask
= AC_ERR_HOST_BUS
;
2168 ehi
->action
= ATA_EH_RESET
;
2169 qc
= ata_qc_from_tag(ap
, ap
->link
.active_tag
);
2171 qc
->err_mask
|= err_mask
;
2173 ehi
->err_mask
|= err_mask
;
2175 ata_port_freeze(ap
);
2178 return 1; /* handled */
2182 * mv_interrupt - Main interrupt event handler
2184 * @dev_instance: private data; in this case the host structure
2186 * Read the read only register to determine if any host
2187 * controllers have pending interrupts. If so, call lower level
2188 * routine to handle. Also check for PCI errors which are only
2192 * This routine holds the host lock while processing pending
2195 static irqreturn_t
mv_interrupt(int irq
, void *dev_instance
)
2197 struct ata_host
*host
= dev_instance
;
2198 struct mv_host_priv
*hpriv
= host
->private_data
;
2199 unsigned int handled
= 0;
2200 int using_msi
= hpriv
->hp_flags
& MV_HP_FLAG_MSI
;
2201 u32 main_irq_cause
, pending_irqs
;
2203 spin_lock(&host
->lock
);
2205 /* for MSI: block new interrupts while in here */
2207 writel(0, hpriv
->main_irq_mask_addr
);
2209 main_irq_cause
= readl(hpriv
->main_irq_cause_addr
);
2210 pending_irqs
= main_irq_cause
& hpriv
->main_irq_mask
;
2212 * Deal with cases where we either have nothing pending, or have read
2213 * a bogus register value which can indicate HW removal or PCI fault.
2215 if (pending_irqs
&& main_irq_cause
!= 0xffffffffU
) {
2216 if (unlikely((pending_irqs
& PCI_ERR
) && !IS_SOC(hpriv
)))
2217 handled
= mv_pci_error(host
, hpriv
->base
);
2219 handled
= mv_host_intr(host
, pending_irqs
);
2222 /* for MSI: unmask; interrupt cause bits will retrigger now */
2224 writel(hpriv
->main_irq_mask
, hpriv
->main_irq_mask_addr
);
2226 spin_unlock(&host
->lock
);
2228 return IRQ_RETVAL(handled
);
2231 static unsigned int mv5_scr_offset(unsigned int sc_reg_in
)
2235 switch (sc_reg_in
) {
2239 ofs
= sc_reg_in
* sizeof(u32
);
2248 static int mv5_scr_read(struct ata_link
*link
, unsigned int sc_reg_in
, u32
*val
)
2250 struct mv_host_priv
*hpriv
= link
->ap
->host
->private_data
;
2251 void __iomem
*mmio
= hpriv
->base
;
2252 void __iomem
*addr
= mv5_phy_base(mmio
, link
->ap
->port_no
);
2253 unsigned int ofs
= mv5_scr_offset(sc_reg_in
);
2255 if (ofs
!= 0xffffffffU
) {
2256 *val
= readl(addr
+ ofs
);
2262 static int mv5_scr_write(struct ata_link
*link
, unsigned int sc_reg_in
, u32 val
)
2264 struct mv_host_priv
*hpriv
= link
->ap
->host
->private_data
;
2265 void __iomem
*mmio
= hpriv
->base
;
2266 void __iomem
*addr
= mv5_phy_base(mmio
, link
->ap
->port_no
);
2267 unsigned int ofs
= mv5_scr_offset(sc_reg_in
);
2269 if (ofs
!= 0xffffffffU
) {
2270 writelfl(val
, addr
+ ofs
);
2276 static void mv5_reset_bus(struct ata_host
*host
, void __iomem
*mmio
)
2278 struct pci_dev
*pdev
= to_pci_dev(host
->dev
);
2281 early_5080
= (pdev
->device
== 0x5080) && (pdev
->revision
== 0);
2284 u32 tmp
= readl(mmio
+ MV_PCI_EXP_ROM_BAR_CTL
);
2286 writel(tmp
, mmio
+ MV_PCI_EXP_ROM_BAR_CTL
);
2289 mv_reset_pci_bus(host
, mmio
);
2292 static void mv5_reset_flash(struct mv_host_priv
*hpriv
, void __iomem
*mmio
)
2294 writel(0x0fcfffff, mmio
+ MV_FLASH_CTL_OFS
);
2297 static void mv5_read_preamp(struct mv_host_priv
*hpriv
, int idx
,
2300 void __iomem
*phy_mmio
= mv5_phy_base(mmio
, idx
);
2303 tmp
= readl(phy_mmio
+ MV5_PHY_MODE
);
2305 hpriv
->signal
[idx
].pre
= tmp
& 0x1800; /* bits 12:11 */
2306 hpriv
->signal
[idx
].amps
= tmp
& 0xe0; /* bits 7:5 */
2309 static void mv5_enable_leds(struct mv_host_priv
*hpriv
, void __iomem
*mmio
)
2313 writel(0, mmio
+ MV_GPIO_PORT_CTL_OFS
);
2315 /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
2317 tmp
= readl(mmio
+ MV_PCI_EXP_ROM_BAR_CTL
);
2319 writel(tmp
, mmio
+ MV_PCI_EXP_ROM_BAR_CTL
);
2322 static void mv5_phy_errata(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
2325 void __iomem
*phy_mmio
= mv5_phy_base(mmio
, port
);
2326 const u32 mask
= (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
2328 int fix_apm_sq
= (hpriv
->hp_flags
& MV_HP_ERRATA_50XXB0
);
2331 tmp
= readl(phy_mmio
+ MV5_LTMODE_OFS
);
2333 writel(tmp
, phy_mmio
+ MV5_LTMODE_OFS
);
2335 tmp
= readl(phy_mmio
+ MV5_PHY_CTL_OFS
);
2338 writel(tmp
, phy_mmio
+ MV5_PHY_CTL_OFS
);
2341 tmp
= readl(phy_mmio
+ MV5_PHY_MODE
);
2343 tmp
|= hpriv
->signal
[port
].pre
;
2344 tmp
|= hpriv
->signal
[port
].amps
;
2345 writel(tmp
, phy_mmio
+ MV5_PHY_MODE
);
2350 #define ZERO(reg) writel(0, port_mmio + (reg))
2351 static void mv5_reset_hc_port(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
2354 void __iomem
*port_mmio
= mv_port_base(mmio
, port
);
2356 mv_reset_channel(hpriv
, mmio
, port
);
2358 ZERO(0x028); /* command */
2359 writel(0x11f, port_mmio
+ EDMA_CFG_OFS
);
2360 ZERO(0x004); /* timer */
2361 ZERO(0x008); /* irq err cause */
2362 ZERO(0x00c); /* irq err mask */
2363 ZERO(0x010); /* rq bah */
2364 ZERO(0x014); /* rq inp */
2365 ZERO(0x018); /* rq outp */
2366 ZERO(0x01c); /* respq bah */
2367 ZERO(0x024); /* respq outp */
2368 ZERO(0x020); /* respq inp */
2369 ZERO(0x02c); /* test control */
2370 writel(0xbc, port_mmio
+ EDMA_IORDY_TMOUT_OFS
);
2374 #define ZERO(reg) writel(0, hc_mmio + (reg))
2375 static void mv5_reset_one_hc(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
2378 void __iomem
*hc_mmio
= mv_hc_base(mmio
, hc
);
2386 tmp
= readl(hc_mmio
+ 0x20);
2389 writel(tmp
, hc_mmio
+ 0x20);
2393 static int mv5_reset_hc(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
2396 unsigned int hc
, port
;
2398 for (hc
= 0; hc
< n_hc
; hc
++) {
2399 for (port
= 0; port
< MV_PORTS_PER_HC
; port
++)
2400 mv5_reset_hc_port(hpriv
, mmio
,
2401 (hc
* MV_PORTS_PER_HC
) + port
);
2403 mv5_reset_one_hc(hpriv
, mmio
, hc
);
2410 #define ZERO(reg) writel(0, mmio + (reg))
2411 static void mv_reset_pci_bus(struct ata_host
*host
, void __iomem
*mmio
)
2413 struct mv_host_priv
*hpriv
= host
->private_data
;
2416 tmp
= readl(mmio
+ MV_PCI_MODE_OFS
);
2418 writel(tmp
, mmio
+ MV_PCI_MODE_OFS
);
2420 ZERO(MV_PCI_DISC_TIMER
);
2421 ZERO(MV_PCI_MSI_TRIGGER
);
2422 writel(0x000100ff, mmio
+ MV_PCI_XBAR_TMOUT_OFS
);
2423 ZERO(MV_PCI_SERR_MASK
);
2424 ZERO(hpriv
->irq_cause_ofs
);
2425 ZERO(hpriv
->irq_mask_ofs
);
2426 ZERO(MV_PCI_ERR_LOW_ADDRESS
);
2427 ZERO(MV_PCI_ERR_HIGH_ADDRESS
);
2428 ZERO(MV_PCI_ERR_ATTRIBUTE
);
2429 ZERO(MV_PCI_ERR_COMMAND
);
2433 static void mv6_reset_flash(struct mv_host_priv
*hpriv
, void __iomem
*mmio
)
2437 mv5_reset_flash(hpriv
, mmio
);
2439 tmp
= readl(mmio
+ MV_GPIO_PORT_CTL_OFS
);
2441 tmp
|= (1 << 5) | (1 << 6);
2442 writel(tmp
, mmio
+ MV_GPIO_PORT_CTL_OFS
);
2446 * mv6_reset_hc - Perform the 6xxx global soft reset
2447 * @mmio: base address of the HBA
2449 * This routine only applies to 6xxx parts.
2452 * Inherited from caller.
2454 static int mv6_reset_hc(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
2457 void __iomem
*reg
= mmio
+ PCI_MAIN_CMD_STS_OFS
;
2461 /* Following procedure defined in PCI "main command and status
2465 writel(t
| STOP_PCI_MASTER
, reg
);
2467 for (i
= 0; i
< 1000; i
++) {
2470 if (PCI_MASTER_EMPTY
& t
)
2473 if (!(PCI_MASTER_EMPTY
& t
)) {
2474 printk(KERN_ERR DRV_NAME
": PCI master won't flush\n");
2482 writel(t
| GLOB_SFT_RST
, reg
);
2485 } while (!(GLOB_SFT_RST
& t
) && (i
-- > 0));
2487 if (!(GLOB_SFT_RST
& t
)) {
2488 printk(KERN_ERR DRV_NAME
": can't set global reset\n");
2493 /* clear reset and *reenable the PCI master* (not mentioned in spec) */
2496 writel(t
& ~(GLOB_SFT_RST
| STOP_PCI_MASTER
), reg
);
2499 } while ((GLOB_SFT_RST
& t
) && (i
-- > 0));
2501 if (GLOB_SFT_RST
& t
) {
2502 printk(KERN_ERR DRV_NAME
": can't clear global reset\n");
2509 static void mv6_read_preamp(struct mv_host_priv
*hpriv
, int idx
,
2512 void __iomem
*port_mmio
;
2515 tmp
= readl(mmio
+ MV_RESET_CFG_OFS
);
2516 if ((tmp
& (1 << 0)) == 0) {
2517 hpriv
->signal
[idx
].amps
= 0x7 << 8;
2518 hpriv
->signal
[idx
].pre
= 0x1 << 5;
2522 port_mmio
= mv_port_base(mmio
, idx
);
2523 tmp
= readl(port_mmio
+ PHY_MODE2
);
2525 hpriv
->signal
[idx
].amps
= tmp
& 0x700; /* bits 10:8 */
2526 hpriv
->signal
[idx
].pre
= tmp
& 0xe0; /* bits 7:5 */
2529 static void mv6_enable_leds(struct mv_host_priv
*hpriv
, void __iomem
*mmio
)
2531 writel(0x00000060, mmio
+ MV_GPIO_PORT_CTL_OFS
);
2534 static void mv6_phy_errata(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
2537 void __iomem
*port_mmio
= mv_port_base(mmio
, port
);
2539 u32 hp_flags
= hpriv
->hp_flags
;
2541 hp_flags
& (MV_HP_ERRATA_60X1B2
| MV_HP_ERRATA_60X1C0
);
2543 hp_flags
& (MV_HP_ERRATA_60X1B2
| MV_HP_ERRATA_60X1C0
);
2546 if (fix_phy_mode2
) {
2547 m2
= readl(port_mmio
+ PHY_MODE2
);
2550 writel(m2
, port_mmio
+ PHY_MODE2
);
2554 m2
= readl(port_mmio
+ PHY_MODE2
);
2555 m2
&= ~((1 << 16) | (1 << 31));
2556 writel(m2
, port_mmio
+ PHY_MODE2
);
2562 * Gen-II/IIe PHY_MODE3 errata RM#2:
2563 * Achieves better receiver noise performance than the h/w default:
2565 m3
= readl(port_mmio
+ PHY_MODE3
);
2566 m3
= (m3
& 0x1f) | (0x5555601 << 5);
2568 /* Guideline 88F5182 (GL# SATA-S11) */
2572 if (fix_phy_mode4
) {
2573 u32 m4
= readl(port_mmio
+ PHY_MODE4
);
2575 * Enforce reserved-bit restrictions on GenIIe devices only.
2576 * For earlier chipsets, force only the internal config field
2577 * (workaround for errata FEr SATA#10 part 1).
2579 if (IS_GEN_IIE(hpriv
))
2580 m4
= (m4
& ~PHY_MODE4_RSVD_ZEROS
) | PHY_MODE4_RSVD_ONES
;
2582 m4
= (m4
& ~PHY_MODE4_CFG_MASK
) | PHY_MODE4_CFG_VALUE
;
2583 writel(m4
, port_mmio
+ PHY_MODE4
);
2586 * Workaround for 60x1-B2 errata SATA#13:
2587 * Any write to PHY_MODE4 (above) may corrupt PHY_MODE3,
2588 * so we must always rewrite PHY_MODE3 after PHY_MODE4.
2590 writel(m3
, port_mmio
+ PHY_MODE3
);
2592 /* Revert values of pre-emphasis and signal amps to the saved ones */
2593 m2
= readl(port_mmio
+ PHY_MODE2
);
2595 m2
&= ~MV_M2_PREAMP_MASK
;
2596 m2
|= hpriv
->signal
[port
].amps
;
2597 m2
|= hpriv
->signal
[port
].pre
;
2600 /* according to mvSata 3.6.1, some IIE values are fixed */
2601 if (IS_GEN_IIE(hpriv
)) {
2606 writel(m2
, port_mmio
+ PHY_MODE2
);
2609 /* TODO: use the generic LED interface to configure the SATA Presence */
2610 /* & Acitivy LEDs on the board */
2611 static void mv_soc_enable_leds(struct mv_host_priv
*hpriv
,
2617 static void mv_soc_read_preamp(struct mv_host_priv
*hpriv
, int idx
,
2620 void __iomem
*port_mmio
;
2623 port_mmio
= mv_port_base(mmio
, idx
);
2624 tmp
= readl(port_mmio
+ PHY_MODE2
);
2626 hpriv
->signal
[idx
].amps
= tmp
& 0x700; /* bits 10:8 */
2627 hpriv
->signal
[idx
].pre
= tmp
& 0xe0; /* bits 7:5 */
2631 #define ZERO(reg) writel(0, port_mmio + (reg))
2632 static void mv_soc_reset_hc_port(struct mv_host_priv
*hpriv
,
2633 void __iomem
*mmio
, unsigned int port
)
2635 void __iomem
*port_mmio
= mv_port_base(mmio
, port
);
2637 mv_reset_channel(hpriv
, mmio
, port
);
2639 ZERO(0x028); /* command */
2640 writel(0x101f, port_mmio
+ EDMA_CFG_OFS
);
2641 ZERO(0x004); /* timer */
2642 ZERO(0x008); /* irq err cause */
2643 ZERO(0x00c); /* irq err mask */
2644 ZERO(0x010); /* rq bah */
2645 ZERO(0x014); /* rq inp */
2646 ZERO(0x018); /* rq outp */
2647 ZERO(0x01c); /* respq bah */
2648 ZERO(0x024); /* respq outp */
2649 ZERO(0x020); /* respq inp */
2650 ZERO(0x02c); /* test control */
2651 writel(0xbc, port_mmio
+ EDMA_IORDY_TMOUT_OFS
);
2656 #define ZERO(reg) writel(0, hc_mmio + (reg))
2657 static void mv_soc_reset_one_hc(struct mv_host_priv
*hpriv
,
2660 void __iomem
*hc_mmio
= mv_hc_base(mmio
, 0);
2670 static int mv_soc_reset_hc(struct mv_host_priv
*hpriv
,
2671 void __iomem
*mmio
, unsigned int n_hc
)
2675 for (port
= 0; port
< hpriv
->n_ports
; port
++)
2676 mv_soc_reset_hc_port(hpriv
, mmio
, port
);
2678 mv_soc_reset_one_hc(hpriv
, mmio
);
2683 static void mv_soc_reset_flash(struct mv_host_priv
*hpriv
,
2689 static void mv_soc_reset_bus(struct ata_host
*host
, void __iomem
*mmio
)
2694 static void mv_setup_ifcfg(void __iomem
*port_mmio
, int want_gen2i
)
2696 u32 ifcfg
= readl(port_mmio
+ SATA_INTERFACE_CFG_OFS
);
2698 ifcfg
= (ifcfg
& 0xf7f) | 0x9b1000; /* from chip spec */
2700 ifcfg
|= (1 << 7); /* enable gen2i speed */
2701 writelfl(ifcfg
, port_mmio
+ SATA_INTERFACE_CFG_OFS
);
2704 static void mv_reset_channel(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
2705 unsigned int port_no
)
2707 void __iomem
*port_mmio
= mv_port_base(mmio
, port_no
);
2710 * The datasheet warns against setting EDMA_RESET when EDMA is active
2711 * (but doesn't say what the problem might be). So we first try
2712 * to disable the EDMA engine before doing the EDMA_RESET operation.
2714 mv_stop_edma_engine(port_mmio
);
2715 writelfl(EDMA_RESET
, port_mmio
+ EDMA_CMD_OFS
);
2717 if (!IS_GEN_I(hpriv
)) {
2718 /* Enable 3.0gb/s link speed: this survives EDMA_RESET */
2719 mv_setup_ifcfg(port_mmio
, 1);
2722 * Strobing EDMA_RESET here causes a hard reset of the SATA transport,
2723 * link, and physical layers. It resets all SATA interface registers
2724 * (except for SATA_INTERFACE_CFG), and issues a COMRESET to the dev.
2726 writelfl(EDMA_RESET
, port_mmio
+ EDMA_CMD_OFS
);
2727 udelay(25); /* allow reset propagation */
2728 writelfl(0, port_mmio
+ EDMA_CMD_OFS
);
2730 hpriv
->ops
->phy_errata(hpriv
, mmio
, port_no
);
2732 if (IS_GEN_I(hpriv
))
2736 static void mv_pmp_select(struct ata_port
*ap
, int pmp
)
2738 if (sata_pmp_supported(ap
)) {
2739 void __iomem
*port_mmio
= mv_ap_base(ap
);
2740 u32 reg
= readl(port_mmio
+ SATA_IFCTL_OFS
);
2741 int old
= reg
& 0xf;
2744 reg
= (reg
& ~0xf) | pmp
;
2745 writelfl(reg
, port_mmio
+ SATA_IFCTL_OFS
);
2750 static int mv_pmp_hardreset(struct ata_link
*link
, unsigned int *class,
2751 unsigned long deadline
)
2753 mv_pmp_select(link
->ap
, sata_srst_pmp(link
));
2754 return sata_std_hardreset(link
, class, deadline
);
2757 static int mv_softreset(struct ata_link
*link
, unsigned int *class,
2758 unsigned long deadline
)
2760 mv_pmp_select(link
->ap
, sata_srst_pmp(link
));
2761 return ata_sff_softreset(link
, class, deadline
);
2764 static int mv_hardreset(struct ata_link
*link
, unsigned int *class,
2765 unsigned long deadline
)
2767 struct ata_port
*ap
= link
->ap
;
2768 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
2769 struct mv_port_priv
*pp
= ap
->private_data
;
2770 void __iomem
*mmio
= hpriv
->base
;
2771 int rc
, attempts
= 0, extra
= 0;
2775 mv_reset_channel(hpriv
, mmio
, ap
->port_no
);
2776 pp
->pp_flags
&= ~MV_PP_FLAG_EDMA_EN
;
2778 /* Workaround for errata FEr SATA#10 (part 2) */
2780 const unsigned long *timing
=
2781 sata_ehc_deb_timing(&link
->eh_context
);
2783 rc
= sata_link_hardreset(link
, timing
, deadline
+ extra
,
2785 rc
= online
? -EAGAIN
: rc
;
2788 sata_scr_read(link
, SCR_STATUS
, &sstatus
);
2789 if (!IS_GEN_I(hpriv
) && ++attempts
>= 5 && sstatus
== 0x121) {
2790 /* Force 1.5gb/s link speed and try again */
2791 mv_setup_ifcfg(mv_ap_base(ap
), 0);
2792 if (time_after(jiffies
+ HZ
, deadline
))
2793 extra
= HZ
; /* only extend it once, max */
2795 } while (sstatus
!= 0x0 && sstatus
!= 0x113 && sstatus
!= 0x123);
2800 static void mv_eh_freeze(struct ata_port
*ap
)
2803 mv_enable_port_irqs(ap
, 0);
2806 static void mv_eh_thaw(struct ata_port
*ap
)
2808 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
2809 unsigned int port
= ap
->port_no
;
2810 unsigned int hardport
= mv_hardport_from_port(port
);
2811 void __iomem
*hc_mmio
= mv_hc_base_from_port(hpriv
->base
, port
);
2812 void __iomem
*port_mmio
= mv_ap_base(ap
);
2815 /* clear EDMA errors on this port */
2816 writel(0, port_mmio
+ EDMA_ERR_IRQ_CAUSE_OFS
);
2818 /* clear pending irq events */
2819 hc_irq_cause
= ~((DEV_IRQ
| DMA_IRQ
) << hardport
);
2820 writelfl(hc_irq_cause
, hc_mmio
+ HC_IRQ_CAUSE_OFS
);
2822 mv_enable_port_irqs(ap
, ERR_IRQ
);
2826 * mv_port_init - Perform some early initialization on a single port.
2827 * @port: libata data structure storing shadow register addresses
2828 * @port_mmio: base address of the port
2830 * Initialize shadow register mmio addresses, clear outstanding
2831 * interrupts on the port, and unmask interrupts for the future
2832 * start of the port.
2835 * Inherited from caller.
2837 static void mv_port_init(struct ata_ioports
*port
, void __iomem
*port_mmio
)
2839 void __iomem
*shd_base
= port_mmio
+ SHD_BLK_OFS
;
2842 /* PIO related setup
2844 port
->data_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_DATA
);
2846 port
->feature_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_ERR
);
2847 port
->nsect_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_NSECT
);
2848 port
->lbal_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_LBAL
);
2849 port
->lbam_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_LBAM
);
2850 port
->lbah_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_LBAH
);
2851 port
->device_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_DEVICE
);
2853 port
->command_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_STATUS
);
2854 /* special case: control/altstatus doesn't have ATA_REG_ address */
2855 port
->altstatus_addr
= port
->ctl_addr
= shd_base
+ SHD_CTL_AST_OFS
;
2858 port
->cmd_addr
= port
->bmdma_addr
= port
->scr_addr
= NULL
;
2860 /* Clear any currently outstanding port interrupt conditions */
2861 serr_ofs
= mv_scr_offset(SCR_ERROR
);
2862 writelfl(readl(port_mmio
+ serr_ofs
), port_mmio
+ serr_ofs
);
2863 writelfl(0, port_mmio
+ EDMA_ERR_IRQ_CAUSE_OFS
);
2865 /* unmask all non-transient EDMA error interrupts */
2866 writelfl(~EDMA_ERR_IRQ_TRANSIENT
, port_mmio
+ EDMA_ERR_IRQ_MASK_OFS
);
2868 VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
2869 readl(port_mmio
+ EDMA_CFG_OFS
),
2870 readl(port_mmio
+ EDMA_ERR_IRQ_CAUSE_OFS
),
2871 readl(port_mmio
+ EDMA_ERR_IRQ_MASK_OFS
));
2874 static unsigned int mv_in_pcix_mode(struct ata_host
*host
)
2876 struct mv_host_priv
*hpriv
= host
->private_data
;
2877 void __iomem
*mmio
= hpriv
->base
;
2880 if (IS_SOC(hpriv
) || !IS_PCIE(hpriv
))
2881 return 0; /* not PCI-X capable */
2882 reg
= readl(mmio
+ MV_PCI_MODE_OFS
);
2883 if ((reg
& MV_PCI_MODE_MASK
) == 0)
2884 return 0; /* conventional PCI mode */
2885 return 1; /* chip is in PCI-X mode */
2888 static int mv_pci_cut_through_okay(struct ata_host
*host
)
2890 struct mv_host_priv
*hpriv
= host
->private_data
;
2891 void __iomem
*mmio
= hpriv
->base
;
2894 if (!mv_in_pcix_mode(host
)) {
2895 reg
= readl(mmio
+ PCI_COMMAND_OFS
);
2896 if (reg
& PCI_COMMAND_MRDTRIG
)
2897 return 0; /* not okay */
2899 return 1; /* okay */
2902 static int mv_chip_id(struct ata_host
*host
, unsigned int board_idx
)
2904 struct pci_dev
*pdev
= to_pci_dev(host
->dev
);
2905 struct mv_host_priv
*hpriv
= host
->private_data
;
2906 u32 hp_flags
= hpriv
->hp_flags
;
2908 switch (board_idx
) {
2910 hpriv
->ops
= &mv5xxx_ops
;
2911 hp_flags
|= MV_HP_GEN_I
;
2913 switch (pdev
->revision
) {
2915 hp_flags
|= MV_HP_ERRATA_50XXB0
;
2918 hp_flags
|= MV_HP_ERRATA_50XXB2
;
2921 dev_printk(KERN_WARNING
, &pdev
->dev
,
2922 "Applying 50XXB2 workarounds to unknown rev\n");
2923 hp_flags
|= MV_HP_ERRATA_50XXB2
;
2930 hpriv
->ops
= &mv5xxx_ops
;
2931 hp_flags
|= MV_HP_GEN_I
;
2933 switch (pdev
->revision
) {
2935 hp_flags
|= MV_HP_ERRATA_50XXB0
;
2938 hp_flags
|= MV_HP_ERRATA_50XXB2
;
2941 dev_printk(KERN_WARNING
, &pdev
->dev
,
2942 "Applying B2 workarounds to unknown rev\n");
2943 hp_flags
|= MV_HP_ERRATA_50XXB2
;
2950 hpriv
->ops
= &mv6xxx_ops
;
2951 hp_flags
|= MV_HP_GEN_II
;
2953 switch (pdev
->revision
) {
2955 hp_flags
|= MV_HP_ERRATA_60X1B2
;
2958 hp_flags
|= MV_HP_ERRATA_60X1C0
;
2961 dev_printk(KERN_WARNING
, &pdev
->dev
,
2962 "Applying B2 workarounds to unknown rev\n");
2963 hp_flags
|= MV_HP_ERRATA_60X1B2
;
2969 hp_flags
|= MV_HP_PCIE
| MV_HP_CUT_THROUGH
;
2970 if (pdev
->vendor
== PCI_VENDOR_ID_TTI
&&
2971 (pdev
->device
== 0x2300 || pdev
->device
== 0x2310))
2974 * Highpoint RocketRAID PCIe 23xx series cards:
2976 * Unconfigured drives are treated as "Legacy"
2977 * by the BIOS, and it overwrites sector 8 with
2978 * a "Lgcy" metadata block prior to Linux boot.
2980 * Configured drives (RAID or JBOD) leave sector 8
2981 * alone, but instead overwrite a high numbered
2982 * sector for the RAID metadata. This sector can
2983 * be determined exactly, by truncating the physical
2984 * drive capacity to a nice even GB value.
2986 * RAID metadata is at: (dev->n_sectors & ~0xfffff)
2988 * Warn the user, lest they think we're just buggy.
2990 printk(KERN_WARNING DRV_NAME
": Highpoint RocketRAID"
2991 " BIOS CORRUPTS DATA on all attached drives,"
2992 " regardless of if/how they are configured."
2994 printk(KERN_WARNING DRV_NAME
": For data safety, do not"
2995 " use sectors 8-9 on \"Legacy\" drives,"
2996 " and avoid the final two gigabytes on"
2997 " all RocketRAID BIOS initialized drives.\n");
3001 hpriv
->ops
= &mv6xxx_ops
;
3002 hp_flags
|= MV_HP_GEN_IIE
;
3003 if (board_idx
== chip_6042
&& mv_pci_cut_through_okay(host
))
3004 hp_flags
|= MV_HP_CUT_THROUGH
;
3006 switch (pdev
->revision
) {
3007 case 0x2: /* Rev.B0: the first/only public release */
3008 hp_flags
|= MV_HP_ERRATA_60X1C0
;
3011 dev_printk(KERN_WARNING
, &pdev
->dev
,
3012 "Applying 60X1C0 workarounds to unknown rev\n");
3013 hp_flags
|= MV_HP_ERRATA_60X1C0
;
3018 hpriv
->ops
= &mv_soc_ops
;
3019 hp_flags
|= MV_HP_FLAG_SOC
| MV_HP_GEN_IIE
|
3020 MV_HP_ERRATA_60X1C0
;
3024 dev_printk(KERN_ERR
, host
->dev
,
3025 "BUG: invalid board index %u\n", board_idx
);
3029 hpriv
->hp_flags
= hp_flags
;
3030 if (hp_flags
& MV_HP_PCIE
) {
3031 hpriv
->irq_cause_ofs
= PCIE_IRQ_CAUSE_OFS
;
3032 hpriv
->irq_mask_ofs
= PCIE_IRQ_MASK_OFS
;
3033 hpriv
->unmask_all_irqs
= PCIE_UNMASK_ALL_IRQS
;
3035 hpriv
->irq_cause_ofs
= PCI_IRQ_CAUSE_OFS
;
3036 hpriv
->irq_mask_ofs
= PCI_IRQ_MASK_OFS
;
3037 hpriv
->unmask_all_irqs
= PCI_UNMASK_ALL_IRQS
;
3044 * mv_init_host - Perform some early initialization of the host.
3045 * @host: ATA host to initialize
3046 * @board_idx: controller index
3048 * If possible, do an early global reset of the host. Then do
3049 * our port init and clear/unmask all/relevant host interrupts.
3052 * Inherited from caller.
3054 static int mv_init_host(struct ata_host
*host
, unsigned int board_idx
)
3056 int rc
= 0, n_hc
, port
, hc
;
3057 struct mv_host_priv
*hpriv
= host
->private_data
;
3058 void __iomem
*mmio
= hpriv
->base
;
3060 rc
= mv_chip_id(host
, board_idx
);
3064 if (IS_SOC(hpriv
)) {
3065 hpriv
->main_irq_cause_addr
= mmio
+ SOC_HC_MAIN_IRQ_CAUSE_OFS
;
3066 hpriv
->main_irq_mask_addr
= mmio
+ SOC_HC_MAIN_IRQ_MASK_OFS
;
3068 hpriv
->main_irq_cause_addr
= mmio
+ PCI_HC_MAIN_IRQ_CAUSE_OFS
;
3069 hpriv
->main_irq_mask_addr
= mmio
+ PCI_HC_MAIN_IRQ_MASK_OFS
;
3072 /* initialize shadow irq mask with register's value */
3073 hpriv
->main_irq_mask
= readl(hpriv
->main_irq_mask_addr
);
3075 /* global interrupt mask: 0 == mask everything */
3076 mv_set_main_irq_mask(host
, ~0, 0);
3078 n_hc
= mv_get_hc_count(host
->ports
[0]->flags
);
3080 for (port
= 0; port
< host
->n_ports
; port
++)
3081 hpriv
->ops
->read_preamp(hpriv
, port
, mmio
);
3083 rc
= hpriv
->ops
->reset_hc(hpriv
, mmio
, n_hc
);
3087 hpriv
->ops
->reset_flash(hpriv
, mmio
);
3088 hpriv
->ops
->reset_bus(host
, mmio
);
3089 hpriv
->ops
->enable_leds(hpriv
, mmio
);
3091 for (port
= 0; port
< host
->n_ports
; port
++) {
3092 struct ata_port
*ap
= host
->ports
[port
];
3093 void __iomem
*port_mmio
= mv_port_base(mmio
, port
);
3095 mv_port_init(&ap
->ioaddr
, port_mmio
);
3098 if (!IS_SOC(hpriv
)) {
3099 unsigned int offset
= port_mmio
- mmio
;
3100 ata_port_pbar_desc(ap
, MV_PRIMARY_BAR
, -1, "mmio");
3101 ata_port_pbar_desc(ap
, MV_PRIMARY_BAR
, offset
, "port");
3106 for (hc
= 0; hc
< n_hc
; hc
++) {
3107 void __iomem
*hc_mmio
= mv_hc_base(mmio
, hc
);
3109 VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
3110 "(before clear)=0x%08x\n", hc
,
3111 readl(hc_mmio
+ HC_CFG_OFS
),
3112 readl(hc_mmio
+ HC_IRQ_CAUSE_OFS
));
3114 /* Clear any currently outstanding hc interrupt conditions */
3115 writelfl(0, hc_mmio
+ HC_IRQ_CAUSE_OFS
);
3118 /* Clear any currently outstanding host interrupt conditions */
3119 writelfl(0, mmio
+ hpriv
->irq_cause_ofs
);
3121 /* and unmask interrupt generation for host regs */
3122 writelfl(hpriv
->unmask_all_irqs
, mmio
+ hpriv
->irq_mask_ofs
);
3125 * enable only global host interrupts for now.
3126 * The per-port interrupts get done later as ports are set up.
3128 mv_set_main_irq_mask(host
, 0, PCI_ERR
);
3133 static int mv_create_dma_pools(struct mv_host_priv
*hpriv
, struct device
*dev
)
3135 hpriv
->crqb_pool
= dmam_pool_create("crqb_q", dev
, MV_CRQB_Q_SZ
,
3137 if (!hpriv
->crqb_pool
)
3140 hpriv
->crpb_pool
= dmam_pool_create("crpb_q", dev
, MV_CRPB_Q_SZ
,
3142 if (!hpriv
->crpb_pool
)
3145 hpriv
->sg_tbl_pool
= dmam_pool_create("sg_tbl", dev
, MV_SG_TBL_SZ
,
3147 if (!hpriv
->sg_tbl_pool
)
3153 static void mv_conf_mbus_windows(struct mv_host_priv
*hpriv
,
3154 struct mbus_dram_target_info
*dram
)
3158 for (i
= 0; i
< 4; i
++) {
3159 writel(0, hpriv
->base
+ WINDOW_CTRL(i
));
3160 writel(0, hpriv
->base
+ WINDOW_BASE(i
));
3163 for (i
= 0; i
< dram
->num_cs
; i
++) {
3164 struct mbus_dram_window
*cs
= dram
->cs
+ i
;
3166 writel(((cs
->size
- 1) & 0xffff0000) |
3167 (cs
->mbus_attr
<< 8) |
3168 (dram
->mbus_dram_target_id
<< 4) | 1,
3169 hpriv
->base
+ WINDOW_CTRL(i
));
3170 writel(cs
->base
, hpriv
->base
+ WINDOW_BASE(i
));
3175 * mv_platform_probe - handle a positive probe of an soc Marvell
3177 * @pdev: platform device found
3180 * Inherited from caller.
3182 static int mv_platform_probe(struct platform_device
*pdev
)
3184 static int printed_version
;
3185 const struct mv_sata_platform_data
*mv_platform_data
;
3186 const struct ata_port_info
*ppi
[] =
3187 { &mv_port_info
[chip_soc
], NULL
};
3188 struct ata_host
*host
;
3189 struct mv_host_priv
*hpriv
;
3190 struct resource
*res
;
3193 if (!printed_version
++)
3194 dev_printk(KERN_INFO
, &pdev
->dev
, "version " DRV_VERSION
"\n");
3197 * Simple resource validation ..
3199 if (unlikely(pdev
->num_resources
!= 2)) {
3200 dev_err(&pdev
->dev
, "invalid number of resources\n");
3205 * Get the register base first
3207 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
3212 mv_platform_data
= pdev
->dev
.platform_data
;
3213 n_ports
= mv_platform_data
->n_ports
;
3215 host
= ata_host_alloc_pinfo(&pdev
->dev
, ppi
, n_ports
);
3216 hpriv
= devm_kzalloc(&pdev
->dev
, sizeof(*hpriv
), GFP_KERNEL
);
3218 if (!host
|| !hpriv
)
3220 host
->private_data
= hpriv
;
3221 hpriv
->n_ports
= n_ports
;
3224 hpriv
->base
= devm_ioremap(&pdev
->dev
, res
->start
,
3225 res
->end
- res
->start
+ 1);
3226 hpriv
->base
-= MV_SATAHC0_REG_BASE
;
3229 * (Re-)program MBUS remapping windows if we are asked to.
3231 if (mv_platform_data
->dram
!= NULL
)
3232 mv_conf_mbus_windows(hpriv
, mv_platform_data
->dram
);
3234 rc
= mv_create_dma_pools(hpriv
, &pdev
->dev
);
3238 /* initialize adapter */
3239 rc
= mv_init_host(host
, chip_soc
);
3243 dev_printk(KERN_INFO
, &pdev
->dev
,
3244 "slots %u ports %d\n", (unsigned)MV_MAX_Q_DEPTH
,
3247 return ata_host_activate(host
, platform_get_irq(pdev
, 0), mv_interrupt
,
3248 IRQF_SHARED
, &mv6_sht
);
3253 * mv_platform_remove - unplug a platform interface
3254 * @pdev: platform device
3256 * A platform bus SATA device has been unplugged. Perform the needed
3257 * cleanup. Also called on module unload for any active devices.
3259 static int __devexit
mv_platform_remove(struct platform_device
*pdev
)
3261 struct device
*dev
= &pdev
->dev
;
3262 struct ata_host
*host
= dev_get_drvdata(dev
);
3264 ata_host_detach(host
);
3268 static struct platform_driver mv_platform_driver
= {
3269 .probe
= mv_platform_probe
,
3270 .remove
= __devexit_p(mv_platform_remove
),
3273 .owner
= THIS_MODULE
,
3279 static int mv_pci_init_one(struct pci_dev
*pdev
,
3280 const struct pci_device_id
*ent
);
3283 static struct pci_driver mv_pci_driver
= {
3285 .id_table
= mv_pci_tbl
,
3286 .probe
= mv_pci_init_one
,
3287 .remove
= ata_pci_remove_one
,
3293 static int msi
; /* Use PCI msi; either zero (off, default) or non-zero */
3296 /* move to PCI layer or libata core? */
3297 static int pci_go_64(struct pci_dev
*pdev
)
3301 if (!pci_set_dma_mask(pdev
, DMA_64BIT_MASK
)) {
3302 rc
= pci_set_consistent_dma_mask(pdev
, DMA_64BIT_MASK
);
3304 rc
= pci_set_consistent_dma_mask(pdev
, DMA_32BIT_MASK
);
3306 dev_printk(KERN_ERR
, &pdev
->dev
,
3307 "64-bit DMA enable failed\n");
3312 rc
= pci_set_dma_mask(pdev
, DMA_32BIT_MASK
);
3314 dev_printk(KERN_ERR
, &pdev
->dev
,
3315 "32-bit DMA enable failed\n");
3318 rc
= pci_set_consistent_dma_mask(pdev
, DMA_32BIT_MASK
);
3320 dev_printk(KERN_ERR
, &pdev
->dev
,
3321 "32-bit consistent DMA enable failed\n");
3330 * mv_print_info - Dump key info to kernel log for perusal.
3331 * @host: ATA host to print info about
3333 * FIXME: complete this.
3336 * Inherited from caller.
3338 static void mv_print_info(struct ata_host
*host
)
3340 struct pci_dev
*pdev
= to_pci_dev(host
->dev
);
3341 struct mv_host_priv
*hpriv
= host
->private_data
;
3343 const char *scc_s
, *gen
;
3345 /* Use this to determine the HW stepping of the chip so we know
3346 * what errata to workaround
3348 pci_read_config_byte(pdev
, PCI_CLASS_DEVICE
, &scc
);
3351 else if (scc
== 0x01)
3356 if (IS_GEN_I(hpriv
))
3358 else if (IS_GEN_II(hpriv
))
3360 else if (IS_GEN_IIE(hpriv
))
3365 dev_printk(KERN_INFO
, &pdev
->dev
,
3366 "Gen-%s %u slots %u ports %s mode IRQ via %s\n",
3367 gen
, (unsigned)MV_MAX_Q_DEPTH
, host
->n_ports
,
3368 scc_s
, (MV_HP_FLAG_MSI
& hpriv
->hp_flags
) ? "MSI" : "INTx");
3372 * mv_pci_init_one - handle a positive probe of a PCI Marvell host
3373 * @pdev: PCI device found
3374 * @ent: PCI device ID entry for the matched host
3377 * Inherited from caller.
3379 static int mv_pci_init_one(struct pci_dev
*pdev
,
3380 const struct pci_device_id
*ent
)
3382 static int printed_version
;
3383 unsigned int board_idx
= (unsigned int)ent
->driver_data
;
3384 const struct ata_port_info
*ppi
[] = { &mv_port_info
[board_idx
], NULL
};
3385 struct ata_host
*host
;
3386 struct mv_host_priv
*hpriv
;
3389 if (!printed_version
++)
3390 dev_printk(KERN_INFO
, &pdev
->dev
, "version " DRV_VERSION
"\n");
3393 n_ports
= mv_get_hc_count(ppi
[0]->flags
) * MV_PORTS_PER_HC
;
3395 host
= ata_host_alloc_pinfo(&pdev
->dev
, ppi
, n_ports
);
3396 hpriv
= devm_kzalloc(&pdev
->dev
, sizeof(*hpriv
), GFP_KERNEL
);
3397 if (!host
|| !hpriv
)
3399 host
->private_data
= hpriv
;
3400 hpriv
->n_ports
= n_ports
;
3402 /* acquire resources */
3403 rc
= pcim_enable_device(pdev
);
3407 rc
= pcim_iomap_regions(pdev
, 1 << MV_PRIMARY_BAR
, DRV_NAME
);
3409 pcim_pin_device(pdev
);
3412 host
->iomap
= pcim_iomap_table(pdev
);
3413 hpriv
->base
= host
->iomap
[MV_PRIMARY_BAR
];
3415 rc
= pci_go_64(pdev
);
3419 rc
= mv_create_dma_pools(hpriv
, &pdev
->dev
);
3423 /* initialize adapter */
3424 rc
= mv_init_host(host
, board_idx
);
3428 /* Enable message-switched interrupts, if requested */
3429 if (msi
&& pci_enable_msi(pdev
) == 0)
3430 hpriv
->hp_flags
|= MV_HP_FLAG_MSI
;
3432 mv_dump_pci_cfg(pdev
, 0x68);
3433 mv_print_info(host
);
3435 pci_set_master(pdev
);
3436 pci_try_set_mwi(pdev
);
3437 return ata_host_activate(host
, pdev
->irq
, mv_interrupt
, IRQF_SHARED
,
3438 IS_GEN_I(hpriv
) ? &mv5_sht
: &mv6_sht
);
3442 static int mv_platform_probe(struct platform_device
*pdev
);
3443 static int __devexit
mv_platform_remove(struct platform_device
*pdev
);
3445 static int __init
mv_init(void)
3449 rc
= pci_register_driver(&mv_pci_driver
);
3453 rc
= platform_driver_register(&mv_platform_driver
);
3457 pci_unregister_driver(&mv_pci_driver
);
3462 static void __exit
mv_exit(void)
3465 pci_unregister_driver(&mv_pci_driver
);
3467 platform_driver_unregister(&mv_platform_driver
);
3470 MODULE_AUTHOR("Brett Russ");
3471 MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
3472 MODULE_LICENSE("GPL");
3473 MODULE_DEVICE_TABLE(pci
, mv_pci_tbl
);
3474 MODULE_VERSION(DRV_VERSION
);
3475 MODULE_ALIAS("platform:" DRV_NAME
);
3478 module_param(msi
, int, 0444);
3479 MODULE_PARM_DESC(msi
, "Enable use of PCI MSI (0=off, 1=on)");
3482 module_init(mv_init
);
3483 module_exit(mv_exit
);