4 * Copyright (C) 1992 Rick Sladkey
6 * nfs directory handling functions
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
20 #include <linux/time.h>
21 #include <linux/errno.h>
22 #include <linux/stat.h>
23 #include <linux/fcntl.h>
24 #include <linux/string.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
28 #include <linux/sunrpc/clnt.h>
29 #include <linux/nfs_fs.h>
30 #include <linux/nfs_mount.h>
31 #include <linux/pagemap.h>
32 #include <linux/smp_lock.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/sched.h>
39 #include "delegation.h"
42 /* #define NFS_DEBUG_VERBOSE 1 */
44 static int nfs_opendir(struct inode
*, struct file
*);
45 static int nfs_readdir(struct file
*, void *, filldir_t
);
46 static struct dentry
*nfs_lookup(struct inode
*, struct dentry
*, struct nameidata
*);
47 static int nfs_create(struct inode
*, struct dentry
*, int, struct nameidata
*);
48 static int nfs_mkdir(struct inode
*, struct dentry
*, int);
49 static int nfs_rmdir(struct inode
*, struct dentry
*);
50 static int nfs_unlink(struct inode
*, struct dentry
*);
51 static int nfs_symlink(struct inode
*, struct dentry
*, const char *);
52 static int nfs_link(struct dentry
*, struct inode
*, struct dentry
*);
53 static int nfs_mknod(struct inode
*, struct dentry
*, int, dev_t
);
54 static int nfs_rename(struct inode
*, struct dentry
*,
55 struct inode
*, struct dentry
*);
56 static int nfs_fsync_dir(struct file
*, struct dentry
*, int);
57 static loff_t
nfs_llseek_dir(struct file
*, loff_t
, int);
59 const struct file_operations nfs_dir_operations
= {
60 .llseek
= nfs_llseek_dir
,
61 .read
= generic_read_dir
,
62 .readdir
= nfs_readdir
,
64 .release
= nfs_release
,
65 .fsync
= nfs_fsync_dir
,
68 const struct inode_operations nfs_dir_inode_operations
= {
73 .symlink
= nfs_symlink
,
78 .permission
= nfs_permission
,
79 .getattr
= nfs_getattr
,
80 .setattr
= nfs_setattr
,
84 const struct inode_operations nfs3_dir_inode_operations
= {
89 .symlink
= nfs_symlink
,
94 .permission
= nfs_permission
,
95 .getattr
= nfs_getattr
,
96 .setattr
= nfs_setattr
,
97 .listxattr
= nfs3_listxattr
,
98 .getxattr
= nfs3_getxattr
,
99 .setxattr
= nfs3_setxattr
,
100 .removexattr
= nfs3_removexattr
,
102 #endif /* CONFIG_NFS_V3 */
106 static struct dentry
*nfs_atomic_lookup(struct inode
*, struct dentry
*, struct nameidata
*);
107 const struct inode_operations nfs4_dir_inode_operations
= {
108 .create
= nfs_create
,
109 .lookup
= nfs_atomic_lookup
,
111 .unlink
= nfs_unlink
,
112 .symlink
= nfs_symlink
,
116 .rename
= nfs_rename
,
117 .permission
= nfs_permission
,
118 .getattr
= nfs_getattr
,
119 .setattr
= nfs_setattr
,
120 .getxattr
= nfs4_getxattr
,
121 .setxattr
= nfs4_setxattr
,
122 .listxattr
= nfs4_listxattr
,
125 #endif /* CONFIG_NFS_V4 */
131 nfs_opendir(struct inode
*inode
, struct file
*filp
)
135 dfprintk(VFS
, "NFS: opendir(%s/%ld)\n",
136 inode
->i_sb
->s_id
, inode
->i_ino
);
139 /* Call generic open code in order to cache credentials */
140 res
= nfs_open(inode
, filp
);
145 typedef __be32
* (*decode_dirent_t
)(__be32
*, struct nfs_entry
*, int);
149 unsigned long page_index
;
152 loff_t current_index
;
153 struct nfs_entry
*entry
;
154 decode_dirent_t decode
;
157 unsigned long timestamp
;
159 } nfs_readdir_descriptor_t
;
161 /* Now we cache directories properly, by stuffing the dirent
162 * data directly in the page cache.
164 * Inode invalidation due to refresh etc. takes care of
165 * _everything_, no sloppy entry flushing logic, no extraneous
166 * copying, network direct to page cache, the way it was meant
169 * NOTE: Dirent information verification is done always by the
170 * page-in of the RPC reply, nowhere else, this simplies
171 * things substantially.
174 int nfs_readdir_filler(nfs_readdir_descriptor_t
*desc
, struct page
*page
)
176 struct file
*file
= desc
->file
;
177 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
178 struct rpc_cred
*cred
= nfs_file_cred(file
);
179 unsigned long timestamp
;
182 dfprintk(DIRCACHE
, "NFS: %s: reading cookie %Lu into page %lu\n",
183 __FUNCTION__
, (long long)desc
->entry
->cookie
,
188 error
= NFS_PROTO(inode
)->readdir(file
->f_path
.dentry
, cred
, desc
->entry
->cookie
, page
,
189 NFS_SERVER(inode
)->dtsize
, desc
->plus
);
191 /* We requested READDIRPLUS, but the server doesn't grok it */
192 if (error
== -ENOTSUPP
&& desc
->plus
) {
193 NFS_SERVER(inode
)->caps
&= ~NFS_CAP_READDIRPLUS
;
194 clear_bit(NFS_INO_ADVISE_RDPLUS
, &NFS_FLAGS(inode
));
200 desc
->timestamp
= timestamp
;
201 desc
->timestamp_valid
= 1;
202 SetPageUptodate(page
);
203 spin_lock(&inode
->i_lock
);
204 NFS_I(inode
)->cache_validity
|= NFS_INO_INVALID_ATIME
;
205 spin_unlock(&inode
->i_lock
);
206 /* Ensure consistent page alignment of the data.
207 * Note: assumes we have exclusive access to this mapping either
208 * through inode->i_mutex or some other mechanism.
210 if (page
->index
== 0 && invalidate_inode_pages2_range(inode
->i_mapping
, PAGE_CACHE_SIZE
, -1) < 0) {
211 /* Should never happen */
212 nfs_zap_mapping(inode
, inode
->i_mapping
);
219 nfs_zap_caches(inode
);
225 int dir_decode(nfs_readdir_descriptor_t
*desc
)
227 __be32
*p
= desc
->ptr
;
228 p
= desc
->decode(p
, desc
->entry
, desc
->plus
);
232 if (desc
->timestamp_valid
)
233 desc
->entry
->fattr
->time_start
= desc
->timestamp
;
235 desc
->entry
->fattr
->valid
&= ~NFS_ATTR_FATTR
;
240 void dir_page_release(nfs_readdir_descriptor_t
*desc
)
243 page_cache_release(desc
->page
);
249 * Given a pointer to a buffer that has already been filled by a call
250 * to readdir, find the next entry with cookie '*desc->dir_cookie'.
252 * If the end of the buffer has been reached, return -EAGAIN, if not,
253 * return the offset within the buffer of the next entry to be
257 int find_dirent(nfs_readdir_descriptor_t
*desc
)
259 struct nfs_entry
*entry
= desc
->entry
;
263 while((status
= dir_decode(desc
)) == 0) {
264 dfprintk(DIRCACHE
, "NFS: %s: examining cookie %Lu\n",
265 __FUNCTION__
, (unsigned long long)entry
->cookie
);
266 if (entry
->prev_cookie
== *desc
->dir_cookie
)
268 if (loop_count
++ > 200) {
277 * Given a pointer to a buffer that has already been filled by a call
278 * to readdir, find the entry at offset 'desc->file->f_pos'.
280 * If the end of the buffer has been reached, return -EAGAIN, if not,
281 * return the offset within the buffer of the next entry to be
285 int find_dirent_index(nfs_readdir_descriptor_t
*desc
)
287 struct nfs_entry
*entry
= desc
->entry
;
292 status
= dir_decode(desc
);
296 dfprintk(DIRCACHE
, "NFS: found cookie %Lu at index %Ld\n",
297 (unsigned long long)entry
->cookie
, desc
->current_index
);
299 if (desc
->file
->f_pos
== desc
->current_index
) {
300 *desc
->dir_cookie
= entry
->cookie
;
303 desc
->current_index
++;
304 if (loop_count
++ > 200) {
313 * Find the given page, and call find_dirent() or find_dirent_index in
314 * order to try to return the next entry.
317 int find_dirent_page(nfs_readdir_descriptor_t
*desc
)
319 struct inode
*inode
= desc
->file
->f_path
.dentry
->d_inode
;
323 dfprintk(DIRCACHE
, "NFS: %s: searching page %ld for target %Lu\n",
324 __FUNCTION__
, desc
->page_index
,
325 (long long) *desc
->dir_cookie
);
327 /* If we find the page in the page_cache, we cannot be sure
328 * how fresh the data is, so we will ignore readdir_plus attributes.
330 desc
->timestamp_valid
= 0;
331 page
= read_cache_page(inode
->i_mapping
, desc
->page_index
,
332 (filler_t
*)nfs_readdir_filler
, desc
);
334 status
= PTR_ERR(page
);
338 /* NOTE: Someone else may have changed the READDIRPLUS flag */
340 desc
->ptr
= kmap(page
); /* matching kunmap in nfs_do_filldir */
341 if (*desc
->dir_cookie
!= 0)
342 status
= find_dirent(desc
);
344 status
= find_dirent_index(desc
);
346 dir_page_release(desc
);
348 dfprintk(DIRCACHE
, "NFS: %s: returns %d\n", __FUNCTION__
, status
);
353 * Recurse through the page cache pages, and return a
354 * filled nfs_entry structure of the next directory entry if possible.
356 * The target for the search is '*desc->dir_cookie' if non-0,
357 * 'desc->file->f_pos' otherwise
360 int readdir_search_pagecache(nfs_readdir_descriptor_t
*desc
)
365 /* Always search-by-index from the beginning of the cache */
366 if (*desc
->dir_cookie
== 0) {
367 dfprintk(DIRCACHE
, "NFS: readdir_search_pagecache() searching for offset %Ld\n",
368 (long long)desc
->file
->f_pos
);
369 desc
->page_index
= 0;
370 desc
->entry
->cookie
= desc
->entry
->prev_cookie
= 0;
371 desc
->entry
->eof
= 0;
372 desc
->current_index
= 0;
374 dfprintk(DIRCACHE
, "NFS: readdir_search_pagecache() searching for cookie %Lu\n",
375 (unsigned long long)*desc
->dir_cookie
);
378 res
= find_dirent_page(desc
);
381 /* Align to beginning of next page */
383 if (loop_count
++ > 200) {
389 dfprintk(DIRCACHE
, "NFS: %s: returns %d\n", __FUNCTION__
, res
);
393 static inline unsigned int dt_type(struct inode
*inode
)
395 return (inode
->i_mode
>> 12) & 15;
398 static struct dentry
*nfs_readdir_lookup(nfs_readdir_descriptor_t
*desc
);
401 * Once we've found the start of the dirent within a page: fill 'er up...
404 int nfs_do_filldir(nfs_readdir_descriptor_t
*desc
, void *dirent
,
407 struct file
*file
= desc
->file
;
408 struct nfs_entry
*entry
= desc
->entry
;
409 struct dentry
*dentry
= NULL
;
410 unsigned long fileid
;
414 dfprintk(DIRCACHE
, "NFS: nfs_do_filldir() filling starting @ cookie %Lu\n",
415 (unsigned long long)entry
->cookie
);
418 unsigned d_type
= DT_UNKNOWN
;
419 /* Note: entry->prev_cookie contains the cookie for
420 * retrieving the current dirent on the server */
421 fileid
= nfs_fileid_to_ino_t(entry
->ino
);
423 /* Get a dentry if we have one */
426 dentry
= nfs_readdir_lookup(desc
);
428 /* Use readdirplus info */
429 if (dentry
!= NULL
&& dentry
->d_inode
!= NULL
) {
430 d_type
= dt_type(dentry
->d_inode
);
431 fileid
= dentry
->d_inode
->i_ino
;
434 res
= filldir(dirent
, entry
->name
, entry
->len
,
435 file
->f_pos
, fileid
, d_type
);
439 *desc
->dir_cookie
= entry
->cookie
;
440 if (dir_decode(desc
) != 0) {
444 if (loop_count
++ > 200) {
449 dir_page_release(desc
);
452 dfprintk(DIRCACHE
, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
453 (unsigned long long)*desc
->dir_cookie
, res
);
458 * If we cannot find a cookie in our cache, we suspect that this is
459 * because it points to a deleted file, so we ask the server to return
460 * whatever it thinks is the next entry. We then feed this to filldir.
461 * If all goes well, we should then be able to find our way round the
462 * cache on the next call to readdir_search_pagecache();
464 * NOTE: we cannot add the anonymous page to the pagecache because
465 * the data it contains might not be page aligned. Besides,
466 * we should already have a complete representation of the
467 * directory in the page cache by the time we get here.
470 int uncached_readdir(nfs_readdir_descriptor_t
*desc
, void *dirent
,
473 struct file
*file
= desc
->file
;
474 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
475 struct rpc_cred
*cred
= nfs_file_cred(file
);
476 struct page
*page
= NULL
;
478 unsigned long timestamp
;
480 dfprintk(DIRCACHE
, "NFS: uncached_readdir() searching for cookie %Lu\n",
481 (unsigned long long)*desc
->dir_cookie
);
483 page
= alloc_page(GFP_HIGHUSER
);
489 desc
->error
= NFS_PROTO(inode
)->readdir(file
->f_path
.dentry
, cred
, *desc
->dir_cookie
,
491 NFS_SERVER(inode
)->dtsize
,
493 spin_lock(&inode
->i_lock
);
494 NFS_I(inode
)->cache_validity
|= NFS_INO_INVALID_ATIME
;
495 spin_unlock(&inode
->i_lock
);
497 desc
->ptr
= kmap(page
); /* matching kunmap in nfs_do_filldir */
498 if (desc
->error
>= 0) {
499 desc
->timestamp
= timestamp
;
500 desc
->timestamp_valid
= 1;
501 if ((status
= dir_decode(desc
)) == 0)
502 desc
->entry
->prev_cookie
= *desc
->dir_cookie
;
508 status
= nfs_do_filldir(desc
, dirent
, filldir
);
510 /* Reset read descriptor so it searches the page cache from
511 * the start upon the next call to readdir_search_pagecache() */
512 desc
->page_index
= 0;
513 desc
->entry
->cookie
= desc
->entry
->prev_cookie
= 0;
514 desc
->entry
->eof
= 0;
516 dfprintk(DIRCACHE
, "NFS: %s: returns %d\n",
517 __FUNCTION__
, status
);
520 dir_page_release(desc
);
524 /* The file offset position represents the dirent entry number. A
525 last cookie cache takes care of the common case of reading the
528 static int nfs_readdir(struct file
*filp
, void *dirent
, filldir_t filldir
)
530 struct dentry
*dentry
= filp
->f_path
.dentry
;
531 struct inode
*inode
= dentry
->d_inode
;
532 nfs_readdir_descriptor_t my_desc
,
534 struct nfs_entry my_entry
;
536 struct nfs_fattr fattr
;
539 dfprintk(VFS
, "NFS: readdir(%s/%s) starting at cookie %Lu\n",
540 dentry
->d_parent
->d_name
.name
, dentry
->d_name
.name
,
541 (long long)filp
->f_pos
);
542 nfs_inc_stats(inode
, NFSIOS_VFSGETDENTS
);
546 res
= nfs_revalidate_mapping_nolock(inode
, filp
->f_mapping
);
553 * filp->f_pos points to the dirent entry number.
554 * *desc->dir_cookie has the cookie for the next entry. We have
555 * to either find the entry with the appropriate number or
556 * revalidate the cookie.
558 memset(desc
, 0, sizeof(*desc
));
561 desc
->dir_cookie
= &((struct nfs_open_context
*)filp
->private_data
)->dir_cookie
;
562 desc
->decode
= NFS_PROTO(inode
)->decode_dirent
;
563 desc
->plus
= NFS_USE_READDIRPLUS(inode
);
565 my_entry
.cookie
= my_entry
.prev_cookie
= 0;
568 my_entry
.fattr
= &fattr
;
569 nfs_fattr_init(&fattr
);
570 desc
->entry
= &my_entry
;
572 while(!desc
->entry
->eof
) {
573 res
= readdir_search_pagecache(desc
);
575 if (res
== -EBADCOOKIE
) {
576 /* This means either end of directory */
577 if (*desc
->dir_cookie
&& desc
->entry
->cookie
!= *desc
->dir_cookie
) {
578 /* Or that the server has 'lost' a cookie */
579 res
= uncached_readdir(desc
, dirent
, filldir
);
586 if (res
== -ETOOSMALL
&& desc
->plus
) {
587 clear_bit(NFS_INO_ADVISE_RDPLUS
, &NFS_FLAGS(inode
));
588 nfs_zap_caches(inode
);
590 desc
->entry
->eof
= 0;
596 res
= nfs_do_filldir(desc
, dirent
, filldir
);
605 dfprintk(VFS
, "NFS: readdir(%s/%s) returns %ld\n",
606 dentry
->d_parent
->d_name
.name
, dentry
->d_name
.name
,
611 static loff_t
nfs_llseek_dir(struct file
*filp
, loff_t offset
, int origin
)
613 mutex_lock(&filp
->f_path
.dentry
->d_inode
->i_mutex
);
616 offset
+= filp
->f_pos
;
624 if (offset
!= filp
->f_pos
) {
625 filp
->f_pos
= offset
;
626 ((struct nfs_open_context
*)filp
->private_data
)->dir_cookie
= 0;
629 mutex_unlock(&filp
->f_path
.dentry
->d_inode
->i_mutex
);
634 * All directory operations under NFS are synchronous, so fsync()
635 * is a dummy operation.
637 static int nfs_fsync_dir(struct file
*filp
, struct dentry
*dentry
, int datasync
)
639 dfprintk(VFS
, "NFS: fsync_dir(%s/%s) datasync %d\n",
640 dentry
->d_parent
->d_name
.name
, dentry
->d_name
.name
,
647 * A check for whether or not the parent directory has changed.
648 * In the case it has, we assume that the dentries are untrustworthy
649 * and may need to be looked up again.
651 static int nfs_check_verifier(struct inode
*dir
, struct dentry
*dentry
)
657 verf
= dentry
->d_time
;
658 if (nfs_caches_unstable(dir
)
659 || verf
!= NFS_I(dir
)->cache_change_attribute
)
664 static inline void nfs_set_verifier(struct dentry
* dentry
, unsigned long verf
)
666 dentry
->d_time
= verf
;
669 static void nfs_refresh_verifier(struct dentry
* dentry
, unsigned long verf
)
671 nfs_set_verifier(dentry
, verf
);
675 * Whenever an NFS operation succeeds, we know that the dentry
676 * is valid, so we update the revalidation timestamp.
678 static inline void nfs_renew_times(struct dentry
* dentry
)
680 dentry
->d_time
= jiffies
;
684 * Return the intent data that applies to this particular path component
686 * Note that the current set of intents only apply to the very last
687 * component of the path.
688 * We check for this using LOOKUP_CONTINUE and LOOKUP_PARENT.
690 static inline unsigned int nfs_lookup_check_intent(struct nameidata
*nd
, unsigned int mask
)
692 if (nd
->flags
& (LOOKUP_CONTINUE
|LOOKUP_PARENT
))
694 return nd
->flags
& mask
;
698 * Inode and filehandle revalidation for lookups.
700 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
701 * or if the intent information indicates that we're about to open this
702 * particular file and the "nocto" mount flag is not set.
706 int nfs_lookup_verify_inode(struct inode
*inode
, struct nameidata
*nd
)
708 struct nfs_server
*server
= NFS_SERVER(inode
);
711 /* VFS wants an on-the-wire revalidation */
712 if (nd
->flags
& LOOKUP_REVAL
)
714 /* This is an open(2) */
715 if (nfs_lookup_check_intent(nd
, LOOKUP_OPEN
) != 0 &&
716 !(server
->flags
& NFS_MOUNT_NOCTO
) &&
717 (S_ISREG(inode
->i_mode
) ||
718 S_ISDIR(inode
->i_mode
)))
721 return nfs_revalidate_inode(server
, inode
);
723 return __nfs_revalidate_inode(server
, inode
);
727 * We judge how long we want to trust negative
728 * dentries by looking at the parent inode mtime.
730 * If parent mtime has changed, we revalidate, else we wait for a
731 * period corresponding to the parent's attribute cache timeout value.
734 int nfs_neg_need_reval(struct inode
*dir
, struct dentry
*dentry
,
735 struct nameidata
*nd
)
737 /* Don't revalidate a negative dentry if we're creating a new file */
738 if (nd
!= NULL
&& nfs_lookup_check_intent(nd
, LOOKUP_CREATE
) != 0)
740 return !nfs_check_verifier(dir
, dentry
);
744 * This is called every time the dcache has a lookup hit,
745 * and we should check whether we can really trust that
748 * NOTE! The hit can be a negative hit too, don't assume
751 * If the parent directory is seen to have changed, we throw out the
752 * cached dentry and do a new lookup.
754 static int nfs_lookup_revalidate(struct dentry
* dentry
, struct nameidata
*nd
)
758 struct dentry
*parent
;
760 struct nfs_fh fhandle
;
761 struct nfs_fattr fattr
;
762 unsigned long verifier
;
764 parent
= dget_parent(dentry
);
766 dir
= parent
->d_inode
;
767 nfs_inc_stats(dir
, NFSIOS_DENTRYREVALIDATE
);
768 inode
= dentry
->d_inode
;
770 /* Revalidate parent directory attribute cache */
771 if (nfs_revalidate_inode(NFS_SERVER(dir
), dir
) < 0)
775 if (nfs_neg_need_reval(dir
, dentry
, nd
))
780 if (is_bad_inode(inode
)) {
781 dfprintk(LOOKUPCACHE
, "%s: %s/%s has dud inode\n",
782 __FUNCTION__
, dentry
->d_parent
->d_name
.name
,
783 dentry
->d_name
.name
);
787 /* Force a full look up iff the parent directory has changed */
788 if (nfs_check_verifier(dir
, dentry
)) {
789 if (nfs_lookup_verify_inode(inode
, nd
))
794 if (NFS_STALE(inode
))
797 verifier
= nfs_save_change_attribute(dir
);
798 error
= NFS_PROTO(dir
)->lookup(dir
, &dentry
->d_name
, &fhandle
, &fattr
);
801 if (nfs_compare_fh(NFS_FH(inode
), &fhandle
))
803 if ((error
= nfs_refresh_inode(inode
, &fattr
)) != 0)
806 nfs_renew_times(dentry
);
807 nfs_refresh_verifier(dentry
, verifier
);
811 dfprintk(LOOKUPCACHE
, "NFS: %s(%s/%s) is valid\n",
812 __FUNCTION__
, dentry
->d_parent
->d_name
.name
,
813 dentry
->d_name
.name
);
819 if (inode
&& S_ISDIR(inode
->i_mode
)) {
820 /* Purge readdir caches. */
821 nfs_zap_caches(inode
);
822 /* If we have submounts, don't unhash ! */
823 if (have_submounts(dentry
))
825 shrink_dcache_parent(dentry
);
830 dfprintk(LOOKUPCACHE
, "NFS: %s(%s/%s) is invalid\n",
831 __FUNCTION__
, dentry
->d_parent
->d_name
.name
,
832 dentry
->d_name
.name
);
837 * This is called from dput() when d_count is going to 0.
839 static int nfs_dentry_delete(struct dentry
*dentry
)
841 dfprintk(VFS
, "NFS: dentry_delete(%s/%s, %x)\n",
842 dentry
->d_parent
->d_name
.name
, dentry
->d_name
.name
,
845 if (dentry
->d_flags
& DCACHE_NFSFS_RENAMED
) {
846 /* Unhash it, so that ->d_iput() would be called */
849 if (!(dentry
->d_sb
->s_flags
& MS_ACTIVE
)) {
850 /* Unhash it, so that ancestors of killed async unlink
851 * files will be cleaned up during umount */
859 * Called when the dentry loses inode.
860 * We use it to clean up silly-renamed files.
862 static void nfs_dentry_iput(struct dentry
*dentry
, struct inode
*inode
)
864 nfs_inode_return_delegation(inode
);
865 if (S_ISDIR(inode
->i_mode
))
866 /* drop any readdir cache as it could easily be old */
867 NFS_I(inode
)->cache_validity
|= NFS_INO_INVALID_DATA
;
869 if (dentry
->d_flags
& DCACHE_NFSFS_RENAMED
) {
872 nfs_complete_unlink(dentry
, inode
);
875 /* When creating a negative dentry, we want to renew d_time */
876 nfs_renew_times(dentry
);
880 struct dentry_operations nfs_dentry_operations
= {
881 .d_revalidate
= nfs_lookup_revalidate
,
882 .d_delete
= nfs_dentry_delete
,
883 .d_iput
= nfs_dentry_iput
,
887 * Use intent information to check whether or not we're going to do
888 * an O_EXCL create using this path component.
891 int nfs_is_exclusive_create(struct inode
*dir
, struct nameidata
*nd
)
893 if (NFS_PROTO(dir
)->version
== 2)
895 if (nd
== NULL
|| nfs_lookup_check_intent(nd
, LOOKUP_CREATE
) == 0)
897 return (nd
->intent
.open
.flags
& O_EXCL
) != 0;
900 static inline int nfs_reval_fsid(struct inode
*dir
, const struct nfs_fattr
*fattr
)
902 struct nfs_server
*server
= NFS_SERVER(dir
);
904 if (!nfs_fsid_equal(&server
->fsid
, &fattr
->fsid
))
905 /* Revalidate fsid using the parent directory */
906 return __nfs_revalidate_inode(server
, dir
);
910 static struct dentry
*nfs_lookup(struct inode
*dir
, struct dentry
* dentry
, struct nameidata
*nd
)
913 struct inode
*inode
= NULL
;
915 struct nfs_fh fhandle
;
916 struct nfs_fattr fattr
;
918 dfprintk(VFS
, "NFS: lookup(%s/%s)\n",
919 dentry
->d_parent
->d_name
.name
, dentry
->d_name
.name
);
920 nfs_inc_stats(dir
, NFSIOS_VFSLOOKUP
);
922 res
= ERR_PTR(-ENAMETOOLONG
);
923 if (dentry
->d_name
.len
> NFS_SERVER(dir
)->namelen
)
926 res
= ERR_PTR(-ENOMEM
);
927 dentry
->d_op
= NFS_PROTO(dir
)->dentry_ops
;
932 * If we're doing an exclusive create, optimize away the lookup
933 * but don't hash the dentry.
935 if (nfs_is_exclusive_create(dir
, nd
)) {
936 d_instantiate(dentry
, NULL
);
941 error
= NFS_PROTO(dir
)->lookup(dir
, &dentry
->d_name
, &fhandle
, &fattr
);
942 if (error
== -ENOENT
)
945 res
= ERR_PTR(error
);
948 error
= nfs_reval_fsid(dir
, &fattr
);
950 res
= ERR_PTR(error
);
953 inode
= nfs_fhget(dentry
->d_sb
, &fhandle
, &fattr
);
954 res
= (struct dentry
*)inode
;
959 res
= d_materialise_unique(dentry
, inode
);
961 struct dentry
*parent
;
964 /* Was a directory renamed! */
965 parent
= dget_parent(res
);
966 if (!IS_ROOT(parent
))
967 nfs_mark_for_revalidate(parent
->d_inode
);
971 nfs_renew_times(dentry
);
972 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
980 static int nfs_open_revalidate(struct dentry
*, struct nameidata
*);
982 struct dentry_operations nfs4_dentry_operations
= {
983 .d_revalidate
= nfs_open_revalidate
,
984 .d_delete
= nfs_dentry_delete
,
985 .d_iput
= nfs_dentry_iput
,
989 * Use intent information to determine whether we need to substitute
990 * the NFSv4-style stateful OPEN for the LOOKUP call
992 static int is_atomic_open(struct inode
*dir
, struct nameidata
*nd
)
994 if (nd
== NULL
|| nfs_lookup_check_intent(nd
, LOOKUP_OPEN
) == 0)
996 /* NFS does not (yet) have a stateful open for directories */
997 if (nd
->flags
& LOOKUP_DIRECTORY
)
999 /* Are we trying to write to a read only partition? */
1000 if (IS_RDONLY(dir
) && (nd
->intent
.open
.flags
& (O_CREAT
|O_TRUNC
|FMODE_WRITE
)))
1005 static struct dentry
*nfs_atomic_lookup(struct inode
*dir
, struct dentry
*dentry
, struct nameidata
*nd
)
1007 struct dentry
*res
= NULL
;
1010 dfprintk(VFS
, "NFS: atomic_lookup(%s/%ld), %s\n",
1011 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
->d_name
.name
);
1013 /* Check that we are indeed trying to open this file */
1014 if (!is_atomic_open(dir
, nd
))
1017 if (dentry
->d_name
.len
> NFS_SERVER(dir
)->namelen
) {
1018 res
= ERR_PTR(-ENAMETOOLONG
);
1021 dentry
->d_op
= NFS_PROTO(dir
)->dentry_ops
;
1023 /* Let vfs_create() deal with O_EXCL */
1024 if (nd
->intent
.open
.flags
& O_EXCL
) {
1025 d_add(dentry
, NULL
);
1029 /* Open the file on the server */
1031 /* Revalidate parent directory attribute cache */
1032 error
= nfs_revalidate_inode(NFS_SERVER(dir
), dir
);
1034 res
= ERR_PTR(error
);
1039 if (nd
->intent
.open
.flags
& O_CREAT
) {
1040 nfs_begin_data_update(dir
);
1041 res
= nfs4_atomic_open(dir
, dentry
, nd
);
1042 nfs_end_data_update(dir
);
1044 res
= nfs4_atomic_open(dir
, dentry
, nd
);
1047 error
= PTR_ERR(res
);
1049 /* Make a negative dentry */
1053 /* This turned out not to be a regular file */
1058 if (!(nd
->intent
.open
.flags
& O_NOFOLLOW
))
1064 } else if (res
!= NULL
)
1066 nfs_renew_times(dentry
);
1067 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
1071 return nfs_lookup(dir
, dentry
, nd
);
1074 static int nfs_open_revalidate(struct dentry
*dentry
, struct nameidata
*nd
)
1076 struct dentry
*parent
= NULL
;
1077 struct inode
*inode
= dentry
->d_inode
;
1079 unsigned long verifier
;
1080 int openflags
, ret
= 0;
1082 parent
= dget_parent(dentry
);
1083 dir
= parent
->d_inode
;
1084 if (!is_atomic_open(dir
, nd
))
1086 /* We can't create new files in nfs_open_revalidate(), so we
1087 * optimize away revalidation of negative dentries.
1091 /* NFS only supports OPEN on regular files */
1092 if (!S_ISREG(inode
->i_mode
))
1094 openflags
= nd
->intent
.open
.flags
;
1095 /* We cannot do exclusive creation on a positive dentry */
1096 if ((openflags
& (O_CREAT
|O_EXCL
)) == (O_CREAT
|O_EXCL
))
1098 /* We can't create new files, or truncate existing ones here */
1099 openflags
&= ~(O_CREAT
|O_TRUNC
);
1102 * Note: we're not holding inode->i_mutex and so may be racing with
1103 * operations that change the directory. We therefore save the
1104 * change attribute *before* we do the RPC call.
1107 verifier
= nfs_save_change_attribute(dir
);
1108 ret
= nfs4_open_revalidate(dir
, dentry
, openflags
, nd
);
1110 nfs_refresh_verifier(dentry
, verifier
);
1119 if (inode
!= NULL
&& nfs_have_delegation(inode
, FMODE_READ
))
1121 return nfs_lookup_revalidate(dentry
, nd
);
1123 #endif /* CONFIG_NFSV4 */
1125 static struct dentry
*nfs_readdir_lookup(nfs_readdir_descriptor_t
*desc
)
1127 struct dentry
*parent
= desc
->file
->f_path
.dentry
;
1128 struct inode
*dir
= parent
->d_inode
;
1129 struct nfs_entry
*entry
= desc
->entry
;
1130 struct dentry
*dentry
, *alias
;
1131 struct qstr name
= {
1132 .name
= entry
->name
,
1135 struct inode
*inode
;
1139 if (name
.name
[0] == '.' && name
.name
[1] == '.')
1140 return dget_parent(parent
);
1143 if (name
.name
[0] == '.')
1144 return dget(parent
);
1146 name
.hash
= full_name_hash(name
.name
, name
.len
);
1147 dentry
= d_lookup(parent
, &name
);
1148 if (dentry
!= NULL
) {
1149 /* Is this a positive dentry that matches the readdir info? */
1150 if (dentry
->d_inode
!= NULL
&&
1151 (NFS_FILEID(dentry
->d_inode
) == entry
->ino
||
1152 d_mountpoint(dentry
))) {
1153 if (!desc
->plus
|| entry
->fh
->size
== 0)
1155 if (nfs_compare_fh(NFS_FH(dentry
->d_inode
),
1159 /* No, so d_drop to allow one to be created */
1163 if (!desc
->plus
|| !(entry
->fattr
->valid
& NFS_ATTR_FATTR
))
1165 /* Note: caller is already holding the dir->i_mutex! */
1166 dentry
= d_alloc(parent
, &name
);
1169 dentry
->d_op
= NFS_PROTO(dir
)->dentry_ops
;
1170 inode
= nfs_fhget(dentry
->d_sb
, entry
->fh
, entry
->fattr
);
1171 if (IS_ERR(inode
)) {
1176 alias
= d_materialise_unique(dentry
, inode
);
1177 if (alias
!= NULL
) {
1184 nfs_renew_times(dentry
);
1185 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
1188 nfs_renew_times(dentry
);
1189 nfs_refresh_verifier(dentry
, nfs_save_change_attribute(dir
));
1194 * Code common to create, mkdir, and mknod.
1196 int nfs_instantiate(struct dentry
*dentry
, struct nfs_fh
*fhandle
,
1197 struct nfs_fattr
*fattr
)
1199 struct inode
*inode
;
1200 int error
= -EACCES
;
1202 /* We may have been initialized further down */
1203 if (dentry
->d_inode
)
1205 if (fhandle
->size
== 0) {
1206 struct inode
*dir
= dentry
->d_parent
->d_inode
;
1207 error
= NFS_PROTO(dir
)->lookup(dir
, &dentry
->d_name
, fhandle
, fattr
);
1211 if (!(fattr
->valid
& NFS_ATTR_FATTR
)) {
1212 struct nfs_server
*server
= NFS_SB(dentry
->d_sb
);
1213 error
= server
->nfs_client
->rpc_ops
->getattr(server
, fhandle
, fattr
);
1217 inode
= nfs_fhget(dentry
->d_sb
, fhandle
, fattr
);
1218 error
= PTR_ERR(inode
);
1221 d_instantiate(dentry
, inode
);
1222 if (d_unhashed(dentry
))
1228 * Following a failed create operation, we drop the dentry rather
1229 * than retain a negative dentry. This avoids a problem in the event
1230 * that the operation succeeded on the server, but an error in the
1231 * reply path made it appear to have failed.
1233 static int nfs_create(struct inode
*dir
, struct dentry
*dentry
, int mode
,
1234 struct nameidata
*nd
)
1240 dfprintk(VFS
, "NFS: create(%s/%ld), %s\n",
1241 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
->d_name
.name
);
1243 attr
.ia_mode
= mode
;
1244 attr
.ia_valid
= ATTR_MODE
;
1246 if ((nd
->flags
& LOOKUP_CREATE
) != 0)
1247 open_flags
= nd
->intent
.open
.flags
;
1250 nfs_begin_data_update(dir
);
1251 error
= NFS_PROTO(dir
)->create(dir
, dentry
, &attr
, open_flags
, nd
);
1252 nfs_end_data_update(dir
);
1255 nfs_renew_times(dentry
);
1256 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
1266 * See comments for nfs_proc_create regarding failed operations.
1269 nfs_mknod(struct inode
*dir
, struct dentry
*dentry
, int mode
, dev_t rdev
)
1274 dfprintk(VFS
, "NFS: mknod(%s/%ld), %s\n",
1275 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
->d_name
.name
);
1277 if (!new_valid_dev(rdev
))
1280 attr
.ia_mode
= mode
;
1281 attr
.ia_valid
= ATTR_MODE
;
1284 nfs_begin_data_update(dir
);
1285 status
= NFS_PROTO(dir
)->mknod(dir
, dentry
, &attr
, rdev
);
1286 nfs_end_data_update(dir
);
1289 nfs_renew_times(dentry
);
1290 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
1300 * See comments for nfs_proc_create regarding failed operations.
1302 static int nfs_mkdir(struct inode
*dir
, struct dentry
*dentry
, int mode
)
1307 dfprintk(VFS
, "NFS: mkdir(%s/%ld), %s\n",
1308 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
->d_name
.name
);
1310 attr
.ia_valid
= ATTR_MODE
;
1311 attr
.ia_mode
= mode
| S_IFDIR
;
1314 nfs_begin_data_update(dir
);
1315 error
= NFS_PROTO(dir
)->mkdir(dir
, dentry
, &attr
);
1316 nfs_end_data_update(dir
);
1319 nfs_renew_times(dentry
);
1320 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
1329 static int nfs_rmdir(struct inode
*dir
, struct dentry
*dentry
)
1333 dfprintk(VFS
, "NFS: rmdir(%s/%ld), %s\n",
1334 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
->d_name
.name
);
1337 nfs_begin_data_update(dir
);
1338 error
= NFS_PROTO(dir
)->rmdir(dir
, &dentry
->d_name
);
1339 /* Ensure the VFS deletes this inode */
1340 if (error
== 0 && dentry
->d_inode
!= NULL
)
1341 clear_nlink(dentry
->d_inode
);
1342 nfs_end_data_update(dir
);
1348 static int nfs_sillyrename(struct inode
*dir
, struct dentry
*dentry
)
1350 static unsigned int sillycounter
;
1351 const int i_inosize
= sizeof(dir
->i_ino
)*2;
1352 const int countersize
= sizeof(sillycounter
)*2;
1353 const int slen
= sizeof(".nfs") + i_inosize
+ countersize
- 1;
1356 struct dentry
*sdentry
;
1359 dfprintk(VFS
, "NFS: silly-rename(%s/%s, ct=%d)\n",
1360 dentry
->d_parent
->d_name
.name
, dentry
->d_name
.name
,
1361 atomic_read(&dentry
->d_count
));
1362 nfs_inc_stats(dir
, NFSIOS_SILLYRENAME
);
1365 * We don't allow a dentry to be silly-renamed twice.
1368 if (dentry
->d_flags
& DCACHE_NFSFS_RENAMED
)
1371 sprintf(silly
, ".nfs%*.*lx",
1372 i_inosize
, i_inosize
, dentry
->d_inode
->i_ino
);
1374 /* Return delegation in anticipation of the rename */
1375 nfs_inode_return_delegation(dentry
->d_inode
);
1379 char *suffix
= silly
+ slen
- countersize
;
1383 sprintf(suffix
, "%*.*x", countersize
, countersize
, sillycounter
);
1385 dfprintk(VFS
, "NFS: trying to rename %s to %s\n",
1386 dentry
->d_name
.name
, silly
);
1388 sdentry
= lookup_one_len(silly
, dentry
->d_parent
, slen
);
1390 * N.B. Better to return EBUSY here ... it could be
1391 * dangerous to delete the file while it's in use.
1393 if (IS_ERR(sdentry
))
1395 } while(sdentry
->d_inode
!= NULL
); /* need negative lookup */
1397 qsilly
.name
= silly
;
1398 qsilly
.len
= strlen(silly
);
1399 nfs_begin_data_update(dir
);
1400 if (dentry
->d_inode
) {
1401 nfs_begin_data_update(dentry
->d_inode
);
1402 error
= NFS_PROTO(dir
)->rename(dir
, &dentry
->d_name
,
1404 nfs_mark_for_revalidate(dentry
->d_inode
);
1405 nfs_end_data_update(dentry
->d_inode
);
1407 error
= NFS_PROTO(dir
)->rename(dir
, &dentry
->d_name
,
1409 nfs_end_data_update(dir
);
1411 nfs_renew_times(dentry
);
1412 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
1413 d_move(dentry
, sdentry
);
1414 error
= nfs_async_unlink(dir
, dentry
);
1415 /* If we return 0 we don't unlink */
1423 * Remove a file after making sure there are no pending writes,
1424 * and after checking that the file has only one user.
1426 * We invalidate the attribute cache and free the inode prior to the operation
1427 * to avoid possible races if the server reuses the inode.
1429 static int nfs_safe_remove(struct dentry
*dentry
)
1431 struct inode
*dir
= dentry
->d_parent
->d_inode
;
1432 struct inode
*inode
= dentry
->d_inode
;
1435 dfprintk(VFS
, "NFS: safe_remove(%s/%s)\n",
1436 dentry
->d_parent
->d_name
.name
, dentry
->d_name
.name
);
1438 /* If the dentry was sillyrenamed, we simply call d_delete() */
1439 if (dentry
->d_flags
& DCACHE_NFSFS_RENAMED
) {
1444 nfs_begin_data_update(dir
);
1445 if (inode
!= NULL
) {
1446 nfs_inode_return_delegation(inode
);
1447 nfs_begin_data_update(inode
);
1448 error
= NFS_PROTO(dir
)->remove(dir
, &dentry
->d_name
);
1449 /* The VFS may want to delete this inode */
1452 nfs_mark_for_revalidate(inode
);
1453 nfs_end_data_update(inode
);
1455 error
= NFS_PROTO(dir
)->remove(dir
, &dentry
->d_name
);
1456 nfs_end_data_update(dir
);
1461 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1462 * belongs to an active ".nfs..." file and we return -EBUSY.
1464 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1466 static int nfs_unlink(struct inode
*dir
, struct dentry
*dentry
)
1469 int need_rehash
= 0;
1471 dfprintk(VFS
, "NFS: unlink(%s/%ld, %s)\n", dir
->i_sb
->s_id
,
1472 dir
->i_ino
, dentry
->d_name
.name
);
1475 spin_lock(&dcache_lock
);
1476 spin_lock(&dentry
->d_lock
);
1477 if (atomic_read(&dentry
->d_count
) > 1) {
1478 spin_unlock(&dentry
->d_lock
);
1479 spin_unlock(&dcache_lock
);
1480 /* Start asynchronous writeout of the inode */
1481 write_inode_now(dentry
->d_inode
, 0);
1482 error
= nfs_sillyrename(dir
, dentry
);
1486 if (!d_unhashed(dentry
)) {
1490 spin_unlock(&dentry
->d_lock
);
1491 spin_unlock(&dcache_lock
);
1492 error
= nfs_safe_remove(dentry
);
1494 nfs_renew_times(dentry
);
1495 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
1496 } else if (need_rehash
)
1503 * To create a symbolic link, most file systems instantiate a new inode,
1504 * add a page to it containing the path, then write it out to the disk
1505 * using prepare_write/commit_write.
1507 * Unfortunately the NFS client can't create the in-core inode first
1508 * because it needs a file handle to create an in-core inode (see
1509 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1510 * symlink request has completed on the server.
1512 * So instead we allocate a raw page, copy the symname into it, then do
1513 * the SYMLINK request with the page as the buffer. If it succeeds, we
1514 * now have a new file handle and can instantiate an in-core NFS inode
1515 * and move the raw page into its mapping.
1517 static int nfs_symlink(struct inode
*dir
, struct dentry
*dentry
, const char *symname
)
1519 struct pagevec lru_pvec
;
1523 unsigned int pathlen
= strlen(symname
);
1526 dfprintk(VFS
, "NFS: symlink(%s/%ld, %s, %s)\n", dir
->i_sb
->s_id
,
1527 dir
->i_ino
, dentry
->d_name
.name
, symname
);
1529 if (pathlen
> PAGE_SIZE
)
1530 return -ENAMETOOLONG
;
1532 attr
.ia_mode
= S_IFLNK
| S_IRWXUGO
;
1533 attr
.ia_valid
= ATTR_MODE
;
1537 page
= alloc_page(GFP_HIGHUSER
);
1543 kaddr
= kmap_atomic(page
, KM_USER0
);
1544 memcpy(kaddr
, symname
, pathlen
);
1545 if (pathlen
< PAGE_SIZE
)
1546 memset(kaddr
+ pathlen
, 0, PAGE_SIZE
- pathlen
);
1547 kunmap_atomic(kaddr
, KM_USER0
);
1549 nfs_begin_data_update(dir
);
1550 error
= NFS_PROTO(dir
)->symlink(dir
, dentry
, page
, pathlen
, &attr
);
1551 nfs_end_data_update(dir
);
1553 dfprintk(VFS
, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1554 dir
->i_sb
->s_id
, dir
->i_ino
,
1555 dentry
->d_name
.name
, symname
, error
);
1563 * No big deal if we can't add this page to the page cache here.
1564 * READLINK will get the missing page from the server if needed.
1566 pagevec_init(&lru_pvec
, 0);
1567 if (!add_to_page_cache(page
, dentry
->d_inode
->i_mapping
, 0,
1569 pagevec_add(&lru_pvec
, page
);
1570 pagevec_lru_add(&lru_pvec
);
1571 SetPageUptodate(page
);
1581 nfs_link(struct dentry
*old_dentry
, struct inode
*dir
, struct dentry
*dentry
)
1583 struct inode
*inode
= old_dentry
->d_inode
;
1586 dfprintk(VFS
, "NFS: link(%s/%s -> %s/%s)\n",
1587 old_dentry
->d_parent
->d_name
.name
, old_dentry
->d_name
.name
,
1588 dentry
->d_parent
->d_name
.name
, dentry
->d_name
.name
);
1591 nfs_begin_data_update(dir
);
1592 nfs_begin_data_update(inode
);
1593 error
= NFS_PROTO(dir
)->link(inode
, dir
, &dentry
->d_name
);
1595 atomic_inc(&inode
->i_count
);
1596 d_instantiate(dentry
, inode
);
1598 nfs_end_data_update(inode
);
1599 nfs_end_data_update(dir
);
1606 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1607 * different file handle for the same inode after a rename (e.g. when
1608 * moving to a different directory). A fail-safe method to do so would
1609 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1610 * rename the old file using the sillyrename stuff. This way, the original
1611 * file in old_dir will go away when the last process iput()s the inode.
1615 * It actually works quite well. One needs to have the possibility for
1616 * at least one ".nfs..." file in each directory the file ever gets
1617 * moved or linked to which happens automagically with the new
1618 * implementation that only depends on the dcache stuff instead of
1619 * using the inode layer
1621 * Unfortunately, things are a little more complicated than indicated
1622 * above. For a cross-directory move, we want to make sure we can get
1623 * rid of the old inode after the operation. This means there must be
1624 * no pending writes (if it's a file), and the use count must be 1.
1625 * If these conditions are met, we can drop the dentries before doing
1628 static int nfs_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
1629 struct inode
*new_dir
, struct dentry
*new_dentry
)
1631 struct inode
*old_inode
= old_dentry
->d_inode
;
1632 struct inode
*new_inode
= new_dentry
->d_inode
;
1633 struct dentry
*dentry
= NULL
, *rehash
= NULL
;
1637 * To prevent any new references to the target during the rename,
1638 * we unhash the dentry and free the inode in advance.
1641 if (!d_unhashed(new_dentry
)) {
1643 rehash
= new_dentry
;
1646 dfprintk(VFS
, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1647 old_dentry
->d_parent
->d_name
.name
, old_dentry
->d_name
.name
,
1648 new_dentry
->d_parent
->d_name
.name
, new_dentry
->d_name
.name
,
1649 atomic_read(&new_dentry
->d_count
));
1652 * First check whether the target is busy ... we can't
1653 * safely do _any_ rename if the target is in use.
1655 * For files, make a copy of the dentry and then do a
1656 * silly-rename. If the silly-rename succeeds, the
1657 * copied dentry is hashed and becomes the new target.
1661 if (S_ISDIR(new_inode
->i_mode
)) {
1663 if (!S_ISDIR(old_inode
->i_mode
))
1665 } else if (atomic_read(&new_dentry
->d_count
) > 2) {
1667 /* copy the target dentry's name */
1668 dentry
= d_alloc(new_dentry
->d_parent
,
1669 &new_dentry
->d_name
);
1673 /* silly-rename the existing target ... */
1674 err
= nfs_sillyrename(new_dir
, new_dentry
);
1676 new_dentry
= rehash
= dentry
;
1678 /* instantiate the replacement target */
1679 d_instantiate(new_dentry
, NULL
);
1680 } else if (atomic_read(&new_dentry
->d_count
) > 1)
1681 /* dentry still busy? */
1684 drop_nlink(new_inode
);
1688 * ... prune child dentries and writebacks if needed.
1690 if (atomic_read(&old_dentry
->d_count
) > 1) {
1691 if (S_ISREG(old_inode
->i_mode
))
1692 nfs_wb_all(old_inode
);
1693 shrink_dcache_parent(old_dentry
);
1695 nfs_inode_return_delegation(old_inode
);
1697 if (new_inode
!= NULL
) {
1698 nfs_inode_return_delegation(new_inode
);
1699 d_delete(new_dentry
);
1702 nfs_begin_data_update(old_dir
);
1703 nfs_begin_data_update(new_dir
);
1704 nfs_begin_data_update(old_inode
);
1705 error
= NFS_PROTO(old_dir
)->rename(old_dir
, &old_dentry
->d_name
,
1706 new_dir
, &new_dentry
->d_name
);
1707 nfs_mark_for_revalidate(old_inode
);
1708 nfs_end_data_update(old_inode
);
1709 nfs_end_data_update(new_dir
);
1710 nfs_end_data_update(old_dir
);
1715 d_move(old_dentry
, new_dentry
);
1716 nfs_renew_times(new_dentry
);
1717 nfs_refresh_verifier(new_dentry
, nfs_save_change_attribute(new_dir
));
1720 /* new dentry created? */
1727 static DEFINE_SPINLOCK(nfs_access_lru_lock
);
1728 static LIST_HEAD(nfs_access_lru_list
);
1729 static atomic_long_t nfs_access_nr_entries
;
1731 static void nfs_access_free_entry(struct nfs_access_entry
*entry
)
1733 put_rpccred(entry
->cred
);
1735 smp_mb__before_atomic_dec();
1736 atomic_long_dec(&nfs_access_nr_entries
);
1737 smp_mb__after_atomic_dec();
1740 int nfs_access_cache_shrinker(int nr_to_scan
, gfp_t gfp_mask
)
1743 struct nfs_inode
*nfsi
;
1744 struct nfs_access_entry
*cache
;
1747 spin_lock(&nfs_access_lru_lock
);
1748 list_for_each_entry(nfsi
, &nfs_access_lru_list
, access_cache_inode_lru
) {
1749 struct inode
*inode
;
1751 if (nr_to_scan
-- == 0)
1753 inode
= igrab(&nfsi
->vfs_inode
);
1756 spin_lock(&inode
->i_lock
);
1757 if (list_empty(&nfsi
->access_cache_entry_lru
))
1758 goto remove_lru_entry
;
1759 cache
= list_entry(nfsi
->access_cache_entry_lru
.next
,
1760 struct nfs_access_entry
, lru
);
1761 list_move(&cache
->lru
, &head
);
1762 rb_erase(&cache
->rb_node
, &nfsi
->access_cache
);
1763 if (!list_empty(&nfsi
->access_cache_entry_lru
))
1764 list_move_tail(&nfsi
->access_cache_inode_lru
,
1765 &nfs_access_lru_list
);
1768 list_del_init(&nfsi
->access_cache_inode_lru
);
1769 clear_bit(NFS_INO_ACL_LRU_SET
, &nfsi
->flags
);
1771 spin_unlock(&inode
->i_lock
);
1772 spin_unlock(&nfs_access_lru_lock
);
1776 spin_unlock(&nfs_access_lru_lock
);
1777 while (!list_empty(&head
)) {
1778 cache
= list_entry(head
.next
, struct nfs_access_entry
, lru
);
1779 list_del(&cache
->lru
);
1780 nfs_access_free_entry(cache
);
1782 return (atomic_long_read(&nfs_access_nr_entries
) / 100) * sysctl_vfs_cache_pressure
;
1785 static void __nfs_access_zap_cache(struct inode
*inode
)
1787 struct nfs_inode
*nfsi
= NFS_I(inode
);
1788 struct rb_root
*root_node
= &nfsi
->access_cache
;
1789 struct rb_node
*n
, *dispose
= NULL
;
1790 struct nfs_access_entry
*entry
;
1792 /* Unhook entries from the cache */
1793 while ((n
= rb_first(root_node
)) != NULL
) {
1794 entry
= rb_entry(n
, struct nfs_access_entry
, rb_node
);
1795 rb_erase(n
, root_node
);
1796 list_del(&entry
->lru
);
1797 n
->rb_left
= dispose
;
1800 nfsi
->cache_validity
&= ~NFS_INO_INVALID_ACCESS
;
1801 spin_unlock(&inode
->i_lock
);
1803 /* Now kill them all! */
1804 while (dispose
!= NULL
) {
1806 dispose
= n
->rb_left
;
1807 nfs_access_free_entry(rb_entry(n
, struct nfs_access_entry
, rb_node
));
1811 void nfs_access_zap_cache(struct inode
*inode
)
1813 /* Remove from global LRU init */
1814 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET
, &NFS_FLAGS(inode
))) {
1815 spin_lock(&nfs_access_lru_lock
);
1816 list_del_init(&NFS_I(inode
)->access_cache_inode_lru
);
1817 spin_unlock(&nfs_access_lru_lock
);
1820 spin_lock(&inode
->i_lock
);
1821 /* This will release the spinlock */
1822 __nfs_access_zap_cache(inode
);
1825 static struct nfs_access_entry
*nfs_access_search_rbtree(struct inode
*inode
, struct rpc_cred
*cred
)
1827 struct rb_node
*n
= NFS_I(inode
)->access_cache
.rb_node
;
1828 struct nfs_access_entry
*entry
;
1831 entry
= rb_entry(n
, struct nfs_access_entry
, rb_node
);
1833 if (cred
< entry
->cred
)
1835 else if (cred
> entry
->cred
)
1843 int nfs_access_get_cached(struct inode
*inode
, struct rpc_cred
*cred
, struct nfs_access_entry
*res
)
1845 struct nfs_inode
*nfsi
= NFS_I(inode
);
1846 struct nfs_access_entry
*cache
;
1849 spin_lock(&inode
->i_lock
);
1850 if (nfsi
->cache_validity
& NFS_INO_INVALID_ACCESS
)
1852 cache
= nfs_access_search_rbtree(inode
, cred
);
1855 if (time_after(jiffies
, cache
->jiffies
+ NFS_ATTRTIMEO(inode
)))
1857 res
->jiffies
= cache
->jiffies
;
1858 res
->cred
= cache
->cred
;
1859 res
->mask
= cache
->mask
;
1860 list_move_tail(&cache
->lru
, &nfsi
->access_cache_entry_lru
);
1863 spin_unlock(&inode
->i_lock
);
1866 rb_erase(&cache
->rb_node
, &nfsi
->access_cache
);
1867 list_del(&cache
->lru
);
1868 spin_unlock(&inode
->i_lock
);
1869 nfs_access_free_entry(cache
);
1872 /* This will release the spinlock */
1873 __nfs_access_zap_cache(inode
);
1877 static void nfs_access_add_rbtree(struct inode
*inode
, struct nfs_access_entry
*set
)
1879 struct nfs_inode
*nfsi
= NFS_I(inode
);
1880 struct rb_root
*root_node
= &nfsi
->access_cache
;
1881 struct rb_node
**p
= &root_node
->rb_node
;
1882 struct rb_node
*parent
= NULL
;
1883 struct nfs_access_entry
*entry
;
1885 spin_lock(&inode
->i_lock
);
1886 while (*p
!= NULL
) {
1888 entry
= rb_entry(parent
, struct nfs_access_entry
, rb_node
);
1890 if (set
->cred
< entry
->cred
)
1891 p
= &parent
->rb_left
;
1892 else if (set
->cred
> entry
->cred
)
1893 p
= &parent
->rb_right
;
1897 rb_link_node(&set
->rb_node
, parent
, p
);
1898 rb_insert_color(&set
->rb_node
, root_node
);
1899 list_add_tail(&set
->lru
, &nfsi
->access_cache_entry_lru
);
1900 spin_unlock(&inode
->i_lock
);
1903 rb_replace_node(parent
, &set
->rb_node
, root_node
);
1904 list_add_tail(&set
->lru
, &nfsi
->access_cache_entry_lru
);
1905 list_del(&entry
->lru
);
1906 spin_unlock(&inode
->i_lock
);
1907 nfs_access_free_entry(entry
);
1910 void nfs_access_add_cache(struct inode
*inode
, struct nfs_access_entry
*set
)
1912 struct nfs_access_entry
*cache
= kmalloc(sizeof(*cache
), GFP_KERNEL
);
1915 RB_CLEAR_NODE(&cache
->rb_node
);
1916 cache
->jiffies
= set
->jiffies
;
1917 cache
->cred
= get_rpccred(set
->cred
);
1918 cache
->mask
= set
->mask
;
1920 nfs_access_add_rbtree(inode
, cache
);
1922 /* Update accounting */
1923 smp_mb__before_atomic_inc();
1924 atomic_long_inc(&nfs_access_nr_entries
);
1925 smp_mb__after_atomic_inc();
1927 /* Add inode to global LRU list */
1928 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET
, &NFS_FLAGS(inode
))) {
1929 spin_lock(&nfs_access_lru_lock
);
1930 list_add_tail(&NFS_I(inode
)->access_cache_inode_lru
, &nfs_access_lru_list
);
1931 spin_unlock(&nfs_access_lru_lock
);
1935 static int nfs_do_access(struct inode
*inode
, struct rpc_cred
*cred
, int mask
)
1937 struct nfs_access_entry cache
;
1940 status
= nfs_access_get_cached(inode
, cred
, &cache
);
1944 /* Be clever: ask server to check for all possible rights */
1945 cache
.mask
= MAY_EXEC
| MAY_WRITE
| MAY_READ
;
1947 cache
.jiffies
= jiffies
;
1948 status
= NFS_PROTO(inode
)->access(inode
, &cache
);
1951 nfs_access_add_cache(inode
, &cache
);
1953 if ((cache
.mask
& mask
) == mask
)
1958 int nfs_permission(struct inode
*inode
, int mask
, struct nameidata
*nd
)
1960 struct rpc_cred
*cred
;
1963 nfs_inc_stats(inode
, NFSIOS_VFSACCESS
);
1967 /* Is this sys_access() ? */
1968 if (nd
!= NULL
&& (nd
->flags
& LOOKUP_ACCESS
))
1971 switch (inode
->i_mode
& S_IFMT
) {
1975 /* NFSv4 has atomic_open... */
1976 if (nfs_server_capable(inode
, NFS_CAP_ATOMIC_OPEN
)
1978 && (nd
->flags
& LOOKUP_OPEN
))
1983 * Optimize away all write operations, since the server
1984 * will check permissions when we perform the op.
1986 if ((mask
& MAY_WRITE
) && !(mask
& MAY_READ
))
1993 if (!NFS_PROTO(inode
)->access
)
1996 cred
= rpcauth_lookupcred(NFS_CLIENT(inode
)->cl_auth
, 0);
1997 if (!IS_ERR(cred
)) {
1998 res
= nfs_do_access(inode
, cred
, mask
);
2001 res
= PTR_ERR(cred
);
2004 dfprintk(VFS
, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
2005 inode
->i_sb
->s_id
, inode
->i_ino
, mask
, res
);
2008 res
= nfs_revalidate_inode(NFS_SERVER(inode
), inode
);
2010 res
= generic_permission(inode
, mask
, NULL
);
2017 * version-control: t
2018 * kept-new-versions: 5