ARM: PL08x: shrink srcbus/dstbus in txd structure
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / dma / amba-pl08x.c
blob8d8d33ce568419e306516c50ef2091258dc8cede
1 /*
2 * Copyright (c) 2006 ARM Ltd.
3 * Copyright (c) 2010 ST-Ericsson SA
5 * Author: Peter Pearse <peter.pearse@arm.com>
6 * Author: Linus Walleij <linus.walleij@stericsson.com>
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the Free
10 * Software Foundation; either version 2 of the License, or (at your option)
11 * any later version.
13 * This program is distributed in the hope that it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 * more details.
18 * You should have received a copy of the GNU General Public License along with
19 * this program; if not, write to the Free Software Foundation, Inc., 59
20 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 * The full GNU General Public License is in this distribution in the
23 * file called COPYING.
25 * Documentation: ARM DDI 0196G == PL080
26 * Documentation: ARM DDI 0218E == PL081
28 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to
29 * any channel.
31 * The PL080 has 8 channels available for simultaneous use, and the PL081
32 * has only two channels. So on these DMA controllers the number of channels
33 * and the number of incoming DMA signals are two totally different things.
34 * It is usually not possible to theoretically handle all physical signals,
35 * so a multiplexing scheme with possible denial of use is necessary.
37 * The PL080 has a dual bus master, PL081 has a single master.
39 * Memory to peripheral transfer may be visualized as
40 * Get data from memory to DMAC
41 * Until no data left
42 * On burst request from peripheral
43 * Destination burst from DMAC to peripheral
44 * Clear burst request
45 * Raise terminal count interrupt
47 * For peripherals with a FIFO:
48 * Source burst size == half the depth of the peripheral FIFO
49 * Destination burst size == the depth of the peripheral FIFO
51 * (Bursts are irrelevant for mem to mem transfers - there are no burst
52 * signals, the DMA controller will simply facilitate its AHB master.)
54 * ASSUMES default (little) endianness for DMA transfers
56 * The PL08x has two flow control settings:
57 * - DMAC flow control: the transfer size defines the number of transfers
58 * which occur for the current LLI entry, and the DMAC raises TC at the
59 * end of every LLI entry. Observed behaviour shows the DMAC listening
60 * to both the BREQ and SREQ signals (contrary to documented),
61 * transferring data if either is active. The LBREQ and LSREQ signals
62 * are ignored.
64 * - Peripheral flow control: the transfer size is ignored (and should be
65 * zero). The data is transferred from the current LLI entry, until
66 * after the final transfer signalled by LBREQ or LSREQ. The DMAC
67 * will then move to the next LLI entry.
69 * Only the former works sanely with scatter lists, so we only implement
70 * the DMAC flow control method. However, peripherals which use the LBREQ
71 * and LSREQ signals (eg, MMCI) are unable to use this mode, which through
72 * these hardware restrictions prevents them from using scatter DMA.
74 * Global TODO:
75 * - Break out common code from arch/arm/mach-s3c64xx and share
77 #include <linux/device.h>
78 #include <linux/init.h>
79 #include <linux/module.h>
80 #include <linux/interrupt.h>
81 #include <linux/slab.h>
82 #include <linux/dmapool.h>
83 #include <linux/dmaengine.h>
84 #include <linux/amba/bus.h>
85 #include <linux/amba/pl08x.h>
86 #include <linux/debugfs.h>
87 #include <linux/seq_file.h>
89 #include <asm/hardware/pl080.h>
91 #define DRIVER_NAME "pl08xdmac"
93 /**
94 * struct vendor_data - vendor-specific config parameters
95 * for PL08x derivatives
96 * @channels: the number of channels available in this variant
97 * @dualmaster: whether this version supports dual AHB masters
98 * or not.
100 struct vendor_data {
101 u8 channels;
102 bool dualmaster;
106 * PL08X private data structures
107 * An LLI struct - see PL08x TRM. Note that next uses bit[0] as a bus bit,
108 * start & end do not - their bus bit info is in cctl. Also note that these
109 * are fixed 32-bit quantities.
111 struct pl08x_lli {
112 u32 src;
113 u32 dst;
114 u32 lli;
115 u32 cctl;
119 * struct pl08x_driver_data - the local state holder for the PL08x
120 * @slave: slave engine for this instance
121 * @memcpy: memcpy engine for this instance
122 * @base: virtual memory base (remapped) for the PL08x
123 * @adev: the corresponding AMBA (PrimeCell) bus entry
124 * @vd: vendor data for this PL08x variant
125 * @pd: platform data passed in from the platform/machine
126 * @phy_chans: array of data for the physical channels
127 * @pool: a pool for the LLI descriptors
128 * @pool_ctr: counter of LLIs in the pool
129 * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI fetches
130 * @mem_buses: set to indicate memory transfers on AHB2.
131 * @lock: a spinlock for this struct
133 struct pl08x_driver_data {
134 struct dma_device slave;
135 struct dma_device memcpy;
136 void __iomem *base;
137 struct amba_device *adev;
138 const struct vendor_data *vd;
139 struct pl08x_platform_data *pd;
140 struct pl08x_phy_chan *phy_chans;
141 struct dma_pool *pool;
142 int pool_ctr;
143 u8 lli_buses;
144 u8 mem_buses;
145 spinlock_t lock;
149 * PL08X specific defines
153 * Memory boundaries: the manual for PL08x says that the controller
154 * cannot read past a 1KiB boundary, so these defines are used to
155 * create transfer LLIs that do not cross such boundaries.
157 #define PL08X_BOUNDARY_SHIFT (10) /* 1KB 0x400 */
158 #define PL08X_BOUNDARY_SIZE (1 << PL08X_BOUNDARY_SHIFT)
160 /* Minimum period between work queue runs */
161 #define PL08X_WQ_PERIODMIN 20
163 /* Size (bytes) of each LLI buffer allocated for one transfer */
164 # define PL08X_LLI_TSFR_SIZE 0x2000
166 /* Maximum times we call dma_pool_alloc on this pool without freeing */
167 #define PL08X_MAX_ALLOCS 0x40
168 #define MAX_NUM_TSFR_LLIS (PL08X_LLI_TSFR_SIZE/sizeof(struct pl08x_lli))
169 #define PL08X_ALIGN 8
171 static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
173 return container_of(chan, struct pl08x_dma_chan, chan);
177 * Physical channel handling
180 /* Whether a certain channel is busy or not */
181 static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
183 unsigned int val;
185 val = readl(ch->base + PL080_CH_CONFIG);
186 return val & PL080_CONFIG_ACTIVE;
190 * Set the initial DMA register values i.e. those for the first LLI
191 * The next LLI pointer and the configuration interrupt bit have
192 * been set when the LLIs were constructed. Poke them into the hardware
193 * and start the transfer.
195 static void pl08x_start_txd(struct pl08x_dma_chan *plchan,
196 struct pl08x_txd *txd)
198 struct pl08x_driver_data *pl08x = plchan->host;
199 struct pl08x_phy_chan *phychan = plchan->phychan;
200 struct pl08x_lli *lli = &txd->llis_va[0];
201 u32 val;
203 plchan->at = txd;
205 /* Wait for channel inactive */
206 while (pl08x_phy_channel_busy(phychan))
207 cpu_relax();
209 dev_vdbg(&pl08x->adev->dev,
210 "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
211 "clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
212 phychan->id, lli->src, lli->dst, lli->lli, lli->cctl,
213 txd->ccfg);
215 writel(lli->src, phychan->base + PL080_CH_SRC_ADDR);
216 writel(lli->dst, phychan->base + PL080_CH_DST_ADDR);
217 writel(lli->lli, phychan->base + PL080_CH_LLI);
218 writel(lli->cctl, phychan->base + PL080_CH_CONTROL);
219 writel(txd->ccfg, phychan->base + PL080_CH_CONFIG);
221 /* Enable the DMA channel */
222 /* Do not access config register until channel shows as disabled */
223 while (readl(pl08x->base + PL080_EN_CHAN) & (1 << phychan->id))
224 cpu_relax();
226 /* Do not access config register until channel shows as inactive */
227 val = readl(phychan->base + PL080_CH_CONFIG);
228 while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE))
229 val = readl(phychan->base + PL080_CH_CONFIG);
231 writel(val | PL080_CONFIG_ENABLE, phychan->base + PL080_CH_CONFIG);
235 * Overall DMAC remains enabled always.
237 * Disabling individual channels could lose data.
239 * Disable the peripheral DMA after disabling the DMAC
240 * in order to allow the DMAC FIFO to drain, and
241 * hence allow the channel to show inactive
244 static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
246 u32 val;
248 /* Set the HALT bit and wait for the FIFO to drain */
249 val = readl(ch->base + PL080_CH_CONFIG);
250 val |= PL080_CONFIG_HALT;
251 writel(val, ch->base + PL080_CH_CONFIG);
253 /* Wait for channel inactive */
254 while (pl08x_phy_channel_busy(ch))
255 cpu_relax();
258 static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
260 u32 val;
262 /* Clear the HALT bit */
263 val = readl(ch->base + PL080_CH_CONFIG);
264 val &= ~PL080_CONFIG_HALT;
265 writel(val, ch->base + PL080_CH_CONFIG);
269 /* Stops the channel */
270 static void pl08x_stop_phy_chan(struct pl08x_phy_chan *ch)
272 u32 val;
274 pl08x_pause_phy_chan(ch);
276 /* Disable channel */
277 val = readl(ch->base + PL080_CH_CONFIG);
278 val &= ~PL080_CONFIG_ENABLE;
279 val &= ~PL080_CONFIG_ERR_IRQ_MASK;
280 val &= ~PL080_CONFIG_TC_IRQ_MASK;
281 writel(val, ch->base + PL080_CH_CONFIG);
284 static inline u32 get_bytes_in_cctl(u32 cctl)
286 /* The source width defines the number of bytes */
287 u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK;
289 switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
290 case PL080_WIDTH_8BIT:
291 break;
292 case PL080_WIDTH_16BIT:
293 bytes *= 2;
294 break;
295 case PL080_WIDTH_32BIT:
296 bytes *= 4;
297 break;
299 return bytes;
302 /* The channel should be paused when calling this */
303 static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
305 struct pl08x_phy_chan *ch;
306 struct pl08x_txd *txd;
307 unsigned long flags;
308 size_t bytes = 0;
310 spin_lock_irqsave(&plchan->lock, flags);
311 ch = plchan->phychan;
312 txd = plchan->at;
315 * Follow the LLIs to get the number of remaining
316 * bytes in the currently active transaction.
318 if (ch && txd) {
319 u32 clli = readl(ch->base + PL080_CH_LLI) & ~PL080_LLI_LM_AHB2;
321 /* First get the remaining bytes in the active transfer */
322 bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL));
324 if (clli) {
325 struct pl08x_lli *llis_va = txd->llis_va;
326 dma_addr_t llis_bus = txd->llis_bus;
327 int index;
329 BUG_ON(clli < llis_bus || clli >= llis_bus +
330 sizeof(struct pl08x_lli) * MAX_NUM_TSFR_LLIS);
333 * Locate the next LLI - as this is an array,
334 * it's simple maths to find.
336 index = (clli - llis_bus) / sizeof(struct pl08x_lli);
338 for (; index < MAX_NUM_TSFR_LLIS; index++) {
339 bytes += get_bytes_in_cctl(llis_va[index].cctl);
342 * A LLI pointer of 0 terminates the LLI list
344 if (!llis_va[index].lli)
345 break;
350 /* Sum up all queued transactions */
351 if (!list_empty(&plchan->desc_list)) {
352 struct pl08x_txd *txdi;
353 list_for_each_entry(txdi, &plchan->desc_list, node) {
354 bytes += txdi->len;
358 spin_unlock_irqrestore(&plchan->lock, flags);
360 return bytes;
364 * Allocate a physical channel for a virtual channel
366 static struct pl08x_phy_chan *
367 pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
368 struct pl08x_dma_chan *virt_chan)
370 struct pl08x_phy_chan *ch = NULL;
371 unsigned long flags;
372 int i;
375 * Try to locate a physical channel to be used for
376 * this transfer. If all are taken return NULL and
377 * the requester will have to cope by using some fallback
378 * PIO mode or retrying later.
380 for (i = 0; i < pl08x->vd->channels; i++) {
381 ch = &pl08x->phy_chans[i];
383 spin_lock_irqsave(&ch->lock, flags);
385 if (!ch->serving) {
386 ch->serving = virt_chan;
387 ch->signal = -1;
388 spin_unlock_irqrestore(&ch->lock, flags);
389 break;
392 spin_unlock_irqrestore(&ch->lock, flags);
395 if (i == pl08x->vd->channels) {
396 /* No physical channel available, cope with it */
397 return NULL;
400 return ch;
403 static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
404 struct pl08x_phy_chan *ch)
406 unsigned long flags;
408 /* Stop the channel and clear its interrupts */
409 pl08x_stop_phy_chan(ch);
410 writel((1 << ch->id), pl08x->base + PL080_ERR_CLEAR);
411 writel((1 << ch->id), pl08x->base + PL080_TC_CLEAR);
413 /* Mark it as free */
414 spin_lock_irqsave(&ch->lock, flags);
415 ch->serving = NULL;
416 spin_unlock_irqrestore(&ch->lock, flags);
420 * LLI handling
423 static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded)
425 switch (coded) {
426 case PL080_WIDTH_8BIT:
427 return 1;
428 case PL080_WIDTH_16BIT:
429 return 2;
430 case PL080_WIDTH_32BIT:
431 return 4;
432 default:
433 break;
435 BUG();
436 return 0;
439 static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth,
440 size_t tsize)
442 u32 retbits = cctl;
444 /* Remove all src, dst and transfer size bits */
445 retbits &= ~PL080_CONTROL_DWIDTH_MASK;
446 retbits &= ~PL080_CONTROL_SWIDTH_MASK;
447 retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;
449 /* Then set the bits according to the parameters */
450 switch (srcwidth) {
451 case 1:
452 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT;
453 break;
454 case 2:
455 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT;
456 break;
457 case 4:
458 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT;
459 break;
460 default:
461 BUG();
462 break;
465 switch (dstwidth) {
466 case 1:
467 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
468 break;
469 case 2:
470 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
471 break;
472 case 4:
473 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
474 break;
475 default:
476 BUG();
477 break;
480 retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
481 return retbits;
484 struct pl08x_lli_build_data {
485 struct pl08x_txd *txd;
486 struct pl08x_driver_data *pl08x;
487 struct pl08x_bus_data srcbus;
488 struct pl08x_bus_data dstbus;
489 size_t remainder;
493 * Autoselect a master bus to use for the transfer
494 * this prefers the destination bus if both available
495 * if fixed address on one bus the other will be chosen
497 static void pl08x_choose_master_bus(struct pl08x_lli_build_data *bd,
498 struct pl08x_bus_data **mbus, struct pl08x_bus_data **sbus, u32 cctl)
500 if (!(cctl & PL080_CONTROL_DST_INCR)) {
501 *mbus = &bd->srcbus;
502 *sbus = &bd->dstbus;
503 } else if (!(cctl & PL080_CONTROL_SRC_INCR)) {
504 *mbus = &bd->dstbus;
505 *sbus = &bd->srcbus;
506 } else {
507 if (bd->dstbus.buswidth == 4) {
508 *mbus = &bd->dstbus;
509 *sbus = &bd->srcbus;
510 } else if (bd->srcbus.buswidth == 4) {
511 *mbus = &bd->srcbus;
512 *sbus = &bd->dstbus;
513 } else if (bd->dstbus.buswidth == 2) {
514 *mbus = &bd->dstbus;
515 *sbus = &bd->srcbus;
516 } else if (bd->srcbus.buswidth == 2) {
517 *mbus = &bd->srcbus;
518 *sbus = &bd->dstbus;
519 } else {
520 /* bd->srcbus.buswidth == 1 */
521 *mbus = &bd->dstbus;
522 *sbus = &bd->srcbus;
528 * Fills in one LLI for a certain transfer descriptor
529 * and advance the counter
531 static void pl08x_fill_lli_for_desc(struct pl08x_lli_build_data *bd,
532 int num_llis, int len, u32 cctl)
534 struct pl08x_lli *llis_va = bd->txd->llis_va;
535 dma_addr_t llis_bus = bd->txd->llis_bus;
537 BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);
539 llis_va[num_llis].cctl = cctl;
540 llis_va[num_llis].src = bd->srcbus.addr;
541 llis_va[num_llis].dst = bd->dstbus.addr;
542 llis_va[num_llis].lli = llis_bus + (num_llis + 1) * sizeof(struct pl08x_lli);
543 if (bd->pl08x->lli_buses & PL08X_AHB2)
544 llis_va[num_llis].lli |= PL080_LLI_LM_AHB2;
546 if (cctl & PL080_CONTROL_SRC_INCR)
547 bd->srcbus.addr += len;
548 if (cctl & PL080_CONTROL_DST_INCR)
549 bd->dstbus.addr += len;
551 BUG_ON(bd->remainder < len);
553 bd->remainder -= len;
557 * Return number of bytes to fill to boundary, or len.
558 * This calculation works for any value of addr.
560 static inline size_t pl08x_pre_boundary(u32 addr, size_t len)
562 size_t boundary_len = PL08X_BOUNDARY_SIZE -
563 (addr & (PL08X_BOUNDARY_SIZE - 1));
565 return min(boundary_len, len);
569 * This fills in the table of LLIs for the transfer descriptor
570 * Note that we assume we never have to change the burst sizes
571 * Return 0 for error
573 static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
574 struct pl08x_txd *txd)
576 struct pl08x_bus_data *mbus, *sbus;
577 struct pl08x_lli_build_data bd;
578 int num_llis = 0;
579 u32 cctl;
580 size_t max_bytes_per_lli;
581 size_t total_bytes = 0;
582 struct pl08x_lli *llis_va;
584 txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT,
585 &txd->llis_bus);
586 if (!txd->llis_va) {
587 dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
588 return 0;
591 pl08x->pool_ctr++;
593 /* Get the default CCTL */
594 cctl = txd->cctl;
596 bd.txd = txd;
597 bd.pl08x = pl08x;
598 bd.srcbus.addr = txd->src_addr;
599 bd.dstbus.addr = txd->dst_addr;
601 /* Find maximum width of the source bus */
602 bd.srcbus.maxwidth =
603 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >>
604 PL080_CONTROL_SWIDTH_SHIFT);
606 /* Find maximum width of the destination bus */
607 bd.dstbus.maxwidth =
608 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >>
609 PL080_CONTROL_DWIDTH_SHIFT);
611 /* Set up the bus widths to the maximum */
612 bd.srcbus.buswidth = bd.srcbus.maxwidth;
613 bd.dstbus.buswidth = bd.dstbus.maxwidth;
614 dev_vdbg(&pl08x->adev->dev,
615 "%s source bus is %d bytes wide, dest bus is %d bytes wide\n",
616 __func__, bd.srcbus.buswidth, bd.dstbus.buswidth);
620 * Bytes transferred == tsize * MIN(buswidths), not max(buswidths)
622 max_bytes_per_lli = min(bd.srcbus.buswidth, bd.dstbus.buswidth) *
623 PL080_CONTROL_TRANSFER_SIZE_MASK;
624 dev_vdbg(&pl08x->adev->dev,
625 "%s max bytes per lli = %zu\n",
626 __func__, max_bytes_per_lli);
628 /* We need to count this down to zero */
629 bd.remainder = txd->len;
630 dev_vdbg(&pl08x->adev->dev,
631 "%s remainder = %zu\n",
632 __func__, bd.remainder);
635 * Choose bus to align to
636 * - prefers destination bus if both available
637 * - if fixed address on one bus chooses other
638 * - modifies cctl to choose an appropriate master
640 pl08x_choose_master_bus(&bd, &mbus, &sbus, cctl);
642 if (txd->len < mbus->buswidth) {
644 * Less than a bus width available
645 * - send as single bytes
647 while (bd.remainder) {
648 dev_vdbg(&pl08x->adev->dev,
649 "%s single byte LLIs for a transfer of "
650 "less than a bus width (remain 0x%08x)\n",
651 __func__, bd.remainder);
652 cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
653 pl08x_fill_lli_for_desc(&bd, num_llis++, 1, cctl);
654 total_bytes++;
656 } else {
658 * Make one byte LLIs until master bus is aligned
659 * - slave will then be aligned also
661 while ((mbus->addr) % (mbus->buswidth)) {
662 dev_vdbg(&pl08x->adev->dev,
663 "%s adjustment lli for less than bus width "
664 "(remain 0x%08x)\n",
665 __func__, bd.remainder);
666 cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
667 pl08x_fill_lli_for_desc(&bd, num_llis++, 1, cctl);
668 total_bytes++;
672 * Master now aligned
673 * - if slave is not then we must set its width down
675 if (sbus->addr % sbus->buswidth) {
676 dev_dbg(&pl08x->adev->dev,
677 "%s set down bus width to one byte\n",
678 __func__);
680 sbus->buswidth = 1;
684 * Make largest possible LLIs until less than one bus
685 * width left
687 while (bd.remainder > (mbus->buswidth - 1)) {
688 size_t lli_len, target_len, tsize, odd_bytes;
691 * If enough left try to send max possible,
692 * otherwise try to send the remainder
694 target_len = min(bd.remainder, max_bytes_per_lli);
697 * Set bus lengths for incrementing buses to the
698 * number of bytes which fill to next memory boundary,
699 * limiting on the target length calculated above.
701 if (cctl & PL080_CONTROL_SRC_INCR)
702 bd.srcbus.fill_bytes =
703 pl08x_pre_boundary(bd.srcbus.addr,
704 target_len);
705 else
706 bd.srcbus.fill_bytes = target_len;
708 if (cctl & PL080_CONTROL_DST_INCR)
709 bd.dstbus.fill_bytes =
710 pl08x_pre_boundary(bd.dstbus.addr,
711 target_len);
712 else
713 bd.dstbus.fill_bytes = target_len;
715 /* Find the nearest */
716 lli_len = min(bd.srcbus.fill_bytes,
717 bd.dstbus.fill_bytes);
719 BUG_ON(lli_len > bd.remainder);
721 if (lli_len <= 0) {
722 dev_err(&pl08x->adev->dev,
723 "%s lli_len is %zu, <= 0\n",
724 __func__, lli_len);
725 return 0;
728 if (lli_len == target_len) {
730 * Can send what we wanted
733 * Maintain alignment
735 lli_len = (lli_len/mbus->buswidth) *
736 mbus->buswidth;
737 odd_bytes = 0;
738 } else {
740 * So now we know how many bytes to transfer
741 * to get to the nearest boundary
742 * The next LLI will past the boundary
743 * - however we may be working to a boundary
744 * on the slave bus
745 * We need to ensure the master stays aligned
747 odd_bytes = lli_len % mbus->buswidth;
749 * - and that we are working in multiples
750 * of the bus widths
752 lli_len -= odd_bytes;
756 if (lli_len) {
758 * Check against minimum bus alignment:
759 * Calculate actual transfer size in relation
760 * to bus width an get a maximum remainder of
761 * the smallest bus width - 1
763 /* FIXME: use round_down()? */
764 tsize = lli_len / min(mbus->buswidth,
765 sbus->buswidth);
766 lli_len = tsize * min(mbus->buswidth,
767 sbus->buswidth);
769 if (target_len != lli_len) {
770 dev_vdbg(&pl08x->adev->dev,
771 "%s can't send what we want. Desired 0x%08zx, lli of 0x%08zx bytes in txd of 0x%08zx\n",
772 __func__, target_len, lli_len, txd->len);
775 cctl = pl08x_cctl_bits(cctl,
776 bd.srcbus.buswidth,
777 bd.dstbus.buswidth,
778 tsize);
780 dev_vdbg(&pl08x->adev->dev,
781 "%s fill lli with single lli chunk of size 0x%08zx (remainder 0x%08zx)\n",
782 __func__, lli_len, bd.remainder);
783 pl08x_fill_lli_for_desc(&bd, num_llis++,
784 lli_len, cctl);
785 total_bytes += lli_len;
789 if (odd_bytes) {
791 * Creep past the boundary,
792 * maintaining master alignment
794 int j;
795 for (j = 0; (j < mbus->buswidth)
796 && (bd.remainder); j++) {
797 cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
798 dev_vdbg(&pl08x->adev->dev,
799 "%s align with boundary, single byte (remain 0x%08zx)\n",
800 __func__, bd.remainder);
801 pl08x_fill_lli_for_desc(&bd,
802 num_llis++, 1, cctl);
803 total_bytes++;
809 * Send any odd bytes
811 while (bd.remainder) {
812 cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
813 dev_vdbg(&pl08x->adev->dev,
814 "%s align with boundary, single odd byte (remain %zu)\n",
815 __func__, bd.remainder);
816 pl08x_fill_lli_for_desc(&bd, num_llis++, 1, cctl);
817 total_bytes++;
820 if (total_bytes != txd->len) {
821 dev_err(&pl08x->adev->dev,
822 "%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
823 __func__, total_bytes, txd->len);
824 return 0;
827 if (num_llis >= MAX_NUM_TSFR_LLIS) {
828 dev_err(&pl08x->adev->dev,
829 "%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
830 __func__, (u32) MAX_NUM_TSFR_LLIS);
831 return 0;
834 llis_va = txd->llis_va;
836 * The final LLI terminates the LLI.
838 llis_va[num_llis - 1].lli = 0;
840 * The final LLI element shall also fire an interrupt
842 llis_va[num_llis - 1].cctl |= PL080_CONTROL_TC_IRQ_EN;
844 #ifdef VERBOSE_DEBUG
846 int i;
848 for (i = 0; i < num_llis; i++) {
849 dev_vdbg(&pl08x->adev->dev,
850 "lli %d @%p: csrc=0x%08x, cdst=0x%08x, cctl=0x%08x, clli=0x%08x\n",
852 &llis_va[i],
853 llis_va[i].src,
854 llis_va[i].dst,
855 llis_va[i].cctl,
856 llis_va[i].lli
860 #endif
862 return num_llis;
865 /* You should call this with the struct pl08x lock held */
866 static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
867 struct pl08x_txd *txd)
869 /* Free the LLI */
870 dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
872 pl08x->pool_ctr--;
874 kfree(txd);
877 static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
878 struct pl08x_dma_chan *plchan)
880 struct pl08x_txd *txdi = NULL;
881 struct pl08x_txd *next;
883 if (!list_empty(&plchan->desc_list)) {
884 list_for_each_entry_safe(txdi,
885 next, &plchan->desc_list, node) {
886 list_del(&txdi->node);
887 pl08x_free_txd(pl08x, txdi);
894 * The DMA ENGINE API
896 static int pl08x_alloc_chan_resources(struct dma_chan *chan)
898 return 0;
901 static void pl08x_free_chan_resources(struct dma_chan *chan)
906 * This should be called with the channel plchan->lock held
908 static int prep_phy_channel(struct pl08x_dma_chan *plchan,
909 struct pl08x_txd *txd)
911 struct pl08x_driver_data *pl08x = plchan->host;
912 struct pl08x_phy_chan *ch;
913 int ret;
915 /* Check if we already have a channel */
916 if (plchan->phychan)
917 return 0;
919 ch = pl08x_get_phy_channel(pl08x, plchan);
920 if (!ch) {
921 /* No physical channel available, cope with it */
922 dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
923 return -EBUSY;
927 * OK we have a physical channel: for memcpy() this is all we
928 * need, but for slaves the physical signals may be muxed!
929 * Can the platform allow us to use this channel?
931 if (plchan->slave &&
932 ch->signal < 0 &&
933 pl08x->pd->get_signal) {
934 ret = pl08x->pd->get_signal(plchan);
935 if (ret < 0) {
936 dev_dbg(&pl08x->adev->dev,
937 "unable to use physical channel %d for transfer on %s due to platform restrictions\n",
938 ch->id, plchan->name);
939 /* Release physical channel & return */
940 pl08x_put_phy_channel(pl08x, ch);
941 return -EBUSY;
943 ch->signal = ret;
945 /* Assign the flow control signal to this channel */
946 if (txd->direction == DMA_TO_DEVICE)
947 txd->ccfg |= ch->signal << PL080_CONFIG_DST_SEL_SHIFT;
948 else if (txd->direction == DMA_FROM_DEVICE)
949 txd->ccfg |= ch->signal << PL080_CONFIG_SRC_SEL_SHIFT;
952 dev_dbg(&pl08x->adev->dev, "allocated physical channel %d and signal %d for xfer on %s\n",
953 ch->id,
954 ch->signal,
955 plchan->name);
957 plchan->phychan = ch;
959 return 0;
962 static void release_phy_channel(struct pl08x_dma_chan *plchan)
964 struct pl08x_driver_data *pl08x = plchan->host;
966 if ((plchan->phychan->signal >= 0) && pl08x->pd->put_signal) {
967 pl08x->pd->put_signal(plchan);
968 plchan->phychan->signal = -1;
970 pl08x_put_phy_channel(pl08x, plchan->phychan);
971 plchan->phychan = NULL;
974 static dma_cookie_t pl08x_tx_submit(struct dma_async_tx_descriptor *tx)
976 struct pl08x_dma_chan *plchan = to_pl08x_chan(tx->chan);
978 plchan->chan.cookie += 1;
979 if (plchan->chan.cookie < 0)
980 plchan->chan.cookie = 1;
981 tx->cookie = plchan->chan.cookie;
982 /* This unlock follows the lock in the prep() function */
983 spin_unlock_irqrestore(&plchan->lock, plchan->lockflags);
985 return tx->cookie;
988 static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
989 struct dma_chan *chan, unsigned long flags)
991 struct dma_async_tx_descriptor *retval = NULL;
993 return retval;
997 * Code accessing dma_async_is_complete() in a tight loop
998 * may give problems - could schedule where indicated.
999 * If slaves are relying on interrupts to signal completion this
1000 * function must not be called with interrupts disabled
1002 static enum dma_status
1003 pl08x_dma_tx_status(struct dma_chan *chan,
1004 dma_cookie_t cookie,
1005 struct dma_tx_state *txstate)
1007 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1008 dma_cookie_t last_used;
1009 dma_cookie_t last_complete;
1010 enum dma_status ret;
1011 u32 bytesleft = 0;
1013 last_used = plchan->chan.cookie;
1014 last_complete = plchan->lc;
1016 ret = dma_async_is_complete(cookie, last_complete, last_used);
1017 if (ret == DMA_SUCCESS) {
1018 dma_set_tx_state(txstate, last_complete, last_used, 0);
1019 return ret;
1023 * schedule(); could be inserted here
1027 * This cookie not complete yet
1029 last_used = plchan->chan.cookie;
1030 last_complete = plchan->lc;
1032 /* Get number of bytes left in the active transactions and queue */
1033 bytesleft = pl08x_getbytes_chan(plchan);
1035 dma_set_tx_state(txstate, last_complete, last_used,
1036 bytesleft);
1038 if (plchan->state == PL08X_CHAN_PAUSED)
1039 return DMA_PAUSED;
1041 /* Whether waiting or running, we're in progress */
1042 return DMA_IN_PROGRESS;
1045 /* PrimeCell DMA extension */
1046 struct burst_table {
1047 int burstwords;
1048 u32 reg;
1051 static const struct burst_table burst_sizes[] = {
1053 .burstwords = 256,
1054 .reg = (PL080_BSIZE_256 << PL080_CONTROL_SB_SIZE_SHIFT) |
1055 (PL080_BSIZE_256 << PL080_CONTROL_DB_SIZE_SHIFT),
1058 .burstwords = 128,
1059 .reg = (PL080_BSIZE_128 << PL080_CONTROL_SB_SIZE_SHIFT) |
1060 (PL080_BSIZE_128 << PL080_CONTROL_DB_SIZE_SHIFT),
1063 .burstwords = 64,
1064 .reg = (PL080_BSIZE_64 << PL080_CONTROL_SB_SIZE_SHIFT) |
1065 (PL080_BSIZE_64 << PL080_CONTROL_DB_SIZE_SHIFT),
1068 .burstwords = 32,
1069 .reg = (PL080_BSIZE_32 << PL080_CONTROL_SB_SIZE_SHIFT) |
1070 (PL080_BSIZE_32 << PL080_CONTROL_DB_SIZE_SHIFT),
1073 .burstwords = 16,
1074 .reg = (PL080_BSIZE_16 << PL080_CONTROL_SB_SIZE_SHIFT) |
1075 (PL080_BSIZE_16 << PL080_CONTROL_DB_SIZE_SHIFT),
1078 .burstwords = 8,
1079 .reg = (PL080_BSIZE_8 << PL080_CONTROL_SB_SIZE_SHIFT) |
1080 (PL080_BSIZE_8 << PL080_CONTROL_DB_SIZE_SHIFT),
1083 .burstwords = 4,
1084 .reg = (PL080_BSIZE_4 << PL080_CONTROL_SB_SIZE_SHIFT) |
1085 (PL080_BSIZE_4 << PL080_CONTROL_DB_SIZE_SHIFT),
1088 .burstwords = 1,
1089 .reg = (PL080_BSIZE_1 << PL080_CONTROL_SB_SIZE_SHIFT) |
1090 (PL080_BSIZE_1 << PL080_CONTROL_DB_SIZE_SHIFT),
1094 static void dma_set_runtime_config(struct dma_chan *chan,
1095 struct dma_slave_config *config)
1097 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1098 struct pl08x_driver_data *pl08x = plchan->host;
1099 struct pl08x_channel_data *cd = plchan->cd;
1100 enum dma_slave_buswidth addr_width;
1101 u32 maxburst;
1102 u32 cctl = 0;
1103 int i;
1105 /* Transfer direction */
1106 plchan->runtime_direction = config->direction;
1107 if (config->direction == DMA_TO_DEVICE) {
1108 plchan->runtime_addr = config->dst_addr;
1109 addr_width = config->dst_addr_width;
1110 maxburst = config->dst_maxburst;
1111 } else if (config->direction == DMA_FROM_DEVICE) {
1112 plchan->runtime_addr = config->src_addr;
1113 addr_width = config->src_addr_width;
1114 maxburst = config->src_maxburst;
1115 } else {
1116 dev_err(&pl08x->adev->dev,
1117 "bad runtime_config: alien transfer direction\n");
1118 return;
1121 switch (addr_width) {
1122 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1123 cctl |= (PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT) |
1124 (PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT);
1125 break;
1126 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1127 cctl |= (PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT) |
1128 (PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT);
1129 break;
1130 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1131 cctl |= (PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT) |
1132 (PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT);
1133 break;
1134 default:
1135 dev_err(&pl08x->adev->dev,
1136 "bad runtime_config: alien address width\n");
1137 return;
1141 * Now decide on a maxburst:
1142 * If this channel will only request single transfers, set this
1143 * down to ONE element. Also select one element if no maxburst
1144 * is specified.
1146 if (plchan->cd->single || maxburst == 0) {
1147 cctl |= (PL080_BSIZE_1 << PL080_CONTROL_SB_SIZE_SHIFT) |
1148 (PL080_BSIZE_1 << PL080_CONTROL_DB_SIZE_SHIFT);
1149 } else {
1150 for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
1151 if (burst_sizes[i].burstwords <= maxburst)
1152 break;
1153 cctl |= burst_sizes[i].reg;
1156 /* Modify the default channel data to fit PrimeCell request */
1157 cd->cctl = cctl;
1159 dev_dbg(&pl08x->adev->dev,
1160 "configured channel %s (%s) for %s, data width %d, "
1161 "maxburst %d words, LE, CCTL=0x%08x\n",
1162 dma_chan_name(chan), plchan->name,
1163 (config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
1164 addr_width,
1165 maxburst,
1166 cctl);
1170 * Slave transactions callback to the slave device to allow
1171 * synchronization of slave DMA signals with the DMAC enable
1173 static void pl08x_issue_pending(struct dma_chan *chan)
1175 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1176 unsigned long flags;
1178 spin_lock_irqsave(&plchan->lock, flags);
1179 /* Something is already active, or we're waiting for a channel... */
1180 if (plchan->at || plchan->state == PL08X_CHAN_WAITING) {
1181 spin_unlock_irqrestore(&plchan->lock, flags);
1182 return;
1185 /* Take the first element in the queue and execute it */
1186 if (!list_empty(&plchan->desc_list)) {
1187 struct pl08x_txd *next;
1189 next = list_first_entry(&plchan->desc_list,
1190 struct pl08x_txd,
1191 node);
1192 list_del(&next->node);
1193 plchan->state = PL08X_CHAN_RUNNING;
1195 pl08x_start_txd(plchan, next);
1198 spin_unlock_irqrestore(&plchan->lock, flags);
1201 static int pl08x_prep_channel_resources(struct pl08x_dma_chan *plchan,
1202 struct pl08x_txd *txd)
1204 int num_llis;
1205 struct pl08x_driver_data *pl08x = plchan->host;
1206 int ret;
1208 num_llis = pl08x_fill_llis_for_desc(pl08x, txd);
1209 if (!num_llis) {
1210 kfree(txd);
1211 return -EINVAL;
1214 spin_lock_irqsave(&plchan->lock, plchan->lockflags);
1216 list_add_tail(&txd->node, &plchan->desc_list);
1219 * See if we already have a physical channel allocated,
1220 * else this is the time to try to get one.
1222 ret = prep_phy_channel(plchan, txd);
1223 if (ret) {
1225 * No physical channel available, we will
1226 * stack up the memcpy channels until there is a channel
1227 * available to handle it whereas slave transfers may
1228 * have been denied due to platform channel muxing restrictions
1229 * and since there is no guarantee that this will ever be
1230 * resolved, and since the signal must be acquired AFTER
1231 * acquiring the physical channel, we will let them be NACK:ed
1232 * with -EBUSY here. The drivers can alway retry the prep()
1233 * call if they are eager on doing this using DMA.
1235 if (plchan->slave) {
1236 pl08x_free_txd_list(pl08x, plchan);
1237 spin_unlock_irqrestore(&plchan->lock, plchan->lockflags);
1238 return -EBUSY;
1240 /* Do this memcpy whenever there is a channel ready */
1241 plchan->state = PL08X_CHAN_WAITING;
1242 plchan->waiting = txd;
1243 } else
1245 * Else we're all set, paused and ready to roll,
1246 * status will switch to PL08X_CHAN_RUNNING when
1247 * we call issue_pending(). If there is something
1248 * running on the channel already we don't change
1249 * its state.
1251 if (plchan->state == PL08X_CHAN_IDLE)
1252 plchan->state = PL08X_CHAN_PAUSED;
1255 * Notice that we leave plchan->lock locked on purpose:
1256 * it will be unlocked in the subsequent tx_submit()
1257 * call. This is a consequence of the current API.
1260 return 0;
1264 * Given the source and destination available bus masks, select which
1265 * will be routed to each port. We try to have source and destination
1266 * on separate ports, but always respect the allowable settings.
1268 static u32 pl08x_select_bus(struct pl08x_driver_data *pl08x, u8 src, u8 dst)
1270 u32 cctl = 0;
1272 if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
1273 cctl |= PL080_CONTROL_DST_AHB2;
1274 if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
1275 cctl |= PL080_CONTROL_SRC_AHB2;
1277 return cctl;
1280 static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan)
1282 struct pl08x_txd *txd = kzalloc(sizeof(struct pl08x_txd), GFP_NOWAIT);
1284 if (txd) {
1285 dma_async_tx_descriptor_init(&txd->tx, &plchan->chan);
1286 txd->tx.tx_submit = pl08x_tx_submit;
1287 INIT_LIST_HEAD(&txd->node);
1289 /* Always enable error and terminal interrupts */
1290 txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
1291 PL080_CONFIG_TC_IRQ_MASK;
1293 return txd;
1297 * Initialize a descriptor to be used by memcpy submit
1299 static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
1300 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1301 size_t len, unsigned long flags)
1303 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1304 struct pl08x_driver_data *pl08x = plchan->host;
1305 struct pl08x_txd *txd;
1306 int ret;
1308 txd = pl08x_get_txd(plchan);
1309 if (!txd) {
1310 dev_err(&pl08x->adev->dev,
1311 "%s no memory for descriptor\n", __func__);
1312 return NULL;
1315 txd->direction = DMA_NONE;
1316 txd->src_addr = src;
1317 txd->dst_addr = dest;
1318 txd->len = len;
1320 /* Set platform data for m2m */
1321 txd->ccfg |= PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1322 txd->cctl = pl08x->pd->memcpy_channel.cctl &
1323 ~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2);
1325 /* Both to be incremented or the code will break */
1326 txd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
1328 if (pl08x->vd->dualmaster)
1329 txd->cctl |= pl08x_select_bus(pl08x,
1330 pl08x->mem_buses, pl08x->mem_buses);
1332 ret = pl08x_prep_channel_resources(plchan, txd);
1333 if (ret)
1334 return NULL;
1336 * NB: the channel lock is held at this point so tx_submit()
1337 * must be called in direct succession.
1340 return &txd->tx;
1343 static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
1344 struct dma_chan *chan, struct scatterlist *sgl,
1345 unsigned int sg_len, enum dma_data_direction direction,
1346 unsigned long flags)
1348 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1349 struct pl08x_driver_data *pl08x = plchan->host;
1350 struct pl08x_txd *txd;
1351 u8 src_buses, dst_buses;
1352 int ret;
1355 * Current implementation ASSUMES only one sg
1357 if (sg_len != 1) {
1358 dev_err(&pl08x->adev->dev, "%s prepared too long sglist\n",
1359 __func__);
1360 BUG();
1363 dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
1364 __func__, sgl->length, plchan->name);
1366 txd = pl08x_get_txd(plchan);
1367 if (!txd) {
1368 dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
1369 return NULL;
1372 if (direction != plchan->runtime_direction)
1373 dev_err(&pl08x->adev->dev, "%s DMA setup does not match "
1374 "the direction configured for the PrimeCell\n",
1375 __func__);
1378 * Set up addresses, the PrimeCell configured address
1379 * will take precedence since this may configure the
1380 * channel target address dynamically at runtime.
1382 txd->direction = direction;
1383 txd->len = sgl->length;
1385 txd->cctl = plchan->cd->cctl &
1386 ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
1387 PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
1388 PL080_CONTROL_PROT_MASK);
1390 /* Access the cell in privileged mode, non-bufferable, non-cacheable */
1391 txd->cctl |= PL080_CONTROL_PROT_SYS;
1393 if (direction == DMA_TO_DEVICE) {
1394 txd->ccfg |= PL080_FLOW_MEM2PER << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1395 txd->cctl |= PL080_CONTROL_SRC_INCR;
1396 txd->src_addr = sgl->dma_address;
1397 if (plchan->runtime_addr)
1398 txd->dst_addr = plchan->runtime_addr;
1399 else
1400 txd->dst_addr = plchan->cd->addr;
1401 src_buses = pl08x->mem_buses;
1402 dst_buses = plchan->cd->periph_buses;
1403 } else if (direction == DMA_FROM_DEVICE) {
1404 txd->ccfg |= PL080_FLOW_PER2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1405 txd->cctl |= PL080_CONTROL_DST_INCR;
1406 if (plchan->runtime_addr)
1407 txd->src_addr = plchan->runtime_addr;
1408 else
1409 txd->src_addr = plchan->cd->addr;
1410 txd->dst_addr = sgl->dma_address;
1411 src_buses = plchan->cd->periph_buses;
1412 dst_buses = pl08x->mem_buses;
1413 } else {
1414 dev_err(&pl08x->adev->dev,
1415 "%s direction unsupported\n", __func__);
1416 return NULL;
1419 txd->cctl |= pl08x_select_bus(pl08x, src_buses, dst_buses);
1421 ret = pl08x_prep_channel_resources(plchan, txd);
1422 if (ret)
1423 return NULL;
1425 * NB: the channel lock is held at this point so tx_submit()
1426 * must be called in direct succession.
1429 return &txd->tx;
1432 static int pl08x_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1433 unsigned long arg)
1435 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1436 struct pl08x_driver_data *pl08x = plchan->host;
1437 unsigned long flags;
1438 int ret = 0;
1440 /* Controls applicable to inactive channels */
1441 if (cmd == DMA_SLAVE_CONFIG) {
1442 dma_set_runtime_config(chan,
1443 (struct dma_slave_config *)
1444 arg);
1445 return 0;
1449 * Anything succeeds on channels with no physical allocation and
1450 * no queued transfers.
1452 spin_lock_irqsave(&plchan->lock, flags);
1453 if (!plchan->phychan && !plchan->at) {
1454 spin_unlock_irqrestore(&plchan->lock, flags);
1455 return 0;
1458 switch (cmd) {
1459 case DMA_TERMINATE_ALL:
1460 plchan->state = PL08X_CHAN_IDLE;
1462 if (plchan->phychan) {
1463 pl08x_stop_phy_chan(plchan->phychan);
1466 * Mark physical channel as free and free any slave
1467 * signal
1469 release_phy_channel(plchan);
1471 /* Dequeue jobs and free LLIs */
1472 if (plchan->at) {
1473 pl08x_free_txd(pl08x, plchan->at);
1474 plchan->at = NULL;
1476 /* Dequeue jobs not yet fired as well */
1477 pl08x_free_txd_list(pl08x, plchan);
1478 break;
1479 case DMA_PAUSE:
1480 pl08x_pause_phy_chan(plchan->phychan);
1481 plchan->state = PL08X_CHAN_PAUSED;
1482 break;
1483 case DMA_RESUME:
1484 pl08x_resume_phy_chan(plchan->phychan);
1485 plchan->state = PL08X_CHAN_RUNNING;
1486 break;
1487 default:
1488 /* Unknown command */
1489 ret = -ENXIO;
1490 break;
1493 spin_unlock_irqrestore(&plchan->lock, flags);
1495 return ret;
1498 bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
1500 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1501 char *name = chan_id;
1503 /* Check that the channel is not taken! */
1504 if (!strcmp(plchan->name, name))
1505 return true;
1507 return false;
1511 * Just check that the device is there and active
1512 * TODO: turn this bit on/off depending on the number of
1513 * physical channels actually used, if it is zero... well
1514 * shut it off. That will save some power. Cut the clock
1515 * at the same time.
1517 static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
1519 u32 val;
1521 val = readl(pl08x->base + PL080_CONFIG);
1522 val &= ~(PL080_CONFIG_M2_BE | PL080_CONFIG_M1_BE | PL080_CONFIG_ENABLE);
1523 /* We implicitly clear bit 1 and that means little-endian mode */
1524 val |= PL080_CONFIG_ENABLE;
1525 writel(val, pl08x->base + PL080_CONFIG);
1528 static void pl08x_tasklet(unsigned long data)
1530 struct pl08x_dma_chan *plchan = (struct pl08x_dma_chan *) data;
1531 struct pl08x_driver_data *pl08x = plchan->host;
1532 struct pl08x_txd *txd;
1533 dma_async_tx_callback callback = NULL;
1534 void *callback_param = NULL;
1535 unsigned long flags;
1537 spin_lock_irqsave(&plchan->lock, flags);
1539 txd = plchan->at;
1540 plchan->at = NULL;
1542 if (txd) {
1543 callback = txd->tx.callback;
1544 callback_param = txd->tx.callback_param;
1547 * Update last completed
1549 plchan->lc = txd->tx.cookie;
1552 * Free the descriptor
1554 pl08x_free_txd(pl08x, txd);
1557 * If a new descriptor is queued, set it up
1558 * plchan->at is NULL here
1560 if (!list_empty(&plchan->desc_list)) {
1561 struct pl08x_txd *next;
1563 next = list_first_entry(&plchan->desc_list,
1564 struct pl08x_txd,
1565 node);
1566 list_del(&next->node);
1568 pl08x_start_txd(plchan, next);
1569 } else {
1570 struct pl08x_dma_chan *waiting = NULL;
1573 * No more jobs, so free up the physical channel
1574 * Free any allocated signal on slave transfers too
1576 release_phy_channel(plchan);
1577 plchan->state = PL08X_CHAN_IDLE;
1580 * And NOW before anyone else can grab that free:d
1581 * up physical channel, see if there is some memcpy
1582 * pending that seriously needs to start because of
1583 * being stacked up while we were choking the
1584 * physical channels with data.
1586 list_for_each_entry(waiting, &pl08x->memcpy.channels,
1587 chan.device_node) {
1588 if (waiting->state == PL08X_CHAN_WAITING &&
1589 waiting->waiting != NULL) {
1590 int ret;
1592 /* This should REALLY not fail now */
1593 ret = prep_phy_channel(waiting,
1594 waiting->waiting);
1595 BUG_ON(ret);
1596 waiting->state = PL08X_CHAN_RUNNING;
1597 waiting->waiting = NULL;
1598 pl08x_issue_pending(&waiting->chan);
1599 break;
1604 spin_unlock_irqrestore(&plchan->lock, flags);
1606 /* Callback to signal completion */
1607 if (callback)
1608 callback(callback_param);
1611 static irqreturn_t pl08x_irq(int irq, void *dev)
1613 struct pl08x_driver_data *pl08x = dev;
1614 u32 mask = 0;
1615 u32 val;
1616 int i;
1618 val = readl(pl08x->base + PL080_ERR_STATUS);
1619 if (val) {
1621 * An error interrupt (on one or more channels)
1623 dev_err(&pl08x->adev->dev,
1624 "%s error interrupt, register value 0x%08x\n",
1625 __func__, val);
1627 * Simply clear ALL PL08X error interrupts,
1628 * regardless of channel and cause
1629 * FIXME: should be 0x00000003 on PL081 really.
1631 writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
1633 val = readl(pl08x->base + PL080_INT_STATUS);
1634 for (i = 0; i < pl08x->vd->channels; i++) {
1635 if ((1 << i) & val) {
1636 /* Locate physical channel */
1637 struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
1638 struct pl08x_dma_chan *plchan = phychan->serving;
1640 /* Schedule tasklet on this channel */
1641 tasklet_schedule(&plchan->tasklet);
1643 mask |= (1 << i);
1647 * Clear only the terminal interrupts on channels we processed
1649 writel(mask, pl08x->base + PL080_TC_CLEAR);
1651 return mask ? IRQ_HANDLED : IRQ_NONE;
1655 * Initialise the DMAC memcpy/slave channels.
1656 * Make a local wrapper to hold required data
1658 static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
1659 struct dma_device *dmadev,
1660 unsigned int channels,
1661 bool slave)
1663 struct pl08x_dma_chan *chan;
1664 int i;
1666 INIT_LIST_HEAD(&dmadev->channels);
1668 * Register as many many memcpy as we have physical channels,
1669 * we won't always be able to use all but the code will have
1670 * to cope with that situation.
1672 for (i = 0; i < channels; i++) {
1673 chan = kzalloc(sizeof(struct pl08x_dma_chan), GFP_KERNEL);
1674 if (!chan) {
1675 dev_err(&pl08x->adev->dev,
1676 "%s no memory for channel\n", __func__);
1677 return -ENOMEM;
1680 chan->host = pl08x;
1681 chan->state = PL08X_CHAN_IDLE;
1683 if (slave) {
1684 chan->slave = true;
1685 chan->name = pl08x->pd->slave_channels[i].bus_id;
1686 chan->cd = &pl08x->pd->slave_channels[i];
1687 } else {
1688 chan->cd = &pl08x->pd->memcpy_channel;
1689 chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
1690 if (!chan->name) {
1691 kfree(chan);
1692 return -ENOMEM;
1695 if (chan->cd->circular_buffer) {
1696 dev_err(&pl08x->adev->dev,
1697 "channel %s: circular buffers not supported\n",
1698 chan->name);
1699 kfree(chan);
1700 continue;
1702 dev_info(&pl08x->adev->dev,
1703 "initialize virtual channel \"%s\"\n",
1704 chan->name);
1706 chan->chan.device = dmadev;
1707 chan->chan.cookie = 0;
1708 chan->lc = 0;
1710 spin_lock_init(&chan->lock);
1711 INIT_LIST_HEAD(&chan->desc_list);
1712 tasklet_init(&chan->tasklet, pl08x_tasklet,
1713 (unsigned long) chan);
1715 list_add_tail(&chan->chan.device_node, &dmadev->channels);
1717 dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
1718 i, slave ? "slave" : "memcpy");
1719 return i;
1722 static void pl08x_free_virtual_channels(struct dma_device *dmadev)
1724 struct pl08x_dma_chan *chan = NULL;
1725 struct pl08x_dma_chan *next;
1727 list_for_each_entry_safe(chan,
1728 next, &dmadev->channels, chan.device_node) {
1729 list_del(&chan->chan.device_node);
1730 kfree(chan);
1734 #ifdef CONFIG_DEBUG_FS
1735 static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
1737 switch (state) {
1738 case PL08X_CHAN_IDLE:
1739 return "idle";
1740 case PL08X_CHAN_RUNNING:
1741 return "running";
1742 case PL08X_CHAN_PAUSED:
1743 return "paused";
1744 case PL08X_CHAN_WAITING:
1745 return "waiting";
1746 default:
1747 break;
1749 return "UNKNOWN STATE";
1752 static int pl08x_debugfs_show(struct seq_file *s, void *data)
1754 struct pl08x_driver_data *pl08x = s->private;
1755 struct pl08x_dma_chan *chan;
1756 struct pl08x_phy_chan *ch;
1757 unsigned long flags;
1758 int i;
1760 seq_printf(s, "PL08x physical channels:\n");
1761 seq_printf(s, "CHANNEL:\tUSER:\n");
1762 seq_printf(s, "--------\t-----\n");
1763 for (i = 0; i < pl08x->vd->channels; i++) {
1764 struct pl08x_dma_chan *virt_chan;
1766 ch = &pl08x->phy_chans[i];
1768 spin_lock_irqsave(&ch->lock, flags);
1769 virt_chan = ch->serving;
1771 seq_printf(s, "%d\t\t%s\n",
1772 ch->id, virt_chan ? virt_chan->name : "(none)");
1774 spin_unlock_irqrestore(&ch->lock, flags);
1777 seq_printf(s, "\nPL08x virtual memcpy channels:\n");
1778 seq_printf(s, "CHANNEL:\tSTATE:\n");
1779 seq_printf(s, "--------\t------\n");
1780 list_for_each_entry(chan, &pl08x->memcpy.channels, chan.device_node) {
1781 seq_printf(s, "%s\t\t%s\n", chan->name,
1782 pl08x_state_str(chan->state));
1785 seq_printf(s, "\nPL08x virtual slave channels:\n");
1786 seq_printf(s, "CHANNEL:\tSTATE:\n");
1787 seq_printf(s, "--------\t------\n");
1788 list_for_each_entry(chan, &pl08x->slave.channels, chan.device_node) {
1789 seq_printf(s, "%s\t\t%s\n", chan->name,
1790 pl08x_state_str(chan->state));
1793 return 0;
1796 static int pl08x_debugfs_open(struct inode *inode, struct file *file)
1798 return single_open(file, pl08x_debugfs_show, inode->i_private);
1801 static const struct file_operations pl08x_debugfs_operations = {
1802 .open = pl08x_debugfs_open,
1803 .read = seq_read,
1804 .llseek = seq_lseek,
1805 .release = single_release,
1808 static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
1810 /* Expose a simple debugfs interface to view all clocks */
1811 (void) debugfs_create_file(dev_name(&pl08x->adev->dev), S_IFREG | S_IRUGO,
1812 NULL, pl08x,
1813 &pl08x_debugfs_operations);
1816 #else
1817 static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
1820 #endif
1822 static int pl08x_probe(struct amba_device *adev, struct amba_id *id)
1824 struct pl08x_driver_data *pl08x;
1825 const struct vendor_data *vd = id->data;
1826 int ret = 0;
1827 int i;
1829 ret = amba_request_regions(adev, NULL);
1830 if (ret)
1831 return ret;
1833 /* Create the driver state holder */
1834 pl08x = kzalloc(sizeof(struct pl08x_driver_data), GFP_KERNEL);
1835 if (!pl08x) {
1836 ret = -ENOMEM;
1837 goto out_no_pl08x;
1840 /* Initialize memcpy engine */
1841 dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
1842 pl08x->memcpy.dev = &adev->dev;
1843 pl08x->memcpy.device_alloc_chan_resources = pl08x_alloc_chan_resources;
1844 pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
1845 pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
1846 pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
1847 pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
1848 pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
1849 pl08x->memcpy.device_control = pl08x_control;
1851 /* Initialize slave engine */
1852 dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
1853 pl08x->slave.dev = &adev->dev;
1854 pl08x->slave.device_alloc_chan_resources = pl08x_alloc_chan_resources;
1855 pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources;
1856 pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
1857 pl08x->slave.device_tx_status = pl08x_dma_tx_status;
1858 pl08x->slave.device_issue_pending = pl08x_issue_pending;
1859 pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
1860 pl08x->slave.device_control = pl08x_control;
1862 /* Get the platform data */
1863 pl08x->pd = dev_get_platdata(&adev->dev);
1864 if (!pl08x->pd) {
1865 dev_err(&adev->dev, "no platform data supplied\n");
1866 goto out_no_platdata;
1869 /* Assign useful pointers to the driver state */
1870 pl08x->adev = adev;
1871 pl08x->vd = vd;
1873 /* By default, AHB1 only. If dualmaster, from platform */
1874 pl08x->lli_buses = PL08X_AHB1;
1875 pl08x->mem_buses = PL08X_AHB1;
1876 if (pl08x->vd->dualmaster) {
1877 pl08x->lli_buses = pl08x->pd->lli_buses;
1878 pl08x->mem_buses = pl08x->pd->mem_buses;
1881 /* A DMA memory pool for LLIs, align on 1-byte boundary */
1882 pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
1883 PL08X_LLI_TSFR_SIZE, PL08X_ALIGN, 0);
1884 if (!pl08x->pool) {
1885 ret = -ENOMEM;
1886 goto out_no_lli_pool;
1889 spin_lock_init(&pl08x->lock);
1891 pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
1892 if (!pl08x->base) {
1893 ret = -ENOMEM;
1894 goto out_no_ioremap;
1897 /* Turn on the PL08x */
1898 pl08x_ensure_on(pl08x);
1901 * Attach the interrupt handler
1903 writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
1904 writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);
1906 ret = request_irq(adev->irq[0], pl08x_irq, IRQF_DISABLED,
1907 DRIVER_NAME, pl08x);
1908 if (ret) {
1909 dev_err(&adev->dev, "%s failed to request interrupt %d\n",
1910 __func__, adev->irq[0]);
1911 goto out_no_irq;
1914 /* Initialize physical channels */
1915 pl08x->phy_chans = kmalloc((vd->channels * sizeof(struct pl08x_phy_chan)),
1916 GFP_KERNEL);
1917 if (!pl08x->phy_chans) {
1918 dev_err(&adev->dev, "%s failed to allocate "
1919 "physical channel holders\n",
1920 __func__);
1921 goto out_no_phychans;
1924 for (i = 0; i < vd->channels; i++) {
1925 struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];
1927 ch->id = i;
1928 ch->base = pl08x->base + PL080_Cx_BASE(i);
1929 spin_lock_init(&ch->lock);
1930 ch->serving = NULL;
1931 ch->signal = -1;
1932 dev_info(&adev->dev,
1933 "physical channel %d is %s\n", i,
1934 pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
1937 /* Register as many memcpy channels as there are physical channels */
1938 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
1939 pl08x->vd->channels, false);
1940 if (ret <= 0) {
1941 dev_warn(&pl08x->adev->dev,
1942 "%s failed to enumerate memcpy channels - %d\n",
1943 __func__, ret);
1944 goto out_no_memcpy;
1946 pl08x->memcpy.chancnt = ret;
1948 /* Register slave channels */
1949 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
1950 pl08x->pd->num_slave_channels,
1951 true);
1952 if (ret <= 0) {
1953 dev_warn(&pl08x->adev->dev,
1954 "%s failed to enumerate slave channels - %d\n",
1955 __func__, ret);
1956 goto out_no_slave;
1958 pl08x->slave.chancnt = ret;
1960 ret = dma_async_device_register(&pl08x->memcpy);
1961 if (ret) {
1962 dev_warn(&pl08x->adev->dev,
1963 "%s failed to register memcpy as an async device - %d\n",
1964 __func__, ret);
1965 goto out_no_memcpy_reg;
1968 ret = dma_async_device_register(&pl08x->slave);
1969 if (ret) {
1970 dev_warn(&pl08x->adev->dev,
1971 "%s failed to register slave as an async device - %d\n",
1972 __func__, ret);
1973 goto out_no_slave_reg;
1976 amba_set_drvdata(adev, pl08x);
1977 init_pl08x_debugfs(pl08x);
1978 dev_info(&pl08x->adev->dev, "DMA: PL%03x rev%u at 0x%08llx irq %d\n",
1979 amba_part(adev), amba_rev(adev),
1980 (unsigned long long)adev->res.start, adev->irq[0]);
1981 return 0;
1983 out_no_slave_reg:
1984 dma_async_device_unregister(&pl08x->memcpy);
1985 out_no_memcpy_reg:
1986 pl08x_free_virtual_channels(&pl08x->slave);
1987 out_no_slave:
1988 pl08x_free_virtual_channels(&pl08x->memcpy);
1989 out_no_memcpy:
1990 kfree(pl08x->phy_chans);
1991 out_no_phychans:
1992 free_irq(adev->irq[0], pl08x);
1993 out_no_irq:
1994 iounmap(pl08x->base);
1995 out_no_ioremap:
1996 dma_pool_destroy(pl08x->pool);
1997 out_no_lli_pool:
1998 out_no_platdata:
1999 kfree(pl08x);
2000 out_no_pl08x:
2001 amba_release_regions(adev);
2002 return ret;
2005 /* PL080 has 8 channels and the PL080 have just 2 */
2006 static struct vendor_data vendor_pl080 = {
2007 .channels = 8,
2008 .dualmaster = true,
2011 static struct vendor_data vendor_pl081 = {
2012 .channels = 2,
2013 .dualmaster = false,
2016 static struct amba_id pl08x_ids[] = {
2017 /* PL080 */
2019 .id = 0x00041080,
2020 .mask = 0x000fffff,
2021 .data = &vendor_pl080,
2023 /* PL081 */
2025 .id = 0x00041081,
2026 .mask = 0x000fffff,
2027 .data = &vendor_pl081,
2029 /* Nomadik 8815 PL080 variant */
2031 .id = 0x00280880,
2032 .mask = 0x00ffffff,
2033 .data = &vendor_pl080,
2035 { 0, 0 },
2038 static struct amba_driver pl08x_amba_driver = {
2039 .drv.name = DRIVER_NAME,
2040 .id_table = pl08x_ids,
2041 .probe = pl08x_probe,
2044 static int __init pl08x_init(void)
2046 int retval;
2047 retval = amba_driver_register(&pl08x_amba_driver);
2048 if (retval)
2049 printk(KERN_WARNING DRIVER_NAME
2050 "failed to register as an AMBA device (%d)\n",
2051 retval);
2052 return retval;
2054 subsys_initcall(pl08x_init);