rcu: add tracing for RCU's kthread run states.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / rcutree.c
blobd8917401cbbc65c205e8c5969e410bf0d747a1f9
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright IBM Corporation, 2008
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <asm/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/module.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/mutex.h>
48 #include <linux/time.h>
49 #include <linux/kernel_stat.h>
50 #include <linux/wait.h>
51 #include <linux/kthread.h>
53 #include "rcutree.h"
55 /* Data structures. */
57 static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
59 #define RCU_STATE_INITIALIZER(structname) { \
60 .level = { &structname.node[0] }, \
61 .levelcnt = { \
62 NUM_RCU_LVL_0, /* root of hierarchy. */ \
63 NUM_RCU_LVL_1, \
64 NUM_RCU_LVL_2, \
65 NUM_RCU_LVL_3, \
66 NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
67 }, \
68 .signaled = RCU_GP_IDLE, \
69 .gpnum = -300, \
70 .completed = -300, \
71 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&structname.onofflock), \
72 .fqslock = __RAW_SPIN_LOCK_UNLOCKED(&structname.fqslock), \
73 .n_force_qs = 0, \
74 .n_force_qs_ngp = 0, \
75 .name = #structname, \
78 struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched_state);
79 DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
81 struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state);
82 DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
84 static struct rcu_state *rcu_state;
86 int rcu_scheduler_active __read_mostly;
87 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
90 * Control variables for per-CPU and per-rcu_node kthreads. These
91 * handle all flavors of RCU.
93 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
94 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
95 static DEFINE_PER_CPU(wait_queue_head_t, rcu_cpu_wq);
96 DEFINE_PER_CPU(char, rcu_cpu_has_work);
97 static char rcu_kthreads_spawnable;
99 static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
100 static void invoke_rcu_cpu_kthread(void);
102 #define RCU_KTHREAD_PRIO 1 /* RT priority for per-CPU kthreads. */
105 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
106 * permit this function to be invoked without holding the root rcu_node
107 * structure's ->lock, but of course results can be subject to change.
109 static int rcu_gp_in_progress(struct rcu_state *rsp)
111 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
115 * Note a quiescent state. Because we do not need to know
116 * how many quiescent states passed, just if there was at least
117 * one since the start of the grace period, this just sets a flag.
119 void rcu_sched_qs(int cpu)
121 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
123 rdp->passed_quiesc_completed = rdp->gpnum - 1;
124 barrier();
125 rdp->passed_quiesc = 1;
128 void rcu_bh_qs(int cpu)
130 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
132 rdp->passed_quiesc_completed = rdp->gpnum - 1;
133 barrier();
134 rdp->passed_quiesc = 1;
138 * Note a context switch. This is a quiescent state for RCU-sched,
139 * and requires special handling for preemptible RCU.
141 void rcu_note_context_switch(int cpu)
143 rcu_sched_qs(cpu);
144 rcu_preempt_note_context_switch(cpu);
147 #ifdef CONFIG_NO_HZ
148 DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
149 .dynticks_nesting = 1,
150 .dynticks = ATOMIC_INIT(1),
152 #endif /* #ifdef CONFIG_NO_HZ */
154 static int blimit = 10; /* Maximum callbacks per softirq. */
155 static int qhimark = 10000; /* If this many pending, ignore blimit. */
156 static int qlowmark = 100; /* Once only this many pending, use blimit. */
158 module_param(blimit, int, 0);
159 module_param(qhimark, int, 0);
160 module_param(qlowmark, int, 0);
162 int rcu_cpu_stall_suppress __read_mostly;
163 module_param(rcu_cpu_stall_suppress, int, 0644);
165 static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
166 static int rcu_pending(int cpu);
169 * Return the number of RCU-sched batches processed thus far for debug & stats.
171 long rcu_batches_completed_sched(void)
173 return rcu_sched_state.completed;
175 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
178 * Return the number of RCU BH batches processed thus far for debug & stats.
180 long rcu_batches_completed_bh(void)
182 return rcu_bh_state.completed;
184 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
187 * Force a quiescent state for RCU BH.
189 void rcu_bh_force_quiescent_state(void)
191 force_quiescent_state(&rcu_bh_state, 0);
193 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
196 * Force a quiescent state for RCU-sched.
198 void rcu_sched_force_quiescent_state(void)
200 force_quiescent_state(&rcu_sched_state, 0);
202 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
205 * Does the CPU have callbacks ready to be invoked?
207 static int
208 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
210 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
214 * Does the current CPU require a yet-as-unscheduled grace period?
216 static int
217 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
219 return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
223 * Return the root node of the specified rcu_state structure.
225 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
227 return &rsp->node[0];
230 #ifdef CONFIG_SMP
233 * If the specified CPU is offline, tell the caller that it is in
234 * a quiescent state. Otherwise, whack it with a reschedule IPI.
235 * Grace periods can end up waiting on an offline CPU when that
236 * CPU is in the process of coming online -- it will be added to the
237 * rcu_node bitmasks before it actually makes it online. The same thing
238 * can happen while a CPU is in the process of coming online. Because this
239 * race is quite rare, we check for it after detecting that the grace
240 * period has been delayed rather than checking each and every CPU
241 * each and every time we start a new grace period.
243 static int rcu_implicit_offline_qs(struct rcu_data *rdp)
246 * If the CPU is offline, it is in a quiescent state. We can
247 * trust its state not to change because interrupts are disabled.
249 if (cpu_is_offline(rdp->cpu)) {
250 rdp->offline_fqs++;
251 return 1;
254 /* If preemptable RCU, no point in sending reschedule IPI. */
255 if (rdp->preemptable)
256 return 0;
258 /* The CPU is online, so send it a reschedule IPI. */
259 if (rdp->cpu != smp_processor_id())
260 smp_send_reschedule(rdp->cpu);
261 else
262 set_need_resched();
263 rdp->resched_ipi++;
264 return 0;
267 #endif /* #ifdef CONFIG_SMP */
269 #ifdef CONFIG_NO_HZ
272 * rcu_enter_nohz - inform RCU that current CPU is entering nohz
274 * Enter nohz mode, in other words, -leave- the mode in which RCU
275 * read-side critical sections can occur. (Though RCU read-side
276 * critical sections can occur in irq handlers in nohz mode, a possibility
277 * handled by rcu_irq_enter() and rcu_irq_exit()).
279 void rcu_enter_nohz(void)
281 unsigned long flags;
282 struct rcu_dynticks *rdtp;
284 local_irq_save(flags);
285 rdtp = &__get_cpu_var(rcu_dynticks);
286 if (--rdtp->dynticks_nesting) {
287 local_irq_restore(flags);
288 return;
290 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
291 smp_mb__before_atomic_inc(); /* See above. */
292 atomic_inc(&rdtp->dynticks);
293 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
294 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
295 local_irq_restore(flags);
297 /* If the interrupt queued a callback, get out of dyntick mode. */
298 if (in_irq() &&
299 (__get_cpu_var(rcu_sched_data).nxtlist ||
300 __get_cpu_var(rcu_bh_data).nxtlist ||
301 rcu_preempt_needs_cpu(smp_processor_id())))
302 set_need_resched();
306 * rcu_exit_nohz - inform RCU that current CPU is leaving nohz
308 * Exit nohz mode, in other words, -enter- the mode in which RCU
309 * read-side critical sections normally occur.
311 void rcu_exit_nohz(void)
313 unsigned long flags;
314 struct rcu_dynticks *rdtp;
316 local_irq_save(flags);
317 rdtp = &__get_cpu_var(rcu_dynticks);
318 if (rdtp->dynticks_nesting++) {
319 local_irq_restore(flags);
320 return;
322 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
323 atomic_inc(&rdtp->dynticks);
324 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
325 smp_mb__after_atomic_inc(); /* See above. */
326 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
327 local_irq_restore(flags);
331 * rcu_nmi_enter - inform RCU of entry to NMI context
333 * If the CPU was idle with dynamic ticks active, and there is no
334 * irq handler running, this updates rdtp->dynticks_nmi to let the
335 * RCU grace-period handling know that the CPU is active.
337 void rcu_nmi_enter(void)
339 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
341 if (rdtp->dynticks_nmi_nesting == 0 &&
342 (atomic_read(&rdtp->dynticks) & 0x1))
343 return;
344 rdtp->dynticks_nmi_nesting++;
345 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
346 atomic_inc(&rdtp->dynticks);
347 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
348 smp_mb__after_atomic_inc(); /* See above. */
349 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
353 * rcu_nmi_exit - inform RCU of exit from NMI context
355 * If the CPU was idle with dynamic ticks active, and there is no
356 * irq handler running, this updates rdtp->dynticks_nmi to let the
357 * RCU grace-period handling know that the CPU is no longer active.
359 void rcu_nmi_exit(void)
361 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
363 if (rdtp->dynticks_nmi_nesting == 0 ||
364 --rdtp->dynticks_nmi_nesting != 0)
365 return;
366 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
367 smp_mb__before_atomic_inc(); /* See above. */
368 atomic_inc(&rdtp->dynticks);
369 smp_mb__after_atomic_inc(); /* Force delay to next write. */
370 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
374 * rcu_irq_enter - inform RCU of entry to hard irq context
376 * If the CPU was idle with dynamic ticks active, this updates the
377 * rdtp->dynticks to let the RCU handling know that the CPU is active.
379 void rcu_irq_enter(void)
381 rcu_exit_nohz();
385 * rcu_irq_exit - inform RCU of exit from hard irq context
387 * If the CPU was idle with dynamic ticks active, update the rdp->dynticks
388 * to put let the RCU handling be aware that the CPU is going back to idle
389 * with no ticks.
391 void rcu_irq_exit(void)
393 rcu_enter_nohz();
396 #ifdef CONFIG_SMP
399 * Snapshot the specified CPU's dynticks counter so that we can later
400 * credit them with an implicit quiescent state. Return 1 if this CPU
401 * is in dynticks idle mode, which is an extended quiescent state.
403 static int dyntick_save_progress_counter(struct rcu_data *rdp)
405 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
406 return 0;
410 * Return true if the specified CPU has passed through a quiescent
411 * state by virtue of being in or having passed through an dynticks
412 * idle state since the last call to dyntick_save_progress_counter()
413 * for this same CPU.
415 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
417 unsigned long curr;
418 unsigned long snap;
420 curr = (unsigned long)atomic_add_return(0, &rdp->dynticks->dynticks);
421 snap = (unsigned long)rdp->dynticks_snap;
424 * If the CPU passed through or entered a dynticks idle phase with
425 * no active irq/NMI handlers, then we can safely pretend that the CPU
426 * already acknowledged the request to pass through a quiescent
427 * state. Either way, that CPU cannot possibly be in an RCU
428 * read-side critical section that started before the beginning
429 * of the current RCU grace period.
431 if ((curr & 0x1) == 0 || ULONG_CMP_GE(curr, snap + 2)) {
432 rdp->dynticks_fqs++;
433 return 1;
436 /* Go check for the CPU being offline. */
437 return rcu_implicit_offline_qs(rdp);
440 #endif /* #ifdef CONFIG_SMP */
442 #else /* #ifdef CONFIG_NO_HZ */
444 #ifdef CONFIG_SMP
446 static int dyntick_save_progress_counter(struct rcu_data *rdp)
448 return 0;
451 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
453 return rcu_implicit_offline_qs(rdp);
456 #endif /* #ifdef CONFIG_SMP */
458 #endif /* #else #ifdef CONFIG_NO_HZ */
460 int rcu_cpu_stall_suppress __read_mostly;
462 static void record_gp_stall_check_time(struct rcu_state *rsp)
464 rsp->gp_start = jiffies;
465 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
468 static void print_other_cpu_stall(struct rcu_state *rsp)
470 int cpu;
471 long delta;
472 unsigned long flags;
473 struct rcu_node *rnp = rcu_get_root(rsp);
475 /* Only let one CPU complain about others per time interval. */
477 raw_spin_lock_irqsave(&rnp->lock, flags);
478 delta = jiffies - rsp->jiffies_stall;
479 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
480 raw_spin_unlock_irqrestore(&rnp->lock, flags);
481 return;
483 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
486 * Now rat on any tasks that got kicked up to the root rcu_node
487 * due to CPU offlining.
489 rcu_print_task_stall(rnp);
490 raw_spin_unlock_irqrestore(&rnp->lock, flags);
493 * OK, time to rat on our buddy...
494 * See Documentation/RCU/stallwarn.txt for info on how to debug
495 * RCU CPU stall warnings.
497 printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks: {",
498 rsp->name);
499 rcu_for_each_leaf_node(rsp, rnp) {
500 raw_spin_lock_irqsave(&rnp->lock, flags);
501 rcu_print_task_stall(rnp);
502 raw_spin_unlock_irqrestore(&rnp->lock, flags);
503 if (rnp->qsmask == 0)
504 continue;
505 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
506 if (rnp->qsmask & (1UL << cpu))
507 printk(" %d", rnp->grplo + cpu);
509 printk("} (detected by %d, t=%ld jiffies)\n",
510 smp_processor_id(), (long)(jiffies - rsp->gp_start));
511 trigger_all_cpu_backtrace();
513 /* If so configured, complain about tasks blocking the grace period. */
515 rcu_print_detail_task_stall(rsp);
517 force_quiescent_state(rsp, 0); /* Kick them all. */
520 static void print_cpu_stall(struct rcu_state *rsp)
522 unsigned long flags;
523 struct rcu_node *rnp = rcu_get_root(rsp);
526 * OK, time to rat on ourselves...
527 * See Documentation/RCU/stallwarn.txt for info on how to debug
528 * RCU CPU stall warnings.
530 printk(KERN_ERR "INFO: %s detected stall on CPU %d (t=%lu jiffies)\n",
531 rsp->name, smp_processor_id(), jiffies - rsp->gp_start);
532 trigger_all_cpu_backtrace();
534 raw_spin_lock_irqsave(&rnp->lock, flags);
535 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
536 rsp->jiffies_stall =
537 jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
538 raw_spin_unlock_irqrestore(&rnp->lock, flags);
540 set_need_resched(); /* kick ourselves to get things going. */
543 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
545 long delta;
546 struct rcu_node *rnp;
548 if (rcu_cpu_stall_suppress)
549 return;
550 delta = jiffies - ACCESS_ONCE(rsp->jiffies_stall);
551 rnp = rdp->mynode;
552 if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && delta >= 0) {
554 /* We haven't checked in, so go dump stack. */
555 print_cpu_stall(rsp);
557 } else if (rcu_gp_in_progress(rsp) && delta >= RCU_STALL_RAT_DELAY) {
559 /* They had two time units to dump stack, so complain. */
560 print_other_cpu_stall(rsp);
564 static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
566 rcu_cpu_stall_suppress = 1;
567 return NOTIFY_DONE;
571 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
573 * Set the stall-warning timeout way off into the future, thus preventing
574 * any RCU CPU stall-warning messages from appearing in the current set of
575 * RCU grace periods.
577 * The caller must disable hard irqs.
579 void rcu_cpu_stall_reset(void)
581 rcu_sched_state.jiffies_stall = jiffies + ULONG_MAX / 2;
582 rcu_bh_state.jiffies_stall = jiffies + ULONG_MAX / 2;
583 rcu_preempt_stall_reset();
586 static struct notifier_block rcu_panic_block = {
587 .notifier_call = rcu_panic,
590 static void __init check_cpu_stall_init(void)
592 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
596 * Update CPU-local rcu_data state to record the newly noticed grace period.
597 * This is used both when we started the grace period and when we notice
598 * that someone else started the grace period. The caller must hold the
599 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
600 * and must have irqs disabled.
602 static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
604 if (rdp->gpnum != rnp->gpnum) {
606 * If the current grace period is waiting for this CPU,
607 * set up to detect a quiescent state, otherwise don't
608 * go looking for one.
610 rdp->gpnum = rnp->gpnum;
611 if (rnp->qsmask & rdp->grpmask) {
612 rdp->qs_pending = 1;
613 rdp->passed_quiesc = 0;
614 } else
615 rdp->qs_pending = 0;
619 static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
621 unsigned long flags;
622 struct rcu_node *rnp;
624 local_irq_save(flags);
625 rnp = rdp->mynode;
626 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
627 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
628 local_irq_restore(flags);
629 return;
631 __note_new_gpnum(rsp, rnp, rdp);
632 raw_spin_unlock_irqrestore(&rnp->lock, flags);
636 * Did someone else start a new RCU grace period start since we last
637 * checked? Update local state appropriately if so. Must be called
638 * on the CPU corresponding to rdp.
640 static int
641 check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
643 unsigned long flags;
644 int ret = 0;
646 local_irq_save(flags);
647 if (rdp->gpnum != rsp->gpnum) {
648 note_new_gpnum(rsp, rdp);
649 ret = 1;
651 local_irq_restore(flags);
652 return ret;
656 * Advance this CPU's callbacks, but only if the current grace period
657 * has ended. This may be called only from the CPU to whom the rdp
658 * belongs. In addition, the corresponding leaf rcu_node structure's
659 * ->lock must be held by the caller, with irqs disabled.
661 static void
662 __rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
664 /* Did another grace period end? */
665 if (rdp->completed != rnp->completed) {
667 /* Advance callbacks. No harm if list empty. */
668 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
669 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
670 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
672 /* Remember that we saw this grace-period completion. */
673 rdp->completed = rnp->completed;
676 * If we were in an extended quiescent state, we may have
677 * missed some grace periods that others CPUs handled on
678 * our behalf. Catch up with this state to avoid noting
679 * spurious new grace periods. If another grace period
680 * has started, then rnp->gpnum will have advanced, so
681 * we will detect this later on.
683 if (ULONG_CMP_LT(rdp->gpnum, rdp->completed))
684 rdp->gpnum = rdp->completed;
687 * If RCU does not need a quiescent state from this CPU,
688 * then make sure that this CPU doesn't go looking for one.
690 if ((rnp->qsmask & rdp->grpmask) == 0)
691 rdp->qs_pending = 0;
696 * Advance this CPU's callbacks, but only if the current grace period
697 * has ended. This may be called only from the CPU to whom the rdp
698 * belongs.
700 static void
701 rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
703 unsigned long flags;
704 struct rcu_node *rnp;
706 local_irq_save(flags);
707 rnp = rdp->mynode;
708 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
709 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
710 local_irq_restore(flags);
711 return;
713 __rcu_process_gp_end(rsp, rnp, rdp);
714 raw_spin_unlock_irqrestore(&rnp->lock, flags);
718 * Do per-CPU grace-period initialization for running CPU. The caller
719 * must hold the lock of the leaf rcu_node structure corresponding to
720 * this CPU.
722 static void
723 rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
725 /* Prior grace period ended, so advance callbacks for current CPU. */
726 __rcu_process_gp_end(rsp, rnp, rdp);
729 * Because this CPU just now started the new grace period, we know
730 * that all of its callbacks will be covered by this upcoming grace
731 * period, even the ones that were registered arbitrarily recently.
732 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
734 * Other CPUs cannot be sure exactly when the grace period started.
735 * Therefore, their recently registered callbacks must pass through
736 * an additional RCU_NEXT_READY stage, so that they will be handled
737 * by the next RCU grace period.
739 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
740 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
742 /* Set state so that this CPU will detect the next quiescent state. */
743 __note_new_gpnum(rsp, rnp, rdp);
747 * Start a new RCU grace period if warranted, re-initializing the hierarchy
748 * in preparation for detecting the next grace period. The caller must hold
749 * the root node's ->lock, which is released before return. Hard irqs must
750 * be disabled.
752 static void
753 rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
754 __releases(rcu_get_root(rsp)->lock)
756 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
757 struct rcu_node *rnp = rcu_get_root(rsp);
759 if (!cpu_needs_another_gp(rsp, rdp) || rsp->fqs_active) {
760 if (cpu_needs_another_gp(rsp, rdp))
761 rsp->fqs_need_gp = 1;
762 if (rnp->completed == rsp->completed) {
763 raw_spin_unlock_irqrestore(&rnp->lock, flags);
764 return;
766 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
769 * Propagate new ->completed value to rcu_node structures
770 * so that other CPUs don't have to wait until the start
771 * of the next grace period to process their callbacks.
773 rcu_for_each_node_breadth_first(rsp, rnp) {
774 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
775 rnp->completed = rsp->completed;
776 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
778 local_irq_restore(flags);
779 return;
782 /* Advance to a new grace period and initialize state. */
783 rsp->gpnum++;
784 WARN_ON_ONCE(rsp->signaled == RCU_GP_INIT);
785 rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */
786 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
787 record_gp_stall_check_time(rsp);
789 /* Special-case the common single-level case. */
790 if (NUM_RCU_NODES == 1) {
791 rcu_preempt_check_blocked_tasks(rnp);
792 rnp->qsmask = rnp->qsmaskinit;
793 rnp->gpnum = rsp->gpnum;
794 rnp->completed = rsp->completed;
795 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */
796 rcu_start_gp_per_cpu(rsp, rnp, rdp);
797 rcu_preempt_boost_start_gp(rnp);
798 raw_spin_unlock_irqrestore(&rnp->lock, flags);
799 return;
802 raw_spin_unlock(&rnp->lock); /* leave irqs disabled. */
805 /* Exclude any concurrent CPU-hotplug operations. */
806 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
809 * Set the quiescent-state-needed bits in all the rcu_node
810 * structures for all currently online CPUs in breadth-first
811 * order, starting from the root rcu_node structure. This
812 * operation relies on the layout of the hierarchy within the
813 * rsp->node[] array. Note that other CPUs will access only
814 * the leaves of the hierarchy, which still indicate that no
815 * grace period is in progress, at least until the corresponding
816 * leaf node has been initialized. In addition, we have excluded
817 * CPU-hotplug operations.
819 * Note that the grace period cannot complete until we finish
820 * the initialization process, as there will be at least one
821 * qsmask bit set in the root node until that time, namely the
822 * one corresponding to this CPU, due to the fact that we have
823 * irqs disabled.
825 rcu_for_each_node_breadth_first(rsp, rnp) {
826 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
827 rcu_preempt_check_blocked_tasks(rnp);
828 rnp->qsmask = rnp->qsmaskinit;
829 rnp->gpnum = rsp->gpnum;
830 rnp->completed = rsp->completed;
831 if (rnp == rdp->mynode)
832 rcu_start_gp_per_cpu(rsp, rnp, rdp);
833 rcu_preempt_boost_start_gp(rnp);
834 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
837 rnp = rcu_get_root(rsp);
838 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
839 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
840 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
841 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
845 * Report a full set of quiescent states to the specified rcu_state
846 * data structure. This involves cleaning up after the prior grace
847 * period and letting rcu_start_gp() start up the next grace period
848 * if one is needed. Note that the caller must hold rnp->lock, as
849 * required by rcu_start_gp(), which will release it.
851 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
852 __releases(rcu_get_root(rsp)->lock)
854 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
857 * Ensure that all grace-period and pre-grace-period activity
858 * is seen before the assignment to rsp->completed.
860 smp_mb(); /* See above block comment. */
861 rsp->completed = rsp->gpnum;
862 rsp->signaled = RCU_GP_IDLE;
863 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
867 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
868 * Allows quiescent states for a group of CPUs to be reported at one go
869 * to the specified rcu_node structure, though all the CPUs in the group
870 * must be represented by the same rcu_node structure (which need not be
871 * a leaf rcu_node structure, though it often will be). That structure's
872 * lock must be held upon entry, and it is released before return.
874 static void
875 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
876 struct rcu_node *rnp, unsigned long flags)
877 __releases(rnp->lock)
879 struct rcu_node *rnp_c;
881 /* Walk up the rcu_node hierarchy. */
882 for (;;) {
883 if (!(rnp->qsmask & mask)) {
885 /* Our bit has already been cleared, so done. */
886 raw_spin_unlock_irqrestore(&rnp->lock, flags);
887 return;
889 rnp->qsmask &= ~mask;
890 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
892 /* Other bits still set at this level, so done. */
893 raw_spin_unlock_irqrestore(&rnp->lock, flags);
894 return;
896 mask = rnp->grpmask;
897 if (rnp->parent == NULL) {
899 /* No more levels. Exit loop holding root lock. */
901 break;
903 raw_spin_unlock_irqrestore(&rnp->lock, flags);
904 rnp_c = rnp;
905 rnp = rnp->parent;
906 raw_spin_lock_irqsave(&rnp->lock, flags);
907 WARN_ON_ONCE(rnp_c->qsmask);
911 * Get here if we are the last CPU to pass through a quiescent
912 * state for this grace period. Invoke rcu_report_qs_rsp()
913 * to clean up and start the next grace period if one is needed.
915 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
919 * Record a quiescent state for the specified CPU to that CPU's rcu_data
920 * structure. This must be either called from the specified CPU, or
921 * called when the specified CPU is known to be offline (and when it is
922 * also known that no other CPU is concurrently trying to help the offline
923 * CPU). The lastcomp argument is used to make sure we are still in the
924 * grace period of interest. We don't want to end the current grace period
925 * based on quiescent states detected in an earlier grace period!
927 static void
928 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp)
930 unsigned long flags;
931 unsigned long mask;
932 struct rcu_node *rnp;
934 rnp = rdp->mynode;
935 raw_spin_lock_irqsave(&rnp->lock, flags);
936 if (lastcomp != rnp->completed) {
939 * Someone beat us to it for this grace period, so leave.
940 * The race with GP start is resolved by the fact that we
941 * hold the leaf rcu_node lock, so that the per-CPU bits
942 * cannot yet be initialized -- so we would simply find our
943 * CPU's bit already cleared in rcu_report_qs_rnp() if this
944 * race occurred.
946 rdp->passed_quiesc = 0; /* try again later! */
947 raw_spin_unlock_irqrestore(&rnp->lock, flags);
948 return;
950 mask = rdp->grpmask;
951 if ((rnp->qsmask & mask) == 0) {
952 raw_spin_unlock_irqrestore(&rnp->lock, flags);
953 } else {
954 rdp->qs_pending = 0;
957 * This GP can't end until cpu checks in, so all of our
958 * callbacks can be processed during the next GP.
960 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
962 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
967 * Check to see if there is a new grace period of which this CPU
968 * is not yet aware, and if so, set up local rcu_data state for it.
969 * Otherwise, see if this CPU has just passed through its first
970 * quiescent state for this grace period, and record that fact if so.
972 static void
973 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
975 /* If there is now a new grace period, record and return. */
976 if (check_for_new_grace_period(rsp, rdp))
977 return;
980 * Does this CPU still need to do its part for current grace period?
981 * If no, return and let the other CPUs do their part as well.
983 if (!rdp->qs_pending)
984 return;
987 * Was there a quiescent state since the beginning of the grace
988 * period? If no, then exit and wait for the next call.
990 if (!rdp->passed_quiesc)
991 return;
994 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
995 * judge of that).
997 rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesc_completed);
1000 #ifdef CONFIG_HOTPLUG_CPU
1003 * Move a dying CPU's RCU callbacks to online CPU's callback list.
1004 * Synchronization is not required because this function executes
1005 * in stop_machine() context.
1007 static void rcu_send_cbs_to_online(struct rcu_state *rsp)
1009 int i;
1010 /* current DYING CPU is cleared in the cpu_online_mask */
1011 int receive_cpu = cpumask_any(cpu_online_mask);
1012 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1013 struct rcu_data *receive_rdp = per_cpu_ptr(rsp->rda, receive_cpu);
1015 if (rdp->nxtlist == NULL)
1016 return; /* irqs disabled, so comparison is stable. */
1018 *receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist;
1019 receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1020 receive_rdp->qlen += rdp->qlen;
1021 receive_rdp->n_cbs_adopted += rdp->qlen;
1022 rdp->n_cbs_orphaned += rdp->qlen;
1024 rdp->nxtlist = NULL;
1025 for (i = 0; i < RCU_NEXT_SIZE; i++)
1026 rdp->nxttail[i] = &rdp->nxtlist;
1027 rdp->qlen = 0;
1031 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
1032 * and move all callbacks from the outgoing CPU to the current one.
1033 * There can only be one CPU hotplug operation at a time, so no other
1034 * CPU can be attempting to update rcu_cpu_kthread_task.
1036 static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
1038 unsigned long flags;
1039 unsigned long mask;
1040 int need_report = 0;
1041 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1042 struct rcu_node *rnp;
1043 struct task_struct *t;
1045 /* Stop the CPU's kthread. */
1046 t = per_cpu(rcu_cpu_kthread_task, cpu);
1047 if (t != NULL) {
1048 per_cpu(rcu_cpu_kthread_task, cpu) = NULL;
1049 kthread_stop(t);
1052 /* Exclude any attempts to start a new grace period. */
1053 raw_spin_lock_irqsave(&rsp->onofflock, flags);
1055 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1056 rnp = rdp->mynode; /* this is the outgoing CPU's rnp. */
1057 mask = rdp->grpmask; /* rnp->grplo is constant. */
1058 do {
1059 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1060 rnp->qsmaskinit &= ~mask;
1061 if (rnp->qsmaskinit != 0) {
1062 if (rnp != rdp->mynode)
1063 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1064 break;
1066 if (rnp == rdp->mynode)
1067 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1068 else
1069 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1070 mask = rnp->grpmask;
1071 rnp = rnp->parent;
1072 } while (rnp != NULL);
1075 * We still hold the leaf rcu_node structure lock here, and
1076 * irqs are still disabled. The reason for this subterfuge is
1077 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
1078 * held leads to deadlock.
1080 raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1081 rnp = rdp->mynode;
1082 if (need_report & RCU_OFL_TASKS_NORM_GP)
1083 rcu_report_unblock_qs_rnp(rnp, flags);
1084 else
1085 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1086 if (need_report & RCU_OFL_TASKS_EXP_GP)
1087 rcu_report_exp_rnp(rsp, rnp);
1090 * If there are no more online CPUs for this rcu_node structure,
1091 * kill the rcu_node structure's kthread. Otherwise, adjust its
1092 * affinity.
1094 t = rnp->node_kthread_task;
1095 if (t != NULL &&
1096 rnp->qsmaskinit == 0) {
1097 raw_spin_lock_irqsave(&rnp->lock, flags);
1098 rnp->node_kthread_task = NULL;
1099 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1100 kthread_stop(t);
1101 rcu_stop_boost_kthread(rnp);
1102 } else
1103 rcu_node_kthread_setaffinity(rnp, -1);
1107 * Remove the specified CPU from the RCU hierarchy and move any pending
1108 * callbacks that it might have to the current CPU. This code assumes
1109 * that at least one CPU in the system will remain running at all times.
1110 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
1112 static void rcu_offline_cpu(int cpu)
1114 __rcu_offline_cpu(cpu, &rcu_sched_state);
1115 __rcu_offline_cpu(cpu, &rcu_bh_state);
1116 rcu_preempt_offline_cpu(cpu);
1119 #else /* #ifdef CONFIG_HOTPLUG_CPU */
1121 static void rcu_send_cbs_to_online(struct rcu_state *rsp)
1125 static void rcu_offline_cpu(int cpu)
1129 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1132 * Invoke any RCU callbacks that have made it to the end of their grace
1133 * period. Thottle as specified by rdp->blimit.
1135 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1137 unsigned long flags;
1138 struct rcu_head *next, *list, **tail;
1139 int count;
1141 /* If no callbacks are ready, just return.*/
1142 if (!cpu_has_callbacks_ready_to_invoke(rdp))
1143 return;
1146 * Extract the list of ready callbacks, disabling to prevent
1147 * races with call_rcu() from interrupt handlers.
1149 local_irq_save(flags);
1150 list = rdp->nxtlist;
1151 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1152 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1153 tail = rdp->nxttail[RCU_DONE_TAIL];
1154 for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
1155 if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
1156 rdp->nxttail[count] = &rdp->nxtlist;
1157 local_irq_restore(flags);
1159 /* Invoke callbacks. */
1160 count = 0;
1161 while (list) {
1162 next = list->next;
1163 prefetch(next);
1164 debug_rcu_head_unqueue(list);
1165 list->func(list);
1166 list = next;
1167 if (++count >= rdp->blimit)
1168 break;
1171 local_irq_save(flags);
1173 /* Update count, and requeue any remaining callbacks. */
1174 rdp->qlen -= count;
1175 rdp->n_cbs_invoked += count;
1176 if (list != NULL) {
1177 *tail = rdp->nxtlist;
1178 rdp->nxtlist = list;
1179 for (count = 0; count < RCU_NEXT_SIZE; count++)
1180 if (&rdp->nxtlist == rdp->nxttail[count])
1181 rdp->nxttail[count] = tail;
1182 else
1183 break;
1186 /* Reinstate batch limit if we have worked down the excess. */
1187 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1188 rdp->blimit = blimit;
1190 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1191 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1192 rdp->qlen_last_fqs_check = 0;
1193 rdp->n_force_qs_snap = rsp->n_force_qs;
1194 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1195 rdp->qlen_last_fqs_check = rdp->qlen;
1197 local_irq_restore(flags);
1199 /* Re-raise the RCU softirq if there are callbacks remaining. */
1200 if (cpu_has_callbacks_ready_to_invoke(rdp))
1201 invoke_rcu_cpu_kthread();
1205 * Check to see if this CPU is in a non-context-switch quiescent state
1206 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1207 * Also schedule the RCU softirq handler.
1209 * This function must be called with hardirqs disabled. It is normally
1210 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1211 * false, there is no point in invoking rcu_check_callbacks().
1213 void rcu_check_callbacks(int cpu, int user)
1215 if (user ||
1216 (idle_cpu(cpu) && rcu_scheduler_active &&
1217 !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
1220 * Get here if this CPU took its interrupt from user
1221 * mode or from the idle loop, and if this is not a
1222 * nested interrupt. In this case, the CPU is in
1223 * a quiescent state, so note it.
1225 * No memory barrier is required here because both
1226 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1227 * variables that other CPUs neither access nor modify,
1228 * at least not while the corresponding CPU is online.
1231 rcu_sched_qs(cpu);
1232 rcu_bh_qs(cpu);
1234 } else if (!in_softirq()) {
1237 * Get here if this CPU did not take its interrupt from
1238 * softirq, in other words, if it is not interrupting
1239 * a rcu_bh read-side critical section. This is an _bh
1240 * critical section, so note it.
1243 rcu_bh_qs(cpu);
1245 rcu_preempt_check_callbacks(cpu);
1246 if (rcu_pending(cpu))
1247 invoke_rcu_cpu_kthread();
1250 #ifdef CONFIG_SMP
1253 * Scan the leaf rcu_node structures, processing dyntick state for any that
1254 * have not yet encountered a quiescent state, using the function specified.
1255 * Also initiate boosting for any threads blocked on the root rcu_node.
1257 * The caller must have suppressed start of new grace periods.
1259 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
1261 unsigned long bit;
1262 int cpu;
1263 unsigned long flags;
1264 unsigned long mask;
1265 struct rcu_node *rnp;
1267 rcu_for_each_leaf_node(rsp, rnp) {
1268 mask = 0;
1269 raw_spin_lock_irqsave(&rnp->lock, flags);
1270 if (!rcu_gp_in_progress(rsp)) {
1271 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1272 return;
1274 if (rnp->qsmask == 0) {
1275 rcu_initiate_boost(rnp);
1276 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1277 continue;
1279 cpu = rnp->grplo;
1280 bit = 1;
1281 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1282 if ((rnp->qsmask & bit) != 0 &&
1283 f(per_cpu_ptr(rsp->rda, cpu)))
1284 mask |= bit;
1286 if (mask != 0) {
1288 /* rcu_report_qs_rnp() releases rnp->lock. */
1289 rcu_report_qs_rnp(mask, rsp, rnp, flags);
1290 continue;
1292 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1294 rnp = rcu_get_root(rsp);
1295 raw_spin_lock_irqsave(&rnp->lock, flags);
1296 if (rnp->qsmask == 0)
1297 rcu_initiate_boost(rnp);
1298 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1302 * Force quiescent states on reluctant CPUs, and also detect which
1303 * CPUs are in dyntick-idle mode.
1305 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1307 unsigned long flags;
1308 struct rcu_node *rnp = rcu_get_root(rsp);
1310 if (!rcu_gp_in_progress(rsp))
1311 return; /* No grace period in progress, nothing to force. */
1312 if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
1313 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
1314 return; /* Someone else is already on the job. */
1316 if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
1317 goto unlock_fqs_ret; /* no emergency and done recently. */
1318 rsp->n_force_qs++;
1319 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1320 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1321 if(!rcu_gp_in_progress(rsp)) {
1322 rsp->n_force_qs_ngp++;
1323 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1324 goto unlock_fqs_ret; /* no GP in progress, time updated. */
1326 rsp->fqs_active = 1;
1327 switch (rsp->signaled) {
1328 case RCU_GP_IDLE:
1329 case RCU_GP_INIT:
1331 break; /* grace period idle or initializing, ignore. */
1333 case RCU_SAVE_DYNTICK:
1334 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1335 break; /* So gcc recognizes the dead code. */
1337 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1339 /* Record dyntick-idle state. */
1340 force_qs_rnp(rsp, dyntick_save_progress_counter);
1341 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1342 if (rcu_gp_in_progress(rsp))
1343 rsp->signaled = RCU_FORCE_QS;
1344 break;
1346 case RCU_FORCE_QS:
1348 /* Check dyntick-idle state, send IPI to laggarts. */
1349 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1350 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1352 /* Leave state in case more forcing is required. */
1354 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1355 break;
1357 rsp->fqs_active = 0;
1358 if (rsp->fqs_need_gp) {
1359 raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
1360 rsp->fqs_need_gp = 0;
1361 rcu_start_gp(rsp, flags); /* releases rnp->lock */
1362 return;
1364 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1365 unlock_fqs_ret:
1366 raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
1369 #else /* #ifdef CONFIG_SMP */
1371 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1373 set_need_resched();
1376 #endif /* #else #ifdef CONFIG_SMP */
1379 * This does the RCU processing work from softirq context for the
1380 * specified rcu_state and rcu_data structures. This may be called
1381 * only from the CPU to whom the rdp belongs.
1383 static void
1384 __rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1386 unsigned long flags;
1388 WARN_ON_ONCE(rdp->beenonline == 0);
1391 * If an RCU GP has gone long enough, go check for dyntick
1392 * idle CPUs and, if needed, send resched IPIs.
1394 if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1395 force_quiescent_state(rsp, 1);
1398 * Advance callbacks in response to end of earlier grace
1399 * period that some other CPU ended.
1401 rcu_process_gp_end(rsp, rdp);
1403 /* Update RCU state based on any recent quiescent states. */
1404 rcu_check_quiescent_state(rsp, rdp);
1406 /* Does this CPU require a not-yet-started grace period? */
1407 if (cpu_needs_another_gp(rsp, rdp)) {
1408 raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1409 rcu_start_gp(rsp, flags); /* releases above lock */
1412 /* If there are callbacks ready, invoke them. */
1413 rcu_do_batch(rsp, rdp);
1417 * Do softirq processing for the current CPU.
1419 static void rcu_process_callbacks(void)
1421 __rcu_process_callbacks(&rcu_sched_state,
1422 &__get_cpu_var(rcu_sched_data));
1423 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1424 rcu_preempt_process_callbacks();
1426 /* If we are last CPU on way to dyntick-idle mode, accelerate it. */
1427 rcu_needs_cpu_flush();
1431 * Wake up the current CPU's kthread. This replaces raise_softirq()
1432 * in earlier versions of RCU. Note that because we are running on
1433 * the current CPU with interrupts disabled, the rcu_cpu_kthread_task
1434 * cannot disappear out from under us.
1436 static void invoke_rcu_cpu_kthread(void)
1438 unsigned long flags;
1439 wait_queue_head_t *q;
1440 int cpu;
1442 local_irq_save(flags);
1443 cpu = smp_processor_id();
1444 per_cpu(rcu_cpu_has_work, cpu) = 1;
1445 if (per_cpu(rcu_cpu_kthread_task, cpu) == NULL) {
1446 local_irq_restore(flags);
1447 return;
1449 q = &per_cpu(rcu_cpu_wq, cpu);
1450 wake_up(q);
1451 local_irq_restore(flags);
1455 * Wake up the specified per-rcu_node-structure kthread.
1456 * The caller must hold ->lock.
1458 static void invoke_rcu_node_kthread(struct rcu_node *rnp)
1460 struct task_struct *t;
1462 t = rnp->node_kthread_task;
1463 if (t != NULL)
1464 wake_up_process(t);
1468 * Set the specified CPU's kthread to run RT or not, as specified by
1469 * the to_rt argument. The CPU-hotplug locks are held, so the task
1470 * is not going away.
1472 static void rcu_cpu_kthread_setrt(int cpu, int to_rt)
1474 int policy;
1475 struct sched_param sp;
1476 struct task_struct *t;
1478 t = per_cpu(rcu_cpu_kthread_task, cpu);
1479 if (t == NULL)
1480 return;
1481 if (to_rt) {
1482 policy = SCHED_FIFO;
1483 sp.sched_priority = RCU_KTHREAD_PRIO;
1484 } else {
1485 policy = SCHED_NORMAL;
1486 sp.sched_priority = 0;
1488 sched_setscheduler_nocheck(t, policy, &sp);
1492 * Timer handler to initiate the waking up of per-CPU kthreads that
1493 * have yielded the CPU due to excess numbers of RCU callbacks.
1494 * We wake up the per-rcu_node kthread, which in turn will wake up
1495 * the booster kthread.
1497 static void rcu_cpu_kthread_timer(unsigned long arg)
1499 unsigned long flags;
1500 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, arg);
1501 struct rcu_node *rnp = rdp->mynode;
1503 raw_spin_lock_irqsave(&rnp->lock, flags);
1504 rnp->wakemask |= rdp->grpmask;
1505 invoke_rcu_node_kthread(rnp);
1506 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1510 * Drop to non-real-time priority and yield, but only after posting a
1511 * timer that will cause us to regain our real-time priority if we
1512 * remain preempted. Either way, we restore our real-time priority
1513 * before returning.
1515 static void rcu_yield(void (*f)(unsigned long), unsigned long arg)
1517 struct sched_param sp;
1518 struct timer_list yield_timer;
1520 setup_timer_on_stack(&yield_timer, f, arg);
1521 mod_timer(&yield_timer, jiffies + 2);
1522 sp.sched_priority = 0;
1523 sched_setscheduler_nocheck(current, SCHED_NORMAL, &sp);
1524 schedule();
1525 sp.sched_priority = RCU_KTHREAD_PRIO;
1526 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1527 del_timer(&yield_timer);
1531 * Handle cases where the rcu_cpu_kthread() ends up on the wrong CPU.
1532 * This can happen while the corresponding CPU is either coming online
1533 * or going offline. We cannot wait until the CPU is fully online
1534 * before starting the kthread, because the various notifier functions
1535 * can wait for RCU grace periods. So we park rcu_cpu_kthread() until
1536 * the corresponding CPU is online.
1538 * Return 1 if the kthread needs to stop, 0 otherwise.
1540 * Caller must disable bh. This function can momentarily enable it.
1542 static int rcu_cpu_kthread_should_stop(int cpu)
1544 while (cpu_is_offline(cpu) ||
1545 !cpumask_equal(&current->cpus_allowed, cpumask_of(cpu)) ||
1546 smp_processor_id() != cpu) {
1547 if (kthread_should_stop())
1548 return 1;
1549 local_bh_enable();
1550 schedule_timeout_uninterruptible(1);
1551 if (!cpumask_equal(&current->cpus_allowed, cpumask_of(cpu)))
1552 set_cpus_allowed_ptr(current, cpumask_of(cpu));
1553 local_bh_disable();
1555 return 0;
1559 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
1560 * earlier RCU softirq.
1562 static int rcu_cpu_kthread(void *arg)
1564 int cpu = (int)(long)arg;
1565 unsigned long flags;
1566 int spincnt = 0;
1567 unsigned int *statusp = &per_cpu(rcu_cpu_kthread_status, cpu);
1568 wait_queue_head_t *wqp = &per_cpu(rcu_cpu_wq, cpu);
1569 char work;
1570 char *workp = &per_cpu(rcu_cpu_has_work, cpu);
1572 for (;;) {
1573 *statusp = RCU_KTHREAD_WAITING;
1574 wait_event_interruptible(*wqp,
1575 *workp != 0 || kthread_should_stop());
1576 local_bh_disable();
1577 if (rcu_cpu_kthread_should_stop(cpu)) {
1578 local_bh_enable();
1579 break;
1581 *statusp = RCU_KTHREAD_RUNNING;
1582 local_irq_save(flags);
1583 work = *workp;
1584 *workp = 0;
1585 local_irq_restore(flags);
1586 if (work)
1587 rcu_process_callbacks();
1588 local_bh_enable();
1589 if (*workp != 0)
1590 spincnt++;
1591 else
1592 spincnt = 0;
1593 if (spincnt > 10) {
1594 *statusp = RCU_KTHREAD_YIELDING;
1595 rcu_yield(rcu_cpu_kthread_timer, (unsigned long)cpu);
1596 spincnt = 0;
1599 *statusp = RCU_KTHREAD_STOPPED;
1600 return 0;
1604 * Spawn a per-CPU kthread, setting up affinity and priority.
1605 * Because the CPU hotplug lock is held, no other CPU will be attempting
1606 * to manipulate rcu_cpu_kthread_task. There might be another CPU
1607 * attempting to access it during boot, but the locking in kthread_bind()
1608 * will enforce sufficient ordering.
1610 static int __cpuinit rcu_spawn_one_cpu_kthread(int cpu)
1612 struct sched_param sp;
1613 struct task_struct *t;
1615 if (!rcu_kthreads_spawnable ||
1616 per_cpu(rcu_cpu_kthread_task, cpu) != NULL)
1617 return 0;
1618 t = kthread_create(rcu_cpu_kthread, (void *)(long)cpu, "rcuc%d", cpu);
1619 if (IS_ERR(t))
1620 return PTR_ERR(t);
1621 kthread_bind(t, cpu);
1622 WARN_ON_ONCE(per_cpu(rcu_cpu_kthread_task, cpu) != NULL);
1623 per_cpu(rcu_cpu_kthread_task, cpu) = t;
1624 wake_up_process(t);
1625 sp.sched_priority = RCU_KTHREAD_PRIO;
1626 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1627 return 0;
1631 * Per-rcu_node kthread, which is in charge of waking up the per-CPU
1632 * kthreads when needed. We ignore requests to wake up kthreads
1633 * for offline CPUs, which is OK because force_quiescent_state()
1634 * takes care of this case.
1636 static int rcu_node_kthread(void *arg)
1638 int cpu;
1639 unsigned long flags;
1640 unsigned long mask;
1641 struct rcu_node *rnp = (struct rcu_node *)arg;
1642 struct sched_param sp;
1643 struct task_struct *t;
1645 for (;;) {
1646 rnp->node_kthread_status = RCU_KTHREAD_WAITING;
1647 wait_event_interruptible(rnp->node_wq, rnp->wakemask != 0 ||
1648 kthread_should_stop());
1649 if (kthread_should_stop())
1650 break;
1651 rnp->node_kthread_status = RCU_KTHREAD_RUNNING;
1652 raw_spin_lock_irqsave(&rnp->lock, flags);
1653 mask = rnp->wakemask;
1654 rnp->wakemask = 0;
1655 rcu_initiate_boost(rnp);
1656 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1657 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1) {
1658 if ((mask & 0x1) == 0)
1659 continue;
1660 preempt_disable();
1661 t = per_cpu(rcu_cpu_kthread_task, cpu);
1662 if (!cpu_online(cpu) || t == NULL) {
1663 preempt_enable();
1664 continue;
1666 per_cpu(rcu_cpu_has_work, cpu) = 1;
1667 sp.sched_priority = RCU_KTHREAD_PRIO;
1668 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1669 preempt_enable();
1672 rnp->node_kthread_status = RCU_KTHREAD_STOPPED;
1673 return 0;
1677 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1678 * served by the rcu_node in question. The CPU hotplug lock is still
1679 * held, so the value of rnp->qsmaskinit will be stable.
1681 * We don't include outgoingcpu in the affinity set, use -1 if there is
1682 * no outgoing CPU. If there are no CPUs left in the affinity set,
1683 * this function allows the kthread to execute on any CPU.
1685 static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1687 cpumask_var_t cm;
1688 int cpu;
1689 unsigned long mask = rnp->qsmaskinit;
1691 if (rnp->node_kthread_task == NULL || mask == 0)
1692 return;
1693 if (!alloc_cpumask_var(&cm, GFP_KERNEL))
1694 return;
1695 cpumask_clear(cm);
1696 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1697 if ((mask & 0x1) && cpu != outgoingcpu)
1698 cpumask_set_cpu(cpu, cm);
1699 if (cpumask_weight(cm) == 0) {
1700 cpumask_setall(cm);
1701 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
1702 cpumask_clear_cpu(cpu, cm);
1703 WARN_ON_ONCE(cpumask_weight(cm) == 0);
1705 set_cpus_allowed_ptr(rnp->node_kthread_task, cm);
1706 rcu_boost_kthread_setaffinity(rnp, cm);
1707 free_cpumask_var(cm);
1711 * Spawn a per-rcu_node kthread, setting priority and affinity.
1712 * Called during boot before online/offline can happen, or, if
1713 * during runtime, with the main CPU-hotplug locks held. So only
1714 * one of these can be executing at a time.
1716 static int __cpuinit rcu_spawn_one_node_kthread(struct rcu_state *rsp,
1717 struct rcu_node *rnp)
1719 unsigned long flags;
1720 int rnp_index = rnp - &rsp->node[0];
1721 struct sched_param sp;
1722 struct task_struct *t;
1724 if (!rcu_kthreads_spawnable ||
1725 rnp->qsmaskinit == 0)
1726 return 0;
1727 if (rnp->node_kthread_task == NULL) {
1728 t = kthread_create(rcu_node_kthread, (void *)rnp,
1729 "rcun%d", rnp_index);
1730 if (IS_ERR(t))
1731 return PTR_ERR(t);
1732 raw_spin_lock_irqsave(&rnp->lock, flags);
1733 rnp->node_kthread_task = t;
1734 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1735 wake_up_process(t);
1736 sp.sched_priority = 99;
1737 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1739 return rcu_spawn_one_boost_kthread(rsp, rnp, rnp_index);
1743 * Spawn all kthreads -- called as soon as the scheduler is running.
1745 static int __init rcu_spawn_kthreads(void)
1747 int cpu;
1748 struct rcu_node *rnp;
1750 rcu_kthreads_spawnable = 1;
1751 for_each_possible_cpu(cpu) {
1752 init_waitqueue_head(&per_cpu(rcu_cpu_wq, cpu));
1753 per_cpu(rcu_cpu_has_work, cpu) = 0;
1754 if (cpu_online(cpu))
1755 (void)rcu_spawn_one_cpu_kthread(cpu);
1757 rnp = rcu_get_root(rcu_state);
1758 init_waitqueue_head(&rnp->node_wq);
1759 rcu_init_boost_waitqueue(rnp);
1760 (void)rcu_spawn_one_node_kthread(rcu_state, rnp);
1761 if (NUM_RCU_NODES > 1)
1762 rcu_for_each_leaf_node(rcu_state, rnp) {
1763 init_waitqueue_head(&rnp->node_wq);
1764 rcu_init_boost_waitqueue(rnp);
1765 (void)rcu_spawn_one_node_kthread(rcu_state, rnp);
1767 return 0;
1769 early_initcall(rcu_spawn_kthreads);
1771 static void
1772 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1773 struct rcu_state *rsp)
1775 unsigned long flags;
1776 struct rcu_data *rdp;
1778 debug_rcu_head_queue(head);
1779 head->func = func;
1780 head->next = NULL;
1782 smp_mb(); /* Ensure RCU update seen before callback registry. */
1785 * Opportunistically note grace-period endings and beginnings.
1786 * Note that we might see a beginning right after we see an
1787 * end, but never vice versa, since this CPU has to pass through
1788 * a quiescent state betweentimes.
1790 local_irq_save(flags);
1791 rdp = this_cpu_ptr(rsp->rda);
1793 /* Add the callback to our list. */
1794 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1795 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1798 * Force the grace period if too many callbacks or too long waiting.
1799 * Enforce hysteresis, and don't invoke force_quiescent_state()
1800 * if some other CPU has recently done so. Also, don't bother
1801 * invoking force_quiescent_state() if the newly enqueued callback
1802 * is the only one waiting for a grace period to complete.
1804 if (unlikely(++rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
1806 /* Are we ignoring a completed grace period? */
1807 rcu_process_gp_end(rsp, rdp);
1808 check_for_new_grace_period(rsp, rdp);
1810 /* Start a new grace period if one not already started. */
1811 if (!rcu_gp_in_progress(rsp)) {
1812 unsigned long nestflag;
1813 struct rcu_node *rnp_root = rcu_get_root(rsp);
1815 raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
1816 rcu_start_gp(rsp, nestflag); /* rlses rnp_root->lock */
1817 } else {
1818 /* Give the grace period a kick. */
1819 rdp->blimit = LONG_MAX;
1820 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
1821 *rdp->nxttail[RCU_DONE_TAIL] != head)
1822 force_quiescent_state(rsp, 0);
1823 rdp->n_force_qs_snap = rsp->n_force_qs;
1824 rdp->qlen_last_fqs_check = rdp->qlen;
1826 } else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1827 force_quiescent_state(rsp, 1);
1828 local_irq_restore(flags);
1832 * Queue an RCU-sched callback for invocation after a grace period.
1834 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1836 __call_rcu(head, func, &rcu_sched_state);
1838 EXPORT_SYMBOL_GPL(call_rcu_sched);
1841 * Queue an RCU for invocation after a quicker grace period.
1843 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1845 __call_rcu(head, func, &rcu_bh_state);
1847 EXPORT_SYMBOL_GPL(call_rcu_bh);
1850 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
1852 * Control will return to the caller some time after a full rcu-sched
1853 * grace period has elapsed, in other words after all currently executing
1854 * rcu-sched read-side critical sections have completed. These read-side
1855 * critical sections are delimited by rcu_read_lock_sched() and
1856 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
1857 * local_irq_disable(), and so on may be used in place of
1858 * rcu_read_lock_sched().
1860 * This means that all preempt_disable code sequences, including NMI and
1861 * hardware-interrupt handlers, in progress on entry will have completed
1862 * before this primitive returns. However, this does not guarantee that
1863 * softirq handlers will have completed, since in some kernels, these
1864 * handlers can run in process context, and can block.
1866 * This primitive provides the guarantees made by the (now removed)
1867 * synchronize_kernel() API. In contrast, synchronize_rcu() only
1868 * guarantees that rcu_read_lock() sections will have completed.
1869 * In "classic RCU", these two guarantees happen to be one and
1870 * the same, but can differ in realtime RCU implementations.
1872 void synchronize_sched(void)
1874 struct rcu_synchronize rcu;
1876 if (rcu_blocking_is_gp())
1877 return;
1879 init_rcu_head_on_stack(&rcu.head);
1880 init_completion(&rcu.completion);
1881 /* Will wake me after RCU finished. */
1882 call_rcu_sched(&rcu.head, wakeme_after_rcu);
1883 /* Wait for it. */
1884 wait_for_completion(&rcu.completion);
1885 destroy_rcu_head_on_stack(&rcu.head);
1887 EXPORT_SYMBOL_GPL(synchronize_sched);
1890 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
1892 * Control will return to the caller some time after a full rcu_bh grace
1893 * period has elapsed, in other words after all currently executing rcu_bh
1894 * read-side critical sections have completed. RCU read-side critical
1895 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
1896 * and may be nested.
1898 void synchronize_rcu_bh(void)
1900 struct rcu_synchronize rcu;
1902 if (rcu_blocking_is_gp())
1903 return;
1905 init_rcu_head_on_stack(&rcu.head);
1906 init_completion(&rcu.completion);
1907 /* Will wake me after RCU finished. */
1908 call_rcu_bh(&rcu.head, wakeme_after_rcu);
1909 /* Wait for it. */
1910 wait_for_completion(&rcu.completion);
1911 destroy_rcu_head_on_stack(&rcu.head);
1913 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
1916 * Check to see if there is any immediate RCU-related work to be done
1917 * by the current CPU, for the specified type of RCU, returning 1 if so.
1918 * The checks are in order of increasing expense: checks that can be
1919 * carried out against CPU-local state are performed first. However,
1920 * we must check for CPU stalls first, else we might not get a chance.
1922 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
1924 struct rcu_node *rnp = rdp->mynode;
1926 rdp->n_rcu_pending++;
1928 /* Check for CPU stalls, if enabled. */
1929 check_cpu_stall(rsp, rdp);
1931 /* Is the RCU core waiting for a quiescent state from this CPU? */
1932 if (rdp->qs_pending && !rdp->passed_quiesc) {
1935 * If force_quiescent_state() coming soon and this CPU
1936 * needs a quiescent state, and this is either RCU-sched
1937 * or RCU-bh, force a local reschedule.
1939 rdp->n_rp_qs_pending++;
1940 if (!rdp->preemptable &&
1941 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
1942 jiffies))
1943 set_need_resched();
1944 } else if (rdp->qs_pending && rdp->passed_quiesc) {
1945 rdp->n_rp_report_qs++;
1946 return 1;
1949 /* Does this CPU have callbacks ready to invoke? */
1950 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
1951 rdp->n_rp_cb_ready++;
1952 return 1;
1955 /* Has RCU gone idle with this CPU needing another grace period? */
1956 if (cpu_needs_another_gp(rsp, rdp)) {
1957 rdp->n_rp_cpu_needs_gp++;
1958 return 1;
1961 /* Has another RCU grace period completed? */
1962 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
1963 rdp->n_rp_gp_completed++;
1964 return 1;
1967 /* Has a new RCU grace period started? */
1968 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
1969 rdp->n_rp_gp_started++;
1970 return 1;
1973 /* Has an RCU GP gone long enough to send resched IPIs &c? */
1974 if (rcu_gp_in_progress(rsp) &&
1975 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
1976 rdp->n_rp_need_fqs++;
1977 return 1;
1980 /* nothing to do */
1981 rdp->n_rp_need_nothing++;
1982 return 0;
1986 * Check to see if there is any immediate RCU-related work to be done
1987 * by the current CPU, returning 1 if so. This function is part of the
1988 * RCU implementation; it is -not- an exported member of the RCU API.
1990 static int rcu_pending(int cpu)
1992 return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
1993 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
1994 rcu_preempt_pending(cpu);
1998 * Check to see if any future RCU-related work will need to be done
1999 * by the current CPU, even if none need be done immediately, returning
2000 * 1 if so.
2002 static int rcu_needs_cpu_quick_check(int cpu)
2004 /* RCU callbacks either ready or pending? */
2005 return per_cpu(rcu_sched_data, cpu).nxtlist ||
2006 per_cpu(rcu_bh_data, cpu).nxtlist ||
2007 rcu_preempt_needs_cpu(cpu);
2010 static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
2011 static atomic_t rcu_barrier_cpu_count;
2012 static DEFINE_MUTEX(rcu_barrier_mutex);
2013 static struct completion rcu_barrier_completion;
2015 static void rcu_barrier_callback(struct rcu_head *notused)
2017 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
2018 complete(&rcu_barrier_completion);
2022 * Called with preemption disabled, and from cross-cpu IRQ context.
2024 static void rcu_barrier_func(void *type)
2026 int cpu = smp_processor_id();
2027 struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
2028 void (*call_rcu_func)(struct rcu_head *head,
2029 void (*func)(struct rcu_head *head));
2031 atomic_inc(&rcu_barrier_cpu_count);
2032 call_rcu_func = type;
2033 call_rcu_func(head, rcu_barrier_callback);
2037 * Orchestrate the specified type of RCU barrier, waiting for all
2038 * RCU callbacks of the specified type to complete.
2040 static void _rcu_barrier(struct rcu_state *rsp,
2041 void (*call_rcu_func)(struct rcu_head *head,
2042 void (*func)(struct rcu_head *head)))
2044 BUG_ON(in_interrupt());
2045 /* Take mutex to serialize concurrent rcu_barrier() requests. */
2046 mutex_lock(&rcu_barrier_mutex);
2047 init_completion(&rcu_barrier_completion);
2049 * Initialize rcu_barrier_cpu_count to 1, then invoke
2050 * rcu_barrier_func() on each CPU, so that each CPU also has
2051 * incremented rcu_barrier_cpu_count. Only then is it safe to
2052 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
2053 * might complete its grace period before all of the other CPUs
2054 * did their increment, causing this function to return too
2055 * early. Note that on_each_cpu() disables irqs, which prevents
2056 * any CPUs from coming online or going offline until each online
2057 * CPU has queued its RCU-barrier callback.
2059 atomic_set(&rcu_barrier_cpu_count, 1);
2060 on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1);
2061 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
2062 complete(&rcu_barrier_completion);
2063 wait_for_completion(&rcu_barrier_completion);
2064 mutex_unlock(&rcu_barrier_mutex);
2068 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
2070 void rcu_barrier_bh(void)
2072 _rcu_barrier(&rcu_bh_state, call_rcu_bh);
2074 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
2077 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
2079 void rcu_barrier_sched(void)
2081 _rcu_barrier(&rcu_sched_state, call_rcu_sched);
2083 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
2086 * Do boot-time initialization of a CPU's per-CPU RCU data.
2088 static void __init
2089 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
2091 unsigned long flags;
2092 int i;
2093 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2094 struct rcu_node *rnp = rcu_get_root(rsp);
2096 /* Set up local state, ensuring consistent view of global state. */
2097 raw_spin_lock_irqsave(&rnp->lock, flags);
2098 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
2099 rdp->nxtlist = NULL;
2100 for (i = 0; i < RCU_NEXT_SIZE; i++)
2101 rdp->nxttail[i] = &rdp->nxtlist;
2102 rdp->qlen = 0;
2103 #ifdef CONFIG_NO_HZ
2104 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
2105 #endif /* #ifdef CONFIG_NO_HZ */
2106 rdp->cpu = cpu;
2107 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2111 * Initialize a CPU's per-CPU RCU data. Note that only one online or
2112 * offline event can be happening at a given time. Note also that we
2113 * can accept some slop in the rsp->completed access due to the fact
2114 * that this CPU cannot possibly have any RCU callbacks in flight yet.
2116 static void __cpuinit
2117 rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptable)
2119 unsigned long flags;
2120 unsigned long mask;
2121 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2122 struct rcu_node *rnp = rcu_get_root(rsp);
2124 /* Set up local state, ensuring consistent view of global state. */
2125 raw_spin_lock_irqsave(&rnp->lock, flags);
2126 rdp->passed_quiesc = 0; /* We could be racing with new GP, */
2127 rdp->qs_pending = 1; /* so set up to respond to current GP. */
2128 rdp->beenonline = 1; /* We have now been online. */
2129 rdp->preemptable = preemptable;
2130 rdp->qlen_last_fqs_check = 0;
2131 rdp->n_force_qs_snap = rsp->n_force_qs;
2132 rdp->blimit = blimit;
2133 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2136 * A new grace period might start here. If so, we won't be part
2137 * of it, but that is OK, as we are currently in a quiescent state.
2140 /* Exclude any attempts to start a new GP on large systems. */
2141 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
2143 /* Add CPU to rcu_node bitmasks. */
2144 rnp = rdp->mynode;
2145 mask = rdp->grpmask;
2146 do {
2147 /* Exclude any attempts to start a new GP on small systems. */
2148 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
2149 rnp->qsmaskinit |= mask;
2150 mask = rnp->grpmask;
2151 if (rnp == rdp->mynode) {
2152 rdp->gpnum = rnp->completed; /* if GP in progress... */
2153 rdp->completed = rnp->completed;
2154 rdp->passed_quiesc_completed = rnp->completed - 1;
2156 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
2157 rnp = rnp->parent;
2158 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
2160 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2163 static void __cpuinit rcu_online_cpu(int cpu)
2165 rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
2166 rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
2167 rcu_preempt_init_percpu_data(cpu);
2170 static void __cpuinit rcu_online_kthreads(int cpu)
2172 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
2173 struct rcu_node *rnp = rdp->mynode;
2175 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
2176 if (rcu_kthreads_spawnable) {
2177 (void)rcu_spawn_one_cpu_kthread(cpu);
2178 if (rnp->node_kthread_task == NULL)
2179 (void)rcu_spawn_one_node_kthread(rcu_state, rnp);
2184 * Handle CPU online/offline notification events.
2186 static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
2187 unsigned long action, void *hcpu)
2189 long cpu = (long)hcpu;
2190 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
2191 struct rcu_node *rnp = rdp->mynode;
2193 switch (action) {
2194 case CPU_UP_PREPARE:
2195 case CPU_UP_PREPARE_FROZEN:
2196 rcu_online_cpu(cpu);
2197 rcu_online_kthreads(cpu);
2198 break;
2199 case CPU_ONLINE:
2200 case CPU_DOWN_FAILED:
2201 rcu_node_kthread_setaffinity(rnp, -1);
2202 rcu_cpu_kthread_setrt(cpu, 1);
2203 break;
2204 case CPU_DOWN_PREPARE:
2205 rcu_node_kthread_setaffinity(rnp, cpu);
2206 rcu_cpu_kthread_setrt(cpu, 0);
2207 break;
2208 case CPU_DYING:
2209 case CPU_DYING_FROZEN:
2211 * The whole machine is "stopped" except this CPU, so we can
2212 * touch any data without introducing corruption. We send the
2213 * dying CPU's callbacks to an arbitrarily chosen online CPU.
2215 rcu_send_cbs_to_online(&rcu_bh_state);
2216 rcu_send_cbs_to_online(&rcu_sched_state);
2217 rcu_preempt_send_cbs_to_online();
2218 break;
2219 case CPU_DEAD:
2220 case CPU_DEAD_FROZEN:
2221 case CPU_UP_CANCELED:
2222 case CPU_UP_CANCELED_FROZEN:
2223 rcu_offline_cpu(cpu);
2224 break;
2225 default:
2226 break;
2228 return NOTIFY_OK;
2232 * This function is invoked towards the end of the scheduler's initialization
2233 * process. Before this is called, the idle task might contain
2234 * RCU read-side critical sections (during which time, this idle
2235 * task is booting the system). After this function is called, the
2236 * idle tasks are prohibited from containing RCU read-side critical
2237 * sections. This function also enables RCU lockdep checking.
2239 void rcu_scheduler_starting(void)
2241 WARN_ON(num_online_cpus() != 1);
2242 WARN_ON(nr_context_switches() > 0);
2243 rcu_scheduler_active = 1;
2247 * Compute the per-level fanout, either using the exact fanout specified
2248 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
2250 #ifdef CONFIG_RCU_FANOUT_EXACT
2251 static void __init rcu_init_levelspread(struct rcu_state *rsp)
2253 int i;
2255 for (i = NUM_RCU_LVLS - 1; i > 0; i--)
2256 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
2257 rsp->levelspread[0] = RCU_FANOUT_LEAF;
2259 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
2260 static void __init rcu_init_levelspread(struct rcu_state *rsp)
2262 int ccur;
2263 int cprv;
2264 int i;
2266 cprv = NR_CPUS;
2267 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2268 ccur = rsp->levelcnt[i];
2269 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
2270 cprv = ccur;
2273 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
2276 * Helper function for rcu_init() that initializes one rcu_state structure.
2278 static void __init rcu_init_one(struct rcu_state *rsp,
2279 struct rcu_data __percpu *rda)
2281 static char *buf[] = { "rcu_node_level_0",
2282 "rcu_node_level_1",
2283 "rcu_node_level_2",
2284 "rcu_node_level_3" }; /* Match MAX_RCU_LVLS */
2285 int cpustride = 1;
2286 int i;
2287 int j;
2288 struct rcu_node *rnp;
2290 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
2292 /* Initialize the level-tracking arrays. */
2294 for (i = 1; i < NUM_RCU_LVLS; i++)
2295 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
2296 rcu_init_levelspread(rsp);
2298 /* Initialize the elements themselves, starting from the leaves. */
2300 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2301 cpustride *= rsp->levelspread[i];
2302 rnp = rsp->level[i];
2303 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
2304 raw_spin_lock_init(&rnp->lock);
2305 lockdep_set_class_and_name(&rnp->lock,
2306 &rcu_node_class[i], buf[i]);
2307 rnp->gpnum = 0;
2308 rnp->qsmask = 0;
2309 rnp->qsmaskinit = 0;
2310 rnp->grplo = j * cpustride;
2311 rnp->grphi = (j + 1) * cpustride - 1;
2312 if (rnp->grphi >= NR_CPUS)
2313 rnp->grphi = NR_CPUS - 1;
2314 if (i == 0) {
2315 rnp->grpnum = 0;
2316 rnp->grpmask = 0;
2317 rnp->parent = NULL;
2318 } else {
2319 rnp->grpnum = j % rsp->levelspread[i - 1];
2320 rnp->grpmask = 1UL << rnp->grpnum;
2321 rnp->parent = rsp->level[i - 1] +
2322 j / rsp->levelspread[i - 1];
2324 rnp->level = i;
2325 INIT_LIST_HEAD(&rnp->blkd_tasks);
2329 rsp->rda = rda;
2330 rnp = rsp->level[NUM_RCU_LVLS - 1];
2331 for_each_possible_cpu(i) {
2332 while (i > rnp->grphi)
2333 rnp++;
2334 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
2335 rcu_boot_init_percpu_data(i, rsp);
2339 void __init rcu_init(void)
2341 int cpu;
2343 rcu_bootup_announce();
2344 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
2345 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
2346 __rcu_init_preempt();
2349 * We don't need protection against CPU-hotplug here because
2350 * this is called early in boot, before either interrupts
2351 * or the scheduler are operational.
2353 cpu_notifier(rcu_cpu_notify, 0);
2354 for_each_online_cpu(cpu)
2355 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
2356 check_cpu_stall_init();
2359 #include "rcutree_plugin.h"