4 * Copyright (C) 2002, Linus Torvalds.
8 * 04Jul2002 Andrew Morton
10 * 11Sep2002 janetinc@us.ibm.com
11 * added readv/writev support.
12 * 29Oct2002 Andrew Morton
13 * rewrote bio_add_page() support.
14 * 30Oct2002 pbadari@us.ibm.com
15 * added support for non-aligned IO.
16 * 06Nov2002 pbadari@us.ibm.com
17 * added asynchronous IO support.
18 * 21Jul2003 nathans@sgi.com
19 * added IO completion notifier.
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/types.h>
27 #include <linux/slab.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/bio.h>
32 #include <linux/wait.h>
33 #include <linux/err.h>
34 #include <linux/blkdev.h>
35 #include <linux/buffer_head.h>
36 #include <linux/rwsem.h>
37 #include <linux/uio.h>
38 #include <asm/atomic.h>
41 * How many user pages to map in one call to get_user_pages(). This determines
42 * the size of a structure on the stack.
47 * This code generally works in units of "dio_blocks". A dio_block is
48 * somewhere between the hard sector size and the filesystem block size. it
49 * is determined on a per-invocation basis. When talking to the filesystem
50 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
51 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted
52 * to bio_block quantities by shifting left by blkfactor.
54 * If blkfactor is zero then the user's request was aligned to the filesystem's
59 /* BIO submission state */
60 struct bio
*bio
; /* bio under assembly */
63 loff_t i_size
; /* i_size when submitted */
64 int flags
; /* doesn't change */
65 unsigned blkbits
; /* doesn't change */
66 unsigned blkfactor
; /* When we're using an alignment which
67 is finer than the filesystem's soft
68 blocksize, this specifies how much
69 finer. blkfactor=2 means 1/4-block
70 alignment. Does not change */
71 unsigned start_zero_done
; /* flag: sub-blocksize zeroing has
72 been performed at the start of a
74 int pages_in_io
; /* approximate total IO pages */
75 size_t size
; /* total request size (doesn't change)*/
76 sector_t block_in_file
; /* Current offset into the underlying
77 file in dio_block units. */
78 unsigned blocks_available
; /* At block_in_file. changes */
79 sector_t final_block_in_request
;/* doesn't change */
80 unsigned first_block_in_page
; /* doesn't change, Used only once */
81 int boundary
; /* prev block is at a boundary */
82 int reap_counter
; /* rate limit reaping */
83 get_block_t
*get_block
; /* block mapping function */
84 dio_iodone_t
*end_io
; /* IO completion function */
85 sector_t final_block_in_bio
; /* current final block in bio + 1 */
86 sector_t next_block_for_io
; /* next block to be put under IO,
87 in dio_blocks units */
88 struct buffer_head map_bh
; /* last get_block() result */
91 * Deferred addition of a page to the dio. These variables are
92 * private to dio_send_cur_page(), submit_page_section() and
95 struct page
*cur_page
; /* The page */
96 unsigned cur_page_offset
; /* Offset into it, in bytes */
97 unsigned cur_page_len
; /* Nr of bytes at cur_page_offset */
98 sector_t cur_page_block
; /* Where it starts */
100 /* BIO completion state */
101 spinlock_t bio_lock
; /* protects BIO fields below */
102 unsigned long refcount
; /* direct_io_worker() and bios */
103 struct bio
*bio_list
; /* singly linked via bi_private */
104 struct task_struct
*waiter
; /* waiting task (NULL if none) */
106 /* AIO related stuff */
107 struct kiocb
*iocb
; /* kiocb */
108 int is_async
; /* is IO async ? */
109 int io_error
; /* IO error in completion path */
110 ssize_t result
; /* IO result */
113 * Page fetching state. These variables belong to dio_refill_pages().
115 int curr_page
; /* changes */
116 int total_pages
; /* doesn't change */
117 unsigned long curr_user_address
;/* changes */
120 * Page queue. These variables belong to dio_refill_pages() and
123 unsigned head
; /* next page to process */
124 unsigned tail
; /* last valid page + 1 */
125 int page_errors
; /* errno from get_user_pages() */
128 * pages[] (and any fields placed after it) are not zeroed out at
129 * allocation time. Don't add new fields after pages[] unless you
130 * wish that they not be zeroed.
132 struct page
*pages
[DIO_PAGES
]; /* page buffer */
136 * How many pages are in the queue?
138 static inline unsigned dio_pages_present(struct dio
*dio
)
140 return dio
->tail
- dio
->head
;
144 * Go grab and pin some userspace pages. Typically we'll get 64 at a time.
146 static int dio_refill_pages(struct dio
*dio
)
151 nr_pages
= min(dio
->total_pages
- dio
->curr_page
, DIO_PAGES
);
152 ret
= get_user_pages_fast(
153 dio
->curr_user_address
, /* Where from? */
154 nr_pages
, /* How many pages? */
155 dio
->rw
== READ
, /* Write to memory? */
156 &dio
->pages
[0]); /* Put results here */
158 if (ret
< 0 && dio
->blocks_available
&& (dio
->rw
& WRITE
)) {
159 struct page
*page
= ZERO_PAGE(0);
161 * A memory fault, but the filesystem has some outstanding
162 * mapped blocks. We need to use those blocks up to avoid
163 * leaking stale data in the file.
165 if (dio
->page_errors
== 0)
166 dio
->page_errors
= ret
;
167 page_cache_get(page
);
168 dio
->pages
[0] = page
;
176 dio
->curr_user_address
+= ret
* PAGE_SIZE
;
177 dio
->curr_page
+= ret
;
187 * Get another userspace page. Returns an ERR_PTR on error. Pages are
188 * buffered inside the dio so that we can call get_user_pages() against a
189 * decent number of pages, less frequently. To provide nicer use of the
192 static struct page
*dio_get_page(struct dio
*dio
)
194 if (dio_pages_present(dio
) == 0) {
197 ret
= dio_refill_pages(dio
);
200 BUG_ON(dio_pages_present(dio
) == 0);
202 return dio
->pages
[dio
->head
++];
206 * dio_complete() - called when all DIO BIO I/O has been completed
207 * @offset: the byte offset in the file of the completed operation
209 * This releases locks as dictated by the locking type, lets interested parties
210 * know that a DIO operation has completed, and calculates the resulting return
211 * code for the operation.
213 * It lets the filesystem know if it registered an interest earlier via
214 * get_block. Pass the private field of the map buffer_head so that
215 * filesystems can use it to hold additional state between get_block calls and
218 static int dio_complete(struct dio
*dio
, loff_t offset
, int ret
)
220 ssize_t transferred
= 0;
223 * AIO submission can race with bio completion to get here while
224 * expecting to have the last io completed by bio completion.
225 * In that case -EIOCBQUEUED is in fact not an error we want
226 * to preserve through this call.
228 if (ret
== -EIOCBQUEUED
)
232 transferred
= dio
->result
;
234 /* Check for short read case */
235 if ((dio
->rw
== READ
) && ((offset
+ transferred
) > dio
->i_size
))
236 transferred
= dio
->i_size
- offset
;
239 if (dio
->end_io
&& dio
->result
)
240 dio
->end_io(dio
->iocb
, offset
, transferred
,
241 dio
->map_bh
.b_private
);
243 if (dio
->flags
& DIO_LOCKING
)
244 /* lockdep: non-owner release */
245 up_read_non_owner(&dio
->inode
->i_alloc_sem
);
248 ret
= dio
->page_errors
;
257 static int dio_bio_complete(struct dio
*dio
, struct bio
*bio
);
259 * Asynchronous IO callback.
261 static void dio_bio_end_aio(struct bio
*bio
, int error
)
263 struct dio
*dio
= bio
->bi_private
;
264 unsigned long remaining
;
267 /* cleanup the bio */
268 dio_bio_complete(dio
, bio
);
270 spin_lock_irqsave(&dio
->bio_lock
, flags
);
271 remaining
= --dio
->refcount
;
272 if (remaining
== 1 && dio
->waiter
)
273 wake_up_process(dio
->waiter
);
274 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
276 if (remaining
== 0) {
277 int ret
= dio_complete(dio
, dio
->iocb
->ki_pos
, 0);
278 aio_complete(dio
->iocb
, ret
, 0);
284 * The BIO completion handler simply queues the BIO up for the process-context
287 * During I/O bi_private points at the dio. After I/O, bi_private is used to
288 * implement a singly-linked list of completed BIOs, at dio->bio_list.
290 static void dio_bio_end_io(struct bio
*bio
, int error
)
292 struct dio
*dio
= bio
->bi_private
;
295 spin_lock_irqsave(&dio
->bio_lock
, flags
);
296 bio
->bi_private
= dio
->bio_list
;
298 if (--dio
->refcount
== 1 && dio
->waiter
)
299 wake_up_process(dio
->waiter
);
300 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
304 dio_bio_alloc(struct dio
*dio
, struct block_device
*bdev
,
305 sector_t first_sector
, int nr_vecs
)
309 bio
= bio_alloc(GFP_KERNEL
, nr_vecs
);
312 bio
->bi_sector
= first_sector
;
314 bio
->bi_end_io
= dio_bio_end_aio
;
316 bio
->bi_end_io
= dio_bio_end_io
;
323 * In the AIO read case we speculatively dirty the pages before starting IO.
324 * During IO completion, any of these pages which happen to have been written
325 * back will be redirtied by bio_check_pages_dirty().
327 * bios hold a dio reference between submit_bio and ->end_io.
329 static void dio_bio_submit(struct dio
*dio
)
331 struct bio
*bio
= dio
->bio
;
334 bio
->bi_private
= dio
;
336 spin_lock_irqsave(&dio
->bio_lock
, flags
);
338 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
340 if (dio
->is_async
&& dio
->rw
== READ
)
341 bio_set_pages_dirty(bio
);
343 submit_bio(dio
->rw
, bio
);
350 * Release any resources in case of a failure
352 static void dio_cleanup(struct dio
*dio
)
354 while (dio_pages_present(dio
))
355 page_cache_release(dio_get_page(dio
));
359 * Wait for the next BIO to complete. Remove it and return it. NULL is
360 * returned once all BIOs have been completed. This must only be called once
361 * all bios have been issued so that dio->refcount can only decrease. This
362 * requires that that the caller hold a reference on the dio.
364 static struct bio
*dio_await_one(struct dio
*dio
)
367 struct bio
*bio
= NULL
;
369 spin_lock_irqsave(&dio
->bio_lock
, flags
);
372 * Wait as long as the list is empty and there are bios in flight. bio
373 * completion drops the count, maybe adds to the list, and wakes while
374 * holding the bio_lock so we don't need set_current_state()'s barrier
375 * and can call it after testing our condition.
377 while (dio
->refcount
> 1 && dio
->bio_list
== NULL
) {
378 __set_current_state(TASK_UNINTERRUPTIBLE
);
379 dio
->waiter
= current
;
380 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
382 /* wake up sets us TASK_RUNNING */
383 spin_lock_irqsave(&dio
->bio_lock
, flags
);
388 dio
->bio_list
= bio
->bi_private
;
390 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
395 * Process one completed BIO. No locks are held.
397 static int dio_bio_complete(struct dio
*dio
, struct bio
*bio
)
399 const int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
400 struct bio_vec
*bvec
= bio
->bi_io_vec
;
404 dio
->io_error
= -EIO
;
406 if (dio
->is_async
&& dio
->rw
== READ
) {
407 bio_check_pages_dirty(bio
); /* transfers ownership */
409 for (page_no
= 0; page_no
< bio
->bi_vcnt
; page_no
++) {
410 struct page
*page
= bvec
[page_no
].bv_page
;
412 if (dio
->rw
== READ
&& !PageCompound(page
))
413 set_page_dirty_lock(page
);
414 page_cache_release(page
);
418 return uptodate
? 0 : -EIO
;
422 * Wait on and process all in-flight BIOs. This must only be called once
423 * all bios have been issued so that the refcount can only decrease.
424 * This just waits for all bios to make it through dio_bio_complete. IO
425 * errors are propagated through dio->io_error and should be propagated via
428 static void dio_await_completion(struct dio
*dio
)
432 bio
= dio_await_one(dio
);
434 dio_bio_complete(dio
, bio
);
439 * A really large O_DIRECT read or write can generate a lot of BIOs. So
440 * to keep the memory consumption sane we periodically reap any completed BIOs
441 * during the BIO generation phase.
443 * This also helps to limit the peak amount of pinned userspace memory.
445 static int dio_bio_reap(struct dio
*dio
)
449 if (dio
->reap_counter
++ >= 64) {
450 while (dio
->bio_list
) {
455 spin_lock_irqsave(&dio
->bio_lock
, flags
);
457 dio
->bio_list
= bio
->bi_private
;
458 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
459 ret2
= dio_bio_complete(dio
, bio
);
463 dio
->reap_counter
= 0;
469 * Call into the fs to map some more disk blocks. We record the current number
470 * of available blocks at dio->blocks_available. These are in units of the
471 * fs blocksize, (1 << inode->i_blkbits).
473 * The fs is allowed to map lots of blocks at once. If it wants to do that,
474 * it uses the passed inode-relative block number as the file offset, as usual.
476 * get_block() is passed the number of i_blkbits-sized blocks which direct_io
477 * has remaining to do. The fs should not map more than this number of blocks.
479 * If the fs has mapped a lot of blocks, it should populate bh->b_size to
480 * indicate how much contiguous disk space has been made available at
483 * If *any* of the mapped blocks are new, then the fs must set buffer_new().
484 * This isn't very efficient...
486 * In the case of filesystem holes: the fs may return an arbitrarily-large
487 * hole by returning an appropriate value in b_size and by clearing
488 * buffer_mapped(). However the direct-io code will only process holes one
489 * block at a time - it will repeatedly call get_block() as it walks the hole.
491 static int get_more_blocks(struct dio
*dio
)
494 struct buffer_head
*map_bh
= &dio
->map_bh
;
495 sector_t fs_startblk
; /* Into file, in filesystem-sized blocks */
496 unsigned long fs_count
; /* Number of filesystem-sized blocks */
497 unsigned long dio_count
;/* Number of dio_block-sized blocks */
498 unsigned long blkmask
;
502 * If there was a memory error and we've overwritten all the
503 * mapped blocks then we can now return that memory error
505 ret
= dio
->page_errors
;
507 BUG_ON(dio
->block_in_file
>= dio
->final_block_in_request
);
508 fs_startblk
= dio
->block_in_file
>> dio
->blkfactor
;
509 dio_count
= dio
->final_block_in_request
- dio
->block_in_file
;
510 fs_count
= dio_count
>> dio
->blkfactor
;
511 blkmask
= (1 << dio
->blkfactor
) - 1;
512 if (dio_count
& blkmask
)
516 map_bh
->b_size
= fs_count
<< dio
->inode
->i_blkbits
;
519 * For writes inside i_size on a DIO_SKIP_HOLES filesystem we
520 * forbid block creations: only overwrites are permitted.
521 * We will return early to the caller once we see an
522 * unmapped buffer head returned, and the caller will fall
523 * back to buffered I/O.
525 * Otherwise the decision is left to the get_blocks method,
526 * which may decide to handle it or also return an unmapped
529 create
= dio
->rw
& WRITE
;
530 if (dio
->flags
& DIO_SKIP_HOLES
) {
531 if (dio
->block_in_file
< (i_size_read(dio
->inode
) >>
536 ret
= (*dio
->get_block
)(dio
->inode
, fs_startblk
,
543 * There is no bio. Make one now.
545 static int dio_new_bio(struct dio
*dio
, sector_t start_sector
)
550 ret
= dio_bio_reap(dio
);
553 sector
= start_sector
<< (dio
->blkbits
- 9);
554 nr_pages
= min(dio
->pages_in_io
, bio_get_nr_vecs(dio
->map_bh
.b_bdev
));
555 BUG_ON(nr_pages
<= 0);
556 ret
= dio_bio_alloc(dio
, dio
->map_bh
.b_bdev
, sector
, nr_pages
);
563 * Attempt to put the current chunk of 'cur_page' into the current BIO. If
564 * that was successful then update final_block_in_bio and take a ref against
565 * the just-added page.
567 * Return zero on success. Non-zero means the caller needs to start a new BIO.
569 static int dio_bio_add_page(struct dio
*dio
)
573 ret
= bio_add_page(dio
->bio
, dio
->cur_page
,
574 dio
->cur_page_len
, dio
->cur_page_offset
);
575 if (ret
== dio
->cur_page_len
) {
577 * Decrement count only, if we are done with this page
579 if ((dio
->cur_page_len
+ dio
->cur_page_offset
) == PAGE_SIZE
)
581 page_cache_get(dio
->cur_page
);
582 dio
->final_block_in_bio
= dio
->cur_page_block
+
583 (dio
->cur_page_len
>> dio
->blkbits
);
592 * Put cur_page under IO. The section of cur_page which is described by
593 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page
594 * starts on-disk at cur_page_block.
596 * We take a ref against the page here (on behalf of its presence in the bio).
598 * The caller of this function is responsible for removing cur_page from the
599 * dio, and for dropping the refcount which came from that presence.
601 static int dio_send_cur_page(struct dio
*dio
)
607 * See whether this new request is contiguous with the old
609 if (dio
->final_block_in_bio
!= dio
->cur_page_block
)
612 * Submit now if the underlying fs is about to perform a
619 if (dio
->bio
== NULL
) {
620 ret
= dio_new_bio(dio
, dio
->cur_page_block
);
625 if (dio_bio_add_page(dio
) != 0) {
627 ret
= dio_new_bio(dio
, dio
->cur_page_block
);
629 ret
= dio_bio_add_page(dio
);
638 * An autonomous function to put a chunk of a page under deferred IO.
640 * The caller doesn't actually know (or care) whether this piece of page is in
641 * a BIO, or is under IO or whatever. We just take care of all possible
642 * situations here. The separation between the logic of do_direct_IO() and
643 * that of submit_page_section() is important for clarity. Please don't break.
645 * The chunk of page starts on-disk at blocknr.
647 * We perform deferred IO, by recording the last-submitted page inside our
648 * private part of the dio structure. If possible, we just expand the IO
649 * across that page here.
651 * If that doesn't work out then we put the old page into the bio and add this
652 * page to the dio instead.
655 submit_page_section(struct dio
*dio
, struct page
*page
,
656 unsigned offset
, unsigned len
, sector_t blocknr
)
660 if (dio
->rw
& WRITE
) {
662 * Read accounting is performed in submit_bio()
664 task_io_account_write(len
);
668 * Can we just grow the current page's presence in the dio?
670 if ( (dio
->cur_page
== page
) &&
671 (dio
->cur_page_offset
+ dio
->cur_page_len
== offset
) &&
672 (dio
->cur_page_block
+
673 (dio
->cur_page_len
>> dio
->blkbits
) == blocknr
)) {
674 dio
->cur_page_len
+= len
;
677 * If dio->boundary then we want to schedule the IO now to
678 * avoid metadata seeks.
681 ret
= dio_send_cur_page(dio
);
682 page_cache_release(dio
->cur_page
);
683 dio
->cur_page
= NULL
;
689 * If there's a deferred page already there then send it.
692 ret
= dio_send_cur_page(dio
);
693 page_cache_release(dio
->cur_page
);
694 dio
->cur_page
= NULL
;
699 page_cache_get(page
); /* It is in dio */
700 dio
->cur_page
= page
;
701 dio
->cur_page_offset
= offset
;
702 dio
->cur_page_len
= len
;
703 dio
->cur_page_block
= blocknr
;
709 * Clean any dirty buffers in the blockdev mapping which alias newly-created
710 * file blocks. Only called for S_ISREG files - blockdevs do not set
713 static void clean_blockdev_aliases(struct dio
*dio
)
718 nblocks
= dio
->map_bh
.b_size
>> dio
->inode
->i_blkbits
;
720 for (i
= 0; i
< nblocks
; i
++) {
721 unmap_underlying_metadata(dio
->map_bh
.b_bdev
,
722 dio
->map_bh
.b_blocknr
+ i
);
727 * If we are not writing the entire block and get_block() allocated
728 * the block for us, we need to fill-in the unused portion of the
729 * block with zeros. This happens only if user-buffer, fileoffset or
730 * io length is not filesystem block-size multiple.
732 * `end' is zero if we're doing the start of the IO, 1 at the end of the
735 static void dio_zero_block(struct dio
*dio
, int end
)
737 unsigned dio_blocks_per_fs_block
;
738 unsigned this_chunk_blocks
; /* In dio_blocks */
739 unsigned this_chunk_bytes
;
742 dio
->start_zero_done
= 1;
743 if (!dio
->blkfactor
|| !buffer_new(&dio
->map_bh
))
746 dio_blocks_per_fs_block
= 1 << dio
->blkfactor
;
747 this_chunk_blocks
= dio
->block_in_file
& (dio_blocks_per_fs_block
- 1);
749 if (!this_chunk_blocks
)
753 * We need to zero out part of an fs block. It is either at the
754 * beginning or the end of the fs block.
757 this_chunk_blocks
= dio_blocks_per_fs_block
- this_chunk_blocks
;
759 this_chunk_bytes
= this_chunk_blocks
<< dio
->blkbits
;
762 if (submit_page_section(dio
, page
, 0, this_chunk_bytes
,
763 dio
->next_block_for_io
))
766 dio
->next_block_for_io
+= this_chunk_blocks
;
770 * Walk the user pages, and the file, mapping blocks to disk and generating
771 * a sequence of (page,offset,len,block) mappings. These mappings are injected
772 * into submit_page_section(), which takes care of the next stage of submission
774 * Direct IO against a blockdev is different from a file. Because we can
775 * happily perform page-sized but 512-byte aligned IOs. It is important that
776 * blockdev IO be able to have fine alignment and large sizes.
778 * So what we do is to permit the ->get_block function to populate bh.b_size
779 * with the size of IO which is permitted at this offset and this i_blkbits.
781 * For best results, the blockdev should be set up with 512-byte i_blkbits and
782 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives
783 * fine alignment but still allows this function to work in PAGE_SIZE units.
785 static int do_direct_IO(struct dio
*dio
)
787 const unsigned blkbits
= dio
->blkbits
;
788 const unsigned blocks_per_page
= PAGE_SIZE
>> blkbits
;
790 unsigned block_in_page
;
791 struct buffer_head
*map_bh
= &dio
->map_bh
;
794 /* The I/O can start at any block offset within the first page */
795 block_in_page
= dio
->first_block_in_page
;
797 while (dio
->block_in_file
< dio
->final_block_in_request
) {
798 page
= dio_get_page(dio
);
804 while (block_in_page
< blocks_per_page
) {
805 unsigned offset_in_page
= block_in_page
<< blkbits
;
806 unsigned this_chunk_bytes
; /* # of bytes mapped */
807 unsigned this_chunk_blocks
; /* # of blocks */
810 if (dio
->blocks_available
== 0) {
812 * Need to go and map some more disk
814 unsigned long blkmask
;
815 unsigned long dio_remainder
;
817 ret
= get_more_blocks(dio
);
819 page_cache_release(page
);
822 if (!buffer_mapped(map_bh
))
825 dio
->blocks_available
=
826 map_bh
->b_size
>> dio
->blkbits
;
827 dio
->next_block_for_io
=
828 map_bh
->b_blocknr
<< dio
->blkfactor
;
829 if (buffer_new(map_bh
))
830 clean_blockdev_aliases(dio
);
835 blkmask
= (1 << dio
->blkfactor
) - 1;
836 dio_remainder
= (dio
->block_in_file
& blkmask
);
839 * If we are at the start of IO and that IO
840 * starts partway into a fs-block,
841 * dio_remainder will be non-zero. If the IO
842 * is a read then we can simply advance the IO
843 * cursor to the first block which is to be
844 * read. But if the IO is a write and the
845 * block was newly allocated we cannot do that;
846 * the start of the fs block must be zeroed out
849 if (!buffer_new(map_bh
))
850 dio
->next_block_for_io
+= dio_remainder
;
851 dio
->blocks_available
-= dio_remainder
;
855 if (!buffer_mapped(map_bh
)) {
856 loff_t i_size_aligned
;
858 /* AKPM: eargh, -ENOTBLK is a hack */
859 if (dio
->rw
& WRITE
) {
860 page_cache_release(page
);
865 * Be sure to account for a partial block as the
866 * last block in the file
868 i_size_aligned
= ALIGN(i_size_read(dio
->inode
),
870 if (dio
->block_in_file
>=
871 i_size_aligned
>> blkbits
) {
873 page_cache_release(page
);
876 zero_user(page
, block_in_page
<< blkbits
,
878 dio
->block_in_file
++;
884 * If we're performing IO which has an alignment which
885 * is finer than the underlying fs, go check to see if
886 * we must zero out the start of this block.
888 if (unlikely(dio
->blkfactor
&& !dio
->start_zero_done
))
889 dio_zero_block(dio
, 0);
892 * Work out, in this_chunk_blocks, how much disk we
893 * can add to this page
895 this_chunk_blocks
= dio
->blocks_available
;
896 u
= (PAGE_SIZE
- offset_in_page
) >> blkbits
;
897 if (this_chunk_blocks
> u
)
898 this_chunk_blocks
= u
;
899 u
= dio
->final_block_in_request
- dio
->block_in_file
;
900 if (this_chunk_blocks
> u
)
901 this_chunk_blocks
= u
;
902 this_chunk_bytes
= this_chunk_blocks
<< blkbits
;
903 BUG_ON(this_chunk_bytes
== 0);
905 dio
->boundary
= buffer_boundary(map_bh
);
906 ret
= submit_page_section(dio
, page
, offset_in_page
,
907 this_chunk_bytes
, dio
->next_block_for_io
);
909 page_cache_release(page
);
912 dio
->next_block_for_io
+= this_chunk_blocks
;
914 dio
->block_in_file
+= this_chunk_blocks
;
915 block_in_page
+= this_chunk_blocks
;
916 dio
->blocks_available
-= this_chunk_blocks
;
918 BUG_ON(dio
->block_in_file
> dio
->final_block_in_request
);
919 if (dio
->block_in_file
== dio
->final_block_in_request
)
923 /* Drop the ref which was taken in get_user_pages() */
924 page_cache_release(page
);
932 * Releases both i_mutex and i_alloc_sem
935 direct_io_worker(int rw
, struct kiocb
*iocb
, struct inode
*inode
,
936 const struct iovec
*iov
, loff_t offset
, unsigned long nr_segs
,
937 unsigned blkbits
, get_block_t get_block
, dio_iodone_t end_io
,
940 unsigned long user_addr
;
949 dio
->blkbits
= blkbits
;
950 dio
->blkfactor
= inode
->i_blkbits
- blkbits
;
951 dio
->block_in_file
= offset
>> blkbits
;
953 dio
->get_block
= get_block
;
954 dio
->end_io
= end_io
;
955 dio
->final_block_in_bio
= -1;
956 dio
->next_block_for_io
= -1;
959 dio
->i_size
= i_size_read(inode
);
961 spin_lock_init(&dio
->bio_lock
);
965 * In case of non-aligned buffers, we may need 2 more
966 * pages since we need to zero out first and last block.
968 if (unlikely(dio
->blkfactor
))
969 dio
->pages_in_io
= 2;
971 for (seg
= 0; seg
< nr_segs
; seg
++) {
972 user_addr
= (unsigned long)iov
[seg
].iov_base
;
974 ((user_addr
+iov
[seg
].iov_len
+PAGE_SIZE
-1)/PAGE_SIZE
975 - user_addr
/PAGE_SIZE
);
978 for (seg
= 0; seg
< nr_segs
; seg
++) {
979 user_addr
= (unsigned long)iov
[seg
].iov_base
;
980 dio
->size
+= bytes
= iov
[seg
].iov_len
;
982 /* Index into the first page of the first block */
983 dio
->first_block_in_page
= (user_addr
& ~PAGE_MASK
) >> blkbits
;
984 dio
->final_block_in_request
= dio
->block_in_file
+
986 /* Page fetching state */
991 dio
->total_pages
= 0;
992 if (user_addr
& (PAGE_SIZE
-1)) {
994 bytes
-= PAGE_SIZE
- (user_addr
& (PAGE_SIZE
- 1));
996 dio
->total_pages
+= (bytes
+ PAGE_SIZE
- 1) / PAGE_SIZE
;
997 dio
->curr_user_address
= user_addr
;
999 ret
= do_direct_IO(dio
);
1001 dio
->result
+= iov
[seg
].iov_len
-
1002 ((dio
->final_block_in_request
- dio
->block_in_file
) <<
1009 } /* end iovec loop */
1011 if (ret
== -ENOTBLK
&& (rw
& WRITE
)) {
1013 * The remaining part of the request will be
1014 * be handled by buffered I/O when we return
1019 * There may be some unwritten disk at the end of a part-written
1020 * fs-block-sized block. Go zero that now.
1022 dio_zero_block(dio
, 1);
1024 if (dio
->cur_page
) {
1025 ret2
= dio_send_cur_page(dio
);
1028 page_cache_release(dio
->cur_page
);
1029 dio
->cur_page
= NULL
;
1032 dio_bio_submit(dio
);
1035 * It is possible that, we return short IO due to end of file.
1036 * In that case, we need to release all the pages we got hold on.
1041 * All block lookups have been performed. For READ requests
1042 * we can let i_mutex go now that its achieved its purpose
1043 * of protecting us from looking up uninitialized blocks.
1045 if (rw
== READ
&& (dio
->flags
& DIO_LOCKING
))
1046 mutex_unlock(&dio
->inode
->i_mutex
);
1049 * The only time we want to leave bios in flight is when a successful
1050 * partial aio read or full aio write have been setup. In that case
1051 * bio completion will call aio_complete. The only time it's safe to
1052 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1053 * This had *better* be the only place that raises -EIOCBQUEUED.
1055 BUG_ON(ret
== -EIOCBQUEUED
);
1056 if (dio
->is_async
&& ret
== 0 && dio
->result
&&
1057 ((rw
& READ
) || (dio
->result
== dio
->size
)))
1060 if (ret
!= -EIOCBQUEUED
) {
1061 /* All IO is now issued, send it on its way */
1062 blk_run_address_space(inode
->i_mapping
);
1063 dio_await_completion(dio
);
1067 * Sync will always be dropping the final ref and completing the
1068 * operation. AIO can if it was a broken operation described above or
1069 * in fact if all the bios race to complete before we get here. In
1070 * that case dio_complete() translates the EIOCBQUEUED into the proper
1071 * return code that the caller will hand to aio_complete().
1073 * This is managed by the bio_lock instead of being an atomic_t so that
1074 * completion paths can drop their ref and use the remaining count to
1075 * decide to wake the submission path atomically.
1077 spin_lock_irqsave(&dio
->bio_lock
, flags
);
1078 ret2
= --dio
->refcount
;
1079 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
1082 ret
= dio_complete(dio
, offset
, ret
);
1085 BUG_ON(ret
!= -EIOCBQUEUED
);
1091 * This is a library function for use by filesystem drivers.
1093 * The locking rules are governed by the flags parameter:
1094 * - if the flags value contains DIO_LOCKING we use a fancy locking
1095 * scheme for dumb filesystems.
1096 * For writes this function is called under i_mutex and returns with
1097 * i_mutex held, for reads, i_mutex is not held on entry, but it is
1098 * taken and dropped again before returning.
1099 * For reads and writes i_alloc_sem is taken in shared mode and released
1100 * on I/O completion (which may happen asynchronously after returning to
1103 * - if the flags value does NOT contain DIO_LOCKING we don't use any
1104 * internal locking but rather rely on the filesystem to synchronize
1105 * direct I/O reads/writes versus each other and truncate.
1106 * For reads and writes both i_mutex and i_alloc_sem are not held on
1107 * entry and are never taken.
1110 __blockdev_direct_IO(int rw
, struct kiocb
*iocb
, struct inode
*inode
,
1111 struct block_device
*bdev
, const struct iovec
*iov
, loff_t offset
,
1112 unsigned long nr_segs
, get_block_t get_block
, dio_iodone_t end_io
,
1118 unsigned blkbits
= inode
->i_blkbits
;
1119 unsigned bdev_blkbits
= 0;
1120 unsigned blocksize_mask
= (1 << blkbits
) - 1;
1121 ssize_t retval
= -EINVAL
;
1122 loff_t end
= offset
;
1126 rw
= WRITE_ODIRECT_PLUG
;
1129 bdev_blkbits
= blksize_bits(bdev_logical_block_size(bdev
));
1131 if (offset
& blocksize_mask
) {
1133 blkbits
= bdev_blkbits
;
1134 blocksize_mask
= (1 << blkbits
) - 1;
1135 if (offset
& blocksize_mask
)
1139 /* Check the memory alignment. Blocks cannot straddle pages */
1140 for (seg
= 0; seg
< nr_segs
; seg
++) {
1141 addr
= (unsigned long)iov
[seg
].iov_base
;
1142 size
= iov
[seg
].iov_len
;
1144 if ((addr
& blocksize_mask
) || (size
& blocksize_mask
)) {
1146 blkbits
= bdev_blkbits
;
1147 blocksize_mask
= (1 << blkbits
) - 1;
1148 if ((addr
& blocksize_mask
) || (size
& blocksize_mask
))
1153 dio
= kmalloc(sizeof(*dio
), GFP_KERNEL
);
1158 * Believe it or not, zeroing out the page array caused a .5%
1159 * performance regression in a database benchmark. So, we take
1160 * care to only zero out what's needed.
1162 memset(dio
, 0, offsetof(struct dio
, pages
));
1165 if (dio
->flags
& DIO_LOCKING
) {
1166 /* watch out for a 0 len io from a tricksy fs */
1167 if (rw
== READ
&& end
> offset
) {
1168 struct address_space
*mapping
=
1169 iocb
->ki_filp
->f_mapping
;
1171 /* will be released by direct_io_worker */
1172 mutex_lock(&inode
->i_mutex
);
1174 retval
= filemap_write_and_wait_range(mapping
, offset
,
1177 mutex_unlock(&inode
->i_mutex
);
1184 * Will be released at I/O completion, possibly in a
1187 down_read_non_owner(&inode
->i_alloc_sem
);
1191 * For file extending writes updating i_size before data
1192 * writeouts complete can expose uninitialized blocks. So
1193 * even for AIO, we need to wait for i/o to complete before
1194 * returning in this case.
1196 dio
->is_async
= !is_sync_kiocb(iocb
) && !((rw
& WRITE
) &&
1197 (end
> i_size_read(inode
)));
1199 retval
= direct_io_worker(rw
, iocb
, inode
, iov
, offset
,
1200 nr_segs
, blkbits
, get_block
, end_io
, dio
);
1203 * In case of error extending write may have instantiated a few
1204 * blocks outside i_size. Trim these off again for DIO_LOCKING.
1206 * NOTE: filesystems with their own locking have to handle this
1209 if (flags
& DIO_LOCKING
) {
1210 if (unlikely((rw
& WRITE
) && retval
< 0)) {
1211 loff_t isize
= i_size_read(inode
);
1213 vmtruncate(inode
, isize
);
1220 EXPORT_SYMBOL(__blockdev_direct_IO
);