ixgbe: only allow WOL for 82599 KX4 NIC
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / block / cfq-iosched.c
bloba4809de6fea656a4ac6091f6c61c38f536a4f766
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/rbtree.h>
13 #include <linux/ioprio.h>
14 #include <linux/blktrace_api.h>
17 * tunables
19 /* max queue in one round of service */
20 static const int cfq_quantum = 4;
21 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
22 /* maximum backwards seek, in KiB */
23 static const int cfq_back_max = 16 * 1024;
24 /* penalty of a backwards seek */
25 static const int cfq_back_penalty = 2;
26 static const int cfq_slice_sync = HZ / 10;
27 static int cfq_slice_async = HZ / 25;
28 static const int cfq_slice_async_rq = 2;
29 static int cfq_slice_idle = HZ / 125;
32 * offset from end of service tree
34 #define CFQ_IDLE_DELAY (HZ / 5)
37 * below this threshold, we consider thinktime immediate
39 #define CFQ_MIN_TT (2)
41 #define CFQ_SLICE_SCALE (5)
42 #define CFQ_HW_QUEUE_MIN (5)
44 #define RQ_CIC(rq) \
45 ((struct cfq_io_context *) (rq)->elevator_private)
46 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
48 static struct kmem_cache *cfq_pool;
49 static struct kmem_cache *cfq_ioc_pool;
51 static DEFINE_PER_CPU(unsigned long, ioc_count);
52 static struct completion *ioc_gone;
53 static DEFINE_SPINLOCK(ioc_gone_lock);
55 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
56 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
57 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
59 #define ASYNC (0)
60 #define SYNC (1)
62 #define sample_valid(samples) ((samples) > 80)
65 * Most of our rbtree usage is for sorting with min extraction, so
66 * if we cache the leftmost node we don't have to walk down the tree
67 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
68 * move this into the elevator for the rq sorting as well.
70 struct cfq_rb_root {
71 struct rb_root rb;
72 struct rb_node *left;
74 #define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, }
77 * Per block device queue structure
79 struct cfq_data {
80 struct request_queue *queue;
83 * rr list of queues with requests and the count of them
85 struct cfq_rb_root service_tree;
86 unsigned int busy_queues;
88 * Used to track any pending rt requests so we can pre-empt current
89 * non-RT cfqq in service when this value is non-zero.
91 unsigned int busy_rt_queues;
93 int rq_in_driver;
94 int sync_flight;
97 * queue-depth detection
99 int rq_queued;
100 int hw_tag;
101 int hw_tag_samples;
102 int rq_in_driver_peak;
105 * idle window management
107 struct timer_list idle_slice_timer;
108 struct work_struct unplug_work;
110 struct cfq_queue *active_queue;
111 struct cfq_io_context *active_cic;
114 * async queue for each priority case
116 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
117 struct cfq_queue *async_idle_cfqq;
119 sector_t last_position;
120 unsigned long last_end_request;
123 * tunables, see top of file
125 unsigned int cfq_quantum;
126 unsigned int cfq_fifo_expire[2];
127 unsigned int cfq_back_penalty;
128 unsigned int cfq_back_max;
129 unsigned int cfq_slice[2];
130 unsigned int cfq_slice_async_rq;
131 unsigned int cfq_slice_idle;
133 struct list_head cic_list;
137 * Per process-grouping structure
139 struct cfq_queue {
140 /* reference count */
141 atomic_t ref;
142 /* various state flags, see below */
143 unsigned int flags;
144 /* parent cfq_data */
145 struct cfq_data *cfqd;
146 /* service_tree member */
147 struct rb_node rb_node;
148 /* service_tree key */
149 unsigned long rb_key;
150 /* sorted list of pending requests */
151 struct rb_root sort_list;
152 /* if fifo isn't expired, next request to serve */
153 struct request *next_rq;
154 /* requests queued in sort_list */
155 int queued[2];
156 /* currently allocated requests */
157 int allocated[2];
158 /* fifo list of requests in sort_list */
159 struct list_head fifo;
161 unsigned long slice_end;
162 long slice_resid;
163 unsigned int slice_dispatch;
165 /* pending metadata requests */
166 int meta_pending;
167 /* number of requests that are on the dispatch list or inside driver */
168 int dispatched;
170 /* io prio of this group */
171 unsigned short ioprio, org_ioprio;
172 unsigned short ioprio_class, org_ioprio_class;
174 pid_t pid;
177 enum cfqq_state_flags {
178 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
179 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
180 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
181 CFQ_CFQQ_FLAG_must_alloc, /* must be allowed rq alloc */
182 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
183 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
184 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
185 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
186 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
187 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
190 #define CFQ_CFQQ_FNS(name) \
191 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
193 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
195 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
197 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
199 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
201 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
204 CFQ_CFQQ_FNS(on_rr);
205 CFQ_CFQQ_FNS(wait_request);
206 CFQ_CFQQ_FNS(must_dispatch);
207 CFQ_CFQQ_FNS(must_alloc);
208 CFQ_CFQQ_FNS(must_alloc_slice);
209 CFQ_CFQQ_FNS(fifo_expire);
210 CFQ_CFQQ_FNS(idle_window);
211 CFQ_CFQQ_FNS(prio_changed);
212 CFQ_CFQQ_FNS(slice_new);
213 CFQ_CFQQ_FNS(sync);
214 #undef CFQ_CFQQ_FNS
216 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
217 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
218 #define cfq_log(cfqd, fmt, args...) \
219 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
221 static void cfq_dispatch_insert(struct request_queue *, struct request *);
222 static struct cfq_queue *cfq_get_queue(struct cfq_data *, int,
223 struct io_context *, gfp_t);
224 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
225 struct io_context *);
227 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
228 int is_sync)
230 return cic->cfqq[!!is_sync];
233 static inline void cic_set_cfqq(struct cfq_io_context *cic,
234 struct cfq_queue *cfqq, int is_sync)
236 cic->cfqq[!!is_sync] = cfqq;
240 * We regard a request as SYNC, if it's either a read or has the SYNC bit
241 * set (in which case it could also be direct WRITE).
243 static inline int cfq_bio_sync(struct bio *bio)
245 if (bio_data_dir(bio) == READ || bio_sync(bio))
246 return 1;
248 return 0;
252 * scheduler run of queue, if there are requests pending and no one in the
253 * driver that will restart queueing
255 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
257 if (cfqd->busy_queues) {
258 cfq_log(cfqd, "schedule dispatch");
259 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
263 static int cfq_queue_empty(struct request_queue *q)
265 struct cfq_data *cfqd = q->elevator->elevator_data;
267 return !cfqd->busy_queues;
271 * Scale schedule slice based on io priority. Use the sync time slice only
272 * if a queue is marked sync and has sync io queued. A sync queue with async
273 * io only, should not get full sync slice length.
275 static inline int cfq_prio_slice(struct cfq_data *cfqd, int sync,
276 unsigned short prio)
278 const int base_slice = cfqd->cfq_slice[sync];
280 WARN_ON(prio >= IOPRIO_BE_NR);
282 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
285 static inline int
286 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
288 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
291 static inline void
292 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
294 cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
295 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
299 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
300 * isn't valid until the first request from the dispatch is activated
301 * and the slice time set.
303 static inline int cfq_slice_used(struct cfq_queue *cfqq)
305 if (cfq_cfqq_slice_new(cfqq))
306 return 0;
307 if (time_before(jiffies, cfqq->slice_end))
308 return 0;
310 return 1;
314 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
315 * We choose the request that is closest to the head right now. Distance
316 * behind the head is penalized and only allowed to a certain extent.
318 static struct request *
319 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
321 sector_t last, s1, s2, d1 = 0, d2 = 0;
322 unsigned long back_max;
323 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
324 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
325 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
327 if (rq1 == NULL || rq1 == rq2)
328 return rq2;
329 if (rq2 == NULL)
330 return rq1;
332 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
333 return rq1;
334 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
335 return rq2;
336 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
337 return rq1;
338 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
339 return rq2;
341 s1 = rq1->sector;
342 s2 = rq2->sector;
344 last = cfqd->last_position;
347 * by definition, 1KiB is 2 sectors
349 back_max = cfqd->cfq_back_max * 2;
352 * Strict one way elevator _except_ in the case where we allow
353 * short backward seeks which are biased as twice the cost of a
354 * similar forward seek.
356 if (s1 >= last)
357 d1 = s1 - last;
358 else if (s1 + back_max >= last)
359 d1 = (last - s1) * cfqd->cfq_back_penalty;
360 else
361 wrap |= CFQ_RQ1_WRAP;
363 if (s2 >= last)
364 d2 = s2 - last;
365 else if (s2 + back_max >= last)
366 d2 = (last - s2) * cfqd->cfq_back_penalty;
367 else
368 wrap |= CFQ_RQ2_WRAP;
370 /* Found required data */
373 * By doing switch() on the bit mask "wrap" we avoid having to
374 * check two variables for all permutations: --> faster!
376 switch (wrap) {
377 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
378 if (d1 < d2)
379 return rq1;
380 else if (d2 < d1)
381 return rq2;
382 else {
383 if (s1 >= s2)
384 return rq1;
385 else
386 return rq2;
389 case CFQ_RQ2_WRAP:
390 return rq1;
391 case CFQ_RQ1_WRAP:
392 return rq2;
393 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
394 default:
396 * Since both rqs are wrapped,
397 * start with the one that's further behind head
398 * (--> only *one* back seek required),
399 * since back seek takes more time than forward.
401 if (s1 <= s2)
402 return rq1;
403 else
404 return rq2;
409 * The below is leftmost cache rbtree addon
411 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
413 if (!root->left)
414 root->left = rb_first(&root->rb);
416 if (root->left)
417 return rb_entry(root->left, struct cfq_queue, rb_node);
419 return NULL;
422 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
424 if (root->left == n)
425 root->left = NULL;
427 rb_erase(n, &root->rb);
428 RB_CLEAR_NODE(n);
432 * would be nice to take fifo expire time into account as well
434 static struct request *
435 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
436 struct request *last)
438 struct rb_node *rbnext = rb_next(&last->rb_node);
439 struct rb_node *rbprev = rb_prev(&last->rb_node);
440 struct request *next = NULL, *prev = NULL;
442 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
444 if (rbprev)
445 prev = rb_entry_rq(rbprev);
447 if (rbnext)
448 next = rb_entry_rq(rbnext);
449 else {
450 rbnext = rb_first(&cfqq->sort_list);
451 if (rbnext && rbnext != &last->rb_node)
452 next = rb_entry_rq(rbnext);
455 return cfq_choose_req(cfqd, next, prev);
458 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
459 struct cfq_queue *cfqq)
462 * just an approximation, should be ok.
464 return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
465 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
469 * The cfqd->service_tree holds all pending cfq_queue's that have
470 * requests waiting to be processed. It is sorted in the order that
471 * we will service the queues.
473 static void cfq_service_tree_add(struct cfq_data *cfqd,
474 struct cfq_queue *cfqq, int add_front)
476 struct rb_node **p, *parent;
477 struct cfq_queue *__cfqq;
478 unsigned long rb_key;
479 int left;
481 if (cfq_class_idle(cfqq)) {
482 rb_key = CFQ_IDLE_DELAY;
483 parent = rb_last(&cfqd->service_tree.rb);
484 if (parent && parent != &cfqq->rb_node) {
485 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
486 rb_key += __cfqq->rb_key;
487 } else
488 rb_key += jiffies;
489 } else if (!add_front) {
490 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
491 rb_key += cfqq->slice_resid;
492 cfqq->slice_resid = 0;
493 } else
494 rb_key = 0;
496 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
498 * same position, nothing more to do
500 if (rb_key == cfqq->rb_key)
501 return;
503 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
506 left = 1;
507 parent = NULL;
508 p = &cfqd->service_tree.rb.rb_node;
509 while (*p) {
510 struct rb_node **n;
512 parent = *p;
513 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
516 * sort RT queues first, we always want to give
517 * preference to them. IDLE queues goes to the back.
518 * after that, sort on the next service time.
520 if (cfq_class_rt(cfqq) > cfq_class_rt(__cfqq))
521 n = &(*p)->rb_left;
522 else if (cfq_class_rt(cfqq) < cfq_class_rt(__cfqq))
523 n = &(*p)->rb_right;
524 else if (cfq_class_idle(cfqq) < cfq_class_idle(__cfqq))
525 n = &(*p)->rb_left;
526 else if (cfq_class_idle(cfqq) > cfq_class_idle(__cfqq))
527 n = &(*p)->rb_right;
528 else if (rb_key < __cfqq->rb_key)
529 n = &(*p)->rb_left;
530 else
531 n = &(*p)->rb_right;
533 if (n == &(*p)->rb_right)
534 left = 0;
536 p = n;
539 if (left)
540 cfqd->service_tree.left = &cfqq->rb_node;
542 cfqq->rb_key = rb_key;
543 rb_link_node(&cfqq->rb_node, parent, p);
544 rb_insert_color(&cfqq->rb_node, &cfqd->service_tree.rb);
548 * Update cfqq's position in the service tree.
550 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
553 * Resorting requires the cfqq to be on the RR list already.
555 if (cfq_cfqq_on_rr(cfqq))
556 cfq_service_tree_add(cfqd, cfqq, 0);
560 * add to busy list of queues for service, trying to be fair in ordering
561 * the pending list according to last request service
563 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
565 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
566 BUG_ON(cfq_cfqq_on_rr(cfqq));
567 cfq_mark_cfqq_on_rr(cfqq);
568 cfqd->busy_queues++;
569 if (cfq_class_rt(cfqq))
570 cfqd->busy_rt_queues++;
572 cfq_resort_rr_list(cfqd, cfqq);
576 * Called when the cfqq no longer has requests pending, remove it from
577 * the service tree.
579 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
581 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
582 BUG_ON(!cfq_cfqq_on_rr(cfqq));
583 cfq_clear_cfqq_on_rr(cfqq);
585 if (!RB_EMPTY_NODE(&cfqq->rb_node))
586 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
588 BUG_ON(!cfqd->busy_queues);
589 cfqd->busy_queues--;
590 if (cfq_class_rt(cfqq))
591 cfqd->busy_rt_queues--;
595 * rb tree support functions
597 static void cfq_del_rq_rb(struct request *rq)
599 struct cfq_queue *cfqq = RQ_CFQQ(rq);
600 struct cfq_data *cfqd = cfqq->cfqd;
601 const int sync = rq_is_sync(rq);
603 BUG_ON(!cfqq->queued[sync]);
604 cfqq->queued[sync]--;
606 elv_rb_del(&cfqq->sort_list, rq);
608 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
609 cfq_del_cfqq_rr(cfqd, cfqq);
612 static void cfq_add_rq_rb(struct request *rq)
614 struct cfq_queue *cfqq = RQ_CFQQ(rq);
615 struct cfq_data *cfqd = cfqq->cfqd;
616 struct request *__alias;
618 cfqq->queued[rq_is_sync(rq)]++;
621 * looks a little odd, but the first insert might return an alias.
622 * if that happens, put the alias on the dispatch list
624 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
625 cfq_dispatch_insert(cfqd->queue, __alias);
627 if (!cfq_cfqq_on_rr(cfqq))
628 cfq_add_cfqq_rr(cfqd, cfqq);
631 * check if this request is a better next-serve candidate
633 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
634 BUG_ON(!cfqq->next_rq);
637 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
639 elv_rb_del(&cfqq->sort_list, rq);
640 cfqq->queued[rq_is_sync(rq)]--;
641 cfq_add_rq_rb(rq);
644 static struct request *
645 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
647 struct task_struct *tsk = current;
648 struct cfq_io_context *cic;
649 struct cfq_queue *cfqq;
651 cic = cfq_cic_lookup(cfqd, tsk->io_context);
652 if (!cic)
653 return NULL;
655 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
656 if (cfqq) {
657 sector_t sector = bio->bi_sector + bio_sectors(bio);
659 return elv_rb_find(&cfqq->sort_list, sector);
662 return NULL;
665 static void cfq_activate_request(struct request_queue *q, struct request *rq)
667 struct cfq_data *cfqd = q->elevator->elevator_data;
669 cfqd->rq_in_driver++;
670 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
671 cfqd->rq_in_driver);
673 cfqd->last_position = rq->hard_sector + rq->hard_nr_sectors;
676 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
678 struct cfq_data *cfqd = q->elevator->elevator_data;
680 WARN_ON(!cfqd->rq_in_driver);
681 cfqd->rq_in_driver--;
682 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
683 cfqd->rq_in_driver);
686 static void cfq_remove_request(struct request *rq)
688 struct cfq_queue *cfqq = RQ_CFQQ(rq);
690 if (cfqq->next_rq == rq)
691 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
693 list_del_init(&rq->queuelist);
694 cfq_del_rq_rb(rq);
696 cfqq->cfqd->rq_queued--;
697 if (rq_is_meta(rq)) {
698 WARN_ON(!cfqq->meta_pending);
699 cfqq->meta_pending--;
703 static int cfq_merge(struct request_queue *q, struct request **req,
704 struct bio *bio)
706 struct cfq_data *cfqd = q->elevator->elevator_data;
707 struct request *__rq;
709 __rq = cfq_find_rq_fmerge(cfqd, bio);
710 if (__rq && elv_rq_merge_ok(__rq, bio)) {
711 *req = __rq;
712 return ELEVATOR_FRONT_MERGE;
715 return ELEVATOR_NO_MERGE;
718 static void cfq_merged_request(struct request_queue *q, struct request *req,
719 int type)
721 if (type == ELEVATOR_FRONT_MERGE) {
722 struct cfq_queue *cfqq = RQ_CFQQ(req);
724 cfq_reposition_rq_rb(cfqq, req);
728 static void
729 cfq_merged_requests(struct request_queue *q, struct request *rq,
730 struct request *next)
733 * reposition in fifo if next is older than rq
735 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
736 time_before(next->start_time, rq->start_time))
737 list_move(&rq->queuelist, &next->queuelist);
739 cfq_remove_request(next);
742 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
743 struct bio *bio)
745 struct cfq_data *cfqd = q->elevator->elevator_data;
746 struct cfq_io_context *cic;
747 struct cfq_queue *cfqq;
750 * Disallow merge of a sync bio into an async request.
752 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
753 return 0;
756 * Lookup the cfqq that this bio will be queued with. Allow
757 * merge only if rq is queued there.
759 cic = cfq_cic_lookup(cfqd, current->io_context);
760 if (!cic)
761 return 0;
763 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
764 if (cfqq == RQ_CFQQ(rq))
765 return 1;
767 return 0;
770 static void __cfq_set_active_queue(struct cfq_data *cfqd,
771 struct cfq_queue *cfqq)
773 if (cfqq) {
774 cfq_log_cfqq(cfqd, cfqq, "set_active");
775 cfqq->slice_end = 0;
776 cfqq->slice_dispatch = 0;
778 cfq_clear_cfqq_wait_request(cfqq);
779 cfq_clear_cfqq_must_dispatch(cfqq);
780 cfq_clear_cfqq_must_alloc_slice(cfqq);
781 cfq_clear_cfqq_fifo_expire(cfqq);
782 cfq_mark_cfqq_slice_new(cfqq);
784 del_timer(&cfqd->idle_slice_timer);
787 cfqd->active_queue = cfqq;
791 * current cfqq expired its slice (or was too idle), select new one
793 static void
794 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
795 int timed_out)
797 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
799 if (cfq_cfqq_wait_request(cfqq))
800 del_timer(&cfqd->idle_slice_timer);
802 cfq_clear_cfqq_wait_request(cfqq);
805 * store what was left of this slice, if the queue idled/timed out
807 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
808 cfqq->slice_resid = cfqq->slice_end - jiffies;
809 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
812 cfq_resort_rr_list(cfqd, cfqq);
814 if (cfqq == cfqd->active_queue)
815 cfqd->active_queue = NULL;
817 if (cfqd->active_cic) {
818 put_io_context(cfqd->active_cic->ioc);
819 cfqd->active_cic = NULL;
823 static inline void cfq_slice_expired(struct cfq_data *cfqd, int timed_out)
825 struct cfq_queue *cfqq = cfqd->active_queue;
827 if (cfqq)
828 __cfq_slice_expired(cfqd, cfqq, timed_out);
832 * Get next queue for service. Unless we have a queue preemption,
833 * we'll simply select the first cfqq in the service tree.
835 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
837 if (RB_EMPTY_ROOT(&cfqd->service_tree.rb))
838 return NULL;
840 return cfq_rb_first(&cfqd->service_tree);
844 * Get and set a new active queue for service.
846 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd)
848 struct cfq_queue *cfqq;
850 cfqq = cfq_get_next_queue(cfqd);
851 __cfq_set_active_queue(cfqd, cfqq);
852 return cfqq;
855 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
856 struct request *rq)
858 if (rq->sector >= cfqd->last_position)
859 return rq->sector - cfqd->last_position;
860 else
861 return cfqd->last_position - rq->sector;
864 static inline int cfq_rq_close(struct cfq_data *cfqd, struct request *rq)
866 struct cfq_io_context *cic = cfqd->active_cic;
868 if (!sample_valid(cic->seek_samples))
869 return 0;
871 return cfq_dist_from_last(cfqd, rq) <= cic->seek_mean;
874 static int cfq_close_cooperator(struct cfq_data *cfq_data,
875 struct cfq_queue *cfqq)
878 * We should notice if some of the queues are cooperating, eg
879 * working closely on the same area of the disk. In that case,
880 * we can group them together and don't waste time idling.
882 return 0;
885 #define CIC_SEEKY(cic) ((cic)->seek_mean > (8 * 1024))
887 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
889 struct cfq_queue *cfqq = cfqd->active_queue;
890 struct cfq_io_context *cic;
891 unsigned long sl;
894 * SSD device without seek penalty, disable idling. But only do so
895 * for devices that support queuing, otherwise we still have a problem
896 * with sync vs async workloads.
898 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
899 return;
901 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
902 WARN_ON(cfq_cfqq_slice_new(cfqq));
905 * idle is disabled, either manually or by past process history
907 if (!cfqd->cfq_slice_idle || !cfq_cfqq_idle_window(cfqq))
908 return;
911 * still requests with the driver, don't idle
913 if (cfqd->rq_in_driver)
914 return;
917 * task has exited, don't wait
919 cic = cfqd->active_cic;
920 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
921 return;
924 * See if this prio level has a good candidate
926 if (cfq_close_cooperator(cfqd, cfqq) &&
927 (sample_valid(cic->ttime_samples) && cic->ttime_mean > 2))
928 return;
930 cfq_mark_cfqq_wait_request(cfqq);
933 * we don't want to idle for seeks, but we do want to allow
934 * fair distribution of slice time for a process doing back-to-back
935 * seeks. so allow a little bit of time for him to submit a new rq
937 sl = cfqd->cfq_slice_idle;
938 if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
939 sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
941 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
942 cfq_log(cfqd, "arm_idle: %lu", sl);
946 * Move request from internal lists to the request queue dispatch list.
948 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
950 struct cfq_data *cfqd = q->elevator->elevator_data;
951 struct cfq_queue *cfqq = RQ_CFQQ(rq);
953 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
955 cfq_remove_request(rq);
956 cfqq->dispatched++;
957 elv_dispatch_sort(q, rq);
959 if (cfq_cfqq_sync(cfqq))
960 cfqd->sync_flight++;
964 * return expired entry, or NULL to just start from scratch in rbtree
966 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
968 struct cfq_data *cfqd = cfqq->cfqd;
969 struct request *rq;
970 int fifo;
972 if (cfq_cfqq_fifo_expire(cfqq))
973 return NULL;
975 cfq_mark_cfqq_fifo_expire(cfqq);
977 if (list_empty(&cfqq->fifo))
978 return NULL;
980 fifo = cfq_cfqq_sync(cfqq);
981 rq = rq_entry_fifo(cfqq->fifo.next);
983 if (time_before(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo]))
984 rq = NULL;
986 cfq_log_cfqq(cfqd, cfqq, "fifo=%p", rq);
987 return rq;
990 static inline int
991 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
993 const int base_rq = cfqd->cfq_slice_async_rq;
995 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
997 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1001 * Select a queue for service. If we have a current active queue,
1002 * check whether to continue servicing it, or retrieve and set a new one.
1004 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1006 struct cfq_queue *cfqq;
1008 cfqq = cfqd->active_queue;
1009 if (!cfqq)
1010 goto new_queue;
1013 * The active queue has run out of time, expire it and select new.
1015 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
1016 goto expire;
1019 * If we have a RT cfqq waiting, then we pre-empt the current non-rt
1020 * cfqq.
1022 if (!cfq_class_rt(cfqq) && cfqd->busy_rt_queues) {
1024 * We simulate this as cfqq timed out so that it gets to bank
1025 * the remaining of its time slice.
1027 cfq_log_cfqq(cfqd, cfqq, "preempt");
1028 cfq_slice_expired(cfqd, 1);
1029 goto new_queue;
1033 * The active queue has requests and isn't expired, allow it to
1034 * dispatch.
1036 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
1037 goto keep_queue;
1040 * No requests pending. If the active queue still has requests in
1041 * flight or is idling for a new request, allow either of these
1042 * conditions to happen (or time out) before selecting a new queue.
1044 if (timer_pending(&cfqd->idle_slice_timer) ||
1045 (cfqq->dispatched && cfq_cfqq_idle_window(cfqq))) {
1046 cfqq = NULL;
1047 goto keep_queue;
1050 expire:
1051 cfq_slice_expired(cfqd, 0);
1052 new_queue:
1053 cfqq = cfq_set_active_queue(cfqd);
1054 keep_queue:
1055 return cfqq;
1058 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1060 int dispatched = 0;
1062 while (cfqq->next_rq) {
1063 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1064 dispatched++;
1067 BUG_ON(!list_empty(&cfqq->fifo));
1068 return dispatched;
1072 * Drain our current requests. Used for barriers and when switching
1073 * io schedulers on-the-fly.
1075 static int cfq_forced_dispatch(struct cfq_data *cfqd)
1077 struct cfq_queue *cfqq;
1078 int dispatched = 0;
1080 while ((cfqq = cfq_rb_first(&cfqd->service_tree)) != NULL)
1081 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1083 cfq_slice_expired(cfqd, 0);
1085 BUG_ON(cfqd->busy_queues);
1087 cfq_log(cfqd, "forced_dispatch=%d\n", dispatched);
1088 return dispatched;
1092 * Dispatch a request from cfqq, moving them to the request queue
1093 * dispatch list.
1095 static void cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1097 struct request *rq;
1099 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1102 * follow expired path, else get first next available
1104 rq = cfq_check_fifo(cfqq);
1105 if (!rq)
1106 rq = cfqq->next_rq;
1109 * insert request into driver dispatch list
1111 cfq_dispatch_insert(cfqd->queue, rq);
1113 if (!cfqd->active_cic) {
1114 struct cfq_io_context *cic = RQ_CIC(rq);
1116 atomic_inc(&cic->ioc->refcount);
1117 cfqd->active_cic = cic;
1122 * Find the cfqq that we need to service and move a request from that to the
1123 * dispatch list
1125 static int cfq_dispatch_requests(struct request_queue *q, int force)
1127 struct cfq_data *cfqd = q->elevator->elevator_data;
1128 struct cfq_queue *cfqq;
1129 unsigned int max_dispatch;
1131 if (!cfqd->busy_queues)
1132 return 0;
1134 if (unlikely(force))
1135 return cfq_forced_dispatch(cfqd);
1137 cfqq = cfq_select_queue(cfqd);
1138 if (!cfqq)
1139 return 0;
1142 * If this is an async queue and we have sync IO in flight, let it wait
1144 if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1145 return 0;
1147 max_dispatch = cfqd->cfq_quantum;
1148 if (cfq_class_idle(cfqq))
1149 max_dispatch = 1;
1152 * Does this cfqq already have too much IO in flight?
1154 if (cfqq->dispatched >= max_dispatch) {
1156 * idle queue must always only have a single IO in flight
1158 if (cfq_class_idle(cfqq))
1159 return 0;
1162 * We have other queues, don't allow more IO from this one
1164 if (cfqd->busy_queues > 1)
1165 return 0;
1168 * we are the only queue, allow up to 4 times of 'quantum'
1170 if (cfqq->dispatched >= 4 * max_dispatch)
1171 return 0;
1175 * Dispatch a request from this cfqq
1177 cfq_dispatch_request(cfqd, cfqq);
1178 cfqq->slice_dispatch++;
1179 cfq_clear_cfqq_must_dispatch(cfqq);
1182 * expire an async queue immediately if it has used up its slice. idle
1183 * queue always expire after 1 dispatch round.
1185 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1186 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1187 cfq_class_idle(cfqq))) {
1188 cfqq->slice_end = jiffies + 1;
1189 cfq_slice_expired(cfqd, 0);
1192 cfq_log(cfqd, "dispatched a request");
1193 return 1;
1197 * task holds one reference to the queue, dropped when task exits. each rq
1198 * in-flight on this queue also holds a reference, dropped when rq is freed.
1200 * queue lock must be held here.
1202 static void cfq_put_queue(struct cfq_queue *cfqq)
1204 struct cfq_data *cfqd = cfqq->cfqd;
1206 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1208 if (!atomic_dec_and_test(&cfqq->ref))
1209 return;
1211 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1212 BUG_ON(rb_first(&cfqq->sort_list));
1213 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1214 BUG_ON(cfq_cfqq_on_rr(cfqq));
1216 if (unlikely(cfqd->active_queue == cfqq)) {
1217 __cfq_slice_expired(cfqd, cfqq, 0);
1218 cfq_schedule_dispatch(cfqd);
1221 kmem_cache_free(cfq_pool, cfqq);
1225 * Must always be called with the rcu_read_lock() held
1227 static void
1228 __call_for_each_cic(struct io_context *ioc,
1229 void (*func)(struct io_context *, struct cfq_io_context *))
1231 struct cfq_io_context *cic;
1232 struct hlist_node *n;
1234 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
1235 func(ioc, cic);
1239 * Call func for each cic attached to this ioc.
1241 static void
1242 call_for_each_cic(struct io_context *ioc,
1243 void (*func)(struct io_context *, struct cfq_io_context *))
1245 rcu_read_lock();
1246 __call_for_each_cic(ioc, func);
1247 rcu_read_unlock();
1250 static void cfq_cic_free_rcu(struct rcu_head *head)
1252 struct cfq_io_context *cic;
1254 cic = container_of(head, struct cfq_io_context, rcu_head);
1256 kmem_cache_free(cfq_ioc_pool, cic);
1257 elv_ioc_count_dec(ioc_count);
1259 if (ioc_gone) {
1261 * CFQ scheduler is exiting, grab exit lock and check
1262 * the pending io context count. If it hits zero,
1263 * complete ioc_gone and set it back to NULL
1265 spin_lock(&ioc_gone_lock);
1266 if (ioc_gone && !elv_ioc_count_read(ioc_count)) {
1267 complete(ioc_gone);
1268 ioc_gone = NULL;
1270 spin_unlock(&ioc_gone_lock);
1274 static void cfq_cic_free(struct cfq_io_context *cic)
1276 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
1279 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
1281 unsigned long flags;
1283 BUG_ON(!cic->dead_key);
1285 spin_lock_irqsave(&ioc->lock, flags);
1286 radix_tree_delete(&ioc->radix_root, cic->dead_key);
1287 hlist_del_rcu(&cic->cic_list);
1288 spin_unlock_irqrestore(&ioc->lock, flags);
1290 cfq_cic_free(cic);
1294 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1295 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1296 * and ->trim() which is called with the task lock held
1298 static void cfq_free_io_context(struct io_context *ioc)
1301 * ioc->refcount is zero here, or we are called from elv_unregister(),
1302 * so no more cic's are allowed to be linked into this ioc. So it
1303 * should be ok to iterate over the known list, we will see all cic's
1304 * since no new ones are added.
1306 __call_for_each_cic(ioc, cic_free_func);
1309 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1311 if (unlikely(cfqq == cfqd->active_queue)) {
1312 __cfq_slice_expired(cfqd, cfqq, 0);
1313 cfq_schedule_dispatch(cfqd);
1316 cfq_put_queue(cfqq);
1319 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1320 struct cfq_io_context *cic)
1322 struct io_context *ioc = cic->ioc;
1324 list_del_init(&cic->queue_list);
1327 * Make sure key == NULL is seen for dead queues
1329 smp_wmb();
1330 cic->dead_key = (unsigned long) cic->key;
1331 cic->key = NULL;
1333 if (ioc->ioc_data == cic)
1334 rcu_assign_pointer(ioc->ioc_data, NULL);
1336 if (cic->cfqq[ASYNC]) {
1337 cfq_exit_cfqq(cfqd, cic->cfqq[ASYNC]);
1338 cic->cfqq[ASYNC] = NULL;
1341 if (cic->cfqq[SYNC]) {
1342 cfq_exit_cfqq(cfqd, cic->cfqq[SYNC]);
1343 cic->cfqq[SYNC] = NULL;
1347 static void cfq_exit_single_io_context(struct io_context *ioc,
1348 struct cfq_io_context *cic)
1350 struct cfq_data *cfqd = cic->key;
1352 if (cfqd) {
1353 struct request_queue *q = cfqd->queue;
1354 unsigned long flags;
1356 spin_lock_irqsave(q->queue_lock, flags);
1359 * Ensure we get a fresh copy of the ->key to prevent
1360 * race between exiting task and queue
1362 smp_read_barrier_depends();
1363 if (cic->key)
1364 __cfq_exit_single_io_context(cfqd, cic);
1366 spin_unlock_irqrestore(q->queue_lock, flags);
1371 * The process that ioc belongs to has exited, we need to clean up
1372 * and put the internal structures we have that belongs to that process.
1374 static void cfq_exit_io_context(struct io_context *ioc)
1376 call_for_each_cic(ioc, cfq_exit_single_io_context);
1379 static struct cfq_io_context *
1380 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1382 struct cfq_io_context *cic;
1384 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
1385 cfqd->queue->node);
1386 if (cic) {
1387 cic->last_end_request = jiffies;
1388 INIT_LIST_HEAD(&cic->queue_list);
1389 INIT_HLIST_NODE(&cic->cic_list);
1390 cic->dtor = cfq_free_io_context;
1391 cic->exit = cfq_exit_io_context;
1392 elv_ioc_count_inc(ioc_count);
1395 return cic;
1398 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
1400 struct task_struct *tsk = current;
1401 int ioprio_class;
1403 if (!cfq_cfqq_prio_changed(cfqq))
1404 return;
1406 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
1407 switch (ioprio_class) {
1408 default:
1409 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1410 case IOPRIO_CLASS_NONE:
1412 * no prio set, inherit CPU scheduling settings
1414 cfqq->ioprio = task_nice_ioprio(tsk);
1415 cfqq->ioprio_class = task_nice_ioclass(tsk);
1416 break;
1417 case IOPRIO_CLASS_RT:
1418 cfqq->ioprio = task_ioprio(ioc);
1419 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1420 break;
1421 case IOPRIO_CLASS_BE:
1422 cfqq->ioprio = task_ioprio(ioc);
1423 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1424 break;
1425 case IOPRIO_CLASS_IDLE:
1426 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1427 cfqq->ioprio = 7;
1428 cfq_clear_cfqq_idle_window(cfqq);
1429 break;
1433 * keep track of original prio settings in case we have to temporarily
1434 * elevate the priority of this queue
1436 cfqq->org_ioprio = cfqq->ioprio;
1437 cfqq->org_ioprio_class = cfqq->ioprio_class;
1438 cfq_clear_cfqq_prio_changed(cfqq);
1441 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
1443 struct cfq_data *cfqd = cic->key;
1444 struct cfq_queue *cfqq;
1445 unsigned long flags;
1447 if (unlikely(!cfqd))
1448 return;
1450 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1452 cfqq = cic->cfqq[ASYNC];
1453 if (cfqq) {
1454 struct cfq_queue *new_cfqq;
1455 new_cfqq = cfq_get_queue(cfqd, ASYNC, cic->ioc, GFP_ATOMIC);
1456 if (new_cfqq) {
1457 cic->cfqq[ASYNC] = new_cfqq;
1458 cfq_put_queue(cfqq);
1462 cfqq = cic->cfqq[SYNC];
1463 if (cfqq)
1464 cfq_mark_cfqq_prio_changed(cfqq);
1466 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1469 static void cfq_ioc_set_ioprio(struct io_context *ioc)
1471 call_for_each_cic(ioc, changed_ioprio);
1472 ioc->ioprio_changed = 0;
1475 static struct cfq_queue *
1476 cfq_find_alloc_queue(struct cfq_data *cfqd, int is_sync,
1477 struct io_context *ioc, gfp_t gfp_mask)
1479 struct cfq_queue *cfqq, *new_cfqq = NULL;
1480 struct cfq_io_context *cic;
1482 retry:
1483 cic = cfq_cic_lookup(cfqd, ioc);
1484 /* cic always exists here */
1485 cfqq = cic_to_cfqq(cic, is_sync);
1487 if (!cfqq) {
1488 if (new_cfqq) {
1489 cfqq = new_cfqq;
1490 new_cfqq = NULL;
1491 } else if (gfp_mask & __GFP_WAIT) {
1493 * Inform the allocator of the fact that we will
1494 * just repeat this allocation if it fails, to allow
1495 * the allocator to do whatever it needs to attempt to
1496 * free memory.
1498 spin_unlock_irq(cfqd->queue->queue_lock);
1499 new_cfqq = kmem_cache_alloc_node(cfq_pool,
1500 gfp_mask | __GFP_NOFAIL | __GFP_ZERO,
1501 cfqd->queue->node);
1502 spin_lock_irq(cfqd->queue->queue_lock);
1503 goto retry;
1504 } else {
1505 cfqq = kmem_cache_alloc_node(cfq_pool,
1506 gfp_mask | __GFP_ZERO,
1507 cfqd->queue->node);
1508 if (!cfqq)
1509 goto out;
1512 RB_CLEAR_NODE(&cfqq->rb_node);
1513 INIT_LIST_HEAD(&cfqq->fifo);
1515 atomic_set(&cfqq->ref, 0);
1516 cfqq->cfqd = cfqd;
1518 cfq_mark_cfqq_prio_changed(cfqq);
1520 cfq_init_prio_data(cfqq, ioc);
1522 if (is_sync) {
1523 if (!cfq_class_idle(cfqq))
1524 cfq_mark_cfqq_idle_window(cfqq);
1525 cfq_mark_cfqq_sync(cfqq);
1527 cfqq->pid = current->pid;
1528 cfq_log_cfqq(cfqd, cfqq, "alloced");
1531 if (new_cfqq)
1532 kmem_cache_free(cfq_pool, new_cfqq);
1534 out:
1535 WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
1536 return cfqq;
1539 static struct cfq_queue **
1540 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
1542 switch (ioprio_class) {
1543 case IOPRIO_CLASS_RT:
1544 return &cfqd->async_cfqq[0][ioprio];
1545 case IOPRIO_CLASS_BE:
1546 return &cfqd->async_cfqq[1][ioprio];
1547 case IOPRIO_CLASS_IDLE:
1548 return &cfqd->async_idle_cfqq;
1549 default:
1550 BUG();
1554 static struct cfq_queue *
1555 cfq_get_queue(struct cfq_data *cfqd, int is_sync, struct io_context *ioc,
1556 gfp_t gfp_mask)
1558 const int ioprio = task_ioprio(ioc);
1559 const int ioprio_class = task_ioprio_class(ioc);
1560 struct cfq_queue **async_cfqq = NULL;
1561 struct cfq_queue *cfqq = NULL;
1563 if (!is_sync) {
1564 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
1565 cfqq = *async_cfqq;
1568 if (!cfqq) {
1569 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
1570 if (!cfqq)
1571 return NULL;
1575 * pin the queue now that it's allocated, scheduler exit will prune it
1577 if (!is_sync && !(*async_cfqq)) {
1578 atomic_inc(&cfqq->ref);
1579 *async_cfqq = cfqq;
1582 atomic_inc(&cfqq->ref);
1583 return cfqq;
1587 * We drop cfq io contexts lazily, so we may find a dead one.
1589 static void
1590 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
1591 struct cfq_io_context *cic)
1593 unsigned long flags;
1595 WARN_ON(!list_empty(&cic->queue_list));
1597 spin_lock_irqsave(&ioc->lock, flags);
1599 BUG_ON(ioc->ioc_data == cic);
1601 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
1602 hlist_del_rcu(&cic->cic_list);
1603 spin_unlock_irqrestore(&ioc->lock, flags);
1605 cfq_cic_free(cic);
1608 static struct cfq_io_context *
1609 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1611 struct cfq_io_context *cic;
1612 unsigned long flags;
1613 void *k;
1615 if (unlikely(!ioc))
1616 return NULL;
1618 rcu_read_lock();
1621 * we maintain a last-hit cache, to avoid browsing over the tree
1623 cic = rcu_dereference(ioc->ioc_data);
1624 if (cic && cic->key == cfqd) {
1625 rcu_read_unlock();
1626 return cic;
1629 do {
1630 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
1631 rcu_read_unlock();
1632 if (!cic)
1633 break;
1634 /* ->key must be copied to avoid race with cfq_exit_queue() */
1635 k = cic->key;
1636 if (unlikely(!k)) {
1637 cfq_drop_dead_cic(cfqd, ioc, cic);
1638 rcu_read_lock();
1639 continue;
1642 spin_lock_irqsave(&ioc->lock, flags);
1643 rcu_assign_pointer(ioc->ioc_data, cic);
1644 spin_unlock_irqrestore(&ioc->lock, flags);
1645 break;
1646 } while (1);
1648 return cic;
1652 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
1653 * the process specific cfq io context when entered from the block layer.
1654 * Also adds the cic to a per-cfqd list, used when this queue is removed.
1656 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1657 struct cfq_io_context *cic, gfp_t gfp_mask)
1659 unsigned long flags;
1660 int ret;
1662 ret = radix_tree_preload(gfp_mask);
1663 if (!ret) {
1664 cic->ioc = ioc;
1665 cic->key = cfqd;
1667 spin_lock_irqsave(&ioc->lock, flags);
1668 ret = radix_tree_insert(&ioc->radix_root,
1669 (unsigned long) cfqd, cic);
1670 if (!ret)
1671 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
1672 spin_unlock_irqrestore(&ioc->lock, flags);
1674 radix_tree_preload_end();
1676 if (!ret) {
1677 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1678 list_add(&cic->queue_list, &cfqd->cic_list);
1679 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1683 if (ret)
1684 printk(KERN_ERR "cfq: cic link failed!\n");
1686 return ret;
1690 * Setup general io context and cfq io context. There can be several cfq
1691 * io contexts per general io context, if this process is doing io to more
1692 * than one device managed by cfq.
1694 static struct cfq_io_context *
1695 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1697 struct io_context *ioc = NULL;
1698 struct cfq_io_context *cic;
1700 might_sleep_if(gfp_mask & __GFP_WAIT);
1702 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1703 if (!ioc)
1704 return NULL;
1706 cic = cfq_cic_lookup(cfqd, ioc);
1707 if (cic)
1708 goto out;
1710 cic = cfq_alloc_io_context(cfqd, gfp_mask);
1711 if (cic == NULL)
1712 goto err;
1714 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
1715 goto err_free;
1717 out:
1718 smp_read_barrier_depends();
1719 if (unlikely(ioc->ioprio_changed))
1720 cfq_ioc_set_ioprio(ioc);
1722 return cic;
1723 err_free:
1724 cfq_cic_free(cic);
1725 err:
1726 put_io_context(ioc);
1727 return NULL;
1730 static void
1731 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1733 unsigned long elapsed = jiffies - cic->last_end_request;
1734 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1736 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1737 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1738 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1741 static void
1742 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
1743 struct request *rq)
1745 sector_t sdist;
1746 u64 total;
1748 if (cic->last_request_pos < rq->sector)
1749 sdist = rq->sector - cic->last_request_pos;
1750 else
1751 sdist = cic->last_request_pos - rq->sector;
1754 * Don't allow the seek distance to get too large from the
1755 * odd fragment, pagein, etc
1757 if (cic->seek_samples <= 60) /* second&third seek */
1758 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1759 else
1760 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
1762 cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1763 cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1764 total = cic->seek_total + (cic->seek_samples/2);
1765 do_div(total, cic->seek_samples);
1766 cic->seek_mean = (sector_t)total;
1770 * Disable idle window if the process thinks too long or seeks so much that
1771 * it doesn't matter
1773 static void
1774 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1775 struct cfq_io_context *cic)
1777 int old_idle, enable_idle;
1780 * Don't idle for async or idle io prio class
1782 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1783 return;
1785 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1787 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
1788 (cfqd->hw_tag && CIC_SEEKY(cic)))
1789 enable_idle = 0;
1790 else if (sample_valid(cic->ttime_samples)) {
1791 if (cic->ttime_mean > cfqd->cfq_slice_idle)
1792 enable_idle = 0;
1793 else
1794 enable_idle = 1;
1797 if (old_idle != enable_idle) {
1798 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
1799 if (enable_idle)
1800 cfq_mark_cfqq_idle_window(cfqq);
1801 else
1802 cfq_clear_cfqq_idle_window(cfqq);
1807 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1808 * no or if we aren't sure, a 1 will cause a preempt.
1810 static int
1811 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
1812 struct request *rq)
1814 struct cfq_queue *cfqq;
1816 cfqq = cfqd->active_queue;
1817 if (!cfqq)
1818 return 0;
1820 if (cfq_slice_used(cfqq))
1821 return 1;
1823 if (cfq_class_idle(new_cfqq))
1824 return 0;
1826 if (cfq_class_idle(cfqq))
1827 return 1;
1830 * if the new request is sync, but the currently running queue is
1831 * not, let the sync request have priority.
1833 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
1834 return 1;
1837 * So both queues are sync. Let the new request get disk time if
1838 * it's a metadata request and the current queue is doing regular IO.
1840 if (rq_is_meta(rq) && !cfqq->meta_pending)
1841 return 1;
1844 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
1846 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
1847 return 1;
1849 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
1850 return 0;
1853 * if this request is as-good as one we would expect from the
1854 * current cfqq, let it preempt
1856 if (cfq_rq_close(cfqd, rq))
1857 return 1;
1859 return 0;
1863 * cfqq preempts the active queue. if we allowed preempt with no slice left,
1864 * let it have half of its nominal slice.
1866 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1868 cfq_log_cfqq(cfqd, cfqq, "preempt");
1869 cfq_slice_expired(cfqd, 1);
1872 * Put the new queue at the front of the of the current list,
1873 * so we know that it will be selected next.
1875 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1877 cfq_service_tree_add(cfqd, cfqq, 1);
1879 cfqq->slice_end = 0;
1880 cfq_mark_cfqq_slice_new(cfqq);
1884 * Called when a new fs request (rq) is added (to cfqq). Check if there's
1885 * something we should do about it
1887 static void
1888 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1889 struct request *rq)
1891 struct cfq_io_context *cic = RQ_CIC(rq);
1893 cfqd->rq_queued++;
1894 if (rq_is_meta(rq))
1895 cfqq->meta_pending++;
1897 cfq_update_io_thinktime(cfqd, cic);
1898 cfq_update_io_seektime(cfqd, cic, rq);
1899 cfq_update_idle_window(cfqd, cfqq, cic);
1901 cic->last_request_pos = rq->sector + rq->nr_sectors;
1903 if (cfqq == cfqd->active_queue) {
1905 * Remember that we saw a request from this process, but
1906 * don't start queuing just yet. Otherwise we risk seeing lots
1907 * of tiny requests, because we disrupt the normal plugging
1908 * and merging.
1910 if (cfq_cfqq_wait_request(cfqq))
1911 cfq_mark_cfqq_must_dispatch(cfqq);
1912 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
1914 * not the active queue - expire current slice if it is
1915 * idle and has expired it's mean thinktime or this new queue
1916 * has some old slice time left and is of higher priority or
1917 * this new queue is RT and the current one is BE
1919 cfq_preempt_queue(cfqd, cfqq);
1920 blk_start_queueing(cfqd->queue);
1924 static void cfq_insert_request(struct request_queue *q, struct request *rq)
1926 struct cfq_data *cfqd = q->elevator->elevator_data;
1927 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1929 cfq_log_cfqq(cfqd, cfqq, "insert_request");
1930 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
1932 cfq_add_rq_rb(rq);
1934 list_add_tail(&rq->queuelist, &cfqq->fifo);
1936 cfq_rq_enqueued(cfqd, cfqq, rq);
1940 * Update hw_tag based on peak queue depth over 50 samples under
1941 * sufficient load.
1943 static void cfq_update_hw_tag(struct cfq_data *cfqd)
1945 if (cfqd->rq_in_driver > cfqd->rq_in_driver_peak)
1946 cfqd->rq_in_driver_peak = cfqd->rq_in_driver;
1948 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
1949 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
1950 return;
1952 if (cfqd->hw_tag_samples++ < 50)
1953 return;
1955 if (cfqd->rq_in_driver_peak >= CFQ_HW_QUEUE_MIN)
1956 cfqd->hw_tag = 1;
1957 else
1958 cfqd->hw_tag = 0;
1960 cfqd->hw_tag_samples = 0;
1961 cfqd->rq_in_driver_peak = 0;
1964 static void cfq_completed_request(struct request_queue *q, struct request *rq)
1966 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1967 struct cfq_data *cfqd = cfqq->cfqd;
1968 const int sync = rq_is_sync(rq);
1969 unsigned long now;
1971 now = jiffies;
1972 cfq_log_cfqq(cfqd, cfqq, "complete");
1974 cfq_update_hw_tag(cfqd);
1976 WARN_ON(!cfqd->rq_in_driver);
1977 WARN_ON(!cfqq->dispatched);
1978 cfqd->rq_in_driver--;
1979 cfqq->dispatched--;
1981 if (cfq_cfqq_sync(cfqq))
1982 cfqd->sync_flight--;
1984 if (!cfq_class_idle(cfqq))
1985 cfqd->last_end_request = now;
1987 if (sync)
1988 RQ_CIC(rq)->last_end_request = now;
1991 * If this is the active queue, check if it needs to be expired,
1992 * or if we want to idle in case it has no pending requests.
1994 if (cfqd->active_queue == cfqq) {
1995 if (cfq_cfqq_slice_new(cfqq)) {
1996 cfq_set_prio_slice(cfqd, cfqq);
1997 cfq_clear_cfqq_slice_new(cfqq);
1999 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
2000 cfq_slice_expired(cfqd, 1);
2001 else if (sync && !rq_noidle(rq) &&
2002 RB_EMPTY_ROOT(&cfqq->sort_list)) {
2003 cfq_arm_slice_timer(cfqd);
2007 if (!cfqd->rq_in_driver)
2008 cfq_schedule_dispatch(cfqd);
2012 * we temporarily boost lower priority queues if they are holding fs exclusive
2013 * resources. they are boosted to normal prio (CLASS_BE/4)
2015 static void cfq_prio_boost(struct cfq_queue *cfqq)
2017 if (has_fs_excl()) {
2019 * boost idle prio on transactions that would lock out other
2020 * users of the filesystem
2022 if (cfq_class_idle(cfqq))
2023 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2024 if (cfqq->ioprio > IOPRIO_NORM)
2025 cfqq->ioprio = IOPRIO_NORM;
2026 } else {
2028 * check if we need to unboost the queue
2030 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
2031 cfqq->ioprio_class = cfqq->org_ioprio_class;
2032 if (cfqq->ioprio != cfqq->org_ioprio)
2033 cfqq->ioprio = cfqq->org_ioprio;
2037 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
2039 if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
2040 !cfq_cfqq_must_alloc_slice(cfqq)) {
2041 cfq_mark_cfqq_must_alloc_slice(cfqq);
2042 return ELV_MQUEUE_MUST;
2045 return ELV_MQUEUE_MAY;
2048 static int cfq_may_queue(struct request_queue *q, int rw)
2050 struct cfq_data *cfqd = q->elevator->elevator_data;
2051 struct task_struct *tsk = current;
2052 struct cfq_io_context *cic;
2053 struct cfq_queue *cfqq;
2056 * don't force setup of a queue from here, as a call to may_queue
2057 * does not necessarily imply that a request actually will be queued.
2058 * so just lookup a possibly existing queue, or return 'may queue'
2059 * if that fails
2061 cic = cfq_cic_lookup(cfqd, tsk->io_context);
2062 if (!cic)
2063 return ELV_MQUEUE_MAY;
2065 cfqq = cic_to_cfqq(cic, rw & REQ_RW_SYNC);
2066 if (cfqq) {
2067 cfq_init_prio_data(cfqq, cic->ioc);
2068 cfq_prio_boost(cfqq);
2070 return __cfq_may_queue(cfqq);
2073 return ELV_MQUEUE_MAY;
2077 * queue lock held here
2079 static void cfq_put_request(struct request *rq)
2081 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2083 if (cfqq) {
2084 const int rw = rq_data_dir(rq);
2086 BUG_ON(!cfqq->allocated[rw]);
2087 cfqq->allocated[rw]--;
2089 put_io_context(RQ_CIC(rq)->ioc);
2091 rq->elevator_private = NULL;
2092 rq->elevator_private2 = NULL;
2094 cfq_put_queue(cfqq);
2099 * Allocate cfq data structures associated with this request.
2101 static int
2102 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
2104 struct cfq_data *cfqd = q->elevator->elevator_data;
2105 struct cfq_io_context *cic;
2106 const int rw = rq_data_dir(rq);
2107 const int is_sync = rq_is_sync(rq);
2108 struct cfq_queue *cfqq;
2109 unsigned long flags;
2111 might_sleep_if(gfp_mask & __GFP_WAIT);
2113 cic = cfq_get_io_context(cfqd, gfp_mask);
2115 spin_lock_irqsave(q->queue_lock, flags);
2117 if (!cic)
2118 goto queue_fail;
2120 cfqq = cic_to_cfqq(cic, is_sync);
2121 if (!cfqq) {
2122 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
2124 if (!cfqq)
2125 goto queue_fail;
2127 cic_set_cfqq(cic, cfqq, is_sync);
2130 cfqq->allocated[rw]++;
2131 cfq_clear_cfqq_must_alloc(cfqq);
2132 atomic_inc(&cfqq->ref);
2134 spin_unlock_irqrestore(q->queue_lock, flags);
2136 rq->elevator_private = cic;
2137 rq->elevator_private2 = cfqq;
2138 return 0;
2140 queue_fail:
2141 if (cic)
2142 put_io_context(cic->ioc);
2144 cfq_schedule_dispatch(cfqd);
2145 spin_unlock_irqrestore(q->queue_lock, flags);
2146 cfq_log(cfqd, "set_request fail");
2147 return 1;
2150 static void cfq_kick_queue(struct work_struct *work)
2152 struct cfq_data *cfqd =
2153 container_of(work, struct cfq_data, unplug_work);
2154 struct request_queue *q = cfqd->queue;
2155 unsigned long flags;
2157 spin_lock_irqsave(q->queue_lock, flags);
2158 blk_start_queueing(q);
2159 spin_unlock_irqrestore(q->queue_lock, flags);
2163 * Timer running if the active_queue is currently idling inside its time slice
2165 static void cfq_idle_slice_timer(unsigned long data)
2167 struct cfq_data *cfqd = (struct cfq_data *) data;
2168 struct cfq_queue *cfqq;
2169 unsigned long flags;
2170 int timed_out = 1;
2172 cfq_log(cfqd, "idle timer fired");
2174 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2176 cfqq = cfqd->active_queue;
2177 if (cfqq) {
2178 timed_out = 0;
2181 * We saw a request before the queue expired, let it through
2183 if (cfq_cfqq_must_dispatch(cfqq))
2184 goto out_kick;
2187 * expired
2189 if (cfq_slice_used(cfqq))
2190 goto expire;
2193 * only expire and reinvoke request handler, if there are
2194 * other queues with pending requests
2196 if (!cfqd->busy_queues)
2197 goto out_cont;
2200 * not expired and it has a request pending, let it dispatch
2202 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2203 goto out_kick;
2205 expire:
2206 cfq_slice_expired(cfqd, timed_out);
2207 out_kick:
2208 cfq_schedule_dispatch(cfqd);
2209 out_cont:
2210 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2213 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2215 del_timer_sync(&cfqd->idle_slice_timer);
2216 cancel_work_sync(&cfqd->unplug_work);
2219 static void cfq_put_async_queues(struct cfq_data *cfqd)
2221 int i;
2223 for (i = 0; i < IOPRIO_BE_NR; i++) {
2224 if (cfqd->async_cfqq[0][i])
2225 cfq_put_queue(cfqd->async_cfqq[0][i]);
2226 if (cfqd->async_cfqq[1][i])
2227 cfq_put_queue(cfqd->async_cfqq[1][i]);
2230 if (cfqd->async_idle_cfqq)
2231 cfq_put_queue(cfqd->async_idle_cfqq);
2234 static void cfq_exit_queue(struct elevator_queue *e)
2236 struct cfq_data *cfqd = e->elevator_data;
2237 struct request_queue *q = cfqd->queue;
2239 cfq_shutdown_timer_wq(cfqd);
2241 spin_lock_irq(q->queue_lock);
2243 if (cfqd->active_queue)
2244 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2246 while (!list_empty(&cfqd->cic_list)) {
2247 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2248 struct cfq_io_context,
2249 queue_list);
2251 __cfq_exit_single_io_context(cfqd, cic);
2254 cfq_put_async_queues(cfqd);
2256 spin_unlock_irq(q->queue_lock);
2258 cfq_shutdown_timer_wq(cfqd);
2260 kfree(cfqd);
2263 static void *cfq_init_queue(struct request_queue *q)
2265 struct cfq_data *cfqd;
2267 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
2268 if (!cfqd)
2269 return NULL;
2271 cfqd->service_tree = CFQ_RB_ROOT;
2272 INIT_LIST_HEAD(&cfqd->cic_list);
2274 cfqd->queue = q;
2276 init_timer(&cfqd->idle_slice_timer);
2277 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2278 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2280 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
2282 cfqd->last_end_request = jiffies;
2283 cfqd->cfq_quantum = cfq_quantum;
2284 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2285 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2286 cfqd->cfq_back_max = cfq_back_max;
2287 cfqd->cfq_back_penalty = cfq_back_penalty;
2288 cfqd->cfq_slice[0] = cfq_slice_async;
2289 cfqd->cfq_slice[1] = cfq_slice_sync;
2290 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2291 cfqd->cfq_slice_idle = cfq_slice_idle;
2292 cfqd->hw_tag = 1;
2294 return cfqd;
2297 static void cfq_slab_kill(void)
2300 * Caller already ensured that pending RCU callbacks are completed,
2301 * so we should have no busy allocations at this point.
2303 if (cfq_pool)
2304 kmem_cache_destroy(cfq_pool);
2305 if (cfq_ioc_pool)
2306 kmem_cache_destroy(cfq_ioc_pool);
2309 static int __init cfq_slab_setup(void)
2311 cfq_pool = KMEM_CACHE(cfq_queue, 0);
2312 if (!cfq_pool)
2313 goto fail;
2315 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
2316 if (!cfq_ioc_pool)
2317 goto fail;
2319 return 0;
2320 fail:
2321 cfq_slab_kill();
2322 return -ENOMEM;
2326 * sysfs parts below -->
2328 static ssize_t
2329 cfq_var_show(unsigned int var, char *page)
2331 return sprintf(page, "%d\n", var);
2334 static ssize_t
2335 cfq_var_store(unsigned int *var, const char *page, size_t count)
2337 char *p = (char *) page;
2339 *var = simple_strtoul(p, &p, 10);
2340 return count;
2343 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
2344 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
2346 struct cfq_data *cfqd = e->elevator_data; \
2347 unsigned int __data = __VAR; \
2348 if (__CONV) \
2349 __data = jiffies_to_msecs(__data); \
2350 return cfq_var_show(__data, (page)); \
2352 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2353 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2354 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2355 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2356 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2357 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2358 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2359 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2360 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2361 #undef SHOW_FUNCTION
2363 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
2364 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
2366 struct cfq_data *cfqd = e->elevator_data; \
2367 unsigned int __data; \
2368 int ret = cfq_var_store(&__data, (page), count); \
2369 if (__data < (MIN)) \
2370 __data = (MIN); \
2371 else if (__data > (MAX)) \
2372 __data = (MAX); \
2373 if (__CONV) \
2374 *(__PTR) = msecs_to_jiffies(__data); \
2375 else \
2376 *(__PTR) = __data; \
2377 return ret; \
2379 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2380 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
2381 UINT_MAX, 1);
2382 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
2383 UINT_MAX, 1);
2384 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2385 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
2386 UINT_MAX, 0);
2387 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2388 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2389 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2390 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
2391 UINT_MAX, 0);
2392 #undef STORE_FUNCTION
2394 #define CFQ_ATTR(name) \
2395 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2397 static struct elv_fs_entry cfq_attrs[] = {
2398 CFQ_ATTR(quantum),
2399 CFQ_ATTR(fifo_expire_sync),
2400 CFQ_ATTR(fifo_expire_async),
2401 CFQ_ATTR(back_seek_max),
2402 CFQ_ATTR(back_seek_penalty),
2403 CFQ_ATTR(slice_sync),
2404 CFQ_ATTR(slice_async),
2405 CFQ_ATTR(slice_async_rq),
2406 CFQ_ATTR(slice_idle),
2407 __ATTR_NULL
2410 static struct elevator_type iosched_cfq = {
2411 .ops = {
2412 .elevator_merge_fn = cfq_merge,
2413 .elevator_merged_fn = cfq_merged_request,
2414 .elevator_merge_req_fn = cfq_merged_requests,
2415 .elevator_allow_merge_fn = cfq_allow_merge,
2416 .elevator_dispatch_fn = cfq_dispatch_requests,
2417 .elevator_add_req_fn = cfq_insert_request,
2418 .elevator_activate_req_fn = cfq_activate_request,
2419 .elevator_deactivate_req_fn = cfq_deactivate_request,
2420 .elevator_queue_empty_fn = cfq_queue_empty,
2421 .elevator_completed_req_fn = cfq_completed_request,
2422 .elevator_former_req_fn = elv_rb_former_request,
2423 .elevator_latter_req_fn = elv_rb_latter_request,
2424 .elevator_set_req_fn = cfq_set_request,
2425 .elevator_put_req_fn = cfq_put_request,
2426 .elevator_may_queue_fn = cfq_may_queue,
2427 .elevator_init_fn = cfq_init_queue,
2428 .elevator_exit_fn = cfq_exit_queue,
2429 .trim = cfq_free_io_context,
2431 .elevator_attrs = cfq_attrs,
2432 .elevator_name = "cfq",
2433 .elevator_owner = THIS_MODULE,
2436 static int __init cfq_init(void)
2439 * could be 0 on HZ < 1000 setups
2441 if (!cfq_slice_async)
2442 cfq_slice_async = 1;
2443 if (!cfq_slice_idle)
2444 cfq_slice_idle = 1;
2446 if (cfq_slab_setup())
2447 return -ENOMEM;
2449 elv_register(&iosched_cfq);
2451 return 0;
2454 static void __exit cfq_exit(void)
2456 DECLARE_COMPLETION_ONSTACK(all_gone);
2457 elv_unregister(&iosched_cfq);
2458 ioc_gone = &all_gone;
2459 /* ioc_gone's update must be visible before reading ioc_count */
2460 smp_wmb();
2463 * this also protects us from entering cfq_slab_kill() with
2464 * pending RCU callbacks
2466 if (elv_ioc_count_read(ioc_count))
2467 wait_for_completion(&all_gone);
2468 cfq_slab_kill();
2471 module_init(cfq_init);
2472 module_exit(cfq_exit);
2474 MODULE_AUTHOR("Jens Axboe");
2475 MODULE_LICENSE("GPL");
2476 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");