e1000e: stop cleaning when we reach tx_ring->next_to_use
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / e1000e / netdev.c
blob4d353d25d60b288bab79ca08cc11b34c2eb0c561
1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2009 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 #include <linux/module.h>
30 #include <linux/types.h>
31 #include <linux/init.h>
32 #include <linux/pci.h>
33 #include <linux/vmalloc.h>
34 #include <linux/pagemap.h>
35 #include <linux/delay.h>
36 #include <linux/netdevice.h>
37 #include <linux/tcp.h>
38 #include <linux/ipv6.h>
39 #include <net/checksum.h>
40 #include <net/ip6_checksum.h>
41 #include <linux/mii.h>
42 #include <linux/ethtool.h>
43 #include <linux/if_vlan.h>
44 #include <linux/cpu.h>
45 #include <linux/smp.h>
46 #include <linux/pm_qos_params.h>
47 #include <linux/aer.h>
49 #include "e1000.h"
51 #define DRV_VERSION "1.0.2-k2"
52 char e1000e_driver_name[] = "e1000e";
53 const char e1000e_driver_version[] = DRV_VERSION;
55 static const struct e1000_info *e1000_info_tbl[] = {
56 [board_82571] = &e1000_82571_info,
57 [board_82572] = &e1000_82572_info,
58 [board_82573] = &e1000_82573_info,
59 [board_82574] = &e1000_82574_info,
60 [board_82583] = &e1000_82583_info,
61 [board_80003es2lan] = &e1000_es2_info,
62 [board_ich8lan] = &e1000_ich8_info,
63 [board_ich9lan] = &e1000_ich9_info,
64 [board_ich10lan] = &e1000_ich10_info,
65 [board_pchlan] = &e1000_pch_info,
68 /**
69 * e1000_desc_unused - calculate if we have unused descriptors
70 **/
71 static int e1000_desc_unused(struct e1000_ring *ring)
73 if (ring->next_to_clean > ring->next_to_use)
74 return ring->next_to_clean - ring->next_to_use - 1;
76 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
79 /**
80 * e1000_receive_skb - helper function to handle Rx indications
81 * @adapter: board private structure
82 * @status: descriptor status field as written by hardware
83 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
84 * @skb: pointer to sk_buff to be indicated to stack
85 **/
86 static void e1000_receive_skb(struct e1000_adapter *adapter,
87 struct net_device *netdev,
88 struct sk_buff *skb,
89 u8 status, __le16 vlan)
91 skb->protocol = eth_type_trans(skb, netdev);
93 if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
94 vlan_gro_receive(&adapter->napi, adapter->vlgrp,
95 le16_to_cpu(vlan), skb);
96 else
97 napi_gro_receive(&adapter->napi, skb);
101 * e1000_rx_checksum - Receive Checksum Offload for 82543
102 * @adapter: board private structure
103 * @status_err: receive descriptor status and error fields
104 * @csum: receive descriptor csum field
105 * @sk_buff: socket buffer with received data
107 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
108 u32 csum, struct sk_buff *skb)
110 u16 status = (u16)status_err;
111 u8 errors = (u8)(status_err >> 24);
112 skb->ip_summed = CHECKSUM_NONE;
114 /* Ignore Checksum bit is set */
115 if (status & E1000_RXD_STAT_IXSM)
116 return;
117 /* TCP/UDP checksum error bit is set */
118 if (errors & E1000_RXD_ERR_TCPE) {
119 /* let the stack verify checksum errors */
120 adapter->hw_csum_err++;
121 return;
124 /* TCP/UDP Checksum has not been calculated */
125 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
126 return;
128 /* It must be a TCP or UDP packet with a valid checksum */
129 if (status & E1000_RXD_STAT_TCPCS) {
130 /* TCP checksum is good */
131 skb->ip_summed = CHECKSUM_UNNECESSARY;
132 } else {
134 * IP fragment with UDP payload
135 * Hardware complements the payload checksum, so we undo it
136 * and then put the value in host order for further stack use.
138 __sum16 sum = (__force __sum16)htons(csum);
139 skb->csum = csum_unfold(~sum);
140 skb->ip_summed = CHECKSUM_COMPLETE;
142 adapter->hw_csum_good++;
146 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
147 * @adapter: address of board private structure
149 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
150 int cleaned_count)
152 struct net_device *netdev = adapter->netdev;
153 struct pci_dev *pdev = adapter->pdev;
154 struct e1000_ring *rx_ring = adapter->rx_ring;
155 struct e1000_rx_desc *rx_desc;
156 struct e1000_buffer *buffer_info;
157 struct sk_buff *skb;
158 unsigned int i;
159 unsigned int bufsz = adapter->rx_buffer_len;
161 i = rx_ring->next_to_use;
162 buffer_info = &rx_ring->buffer_info[i];
164 while (cleaned_count--) {
165 skb = buffer_info->skb;
166 if (skb) {
167 skb_trim(skb, 0);
168 goto map_skb;
171 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
172 if (!skb) {
173 /* Better luck next round */
174 adapter->alloc_rx_buff_failed++;
175 break;
178 buffer_info->skb = skb;
179 map_skb:
180 buffer_info->dma = pci_map_single(pdev, skb->data,
181 adapter->rx_buffer_len,
182 PCI_DMA_FROMDEVICE);
183 if (pci_dma_mapping_error(pdev, buffer_info->dma)) {
184 dev_err(&pdev->dev, "RX DMA map failed\n");
185 adapter->rx_dma_failed++;
186 break;
189 rx_desc = E1000_RX_DESC(*rx_ring, i);
190 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
192 i++;
193 if (i == rx_ring->count)
194 i = 0;
195 buffer_info = &rx_ring->buffer_info[i];
198 if (rx_ring->next_to_use != i) {
199 rx_ring->next_to_use = i;
200 if (i-- == 0)
201 i = (rx_ring->count - 1);
204 * Force memory writes to complete before letting h/w
205 * know there are new descriptors to fetch. (Only
206 * applicable for weak-ordered memory model archs,
207 * such as IA-64).
209 wmb();
210 writel(i, adapter->hw.hw_addr + rx_ring->tail);
215 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
216 * @adapter: address of board private structure
218 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
219 int cleaned_count)
221 struct net_device *netdev = adapter->netdev;
222 struct pci_dev *pdev = adapter->pdev;
223 union e1000_rx_desc_packet_split *rx_desc;
224 struct e1000_ring *rx_ring = adapter->rx_ring;
225 struct e1000_buffer *buffer_info;
226 struct e1000_ps_page *ps_page;
227 struct sk_buff *skb;
228 unsigned int i, j;
230 i = rx_ring->next_to_use;
231 buffer_info = &rx_ring->buffer_info[i];
233 while (cleaned_count--) {
234 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
236 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
237 ps_page = &buffer_info->ps_pages[j];
238 if (j >= adapter->rx_ps_pages) {
239 /* all unused desc entries get hw null ptr */
240 rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0);
241 continue;
243 if (!ps_page->page) {
244 ps_page->page = alloc_page(GFP_ATOMIC);
245 if (!ps_page->page) {
246 adapter->alloc_rx_buff_failed++;
247 goto no_buffers;
249 ps_page->dma = pci_map_page(pdev,
250 ps_page->page,
251 0, PAGE_SIZE,
252 PCI_DMA_FROMDEVICE);
253 if (pci_dma_mapping_error(pdev, ps_page->dma)) {
254 dev_err(&adapter->pdev->dev,
255 "RX DMA page map failed\n");
256 adapter->rx_dma_failed++;
257 goto no_buffers;
261 * Refresh the desc even if buffer_addrs
262 * didn't change because each write-back
263 * erases this info.
265 rx_desc->read.buffer_addr[j+1] =
266 cpu_to_le64(ps_page->dma);
269 skb = netdev_alloc_skb_ip_align(netdev,
270 adapter->rx_ps_bsize0);
272 if (!skb) {
273 adapter->alloc_rx_buff_failed++;
274 break;
277 buffer_info->skb = skb;
278 buffer_info->dma = pci_map_single(pdev, skb->data,
279 adapter->rx_ps_bsize0,
280 PCI_DMA_FROMDEVICE);
281 if (pci_dma_mapping_error(pdev, buffer_info->dma)) {
282 dev_err(&pdev->dev, "RX DMA map failed\n");
283 adapter->rx_dma_failed++;
284 /* cleanup skb */
285 dev_kfree_skb_any(skb);
286 buffer_info->skb = NULL;
287 break;
290 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
292 i++;
293 if (i == rx_ring->count)
294 i = 0;
295 buffer_info = &rx_ring->buffer_info[i];
298 no_buffers:
299 if (rx_ring->next_to_use != i) {
300 rx_ring->next_to_use = i;
302 if (!(i--))
303 i = (rx_ring->count - 1);
306 * Force memory writes to complete before letting h/w
307 * know there are new descriptors to fetch. (Only
308 * applicable for weak-ordered memory model archs,
309 * such as IA-64).
311 wmb();
313 * Hardware increments by 16 bytes, but packet split
314 * descriptors are 32 bytes...so we increment tail
315 * twice as much.
317 writel(i<<1, adapter->hw.hw_addr + rx_ring->tail);
322 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
323 * @adapter: address of board private structure
324 * @cleaned_count: number of buffers to allocate this pass
327 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
328 int cleaned_count)
330 struct net_device *netdev = adapter->netdev;
331 struct pci_dev *pdev = adapter->pdev;
332 struct e1000_rx_desc *rx_desc;
333 struct e1000_ring *rx_ring = adapter->rx_ring;
334 struct e1000_buffer *buffer_info;
335 struct sk_buff *skb;
336 unsigned int i;
337 unsigned int bufsz = 256 - 16 /* for skb_reserve */;
339 i = rx_ring->next_to_use;
340 buffer_info = &rx_ring->buffer_info[i];
342 while (cleaned_count--) {
343 skb = buffer_info->skb;
344 if (skb) {
345 skb_trim(skb, 0);
346 goto check_page;
349 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
350 if (unlikely(!skb)) {
351 /* Better luck next round */
352 adapter->alloc_rx_buff_failed++;
353 break;
356 buffer_info->skb = skb;
357 check_page:
358 /* allocate a new page if necessary */
359 if (!buffer_info->page) {
360 buffer_info->page = alloc_page(GFP_ATOMIC);
361 if (unlikely(!buffer_info->page)) {
362 adapter->alloc_rx_buff_failed++;
363 break;
367 if (!buffer_info->dma)
368 buffer_info->dma = pci_map_page(pdev,
369 buffer_info->page, 0,
370 PAGE_SIZE,
371 PCI_DMA_FROMDEVICE);
373 rx_desc = E1000_RX_DESC(*rx_ring, i);
374 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
376 if (unlikely(++i == rx_ring->count))
377 i = 0;
378 buffer_info = &rx_ring->buffer_info[i];
381 if (likely(rx_ring->next_to_use != i)) {
382 rx_ring->next_to_use = i;
383 if (unlikely(i-- == 0))
384 i = (rx_ring->count - 1);
386 /* Force memory writes to complete before letting h/w
387 * know there are new descriptors to fetch. (Only
388 * applicable for weak-ordered memory model archs,
389 * such as IA-64). */
390 wmb();
391 writel(i, adapter->hw.hw_addr + rx_ring->tail);
396 * e1000_clean_rx_irq - Send received data up the network stack; legacy
397 * @adapter: board private structure
399 * the return value indicates whether actual cleaning was done, there
400 * is no guarantee that everything was cleaned
402 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
403 int *work_done, int work_to_do)
405 struct net_device *netdev = adapter->netdev;
406 struct pci_dev *pdev = adapter->pdev;
407 struct e1000_hw *hw = &adapter->hw;
408 struct e1000_ring *rx_ring = adapter->rx_ring;
409 struct e1000_rx_desc *rx_desc, *next_rxd;
410 struct e1000_buffer *buffer_info, *next_buffer;
411 u32 length;
412 unsigned int i;
413 int cleaned_count = 0;
414 bool cleaned = 0;
415 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
417 i = rx_ring->next_to_clean;
418 rx_desc = E1000_RX_DESC(*rx_ring, i);
419 buffer_info = &rx_ring->buffer_info[i];
421 while (rx_desc->status & E1000_RXD_STAT_DD) {
422 struct sk_buff *skb;
423 u8 status;
425 if (*work_done >= work_to_do)
426 break;
427 (*work_done)++;
429 status = rx_desc->status;
430 skb = buffer_info->skb;
431 buffer_info->skb = NULL;
433 prefetch(skb->data - NET_IP_ALIGN);
435 i++;
436 if (i == rx_ring->count)
437 i = 0;
438 next_rxd = E1000_RX_DESC(*rx_ring, i);
439 prefetch(next_rxd);
441 next_buffer = &rx_ring->buffer_info[i];
443 cleaned = 1;
444 cleaned_count++;
445 pci_unmap_single(pdev,
446 buffer_info->dma,
447 adapter->rx_buffer_len,
448 PCI_DMA_FROMDEVICE);
449 buffer_info->dma = 0;
451 length = le16_to_cpu(rx_desc->length);
454 * !EOP means multiple descriptors were used to store a single
455 * packet, if that's the case we need to toss it. In fact, we
456 * need to toss every packet with the EOP bit clear and the
457 * next frame that _does_ have the EOP bit set, as it is by
458 * definition only a frame fragment
460 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
461 adapter->flags2 |= FLAG2_IS_DISCARDING;
463 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
464 /* All receives must fit into a single buffer */
465 e_dbg("Receive packet consumed multiple buffers\n");
466 /* recycle */
467 buffer_info->skb = skb;
468 if (status & E1000_RXD_STAT_EOP)
469 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
470 goto next_desc;
473 if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
474 /* recycle */
475 buffer_info->skb = skb;
476 goto next_desc;
479 /* adjust length to remove Ethernet CRC */
480 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
481 length -= 4;
483 total_rx_bytes += length;
484 total_rx_packets++;
487 * code added for copybreak, this should improve
488 * performance for small packets with large amounts
489 * of reassembly being done in the stack
491 if (length < copybreak) {
492 struct sk_buff *new_skb =
493 netdev_alloc_skb_ip_align(netdev, length);
494 if (new_skb) {
495 skb_copy_to_linear_data_offset(new_skb,
496 -NET_IP_ALIGN,
497 (skb->data -
498 NET_IP_ALIGN),
499 (length +
500 NET_IP_ALIGN));
501 /* save the skb in buffer_info as good */
502 buffer_info->skb = skb;
503 skb = new_skb;
505 /* else just continue with the old one */
507 /* end copybreak code */
508 skb_put(skb, length);
510 /* Receive Checksum Offload */
511 e1000_rx_checksum(adapter,
512 (u32)(status) |
513 ((u32)(rx_desc->errors) << 24),
514 le16_to_cpu(rx_desc->csum), skb);
516 e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special);
518 next_desc:
519 rx_desc->status = 0;
521 /* return some buffers to hardware, one at a time is too slow */
522 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
523 adapter->alloc_rx_buf(adapter, cleaned_count);
524 cleaned_count = 0;
527 /* use prefetched values */
528 rx_desc = next_rxd;
529 buffer_info = next_buffer;
531 rx_ring->next_to_clean = i;
533 cleaned_count = e1000_desc_unused(rx_ring);
534 if (cleaned_count)
535 adapter->alloc_rx_buf(adapter, cleaned_count);
537 adapter->total_rx_bytes += total_rx_bytes;
538 adapter->total_rx_packets += total_rx_packets;
539 netdev->stats.rx_bytes += total_rx_bytes;
540 netdev->stats.rx_packets += total_rx_packets;
541 return cleaned;
544 static void e1000_put_txbuf(struct e1000_adapter *adapter,
545 struct e1000_buffer *buffer_info)
547 if (buffer_info->dma) {
548 if (buffer_info->mapped_as_page)
549 pci_unmap_page(adapter->pdev, buffer_info->dma,
550 buffer_info->length, PCI_DMA_TODEVICE);
551 else
552 pci_unmap_single(adapter->pdev, buffer_info->dma,
553 buffer_info->length,
554 PCI_DMA_TODEVICE);
555 buffer_info->dma = 0;
557 if (buffer_info->skb) {
558 dev_kfree_skb_any(buffer_info->skb);
559 buffer_info->skb = NULL;
561 buffer_info->time_stamp = 0;
564 static void e1000_print_hw_hang(struct work_struct *work)
566 struct e1000_adapter *adapter = container_of(work,
567 struct e1000_adapter,
568 print_hang_task);
569 struct e1000_ring *tx_ring = adapter->tx_ring;
570 unsigned int i = tx_ring->next_to_clean;
571 unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
572 struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
573 struct e1000_hw *hw = &adapter->hw;
574 u16 phy_status, phy_1000t_status, phy_ext_status;
575 u16 pci_status;
577 e1e_rphy(hw, PHY_STATUS, &phy_status);
578 e1e_rphy(hw, PHY_1000T_STATUS, &phy_1000t_status);
579 e1e_rphy(hw, PHY_EXT_STATUS, &phy_ext_status);
581 pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
583 /* detected Hardware unit hang */
584 e_err("Detected Hardware Unit Hang:\n"
585 " TDH <%x>\n"
586 " TDT <%x>\n"
587 " next_to_use <%x>\n"
588 " next_to_clean <%x>\n"
589 "buffer_info[next_to_clean]:\n"
590 " time_stamp <%lx>\n"
591 " next_to_watch <%x>\n"
592 " jiffies <%lx>\n"
593 " next_to_watch.status <%x>\n"
594 "MAC Status <%x>\n"
595 "PHY Status <%x>\n"
596 "PHY 1000BASE-T Status <%x>\n"
597 "PHY Extended Status <%x>\n"
598 "PCI Status <%x>\n",
599 readl(adapter->hw.hw_addr + tx_ring->head),
600 readl(adapter->hw.hw_addr + tx_ring->tail),
601 tx_ring->next_to_use,
602 tx_ring->next_to_clean,
603 tx_ring->buffer_info[eop].time_stamp,
604 eop,
605 jiffies,
606 eop_desc->upper.fields.status,
607 er32(STATUS),
608 phy_status,
609 phy_1000t_status,
610 phy_ext_status,
611 pci_status);
615 * e1000_clean_tx_irq - Reclaim resources after transmit completes
616 * @adapter: board private structure
618 * the return value indicates whether actual cleaning was done, there
619 * is no guarantee that everything was cleaned
621 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
623 struct net_device *netdev = adapter->netdev;
624 struct e1000_hw *hw = &adapter->hw;
625 struct e1000_ring *tx_ring = adapter->tx_ring;
626 struct e1000_tx_desc *tx_desc, *eop_desc;
627 struct e1000_buffer *buffer_info;
628 unsigned int i, eop;
629 unsigned int count = 0;
630 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
632 i = tx_ring->next_to_clean;
633 eop = tx_ring->buffer_info[i].next_to_watch;
634 eop_desc = E1000_TX_DESC(*tx_ring, eop);
636 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
637 (count < tx_ring->count)) {
638 bool cleaned = false;
639 for (; !cleaned; count++) {
640 tx_desc = E1000_TX_DESC(*tx_ring, i);
641 buffer_info = &tx_ring->buffer_info[i];
642 cleaned = (i == eop);
644 if (cleaned) {
645 struct sk_buff *skb = buffer_info->skb;
646 unsigned int segs, bytecount;
647 segs = skb_shinfo(skb)->gso_segs ?: 1;
648 /* multiply data chunks by size of headers */
649 bytecount = ((segs - 1) * skb_headlen(skb)) +
650 skb->len;
651 total_tx_packets += segs;
652 total_tx_bytes += bytecount;
655 e1000_put_txbuf(adapter, buffer_info);
656 tx_desc->upper.data = 0;
658 i++;
659 if (i == tx_ring->count)
660 i = 0;
663 if (i == tx_ring->next_to_use)
664 break;
665 eop = tx_ring->buffer_info[i].next_to_watch;
666 eop_desc = E1000_TX_DESC(*tx_ring, eop);
669 tx_ring->next_to_clean = i;
671 #define TX_WAKE_THRESHOLD 32
672 if (count && netif_carrier_ok(netdev) &&
673 e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
674 /* Make sure that anybody stopping the queue after this
675 * sees the new next_to_clean.
677 smp_mb();
679 if (netif_queue_stopped(netdev) &&
680 !(test_bit(__E1000_DOWN, &adapter->state))) {
681 netif_wake_queue(netdev);
682 ++adapter->restart_queue;
686 if (adapter->detect_tx_hung) {
688 * Detect a transmit hang in hardware, this serializes the
689 * check with the clearing of time_stamp and movement of i
691 adapter->detect_tx_hung = 0;
692 if (tx_ring->buffer_info[i].time_stamp &&
693 time_after(jiffies, tx_ring->buffer_info[i].time_stamp
694 + (adapter->tx_timeout_factor * HZ)) &&
695 !(er32(STATUS) & E1000_STATUS_TXOFF)) {
696 schedule_work(&adapter->print_hang_task);
697 netif_stop_queue(netdev);
700 adapter->total_tx_bytes += total_tx_bytes;
701 adapter->total_tx_packets += total_tx_packets;
702 netdev->stats.tx_bytes += total_tx_bytes;
703 netdev->stats.tx_packets += total_tx_packets;
704 return (count < tx_ring->count);
708 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
709 * @adapter: board private structure
711 * the return value indicates whether actual cleaning was done, there
712 * is no guarantee that everything was cleaned
714 static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
715 int *work_done, int work_to_do)
717 struct e1000_hw *hw = &adapter->hw;
718 union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
719 struct net_device *netdev = adapter->netdev;
720 struct pci_dev *pdev = adapter->pdev;
721 struct e1000_ring *rx_ring = adapter->rx_ring;
722 struct e1000_buffer *buffer_info, *next_buffer;
723 struct e1000_ps_page *ps_page;
724 struct sk_buff *skb;
725 unsigned int i, j;
726 u32 length, staterr;
727 int cleaned_count = 0;
728 bool cleaned = 0;
729 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
731 i = rx_ring->next_to_clean;
732 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
733 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
734 buffer_info = &rx_ring->buffer_info[i];
736 while (staterr & E1000_RXD_STAT_DD) {
737 if (*work_done >= work_to_do)
738 break;
739 (*work_done)++;
740 skb = buffer_info->skb;
742 /* in the packet split case this is header only */
743 prefetch(skb->data - NET_IP_ALIGN);
745 i++;
746 if (i == rx_ring->count)
747 i = 0;
748 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
749 prefetch(next_rxd);
751 next_buffer = &rx_ring->buffer_info[i];
753 cleaned = 1;
754 cleaned_count++;
755 pci_unmap_single(pdev, buffer_info->dma,
756 adapter->rx_ps_bsize0,
757 PCI_DMA_FROMDEVICE);
758 buffer_info->dma = 0;
760 /* see !EOP comment in other rx routine */
761 if (!(staterr & E1000_RXD_STAT_EOP))
762 adapter->flags2 |= FLAG2_IS_DISCARDING;
764 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
765 e_dbg("Packet Split buffers didn't pick up the full "
766 "packet\n");
767 dev_kfree_skb_irq(skb);
768 if (staterr & E1000_RXD_STAT_EOP)
769 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
770 goto next_desc;
773 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
774 dev_kfree_skb_irq(skb);
775 goto next_desc;
778 length = le16_to_cpu(rx_desc->wb.middle.length0);
780 if (!length) {
781 e_dbg("Last part of the packet spanning multiple "
782 "descriptors\n");
783 dev_kfree_skb_irq(skb);
784 goto next_desc;
787 /* Good Receive */
788 skb_put(skb, length);
792 * this looks ugly, but it seems compiler issues make it
793 * more efficient than reusing j
795 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
798 * page alloc/put takes too long and effects small packet
799 * throughput, so unsplit small packets and save the alloc/put
800 * only valid in softirq (napi) context to call kmap_*
802 if (l1 && (l1 <= copybreak) &&
803 ((length + l1) <= adapter->rx_ps_bsize0)) {
804 u8 *vaddr;
806 ps_page = &buffer_info->ps_pages[0];
809 * there is no documentation about how to call
810 * kmap_atomic, so we can't hold the mapping
811 * very long
813 pci_dma_sync_single_for_cpu(pdev, ps_page->dma,
814 PAGE_SIZE, PCI_DMA_FROMDEVICE);
815 vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
816 memcpy(skb_tail_pointer(skb), vaddr, l1);
817 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
818 pci_dma_sync_single_for_device(pdev, ps_page->dma,
819 PAGE_SIZE, PCI_DMA_FROMDEVICE);
821 /* remove the CRC */
822 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
823 l1 -= 4;
825 skb_put(skb, l1);
826 goto copydone;
827 } /* if */
830 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
831 length = le16_to_cpu(rx_desc->wb.upper.length[j]);
832 if (!length)
833 break;
835 ps_page = &buffer_info->ps_pages[j];
836 pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
837 PCI_DMA_FROMDEVICE);
838 ps_page->dma = 0;
839 skb_fill_page_desc(skb, j, ps_page->page, 0, length);
840 ps_page->page = NULL;
841 skb->len += length;
842 skb->data_len += length;
843 skb->truesize += length;
846 /* strip the ethernet crc, problem is we're using pages now so
847 * this whole operation can get a little cpu intensive
849 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
850 pskb_trim(skb, skb->len - 4);
852 copydone:
853 total_rx_bytes += skb->len;
854 total_rx_packets++;
856 e1000_rx_checksum(adapter, staterr, le16_to_cpu(
857 rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
859 if (rx_desc->wb.upper.header_status &
860 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
861 adapter->rx_hdr_split++;
863 e1000_receive_skb(adapter, netdev, skb,
864 staterr, rx_desc->wb.middle.vlan);
866 next_desc:
867 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
868 buffer_info->skb = NULL;
870 /* return some buffers to hardware, one at a time is too slow */
871 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
872 adapter->alloc_rx_buf(adapter, cleaned_count);
873 cleaned_count = 0;
876 /* use prefetched values */
877 rx_desc = next_rxd;
878 buffer_info = next_buffer;
880 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
882 rx_ring->next_to_clean = i;
884 cleaned_count = e1000_desc_unused(rx_ring);
885 if (cleaned_count)
886 adapter->alloc_rx_buf(adapter, cleaned_count);
888 adapter->total_rx_bytes += total_rx_bytes;
889 adapter->total_rx_packets += total_rx_packets;
890 netdev->stats.rx_bytes += total_rx_bytes;
891 netdev->stats.rx_packets += total_rx_packets;
892 return cleaned;
896 * e1000_consume_page - helper function
898 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
899 u16 length)
901 bi->page = NULL;
902 skb->len += length;
903 skb->data_len += length;
904 skb->truesize += length;
908 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
909 * @adapter: board private structure
911 * the return value indicates whether actual cleaning was done, there
912 * is no guarantee that everything was cleaned
915 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
916 int *work_done, int work_to_do)
918 struct net_device *netdev = adapter->netdev;
919 struct pci_dev *pdev = adapter->pdev;
920 struct e1000_ring *rx_ring = adapter->rx_ring;
921 struct e1000_rx_desc *rx_desc, *next_rxd;
922 struct e1000_buffer *buffer_info, *next_buffer;
923 u32 length;
924 unsigned int i;
925 int cleaned_count = 0;
926 bool cleaned = false;
927 unsigned int total_rx_bytes=0, total_rx_packets=0;
929 i = rx_ring->next_to_clean;
930 rx_desc = E1000_RX_DESC(*rx_ring, i);
931 buffer_info = &rx_ring->buffer_info[i];
933 while (rx_desc->status & E1000_RXD_STAT_DD) {
934 struct sk_buff *skb;
935 u8 status;
937 if (*work_done >= work_to_do)
938 break;
939 (*work_done)++;
941 status = rx_desc->status;
942 skb = buffer_info->skb;
943 buffer_info->skb = NULL;
945 ++i;
946 if (i == rx_ring->count)
947 i = 0;
948 next_rxd = E1000_RX_DESC(*rx_ring, i);
949 prefetch(next_rxd);
951 next_buffer = &rx_ring->buffer_info[i];
953 cleaned = true;
954 cleaned_count++;
955 pci_unmap_page(pdev, buffer_info->dma, PAGE_SIZE,
956 PCI_DMA_FROMDEVICE);
957 buffer_info->dma = 0;
959 length = le16_to_cpu(rx_desc->length);
961 /* errors is only valid for DD + EOP descriptors */
962 if (unlikely((status & E1000_RXD_STAT_EOP) &&
963 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
964 /* recycle both page and skb */
965 buffer_info->skb = skb;
966 /* an error means any chain goes out the window
967 * too */
968 if (rx_ring->rx_skb_top)
969 dev_kfree_skb(rx_ring->rx_skb_top);
970 rx_ring->rx_skb_top = NULL;
971 goto next_desc;
974 #define rxtop rx_ring->rx_skb_top
975 if (!(status & E1000_RXD_STAT_EOP)) {
976 /* this descriptor is only the beginning (or middle) */
977 if (!rxtop) {
978 /* this is the beginning of a chain */
979 rxtop = skb;
980 skb_fill_page_desc(rxtop, 0, buffer_info->page,
981 0, length);
982 } else {
983 /* this is the middle of a chain */
984 skb_fill_page_desc(rxtop,
985 skb_shinfo(rxtop)->nr_frags,
986 buffer_info->page, 0, length);
987 /* re-use the skb, only consumed the page */
988 buffer_info->skb = skb;
990 e1000_consume_page(buffer_info, rxtop, length);
991 goto next_desc;
992 } else {
993 if (rxtop) {
994 /* end of the chain */
995 skb_fill_page_desc(rxtop,
996 skb_shinfo(rxtop)->nr_frags,
997 buffer_info->page, 0, length);
998 /* re-use the current skb, we only consumed the
999 * page */
1000 buffer_info->skb = skb;
1001 skb = rxtop;
1002 rxtop = NULL;
1003 e1000_consume_page(buffer_info, skb, length);
1004 } else {
1005 /* no chain, got EOP, this buf is the packet
1006 * copybreak to save the put_page/alloc_page */
1007 if (length <= copybreak &&
1008 skb_tailroom(skb) >= length) {
1009 u8 *vaddr;
1010 vaddr = kmap_atomic(buffer_info->page,
1011 KM_SKB_DATA_SOFTIRQ);
1012 memcpy(skb_tail_pointer(skb), vaddr,
1013 length);
1014 kunmap_atomic(vaddr,
1015 KM_SKB_DATA_SOFTIRQ);
1016 /* re-use the page, so don't erase
1017 * buffer_info->page */
1018 skb_put(skb, length);
1019 } else {
1020 skb_fill_page_desc(skb, 0,
1021 buffer_info->page, 0,
1022 length);
1023 e1000_consume_page(buffer_info, skb,
1024 length);
1029 /* Receive Checksum Offload XXX recompute due to CRC strip? */
1030 e1000_rx_checksum(adapter,
1031 (u32)(status) |
1032 ((u32)(rx_desc->errors) << 24),
1033 le16_to_cpu(rx_desc->csum), skb);
1035 /* probably a little skewed due to removing CRC */
1036 total_rx_bytes += skb->len;
1037 total_rx_packets++;
1039 /* eth type trans needs skb->data to point to something */
1040 if (!pskb_may_pull(skb, ETH_HLEN)) {
1041 e_err("pskb_may_pull failed.\n");
1042 dev_kfree_skb(skb);
1043 goto next_desc;
1046 e1000_receive_skb(adapter, netdev, skb, status,
1047 rx_desc->special);
1049 next_desc:
1050 rx_desc->status = 0;
1052 /* return some buffers to hardware, one at a time is too slow */
1053 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1054 adapter->alloc_rx_buf(adapter, cleaned_count);
1055 cleaned_count = 0;
1058 /* use prefetched values */
1059 rx_desc = next_rxd;
1060 buffer_info = next_buffer;
1062 rx_ring->next_to_clean = i;
1064 cleaned_count = e1000_desc_unused(rx_ring);
1065 if (cleaned_count)
1066 adapter->alloc_rx_buf(adapter, cleaned_count);
1068 adapter->total_rx_bytes += total_rx_bytes;
1069 adapter->total_rx_packets += total_rx_packets;
1070 netdev->stats.rx_bytes += total_rx_bytes;
1071 netdev->stats.rx_packets += total_rx_packets;
1072 return cleaned;
1076 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1077 * @adapter: board private structure
1079 static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
1081 struct e1000_ring *rx_ring = adapter->rx_ring;
1082 struct e1000_buffer *buffer_info;
1083 struct e1000_ps_page *ps_page;
1084 struct pci_dev *pdev = adapter->pdev;
1085 unsigned int i, j;
1087 /* Free all the Rx ring sk_buffs */
1088 for (i = 0; i < rx_ring->count; i++) {
1089 buffer_info = &rx_ring->buffer_info[i];
1090 if (buffer_info->dma) {
1091 if (adapter->clean_rx == e1000_clean_rx_irq)
1092 pci_unmap_single(pdev, buffer_info->dma,
1093 adapter->rx_buffer_len,
1094 PCI_DMA_FROMDEVICE);
1095 else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1096 pci_unmap_page(pdev, buffer_info->dma,
1097 PAGE_SIZE,
1098 PCI_DMA_FROMDEVICE);
1099 else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1100 pci_unmap_single(pdev, buffer_info->dma,
1101 adapter->rx_ps_bsize0,
1102 PCI_DMA_FROMDEVICE);
1103 buffer_info->dma = 0;
1106 if (buffer_info->page) {
1107 put_page(buffer_info->page);
1108 buffer_info->page = NULL;
1111 if (buffer_info->skb) {
1112 dev_kfree_skb(buffer_info->skb);
1113 buffer_info->skb = NULL;
1116 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1117 ps_page = &buffer_info->ps_pages[j];
1118 if (!ps_page->page)
1119 break;
1120 pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
1121 PCI_DMA_FROMDEVICE);
1122 ps_page->dma = 0;
1123 put_page(ps_page->page);
1124 ps_page->page = NULL;
1128 /* there also may be some cached data from a chained receive */
1129 if (rx_ring->rx_skb_top) {
1130 dev_kfree_skb(rx_ring->rx_skb_top);
1131 rx_ring->rx_skb_top = NULL;
1134 /* Zero out the descriptor ring */
1135 memset(rx_ring->desc, 0, rx_ring->size);
1137 rx_ring->next_to_clean = 0;
1138 rx_ring->next_to_use = 0;
1139 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1141 writel(0, adapter->hw.hw_addr + rx_ring->head);
1142 writel(0, adapter->hw.hw_addr + rx_ring->tail);
1145 static void e1000e_downshift_workaround(struct work_struct *work)
1147 struct e1000_adapter *adapter = container_of(work,
1148 struct e1000_adapter, downshift_task);
1150 e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1154 * e1000_intr_msi - Interrupt Handler
1155 * @irq: interrupt number
1156 * @data: pointer to a network interface device structure
1158 static irqreturn_t e1000_intr_msi(int irq, void *data)
1160 struct net_device *netdev = data;
1161 struct e1000_adapter *adapter = netdev_priv(netdev);
1162 struct e1000_hw *hw = &adapter->hw;
1163 u32 icr = er32(ICR);
1166 * read ICR disables interrupts using IAM
1169 if (icr & E1000_ICR_LSC) {
1170 hw->mac.get_link_status = 1;
1172 * ICH8 workaround-- Call gig speed drop workaround on cable
1173 * disconnect (LSC) before accessing any PHY registers
1175 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1176 (!(er32(STATUS) & E1000_STATUS_LU)))
1177 schedule_work(&adapter->downshift_task);
1180 * 80003ES2LAN workaround-- For packet buffer work-around on
1181 * link down event; disable receives here in the ISR and reset
1182 * adapter in watchdog
1184 if (netif_carrier_ok(netdev) &&
1185 adapter->flags & FLAG_RX_NEEDS_RESTART) {
1186 /* disable receives */
1187 u32 rctl = er32(RCTL);
1188 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1189 adapter->flags |= FLAG_RX_RESTART_NOW;
1191 /* guard against interrupt when we're going down */
1192 if (!test_bit(__E1000_DOWN, &adapter->state))
1193 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1196 if (napi_schedule_prep(&adapter->napi)) {
1197 adapter->total_tx_bytes = 0;
1198 adapter->total_tx_packets = 0;
1199 adapter->total_rx_bytes = 0;
1200 adapter->total_rx_packets = 0;
1201 __napi_schedule(&adapter->napi);
1204 return IRQ_HANDLED;
1208 * e1000_intr - Interrupt Handler
1209 * @irq: interrupt number
1210 * @data: pointer to a network interface device structure
1212 static irqreturn_t e1000_intr(int irq, void *data)
1214 struct net_device *netdev = data;
1215 struct e1000_adapter *adapter = netdev_priv(netdev);
1216 struct e1000_hw *hw = &adapter->hw;
1217 u32 rctl, icr = er32(ICR);
1219 if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1220 return IRQ_NONE; /* Not our interrupt */
1223 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1224 * not set, then the adapter didn't send an interrupt
1226 if (!(icr & E1000_ICR_INT_ASSERTED))
1227 return IRQ_NONE;
1230 * Interrupt Auto-Mask...upon reading ICR,
1231 * interrupts are masked. No need for the
1232 * IMC write
1235 if (icr & E1000_ICR_LSC) {
1236 hw->mac.get_link_status = 1;
1238 * ICH8 workaround-- Call gig speed drop workaround on cable
1239 * disconnect (LSC) before accessing any PHY registers
1241 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1242 (!(er32(STATUS) & E1000_STATUS_LU)))
1243 schedule_work(&adapter->downshift_task);
1246 * 80003ES2LAN workaround--
1247 * For packet buffer work-around on link down event;
1248 * disable receives here in the ISR and
1249 * reset adapter in watchdog
1251 if (netif_carrier_ok(netdev) &&
1252 (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1253 /* disable receives */
1254 rctl = er32(RCTL);
1255 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1256 adapter->flags |= FLAG_RX_RESTART_NOW;
1258 /* guard against interrupt when we're going down */
1259 if (!test_bit(__E1000_DOWN, &adapter->state))
1260 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1263 if (napi_schedule_prep(&adapter->napi)) {
1264 adapter->total_tx_bytes = 0;
1265 adapter->total_tx_packets = 0;
1266 adapter->total_rx_bytes = 0;
1267 adapter->total_rx_packets = 0;
1268 __napi_schedule(&adapter->napi);
1271 return IRQ_HANDLED;
1274 static irqreturn_t e1000_msix_other(int irq, void *data)
1276 struct net_device *netdev = data;
1277 struct e1000_adapter *adapter = netdev_priv(netdev);
1278 struct e1000_hw *hw = &adapter->hw;
1279 u32 icr = er32(ICR);
1281 if (!(icr & E1000_ICR_INT_ASSERTED)) {
1282 if (!test_bit(__E1000_DOWN, &adapter->state))
1283 ew32(IMS, E1000_IMS_OTHER);
1284 return IRQ_NONE;
1287 if (icr & adapter->eiac_mask)
1288 ew32(ICS, (icr & adapter->eiac_mask));
1290 if (icr & E1000_ICR_OTHER) {
1291 if (!(icr & E1000_ICR_LSC))
1292 goto no_link_interrupt;
1293 hw->mac.get_link_status = 1;
1294 /* guard against interrupt when we're going down */
1295 if (!test_bit(__E1000_DOWN, &adapter->state))
1296 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1299 no_link_interrupt:
1300 if (!test_bit(__E1000_DOWN, &adapter->state))
1301 ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1303 return IRQ_HANDLED;
1307 static irqreturn_t e1000_intr_msix_tx(int irq, void *data)
1309 struct net_device *netdev = data;
1310 struct e1000_adapter *adapter = netdev_priv(netdev);
1311 struct e1000_hw *hw = &adapter->hw;
1312 struct e1000_ring *tx_ring = adapter->tx_ring;
1315 adapter->total_tx_bytes = 0;
1316 adapter->total_tx_packets = 0;
1318 if (!e1000_clean_tx_irq(adapter))
1319 /* Ring was not completely cleaned, so fire another interrupt */
1320 ew32(ICS, tx_ring->ims_val);
1322 return IRQ_HANDLED;
1325 static irqreturn_t e1000_intr_msix_rx(int irq, void *data)
1327 struct net_device *netdev = data;
1328 struct e1000_adapter *adapter = netdev_priv(netdev);
1330 /* Write the ITR value calculated at the end of the
1331 * previous interrupt.
1333 if (adapter->rx_ring->set_itr) {
1334 writel(1000000000 / (adapter->rx_ring->itr_val * 256),
1335 adapter->hw.hw_addr + adapter->rx_ring->itr_register);
1336 adapter->rx_ring->set_itr = 0;
1339 if (napi_schedule_prep(&adapter->napi)) {
1340 adapter->total_rx_bytes = 0;
1341 adapter->total_rx_packets = 0;
1342 __napi_schedule(&adapter->napi);
1344 return IRQ_HANDLED;
1348 * e1000_configure_msix - Configure MSI-X hardware
1350 * e1000_configure_msix sets up the hardware to properly
1351 * generate MSI-X interrupts.
1353 static void e1000_configure_msix(struct e1000_adapter *adapter)
1355 struct e1000_hw *hw = &adapter->hw;
1356 struct e1000_ring *rx_ring = adapter->rx_ring;
1357 struct e1000_ring *tx_ring = adapter->tx_ring;
1358 int vector = 0;
1359 u32 ctrl_ext, ivar = 0;
1361 adapter->eiac_mask = 0;
1363 /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1364 if (hw->mac.type == e1000_82574) {
1365 u32 rfctl = er32(RFCTL);
1366 rfctl |= E1000_RFCTL_ACK_DIS;
1367 ew32(RFCTL, rfctl);
1370 #define E1000_IVAR_INT_ALLOC_VALID 0x8
1371 /* Configure Rx vector */
1372 rx_ring->ims_val = E1000_IMS_RXQ0;
1373 adapter->eiac_mask |= rx_ring->ims_val;
1374 if (rx_ring->itr_val)
1375 writel(1000000000 / (rx_ring->itr_val * 256),
1376 hw->hw_addr + rx_ring->itr_register);
1377 else
1378 writel(1, hw->hw_addr + rx_ring->itr_register);
1379 ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1381 /* Configure Tx vector */
1382 tx_ring->ims_val = E1000_IMS_TXQ0;
1383 vector++;
1384 if (tx_ring->itr_val)
1385 writel(1000000000 / (tx_ring->itr_val * 256),
1386 hw->hw_addr + tx_ring->itr_register);
1387 else
1388 writel(1, hw->hw_addr + tx_ring->itr_register);
1389 adapter->eiac_mask |= tx_ring->ims_val;
1390 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
1392 /* set vector for Other Causes, e.g. link changes */
1393 vector++;
1394 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
1395 if (rx_ring->itr_val)
1396 writel(1000000000 / (rx_ring->itr_val * 256),
1397 hw->hw_addr + E1000_EITR_82574(vector));
1398 else
1399 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
1401 /* Cause Tx interrupts on every write back */
1402 ivar |= (1 << 31);
1404 ew32(IVAR, ivar);
1406 /* enable MSI-X PBA support */
1407 ctrl_ext = er32(CTRL_EXT);
1408 ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
1410 /* Auto-Mask Other interrupts upon ICR read */
1411 #define E1000_EIAC_MASK_82574 0x01F00000
1412 ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
1413 ctrl_ext |= E1000_CTRL_EXT_EIAME;
1414 ew32(CTRL_EXT, ctrl_ext);
1415 e1e_flush();
1418 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
1420 if (adapter->msix_entries) {
1421 pci_disable_msix(adapter->pdev);
1422 kfree(adapter->msix_entries);
1423 adapter->msix_entries = NULL;
1424 } else if (adapter->flags & FLAG_MSI_ENABLED) {
1425 pci_disable_msi(adapter->pdev);
1426 adapter->flags &= ~FLAG_MSI_ENABLED;
1429 return;
1433 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
1435 * Attempt to configure interrupts using the best available
1436 * capabilities of the hardware and kernel.
1438 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
1440 int err;
1441 int numvecs, i;
1444 switch (adapter->int_mode) {
1445 case E1000E_INT_MODE_MSIX:
1446 if (adapter->flags & FLAG_HAS_MSIX) {
1447 numvecs = 3; /* RxQ0, TxQ0 and other */
1448 adapter->msix_entries = kcalloc(numvecs,
1449 sizeof(struct msix_entry),
1450 GFP_KERNEL);
1451 if (adapter->msix_entries) {
1452 for (i = 0; i < numvecs; i++)
1453 adapter->msix_entries[i].entry = i;
1455 err = pci_enable_msix(adapter->pdev,
1456 adapter->msix_entries,
1457 numvecs);
1458 if (err == 0)
1459 return;
1461 /* MSI-X failed, so fall through and try MSI */
1462 e_err("Failed to initialize MSI-X interrupts. "
1463 "Falling back to MSI interrupts.\n");
1464 e1000e_reset_interrupt_capability(adapter);
1466 adapter->int_mode = E1000E_INT_MODE_MSI;
1467 /* Fall through */
1468 case E1000E_INT_MODE_MSI:
1469 if (!pci_enable_msi(adapter->pdev)) {
1470 adapter->flags |= FLAG_MSI_ENABLED;
1471 } else {
1472 adapter->int_mode = E1000E_INT_MODE_LEGACY;
1473 e_err("Failed to initialize MSI interrupts. Falling "
1474 "back to legacy interrupts.\n");
1476 /* Fall through */
1477 case E1000E_INT_MODE_LEGACY:
1478 /* Don't do anything; this is the system default */
1479 break;
1482 return;
1486 * e1000_request_msix - Initialize MSI-X interrupts
1488 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
1489 * kernel.
1491 static int e1000_request_msix(struct e1000_adapter *adapter)
1493 struct net_device *netdev = adapter->netdev;
1494 int err = 0, vector = 0;
1496 if (strlen(netdev->name) < (IFNAMSIZ - 5))
1497 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1498 else
1499 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1500 err = request_irq(adapter->msix_entries[vector].vector,
1501 e1000_intr_msix_rx, 0, adapter->rx_ring->name,
1502 netdev);
1503 if (err)
1504 goto out;
1505 adapter->rx_ring->itr_register = E1000_EITR_82574(vector);
1506 adapter->rx_ring->itr_val = adapter->itr;
1507 vector++;
1509 if (strlen(netdev->name) < (IFNAMSIZ - 5))
1510 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1511 else
1512 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1513 err = request_irq(adapter->msix_entries[vector].vector,
1514 e1000_intr_msix_tx, 0, adapter->tx_ring->name,
1515 netdev);
1516 if (err)
1517 goto out;
1518 adapter->tx_ring->itr_register = E1000_EITR_82574(vector);
1519 adapter->tx_ring->itr_val = adapter->itr;
1520 vector++;
1522 err = request_irq(adapter->msix_entries[vector].vector,
1523 e1000_msix_other, 0, netdev->name, netdev);
1524 if (err)
1525 goto out;
1527 e1000_configure_msix(adapter);
1528 return 0;
1529 out:
1530 return err;
1534 * e1000_request_irq - initialize interrupts
1536 * Attempts to configure interrupts using the best available
1537 * capabilities of the hardware and kernel.
1539 static int e1000_request_irq(struct e1000_adapter *adapter)
1541 struct net_device *netdev = adapter->netdev;
1542 int err;
1544 if (adapter->msix_entries) {
1545 err = e1000_request_msix(adapter);
1546 if (!err)
1547 return err;
1548 /* fall back to MSI */
1549 e1000e_reset_interrupt_capability(adapter);
1550 adapter->int_mode = E1000E_INT_MODE_MSI;
1551 e1000e_set_interrupt_capability(adapter);
1553 if (adapter->flags & FLAG_MSI_ENABLED) {
1554 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
1555 netdev->name, netdev);
1556 if (!err)
1557 return err;
1559 /* fall back to legacy interrupt */
1560 e1000e_reset_interrupt_capability(adapter);
1561 adapter->int_mode = E1000E_INT_MODE_LEGACY;
1564 err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
1565 netdev->name, netdev);
1566 if (err)
1567 e_err("Unable to allocate interrupt, Error: %d\n", err);
1569 return err;
1572 static void e1000_free_irq(struct e1000_adapter *adapter)
1574 struct net_device *netdev = adapter->netdev;
1576 if (adapter->msix_entries) {
1577 int vector = 0;
1579 free_irq(adapter->msix_entries[vector].vector, netdev);
1580 vector++;
1582 free_irq(adapter->msix_entries[vector].vector, netdev);
1583 vector++;
1585 /* Other Causes interrupt vector */
1586 free_irq(adapter->msix_entries[vector].vector, netdev);
1587 return;
1590 free_irq(adapter->pdev->irq, netdev);
1594 * e1000_irq_disable - Mask off interrupt generation on the NIC
1596 static void e1000_irq_disable(struct e1000_adapter *adapter)
1598 struct e1000_hw *hw = &adapter->hw;
1600 ew32(IMC, ~0);
1601 if (adapter->msix_entries)
1602 ew32(EIAC_82574, 0);
1603 e1e_flush();
1604 synchronize_irq(adapter->pdev->irq);
1608 * e1000_irq_enable - Enable default interrupt generation settings
1610 static void e1000_irq_enable(struct e1000_adapter *adapter)
1612 struct e1000_hw *hw = &adapter->hw;
1614 if (adapter->msix_entries) {
1615 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
1616 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
1617 } else {
1618 ew32(IMS, IMS_ENABLE_MASK);
1620 e1e_flush();
1624 * e1000_get_hw_control - get control of the h/w from f/w
1625 * @adapter: address of board private structure
1627 * e1000_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1628 * For ASF and Pass Through versions of f/w this means that
1629 * the driver is loaded. For AMT version (only with 82573)
1630 * of the f/w this means that the network i/f is open.
1632 static void e1000_get_hw_control(struct e1000_adapter *adapter)
1634 struct e1000_hw *hw = &adapter->hw;
1635 u32 ctrl_ext;
1636 u32 swsm;
1638 /* Let firmware know the driver has taken over */
1639 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1640 swsm = er32(SWSM);
1641 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
1642 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1643 ctrl_ext = er32(CTRL_EXT);
1644 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1649 * e1000_release_hw_control - release control of the h/w to f/w
1650 * @adapter: address of board private structure
1652 * e1000_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1653 * For ASF and Pass Through versions of f/w this means that the
1654 * driver is no longer loaded. For AMT version (only with 82573) i
1655 * of the f/w this means that the network i/f is closed.
1658 static void e1000_release_hw_control(struct e1000_adapter *adapter)
1660 struct e1000_hw *hw = &adapter->hw;
1661 u32 ctrl_ext;
1662 u32 swsm;
1664 /* Let firmware taken over control of h/w */
1665 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1666 swsm = er32(SWSM);
1667 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
1668 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1669 ctrl_ext = er32(CTRL_EXT);
1670 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1675 * @e1000_alloc_ring - allocate memory for a ring structure
1677 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
1678 struct e1000_ring *ring)
1680 struct pci_dev *pdev = adapter->pdev;
1682 ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
1683 GFP_KERNEL);
1684 if (!ring->desc)
1685 return -ENOMEM;
1687 return 0;
1691 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
1692 * @adapter: board private structure
1694 * Return 0 on success, negative on failure
1696 int e1000e_setup_tx_resources(struct e1000_adapter *adapter)
1698 struct e1000_ring *tx_ring = adapter->tx_ring;
1699 int err = -ENOMEM, size;
1701 size = sizeof(struct e1000_buffer) * tx_ring->count;
1702 tx_ring->buffer_info = vmalloc(size);
1703 if (!tx_ring->buffer_info)
1704 goto err;
1705 memset(tx_ring->buffer_info, 0, size);
1707 /* round up to nearest 4K */
1708 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1709 tx_ring->size = ALIGN(tx_ring->size, 4096);
1711 err = e1000_alloc_ring_dma(adapter, tx_ring);
1712 if (err)
1713 goto err;
1715 tx_ring->next_to_use = 0;
1716 tx_ring->next_to_clean = 0;
1718 return 0;
1719 err:
1720 vfree(tx_ring->buffer_info);
1721 e_err("Unable to allocate memory for the transmit descriptor ring\n");
1722 return err;
1726 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
1727 * @adapter: board private structure
1729 * Returns 0 on success, negative on failure
1731 int e1000e_setup_rx_resources(struct e1000_adapter *adapter)
1733 struct e1000_ring *rx_ring = adapter->rx_ring;
1734 struct e1000_buffer *buffer_info;
1735 int i, size, desc_len, err = -ENOMEM;
1737 size = sizeof(struct e1000_buffer) * rx_ring->count;
1738 rx_ring->buffer_info = vmalloc(size);
1739 if (!rx_ring->buffer_info)
1740 goto err;
1741 memset(rx_ring->buffer_info, 0, size);
1743 for (i = 0; i < rx_ring->count; i++) {
1744 buffer_info = &rx_ring->buffer_info[i];
1745 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
1746 sizeof(struct e1000_ps_page),
1747 GFP_KERNEL);
1748 if (!buffer_info->ps_pages)
1749 goto err_pages;
1752 desc_len = sizeof(union e1000_rx_desc_packet_split);
1754 /* Round up to nearest 4K */
1755 rx_ring->size = rx_ring->count * desc_len;
1756 rx_ring->size = ALIGN(rx_ring->size, 4096);
1758 err = e1000_alloc_ring_dma(adapter, rx_ring);
1759 if (err)
1760 goto err_pages;
1762 rx_ring->next_to_clean = 0;
1763 rx_ring->next_to_use = 0;
1764 rx_ring->rx_skb_top = NULL;
1766 return 0;
1768 err_pages:
1769 for (i = 0; i < rx_ring->count; i++) {
1770 buffer_info = &rx_ring->buffer_info[i];
1771 kfree(buffer_info->ps_pages);
1773 err:
1774 vfree(rx_ring->buffer_info);
1775 e_err("Unable to allocate memory for the transmit descriptor ring\n");
1776 return err;
1780 * e1000_clean_tx_ring - Free Tx Buffers
1781 * @adapter: board private structure
1783 static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
1785 struct e1000_ring *tx_ring = adapter->tx_ring;
1786 struct e1000_buffer *buffer_info;
1787 unsigned long size;
1788 unsigned int i;
1790 for (i = 0; i < tx_ring->count; i++) {
1791 buffer_info = &tx_ring->buffer_info[i];
1792 e1000_put_txbuf(adapter, buffer_info);
1795 size = sizeof(struct e1000_buffer) * tx_ring->count;
1796 memset(tx_ring->buffer_info, 0, size);
1798 memset(tx_ring->desc, 0, tx_ring->size);
1800 tx_ring->next_to_use = 0;
1801 tx_ring->next_to_clean = 0;
1803 writel(0, adapter->hw.hw_addr + tx_ring->head);
1804 writel(0, adapter->hw.hw_addr + tx_ring->tail);
1808 * e1000e_free_tx_resources - Free Tx Resources per Queue
1809 * @adapter: board private structure
1811 * Free all transmit software resources
1813 void e1000e_free_tx_resources(struct e1000_adapter *adapter)
1815 struct pci_dev *pdev = adapter->pdev;
1816 struct e1000_ring *tx_ring = adapter->tx_ring;
1818 e1000_clean_tx_ring(adapter);
1820 vfree(tx_ring->buffer_info);
1821 tx_ring->buffer_info = NULL;
1823 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1824 tx_ring->dma);
1825 tx_ring->desc = NULL;
1829 * e1000e_free_rx_resources - Free Rx Resources
1830 * @adapter: board private structure
1832 * Free all receive software resources
1835 void e1000e_free_rx_resources(struct e1000_adapter *adapter)
1837 struct pci_dev *pdev = adapter->pdev;
1838 struct e1000_ring *rx_ring = adapter->rx_ring;
1839 int i;
1841 e1000_clean_rx_ring(adapter);
1843 for (i = 0; i < rx_ring->count; i++) {
1844 kfree(rx_ring->buffer_info[i].ps_pages);
1847 vfree(rx_ring->buffer_info);
1848 rx_ring->buffer_info = NULL;
1850 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1851 rx_ring->dma);
1852 rx_ring->desc = NULL;
1856 * e1000_update_itr - update the dynamic ITR value based on statistics
1857 * @adapter: pointer to adapter
1858 * @itr_setting: current adapter->itr
1859 * @packets: the number of packets during this measurement interval
1860 * @bytes: the number of bytes during this measurement interval
1862 * Stores a new ITR value based on packets and byte
1863 * counts during the last interrupt. The advantage of per interrupt
1864 * computation is faster updates and more accurate ITR for the current
1865 * traffic pattern. Constants in this function were computed
1866 * based on theoretical maximum wire speed and thresholds were set based
1867 * on testing data as well as attempting to minimize response time
1868 * while increasing bulk throughput. This functionality is controlled
1869 * by the InterruptThrottleRate module parameter.
1871 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
1872 u16 itr_setting, int packets,
1873 int bytes)
1875 unsigned int retval = itr_setting;
1877 if (packets == 0)
1878 goto update_itr_done;
1880 switch (itr_setting) {
1881 case lowest_latency:
1882 /* handle TSO and jumbo frames */
1883 if (bytes/packets > 8000)
1884 retval = bulk_latency;
1885 else if ((packets < 5) && (bytes > 512)) {
1886 retval = low_latency;
1888 break;
1889 case low_latency: /* 50 usec aka 20000 ints/s */
1890 if (bytes > 10000) {
1891 /* this if handles the TSO accounting */
1892 if (bytes/packets > 8000) {
1893 retval = bulk_latency;
1894 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
1895 retval = bulk_latency;
1896 } else if ((packets > 35)) {
1897 retval = lowest_latency;
1899 } else if (bytes/packets > 2000) {
1900 retval = bulk_latency;
1901 } else if (packets <= 2 && bytes < 512) {
1902 retval = lowest_latency;
1904 break;
1905 case bulk_latency: /* 250 usec aka 4000 ints/s */
1906 if (bytes > 25000) {
1907 if (packets > 35) {
1908 retval = low_latency;
1910 } else if (bytes < 6000) {
1911 retval = low_latency;
1913 break;
1916 update_itr_done:
1917 return retval;
1920 static void e1000_set_itr(struct e1000_adapter *adapter)
1922 struct e1000_hw *hw = &adapter->hw;
1923 u16 current_itr;
1924 u32 new_itr = adapter->itr;
1926 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
1927 if (adapter->link_speed != SPEED_1000) {
1928 current_itr = 0;
1929 new_itr = 4000;
1930 goto set_itr_now;
1933 adapter->tx_itr = e1000_update_itr(adapter,
1934 adapter->tx_itr,
1935 adapter->total_tx_packets,
1936 adapter->total_tx_bytes);
1937 /* conservative mode (itr 3) eliminates the lowest_latency setting */
1938 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
1939 adapter->tx_itr = low_latency;
1941 adapter->rx_itr = e1000_update_itr(adapter,
1942 adapter->rx_itr,
1943 adapter->total_rx_packets,
1944 adapter->total_rx_bytes);
1945 /* conservative mode (itr 3) eliminates the lowest_latency setting */
1946 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
1947 adapter->rx_itr = low_latency;
1949 current_itr = max(adapter->rx_itr, adapter->tx_itr);
1951 switch (current_itr) {
1952 /* counts and packets in update_itr are dependent on these numbers */
1953 case lowest_latency:
1954 new_itr = 70000;
1955 break;
1956 case low_latency:
1957 new_itr = 20000; /* aka hwitr = ~200 */
1958 break;
1959 case bulk_latency:
1960 new_itr = 4000;
1961 break;
1962 default:
1963 break;
1966 set_itr_now:
1967 if (new_itr != adapter->itr) {
1969 * this attempts to bias the interrupt rate towards Bulk
1970 * by adding intermediate steps when interrupt rate is
1971 * increasing
1973 new_itr = new_itr > adapter->itr ?
1974 min(adapter->itr + (new_itr >> 2), new_itr) :
1975 new_itr;
1976 adapter->itr = new_itr;
1977 adapter->rx_ring->itr_val = new_itr;
1978 if (adapter->msix_entries)
1979 adapter->rx_ring->set_itr = 1;
1980 else
1981 ew32(ITR, 1000000000 / (new_itr * 256));
1986 * e1000_alloc_queues - Allocate memory for all rings
1987 * @adapter: board private structure to initialize
1989 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
1991 adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
1992 if (!adapter->tx_ring)
1993 goto err;
1995 adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
1996 if (!adapter->rx_ring)
1997 goto err;
1999 return 0;
2000 err:
2001 e_err("Unable to allocate memory for queues\n");
2002 kfree(adapter->rx_ring);
2003 kfree(adapter->tx_ring);
2004 return -ENOMEM;
2008 * e1000_clean - NAPI Rx polling callback
2009 * @napi: struct associated with this polling callback
2010 * @budget: amount of packets driver is allowed to process this poll
2012 static int e1000_clean(struct napi_struct *napi, int budget)
2014 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
2015 struct e1000_hw *hw = &adapter->hw;
2016 struct net_device *poll_dev = adapter->netdev;
2017 int tx_cleaned = 1, work_done = 0;
2019 adapter = netdev_priv(poll_dev);
2021 if (adapter->msix_entries &&
2022 !(adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2023 goto clean_rx;
2025 tx_cleaned = e1000_clean_tx_irq(adapter);
2027 clean_rx:
2028 adapter->clean_rx(adapter, &work_done, budget);
2030 if (!tx_cleaned)
2031 work_done = budget;
2033 /* If budget not fully consumed, exit the polling mode */
2034 if (work_done < budget) {
2035 if (adapter->itr_setting & 3)
2036 e1000_set_itr(adapter);
2037 napi_complete(napi);
2038 if (!test_bit(__E1000_DOWN, &adapter->state)) {
2039 if (adapter->msix_entries)
2040 ew32(IMS, adapter->rx_ring->ims_val);
2041 else
2042 e1000_irq_enable(adapter);
2046 return work_done;
2049 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
2051 struct e1000_adapter *adapter = netdev_priv(netdev);
2052 struct e1000_hw *hw = &adapter->hw;
2053 u32 vfta, index;
2055 /* don't update vlan cookie if already programmed */
2056 if ((adapter->hw.mng_cookie.status &
2057 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2058 (vid == adapter->mng_vlan_id))
2059 return;
2061 /* add VID to filter table */
2062 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2063 index = (vid >> 5) & 0x7F;
2064 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2065 vfta |= (1 << (vid & 0x1F));
2066 hw->mac.ops.write_vfta(hw, index, vfta);
2070 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
2072 struct e1000_adapter *adapter = netdev_priv(netdev);
2073 struct e1000_hw *hw = &adapter->hw;
2074 u32 vfta, index;
2076 if (!test_bit(__E1000_DOWN, &adapter->state))
2077 e1000_irq_disable(adapter);
2078 vlan_group_set_device(adapter->vlgrp, vid, NULL);
2080 if (!test_bit(__E1000_DOWN, &adapter->state))
2081 e1000_irq_enable(adapter);
2083 if ((adapter->hw.mng_cookie.status &
2084 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2085 (vid == adapter->mng_vlan_id)) {
2086 /* release control to f/w */
2087 e1000_release_hw_control(adapter);
2088 return;
2091 /* remove VID from filter table */
2092 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2093 index = (vid >> 5) & 0x7F;
2094 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2095 vfta &= ~(1 << (vid & 0x1F));
2096 hw->mac.ops.write_vfta(hw, index, vfta);
2100 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2102 struct net_device *netdev = adapter->netdev;
2103 u16 vid = adapter->hw.mng_cookie.vlan_id;
2104 u16 old_vid = adapter->mng_vlan_id;
2106 if (!adapter->vlgrp)
2107 return;
2109 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
2110 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2111 if (adapter->hw.mng_cookie.status &
2112 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2113 e1000_vlan_rx_add_vid(netdev, vid);
2114 adapter->mng_vlan_id = vid;
2117 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
2118 (vid != old_vid) &&
2119 !vlan_group_get_device(adapter->vlgrp, old_vid))
2120 e1000_vlan_rx_kill_vid(netdev, old_vid);
2121 } else {
2122 adapter->mng_vlan_id = vid;
2127 static void e1000_vlan_rx_register(struct net_device *netdev,
2128 struct vlan_group *grp)
2130 struct e1000_adapter *adapter = netdev_priv(netdev);
2131 struct e1000_hw *hw = &adapter->hw;
2132 u32 ctrl, rctl;
2134 if (!test_bit(__E1000_DOWN, &adapter->state))
2135 e1000_irq_disable(adapter);
2136 adapter->vlgrp = grp;
2138 if (grp) {
2139 /* enable VLAN tag insert/strip */
2140 ctrl = er32(CTRL);
2141 ctrl |= E1000_CTRL_VME;
2142 ew32(CTRL, ctrl);
2144 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2145 /* enable VLAN receive filtering */
2146 rctl = er32(RCTL);
2147 rctl &= ~E1000_RCTL_CFIEN;
2148 ew32(RCTL, rctl);
2149 e1000_update_mng_vlan(adapter);
2151 } else {
2152 /* disable VLAN tag insert/strip */
2153 ctrl = er32(CTRL);
2154 ctrl &= ~E1000_CTRL_VME;
2155 ew32(CTRL, ctrl);
2157 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2158 if (adapter->mng_vlan_id !=
2159 (u16)E1000_MNG_VLAN_NONE) {
2160 e1000_vlan_rx_kill_vid(netdev,
2161 adapter->mng_vlan_id);
2162 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2167 if (!test_bit(__E1000_DOWN, &adapter->state))
2168 e1000_irq_enable(adapter);
2171 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2173 u16 vid;
2175 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
2177 if (!adapter->vlgrp)
2178 return;
2180 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
2181 if (!vlan_group_get_device(adapter->vlgrp, vid))
2182 continue;
2183 e1000_vlan_rx_add_vid(adapter->netdev, vid);
2187 static void e1000_init_manageability(struct e1000_adapter *adapter)
2189 struct e1000_hw *hw = &adapter->hw;
2190 u32 manc, manc2h;
2192 if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2193 return;
2195 manc = er32(MANC);
2198 * enable receiving management packets to the host. this will probably
2199 * generate destination unreachable messages from the host OS, but
2200 * the packets will be handled on SMBUS
2202 manc |= E1000_MANC_EN_MNG2HOST;
2203 manc2h = er32(MANC2H);
2204 #define E1000_MNG2HOST_PORT_623 (1 << 5)
2205 #define E1000_MNG2HOST_PORT_664 (1 << 6)
2206 manc2h |= E1000_MNG2HOST_PORT_623;
2207 manc2h |= E1000_MNG2HOST_PORT_664;
2208 ew32(MANC2H, manc2h);
2209 ew32(MANC, manc);
2213 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
2214 * @adapter: board private structure
2216 * Configure the Tx unit of the MAC after a reset.
2218 static void e1000_configure_tx(struct e1000_adapter *adapter)
2220 struct e1000_hw *hw = &adapter->hw;
2221 struct e1000_ring *tx_ring = adapter->tx_ring;
2222 u64 tdba;
2223 u32 tdlen, tctl, tipg, tarc;
2224 u32 ipgr1, ipgr2;
2226 /* Setup the HW Tx Head and Tail descriptor pointers */
2227 tdba = tx_ring->dma;
2228 tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2229 ew32(TDBAL, (tdba & DMA_BIT_MASK(32)));
2230 ew32(TDBAH, (tdba >> 32));
2231 ew32(TDLEN, tdlen);
2232 ew32(TDH, 0);
2233 ew32(TDT, 0);
2234 tx_ring->head = E1000_TDH;
2235 tx_ring->tail = E1000_TDT;
2237 /* Set the default values for the Tx Inter Packet Gap timer */
2238 tipg = DEFAULT_82543_TIPG_IPGT_COPPER; /* 8 */
2239 ipgr1 = DEFAULT_82543_TIPG_IPGR1; /* 8 */
2240 ipgr2 = DEFAULT_82543_TIPG_IPGR2; /* 6 */
2242 if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN)
2243 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /* 7 */
2245 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
2246 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
2247 ew32(TIPG, tipg);
2249 /* Set the Tx Interrupt Delay register */
2250 ew32(TIDV, adapter->tx_int_delay);
2251 /* Tx irq moderation */
2252 ew32(TADV, adapter->tx_abs_int_delay);
2254 /* Program the Transmit Control Register */
2255 tctl = er32(TCTL);
2256 tctl &= ~E1000_TCTL_CT;
2257 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2258 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2260 if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2261 tarc = er32(TARC(0));
2263 * set the speed mode bit, we'll clear it if we're not at
2264 * gigabit link later
2266 #define SPEED_MODE_BIT (1 << 21)
2267 tarc |= SPEED_MODE_BIT;
2268 ew32(TARC(0), tarc);
2271 /* errata: program both queues to unweighted RR */
2272 if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2273 tarc = er32(TARC(0));
2274 tarc |= 1;
2275 ew32(TARC(0), tarc);
2276 tarc = er32(TARC(1));
2277 tarc |= 1;
2278 ew32(TARC(1), tarc);
2281 /* Setup Transmit Descriptor Settings for eop descriptor */
2282 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2284 /* only set IDE if we are delaying interrupts using the timers */
2285 if (adapter->tx_int_delay)
2286 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2288 /* enable Report Status bit */
2289 adapter->txd_cmd |= E1000_TXD_CMD_RS;
2291 ew32(TCTL, tctl);
2293 e1000e_config_collision_dist(hw);
2295 adapter->tx_queue_len = adapter->netdev->tx_queue_len;
2299 * e1000_setup_rctl - configure the receive control registers
2300 * @adapter: Board private structure
2302 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
2303 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
2304 static void e1000_setup_rctl(struct e1000_adapter *adapter)
2306 struct e1000_hw *hw = &adapter->hw;
2307 u32 rctl, rfctl;
2308 u32 psrctl = 0;
2309 u32 pages = 0;
2311 /* Program MC offset vector base */
2312 rctl = er32(RCTL);
2313 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2314 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
2315 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
2316 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2318 /* Do not Store bad packets */
2319 rctl &= ~E1000_RCTL_SBP;
2321 /* Enable Long Packet receive */
2322 if (adapter->netdev->mtu <= ETH_DATA_LEN)
2323 rctl &= ~E1000_RCTL_LPE;
2324 else
2325 rctl |= E1000_RCTL_LPE;
2327 /* Some systems expect that the CRC is included in SMBUS traffic. The
2328 * hardware strips the CRC before sending to both SMBUS (BMC) and to
2329 * host memory when this is enabled
2331 if (adapter->flags2 & FLAG2_CRC_STRIPPING)
2332 rctl |= E1000_RCTL_SECRC;
2334 /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
2335 if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
2336 u16 phy_data;
2338 e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
2339 phy_data &= 0xfff8;
2340 phy_data |= (1 << 2);
2341 e1e_wphy(hw, PHY_REG(770, 26), phy_data);
2343 e1e_rphy(hw, 22, &phy_data);
2344 phy_data &= 0x0fff;
2345 phy_data |= (1 << 14);
2346 e1e_wphy(hw, 0x10, 0x2823);
2347 e1e_wphy(hw, 0x11, 0x0003);
2348 e1e_wphy(hw, 22, phy_data);
2351 /* Setup buffer sizes */
2352 rctl &= ~E1000_RCTL_SZ_4096;
2353 rctl |= E1000_RCTL_BSEX;
2354 switch (adapter->rx_buffer_len) {
2355 case 2048:
2356 default:
2357 rctl |= E1000_RCTL_SZ_2048;
2358 rctl &= ~E1000_RCTL_BSEX;
2359 break;
2360 case 4096:
2361 rctl |= E1000_RCTL_SZ_4096;
2362 break;
2363 case 8192:
2364 rctl |= E1000_RCTL_SZ_8192;
2365 break;
2366 case 16384:
2367 rctl |= E1000_RCTL_SZ_16384;
2368 break;
2372 * 82571 and greater support packet-split where the protocol
2373 * header is placed in skb->data and the packet data is
2374 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2375 * In the case of a non-split, skb->data is linearly filled,
2376 * followed by the page buffers. Therefore, skb->data is
2377 * sized to hold the largest protocol header.
2379 * allocations using alloc_page take too long for regular MTU
2380 * so only enable packet split for jumbo frames
2382 * Using pages when the page size is greater than 16k wastes
2383 * a lot of memory, since we allocate 3 pages at all times
2384 * per packet.
2386 pages = PAGE_USE_COUNT(adapter->netdev->mtu);
2387 if (!(adapter->flags & FLAG_IS_ICH) && (pages <= 3) &&
2388 (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
2389 adapter->rx_ps_pages = pages;
2390 else
2391 adapter->rx_ps_pages = 0;
2393 if (adapter->rx_ps_pages) {
2394 /* Configure extra packet-split registers */
2395 rfctl = er32(RFCTL);
2396 rfctl |= E1000_RFCTL_EXTEN;
2398 * disable packet split support for IPv6 extension headers,
2399 * because some malformed IPv6 headers can hang the Rx
2401 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
2402 E1000_RFCTL_NEW_IPV6_EXT_DIS);
2404 ew32(RFCTL, rfctl);
2406 /* Enable Packet split descriptors */
2407 rctl |= E1000_RCTL_DTYP_PS;
2409 psrctl |= adapter->rx_ps_bsize0 >>
2410 E1000_PSRCTL_BSIZE0_SHIFT;
2412 switch (adapter->rx_ps_pages) {
2413 case 3:
2414 psrctl |= PAGE_SIZE <<
2415 E1000_PSRCTL_BSIZE3_SHIFT;
2416 case 2:
2417 psrctl |= PAGE_SIZE <<
2418 E1000_PSRCTL_BSIZE2_SHIFT;
2419 case 1:
2420 psrctl |= PAGE_SIZE >>
2421 E1000_PSRCTL_BSIZE1_SHIFT;
2422 break;
2425 ew32(PSRCTL, psrctl);
2428 ew32(RCTL, rctl);
2429 /* just started the receive unit, no need to restart */
2430 adapter->flags &= ~FLAG_RX_RESTART_NOW;
2434 * e1000_configure_rx - Configure Receive Unit after Reset
2435 * @adapter: board private structure
2437 * Configure the Rx unit of the MAC after a reset.
2439 static void e1000_configure_rx(struct e1000_adapter *adapter)
2441 struct e1000_hw *hw = &adapter->hw;
2442 struct e1000_ring *rx_ring = adapter->rx_ring;
2443 u64 rdba;
2444 u32 rdlen, rctl, rxcsum, ctrl_ext;
2446 if (adapter->rx_ps_pages) {
2447 /* this is a 32 byte descriptor */
2448 rdlen = rx_ring->count *
2449 sizeof(union e1000_rx_desc_packet_split);
2450 adapter->clean_rx = e1000_clean_rx_irq_ps;
2451 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
2452 } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
2453 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2454 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
2455 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
2456 } else {
2457 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2458 adapter->clean_rx = e1000_clean_rx_irq;
2459 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
2462 /* disable receives while setting up the descriptors */
2463 rctl = er32(RCTL);
2464 ew32(RCTL, rctl & ~E1000_RCTL_EN);
2465 e1e_flush();
2466 msleep(10);
2468 /* set the Receive Delay Timer Register */
2469 ew32(RDTR, adapter->rx_int_delay);
2471 /* irq moderation */
2472 ew32(RADV, adapter->rx_abs_int_delay);
2473 if (adapter->itr_setting != 0)
2474 ew32(ITR, 1000000000 / (adapter->itr * 256));
2476 ctrl_ext = er32(CTRL_EXT);
2477 /* Auto-Mask interrupts upon ICR access */
2478 ctrl_ext |= E1000_CTRL_EXT_IAME;
2479 ew32(IAM, 0xffffffff);
2480 ew32(CTRL_EXT, ctrl_ext);
2481 e1e_flush();
2484 * Setup the HW Rx Head and Tail Descriptor Pointers and
2485 * the Base and Length of the Rx Descriptor Ring
2487 rdba = rx_ring->dma;
2488 ew32(RDBAL, (rdba & DMA_BIT_MASK(32)));
2489 ew32(RDBAH, (rdba >> 32));
2490 ew32(RDLEN, rdlen);
2491 ew32(RDH, 0);
2492 ew32(RDT, 0);
2493 rx_ring->head = E1000_RDH;
2494 rx_ring->tail = E1000_RDT;
2496 /* Enable Receive Checksum Offload for TCP and UDP */
2497 rxcsum = er32(RXCSUM);
2498 if (adapter->flags & FLAG_RX_CSUM_ENABLED) {
2499 rxcsum |= E1000_RXCSUM_TUOFL;
2502 * IPv4 payload checksum for UDP fragments must be
2503 * used in conjunction with packet-split.
2505 if (adapter->rx_ps_pages)
2506 rxcsum |= E1000_RXCSUM_IPPCSE;
2507 } else {
2508 rxcsum &= ~E1000_RXCSUM_TUOFL;
2509 /* no need to clear IPPCSE as it defaults to 0 */
2511 ew32(RXCSUM, rxcsum);
2514 * Enable early receives on supported devices, only takes effect when
2515 * packet size is equal or larger than the specified value (in 8 byte
2516 * units), e.g. using jumbo frames when setting to E1000_ERT_2048
2518 if (adapter->flags & FLAG_HAS_ERT) {
2519 if (adapter->netdev->mtu > ETH_DATA_LEN) {
2520 u32 rxdctl = er32(RXDCTL(0));
2521 ew32(RXDCTL(0), rxdctl | 0x3);
2522 ew32(ERT, E1000_ERT_2048 | (1 << 13));
2524 * With jumbo frames and early-receive enabled,
2525 * excessive C-state transition latencies result in
2526 * dropped transactions.
2528 pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY,
2529 adapter->netdev->name, 55);
2530 } else {
2531 pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY,
2532 adapter->netdev->name,
2533 PM_QOS_DEFAULT_VALUE);
2537 /* Enable Receives */
2538 ew32(RCTL, rctl);
2542 * e1000_update_mc_addr_list - Update Multicast addresses
2543 * @hw: pointer to the HW structure
2544 * @mc_addr_list: array of multicast addresses to program
2545 * @mc_addr_count: number of multicast addresses to program
2546 * @rar_used_count: the first RAR register free to program
2547 * @rar_count: total number of supported Receive Address Registers
2549 * Updates the Receive Address Registers and Multicast Table Array.
2550 * The caller must have a packed mc_addr_list of multicast addresses.
2551 * The parameter rar_count will usually be hw->mac.rar_entry_count
2552 * unless there are workarounds that change this. Currently no func pointer
2553 * exists and all implementations are handled in the generic version of this
2554 * function.
2556 static void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
2557 u32 mc_addr_count, u32 rar_used_count,
2558 u32 rar_count)
2560 hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count,
2561 rar_used_count, rar_count);
2565 * e1000_set_multi - Multicast and Promiscuous mode set
2566 * @netdev: network interface device structure
2568 * The set_multi entry point is called whenever the multicast address
2569 * list or the network interface flags are updated. This routine is
2570 * responsible for configuring the hardware for proper multicast,
2571 * promiscuous mode, and all-multi behavior.
2573 static void e1000_set_multi(struct net_device *netdev)
2575 struct e1000_adapter *adapter = netdev_priv(netdev);
2576 struct e1000_hw *hw = &adapter->hw;
2577 struct e1000_mac_info *mac = &hw->mac;
2578 struct dev_mc_list *mc_ptr;
2579 u8 *mta_list;
2580 u32 rctl;
2581 int i;
2583 /* Check for Promiscuous and All Multicast modes */
2585 rctl = er32(RCTL);
2587 if (netdev->flags & IFF_PROMISC) {
2588 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2589 rctl &= ~E1000_RCTL_VFE;
2590 } else {
2591 if (netdev->flags & IFF_ALLMULTI) {
2592 rctl |= E1000_RCTL_MPE;
2593 rctl &= ~E1000_RCTL_UPE;
2594 } else {
2595 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2597 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
2598 rctl |= E1000_RCTL_VFE;
2601 ew32(RCTL, rctl);
2603 if (netdev->mc_count) {
2604 mta_list = kmalloc(netdev->mc_count * 6, GFP_ATOMIC);
2605 if (!mta_list)
2606 return;
2608 /* prepare a packed array of only addresses. */
2609 mc_ptr = netdev->mc_list;
2611 for (i = 0; i < netdev->mc_count; i++) {
2612 if (!mc_ptr)
2613 break;
2614 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr,
2615 ETH_ALEN);
2616 mc_ptr = mc_ptr->next;
2619 e1000_update_mc_addr_list(hw, mta_list, i, 1,
2620 mac->rar_entry_count);
2621 kfree(mta_list);
2622 } else {
2624 * if we're called from probe, we might not have
2625 * anything to do here, so clear out the list
2627 e1000_update_mc_addr_list(hw, NULL, 0, 1, mac->rar_entry_count);
2632 * e1000_configure - configure the hardware for Rx and Tx
2633 * @adapter: private board structure
2635 static void e1000_configure(struct e1000_adapter *adapter)
2637 e1000_set_multi(adapter->netdev);
2639 e1000_restore_vlan(adapter);
2640 e1000_init_manageability(adapter);
2642 e1000_configure_tx(adapter);
2643 e1000_setup_rctl(adapter);
2644 e1000_configure_rx(adapter);
2645 adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring));
2649 * e1000e_power_up_phy - restore link in case the phy was powered down
2650 * @adapter: address of board private structure
2652 * The phy may be powered down to save power and turn off link when the
2653 * driver is unloaded and wake on lan is not enabled (among others)
2654 * *** this routine MUST be followed by a call to e1000e_reset ***
2656 void e1000e_power_up_phy(struct e1000_adapter *adapter)
2658 if (adapter->hw.phy.ops.power_up)
2659 adapter->hw.phy.ops.power_up(&adapter->hw);
2661 adapter->hw.mac.ops.setup_link(&adapter->hw);
2665 * e1000_power_down_phy - Power down the PHY
2667 * Power down the PHY so no link is implied when interface is down.
2668 * The PHY cannot be powered down if management or WoL is active.
2670 static void e1000_power_down_phy(struct e1000_adapter *adapter)
2672 /* WoL is enabled */
2673 if (adapter->wol)
2674 return;
2676 if (adapter->hw.phy.ops.power_down)
2677 adapter->hw.phy.ops.power_down(&adapter->hw);
2681 * e1000e_reset - bring the hardware into a known good state
2683 * This function boots the hardware and enables some settings that
2684 * require a configuration cycle of the hardware - those cannot be
2685 * set/changed during runtime. After reset the device needs to be
2686 * properly configured for Rx, Tx etc.
2688 void e1000e_reset(struct e1000_adapter *adapter)
2690 struct e1000_mac_info *mac = &adapter->hw.mac;
2691 struct e1000_fc_info *fc = &adapter->hw.fc;
2692 struct e1000_hw *hw = &adapter->hw;
2693 u32 tx_space, min_tx_space, min_rx_space;
2694 u32 pba = adapter->pba;
2695 u16 hwm;
2697 /* reset Packet Buffer Allocation to default */
2698 ew32(PBA, pba);
2700 if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
2702 * To maintain wire speed transmits, the Tx FIFO should be
2703 * large enough to accommodate two full transmit packets,
2704 * rounded up to the next 1KB and expressed in KB. Likewise,
2705 * the Rx FIFO should be large enough to accommodate at least
2706 * one full receive packet and is similarly rounded up and
2707 * expressed in KB.
2709 pba = er32(PBA);
2710 /* upper 16 bits has Tx packet buffer allocation size in KB */
2711 tx_space = pba >> 16;
2712 /* lower 16 bits has Rx packet buffer allocation size in KB */
2713 pba &= 0xffff;
2715 * the Tx fifo also stores 16 bytes of information about the tx
2716 * but don't include ethernet FCS because hardware appends it
2718 min_tx_space = (adapter->max_frame_size +
2719 sizeof(struct e1000_tx_desc) -
2720 ETH_FCS_LEN) * 2;
2721 min_tx_space = ALIGN(min_tx_space, 1024);
2722 min_tx_space >>= 10;
2723 /* software strips receive CRC, so leave room for it */
2724 min_rx_space = adapter->max_frame_size;
2725 min_rx_space = ALIGN(min_rx_space, 1024);
2726 min_rx_space >>= 10;
2729 * If current Tx allocation is less than the min Tx FIFO size,
2730 * and the min Tx FIFO size is less than the current Rx FIFO
2731 * allocation, take space away from current Rx allocation
2733 if ((tx_space < min_tx_space) &&
2734 ((min_tx_space - tx_space) < pba)) {
2735 pba -= min_tx_space - tx_space;
2738 * if short on Rx space, Rx wins and must trump tx
2739 * adjustment or use Early Receive if available
2741 if ((pba < min_rx_space) &&
2742 (!(adapter->flags & FLAG_HAS_ERT)))
2743 /* ERT enabled in e1000_configure_rx */
2744 pba = min_rx_space;
2747 ew32(PBA, pba);
2752 * flow control settings
2754 * The high water mark must be low enough to fit one full frame
2755 * (or the size used for early receive) above it in the Rx FIFO.
2756 * Set it to the lower of:
2757 * - 90% of the Rx FIFO size, and
2758 * - the full Rx FIFO size minus the early receive size (for parts
2759 * with ERT support assuming ERT set to E1000_ERT_2048), or
2760 * - the full Rx FIFO size minus one full frame
2762 if (hw->mac.type == e1000_pchlan) {
2764 * Workaround PCH LOM adapter hangs with certain network
2765 * loads. If hangs persist, try disabling Tx flow control.
2767 if (adapter->netdev->mtu > ETH_DATA_LEN) {
2768 fc->high_water = 0x3500;
2769 fc->low_water = 0x1500;
2770 } else {
2771 fc->high_water = 0x5000;
2772 fc->low_water = 0x3000;
2774 } else {
2775 if ((adapter->flags & FLAG_HAS_ERT) &&
2776 (adapter->netdev->mtu > ETH_DATA_LEN))
2777 hwm = min(((pba << 10) * 9 / 10),
2778 ((pba << 10) - (E1000_ERT_2048 << 3)));
2779 else
2780 hwm = min(((pba << 10) * 9 / 10),
2781 ((pba << 10) - adapter->max_frame_size));
2783 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
2784 fc->low_water = fc->high_water - 8;
2787 if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
2788 fc->pause_time = 0xFFFF;
2789 else
2790 fc->pause_time = E1000_FC_PAUSE_TIME;
2791 fc->send_xon = 1;
2792 fc->current_mode = fc->requested_mode;
2794 /* Allow time for pending master requests to run */
2795 mac->ops.reset_hw(hw);
2798 * For parts with AMT enabled, let the firmware know
2799 * that the network interface is in control
2801 if (adapter->flags & FLAG_HAS_AMT)
2802 e1000_get_hw_control(adapter);
2804 ew32(WUC, 0);
2805 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP)
2806 e1e_wphy(&adapter->hw, BM_WUC, 0);
2808 if (mac->ops.init_hw(hw))
2809 e_err("Hardware Error\n");
2811 /* additional part of the flow-control workaround above */
2812 if (hw->mac.type == e1000_pchlan)
2813 ew32(FCRTV_PCH, 0x1000);
2815 e1000_update_mng_vlan(adapter);
2817 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2818 ew32(VET, ETH_P_8021Q);
2820 e1000e_reset_adaptive(hw);
2821 e1000_get_phy_info(hw);
2823 if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
2824 !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
2825 u16 phy_data = 0;
2827 * speed up time to link by disabling smart power down, ignore
2828 * the return value of this function because there is nothing
2829 * different we would do if it failed
2831 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
2832 phy_data &= ~IGP02E1000_PM_SPD;
2833 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
2837 int e1000e_up(struct e1000_adapter *adapter)
2839 struct e1000_hw *hw = &adapter->hw;
2841 /* DMA latency requirement to workaround early-receive/jumbo issue */
2842 if (adapter->flags & FLAG_HAS_ERT)
2843 pm_qos_add_requirement(PM_QOS_CPU_DMA_LATENCY,
2844 adapter->netdev->name,
2845 PM_QOS_DEFAULT_VALUE);
2847 /* hardware has been reset, we need to reload some things */
2848 e1000_configure(adapter);
2850 clear_bit(__E1000_DOWN, &adapter->state);
2852 napi_enable(&adapter->napi);
2853 if (adapter->msix_entries)
2854 e1000_configure_msix(adapter);
2855 e1000_irq_enable(adapter);
2857 netif_wake_queue(adapter->netdev);
2859 /* fire a link change interrupt to start the watchdog */
2860 ew32(ICS, E1000_ICS_LSC);
2861 return 0;
2864 void e1000e_down(struct e1000_adapter *adapter)
2866 struct net_device *netdev = adapter->netdev;
2867 struct e1000_hw *hw = &adapter->hw;
2868 u32 tctl, rctl;
2871 * signal that we're down so the interrupt handler does not
2872 * reschedule our watchdog timer
2874 set_bit(__E1000_DOWN, &adapter->state);
2876 /* disable receives in the hardware */
2877 rctl = er32(RCTL);
2878 ew32(RCTL, rctl & ~E1000_RCTL_EN);
2879 /* flush and sleep below */
2881 netif_stop_queue(netdev);
2883 /* disable transmits in the hardware */
2884 tctl = er32(TCTL);
2885 tctl &= ~E1000_TCTL_EN;
2886 ew32(TCTL, tctl);
2887 /* flush both disables and wait for them to finish */
2888 e1e_flush();
2889 msleep(10);
2891 napi_disable(&adapter->napi);
2892 e1000_irq_disable(adapter);
2894 del_timer_sync(&adapter->watchdog_timer);
2895 del_timer_sync(&adapter->phy_info_timer);
2897 netdev->tx_queue_len = adapter->tx_queue_len;
2898 netif_carrier_off(netdev);
2899 adapter->link_speed = 0;
2900 adapter->link_duplex = 0;
2902 if (!pci_channel_offline(adapter->pdev))
2903 e1000e_reset(adapter);
2904 e1000_clean_tx_ring(adapter);
2905 e1000_clean_rx_ring(adapter);
2907 if (adapter->flags & FLAG_HAS_ERT)
2908 pm_qos_remove_requirement(PM_QOS_CPU_DMA_LATENCY,
2909 adapter->netdev->name);
2912 * TODO: for power management, we could drop the link and
2913 * pci_disable_device here.
2917 void e1000e_reinit_locked(struct e1000_adapter *adapter)
2919 might_sleep();
2920 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
2921 msleep(1);
2922 e1000e_down(adapter);
2923 e1000e_up(adapter);
2924 clear_bit(__E1000_RESETTING, &adapter->state);
2928 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
2929 * @adapter: board private structure to initialize
2931 * e1000_sw_init initializes the Adapter private data structure.
2932 * Fields are initialized based on PCI device information and
2933 * OS network device settings (MTU size).
2935 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
2937 struct net_device *netdev = adapter->netdev;
2939 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
2940 adapter->rx_ps_bsize0 = 128;
2941 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
2942 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2944 e1000e_set_interrupt_capability(adapter);
2946 if (e1000_alloc_queues(adapter))
2947 return -ENOMEM;
2949 /* Explicitly disable IRQ since the NIC can be in any state. */
2950 e1000_irq_disable(adapter);
2952 set_bit(__E1000_DOWN, &adapter->state);
2953 return 0;
2957 * e1000_intr_msi_test - Interrupt Handler
2958 * @irq: interrupt number
2959 * @data: pointer to a network interface device structure
2961 static irqreturn_t e1000_intr_msi_test(int irq, void *data)
2963 struct net_device *netdev = data;
2964 struct e1000_adapter *adapter = netdev_priv(netdev);
2965 struct e1000_hw *hw = &adapter->hw;
2966 u32 icr = er32(ICR);
2968 e_dbg("icr is %08X\n", icr);
2969 if (icr & E1000_ICR_RXSEQ) {
2970 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
2971 wmb();
2974 return IRQ_HANDLED;
2978 * e1000_test_msi_interrupt - Returns 0 for successful test
2979 * @adapter: board private struct
2981 * code flow taken from tg3.c
2983 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
2985 struct net_device *netdev = adapter->netdev;
2986 struct e1000_hw *hw = &adapter->hw;
2987 int err;
2989 /* poll_enable hasn't been called yet, so don't need disable */
2990 /* clear any pending events */
2991 er32(ICR);
2993 /* free the real vector and request a test handler */
2994 e1000_free_irq(adapter);
2995 e1000e_reset_interrupt_capability(adapter);
2997 /* Assume that the test fails, if it succeeds then the test
2998 * MSI irq handler will unset this flag */
2999 adapter->flags |= FLAG_MSI_TEST_FAILED;
3001 err = pci_enable_msi(adapter->pdev);
3002 if (err)
3003 goto msi_test_failed;
3005 err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
3006 netdev->name, netdev);
3007 if (err) {
3008 pci_disable_msi(adapter->pdev);
3009 goto msi_test_failed;
3012 wmb();
3014 e1000_irq_enable(adapter);
3016 /* fire an unusual interrupt on the test handler */
3017 ew32(ICS, E1000_ICS_RXSEQ);
3018 e1e_flush();
3019 msleep(50);
3021 e1000_irq_disable(adapter);
3023 rmb();
3025 if (adapter->flags & FLAG_MSI_TEST_FAILED) {
3026 adapter->int_mode = E1000E_INT_MODE_LEGACY;
3027 err = -EIO;
3028 e_info("MSI interrupt test failed!\n");
3031 free_irq(adapter->pdev->irq, netdev);
3032 pci_disable_msi(adapter->pdev);
3034 if (err == -EIO)
3035 goto msi_test_failed;
3037 /* okay so the test worked, restore settings */
3038 e_dbg("MSI interrupt test succeeded!\n");
3039 msi_test_failed:
3040 e1000e_set_interrupt_capability(adapter);
3041 e1000_request_irq(adapter);
3042 return err;
3046 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
3047 * @adapter: board private struct
3049 * code flow taken from tg3.c, called with e1000 interrupts disabled.
3051 static int e1000_test_msi(struct e1000_adapter *adapter)
3053 int err;
3054 u16 pci_cmd;
3056 if (!(adapter->flags & FLAG_MSI_ENABLED))
3057 return 0;
3059 /* disable SERR in case the MSI write causes a master abort */
3060 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3061 pci_write_config_word(adapter->pdev, PCI_COMMAND,
3062 pci_cmd & ~PCI_COMMAND_SERR);
3064 err = e1000_test_msi_interrupt(adapter);
3066 /* restore previous setting of command word */
3067 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
3069 /* success ! */
3070 if (!err)
3071 return 0;
3073 /* EIO means MSI test failed */
3074 if (err != -EIO)
3075 return err;
3077 /* back to INTx mode */
3078 e_warn("MSI interrupt test failed, using legacy interrupt.\n");
3080 e1000_free_irq(adapter);
3082 err = e1000_request_irq(adapter);
3084 return err;
3088 * e1000_open - Called when a network interface is made active
3089 * @netdev: network interface device structure
3091 * Returns 0 on success, negative value on failure
3093 * The open entry point is called when a network interface is made
3094 * active by the system (IFF_UP). At this point all resources needed
3095 * for transmit and receive operations are allocated, the interrupt
3096 * handler is registered with the OS, the watchdog timer is started,
3097 * and the stack is notified that the interface is ready.
3099 static int e1000_open(struct net_device *netdev)
3101 struct e1000_adapter *adapter = netdev_priv(netdev);
3102 struct e1000_hw *hw = &adapter->hw;
3103 int err;
3105 /* disallow open during test */
3106 if (test_bit(__E1000_TESTING, &adapter->state))
3107 return -EBUSY;
3109 netif_carrier_off(netdev);
3111 /* allocate transmit descriptors */
3112 err = e1000e_setup_tx_resources(adapter);
3113 if (err)
3114 goto err_setup_tx;
3116 /* allocate receive descriptors */
3117 err = e1000e_setup_rx_resources(adapter);
3118 if (err)
3119 goto err_setup_rx;
3121 e1000e_power_up_phy(adapter);
3123 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
3124 if ((adapter->hw.mng_cookie.status &
3125 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
3126 e1000_update_mng_vlan(adapter);
3129 * If AMT is enabled, let the firmware know that the network
3130 * interface is now open
3132 if (adapter->flags & FLAG_HAS_AMT)
3133 e1000_get_hw_control(adapter);
3136 * before we allocate an interrupt, we must be ready to handle it.
3137 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3138 * as soon as we call pci_request_irq, so we have to setup our
3139 * clean_rx handler before we do so.
3141 e1000_configure(adapter);
3143 err = e1000_request_irq(adapter);
3144 if (err)
3145 goto err_req_irq;
3148 * Work around PCIe errata with MSI interrupts causing some chipsets to
3149 * ignore e1000e MSI messages, which means we need to test our MSI
3150 * interrupt now
3152 if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
3153 err = e1000_test_msi(adapter);
3154 if (err) {
3155 e_err("Interrupt allocation failed\n");
3156 goto err_req_irq;
3160 /* From here on the code is the same as e1000e_up() */
3161 clear_bit(__E1000_DOWN, &adapter->state);
3163 napi_enable(&adapter->napi);
3165 e1000_irq_enable(adapter);
3167 netif_start_queue(netdev);
3169 /* fire a link status change interrupt to start the watchdog */
3170 ew32(ICS, E1000_ICS_LSC);
3172 return 0;
3174 err_req_irq:
3175 e1000_release_hw_control(adapter);
3176 e1000_power_down_phy(adapter);
3177 e1000e_free_rx_resources(adapter);
3178 err_setup_rx:
3179 e1000e_free_tx_resources(adapter);
3180 err_setup_tx:
3181 e1000e_reset(adapter);
3183 return err;
3187 * e1000_close - Disables a network interface
3188 * @netdev: network interface device structure
3190 * Returns 0, this is not allowed to fail
3192 * The close entry point is called when an interface is de-activated
3193 * by the OS. The hardware is still under the drivers control, but
3194 * needs to be disabled. A global MAC reset is issued to stop the
3195 * hardware, and all transmit and receive resources are freed.
3197 static int e1000_close(struct net_device *netdev)
3199 struct e1000_adapter *adapter = netdev_priv(netdev);
3201 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
3202 e1000e_down(adapter);
3203 e1000_power_down_phy(adapter);
3204 e1000_free_irq(adapter);
3206 e1000e_free_tx_resources(adapter);
3207 e1000e_free_rx_resources(adapter);
3210 * kill manageability vlan ID if supported, but not if a vlan with
3211 * the same ID is registered on the host OS (let 8021q kill it)
3213 if ((adapter->hw.mng_cookie.status &
3214 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
3215 !(adapter->vlgrp &&
3216 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
3217 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
3220 * If AMT is enabled, let the firmware know that the network
3221 * interface is now closed
3223 if (adapter->flags & FLAG_HAS_AMT)
3224 e1000_release_hw_control(adapter);
3226 return 0;
3229 * e1000_set_mac - Change the Ethernet Address of the NIC
3230 * @netdev: network interface device structure
3231 * @p: pointer to an address structure
3233 * Returns 0 on success, negative on failure
3235 static int e1000_set_mac(struct net_device *netdev, void *p)
3237 struct e1000_adapter *adapter = netdev_priv(netdev);
3238 struct sockaddr *addr = p;
3240 if (!is_valid_ether_addr(addr->sa_data))
3241 return -EADDRNOTAVAIL;
3243 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3244 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
3246 e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
3248 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
3249 /* activate the work around */
3250 e1000e_set_laa_state_82571(&adapter->hw, 1);
3253 * Hold a copy of the LAA in RAR[14] This is done so that
3254 * between the time RAR[0] gets clobbered and the time it
3255 * gets fixed (in e1000_watchdog), the actual LAA is in one
3256 * of the RARs and no incoming packets directed to this port
3257 * are dropped. Eventually the LAA will be in RAR[0] and
3258 * RAR[14]
3260 e1000e_rar_set(&adapter->hw,
3261 adapter->hw.mac.addr,
3262 adapter->hw.mac.rar_entry_count - 1);
3265 return 0;
3269 * e1000e_update_phy_task - work thread to update phy
3270 * @work: pointer to our work struct
3272 * this worker thread exists because we must acquire a
3273 * semaphore to read the phy, which we could msleep while
3274 * waiting for it, and we can't msleep in a timer.
3276 static void e1000e_update_phy_task(struct work_struct *work)
3278 struct e1000_adapter *adapter = container_of(work,
3279 struct e1000_adapter, update_phy_task);
3280 e1000_get_phy_info(&adapter->hw);
3284 * Need to wait a few seconds after link up to get diagnostic information from
3285 * the phy
3287 static void e1000_update_phy_info(unsigned long data)
3289 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
3290 schedule_work(&adapter->update_phy_task);
3294 * e1000e_update_stats - Update the board statistics counters
3295 * @adapter: board private structure
3297 void e1000e_update_stats(struct e1000_adapter *adapter)
3299 struct net_device *netdev = adapter->netdev;
3300 struct e1000_hw *hw = &adapter->hw;
3301 struct pci_dev *pdev = adapter->pdev;
3302 u16 phy_data;
3305 * Prevent stats update while adapter is being reset, or if the pci
3306 * connection is down.
3308 if (adapter->link_speed == 0)
3309 return;
3310 if (pci_channel_offline(pdev))
3311 return;
3313 adapter->stats.crcerrs += er32(CRCERRS);
3314 adapter->stats.gprc += er32(GPRC);
3315 adapter->stats.gorc += er32(GORCL);
3316 er32(GORCH); /* Clear gorc */
3317 adapter->stats.bprc += er32(BPRC);
3318 adapter->stats.mprc += er32(MPRC);
3319 adapter->stats.roc += er32(ROC);
3321 adapter->stats.mpc += er32(MPC);
3322 if ((hw->phy.type == e1000_phy_82578) ||
3323 (hw->phy.type == e1000_phy_82577)) {
3324 e1e_rphy(hw, HV_SCC_UPPER, &phy_data);
3325 if (!e1e_rphy(hw, HV_SCC_LOWER, &phy_data))
3326 adapter->stats.scc += phy_data;
3328 e1e_rphy(hw, HV_ECOL_UPPER, &phy_data);
3329 if (!e1e_rphy(hw, HV_ECOL_LOWER, &phy_data))
3330 adapter->stats.ecol += phy_data;
3332 e1e_rphy(hw, HV_MCC_UPPER, &phy_data);
3333 if (!e1e_rphy(hw, HV_MCC_LOWER, &phy_data))
3334 adapter->stats.mcc += phy_data;
3336 e1e_rphy(hw, HV_LATECOL_UPPER, &phy_data);
3337 if (!e1e_rphy(hw, HV_LATECOL_LOWER, &phy_data))
3338 adapter->stats.latecol += phy_data;
3340 e1e_rphy(hw, HV_DC_UPPER, &phy_data);
3341 if (!e1e_rphy(hw, HV_DC_LOWER, &phy_data))
3342 adapter->stats.dc += phy_data;
3343 } else {
3344 adapter->stats.scc += er32(SCC);
3345 adapter->stats.ecol += er32(ECOL);
3346 adapter->stats.mcc += er32(MCC);
3347 adapter->stats.latecol += er32(LATECOL);
3348 adapter->stats.dc += er32(DC);
3350 adapter->stats.xonrxc += er32(XONRXC);
3351 adapter->stats.xontxc += er32(XONTXC);
3352 adapter->stats.xoffrxc += er32(XOFFRXC);
3353 adapter->stats.xofftxc += er32(XOFFTXC);
3354 adapter->stats.gptc += er32(GPTC);
3355 adapter->stats.gotc += er32(GOTCL);
3356 er32(GOTCH); /* Clear gotc */
3357 adapter->stats.rnbc += er32(RNBC);
3358 adapter->stats.ruc += er32(RUC);
3360 adapter->stats.mptc += er32(MPTC);
3361 adapter->stats.bptc += er32(BPTC);
3363 /* used for adaptive IFS */
3365 hw->mac.tx_packet_delta = er32(TPT);
3366 adapter->stats.tpt += hw->mac.tx_packet_delta;
3367 if ((hw->phy.type == e1000_phy_82578) ||
3368 (hw->phy.type == e1000_phy_82577)) {
3369 e1e_rphy(hw, HV_COLC_UPPER, &phy_data);
3370 if (!e1e_rphy(hw, HV_COLC_LOWER, &phy_data))
3371 hw->mac.collision_delta = phy_data;
3372 } else {
3373 hw->mac.collision_delta = er32(COLC);
3375 adapter->stats.colc += hw->mac.collision_delta;
3377 adapter->stats.algnerrc += er32(ALGNERRC);
3378 adapter->stats.rxerrc += er32(RXERRC);
3379 if ((hw->phy.type == e1000_phy_82578) ||
3380 (hw->phy.type == e1000_phy_82577)) {
3381 e1e_rphy(hw, HV_TNCRS_UPPER, &phy_data);
3382 if (!e1e_rphy(hw, HV_TNCRS_LOWER, &phy_data))
3383 adapter->stats.tncrs += phy_data;
3384 } else {
3385 if ((hw->mac.type != e1000_82574) &&
3386 (hw->mac.type != e1000_82583))
3387 adapter->stats.tncrs += er32(TNCRS);
3389 adapter->stats.cexterr += er32(CEXTERR);
3390 adapter->stats.tsctc += er32(TSCTC);
3391 adapter->stats.tsctfc += er32(TSCTFC);
3393 /* Fill out the OS statistics structure */
3394 netdev->stats.multicast = adapter->stats.mprc;
3395 netdev->stats.collisions = adapter->stats.colc;
3397 /* Rx Errors */
3400 * RLEC on some newer hardware can be incorrect so build
3401 * our own version based on RUC and ROC
3403 netdev->stats.rx_errors = adapter->stats.rxerrc +
3404 adapter->stats.crcerrs + adapter->stats.algnerrc +
3405 adapter->stats.ruc + adapter->stats.roc +
3406 adapter->stats.cexterr;
3407 netdev->stats.rx_length_errors = adapter->stats.ruc +
3408 adapter->stats.roc;
3409 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3410 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3411 netdev->stats.rx_missed_errors = adapter->stats.mpc;
3413 /* Tx Errors */
3414 netdev->stats.tx_errors = adapter->stats.ecol +
3415 adapter->stats.latecol;
3416 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3417 netdev->stats.tx_window_errors = adapter->stats.latecol;
3418 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3420 /* Tx Dropped needs to be maintained elsewhere */
3422 /* Management Stats */
3423 adapter->stats.mgptc += er32(MGTPTC);
3424 adapter->stats.mgprc += er32(MGTPRC);
3425 adapter->stats.mgpdc += er32(MGTPDC);
3429 * e1000_phy_read_status - Update the PHY register status snapshot
3430 * @adapter: board private structure
3432 static void e1000_phy_read_status(struct e1000_adapter *adapter)
3434 struct e1000_hw *hw = &adapter->hw;
3435 struct e1000_phy_regs *phy = &adapter->phy_regs;
3436 int ret_val;
3438 if ((er32(STATUS) & E1000_STATUS_LU) &&
3439 (adapter->hw.phy.media_type == e1000_media_type_copper)) {
3440 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
3441 ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
3442 ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
3443 ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
3444 ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
3445 ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
3446 ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
3447 ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
3448 if (ret_val)
3449 e_warn("Error reading PHY register\n");
3450 } else {
3452 * Do not read PHY registers if link is not up
3453 * Set values to typical power-on defaults
3455 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
3456 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
3457 BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
3458 BMSR_ERCAP);
3459 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
3460 ADVERTISE_ALL | ADVERTISE_CSMA);
3461 phy->lpa = 0;
3462 phy->expansion = EXPANSION_ENABLENPAGE;
3463 phy->ctrl1000 = ADVERTISE_1000FULL;
3464 phy->stat1000 = 0;
3465 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
3469 static void e1000_print_link_info(struct e1000_adapter *adapter)
3471 struct e1000_hw *hw = &adapter->hw;
3472 u32 ctrl = er32(CTRL);
3474 /* Link status message must follow this format for user tools */
3475 printk(KERN_INFO "e1000e: %s NIC Link is Up %d Mbps %s, "
3476 "Flow Control: %s\n",
3477 adapter->netdev->name,
3478 adapter->link_speed,
3479 (adapter->link_duplex == FULL_DUPLEX) ?
3480 "Full Duplex" : "Half Duplex",
3481 ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ?
3482 "RX/TX" :
3483 ((ctrl & E1000_CTRL_RFCE) ? "RX" :
3484 ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None" )));
3487 bool e1000_has_link(struct e1000_adapter *adapter)
3489 struct e1000_hw *hw = &adapter->hw;
3490 bool link_active = 0;
3491 s32 ret_val = 0;
3494 * get_link_status is set on LSC (link status) interrupt or
3495 * Rx sequence error interrupt. get_link_status will stay
3496 * false until the check_for_link establishes link
3497 * for copper adapters ONLY
3499 switch (hw->phy.media_type) {
3500 case e1000_media_type_copper:
3501 if (hw->mac.get_link_status) {
3502 ret_val = hw->mac.ops.check_for_link(hw);
3503 link_active = !hw->mac.get_link_status;
3504 } else {
3505 link_active = 1;
3507 break;
3508 case e1000_media_type_fiber:
3509 ret_val = hw->mac.ops.check_for_link(hw);
3510 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
3511 break;
3512 case e1000_media_type_internal_serdes:
3513 ret_val = hw->mac.ops.check_for_link(hw);
3514 link_active = adapter->hw.mac.serdes_has_link;
3515 break;
3516 default:
3517 case e1000_media_type_unknown:
3518 break;
3521 if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
3522 (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
3523 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
3524 e_info("Gigabit has been disabled, downgrading speed\n");
3527 return link_active;
3530 static void e1000e_enable_receives(struct e1000_adapter *adapter)
3532 /* make sure the receive unit is started */
3533 if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
3534 (adapter->flags & FLAG_RX_RESTART_NOW)) {
3535 struct e1000_hw *hw = &adapter->hw;
3536 u32 rctl = er32(RCTL);
3537 ew32(RCTL, rctl | E1000_RCTL_EN);
3538 adapter->flags &= ~FLAG_RX_RESTART_NOW;
3543 * e1000_watchdog - Timer Call-back
3544 * @data: pointer to adapter cast into an unsigned long
3546 static void e1000_watchdog(unsigned long data)
3548 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
3550 /* Do the rest outside of interrupt context */
3551 schedule_work(&adapter->watchdog_task);
3553 /* TODO: make this use queue_delayed_work() */
3556 static void e1000_watchdog_task(struct work_struct *work)
3558 struct e1000_adapter *adapter = container_of(work,
3559 struct e1000_adapter, watchdog_task);
3560 struct net_device *netdev = adapter->netdev;
3561 struct e1000_mac_info *mac = &adapter->hw.mac;
3562 struct e1000_phy_info *phy = &adapter->hw.phy;
3563 struct e1000_ring *tx_ring = adapter->tx_ring;
3564 struct e1000_hw *hw = &adapter->hw;
3565 u32 link, tctl;
3566 int tx_pending = 0;
3568 link = e1000_has_link(adapter);
3569 if ((netif_carrier_ok(netdev)) && link) {
3570 e1000e_enable_receives(adapter);
3571 goto link_up;
3574 if ((e1000e_enable_tx_pkt_filtering(hw)) &&
3575 (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
3576 e1000_update_mng_vlan(adapter);
3578 if (link) {
3579 if (!netif_carrier_ok(netdev)) {
3580 bool txb2b = 1;
3581 /* update snapshot of PHY registers on LSC */
3582 e1000_phy_read_status(adapter);
3583 mac->ops.get_link_up_info(&adapter->hw,
3584 &adapter->link_speed,
3585 &adapter->link_duplex);
3586 e1000_print_link_info(adapter);
3588 * On supported PHYs, check for duplex mismatch only
3589 * if link has autonegotiated at 10/100 half
3591 if ((hw->phy.type == e1000_phy_igp_3 ||
3592 hw->phy.type == e1000_phy_bm) &&
3593 (hw->mac.autoneg == true) &&
3594 (adapter->link_speed == SPEED_10 ||
3595 adapter->link_speed == SPEED_100) &&
3596 (adapter->link_duplex == HALF_DUPLEX)) {
3597 u16 autoneg_exp;
3599 e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp);
3601 if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS))
3602 e_info("Autonegotiated half duplex but"
3603 " link partner cannot autoneg. "
3604 " Try forcing full duplex if "
3605 "link gets many collisions.\n");
3609 * tweak tx_queue_len according to speed/duplex
3610 * and adjust the timeout factor
3612 netdev->tx_queue_len = adapter->tx_queue_len;
3613 adapter->tx_timeout_factor = 1;
3614 switch (adapter->link_speed) {
3615 case SPEED_10:
3616 txb2b = 0;
3617 netdev->tx_queue_len = 10;
3618 adapter->tx_timeout_factor = 16;
3619 break;
3620 case SPEED_100:
3621 txb2b = 0;
3622 netdev->tx_queue_len = 100;
3623 adapter->tx_timeout_factor = 10;
3624 break;
3628 * workaround: re-program speed mode bit after
3629 * link-up event
3631 if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
3632 !txb2b) {
3633 u32 tarc0;
3634 tarc0 = er32(TARC(0));
3635 tarc0 &= ~SPEED_MODE_BIT;
3636 ew32(TARC(0), tarc0);
3640 * disable TSO for pcie and 10/100 speeds, to avoid
3641 * some hardware issues
3643 if (!(adapter->flags & FLAG_TSO_FORCE)) {
3644 switch (adapter->link_speed) {
3645 case SPEED_10:
3646 case SPEED_100:
3647 e_info("10/100 speed: disabling TSO\n");
3648 netdev->features &= ~NETIF_F_TSO;
3649 netdev->features &= ~NETIF_F_TSO6;
3650 break;
3651 case SPEED_1000:
3652 netdev->features |= NETIF_F_TSO;
3653 netdev->features |= NETIF_F_TSO6;
3654 break;
3655 default:
3656 /* oops */
3657 break;
3662 * enable transmits in the hardware, need to do this
3663 * after setting TARC(0)
3665 tctl = er32(TCTL);
3666 tctl |= E1000_TCTL_EN;
3667 ew32(TCTL, tctl);
3670 * Perform any post-link-up configuration before
3671 * reporting link up.
3673 if (phy->ops.cfg_on_link_up)
3674 phy->ops.cfg_on_link_up(hw);
3676 netif_carrier_on(netdev);
3678 if (!test_bit(__E1000_DOWN, &adapter->state))
3679 mod_timer(&adapter->phy_info_timer,
3680 round_jiffies(jiffies + 2 * HZ));
3682 } else {
3683 if (netif_carrier_ok(netdev)) {
3684 adapter->link_speed = 0;
3685 adapter->link_duplex = 0;
3686 /* Link status message must follow this format */
3687 printk(KERN_INFO "e1000e: %s NIC Link is Down\n",
3688 adapter->netdev->name);
3689 netif_carrier_off(netdev);
3690 if (!test_bit(__E1000_DOWN, &adapter->state))
3691 mod_timer(&adapter->phy_info_timer,
3692 round_jiffies(jiffies + 2 * HZ));
3694 if (adapter->flags & FLAG_RX_NEEDS_RESTART)
3695 schedule_work(&adapter->reset_task);
3699 link_up:
3700 e1000e_update_stats(adapter);
3702 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
3703 adapter->tpt_old = adapter->stats.tpt;
3704 mac->collision_delta = adapter->stats.colc - adapter->colc_old;
3705 adapter->colc_old = adapter->stats.colc;
3707 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
3708 adapter->gorc_old = adapter->stats.gorc;
3709 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
3710 adapter->gotc_old = adapter->stats.gotc;
3712 e1000e_update_adaptive(&adapter->hw);
3714 if (!netif_carrier_ok(netdev)) {
3715 tx_pending = (e1000_desc_unused(tx_ring) + 1 <
3716 tx_ring->count);
3717 if (tx_pending) {
3719 * We've lost link, so the controller stops DMA,
3720 * but we've got queued Tx work that's never going
3721 * to get done, so reset controller to flush Tx.
3722 * (Do the reset outside of interrupt context).
3724 adapter->tx_timeout_count++;
3725 schedule_work(&adapter->reset_task);
3726 /* return immediately since reset is imminent */
3727 return;
3731 /* Cause software interrupt to ensure Rx ring is cleaned */
3732 if (adapter->msix_entries)
3733 ew32(ICS, adapter->rx_ring->ims_val);
3734 else
3735 ew32(ICS, E1000_ICS_RXDMT0);
3737 /* Force detection of hung controller every watchdog period */
3738 adapter->detect_tx_hung = 1;
3741 * With 82571 controllers, LAA may be overwritten due to controller
3742 * reset from the other port. Set the appropriate LAA in RAR[0]
3744 if (e1000e_get_laa_state_82571(hw))
3745 e1000e_rar_set(hw, adapter->hw.mac.addr, 0);
3747 /* Reset the timer */
3748 if (!test_bit(__E1000_DOWN, &adapter->state))
3749 mod_timer(&adapter->watchdog_timer,
3750 round_jiffies(jiffies + 2 * HZ));
3753 #define E1000_TX_FLAGS_CSUM 0x00000001
3754 #define E1000_TX_FLAGS_VLAN 0x00000002
3755 #define E1000_TX_FLAGS_TSO 0x00000004
3756 #define E1000_TX_FLAGS_IPV4 0x00000008
3757 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
3758 #define E1000_TX_FLAGS_VLAN_SHIFT 16
3760 static int e1000_tso(struct e1000_adapter *adapter,
3761 struct sk_buff *skb)
3763 struct e1000_ring *tx_ring = adapter->tx_ring;
3764 struct e1000_context_desc *context_desc;
3765 struct e1000_buffer *buffer_info;
3766 unsigned int i;
3767 u32 cmd_length = 0;
3768 u16 ipcse = 0, tucse, mss;
3769 u8 ipcss, ipcso, tucss, tucso, hdr_len;
3770 int err;
3772 if (!skb_is_gso(skb))
3773 return 0;
3775 if (skb_header_cloned(skb)) {
3776 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3777 if (err)
3778 return err;
3781 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3782 mss = skb_shinfo(skb)->gso_size;
3783 if (skb->protocol == htons(ETH_P_IP)) {
3784 struct iphdr *iph = ip_hdr(skb);
3785 iph->tot_len = 0;
3786 iph->check = 0;
3787 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
3788 0, IPPROTO_TCP, 0);
3789 cmd_length = E1000_TXD_CMD_IP;
3790 ipcse = skb_transport_offset(skb) - 1;
3791 } else if (skb_is_gso_v6(skb)) {
3792 ipv6_hdr(skb)->payload_len = 0;
3793 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3794 &ipv6_hdr(skb)->daddr,
3795 0, IPPROTO_TCP, 0);
3796 ipcse = 0;
3798 ipcss = skb_network_offset(skb);
3799 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
3800 tucss = skb_transport_offset(skb);
3801 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
3802 tucse = 0;
3804 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
3805 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
3807 i = tx_ring->next_to_use;
3808 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
3809 buffer_info = &tx_ring->buffer_info[i];
3811 context_desc->lower_setup.ip_fields.ipcss = ipcss;
3812 context_desc->lower_setup.ip_fields.ipcso = ipcso;
3813 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
3814 context_desc->upper_setup.tcp_fields.tucss = tucss;
3815 context_desc->upper_setup.tcp_fields.tucso = tucso;
3816 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
3817 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
3818 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
3819 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
3821 buffer_info->time_stamp = jiffies;
3822 buffer_info->next_to_watch = i;
3824 i++;
3825 if (i == tx_ring->count)
3826 i = 0;
3827 tx_ring->next_to_use = i;
3829 return 1;
3832 static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
3834 struct e1000_ring *tx_ring = adapter->tx_ring;
3835 struct e1000_context_desc *context_desc;
3836 struct e1000_buffer *buffer_info;
3837 unsigned int i;
3838 u8 css;
3839 u32 cmd_len = E1000_TXD_CMD_DEXT;
3840 __be16 protocol;
3842 if (skb->ip_summed != CHECKSUM_PARTIAL)
3843 return 0;
3845 if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
3846 protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
3847 else
3848 protocol = skb->protocol;
3850 switch (protocol) {
3851 case cpu_to_be16(ETH_P_IP):
3852 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
3853 cmd_len |= E1000_TXD_CMD_TCP;
3854 break;
3855 case cpu_to_be16(ETH_P_IPV6):
3856 /* XXX not handling all IPV6 headers */
3857 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3858 cmd_len |= E1000_TXD_CMD_TCP;
3859 break;
3860 default:
3861 if (unlikely(net_ratelimit()))
3862 e_warn("checksum_partial proto=%x!\n",
3863 be16_to_cpu(protocol));
3864 break;
3867 css = skb_transport_offset(skb);
3869 i = tx_ring->next_to_use;
3870 buffer_info = &tx_ring->buffer_info[i];
3871 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
3873 context_desc->lower_setup.ip_config = 0;
3874 context_desc->upper_setup.tcp_fields.tucss = css;
3875 context_desc->upper_setup.tcp_fields.tucso =
3876 css + skb->csum_offset;
3877 context_desc->upper_setup.tcp_fields.tucse = 0;
3878 context_desc->tcp_seg_setup.data = 0;
3879 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
3881 buffer_info->time_stamp = jiffies;
3882 buffer_info->next_to_watch = i;
3884 i++;
3885 if (i == tx_ring->count)
3886 i = 0;
3887 tx_ring->next_to_use = i;
3889 return 1;
3892 #define E1000_MAX_PER_TXD 8192
3893 #define E1000_MAX_TXD_PWR 12
3895 static int e1000_tx_map(struct e1000_adapter *adapter,
3896 struct sk_buff *skb, unsigned int first,
3897 unsigned int max_per_txd, unsigned int nr_frags,
3898 unsigned int mss)
3900 struct e1000_ring *tx_ring = adapter->tx_ring;
3901 struct pci_dev *pdev = adapter->pdev;
3902 struct e1000_buffer *buffer_info;
3903 unsigned int len = skb_headlen(skb);
3904 unsigned int offset = 0, size, count = 0, i;
3905 unsigned int f;
3907 i = tx_ring->next_to_use;
3909 while (len) {
3910 buffer_info = &tx_ring->buffer_info[i];
3911 size = min(len, max_per_txd);
3913 buffer_info->length = size;
3914 buffer_info->time_stamp = jiffies;
3915 buffer_info->next_to_watch = i;
3916 buffer_info->dma = pci_map_single(pdev, skb->data + offset,
3917 size, PCI_DMA_TODEVICE);
3918 buffer_info->mapped_as_page = false;
3919 if (pci_dma_mapping_error(pdev, buffer_info->dma))
3920 goto dma_error;
3922 len -= size;
3923 offset += size;
3924 count++;
3926 if (len) {
3927 i++;
3928 if (i == tx_ring->count)
3929 i = 0;
3933 for (f = 0; f < nr_frags; f++) {
3934 struct skb_frag_struct *frag;
3936 frag = &skb_shinfo(skb)->frags[f];
3937 len = frag->size;
3938 offset = frag->page_offset;
3940 while (len) {
3941 i++;
3942 if (i == tx_ring->count)
3943 i = 0;
3945 buffer_info = &tx_ring->buffer_info[i];
3946 size = min(len, max_per_txd);
3948 buffer_info->length = size;
3949 buffer_info->time_stamp = jiffies;
3950 buffer_info->next_to_watch = i;
3951 buffer_info->dma = pci_map_page(pdev, frag->page,
3952 offset, size,
3953 PCI_DMA_TODEVICE);
3954 buffer_info->mapped_as_page = true;
3955 if (pci_dma_mapping_error(pdev, buffer_info->dma))
3956 goto dma_error;
3958 len -= size;
3959 offset += size;
3960 count++;
3964 tx_ring->buffer_info[i].skb = skb;
3965 tx_ring->buffer_info[first].next_to_watch = i;
3967 return count;
3969 dma_error:
3970 dev_err(&pdev->dev, "TX DMA map failed\n");
3971 buffer_info->dma = 0;
3972 if (count)
3973 count--;
3975 while (count--) {
3976 if (i==0)
3977 i += tx_ring->count;
3978 i--;
3979 buffer_info = &tx_ring->buffer_info[i];
3980 e1000_put_txbuf(adapter, buffer_info);;
3983 return 0;
3986 static void e1000_tx_queue(struct e1000_adapter *adapter,
3987 int tx_flags, int count)
3989 struct e1000_ring *tx_ring = adapter->tx_ring;
3990 struct e1000_tx_desc *tx_desc = NULL;
3991 struct e1000_buffer *buffer_info;
3992 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3993 unsigned int i;
3995 if (tx_flags & E1000_TX_FLAGS_TSO) {
3996 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3997 E1000_TXD_CMD_TSE;
3998 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
4000 if (tx_flags & E1000_TX_FLAGS_IPV4)
4001 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
4004 if (tx_flags & E1000_TX_FLAGS_CSUM) {
4005 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
4006 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
4009 if (tx_flags & E1000_TX_FLAGS_VLAN) {
4010 txd_lower |= E1000_TXD_CMD_VLE;
4011 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
4014 i = tx_ring->next_to_use;
4016 while (count--) {
4017 buffer_info = &tx_ring->buffer_info[i];
4018 tx_desc = E1000_TX_DESC(*tx_ring, i);
4019 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4020 tx_desc->lower.data =
4021 cpu_to_le32(txd_lower | buffer_info->length);
4022 tx_desc->upper.data = cpu_to_le32(txd_upper);
4024 i++;
4025 if (i == tx_ring->count)
4026 i = 0;
4029 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
4032 * Force memory writes to complete before letting h/w
4033 * know there are new descriptors to fetch. (Only
4034 * applicable for weak-ordered memory model archs,
4035 * such as IA-64).
4037 wmb();
4039 tx_ring->next_to_use = i;
4040 writel(i, adapter->hw.hw_addr + tx_ring->tail);
4042 * we need this if more than one processor can write to our tail
4043 * at a time, it synchronizes IO on IA64/Altix systems
4045 mmiowb();
4048 #define MINIMUM_DHCP_PACKET_SIZE 282
4049 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
4050 struct sk_buff *skb)
4052 struct e1000_hw *hw = &adapter->hw;
4053 u16 length, offset;
4055 if (vlan_tx_tag_present(skb)) {
4056 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
4057 (adapter->hw.mng_cookie.status &
4058 E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
4059 return 0;
4062 if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
4063 return 0;
4065 if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
4066 return 0;
4069 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
4070 struct udphdr *udp;
4072 if (ip->protocol != IPPROTO_UDP)
4073 return 0;
4075 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
4076 if (ntohs(udp->dest) != 67)
4077 return 0;
4079 offset = (u8 *)udp + 8 - skb->data;
4080 length = skb->len - offset;
4081 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
4084 return 0;
4087 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
4089 struct e1000_adapter *adapter = netdev_priv(netdev);
4091 netif_stop_queue(netdev);
4093 * Herbert's original patch had:
4094 * smp_mb__after_netif_stop_queue();
4095 * but since that doesn't exist yet, just open code it.
4097 smp_mb();
4100 * We need to check again in a case another CPU has just
4101 * made room available.
4103 if (e1000_desc_unused(adapter->tx_ring) < size)
4104 return -EBUSY;
4106 /* A reprieve! */
4107 netif_start_queue(netdev);
4108 ++adapter->restart_queue;
4109 return 0;
4112 static int e1000_maybe_stop_tx(struct net_device *netdev, int size)
4114 struct e1000_adapter *adapter = netdev_priv(netdev);
4116 if (e1000_desc_unused(adapter->tx_ring) >= size)
4117 return 0;
4118 return __e1000_maybe_stop_tx(netdev, size);
4121 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
4122 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
4123 struct net_device *netdev)
4125 struct e1000_adapter *adapter = netdev_priv(netdev);
4126 struct e1000_ring *tx_ring = adapter->tx_ring;
4127 unsigned int first;
4128 unsigned int max_per_txd = E1000_MAX_PER_TXD;
4129 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
4130 unsigned int tx_flags = 0;
4131 unsigned int len = skb->len - skb->data_len;
4132 unsigned int nr_frags;
4133 unsigned int mss;
4134 int count = 0;
4135 int tso;
4136 unsigned int f;
4138 if (test_bit(__E1000_DOWN, &adapter->state)) {
4139 dev_kfree_skb_any(skb);
4140 return NETDEV_TX_OK;
4143 if (skb->len <= 0) {
4144 dev_kfree_skb_any(skb);
4145 return NETDEV_TX_OK;
4148 mss = skb_shinfo(skb)->gso_size;
4150 * The controller does a simple calculation to
4151 * make sure there is enough room in the FIFO before
4152 * initiating the DMA for each buffer. The calc is:
4153 * 4 = ceil(buffer len/mss). To make sure we don't
4154 * overrun the FIFO, adjust the max buffer len if mss
4155 * drops.
4157 if (mss) {
4158 u8 hdr_len;
4159 max_per_txd = min(mss << 2, max_per_txd);
4160 max_txd_pwr = fls(max_per_txd) - 1;
4163 * TSO Workaround for 82571/2/3 Controllers -- if skb->data
4164 * points to just header, pull a few bytes of payload from
4165 * frags into skb->data
4167 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
4169 * we do this workaround for ES2LAN, but it is un-necessary,
4170 * avoiding it could save a lot of cycles
4172 if (skb->data_len && (hdr_len == len)) {
4173 unsigned int pull_size;
4175 pull_size = min((unsigned int)4, skb->data_len);
4176 if (!__pskb_pull_tail(skb, pull_size)) {
4177 e_err("__pskb_pull_tail failed.\n");
4178 dev_kfree_skb_any(skb);
4179 return NETDEV_TX_OK;
4181 len = skb->len - skb->data_len;
4185 /* reserve a descriptor for the offload context */
4186 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
4187 count++;
4188 count++;
4190 count += TXD_USE_COUNT(len, max_txd_pwr);
4192 nr_frags = skb_shinfo(skb)->nr_frags;
4193 for (f = 0; f < nr_frags; f++)
4194 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
4195 max_txd_pwr);
4197 if (adapter->hw.mac.tx_pkt_filtering)
4198 e1000_transfer_dhcp_info(adapter, skb);
4201 * need: count + 2 desc gap to keep tail from touching
4202 * head, otherwise try next time
4204 if (e1000_maybe_stop_tx(netdev, count + 2))
4205 return NETDEV_TX_BUSY;
4207 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
4208 tx_flags |= E1000_TX_FLAGS_VLAN;
4209 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
4212 first = tx_ring->next_to_use;
4214 tso = e1000_tso(adapter, skb);
4215 if (tso < 0) {
4216 dev_kfree_skb_any(skb);
4217 return NETDEV_TX_OK;
4220 if (tso)
4221 tx_flags |= E1000_TX_FLAGS_TSO;
4222 else if (e1000_tx_csum(adapter, skb))
4223 tx_flags |= E1000_TX_FLAGS_CSUM;
4226 * Old method was to assume IPv4 packet by default if TSO was enabled.
4227 * 82571 hardware supports TSO capabilities for IPv6 as well...
4228 * no longer assume, we must.
4230 if (skb->protocol == htons(ETH_P_IP))
4231 tx_flags |= E1000_TX_FLAGS_IPV4;
4233 /* if count is 0 then mapping error has occured */
4234 count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss);
4235 if (count) {
4236 e1000_tx_queue(adapter, tx_flags, count);
4237 /* Make sure there is space in the ring for the next send. */
4238 e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2);
4240 } else {
4241 dev_kfree_skb_any(skb);
4242 tx_ring->buffer_info[first].time_stamp = 0;
4243 tx_ring->next_to_use = first;
4246 return NETDEV_TX_OK;
4250 * e1000_tx_timeout - Respond to a Tx Hang
4251 * @netdev: network interface device structure
4253 static void e1000_tx_timeout(struct net_device *netdev)
4255 struct e1000_adapter *adapter = netdev_priv(netdev);
4257 /* Do the reset outside of interrupt context */
4258 adapter->tx_timeout_count++;
4259 schedule_work(&adapter->reset_task);
4262 static void e1000_reset_task(struct work_struct *work)
4264 struct e1000_adapter *adapter;
4265 adapter = container_of(work, struct e1000_adapter, reset_task);
4267 e1000e_reinit_locked(adapter);
4271 * e1000_get_stats - Get System Network Statistics
4272 * @netdev: network interface device structure
4274 * Returns the address of the device statistics structure.
4275 * The statistics are actually updated from the timer callback.
4277 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
4279 /* only return the current stats */
4280 return &netdev->stats;
4284 * e1000_change_mtu - Change the Maximum Transfer Unit
4285 * @netdev: network interface device structure
4286 * @new_mtu: new value for maximum frame size
4288 * Returns 0 on success, negative on failure
4290 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
4292 struct e1000_adapter *adapter = netdev_priv(netdev);
4293 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
4295 /* Jumbo frame support */
4296 if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) &&
4297 !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
4298 e_err("Jumbo Frames not supported.\n");
4299 return -EINVAL;
4302 /* Supported frame sizes */
4303 if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
4304 (max_frame > adapter->max_hw_frame_size)) {
4305 e_err("Unsupported MTU setting\n");
4306 return -EINVAL;
4309 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4310 msleep(1);
4311 /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
4312 adapter->max_frame_size = max_frame;
4313 e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
4314 netdev->mtu = new_mtu;
4315 if (netif_running(netdev))
4316 e1000e_down(adapter);
4319 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
4320 * means we reserve 2 more, this pushes us to allocate from the next
4321 * larger slab size.
4322 * i.e. RXBUFFER_2048 --> size-4096 slab
4323 * However with the new *_jumbo_rx* routines, jumbo receives will use
4324 * fragmented skbs
4327 if (max_frame <= 2048)
4328 adapter->rx_buffer_len = 2048;
4329 else
4330 adapter->rx_buffer_len = 4096;
4332 /* adjust allocation if LPE protects us, and we aren't using SBP */
4333 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
4334 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
4335 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
4336 + ETH_FCS_LEN;
4338 if (netif_running(netdev))
4339 e1000e_up(adapter);
4340 else
4341 e1000e_reset(adapter);
4343 clear_bit(__E1000_RESETTING, &adapter->state);
4345 return 0;
4348 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4349 int cmd)
4351 struct e1000_adapter *adapter = netdev_priv(netdev);
4352 struct mii_ioctl_data *data = if_mii(ifr);
4354 if (adapter->hw.phy.media_type != e1000_media_type_copper)
4355 return -EOPNOTSUPP;
4357 switch (cmd) {
4358 case SIOCGMIIPHY:
4359 data->phy_id = adapter->hw.phy.addr;
4360 break;
4361 case SIOCGMIIREG:
4362 e1000_phy_read_status(adapter);
4364 switch (data->reg_num & 0x1F) {
4365 case MII_BMCR:
4366 data->val_out = adapter->phy_regs.bmcr;
4367 break;
4368 case MII_BMSR:
4369 data->val_out = adapter->phy_regs.bmsr;
4370 break;
4371 case MII_PHYSID1:
4372 data->val_out = (adapter->hw.phy.id >> 16);
4373 break;
4374 case MII_PHYSID2:
4375 data->val_out = (adapter->hw.phy.id & 0xFFFF);
4376 break;
4377 case MII_ADVERTISE:
4378 data->val_out = adapter->phy_regs.advertise;
4379 break;
4380 case MII_LPA:
4381 data->val_out = adapter->phy_regs.lpa;
4382 break;
4383 case MII_EXPANSION:
4384 data->val_out = adapter->phy_regs.expansion;
4385 break;
4386 case MII_CTRL1000:
4387 data->val_out = adapter->phy_regs.ctrl1000;
4388 break;
4389 case MII_STAT1000:
4390 data->val_out = adapter->phy_regs.stat1000;
4391 break;
4392 case MII_ESTATUS:
4393 data->val_out = adapter->phy_regs.estatus;
4394 break;
4395 default:
4396 return -EIO;
4398 break;
4399 case SIOCSMIIREG:
4400 default:
4401 return -EOPNOTSUPP;
4403 return 0;
4406 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4408 switch (cmd) {
4409 case SIOCGMIIPHY:
4410 case SIOCGMIIREG:
4411 case SIOCSMIIREG:
4412 return e1000_mii_ioctl(netdev, ifr, cmd);
4413 default:
4414 return -EOPNOTSUPP;
4418 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
4420 struct e1000_hw *hw = &adapter->hw;
4421 u32 i, mac_reg;
4422 u16 phy_reg;
4423 int retval = 0;
4425 /* copy MAC RARs to PHY RARs */
4426 for (i = 0; i < adapter->hw.mac.rar_entry_count; i++) {
4427 mac_reg = er32(RAL(i));
4428 e1e_wphy(hw, BM_RAR_L(i), (u16)(mac_reg & 0xFFFF));
4429 e1e_wphy(hw, BM_RAR_M(i), (u16)((mac_reg >> 16) & 0xFFFF));
4430 mac_reg = er32(RAH(i));
4431 e1e_wphy(hw, BM_RAR_H(i), (u16)(mac_reg & 0xFFFF));
4432 e1e_wphy(hw, BM_RAR_CTRL(i), (u16)((mac_reg >> 16) & 0xFFFF));
4435 /* copy MAC MTA to PHY MTA */
4436 for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
4437 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
4438 e1e_wphy(hw, BM_MTA(i), (u16)(mac_reg & 0xFFFF));
4439 e1e_wphy(hw, BM_MTA(i) + 1, (u16)((mac_reg >> 16) & 0xFFFF));
4442 /* configure PHY Rx Control register */
4443 e1e_rphy(&adapter->hw, BM_RCTL, &phy_reg);
4444 mac_reg = er32(RCTL);
4445 if (mac_reg & E1000_RCTL_UPE)
4446 phy_reg |= BM_RCTL_UPE;
4447 if (mac_reg & E1000_RCTL_MPE)
4448 phy_reg |= BM_RCTL_MPE;
4449 phy_reg &= ~(BM_RCTL_MO_MASK);
4450 if (mac_reg & E1000_RCTL_MO_3)
4451 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
4452 << BM_RCTL_MO_SHIFT);
4453 if (mac_reg & E1000_RCTL_BAM)
4454 phy_reg |= BM_RCTL_BAM;
4455 if (mac_reg & E1000_RCTL_PMCF)
4456 phy_reg |= BM_RCTL_PMCF;
4457 mac_reg = er32(CTRL);
4458 if (mac_reg & E1000_CTRL_RFCE)
4459 phy_reg |= BM_RCTL_RFCE;
4460 e1e_wphy(&adapter->hw, BM_RCTL, phy_reg);
4462 /* enable PHY wakeup in MAC register */
4463 ew32(WUFC, wufc);
4464 ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN);
4466 /* configure and enable PHY wakeup in PHY registers */
4467 e1e_wphy(&adapter->hw, BM_WUFC, wufc);
4468 e1e_wphy(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
4470 /* activate PHY wakeup */
4471 retval = hw->phy.ops.acquire(hw);
4472 if (retval) {
4473 e_err("Could not acquire PHY\n");
4474 return retval;
4476 e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4477 (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
4478 retval = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &phy_reg);
4479 if (retval) {
4480 e_err("Could not read PHY page 769\n");
4481 goto out;
4483 phy_reg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
4484 retval = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
4485 if (retval)
4486 e_err("Could not set PHY Host Wakeup bit\n");
4487 out:
4488 hw->phy.ops.release(hw);
4490 return retval;
4493 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
4495 struct net_device *netdev = pci_get_drvdata(pdev);
4496 struct e1000_adapter *adapter = netdev_priv(netdev);
4497 struct e1000_hw *hw = &adapter->hw;
4498 u32 ctrl, ctrl_ext, rctl, status;
4499 u32 wufc = adapter->wol;
4500 int retval = 0;
4502 netif_device_detach(netdev);
4504 if (netif_running(netdev)) {
4505 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4506 e1000e_down(adapter);
4507 e1000_free_irq(adapter);
4509 e1000e_reset_interrupt_capability(adapter);
4511 retval = pci_save_state(pdev);
4512 if (retval)
4513 return retval;
4515 status = er32(STATUS);
4516 if (status & E1000_STATUS_LU)
4517 wufc &= ~E1000_WUFC_LNKC;
4519 if (wufc) {
4520 e1000_setup_rctl(adapter);
4521 e1000_set_multi(netdev);
4523 /* turn on all-multi mode if wake on multicast is enabled */
4524 if (wufc & E1000_WUFC_MC) {
4525 rctl = er32(RCTL);
4526 rctl |= E1000_RCTL_MPE;
4527 ew32(RCTL, rctl);
4530 ctrl = er32(CTRL);
4531 /* advertise wake from D3Cold */
4532 #define E1000_CTRL_ADVD3WUC 0x00100000
4533 /* phy power management enable */
4534 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4535 ctrl |= E1000_CTRL_ADVD3WUC;
4536 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
4537 ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
4538 ew32(CTRL, ctrl);
4540 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
4541 adapter->hw.phy.media_type ==
4542 e1000_media_type_internal_serdes) {
4543 /* keep the laser running in D3 */
4544 ctrl_ext = er32(CTRL_EXT);
4545 ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
4546 ew32(CTRL_EXT, ctrl_ext);
4549 if (adapter->flags & FLAG_IS_ICH)
4550 e1000e_disable_gig_wol_ich8lan(&adapter->hw);
4552 /* Allow time for pending master requests to run */
4553 e1000e_disable_pcie_master(&adapter->hw);
4555 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
4556 /* enable wakeup by the PHY */
4557 retval = e1000_init_phy_wakeup(adapter, wufc);
4558 if (retval)
4559 return retval;
4560 } else {
4561 /* enable wakeup by the MAC */
4562 ew32(WUFC, wufc);
4563 ew32(WUC, E1000_WUC_PME_EN);
4565 } else {
4566 ew32(WUC, 0);
4567 ew32(WUFC, 0);
4570 *enable_wake = !!wufc;
4572 /* make sure adapter isn't asleep if manageability is enabled */
4573 if ((adapter->flags & FLAG_MNG_PT_ENABLED) ||
4574 (hw->mac.ops.check_mng_mode(hw)))
4575 *enable_wake = true;
4577 if (adapter->hw.phy.type == e1000_phy_igp_3)
4578 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
4581 * Release control of h/w to f/w. If f/w is AMT enabled, this
4582 * would have already happened in close and is redundant.
4584 e1000_release_hw_control(adapter);
4586 pci_disable_device(pdev);
4588 return 0;
4591 static void e1000_power_off(struct pci_dev *pdev, bool sleep, bool wake)
4593 if (sleep && wake) {
4594 pci_prepare_to_sleep(pdev);
4595 return;
4598 pci_wake_from_d3(pdev, wake);
4599 pci_set_power_state(pdev, PCI_D3hot);
4602 static void e1000_complete_shutdown(struct pci_dev *pdev, bool sleep,
4603 bool wake)
4605 struct net_device *netdev = pci_get_drvdata(pdev);
4606 struct e1000_adapter *adapter = netdev_priv(netdev);
4609 * The pci-e switch on some quad port adapters will report a
4610 * correctable error when the MAC transitions from D0 to D3. To
4611 * prevent this we need to mask off the correctable errors on the
4612 * downstream port of the pci-e switch.
4614 if (adapter->flags & FLAG_IS_QUAD_PORT) {
4615 struct pci_dev *us_dev = pdev->bus->self;
4616 int pos = pci_find_capability(us_dev, PCI_CAP_ID_EXP);
4617 u16 devctl;
4619 pci_read_config_word(us_dev, pos + PCI_EXP_DEVCTL, &devctl);
4620 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL,
4621 (devctl & ~PCI_EXP_DEVCTL_CERE));
4623 e1000_power_off(pdev, sleep, wake);
4625 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, devctl);
4626 } else {
4627 e1000_power_off(pdev, sleep, wake);
4631 static void e1000e_disable_l1aspm(struct pci_dev *pdev)
4633 int pos;
4634 u16 val;
4637 * 82573 workaround - disable L1 ASPM on mobile chipsets
4639 * L1 ASPM on various mobile (ich7) chipsets do not behave properly
4640 * resulting in lost data or garbage information on the pci-e link
4641 * level. This could result in (false) bad EEPROM checksum errors,
4642 * long ping times (up to 2s) or even a system freeze/hang.
4644 * Unfortunately this feature saves about 1W power consumption when
4645 * active.
4647 pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
4648 pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &val);
4649 if (val & 0x2) {
4650 dev_warn(&pdev->dev, "Disabling L1 ASPM\n");
4651 val &= ~0x2;
4652 pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, val);
4656 #ifdef CONFIG_PM
4657 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4659 int retval;
4660 bool wake;
4662 retval = __e1000_shutdown(pdev, &wake);
4663 if (!retval)
4664 e1000_complete_shutdown(pdev, true, wake);
4666 return retval;
4669 static int e1000_resume(struct pci_dev *pdev)
4671 struct net_device *netdev = pci_get_drvdata(pdev);
4672 struct e1000_adapter *adapter = netdev_priv(netdev);
4673 struct e1000_hw *hw = &adapter->hw;
4674 u32 err;
4676 pci_set_power_state(pdev, PCI_D0);
4677 pci_restore_state(pdev);
4678 pci_save_state(pdev);
4679 e1000e_disable_l1aspm(pdev);
4681 err = pci_enable_device_mem(pdev);
4682 if (err) {
4683 dev_err(&pdev->dev,
4684 "Cannot enable PCI device from suspend\n");
4685 return err;
4688 pci_set_master(pdev);
4690 pci_enable_wake(pdev, PCI_D3hot, 0);
4691 pci_enable_wake(pdev, PCI_D3cold, 0);
4693 e1000e_set_interrupt_capability(adapter);
4694 if (netif_running(netdev)) {
4695 err = e1000_request_irq(adapter);
4696 if (err)
4697 return err;
4700 e1000e_power_up_phy(adapter);
4702 /* report the system wakeup cause from S3/S4 */
4703 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
4704 u16 phy_data;
4706 e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
4707 if (phy_data) {
4708 e_info("PHY Wakeup cause - %s\n",
4709 phy_data & E1000_WUS_EX ? "Unicast Packet" :
4710 phy_data & E1000_WUS_MC ? "Multicast Packet" :
4711 phy_data & E1000_WUS_BC ? "Broadcast Packet" :
4712 phy_data & E1000_WUS_MAG ? "Magic Packet" :
4713 phy_data & E1000_WUS_LNKC ? "Link Status "
4714 " Change" : "other");
4716 e1e_wphy(&adapter->hw, BM_WUS, ~0);
4717 } else {
4718 u32 wus = er32(WUS);
4719 if (wus) {
4720 e_info("MAC Wakeup cause - %s\n",
4721 wus & E1000_WUS_EX ? "Unicast Packet" :
4722 wus & E1000_WUS_MC ? "Multicast Packet" :
4723 wus & E1000_WUS_BC ? "Broadcast Packet" :
4724 wus & E1000_WUS_MAG ? "Magic Packet" :
4725 wus & E1000_WUS_LNKC ? "Link Status Change" :
4726 "other");
4728 ew32(WUS, ~0);
4731 e1000e_reset(adapter);
4733 e1000_init_manageability(adapter);
4735 if (netif_running(netdev))
4736 e1000e_up(adapter);
4738 netif_device_attach(netdev);
4741 * If the controller has AMT, do not set DRV_LOAD until the interface
4742 * is up. For all other cases, let the f/w know that the h/w is now
4743 * under the control of the driver.
4745 if (!(adapter->flags & FLAG_HAS_AMT))
4746 e1000_get_hw_control(adapter);
4748 return 0;
4750 #endif
4752 static void e1000_shutdown(struct pci_dev *pdev)
4754 bool wake = false;
4756 __e1000_shutdown(pdev, &wake);
4758 if (system_state == SYSTEM_POWER_OFF)
4759 e1000_complete_shutdown(pdev, false, wake);
4762 #ifdef CONFIG_NET_POLL_CONTROLLER
4764 * Polling 'interrupt' - used by things like netconsole to send skbs
4765 * without having to re-enable interrupts. It's not called while
4766 * the interrupt routine is executing.
4768 static void e1000_netpoll(struct net_device *netdev)
4770 struct e1000_adapter *adapter = netdev_priv(netdev);
4772 disable_irq(adapter->pdev->irq);
4773 e1000_intr(adapter->pdev->irq, netdev);
4775 enable_irq(adapter->pdev->irq);
4777 #endif
4780 * e1000_io_error_detected - called when PCI error is detected
4781 * @pdev: Pointer to PCI device
4782 * @state: The current pci connection state
4784 * This function is called after a PCI bus error affecting
4785 * this device has been detected.
4787 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
4788 pci_channel_state_t state)
4790 struct net_device *netdev = pci_get_drvdata(pdev);
4791 struct e1000_adapter *adapter = netdev_priv(netdev);
4793 netif_device_detach(netdev);
4795 if (state == pci_channel_io_perm_failure)
4796 return PCI_ERS_RESULT_DISCONNECT;
4798 if (netif_running(netdev))
4799 e1000e_down(adapter);
4800 pci_disable_device(pdev);
4802 /* Request a slot slot reset. */
4803 return PCI_ERS_RESULT_NEED_RESET;
4807 * e1000_io_slot_reset - called after the pci bus has been reset.
4808 * @pdev: Pointer to PCI device
4810 * Restart the card from scratch, as if from a cold-boot. Implementation
4811 * resembles the first-half of the e1000_resume routine.
4813 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4815 struct net_device *netdev = pci_get_drvdata(pdev);
4816 struct e1000_adapter *adapter = netdev_priv(netdev);
4817 struct e1000_hw *hw = &adapter->hw;
4818 int err;
4819 pci_ers_result_t result;
4821 e1000e_disable_l1aspm(pdev);
4822 err = pci_enable_device_mem(pdev);
4823 if (err) {
4824 dev_err(&pdev->dev,
4825 "Cannot re-enable PCI device after reset.\n");
4826 result = PCI_ERS_RESULT_DISCONNECT;
4827 } else {
4828 pci_set_master(pdev);
4829 pci_restore_state(pdev);
4830 pci_save_state(pdev);
4832 pci_enable_wake(pdev, PCI_D3hot, 0);
4833 pci_enable_wake(pdev, PCI_D3cold, 0);
4835 e1000e_reset(adapter);
4836 ew32(WUS, ~0);
4837 result = PCI_ERS_RESULT_RECOVERED;
4840 pci_cleanup_aer_uncorrect_error_status(pdev);
4842 return result;
4846 * e1000_io_resume - called when traffic can start flowing again.
4847 * @pdev: Pointer to PCI device
4849 * This callback is called when the error recovery driver tells us that
4850 * its OK to resume normal operation. Implementation resembles the
4851 * second-half of the e1000_resume routine.
4853 static void e1000_io_resume(struct pci_dev *pdev)
4855 struct net_device *netdev = pci_get_drvdata(pdev);
4856 struct e1000_adapter *adapter = netdev_priv(netdev);
4858 e1000_init_manageability(adapter);
4860 if (netif_running(netdev)) {
4861 if (e1000e_up(adapter)) {
4862 dev_err(&pdev->dev,
4863 "can't bring device back up after reset\n");
4864 return;
4868 netif_device_attach(netdev);
4871 * If the controller has AMT, do not set DRV_LOAD until the interface
4872 * is up. For all other cases, let the f/w know that the h/w is now
4873 * under the control of the driver.
4875 if (!(adapter->flags & FLAG_HAS_AMT))
4876 e1000_get_hw_control(adapter);
4880 static void e1000_print_device_info(struct e1000_adapter *adapter)
4882 struct e1000_hw *hw = &adapter->hw;
4883 struct net_device *netdev = adapter->netdev;
4884 u32 pba_num;
4886 /* print bus type/speed/width info */
4887 e_info("(PCI Express:2.5GB/s:%s) %pM\n",
4888 /* bus width */
4889 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
4890 "Width x1"),
4891 /* MAC address */
4892 netdev->dev_addr);
4893 e_info("Intel(R) PRO/%s Network Connection\n",
4894 (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
4895 e1000e_read_pba_num(hw, &pba_num);
4896 e_info("MAC: %d, PHY: %d, PBA No: %06x-%03x\n",
4897 hw->mac.type, hw->phy.type, (pba_num >> 8), (pba_num & 0xff));
4900 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
4902 struct e1000_hw *hw = &adapter->hw;
4903 int ret_val;
4904 u16 buf = 0;
4906 if (hw->mac.type != e1000_82573)
4907 return;
4909 ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
4910 if (!ret_val && (!(le16_to_cpu(buf) & (1 << 0)))) {
4911 /* Deep Smart Power Down (DSPD) */
4912 dev_warn(&adapter->pdev->dev,
4913 "Warning: detected DSPD enabled in EEPROM\n");
4916 ret_val = e1000_read_nvm(hw, NVM_INIT_3GIO_3, 1, &buf);
4917 if (!ret_val && (le16_to_cpu(buf) & (3 << 2))) {
4918 /* ASPM enable */
4919 dev_warn(&adapter->pdev->dev,
4920 "Warning: detected ASPM enabled in EEPROM\n");
4924 static const struct net_device_ops e1000e_netdev_ops = {
4925 .ndo_open = e1000_open,
4926 .ndo_stop = e1000_close,
4927 .ndo_start_xmit = e1000_xmit_frame,
4928 .ndo_get_stats = e1000_get_stats,
4929 .ndo_set_multicast_list = e1000_set_multi,
4930 .ndo_set_mac_address = e1000_set_mac,
4931 .ndo_change_mtu = e1000_change_mtu,
4932 .ndo_do_ioctl = e1000_ioctl,
4933 .ndo_tx_timeout = e1000_tx_timeout,
4934 .ndo_validate_addr = eth_validate_addr,
4936 .ndo_vlan_rx_register = e1000_vlan_rx_register,
4937 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
4938 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
4939 #ifdef CONFIG_NET_POLL_CONTROLLER
4940 .ndo_poll_controller = e1000_netpoll,
4941 #endif
4945 * e1000_probe - Device Initialization Routine
4946 * @pdev: PCI device information struct
4947 * @ent: entry in e1000_pci_tbl
4949 * Returns 0 on success, negative on failure
4951 * e1000_probe initializes an adapter identified by a pci_dev structure.
4952 * The OS initialization, configuring of the adapter private structure,
4953 * and a hardware reset occur.
4955 static int __devinit e1000_probe(struct pci_dev *pdev,
4956 const struct pci_device_id *ent)
4958 struct net_device *netdev;
4959 struct e1000_adapter *adapter;
4960 struct e1000_hw *hw;
4961 const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
4962 resource_size_t mmio_start, mmio_len;
4963 resource_size_t flash_start, flash_len;
4965 static int cards_found;
4966 int i, err, pci_using_dac;
4967 u16 eeprom_data = 0;
4968 u16 eeprom_apme_mask = E1000_EEPROM_APME;
4970 e1000e_disable_l1aspm(pdev);
4972 err = pci_enable_device_mem(pdev);
4973 if (err)
4974 return err;
4976 pci_using_dac = 0;
4977 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
4978 if (!err) {
4979 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4980 if (!err)
4981 pci_using_dac = 1;
4982 } else {
4983 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4984 if (err) {
4985 err = pci_set_consistent_dma_mask(pdev,
4986 DMA_BIT_MASK(32));
4987 if (err) {
4988 dev_err(&pdev->dev, "No usable DMA "
4989 "configuration, aborting\n");
4990 goto err_dma;
4995 err = pci_request_selected_regions_exclusive(pdev,
4996 pci_select_bars(pdev, IORESOURCE_MEM),
4997 e1000e_driver_name);
4998 if (err)
4999 goto err_pci_reg;
5001 /* AER (Advanced Error Reporting) hooks */
5002 pci_enable_pcie_error_reporting(pdev);
5004 pci_set_master(pdev);
5005 /* PCI config space info */
5006 err = pci_save_state(pdev);
5007 if (err)
5008 goto err_alloc_etherdev;
5010 err = -ENOMEM;
5011 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
5012 if (!netdev)
5013 goto err_alloc_etherdev;
5015 SET_NETDEV_DEV(netdev, &pdev->dev);
5017 pci_set_drvdata(pdev, netdev);
5018 adapter = netdev_priv(netdev);
5019 hw = &adapter->hw;
5020 adapter->netdev = netdev;
5021 adapter->pdev = pdev;
5022 adapter->ei = ei;
5023 adapter->pba = ei->pba;
5024 adapter->flags = ei->flags;
5025 adapter->flags2 = ei->flags2;
5026 adapter->hw.adapter = adapter;
5027 adapter->hw.mac.type = ei->mac;
5028 adapter->max_hw_frame_size = ei->max_hw_frame_size;
5029 adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
5031 mmio_start = pci_resource_start(pdev, 0);
5032 mmio_len = pci_resource_len(pdev, 0);
5034 err = -EIO;
5035 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
5036 if (!adapter->hw.hw_addr)
5037 goto err_ioremap;
5039 if ((adapter->flags & FLAG_HAS_FLASH) &&
5040 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
5041 flash_start = pci_resource_start(pdev, 1);
5042 flash_len = pci_resource_len(pdev, 1);
5043 adapter->hw.flash_address = ioremap(flash_start, flash_len);
5044 if (!adapter->hw.flash_address)
5045 goto err_flashmap;
5048 /* construct the net_device struct */
5049 netdev->netdev_ops = &e1000e_netdev_ops;
5050 e1000e_set_ethtool_ops(netdev);
5051 netdev->watchdog_timeo = 5 * HZ;
5052 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
5053 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
5055 netdev->mem_start = mmio_start;
5056 netdev->mem_end = mmio_start + mmio_len;
5058 adapter->bd_number = cards_found++;
5060 e1000e_check_options(adapter);
5062 /* setup adapter struct */
5063 err = e1000_sw_init(adapter);
5064 if (err)
5065 goto err_sw_init;
5067 err = -EIO;
5069 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
5070 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
5071 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
5073 err = ei->get_variants(adapter);
5074 if (err)
5075 goto err_hw_init;
5077 if ((adapter->flags & FLAG_IS_ICH) &&
5078 (adapter->flags & FLAG_READ_ONLY_NVM))
5079 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
5081 hw->mac.ops.get_bus_info(&adapter->hw);
5083 adapter->hw.phy.autoneg_wait_to_complete = 0;
5085 /* Copper options */
5086 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
5087 adapter->hw.phy.mdix = AUTO_ALL_MODES;
5088 adapter->hw.phy.disable_polarity_correction = 0;
5089 adapter->hw.phy.ms_type = e1000_ms_hw_default;
5092 if (e1000_check_reset_block(&adapter->hw))
5093 e_info("PHY reset is blocked due to SOL/IDER session.\n");
5095 netdev->features = NETIF_F_SG |
5096 NETIF_F_HW_CSUM |
5097 NETIF_F_HW_VLAN_TX |
5098 NETIF_F_HW_VLAN_RX;
5100 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
5101 netdev->features |= NETIF_F_HW_VLAN_FILTER;
5103 netdev->features |= NETIF_F_TSO;
5104 netdev->features |= NETIF_F_TSO6;
5106 netdev->vlan_features |= NETIF_F_TSO;
5107 netdev->vlan_features |= NETIF_F_TSO6;
5108 netdev->vlan_features |= NETIF_F_HW_CSUM;
5109 netdev->vlan_features |= NETIF_F_SG;
5111 if (pci_using_dac)
5112 netdev->features |= NETIF_F_HIGHDMA;
5114 if (e1000e_enable_mng_pass_thru(&adapter->hw))
5115 adapter->flags |= FLAG_MNG_PT_ENABLED;
5118 * before reading the NVM, reset the controller to
5119 * put the device in a known good starting state
5121 adapter->hw.mac.ops.reset_hw(&adapter->hw);
5124 * systems with ASPM and others may see the checksum fail on the first
5125 * attempt. Let's give it a few tries
5127 for (i = 0;; i++) {
5128 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
5129 break;
5130 if (i == 2) {
5131 e_err("The NVM Checksum Is Not Valid\n");
5132 err = -EIO;
5133 goto err_eeprom;
5137 e1000_eeprom_checks(adapter);
5139 /* copy the MAC address out of the NVM */
5140 if (e1000e_read_mac_addr(&adapter->hw))
5141 e_err("NVM Read Error while reading MAC address\n");
5143 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
5144 memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
5146 if (!is_valid_ether_addr(netdev->perm_addr)) {
5147 e_err("Invalid MAC Address: %pM\n", netdev->perm_addr);
5148 err = -EIO;
5149 goto err_eeprom;
5152 init_timer(&adapter->watchdog_timer);
5153 adapter->watchdog_timer.function = &e1000_watchdog;
5154 adapter->watchdog_timer.data = (unsigned long) adapter;
5156 init_timer(&adapter->phy_info_timer);
5157 adapter->phy_info_timer.function = &e1000_update_phy_info;
5158 adapter->phy_info_timer.data = (unsigned long) adapter;
5160 INIT_WORK(&adapter->reset_task, e1000_reset_task);
5161 INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
5162 INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
5163 INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
5164 INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
5166 /* Initialize link parameters. User can change them with ethtool */
5167 adapter->hw.mac.autoneg = 1;
5168 adapter->fc_autoneg = 1;
5169 adapter->hw.fc.requested_mode = e1000_fc_default;
5170 adapter->hw.fc.current_mode = e1000_fc_default;
5171 adapter->hw.phy.autoneg_advertised = 0x2f;
5173 /* ring size defaults */
5174 adapter->rx_ring->count = 256;
5175 adapter->tx_ring->count = 256;
5178 * Initial Wake on LAN setting - If APM wake is enabled in
5179 * the EEPROM, enable the ACPI Magic Packet filter
5181 if (adapter->flags & FLAG_APME_IN_WUC) {
5182 /* APME bit in EEPROM is mapped to WUC.APME */
5183 eeprom_data = er32(WUC);
5184 eeprom_apme_mask = E1000_WUC_APME;
5185 if (eeprom_data & E1000_WUC_PHY_WAKE)
5186 adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
5187 } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
5188 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
5189 (adapter->hw.bus.func == 1))
5190 e1000_read_nvm(&adapter->hw,
5191 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
5192 else
5193 e1000_read_nvm(&adapter->hw,
5194 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
5197 /* fetch WoL from EEPROM */
5198 if (eeprom_data & eeprom_apme_mask)
5199 adapter->eeprom_wol |= E1000_WUFC_MAG;
5202 * now that we have the eeprom settings, apply the special cases
5203 * where the eeprom may be wrong or the board simply won't support
5204 * wake on lan on a particular port
5206 if (!(adapter->flags & FLAG_HAS_WOL))
5207 adapter->eeprom_wol = 0;
5209 /* initialize the wol settings based on the eeprom settings */
5210 adapter->wol = adapter->eeprom_wol;
5211 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
5213 /* save off EEPROM version number */
5214 e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
5216 /* reset the hardware with the new settings */
5217 e1000e_reset(adapter);
5220 * If the controller has AMT, do not set DRV_LOAD until the interface
5221 * is up. For all other cases, let the f/w know that the h/w is now
5222 * under the control of the driver.
5224 if (!(adapter->flags & FLAG_HAS_AMT))
5225 e1000_get_hw_control(adapter);
5227 strcpy(netdev->name, "eth%d");
5228 err = register_netdev(netdev);
5229 if (err)
5230 goto err_register;
5232 /* carrier off reporting is important to ethtool even BEFORE open */
5233 netif_carrier_off(netdev);
5235 e1000_print_device_info(adapter);
5237 return 0;
5239 err_register:
5240 if (!(adapter->flags & FLAG_HAS_AMT))
5241 e1000_release_hw_control(adapter);
5242 err_eeprom:
5243 if (!e1000_check_reset_block(&adapter->hw))
5244 e1000_phy_hw_reset(&adapter->hw);
5245 err_hw_init:
5247 kfree(adapter->tx_ring);
5248 kfree(adapter->rx_ring);
5249 err_sw_init:
5250 if (adapter->hw.flash_address)
5251 iounmap(adapter->hw.flash_address);
5252 e1000e_reset_interrupt_capability(adapter);
5253 err_flashmap:
5254 iounmap(adapter->hw.hw_addr);
5255 err_ioremap:
5256 free_netdev(netdev);
5257 err_alloc_etherdev:
5258 pci_release_selected_regions(pdev,
5259 pci_select_bars(pdev, IORESOURCE_MEM));
5260 err_pci_reg:
5261 err_dma:
5262 pci_disable_device(pdev);
5263 return err;
5267 * e1000_remove - Device Removal Routine
5268 * @pdev: PCI device information struct
5270 * e1000_remove is called by the PCI subsystem to alert the driver
5271 * that it should release a PCI device. The could be caused by a
5272 * Hot-Plug event, or because the driver is going to be removed from
5273 * memory.
5275 static void __devexit e1000_remove(struct pci_dev *pdev)
5277 struct net_device *netdev = pci_get_drvdata(pdev);
5278 struct e1000_adapter *adapter = netdev_priv(netdev);
5281 * flush_scheduled work may reschedule our watchdog task, so
5282 * explicitly disable watchdog tasks from being rescheduled
5284 set_bit(__E1000_DOWN, &adapter->state);
5285 del_timer_sync(&adapter->watchdog_timer);
5286 del_timer_sync(&adapter->phy_info_timer);
5288 cancel_work_sync(&adapter->reset_task);
5289 cancel_work_sync(&adapter->watchdog_task);
5290 cancel_work_sync(&adapter->downshift_task);
5291 cancel_work_sync(&adapter->update_phy_task);
5292 cancel_work_sync(&adapter->print_hang_task);
5293 flush_scheduled_work();
5295 if (!(netdev->flags & IFF_UP))
5296 e1000_power_down_phy(adapter);
5298 unregister_netdev(netdev);
5301 * Release control of h/w to f/w. If f/w is AMT enabled, this
5302 * would have already happened in close and is redundant.
5304 e1000_release_hw_control(adapter);
5306 e1000e_reset_interrupt_capability(adapter);
5307 kfree(adapter->tx_ring);
5308 kfree(adapter->rx_ring);
5310 iounmap(adapter->hw.hw_addr);
5311 if (adapter->hw.flash_address)
5312 iounmap(adapter->hw.flash_address);
5313 pci_release_selected_regions(pdev,
5314 pci_select_bars(pdev, IORESOURCE_MEM));
5316 free_netdev(netdev);
5318 /* AER disable */
5319 pci_disable_pcie_error_reporting(pdev);
5321 pci_disable_device(pdev);
5324 /* PCI Error Recovery (ERS) */
5325 static struct pci_error_handlers e1000_err_handler = {
5326 .error_detected = e1000_io_error_detected,
5327 .slot_reset = e1000_io_slot_reset,
5328 .resume = e1000_io_resume,
5331 static struct pci_device_id e1000_pci_tbl[] = {
5332 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
5333 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
5334 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
5335 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
5336 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
5337 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
5338 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
5339 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
5340 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
5342 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
5343 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
5344 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
5345 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
5347 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
5348 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
5349 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
5351 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
5352 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
5353 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
5355 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
5356 board_80003es2lan },
5357 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
5358 board_80003es2lan },
5359 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
5360 board_80003es2lan },
5361 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
5362 board_80003es2lan },
5364 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
5365 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
5366 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
5367 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
5368 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
5369 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
5370 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
5371 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
5373 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
5374 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
5375 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
5376 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
5377 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
5378 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
5379 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
5380 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
5381 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
5383 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
5384 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
5385 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
5387 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
5388 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
5390 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
5391 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
5392 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
5393 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
5395 { } /* terminate list */
5397 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
5399 /* PCI Device API Driver */
5400 static struct pci_driver e1000_driver = {
5401 .name = e1000e_driver_name,
5402 .id_table = e1000_pci_tbl,
5403 .probe = e1000_probe,
5404 .remove = __devexit_p(e1000_remove),
5405 #ifdef CONFIG_PM
5406 /* Power Management Hooks */
5407 .suspend = e1000_suspend,
5408 .resume = e1000_resume,
5409 #endif
5410 .shutdown = e1000_shutdown,
5411 .err_handler = &e1000_err_handler
5415 * e1000_init_module - Driver Registration Routine
5417 * e1000_init_module is the first routine called when the driver is
5418 * loaded. All it does is register with the PCI subsystem.
5420 static int __init e1000_init_module(void)
5422 int ret;
5423 printk(KERN_INFO "%s: Intel(R) PRO/1000 Network Driver - %s\n",
5424 e1000e_driver_name, e1000e_driver_version);
5425 printk(KERN_INFO "%s: Copyright (c) 1999 - 2009 Intel Corporation.\n",
5426 e1000e_driver_name);
5427 ret = pci_register_driver(&e1000_driver);
5429 return ret;
5431 module_init(e1000_init_module);
5434 * e1000_exit_module - Driver Exit Cleanup Routine
5436 * e1000_exit_module is called just before the driver is removed
5437 * from memory.
5439 static void __exit e1000_exit_module(void)
5441 pci_unregister_driver(&e1000_driver);
5443 module_exit(e1000_exit_module);
5446 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
5447 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
5448 MODULE_LICENSE("GPL");
5449 MODULE_VERSION(DRV_VERSION);
5451 /* e1000_main.c */