Btrfs: Metadata reservation for orphan inodes
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / btrfs / transaction.c
blobcfe7f588ef05001fe69d45d63d6e2ce6b77e236f
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include "ctree.h"
26 #include "disk-io.h"
27 #include "transaction.h"
28 #include "locking.h"
29 #include "tree-log.h"
31 #define BTRFS_ROOT_TRANS_TAG 0
33 static noinline void put_transaction(struct btrfs_transaction *transaction)
35 WARN_ON(transaction->use_count == 0);
36 transaction->use_count--;
37 if (transaction->use_count == 0) {
38 list_del_init(&transaction->list);
39 memset(transaction, 0, sizeof(*transaction));
40 kmem_cache_free(btrfs_transaction_cachep, transaction);
44 static noinline void switch_commit_root(struct btrfs_root *root)
46 free_extent_buffer(root->commit_root);
47 root->commit_root = btrfs_root_node(root);
51 * either allocate a new transaction or hop into the existing one
53 static noinline int join_transaction(struct btrfs_root *root)
55 struct btrfs_transaction *cur_trans;
56 cur_trans = root->fs_info->running_transaction;
57 if (!cur_trans) {
58 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep,
59 GFP_NOFS);
60 BUG_ON(!cur_trans);
61 root->fs_info->generation++;
62 cur_trans->num_writers = 1;
63 cur_trans->num_joined = 0;
64 cur_trans->transid = root->fs_info->generation;
65 init_waitqueue_head(&cur_trans->writer_wait);
66 init_waitqueue_head(&cur_trans->commit_wait);
67 cur_trans->in_commit = 0;
68 cur_trans->blocked = 0;
69 cur_trans->use_count = 1;
70 cur_trans->commit_done = 0;
71 cur_trans->start_time = get_seconds();
73 cur_trans->delayed_refs.root = RB_ROOT;
74 cur_trans->delayed_refs.num_entries = 0;
75 cur_trans->delayed_refs.num_heads_ready = 0;
76 cur_trans->delayed_refs.num_heads = 0;
77 cur_trans->delayed_refs.flushing = 0;
78 cur_trans->delayed_refs.run_delayed_start = 0;
79 spin_lock_init(&cur_trans->delayed_refs.lock);
81 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
82 list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
83 extent_io_tree_init(&cur_trans->dirty_pages,
84 root->fs_info->btree_inode->i_mapping,
85 GFP_NOFS);
86 spin_lock(&root->fs_info->new_trans_lock);
87 root->fs_info->running_transaction = cur_trans;
88 spin_unlock(&root->fs_info->new_trans_lock);
89 } else {
90 cur_trans->num_writers++;
91 cur_trans->num_joined++;
94 return 0;
98 * this does all the record keeping required to make sure that a reference
99 * counted root is properly recorded in a given transaction. This is required
100 * to make sure the old root from before we joined the transaction is deleted
101 * when the transaction commits
103 static noinline int record_root_in_trans(struct btrfs_trans_handle *trans,
104 struct btrfs_root *root)
106 if (root->ref_cows && root->last_trans < trans->transid) {
107 WARN_ON(root == root->fs_info->extent_root);
108 WARN_ON(root->commit_root != root->node);
110 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
111 (unsigned long)root->root_key.objectid,
112 BTRFS_ROOT_TRANS_TAG);
113 root->last_trans = trans->transid;
114 btrfs_init_reloc_root(trans, root);
116 return 0;
119 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
120 struct btrfs_root *root)
122 if (!root->ref_cows)
123 return 0;
125 mutex_lock(&root->fs_info->trans_mutex);
126 if (root->last_trans == trans->transid) {
127 mutex_unlock(&root->fs_info->trans_mutex);
128 return 0;
131 record_root_in_trans(trans, root);
132 mutex_unlock(&root->fs_info->trans_mutex);
133 return 0;
136 /* wait for commit against the current transaction to become unblocked
137 * when this is done, it is safe to start a new transaction, but the current
138 * transaction might not be fully on disk.
140 static void wait_current_trans(struct btrfs_root *root)
142 struct btrfs_transaction *cur_trans;
144 cur_trans = root->fs_info->running_transaction;
145 if (cur_trans && cur_trans->blocked) {
146 DEFINE_WAIT(wait);
147 cur_trans->use_count++;
148 while (1) {
149 prepare_to_wait(&root->fs_info->transaction_wait, &wait,
150 TASK_UNINTERRUPTIBLE);
151 if (!cur_trans->blocked)
152 break;
153 mutex_unlock(&root->fs_info->trans_mutex);
154 schedule();
155 mutex_lock(&root->fs_info->trans_mutex);
157 finish_wait(&root->fs_info->transaction_wait, &wait);
158 put_transaction(cur_trans);
162 enum btrfs_trans_type {
163 TRANS_START,
164 TRANS_JOIN,
165 TRANS_USERSPACE,
168 static int may_wait_transaction(struct btrfs_root *root, int type)
170 if (!root->fs_info->log_root_recovering &&
171 ((type == TRANS_START && !root->fs_info->open_ioctl_trans) ||
172 type == TRANS_USERSPACE))
173 return 1;
174 return 0;
177 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
178 u64 num_items, int type)
180 struct btrfs_trans_handle *h;
181 struct btrfs_transaction *cur_trans;
182 int retries = 0;
183 int ret;
184 again:
185 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
186 if (!h)
187 return ERR_PTR(-ENOMEM);
189 mutex_lock(&root->fs_info->trans_mutex);
190 if (may_wait_transaction(root, type))
191 wait_current_trans(root);
193 ret = join_transaction(root);
194 BUG_ON(ret);
196 cur_trans = root->fs_info->running_transaction;
197 cur_trans->use_count++;
198 mutex_unlock(&root->fs_info->trans_mutex);
200 h->transid = cur_trans->transid;
201 h->transaction = cur_trans;
202 h->blocks_used = 0;
203 h->block_group = 0;
204 h->bytes_reserved = 0;
205 h->delayed_ref_updates = 0;
206 h->block_rsv = NULL;
208 smp_mb();
209 if (cur_trans->blocked && may_wait_transaction(root, type)) {
210 btrfs_commit_transaction(h, root);
211 goto again;
214 if (num_items > 0) {
215 ret = btrfs_trans_reserve_metadata(h, root, num_items,
216 &retries);
217 if (ret == -EAGAIN) {
218 btrfs_commit_transaction(h, root);
219 goto again;
221 if (ret < 0) {
222 btrfs_end_transaction(h, root);
223 return ERR_PTR(ret);
227 mutex_lock(&root->fs_info->trans_mutex);
228 record_root_in_trans(h, root);
229 mutex_unlock(&root->fs_info->trans_mutex);
231 if (!current->journal_info && type != TRANS_USERSPACE)
232 current->journal_info = h;
233 return h;
236 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
237 int num_items)
239 return start_transaction(root, num_items, TRANS_START);
241 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root,
242 int num_blocks)
244 return start_transaction(root, 0, TRANS_JOIN);
247 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *r,
248 int num_blocks)
250 return start_transaction(r, 0, TRANS_USERSPACE);
253 /* wait for a transaction commit to be fully complete */
254 static noinline int wait_for_commit(struct btrfs_root *root,
255 struct btrfs_transaction *commit)
257 DEFINE_WAIT(wait);
258 mutex_lock(&root->fs_info->trans_mutex);
259 while (!commit->commit_done) {
260 prepare_to_wait(&commit->commit_wait, &wait,
261 TASK_UNINTERRUPTIBLE);
262 if (commit->commit_done)
263 break;
264 mutex_unlock(&root->fs_info->trans_mutex);
265 schedule();
266 mutex_lock(&root->fs_info->trans_mutex);
268 mutex_unlock(&root->fs_info->trans_mutex);
269 finish_wait(&commit->commit_wait, &wait);
270 return 0;
273 #if 0
275 * rate limit against the drop_snapshot code. This helps to slow down new
276 * operations if the drop_snapshot code isn't able to keep up.
278 static void throttle_on_drops(struct btrfs_root *root)
280 struct btrfs_fs_info *info = root->fs_info;
281 int harder_count = 0;
283 harder:
284 if (atomic_read(&info->throttles)) {
285 DEFINE_WAIT(wait);
286 int thr;
287 thr = atomic_read(&info->throttle_gen);
289 do {
290 prepare_to_wait(&info->transaction_throttle,
291 &wait, TASK_UNINTERRUPTIBLE);
292 if (!atomic_read(&info->throttles)) {
293 finish_wait(&info->transaction_throttle, &wait);
294 break;
296 schedule();
297 finish_wait(&info->transaction_throttle, &wait);
298 } while (thr == atomic_read(&info->throttle_gen));
299 harder_count++;
301 if (root->fs_info->total_ref_cache_size > 1 * 1024 * 1024 &&
302 harder_count < 2)
303 goto harder;
305 if (root->fs_info->total_ref_cache_size > 5 * 1024 * 1024 &&
306 harder_count < 10)
307 goto harder;
309 if (root->fs_info->total_ref_cache_size > 10 * 1024 * 1024 &&
310 harder_count < 20)
311 goto harder;
314 #endif
316 void btrfs_throttle(struct btrfs_root *root)
318 mutex_lock(&root->fs_info->trans_mutex);
319 if (!root->fs_info->open_ioctl_trans)
320 wait_current_trans(root);
321 mutex_unlock(&root->fs_info->trans_mutex);
324 static int should_end_transaction(struct btrfs_trans_handle *trans,
325 struct btrfs_root *root)
327 int ret;
328 ret = btrfs_block_rsv_check(trans, root,
329 &root->fs_info->global_block_rsv, 0, 5);
330 return ret ? 1 : 0;
333 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
334 struct btrfs_root *root)
336 struct btrfs_transaction *cur_trans = trans->transaction;
337 int updates;
339 if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
340 return 1;
342 updates = trans->delayed_ref_updates;
343 trans->delayed_ref_updates = 0;
344 if (updates)
345 btrfs_run_delayed_refs(trans, root, updates);
347 return should_end_transaction(trans, root);
350 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
351 struct btrfs_root *root, int throttle)
353 struct btrfs_transaction *cur_trans = trans->transaction;
354 struct btrfs_fs_info *info = root->fs_info;
355 int count = 0;
357 while (count < 4) {
358 unsigned long cur = trans->delayed_ref_updates;
359 trans->delayed_ref_updates = 0;
360 if (cur &&
361 trans->transaction->delayed_refs.num_heads_ready > 64) {
362 trans->delayed_ref_updates = 0;
365 * do a full flush if the transaction is trying
366 * to close
368 if (trans->transaction->delayed_refs.flushing)
369 cur = 0;
370 btrfs_run_delayed_refs(trans, root, cur);
371 } else {
372 break;
374 count++;
377 btrfs_trans_release_metadata(trans, root);
379 if (!root->fs_info->open_ioctl_trans &&
380 should_end_transaction(trans, root))
381 trans->transaction->blocked = 1;
383 if (cur_trans->blocked && !cur_trans->in_commit) {
384 if (throttle)
385 return btrfs_commit_transaction(trans, root);
386 else
387 wake_up_process(info->transaction_kthread);
390 mutex_lock(&info->trans_mutex);
391 WARN_ON(cur_trans != info->running_transaction);
392 WARN_ON(cur_trans->num_writers < 1);
393 cur_trans->num_writers--;
395 if (waitqueue_active(&cur_trans->writer_wait))
396 wake_up(&cur_trans->writer_wait);
397 put_transaction(cur_trans);
398 mutex_unlock(&info->trans_mutex);
400 if (current->journal_info == trans)
401 current->journal_info = NULL;
402 memset(trans, 0, sizeof(*trans));
403 kmem_cache_free(btrfs_trans_handle_cachep, trans);
405 if (throttle)
406 btrfs_run_delayed_iputs(root);
408 return 0;
411 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
412 struct btrfs_root *root)
414 return __btrfs_end_transaction(trans, root, 0);
417 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
418 struct btrfs_root *root)
420 return __btrfs_end_transaction(trans, root, 1);
424 * when btree blocks are allocated, they have some corresponding bits set for
425 * them in one of two extent_io trees. This is used to make sure all of
426 * those extents are sent to disk but does not wait on them
428 int btrfs_write_marked_extents(struct btrfs_root *root,
429 struct extent_io_tree *dirty_pages, int mark)
431 int ret;
432 int err = 0;
433 int werr = 0;
434 struct page *page;
435 struct inode *btree_inode = root->fs_info->btree_inode;
436 u64 start = 0;
437 u64 end;
438 unsigned long index;
440 while (1) {
441 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
442 mark);
443 if (ret)
444 break;
445 while (start <= end) {
446 cond_resched();
448 index = start >> PAGE_CACHE_SHIFT;
449 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
450 page = find_get_page(btree_inode->i_mapping, index);
451 if (!page)
452 continue;
454 btree_lock_page_hook(page);
455 if (!page->mapping) {
456 unlock_page(page);
457 page_cache_release(page);
458 continue;
461 if (PageWriteback(page)) {
462 if (PageDirty(page))
463 wait_on_page_writeback(page);
464 else {
465 unlock_page(page);
466 page_cache_release(page);
467 continue;
470 err = write_one_page(page, 0);
471 if (err)
472 werr = err;
473 page_cache_release(page);
476 if (err)
477 werr = err;
478 return werr;
482 * when btree blocks are allocated, they have some corresponding bits set for
483 * them in one of two extent_io trees. This is used to make sure all of
484 * those extents are on disk for transaction or log commit. We wait
485 * on all the pages and clear them from the dirty pages state tree
487 int btrfs_wait_marked_extents(struct btrfs_root *root,
488 struct extent_io_tree *dirty_pages, int mark)
490 int ret;
491 int err = 0;
492 int werr = 0;
493 struct page *page;
494 struct inode *btree_inode = root->fs_info->btree_inode;
495 u64 start = 0;
496 u64 end;
497 unsigned long index;
499 while (1) {
500 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
501 mark);
502 if (ret)
503 break;
505 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
506 while (start <= end) {
507 index = start >> PAGE_CACHE_SHIFT;
508 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
509 page = find_get_page(btree_inode->i_mapping, index);
510 if (!page)
511 continue;
512 if (PageDirty(page)) {
513 btree_lock_page_hook(page);
514 wait_on_page_writeback(page);
515 err = write_one_page(page, 0);
516 if (err)
517 werr = err;
519 wait_on_page_writeback(page);
520 page_cache_release(page);
521 cond_resched();
524 if (err)
525 werr = err;
526 return werr;
530 * when btree blocks are allocated, they have some corresponding bits set for
531 * them in one of two extent_io trees. This is used to make sure all of
532 * those extents are on disk for transaction or log commit
534 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
535 struct extent_io_tree *dirty_pages, int mark)
537 int ret;
538 int ret2;
540 ret = btrfs_write_marked_extents(root, dirty_pages, mark);
541 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
542 return ret || ret2;
545 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
546 struct btrfs_root *root)
548 if (!trans || !trans->transaction) {
549 struct inode *btree_inode;
550 btree_inode = root->fs_info->btree_inode;
551 return filemap_write_and_wait(btree_inode->i_mapping);
553 return btrfs_write_and_wait_marked_extents(root,
554 &trans->transaction->dirty_pages,
555 EXTENT_DIRTY);
559 * this is used to update the root pointer in the tree of tree roots.
561 * But, in the case of the extent allocation tree, updating the root
562 * pointer may allocate blocks which may change the root of the extent
563 * allocation tree.
565 * So, this loops and repeats and makes sure the cowonly root didn't
566 * change while the root pointer was being updated in the metadata.
568 static int update_cowonly_root(struct btrfs_trans_handle *trans,
569 struct btrfs_root *root)
571 int ret;
572 u64 old_root_bytenr;
573 u64 old_root_used;
574 struct btrfs_root *tree_root = root->fs_info->tree_root;
576 old_root_used = btrfs_root_used(&root->root_item);
577 btrfs_write_dirty_block_groups(trans, root);
579 while (1) {
580 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
581 if (old_root_bytenr == root->node->start &&
582 old_root_used == btrfs_root_used(&root->root_item))
583 break;
585 btrfs_set_root_node(&root->root_item, root->node);
586 ret = btrfs_update_root(trans, tree_root,
587 &root->root_key,
588 &root->root_item);
589 BUG_ON(ret);
591 old_root_used = btrfs_root_used(&root->root_item);
592 ret = btrfs_write_dirty_block_groups(trans, root);
593 BUG_ON(ret);
596 if (root != root->fs_info->extent_root)
597 switch_commit_root(root);
599 return 0;
603 * update all the cowonly tree roots on disk
605 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
606 struct btrfs_root *root)
608 struct btrfs_fs_info *fs_info = root->fs_info;
609 struct list_head *next;
610 struct extent_buffer *eb;
611 int ret;
613 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
614 BUG_ON(ret);
616 eb = btrfs_lock_root_node(fs_info->tree_root);
617 btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb);
618 btrfs_tree_unlock(eb);
619 free_extent_buffer(eb);
621 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
622 BUG_ON(ret);
624 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
625 next = fs_info->dirty_cowonly_roots.next;
626 list_del_init(next);
627 root = list_entry(next, struct btrfs_root, dirty_list);
629 update_cowonly_root(trans, root);
632 down_write(&fs_info->extent_commit_sem);
633 switch_commit_root(fs_info->extent_root);
634 up_write(&fs_info->extent_commit_sem);
636 return 0;
640 * dead roots are old snapshots that need to be deleted. This allocates
641 * a dirty root struct and adds it into the list of dead roots that need to
642 * be deleted
644 int btrfs_add_dead_root(struct btrfs_root *root)
646 mutex_lock(&root->fs_info->trans_mutex);
647 list_add(&root->root_list, &root->fs_info->dead_roots);
648 mutex_unlock(&root->fs_info->trans_mutex);
649 return 0;
653 * update all the cowonly tree roots on disk
655 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
656 struct btrfs_root *root)
658 struct btrfs_root *gang[8];
659 struct btrfs_fs_info *fs_info = root->fs_info;
660 int i;
661 int ret;
662 int err = 0;
664 while (1) {
665 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
666 (void **)gang, 0,
667 ARRAY_SIZE(gang),
668 BTRFS_ROOT_TRANS_TAG);
669 if (ret == 0)
670 break;
671 for (i = 0; i < ret; i++) {
672 root = gang[i];
673 radix_tree_tag_clear(&fs_info->fs_roots_radix,
674 (unsigned long)root->root_key.objectid,
675 BTRFS_ROOT_TRANS_TAG);
677 btrfs_free_log(trans, root);
678 btrfs_update_reloc_root(trans, root);
679 btrfs_orphan_commit_root(trans, root);
681 if (root->commit_root != root->node) {
682 switch_commit_root(root);
683 btrfs_set_root_node(&root->root_item,
684 root->node);
687 err = btrfs_update_root(trans, fs_info->tree_root,
688 &root->root_key,
689 &root->root_item);
690 if (err)
691 break;
694 return err;
698 * defrag a given btree. If cacheonly == 1, this won't read from the disk,
699 * otherwise every leaf in the btree is read and defragged.
701 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
703 struct btrfs_fs_info *info = root->fs_info;
704 struct btrfs_trans_handle *trans;
705 int ret;
706 unsigned long nr;
708 if (xchg(&root->defrag_running, 1))
709 return 0;
711 while (1) {
712 trans = btrfs_start_transaction(root, 0);
713 if (IS_ERR(trans))
714 return PTR_ERR(trans);
716 ret = btrfs_defrag_leaves(trans, root, cacheonly);
718 nr = trans->blocks_used;
719 btrfs_end_transaction(trans, root);
720 btrfs_btree_balance_dirty(info->tree_root, nr);
721 cond_resched();
723 if (root->fs_info->closing || ret != -EAGAIN)
724 break;
726 root->defrag_running = 0;
727 return ret;
730 #if 0
732 * when dropping snapshots, we generate a ton of delayed refs, and it makes
733 * sense not to join the transaction while it is trying to flush the current
734 * queue of delayed refs out.
736 * This is used by the drop snapshot code only
738 static noinline int wait_transaction_pre_flush(struct btrfs_fs_info *info)
740 DEFINE_WAIT(wait);
742 mutex_lock(&info->trans_mutex);
743 while (info->running_transaction &&
744 info->running_transaction->delayed_refs.flushing) {
745 prepare_to_wait(&info->transaction_wait, &wait,
746 TASK_UNINTERRUPTIBLE);
747 mutex_unlock(&info->trans_mutex);
749 schedule();
751 mutex_lock(&info->trans_mutex);
752 finish_wait(&info->transaction_wait, &wait);
754 mutex_unlock(&info->trans_mutex);
755 return 0;
759 * Given a list of roots that need to be deleted, call btrfs_drop_snapshot on
760 * all of them
762 int btrfs_drop_dead_root(struct btrfs_root *root)
764 struct btrfs_trans_handle *trans;
765 struct btrfs_root *tree_root = root->fs_info->tree_root;
766 unsigned long nr;
767 int ret;
769 while (1) {
771 * we don't want to jump in and create a bunch of
772 * delayed refs if the transaction is starting to close
774 wait_transaction_pre_flush(tree_root->fs_info);
775 trans = btrfs_start_transaction(tree_root, 1);
778 * we've joined a transaction, make sure it isn't
779 * closing right now
781 if (trans->transaction->delayed_refs.flushing) {
782 btrfs_end_transaction(trans, tree_root);
783 continue;
786 ret = btrfs_drop_snapshot(trans, root);
787 if (ret != -EAGAIN)
788 break;
790 ret = btrfs_update_root(trans, tree_root,
791 &root->root_key,
792 &root->root_item);
793 if (ret)
794 break;
796 nr = trans->blocks_used;
797 ret = btrfs_end_transaction(trans, tree_root);
798 BUG_ON(ret);
800 btrfs_btree_balance_dirty(tree_root, nr);
801 cond_resched();
803 BUG_ON(ret);
805 ret = btrfs_del_root(trans, tree_root, &root->root_key);
806 BUG_ON(ret);
808 nr = trans->blocks_used;
809 ret = btrfs_end_transaction(trans, tree_root);
810 BUG_ON(ret);
812 free_extent_buffer(root->node);
813 free_extent_buffer(root->commit_root);
814 kfree(root);
816 btrfs_btree_balance_dirty(tree_root, nr);
817 return ret;
819 #endif
822 * new snapshots need to be created at a very specific time in the
823 * transaction commit. This does the actual creation
825 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
826 struct btrfs_fs_info *fs_info,
827 struct btrfs_pending_snapshot *pending)
829 struct btrfs_key key;
830 struct btrfs_root_item *new_root_item;
831 struct btrfs_root *tree_root = fs_info->tree_root;
832 struct btrfs_root *root = pending->root;
833 struct btrfs_root *parent_root;
834 struct inode *parent_inode;
835 struct dentry *dentry;
836 struct extent_buffer *tmp;
837 struct extent_buffer *old;
838 int ret;
839 int retries = 0;
840 u64 to_reserve = 0;
841 u64 index = 0;
842 u64 objectid;
844 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
845 if (!new_root_item) {
846 pending->error = -ENOMEM;
847 goto fail;
850 ret = btrfs_find_free_objectid(trans, tree_root, 0, &objectid);
851 if (ret) {
852 pending->error = ret;
853 goto fail;
856 btrfs_orphan_pre_snapshot(trans, pending, &to_reserve);
858 if (to_reserve > 0) {
859 ret = btrfs_block_rsv_add(trans, root, &pending->block_rsv,
860 to_reserve, &retries);
861 if (ret) {
862 pending->error = ret;
863 goto fail;
867 key.objectid = objectid;
868 key.offset = (u64)-1;
869 key.type = BTRFS_ROOT_ITEM_KEY;
871 trans->block_rsv = &pending->block_rsv;
873 dentry = pending->dentry;
874 parent_inode = dentry->d_parent->d_inode;
875 parent_root = BTRFS_I(parent_inode)->root;
876 record_root_in_trans(trans, parent_root);
879 * insert the directory item
881 ret = btrfs_set_inode_index(parent_inode, &index);
882 BUG_ON(ret);
883 ret = btrfs_insert_dir_item(trans, parent_root,
884 dentry->d_name.name, dentry->d_name.len,
885 parent_inode->i_ino, &key,
886 BTRFS_FT_DIR, index);
887 BUG_ON(ret);
889 btrfs_i_size_write(parent_inode, parent_inode->i_size +
890 dentry->d_name.len * 2);
891 ret = btrfs_update_inode(trans, parent_root, parent_inode);
892 BUG_ON(ret);
894 record_root_in_trans(trans, root);
895 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
896 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
898 old = btrfs_lock_root_node(root);
899 btrfs_cow_block(trans, root, old, NULL, 0, &old);
900 btrfs_set_lock_blocking(old);
902 btrfs_copy_root(trans, root, old, &tmp, objectid);
903 btrfs_tree_unlock(old);
904 free_extent_buffer(old);
906 btrfs_set_root_node(new_root_item, tmp);
907 /* record when the snapshot was created in key.offset */
908 key.offset = trans->transid;
909 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
910 btrfs_tree_unlock(tmp);
911 free_extent_buffer(tmp);
912 BUG_ON(ret);
915 * insert root back/forward references
917 ret = btrfs_add_root_ref(trans, tree_root, objectid,
918 parent_root->root_key.objectid,
919 parent_inode->i_ino, index,
920 dentry->d_name.name, dentry->d_name.len);
921 BUG_ON(ret);
923 key.offset = (u64)-1;
924 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
925 BUG_ON(IS_ERR(pending->snap));
927 btrfs_orphan_post_snapshot(trans, pending);
928 fail:
929 kfree(new_root_item);
930 btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
931 return 0;
935 * create all the snapshots we've scheduled for creation
937 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
938 struct btrfs_fs_info *fs_info)
940 struct btrfs_pending_snapshot *pending;
941 struct list_head *head = &trans->transaction->pending_snapshots;
942 int ret;
944 list_for_each_entry(pending, head, list) {
945 ret = create_pending_snapshot(trans, fs_info, pending);
946 BUG_ON(ret);
948 return 0;
951 static void update_super_roots(struct btrfs_root *root)
953 struct btrfs_root_item *root_item;
954 struct btrfs_super_block *super;
956 super = &root->fs_info->super_copy;
958 root_item = &root->fs_info->chunk_root->root_item;
959 super->chunk_root = root_item->bytenr;
960 super->chunk_root_generation = root_item->generation;
961 super->chunk_root_level = root_item->level;
963 root_item = &root->fs_info->tree_root->root_item;
964 super->root = root_item->bytenr;
965 super->generation = root_item->generation;
966 super->root_level = root_item->level;
969 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
971 int ret = 0;
972 spin_lock(&info->new_trans_lock);
973 if (info->running_transaction)
974 ret = info->running_transaction->in_commit;
975 spin_unlock(&info->new_trans_lock);
976 return ret;
979 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
981 int ret = 0;
982 spin_lock(&info->new_trans_lock);
983 if (info->running_transaction)
984 ret = info->running_transaction->blocked;
985 spin_unlock(&info->new_trans_lock);
986 return ret;
989 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
990 struct btrfs_root *root)
992 unsigned long joined = 0;
993 unsigned long timeout = 1;
994 struct btrfs_transaction *cur_trans;
995 struct btrfs_transaction *prev_trans = NULL;
996 DEFINE_WAIT(wait);
997 int ret;
998 int should_grow = 0;
999 unsigned long now = get_seconds();
1000 int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
1002 btrfs_run_ordered_operations(root, 0);
1004 /* make a pass through all the delayed refs we have so far
1005 * any runnings procs may add more while we are here
1007 ret = btrfs_run_delayed_refs(trans, root, 0);
1008 BUG_ON(ret);
1010 btrfs_trans_release_metadata(trans, root);
1012 cur_trans = trans->transaction;
1014 * set the flushing flag so procs in this transaction have to
1015 * start sending their work down.
1017 cur_trans->delayed_refs.flushing = 1;
1019 ret = btrfs_run_delayed_refs(trans, root, 0);
1020 BUG_ON(ret);
1022 mutex_lock(&root->fs_info->trans_mutex);
1023 if (cur_trans->in_commit) {
1024 cur_trans->use_count++;
1025 mutex_unlock(&root->fs_info->trans_mutex);
1026 btrfs_end_transaction(trans, root);
1028 ret = wait_for_commit(root, cur_trans);
1029 BUG_ON(ret);
1031 mutex_lock(&root->fs_info->trans_mutex);
1032 put_transaction(cur_trans);
1033 mutex_unlock(&root->fs_info->trans_mutex);
1035 return 0;
1038 trans->transaction->in_commit = 1;
1039 trans->transaction->blocked = 1;
1040 if (cur_trans->list.prev != &root->fs_info->trans_list) {
1041 prev_trans = list_entry(cur_trans->list.prev,
1042 struct btrfs_transaction, list);
1043 if (!prev_trans->commit_done) {
1044 prev_trans->use_count++;
1045 mutex_unlock(&root->fs_info->trans_mutex);
1047 wait_for_commit(root, prev_trans);
1049 mutex_lock(&root->fs_info->trans_mutex);
1050 put_transaction(prev_trans);
1054 if (now < cur_trans->start_time || now - cur_trans->start_time < 1)
1055 should_grow = 1;
1057 do {
1058 int snap_pending = 0;
1059 joined = cur_trans->num_joined;
1060 if (!list_empty(&trans->transaction->pending_snapshots))
1061 snap_pending = 1;
1063 WARN_ON(cur_trans != trans->transaction);
1064 prepare_to_wait(&cur_trans->writer_wait, &wait,
1065 TASK_UNINTERRUPTIBLE);
1067 if (cur_trans->num_writers > 1)
1068 timeout = MAX_SCHEDULE_TIMEOUT;
1069 else if (should_grow)
1070 timeout = 1;
1072 mutex_unlock(&root->fs_info->trans_mutex);
1074 if (flush_on_commit || snap_pending) {
1075 btrfs_start_delalloc_inodes(root, 1);
1076 ret = btrfs_wait_ordered_extents(root, 0, 1);
1077 BUG_ON(ret);
1081 * rename don't use btrfs_join_transaction, so, once we
1082 * set the transaction to blocked above, we aren't going
1083 * to get any new ordered operations. We can safely run
1084 * it here and no for sure that nothing new will be added
1085 * to the list
1087 btrfs_run_ordered_operations(root, 1);
1089 smp_mb();
1090 if (cur_trans->num_writers > 1 || should_grow)
1091 schedule_timeout(timeout);
1093 mutex_lock(&root->fs_info->trans_mutex);
1094 finish_wait(&cur_trans->writer_wait, &wait);
1095 } while (cur_trans->num_writers > 1 ||
1096 (should_grow && cur_trans->num_joined != joined));
1098 ret = create_pending_snapshots(trans, root->fs_info);
1099 BUG_ON(ret);
1101 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1102 BUG_ON(ret);
1104 WARN_ON(cur_trans != trans->transaction);
1106 /* btrfs_commit_tree_roots is responsible for getting the
1107 * various roots consistent with each other. Every pointer
1108 * in the tree of tree roots has to point to the most up to date
1109 * root for every subvolume and other tree. So, we have to keep
1110 * the tree logging code from jumping in and changing any
1111 * of the trees.
1113 * At this point in the commit, there can't be any tree-log
1114 * writers, but a little lower down we drop the trans mutex
1115 * and let new people in. By holding the tree_log_mutex
1116 * from now until after the super is written, we avoid races
1117 * with the tree-log code.
1119 mutex_lock(&root->fs_info->tree_log_mutex);
1121 ret = commit_fs_roots(trans, root);
1122 BUG_ON(ret);
1124 /* commit_fs_roots gets rid of all the tree log roots, it is now
1125 * safe to free the root of tree log roots
1127 btrfs_free_log_root_tree(trans, root->fs_info);
1129 ret = commit_cowonly_roots(trans, root);
1130 BUG_ON(ret);
1132 btrfs_prepare_extent_commit(trans, root);
1134 cur_trans = root->fs_info->running_transaction;
1135 spin_lock(&root->fs_info->new_trans_lock);
1136 root->fs_info->running_transaction = NULL;
1137 spin_unlock(&root->fs_info->new_trans_lock);
1139 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1140 root->fs_info->tree_root->node);
1141 switch_commit_root(root->fs_info->tree_root);
1143 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1144 root->fs_info->chunk_root->node);
1145 switch_commit_root(root->fs_info->chunk_root);
1147 update_super_roots(root);
1149 if (!root->fs_info->log_root_recovering) {
1150 btrfs_set_super_log_root(&root->fs_info->super_copy, 0);
1151 btrfs_set_super_log_root_level(&root->fs_info->super_copy, 0);
1154 memcpy(&root->fs_info->super_for_commit, &root->fs_info->super_copy,
1155 sizeof(root->fs_info->super_copy));
1157 trans->transaction->blocked = 0;
1159 wake_up(&root->fs_info->transaction_wait);
1161 mutex_unlock(&root->fs_info->trans_mutex);
1162 ret = btrfs_write_and_wait_transaction(trans, root);
1163 BUG_ON(ret);
1164 write_ctree_super(trans, root, 0);
1167 * the super is written, we can safely allow the tree-loggers
1168 * to go about their business
1170 mutex_unlock(&root->fs_info->tree_log_mutex);
1172 btrfs_finish_extent_commit(trans, root);
1174 mutex_lock(&root->fs_info->trans_mutex);
1176 cur_trans->commit_done = 1;
1178 root->fs_info->last_trans_committed = cur_trans->transid;
1180 wake_up(&cur_trans->commit_wait);
1182 put_transaction(cur_trans);
1183 put_transaction(cur_trans);
1185 mutex_unlock(&root->fs_info->trans_mutex);
1187 if (current->journal_info == trans)
1188 current->journal_info = NULL;
1190 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1192 if (current != root->fs_info->transaction_kthread)
1193 btrfs_run_delayed_iputs(root);
1195 return ret;
1199 * interface function to delete all the snapshots we have scheduled for deletion
1201 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1203 LIST_HEAD(list);
1204 struct btrfs_fs_info *fs_info = root->fs_info;
1206 mutex_lock(&fs_info->trans_mutex);
1207 list_splice_init(&fs_info->dead_roots, &list);
1208 mutex_unlock(&fs_info->trans_mutex);
1210 while (!list_empty(&list)) {
1211 root = list_entry(list.next, struct btrfs_root, root_list);
1212 list_del(&root->root_list);
1214 if (btrfs_header_backref_rev(root->node) <
1215 BTRFS_MIXED_BACKREF_REV)
1216 btrfs_drop_snapshot(root, 0);
1217 else
1218 btrfs_drop_snapshot(root, 1);
1220 return 0;