Btrfs: Metadata reservation for orphan inodes
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / btrfs / extent-tree.c
bloba713f69f0c7ac2311998578f74b57c8d6e91cf92
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include "compat.h"
27 #include "hash.h"
28 #include "ctree.h"
29 #include "disk-io.h"
30 #include "print-tree.h"
31 #include "transaction.h"
32 #include "volumes.h"
33 #include "locking.h"
34 #include "free-space-cache.h"
36 static int update_block_group(struct btrfs_trans_handle *trans,
37 struct btrfs_root *root,
38 u64 bytenr, u64 num_bytes, int alloc);
39 static int update_reserved_bytes(struct btrfs_block_group_cache *cache,
40 u64 num_bytes, int reserve, int sinfo);
41 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
42 struct btrfs_root *root,
43 u64 bytenr, u64 num_bytes, u64 parent,
44 u64 root_objectid, u64 owner_objectid,
45 u64 owner_offset, int refs_to_drop,
46 struct btrfs_delayed_extent_op *extra_op);
47 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
48 struct extent_buffer *leaf,
49 struct btrfs_extent_item *ei);
50 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
51 struct btrfs_root *root,
52 u64 parent, u64 root_objectid,
53 u64 flags, u64 owner, u64 offset,
54 struct btrfs_key *ins, int ref_mod);
55 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
56 struct btrfs_root *root,
57 u64 parent, u64 root_objectid,
58 u64 flags, struct btrfs_disk_key *key,
59 int level, struct btrfs_key *ins);
60 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
61 struct btrfs_root *extent_root, u64 alloc_bytes,
62 u64 flags, int force);
63 static int find_next_key(struct btrfs_path *path, int level,
64 struct btrfs_key *key);
65 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
66 int dump_block_groups);
68 static noinline int
69 block_group_cache_done(struct btrfs_block_group_cache *cache)
71 smp_mb();
72 return cache->cached == BTRFS_CACHE_FINISHED;
75 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
77 return (cache->flags & bits) == bits;
80 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
82 atomic_inc(&cache->count);
85 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
87 if (atomic_dec_and_test(&cache->count)) {
88 WARN_ON(cache->pinned > 0);
89 WARN_ON(cache->reserved > 0);
90 WARN_ON(cache->reserved_pinned > 0);
91 kfree(cache);
96 * this adds the block group to the fs_info rb tree for the block group
97 * cache
99 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
100 struct btrfs_block_group_cache *block_group)
102 struct rb_node **p;
103 struct rb_node *parent = NULL;
104 struct btrfs_block_group_cache *cache;
106 spin_lock(&info->block_group_cache_lock);
107 p = &info->block_group_cache_tree.rb_node;
109 while (*p) {
110 parent = *p;
111 cache = rb_entry(parent, struct btrfs_block_group_cache,
112 cache_node);
113 if (block_group->key.objectid < cache->key.objectid) {
114 p = &(*p)->rb_left;
115 } else if (block_group->key.objectid > cache->key.objectid) {
116 p = &(*p)->rb_right;
117 } else {
118 spin_unlock(&info->block_group_cache_lock);
119 return -EEXIST;
123 rb_link_node(&block_group->cache_node, parent, p);
124 rb_insert_color(&block_group->cache_node,
125 &info->block_group_cache_tree);
126 spin_unlock(&info->block_group_cache_lock);
128 return 0;
132 * This will return the block group at or after bytenr if contains is 0, else
133 * it will return the block group that contains the bytenr
135 static struct btrfs_block_group_cache *
136 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
137 int contains)
139 struct btrfs_block_group_cache *cache, *ret = NULL;
140 struct rb_node *n;
141 u64 end, start;
143 spin_lock(&info->block_group_cache_lock);
144 n = info->block_group_cache_tree.rb_node;
146 while (n) {
147 cache = rb_entry(n, struct btrfs_block_group_cache,
148 cache_node);
149 end = cache->key.objectid + cache->key.offset - 1;
150 start = cache->key.objectid;
152 if (bytenr < start) {
153 if (!contains && (!ret || start < ret->key.objectid))
154 ret = cache;
155 n = n->rb_left;
156 } else if (bytenr > start) {
157 if (contains && bytenr <= end) {
158 ret = cache;
159 break;
161 n = n->rb_right;
162 } else {
163 ret = cache;
164 break;
167 if (ret)
168 btrfs_get_block_group(ret);
169 spin_unlock(&info->block_group_cache_lock);
171 return ret;
174 static int add_excluded_extent(struct btrfs_root *root,
175 u64 start, u64 num_bytes)
177 u64 end = start + num_bytes - 1;
178 set_extent_bits(&root->fs_info->freed_extents[0],
179 start, end, EXTENT_UPTODATE, GFP_NOFS);
180 set_extent_bits(&root->fs_info->freed_extents[1],
181 start, end, EXTENT_UPTODATE, GFP_NOFS);
182 return 0;
185 static void free_excluded_extents(struct btrfs_root *root,
186 struct btrfs_block_group_cache *cache)
188 u64 start, end;
190 start = cache->key.objectid;
191 end = start + cache->key.offset - 1;
193 clear_extent_bits(&root->fs_info->freed_extents[0],
194 start, end, EXTENT_UPTODATE, GFP_NOFS);
195 clear_extent_bits(&root->fs_info->freed_extents[1],
196 start, end, EXTENT_UPTODATE, GFP_NOFS);
199 static int exclude_super_stripes(struct btrfs_root *root,
200 struct btrfs_block_group_cache *cache)
202 u64 bytenr;
203 u64 *logical;
204 int stripe_len;
205 int i, nr, ret;
207 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
208 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
209 cache->bytes_super += stripe_len;
210 ret = add_excluded_extent(root, cache->key.objectid,
211 stripe_len);
212 BUG_ON(ret);
215 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
216 bytenr = btrfs_sb_offset(i);
217 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
218 cache->key.objectid, bytenr,
219 0, &logical, &nr, &stripe_len);
220 BUG_ON(ret);
222 while (nr--) {
223 cache->bytes_super += stripe_len;
224 ret = add_excluded_extent(root, logical[nr],
225 stripe_len);
226 BUG_ON(ret);
229 kfree(logical);
231 return 0;
234 static struct btrfs_caching_control *
235 get_caching_control(struct btrfs_block_group_cache *cache)
237 struct btrfs_caching_control *ctl;
239 spin_lock(&cache->lock);
240 if (cache->cached != BTRFS_CACHE_STARTED) {
241 spin_unlock(&cache->lock);
242 return NULL;
245 ctl = cache->caching_ctl;
246 atomic_inc(&ctl->count);
247 spin_unlock(&cache->lock);
248 return ctl;
251 static void put_caching_control(struct btrfs_caching_control *ctl)
253 if (atomic_dec_and_test(&ctl->count))
254 kfree(ctl);
258 * this is only called by cache_block_group, since we could have freed extents
259 * we need to check the pinned_extents for any extents that can't be used yet
260 * since their free space will be released as soon as the transaction commits.
262 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
263 struct btrfs_fs_info *info, u64 start, u64 end)
265 u64 extent_start, extent_end, size, total_added = 0;
266 int ret;
268 while (start < end) {
269 ret = find_first_extent_bit(info->pinned_extents, start,
270 &extent_start, &extent_end,
271 EXTENT_DIRTY | EXTENT_UPTODATE);
272 if (ret)
273 break;
275 if (extent_start <= start) {
276 start = extent_end + 1;
277 } else if (extent_start > start && extent_start < end) {
278 size = extent_start - start;
279 total_added += size;
280 ret = btrfs_add_free_space(block_group, start,
281 size);
282 BUG_ON(ret);
283 start = extent_end + 1;
284 } else {
285 break;
289 if (start < end) {
290 size = end - start;
291 total_added += size;
292 ret = btrfs_add_free_space(block_group, start, size);
293 BUG_ON(ret);
296 return total_added;
299 static int caching_kthread(void *data)
301 struct btrfs_block_group_cache *block_group = data;
302 struct btrfs_fs_info *fs_info = block_group->fs_info;
303 struct btrfs_caching_control *caching_ctl = block_group->caching_ctl;
304 struct btrfs_root *extent_root = fs_info->extent_root;
305 struct btrfs_path *path;
306 struct extent_buffer *leaf;
307 struct btrfs_key key;
308 u64 total_found = 0;
309 u64 last = 0;
310 u32 nritems;
311 int ret = 0;
313 path = btrfs_alloc_path();
314 if (!path)
315 return -ENOMEM;
317 exclude_super_stripes(extent_root, block_group);
318 spin_lock(&block_group->space_info->lock);
319 block_group->space_info->bytes_readonly += block_group->bytes_super;
320 spin_unlock(&block_group->space_info->lock);
322 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
325 * We don't want to deadlock with somebody trying to allocate a new
326 * extent for the extent root while also trying to search the extent
327 * root to add free space. So we skip locking and search the commit
328 * root, since its read-only
330 path->skip_locking = 1;
331 path->search_commit_root = 1;
332 path->reada = 2;
334 key.objectid = last;
335 key.offset = 0;
336 key.type = BTRFS_EXTENT_ITEM_KEY;
337 again:
338 mutex_lock(&caching_ctl->mutex);
339 /* need to make sure the commit_root doesn't disappear */
340 down_read(&fs_info->extent_commit_sem);
342 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
343 if (ret < 0)
344 goto err;
346 leaf = path->nodes[0];
347 nritems = btrfs_header_nritems(leaf);
349 while (1) {
350 smp_mb();
351 if (fs_info->closing > 1) {
352 last = (u64)-1;
353 break;
356 if (path->slots[0] < nritems) {
357 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
358 } else {
359 ret = find_next_key(path, 0, &key);
360 if (ret)
361 break;
363 caching_ctl->progress = last;
364 btrfs_release_path(extent_root, path);
365 up_read(&fs_info->extent_commit_sem);
366 mutex_unlock(&caching_ctl->mutex);
367 if (btrfs_transaction_in_commit(fs_info))
368 schedule_timeout(1);
369 else
370 cond_resched();
371 goto again;
374 if (key.objectid < block_group->key.objectid) {
375 path->slots[0]++;
376 continue;
379 if (key.objectid >= block_group->key.objectid +
380 block_group->key.offset)
381 break;
383 if (key.type == BTRFS_EXTENT_ITEM_KEY) {
384 total_found += add_new_free_space(block_group,
385 fs_info, last,
386 key.objectid);
387 last = key.objectid + key.offset;
389 if (total_found > (1024 * 1024 * 2)) {
390 total_found = 0;
391 wake_up(&caching_ctl->wait);
394 path->slots[0]++;
396 ret = 0;
398 total_found += add_new_free_space(block_group, fs_info, last,
399 block_group->key.objectid +
400 block_group->key.offset);
401 caching_ctl->progress = (u64)-1;
403 spin_lock(&block_group->lock);
404 block_group->caching_ctl = NULL;
405 block_group->cached = BTRFS_CACHE_FINISHED;
406 spin_unlock(&block_group->lock);
408 err:
409 btrfs_free_path(path);
410 up_read(&fs_info->extent_commit_sem);
412 free_excluded_extents(extent_root, block_group);
414 mutex_unlock(&caching_ctl->mutex);
415 wake_up(&caching_ctl->wait);
417 put_caching_control(caching_ctl);
418 atomic_dec(&block_group->space_info->caching_threads);
419 btrfs_put_block_group(block_group);
421 return 0;
424 static int cache_block_group(struct btrfs_block_group_cache *cache)
426 struct btrfs_fs_info *fs_info = cache->fs_info;
427 struct btrfs_caching_control *caching_ctl;
428 struct task_struct *tsk;
429 int ret = 0;
431 smp_mb();
432 if (cache->cached != BTRFS_CACHE_NO)
433 return 0;
435 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_KERNEL);
436 BUG_ON(!caching_ctl);
438 INIT_LIST_HEAD(&caching_ctl->list);
439 mutex_init(&caching_ctl->mutex);
440 init_waitqueue_head(&caching_ctl->wait);
441 caching_ctl->block_group = cache;
442 caching_ctl->progress = cache->key.objectid;
443 /* one for caching kthread, one for caching block group list */
444 atomic_set(&caching_ctl->count, 2);
446 spin_lock(&cache->lock);
447 if (cache->cached != BTRFS_CACHE_NO) {
448 spin_unlock(&cache->lock);
449 kfree(caching_ctl);
450 return 0;
452 cache->caching_ctl = caching_ctl;
453 cache->cached = BTRFS_CACHE_STARTED;
454 spin_unlock(&cache->lock);
456 down_write(&fs_info->extent_commit_sem);
457 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
458 up_write(&fs_info->extent_commit_sem);
460 atomic_inc(&cache->space_info->caching_threads);
461 btrfs_get_block_group(cache);
463 tsk = kthread_run(caching_kthread, cache, "btrfs-cache-%llu\n",
464 cache->key.objectid);
465 if (IS_ERR(tsk)) {
466 ret = PTR_ERR(tsk);
467 printk(KERN_ERR "error running thread %d\n", ret);
468 BUG();
471 return ret;
475 * return the block group that starts at or after bytenr
477 static struct btrfs_block_group_cache *
478 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
480 struct btrfs_block_group_cache *cache;
482 cache = block_group_cache_tree_search(info, bytenr, 0);
484 return cache;
488 * return the block group that contains the given bytenr
490 struct btrfs_block_group_cache *btrfs_lookup_block_group(
491 struct btrfs_fs_info *info,
492 u64 bytenr)
494 struct btrfs_block_group_cache *cache;
496 cache = block_group_cache_tree_search(info, bytenr, 1);
498 return cache;
501 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
502 u64 flags)
504 struct list_head *head = &info->space_info;
505 struct btrfs_space_info *found;
507 flags &= BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_SYSTEM |
508 BTRFS_BLOCK_GROUP_METADATA;
510 rcu_read_lock();
511 list_for_each_entry_rcu(found, head, list) {
512 if (found->flags == flags) {
513 rcu_read_unlock();
514 return found;
517 rcu_read_unlock();
518 return NULL;
522 * after adding space to the filesystem, we need to clear the full flags
523 * on all the space infos.
525 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
527 struct list_head *head = &info->space_info;
528 struct btrfs_space_info *found;
530 rcu_read_lock();
531 list_for_each_entry_rcu(found, head, list)
532 found->full = 0;
533 rcu_read_unlock();
536 static u64 div_factor(u64 num, int factor)
538 if (factor == 10)
539 return num;
540 num *= factor;
541 do_div(num, 10);
542 return num;
545 u64 btrfs_find_block_group(struct btrfs_root *root,
546 u64 search_start, u64 search_hint, int owner)
548 struct btrfs_block_group_cache *cache;
549 u64 used;
550 u64 last = max(search_hint, search_start);
551 u64 group_start = 0;
552 int full_search = 0;
553 int factor = 9;
554 int wrapped = 0;
555 again:
556 while (1) {
557 cache = btrfs_lookup_first_block_group(root->fs_info, last);
558 if (!cache)
559 break;
561 spin_lock(&cache->lock);
562 last = cache->key.objectid + cache->key.offset;
563 used = btrfs_block_group_used(&cache->item);
565 if ((full_search || !cache->ro) &&
566 block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
567 if (used + cache->pinned + cache->reserved <
568 div_factor(cache->key.offset, factor)) {
569 group_start = cache->key.objectid;
570 spin_unlock(&cache->lock);
571 btrfs_put_block_group(cache);
572 goto found;
575 spin_unlock(&cache->lock);
576 btrfs_put_block_group(cache);
577 cond_resched();
579 if (!wrapped) {
580 last = search_start;
581 wrapped = 1;
582 goto again;
584 if (!full_search && factor < 10) {
585 last = search_start;
586 full_search = 1;
587 factor = 10;
588 goto again;
590 found:
591 return group_start;
594 /* simple helper to search for an existing extent at a given offset */
595 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
597 int ret;
598 struct btrfs_key key;
599 struct btrfs_path *path;
601 path = btrfs_alloc_path();
602 BUG_ON(!path);
603 key.objectid = start;
604 key.offset = len;
605 btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
606 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
607 0, 0);
608 btrfs_free_path(path);
609 return ret;
613 * helper function to lookup reference count and flags of extent.
615 * the head node for delayed ref is used to store the sum of all the
616 * reference count modifications queued up in the rbtree. the head
617 * node may also store the extent flags to set. This way you can check
618 * to see what the reference count and extent flags would be if all of
619 * the delayed refs are not processed.
621 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
622 struct btrfs_root *root, u64 bytenr,
623 u64 num_bytes, u64 *refs, u64 *flags)
625 struct btrfs_delayed_ref_head *head;
626 struct btrfs_delayed_ref_root *delayed_refs;
627 struct btrfs_path *path;
628 struct btrfs_extent_item *ei;
629 struct extent_buffer *leaf;
630 struct btrfs_key key;
631 u32 item_size;
632 u64 num_refs;
633 u64 extent_flags;
634 int ret;
636 path = btrfs_alloc_path();
637 if (!path)
638 return -ENOMEM;
640 key.objectid = bytenr;
641 key.type = BTRFS_EXTENT_ITEM_KEY;
642 key.offset = num_bytes;
643 if (!trans) {
644 path->skip_locking = 1;
645 path->search_commit_root = 1;
647 again:
648 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
649 &key, path, 0, 0);
650 if (ret < 0)
651 goto out_free;
653 if (ret == 0) {
654 leaf = path->nodes[0];
655 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
656 if (item_size >= sizeof(*ei)) {
657 ei = btrfs_item_ptr(leaf, path->slots[0],
658 struct btrfs_extent_item);
659 num_refs = btrfs_extent_refs(leaf, ei);
660 extent_flags = btrfs_extent_flags(leaf, ei);
661 } else {
662 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
663 struct btrfs_extent_item_v0 *ei0;
664 BUG_ON(item_size != sizeof(*ei0));
665 ei0 = btrfs_item_ptr(leaf, path->slots[0],
666 struct btrfs_extent_item_v0);
667 num_refs = btrfs_extent_refs_v0(leaf, ei0);
668 /* FIXME: this isn't correct for data */
669 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
670 #else
671 BUG();
672 #endif
674 BUG_ON(num_refs == 0);
675 } else {
676 num_refs = 0;
677 extent_flags = 0;
678 ret = 0;
681 if (!trans)
682 goto out;
684 delayed_refs = &trans->transaction->delayed_refs;
685 spin_lock(&delayed_refs->lock);
686 head = btrfs_find_delayed_ref_head(trans, bytenr);
687 if (head) {
688 if (!mutex_trylock(&head->mutex)) {
689 atomic_inc(&head->node.refs);
690 spin_unlock(&delayed_refs->lock);
692 btrfs_release_path(root->fs_info->extent_root, path);
694 mutex_lock(&head->mutex);
695 mutex_unlock(&head->mutex);
696 btrfs_put_delayed_ref(&head->node);
697 goto again;
699 if (head->extent_op && head->extent_op->update_flags)
700 extent_flags |= head->extent_op->flags_to_set;
701 else
702 BUG_ON(num_refs == 0);
704 num_refs += head->node.ref_mod;
705 mutex_unlock(&head->mutex);
707 spin_unlock(&delayed_refs->lock);
708 out:
709 WARN_ON(num_refs == 0);
710 if (refs)
711 *refs = num_refs;
712 if (flags)
713 *flags = extent_flags;
714 out_free:
715 btrfs_free_path(path);
716 return ret;
720 * Back reference rules. Back refs have three main goals:
722 * 1) differentiate between all holders of references to an extent so that
723 * when a reference is dropped we can make sure it was a valid reference
724 * before freeing the extent.
726 * 2) Provide enough information to quickly find the holders of an extent
727 * if we notice a given block is corrupted or bad.
729 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
730 * maintenance. This is actually the same as #2, but with a slightly
731 * different use case.
733 * There are two kinds of back refs. The implicit back refs is optimized
734 * for pointers in non-shared tree blocks. For a given pointer in a block,
735 * back refs of this kind provide information about the block's owner tree
736 * and the pointer's key. These information allow us to find the block by
737 * b-tree searching. The full back refs is for pointers in tree blocks not
738 * referenced by their owner trees. The location of tree block is recorded
739 * in the back refs. Actually the full back refs is generic, and can be
740 * used in all cases the implicit back refs is used. The major shortcoming
741 * of the full back refs is its overhead. Every time a tree block gets
742 * COWed, we have to update back refs entry for all pointers in it.
744 * For a newly allocated tree block, we use implicit back refs for
745 * pointers in it. This means most tree related operations only involve
746 * implicit back refs. For a tree block created in old transaction, the
747 * only way to drop a reference to it is COW it. So we can detect the
748 * event that tree block loses its owner tree's reference and do the
749 * back refs conversion.
751 * When a tree block is COW'd through a tree, there are four cases:
753 * The reference count of the block is one and the tree is the block's
754 * owner tree. Nothing to do in this case.
756 * The reference count of the block is one and the tree is not the
757 * block's owner tree. In this case, full back refs is used for pointers
758 * in the block. Remove these full back refs, add implicit back refs for
759 * every pointers in the new block.
761 * The reference count of the block is greater than one and the tree is
762 * the block's owner tree. In this case, implicit back refs is used for
763 * pointers in the block. Add full back refs for every pointers in the
764 * block, increase lower level extents' reference counts. The original
765 * implicit back refs are entailed to the new block.
767 * The reference count of the block is greater than one and the tree is
768 * not the block's owner tree. Add implicit back refs for every pointer in
769 * the new block, increase lower level extents' reference count.
771 * Back Reference Key composing:
773 * The key objectid corresponds to the first byte in the extent,
774 * The key type is used to differentiate between types of back refs.
775 * There are different meanings of the key offset for different types
776 * of back refs.
778 * File extents can be referenced by:
780 * - multiple snapshots, subvolumes, or different generations in one subvol
781 * - different files inside a single subvolume
782 * - different offsets inside a file (bookend extents in file.c)
784 * The extent ref structure for the implicit back refs has fields for:
786 * - Objectid of the subvolume root
787 * - objectid of the file holding the reference
788 * - original offset in the file
789 * - how many bookend extents
791 * The key offset for the implicit back refs is hash of the first
792 * three fields.
794 * The extent ref structure for the full back refs has field for:
796 * - number of pointers in the tree leaf
798 * The key offset for the implicit back refs is the first byte of
799 * the tree leaf
801 * When a file extent is allocated, The implicit back refs is used.
802 * the fields are filled in:
804 * (root_key.objectid, inode objectid, offset in file, 1)
806 * When a file extent is removed file truncation, we find the
807 * corresponding implicit back refs and check the following fields:
809 * (btrfs_header_owner(leaf), inode objectid, offset in file)
811 * Btree extents can be referenced by:
813 * - Different subvolumes
815 * Both the implicit back refs and the full back refs for tree blocks
816 * only consist of key. The key offset for the implicit back refs is
817 * objectid of block's owner tree. The key offset for the full back refs
818 * is the first byte of parent block.
820 * When implicit back refs is used, information about the lowest key and
821 * level of the tree block are required. These information are stored in
822 * tree block info structure.
825 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
826 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
827 struct btrfs_root *root,
828 struct btrfs_path *path,
829 u64 owner, u32 extra_size)
831 struct btrfs_extent_item *item;
832 struct btrfs_extent_item_v0 *ei0;
833 struct btrfs_extent_ref_v0 *ref0;
834 struct btrfs_tree_block_info *bi;
835 struct extent_buffer *leaf;
836 struct btrfs_key key;
837 struct btrfs_key found_key;
838 u32 new_size = sizeof(*item);
839 u64 refs;
840 int ret;
842 leaf = path->nodes[0];
843 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
845 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
846 ei0 = btrfs_item_ptr(leaf, path->slots[0],
847 struct btrfs_extent_item_v0);
848 refs = btrfs_extent_refs_v0(leaf, ei0);
850 if (owner == (u64)-1) {
851 while (1) {
852 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
853 ret = btrfs_next_leaf(root, path);
854 if (ret < 0)
855 return ret;
856 BUG_ON(ret > 0);
857 leaf = path->nodes[0];
859 btrfs_item_key_to_cpu(leaf, &found_key,
860 path->slots[0]);
861 BUG_ON(key.objectid != found_key.objectid);
862 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
863 path->slots[0]++;
864 continue;
866 ref0 = btrfs_item_ptr(leaf, path->slots[0],
867 struct btrfs_extent_ref_v0);
868 owner = btrfs_ref_objectid_v0(leaf, ref0);
869 break;
872 btrfs_release_path(root, path);
874 if (owner < BTRFS_FIRST_FREE_OBJECTID)
875 new_size += sizeof(*bi);
877 new_size -= sizeof(*ei0);
878 ret = btrfs_search_slot(trans, root, &key, path,
879 new_size + extra_size, 1);
880 if (ret < 0)
881 return ret;
882 BUG_ON(ret);
884 ret = btrfs_extend_item(trans, root, path, new_size);
885 BUG_ON(ret);
887 leaf = path->nodes[0];
888 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
889 btrfs_set_extent_refs(leaf, item, refs);
890 /* FIXME: get real generation */
891 btrfs_set_extent_generation(leaf, item, 0);
892 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
893 btrfs_set_extent_flags(leaf, item,
894 BTRFS_EXTENT_FLAG_TREE_BLOCK |
895 BTRFS_BLOCK_FLAG_FULL_BACKREF);
896 bi = (struct btrfs_tree_block_info *)(item + 1);
897 /* FIXME: get first key of the block */
898 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
899 btrfs_set_tree_block_level(leaf, bi, (int)owner);
900 } else {
901 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
903 btrfs_mark_buffer_dirty(leaf);
904 return 0;
906 #endif
908 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
910 u32 high_crc = ~(u32)0;
911 u32 low_crc = ~(u32)0;
912 __le64 lenum;
914 lenum = cpu_to_le64(root_objectid);
915 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
916 lenum = cpu_to_le64(owner);
917 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
918 lenum = cpu_to_le64(offset);
919 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
921 return ((u64)high_crc << 31) ^ (u64)low_crc;
924 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
925 struct btrfs_extent_data_ref *ref)
927 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
928 btrfs_extent_data_ref_objectid(leaf, ref),
929 btrfs_extent_data_ref_offset(leaf, ref));
932 static int match_extent_data_ref(struct extent_buffer *leaf,
933 struct btrfs_extent_data_ref *ref,
934 u64 root_objectid, u64 owner, u64 offset)
936 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
937 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
938 btrfs_extent_data_ref_offset(leaf, ref) != offset)
939 return 0;
940 return 1;
943 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
944 struct btrfs_root *root,
945 struct btrfs_path *path,
946 u64 bytenr, u64 parent,
947 u64 root_objectid,
948 u64 owner, u64 offset)
950 struct btrfs_key key;
951 struct btrfs_extent_data_ref *ref;
952 struct extent_buffer *leaf;
953 u32 nritems;
954 int ret;
955 int recow;
956 int err = -ENOENT;
958 key.objectid = bytenr;
959 if (parent) {
960 key.type = BTRFS_SHARED_DATA_REF_KEY;
961 key.offset = parent;
962 } else {
963 key.type = BTRFS_EXTENT_DATA_REF_KEY;
964 key.offset = hash_extent_data_ref(root_objectid,
965 owner, offset);
967 again:
968 recow = 0;
969 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
970 if (ret < 0) {
971 err = ret;
972 goto fail;
975 if (parent) {
976 if (!ret)
977 return 0;
978 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
979 key.type = BTRFS_EXTENT_REF_V0_KEY;
980 btrfs_release_path(root, path);
981 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
982 if (ret < 0) {
983 err = ret;
984 goto fail;
986 if (!ret)
987 return 0;
988 #endif
989 goto fail;
992 leaf = path->nodes[0];
993 nritems = btrfs_header_nritems(leaf);
994 while (1) {
995 if (path->slots[0] >= nritems) {
996 ret = btrfs_next_leaf(root, path);
997 if (ret < 0)
998 err = ret;
999 if (ret)
1000 goto fail;
1002 leaf = path->nodes[0];
1003 nritems = btrfs_header_nritems(leaf);
1004 recow = 1;
1007 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1008 if (key.objectid != bytenr ||
1009 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1010 goto fail;
1012 ref = btrfs_item_ptr(leaf, path->slots[0],
1013 struct btrfs_extent_data_ref);
1015 if (match_extent_data_ref(leaf, ref, root_objectid,
1016 owner, offset)) {
1017 if (recow) {
1018 btrfs_release_path(root, path);
1019 goto again;
1021 err = 0;
1022 break;
1024 path->slots[0]++;
1026 fail:
1027 return err;
1030 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1031 struct btrfs_root *root,
1032 struct btrfs_path *path,
1033 u64 bytenr, u64 parent,
1034 u64 root_objectid, u64 owner,
1035 u64 offset, int refs_to_add)
1037 struct btrfs_key key;
1038 struct extent_buffer *leaf;
1039 u32 size;
1040 u32 num_refs;
1041 int ret;
1043 key.objectid = bytenr;
1044 if (parent) {
1045 key.type = BTRFS_SHARED_DATA_REF_KEY;
1046 key.offset = parent;
1047 size = sizeof(struct btrfs_shared_data_ref);
1048 } else {
1049 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1050 key.offset = hash_extent_data_ref(root_objectid,
1051 owner, offset);
1052 size = sizeof(struct btrfs_extent_data_ref);
1055 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1056 if (ret && ret != -EEXIST)
1057 goto fail;
1059 leaf = path->nodes[0];
1060 if (parent) {
1061 struct btrfs_shared_data_ref *ref;
1062 ref = btrfs_item_ptr(leaf, path->slots[0],
1063 struct btrfs_shared_data_ref);
1064 if (ret == 0) {
1065 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1066 } else {
1067 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1068 num_refs += refs_to_add;
1069 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1071 } else {
1072 struct btrfs_extent_data_ref *ref;
1073 while (ret == -EEXIST) {
1074 ref = btrfs_item_ptr(leaf, path->slots[0],
1075 struct btrfs_extent_data_ref);
1076 if (match_extent_data_ref(leaf, ref, root_objectid,
1077 owner, offset))
1078 break;
1079 btrfs_release_path(root, path);
1080 key.offset++;
1081 ret = btrfs_insert_empty_item(trans, root, path, &key,
1082 size);
1083 if (ret && ret != -EEXIST)
1084 goto fail;
1086 leaf = path->nodes[0];
1088 ref = btrfs_item_ptr(leaf, path->slots[0],
1089 struct btrfs_extent_data_ref);
1090 if (ret == 0) {
1091 btrfs_set_extent_data_ref_root(leaf, ref,
1092 root_objectid);
1093 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1094 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1095 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1096 } else {
1097 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1098 num_refs += refs_to_add;
1099 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1102 btrfs_mark_buffer_dirty(leaf);
1103 ret = 0;
1104 fail:
1105 btrfs_release_path(root, path);
1106 return ret;
1109 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1110 struct btrfs_root *root,
1111 struct btrfs_path *path,
1112 int refs_to_drop)
1114 struct btrfs_key key;
1115 struct btrfs_extent_data_ref *ref1 = NULL;
1116 struct btrfs_shared_data_ref *ref2 = NULL;
1117 struct extent_buffer *leaf;
1118 u32 num_refs = 0;
1119 int ret = 0;
1121 leaf = path->nodes[0];
1122 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1124 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1125 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1126 struct btrfs_extent_data_ref);
1127 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1128 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1129 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1130 struct btrfs_shared_data_ref);
1131 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1132 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1133 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1134 struct btrfs_extent_ref_v0 *ref0;
1135 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1136 struct btrfs_extent_ref_v0);
1137 num_refs = btrfs_ref_count_v0(leaf, ref0);
1138 #endif
1139 } else {
1140 BUG();
1143 BUG_ON(num_refs < refs_to_drop);
1144 num_refs -= refs_to_drop;
1146 if (num_refs == 0) {
1147 ret = btrfs_del_item(trans, root, path);
1148 } else {
1149 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1150 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1151 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1152 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1153 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1154 else {
1155 struct btrfs_extent_ref_v0 *ref0;
1156 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1157 struct btrfs_extent_ref_v0);
1158 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1160 #endif
1161 btrfs_mark_buffer_dirty(leaf);
1163 return ret;
1166 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1167 struct btrfs_path *path,
1168 struct btrfs_extent_inline_ref *iref)
1170 struct btrfs_key key;
1171 struct extent_buffer *leaf;
1172 struct btrfs_extent_data_ref *ref1;
1173 struct btrfs_shared_data_ref *ref2;
1174 u32 num_refs = 0;
1176 leaf = path->nodes[0];
1177 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1178 if (iref) {
1179 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1180 BTRFS_EXTENT_DATA_REF_KEY) {
1181 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1182 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1183 } else {
1184 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1185 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1187 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1188 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1189 struct btrfs_extent_data_ref);
1190 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1191 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1192 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1193 struct btrfs_shared_data_ref);
1194 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1195 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1196 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1197 struct btrfs_extent_ref_v0 *ref0;
1198 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1199 struct btrfs_extent_ref_v0);
1200 num_refs = btrfs_ref_count_v0(leaf, ref0);
1201 #endif
1202 } else {
1203 WARN_ON(1);
1205 return num_refs;
1208 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1209 struct btrfs_root *root,
1210 struct btrfs_path *path,
1211 u64 bytenr, u64 parent,
1212 u64 root_objectid)
1214 struct btrfs_key key;
1215 int ret;
1217 key.objectid = bytenr;
1218 if (parent) {
1219 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1220 key.offset = parent;
1221 } else {
1222 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1223 key.offset = root_objectid;
1226 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1227 if (ret > 0)
1228 ret = -ENOENT;
1229 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1230 if (ret == -ENOENT && parent) {
1231 btrfs_release_path(root, path);
1232 key.type = BTRFS_EXTENT_REF_V0_KEY;
1233 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1234 if (ret > 0)
1235 ret = -ENOENT;
1237 #endif
1238 return ret;
1241 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1242 struct btrfs_root *root,
1243 struct btrfs_path *path,
1244 u64 bytenr, u64 parent,
1245 u64 root_objectid)
1247 struct btrfs_key key;
1248 int ret;
1250 key.objectid = bytenr;
1251 if (parent) {
1252 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1253 key.offset = parent;
1254 } else {
1255 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1256 key.offset = root_objectid;
1259 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1260 btrfs_release_path(root, path);
1261 return ret;
1264 static inline int extent_ref_type(u64 parent, u64 owner)
1266 int type;
1267 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1268 if (parent > 0)
1269 type = BTRFS_SHARED_BLOCK_REF_KEY;
1270 else
1271 type = BTRFS_TREE_BLOCK_REF_KEY;
1272 } else {
1273 if (parent > 0)
1274 type = BTRFS_SHARED_DATA_REF_KEY;
1275 else
1276 type = BTRFS_EXTENT_DATA_REF_KEY;
1278 return type;
1281 static int find_next_key(struct btrfs_path *path, int level,
1282 struct btrfs_key *key)
1285 for (; level < BTRFS_MAX_LEVEL; level++) {
1286 if (!path->nodes[level])
1287 break;
1288 if (path->slots[level] + 1 >=
1289 btrfs_header_nritems(path->nodes[level]))
1290 continue;
1291 if (level == 0)
1292 btrfs_item_key_to_cpu(path->nodes[level], key,
1293 path->slots[level] + 1);
1294 else
1295 btrfs_node_key_to_cpu(path->nodes[level], key,
1296 path->slots[level] + 1);
1297 return 0;
1299 return 1;
1303 * look for inline back ref. if back ref is found, *ref_ret is set
1304 * to the address of inline back ref, and 0 is returned.
1306 * if back ref isn't found, *ref_ret is set to the address where it
1307 * should be inserted, and -ENOENT is returned.
1309 * if insert is true and there are too many inline back refs, the path
1310 * points to the extent item, and -EAGAIN is returned.
1312 * NOTE: inline back refs are ordered in the same way that back ref
1313 * items in the tree are ordered.
1315 static noinline_for_stack
1316 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1317 struct btrfs_root *root,
1318 struct btrfs_path *path,
1319 struct btrfs_extent_inline_ref **ref_ret,
1320 u64 bytenr, u64 num_bytes,
1321 u64 parent, u64 root_objectid,
1322 u64 owner, u64 offset, int insert)
1324 struct btrfs_key key;
1325 struct extent_buffer *leaf;
1326 struct btrfs_extent_item *ei;
1327 struct btrfs_extent_inline_ref *iref;
1328 u64 flags;
1329 u64 item_size;
1330 unsigned long ptr;
1331 unsigned long end;
1332 int extra_size;
1333 int type;
1334 int want;
1335 int ret;
1336 int err = 0;
1338 key.objectid = bytenr;
1339 key.type = BTRFS_EXTENT_ITEM_KEY;
1340 key.offset = num_bytes;
1342 want = extent_ref_type(parent, owner);
1343 if (insert) {
1344 extra_size = btrfs_extent_inline_ref_size(want);
1345 path->keep_locks = 1;
1346 } else
1347 extra_size = -1;
1348 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1349 if (ret < 0) {
1350 err = ret;
1351 goto out;
1353 BUG_ON(ret);
1355 leaf = path->nodes[0];
1356 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1357 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1358 if (item_size < sizeof(*ei)) {
1359 if (!insert) {
1360 err = -ENOENT;
1361 goto out;
1363 ret = convert_extent_item_v0(trans, root, path, owner,
1364 extra_size);
1365 if (ret < 0) {
1366 err = ret;
1367 goto out;
1369 leaf = path->nodes[0];
1370 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1372 #endif
1373 BUG_ON(item_size < sizeof(*ei));
1375 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1376 flags = btrfs_extent_flags(leaf, ei);
1378 ptr = (unsigned long)(ei + 1);
1379 end = (unsigned long)ei + item_size;
1381 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1382 ptr += sizeof(struct btrfs_tree_block_info);
1383 BUG_ON(ptr > end);
1384 } else {
1385 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1388 err = -ENOENT;
1389 while (1) {
1390 if (ptr >= end) {
1391 WARN_ON(ptr > end);
1392 break;
1394 iref = (struct btrfs_extent_inline_ref *)ptr;
1395 type = btrfs_extent_inline_ref_type(leaf, iref);
1396 if (want < type)
1397 break;
1398 if (want > type) {
1399 ptr += btrfs_extent_inline_ref_size(type);
1400 continue;
1403 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1404 struct btrfs_extent_data_ref *dref;
1405 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1406 if (match_extent_data_ref(leaf, dref, root_objectid,
1407 owner, offset)) {
1408 err = 0;
1409 break;
1411 if (hash_extent_data_ref_item(leaf, dref) <
1412 hash_extent_data_ref(root_objectid, owner, offset))
1413 break;
1414 } else {
1415 u64 ref_offset;
1416 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1417 if (parent > 0) {
1418 if (parent == ref_offset) {
1419 err = 0;
1420 break;
1422 if (ref_offset < parent)
1423 break;
1424 } else {
1425 if (root_objectid == ref_offset) {
1426 err = 0;
1427 break;
1429 if (ref_offset < root_objectid)
1430 break;
1433 ptr += btrfs_extent_inline_ref_size(type);
1435 if (err == -ENOENT && insert) {
1436 if (item_size + extra_size >=
1437 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1438 err = -EAGAIN;
1439 goto out;
1442 * To add new inline back ref, we have to make sure
1443 * there is no corresponding back ref item.
1444 * For simplicity, we just do not add new inline back
1445 * ref if there is any kind of item for this block
1447 if (find_next_key(path, 0, &key) == 0 &&
1448 key.objectid == bytenr &&
1449 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1450 err = -EAGAIN;
1451 goto out;
1454 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1455 out:
1456 if (insert) {
1457 path->keep_locks = 0;
1458 btrfs_unlock_up_safe(path, 1);
1460 return err;
1464 * helper to add new inline back ref
1466 static noinline_for_stack
1467 int setup_inline_extent_backref(struct btrfs_trans_handle *trans,
1468 struct btrfs_root *root,
1469 struct btrfs_path *path,
1470 struct btrfs_extent_inline_ref *iref,
1471 u64 parent, u64 root_objectid,
1472 u64 owner, u64 offset, int refs_to_add,
1473 struct btrfs_delayed_extent_op *extent_op)
1475 struct extent_buffer *leaf;
1476 struct btrfs_extent_item *ei;
1477 unsigned long ptr;
1478 unsigned long end;
1479 unsigned long item_offset;
1480 u64 refs;
1481 int size;
1482 int type;
1483 int ret;
1485 leaf = path->nodes[0];
1486 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1487 item_offset = (unsigned long)iref - (unsigned long)ei;
1489 type = extent_ref_type(parent, owner);
1490 size = btrfs_extent_inline_ref_size(type);
1492 ret = btrfs_extend_item(trans, root, path, size);
1493 BUG_ON(ret);
1495 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1496 refs = btrfs_extent_refs(leaf, ei);
1497 refs += refs_to_add;
1498 btrfs_set_extent_refs(leaf, ei, refs);
1499 if (extent_op)
1500 __run_delayed_extent_op(extent_op, leaf, ei);
1502 ptr = (unsigned long)ei + item_offset;
1503 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1504 if (ptr < end - size)
1505 memmove_extent_buffer(leaf, ptr + size, ptr,
1506 end - size - ptr);
1508 iref = (struct btrfs_extent_inline_ref *)ptr;
1509 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1510 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1511 struct btrfs_extent_data_ref *dref;
1512 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1513 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1514 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1515 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1516 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1517 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1518 struct btrfs_shared_data_ref *sref;
1519 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1520 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1521 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1522 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1523 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1524 } else {
1525 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1527 btrfs_mark_buffer_dirty(leaf);
1528 return 0;
1531 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1532 struct btrfs_root *root,
1533 struct btrfs_path *path,
1534 struct btrfs_extent_inline_ref **ref_ret,
1535 u64 bytenr, u64 num_bytes, u64 parent,
1536 u64 root_objectid, u64 owner, u64 offset)
1538 int ret;
1540 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1541 bytenr, num_bytes, parent,
1542 root_objectid, owner, offset, 0);
1543 if (ret != -ENOENT)
1544 return ret;
1546 btrfs_release_path(root, path);
1547 *ref_ret = NULL;
1549 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1550 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1551 root_objectid);
1552 } else {
1553 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1554 root_objectid, owner, offset);
1556 return ret;
1560 * helper to update/remove inline back ref
1562 static noinline_for_stack
1563 int update_inline_extent_backref(struct btrfs_trans_handle *trans,
1564 struct btrfs_root *root,
1565 struct btrfs_path *path,
1566 struct btrfs_extent_inline_ref *iref,
1567 int refs_to_mod,
1568 struct btrfs_delayed_extent_op *extent_op)
1570 struct extent_buffer *leaf;
1571 struct btrfs_extent_item *ei;
1572 struct btrfs_extent_data_ref *dref = NULL;
1573 struct btrfs_shared_data_ref *sref = NULL;
1574 unsigned long ptr;
1575 unsigned long end;
1576 u32 item_size;
1577 int size;
1578 int type;
1579 int ret;
1580 u64 refs;
1582 leaf = path->nodes[0];
1583 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1584 refs = btrfs_extent_refs(leaf, ei);
1585 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1586 refs += refs_to_mod;
1587 btrfs_set_extent_refs(leaf, ei, refs);
1588 if (extent_op)
1589 __run_delayed_extent_op(extent_op, leaf, ei);
1591 type = btrfs_extent_inline_ref_type(leaf, iref);
1593 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1594 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1595 refs = btrfs_extent_data_ref_count(leaf, dref);
1596 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1597 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1598 refs = btrfs_shared_data_ref_count(leaf, sref);
1599 } else {
1600 refs = 1;
1601 BUG_ON(refs_to_mod != -1);
1604 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1605 refs += refs_to_mod;
1607 if (refs > 0) {
1608 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1609 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1610 else
1611 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1612 } else {
1613 size = btrfs_extent_inline_ref_size(type);
1614 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1615 ptr = (unsigned long)iref;
1616 end = (unsigned long)ei + item_size;
1617 if (ptr + size < end)
1618 memmove_extent_buffer(leaf, ptr, ptr + size,
1619 end - ptr - size);
1620 item_size -= size;
1621 ret = btrfs_truncate_item(trans, root, path, item_size, 1);
1622 BUG_ON(ret);
1624 btrfs_mark_buffer_dirty(leaf);
1625 return 0;
1628 static noinline_for_stack
1629 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1630 struct btrfs_root *root,
1631 struct btrfs_path *path,
1632 u64 bytenr, u64 num_bytes, u64 parent,
1633 u64 root_objectid, u64 owner,
1634 u64 offset, int refs_to_add,
1635 struct btrfs_delayed_extent_op *extent_op)
1637 struct btrfs_extent_inline_ref *iref;
1638 int ret;
1640 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1641 bytenr, num_bytes, parent,
1642 root_objectid, owner, offset, 1);
1643 if (ret == 0) {
1644 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1645 ret = update_inline_extent_backref(trans, root, path, iref,
1646 refs_to_add, extent_op);
1647 } else if (ret == -ENOENT) {
1648 ret = setup_inline_extent_backref(trans, root, path, iref,
1649 parent, root_objectid,
1650 owner, offset, refs_to_add,
1651 extent_op);
1653 return ret;
1656 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1657 struct btrfs_root *root,
1658 struct btrfs_path *path,
1659 u64 bytenr, u64 parent, u64 root_objectid,
1660 u64 owner, u64 offset, int refs_to_add)
1662 int ret;
1663 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1664 BUG_ON(refs_to_add != 1);
1665 ret = insert_tree_block_ref(trans, root, path, bytenr,
1666 parent, root_objectid);
1667 } else {
1668 ret = insert_extent_data_ref(trans, root, path, bytenr,
1669 parent, root_objectid,
1670 owner, offset, refs_to_add);
1672 return ret;
1675 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1676 struct btrfs_root *root,
1677 struct btrfs_path *path,
1678 struct btrfs_extent_inline_ref *iref,
1679 int refs_to_drop, int is_data)
1681 int ret;
1683 BUG_ON(!is_data && refs_to_drop != 1);
1684 if (iref) {
1685 ret = update_inline_extent_backref(trans, root, path, iref,
1686 -refs_to_drop, NULL);
1687 } else if (is_data) {
1688 ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1689 } else {
1690 ret = btrfs_del_item(trans, root, path);
1692 return ret;
1695 static void btrfs_issue_discard(struct block_device *bdev,
1696 u64 start, u64 len)
1698 blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_KERNEL,
1699 DISCARD_FL_BARRIER);
1702 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1703 u64 num_bytes)
1705 int ret;
1706 u64 map_length = num_bytes;
1707 struct btrfs_multi_bio *multi = NULL;
1709 if (!btrfs_test_opt(root, DISCARD))
1710 return 0;
1712 /* Tell the block device(s) that the sectors can be discarded */
1713 ret = btrfs_map_block(&root->fs_info->mapping_tree, READ,
1714 bytenr, &map_length, &multi, 0);
1715 if (!ret) {
1716 struct btrfs_bio_stripe *stripe = multi->stripes;
1717 int i;
1719 if (map_length > num_bytes)
1720 map_length = num_bytes;
1722 for (i = 0; i < multi->num_stripes; i++, stripe++) {
1723 btrfs_issue_discard(stripe->dev->bdev,
1724 stripe->physical,
1725 map_length);
1727 kfree(multi);
1730 return ret;
1733 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1734 struct btrfs_root *root,
1735 u64 bytenr, u64 num_bytes, u64 parent,
1736 u64 root_objectid, u64 owner, u64 offset)
1738 int ret;
1739 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1740 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1742 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1743 ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes,
1744 parent, root_objectid, (int)owner,
1745 BTRFS_ADD_DELAYED_REF, NULL);
1746 } else {
1747 ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes,
1748 parent, root_objectid, owner, offset,
1749 BTRFS_ADD_DELAYED_REF, NULL);
1751 return ret;
1754 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1755 struct btrfs_root *root,
1756 u64 bytenr, u64 num_bytes,
1757 u64 parent, u64 root_objectid,
1758 u64 owner, u64 offset, int refs_to_add,
1759 struct btrfs_delayed_extent_op *extent_op)
1761 struct btrfs_path *path;
1762 struct extent_buffer *leaf;
1763 struct btrfs_extent_item *item;
1764 u64 refs;
1765 int ret;
1766 int err = 0;
1768 path = btrfs_alloc_path();
1769 if (!path)
1770 return -ENOMEM;
1772 path->reada = 1;
1773 path->leave_spinning = 1;
1774 /* this will setup the path even if it fails to insert the back ref */
1775 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1776 path, bytenr, num_bytes, parent,
1777 root_objectid, owner, offset,
1778 refs_to_add, extent_op);
1779 if (ret == 0)
1780 goto out;
1782 if (ret != -EAGAIN) {
1783 err = ret;
1784 goto out;
1787 leaf = path->nodes[0];
1788 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1789 refs = btrfs_extent_refs(leaf, item);
1790 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1791 if (extent_op)
1792 __run_delayed_extent_op(extent_op, leaf, item);
1794 btrfs_mark_buffer_dirty(leaf);
1795 btrfs_release_path(root->fs_info->extent_root, path);
1797 path->reada = 1;
1798 path->leave_spinning = 1;
1800 /* now insert the actual backref */
1801 ret = insert_extent_backref(trans, root->fs_info->extent_root,
1802 path, bytenr, parent, root_objectid,
1803 owner, offset, refs_to_add);
1804 BUG_ON(ret);
1805 out:
1806 btrfs_free_path(path);
1807 return err;
1810 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1811 struct btrfs_root *root,
1812 struct btrfs_delayed_ref_node *node,
1813 struct btrfs_delayed_extent_op *extent_op,
1814 int insert_reserved)
1816 int ret = 0;
1817 struct btrfs_delayed_data_ref *ref;
1818 struct btrfs_key ins;
1819 u64 parent = 0;
1820 u64 ref_root = 0;
1821 u64 flags = 0;
1823 ins.objectid = node->bytenr;
1824 ins.offset = node->num_bytes;
1825 ins.type = BTRFS_EXTENT_ITEM_KEY;
1827 ref = btrfs_delayed_node_to_data_ref(node);
1828 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1829 parent = ref->parent;
1830 else
1831 ref_root = ref->root;
1833 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1834 if (extent_op) {
1835 BUG_ON(extent_op->update_key);
1836 flags |= extent_op->flags_to_set;
1838 ret = alloc_reserved_file_extent(trans, root,
1839 parent, ref_root, flags,
1840 ref->objectid, ref->offset,
1841 &ins, node->ref_mod);
1842 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1843 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
1844 node->num_bytes, parent,
1845 ref_root, ref->objectid,
1846 ref->offset, node->ref_mod,
1847 extent_op);
1848 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1849 ret = __btrfs_free_extent(trans, root, node->bytenr,
1850 node->num_bytes, parent,
1851 ref_root, ref->objectid,
1852 ref->offset, node->ref_mod,
1853 extent_op);
1854 } else {
1855 BUG();
1857 return ret;
1860 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1861 struct extent_buffer *leaf,
1862 struct btrfs_extent_item *ei)
1864 u64 flags = btrfs_extent_flags(leaf, ei);
1865 if (extent_op->update_flags) {
1866 flags |= extent_op->flags_to_set;
1867 btrfs_set_extent_flags(leaf, ei, flags);
1870 if (extent_op->update_key) {
1871 struct btrfs_tree_block_info *bi;
1872 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1873 bi = (struct btrfs_tree_block_info *)(ei + 1);
1874 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1878 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1879 struct btrfs_root *root,
1880 struct btrfs_delayed_ref_node *node,
1881 struct btrfs_delayed_extent_op *extent_op)
1883 struct btrfs_key key;
1884 struct btrfs_path *path;
1885 struct btrfs_extent_item *ei;
1886 struct extent_buffer *leaf;
1887 u32 item_size;
1888 int ret;
1889 int err = 0;
1891 path = btrfs_alloc_path();
1892 if (!path)
1893 return -ENOMEM;
1895 key.objectid = node->bytenr;
1896 key.type = BTRFS_EXTENT_ITEM_KEY;
1897 key.offset = node->num_bytes;
1899 path->reada = 1;
1900 path->leave_spinning = 1;
1901 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
1902 path, 0, 1);
1903 if (ret < 0) {
1904 err = ret;
1905 goto out;
1907 if (ret > 0) {
1908 err = -EIO;
1909 goto out;
1912 leaf = path->nodes[0];
1913 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1914 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1915 if (item_size < sizeof(*ei)) {
1916 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
1917 path, (u64)-1, 0);
1918 if (ret < 0) {
1919 err = ret;
1920 goto out;
1922 leaf = path->nodes[0];
1923 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1925 #endif
1926 BUG_ON(item_size < sizeof(*ei));
1927 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1928 __run_delayed_extent_op(extent_op, leaf, ei);
1930 btrfs_mark_buffer_dirty(leaf);
1931 out:
1932 btrfs_free_path(path);
1933 return err;
1936 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
1937 struct btrfs_root *root,
1938 struct btrfs_delayed_ref_node *node,
1939 struct btrfs_delayed_extent_op *extent_op,
1940 int insert_reserved)
1942 int ret = 0;
1943 struct btrfs_delayed_tree_ref *ref;
1944 struct btrfs_key ins;
1945 u64 parent = 0;
1946 u64 ref_root = 0;
1948 ins.objectid = node->bytenr;
1949 ins.offset = node->num_bytes;
1950 ins.type = BTRFS_EXTENT_ITEM_KEY;
1952 ref = btrfs_delayed_node_to_tree_ref(node);
1953 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1954 parent = ref->parent;
1955 else
1956 ref_root = ref->root;
1958 BUG_ON(node->ref_mod != 1);
1959 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1960 BUG_ON(!extent_op || !extent_op->update_flags ||
1961 !extent_op->update_key);
1962 ret = alloc_reserved_tree_block(trans, root,
1963 parent, ref_root,
1964 extent_op->flags_to_set,
1965 &extent_op->key,
1966 ref->level, &ins);
1967 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1968 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
1969 node->num_bytes, parent, ref_root,
1970 ref->level, 0, 1, extent_op);
1971 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1972 ret = __btrfs_free_extent(trans, root, node->bytenr,
1973 node->num_bytes, parent, ref_root,
1974 ref->level, 0, 1, extent_op);
1975 } else {
1976 BUG();
1978 return ret;
1981 /* helper function to actually process a single delayed ref entry */
1982 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
1983 struct btrfs_root *root,
1984 struct btrfs_delayed_ref_node *node,
1985 struct btrfs_delayed_extent_op *extent_op,
1986 int insert_reserved)
1988 int ret;
1989 if (btrfs_delayed_ref_is_head(node)) {
1990 struct btrfs_delayed_ref_head *head;
1992 * we've hit the end of the chain and we were supposed
1993 * to insert this extent into the tree. But, it got
1994 * deleted before we ever needed to insert it, so all
1995 * we have to do is clean up the accounting
1997 BUG_ON(extent_op);
1998 head = btrfs_delayed_node_to_head(node);
1999 if (insert_reserved) {
2000 btrfs_pin_extent(root, node->bytenr,
2001 node->num_bytes, 1);
2002 if (head->is_data) {
2003 ret = btrfs_del_csums(trans, root,
2004 node->bytenr,
2005 node->num_bytes);
2006 BUG_ON(ret);
2009 mutex_unlock(&head->mutex);
2010 return 0;
2013 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2014 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2015 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2016 insert_reserved);
2017 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2018 node->type == BTRFS_SHARED_DATA_REF_KEY)
2019 ret = run_delayed_data_ref(trans, root, node, extent_op,
2020 insert_reserved);
2021 else
2022 BUG();
2023 return ret;
2026 static noinline struct btrfs_delayed_ref_node *
2027 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2029 struct rb_node *node;
2030 struct btrfs_delayed_ref_node *ref;
2031 int action = BTRFS_ADD_DELAYED_REF;
2032 again:
2034 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2035 * this prevents ref count from going down to zero when
2036 * there still are pending delayed ref.
2038 node = rb_prev(&head->node.rb_node);
2039 while (1) {
2040 if (!node)
2041 break;
2042 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2043 rb_node);
2044 if (ref->bytenr != head->node.bytenr)
2045 break;
2046 if (ref->action == action)
2047 return ref;
2048 node = rb_prev(node);
2050 if (action == BTRFS_ADD_DELAYED_REF) {
2051 action = BTRFS_DROP_DELAYED_REF;
2052 goto again;
2054 return NULL;
2057 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
2058 struct btrfs_root *root,
2059 struct list_head *cluster)
2061 struct btrfs_delayed_ref_root *delayed_refs;
2062 struct btrfs_delayed_ref_node *ref;
2063 struct btrfs_delayed_ref_head *locked_ref = NULL;
2064 struct btrfs_delayed_extent_op *extent_op;
2065 int ret;
2066 int count = 0;
2067 int must_insert_reserved = 0;
2069 delayed_refs = &trans->transaction->delayed_refs;
2070 while (1) {
2071 if (!locked_ref) {
2072 /* pick a new head ref from the cluster list */
2073 if (list_empty(cluster))
2074 break;
2076 locked_ref = list_entry(cluster->next,
2077 struct btrfs_delayed_ref_head, cluster);
2079 /* grab the lock that says we are going to process
2080 * all the refs for this head */
2081 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2084 * we may have dropped the spin lock to get the head
2085 * mutex lock, and that might have given someone else
2086 * time to free the head. If that's true, it has been
2087 * removed from our list and we can move on.
2089 if (ret == -EAGAIN) {
2090 locked_ref = NULL;
2091 count++;
2092 continue;
2097 * record the must insert reserved flag before we
2098 * drop the spin lock.
2100 must_insert_reserved = locked_ref->must_insert_reserved;
2101 locked_ref->must_insert_reserved = 0;
2103 extent_op = locked_ref->extent_op;
2104 locked_ref->extent_op = NULL;
2107 * locked_ref is the head node, so we have to go one
2108 * node back for any delayed ref updates
2110 ref = select_delayed_ref(locked_ref);
2111 if (!ref) {
2112 /* All delayed refs have been processed, Go ahead
2113 * and send the head node to run_one_delayed_ref,
2114 * so that any accounting fixes can happen
2116 ref = &locked_ref->node;
2118 if (extent_op && must_insert_reserved) {
2119 kfree(extent_op);
2120 extent_op = NULL;
2123 if (extent_op) {
2124 spin_unlock(&delayed_refs->lock);
2126 ret = run_delayed_extent_op(trans, root,
2127 ref, extent_op);
2128 BUG_ON(ret);
2129 kfree(extent_op);
2131 cond_resched();
2132 spin_lock(&delayed_refs->lock);
2133 continue;
2136 list_del_init(&locked_ref->cluster);
2137 locked_ref = NULL;
2140 ref->in_tree = 0;
2141 rb_erase(&ref->rb_node, &delayed_refs->root);
2142 delayed_refs->num_entries--;
2144 spin_unlock(&delayed_refs->lock);
2146 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2147 must_insert_reserved);
2148 BUG_ON(ret);
2150 btrfs_put_delayed_ref(ref);
2151 kfree(extent_op);
2152 count++;
2154 cond_resched();
2155 spin_lock(&delayed_refs->lock);
2157 return count;
2161 * this starts processing the delayed reference count updates and
2162 * extent insertions we have queued up so far. count can be
2163 * 0, which means to process everything in the tree at the start
2164 * of the run (but not newly added entries), or it can be some target
2165 * number you'd like to process.
2167 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2168 struct btrfs_root *root, unsigned long count)
2170 struct rb_node *node;
2171 struct btrfs_delayed_ref_root *delayed_refs;
2172 struct btrfs_delayed_ref_node *ref;
2173 struct list_head cluster;
2174 int ret;
2175 int run_all = count == (unsigned long)-1;
2176 int run_most = 0;
2178 if (root == root->fs_info->extent_root)
2179 root = root->fs_info->tree_root;
2181 delayed_refs = &trans->transaction->delayed_refs;
2182 INIT_LIST_HEAD(&cluster);
2183 again:
2184 spin_lock(&delayed_refs->lock);
2185 if (count == 0) {
2186 count = delayed_refs->num_entries * 2;
2187 run_most = 1;
2189 while (1) {
2190 if (!(run_all || run_most) &&
2191 delayed_refs->num_heads_ready < 64)
2192 break;
2195 * go find something we can process in the rbtree. We start at
2196 * the beginning of the tree, and then build a cluster
2197 * of refs to process starting at the first one we are able to
2198 * lock
2200 ret = btrfs_find_ref_cluster(trans, &cluster,
2201 delayed_refs->run_delayed_start);
2202 if (ret)
2203 break;
2205 ret = run_clustered_refs(trans, root, &cluster);
2206 BUG_ON(ret < 0);
2208 count -= min_t(unsigned long, ret, count);
2210 if (count == 0)
2211 break;
2214 if (run_all) {
2215 node = rb_first(&delayed_refs->root);
2216 if (!node)
2217 goto out;
2218 count = (unsigned long)-1;
2220 while (node) {
2221 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2222 rb_node);
2223 if (btrfs_delayed_ref_is_head(ref)) {
2224 struct btrfs_delayed_ref_head *head;
2226 head = btrfs_delayed_node_to_head(ref);
2227 atomic_inc(&ref->refs);
2229 spin_unlock(&delayed_refs->lock);
2230 mutex_lock(&head->mutex);
2231 mutex_unlock(&head->mutex);
2233 btrfs_put_delayed_ref(ref);
2234 cond_resched();
2235 goto again;
2237 node = rb_next(node);
2239 spin_unlock(&delayed_refs->lock);
2240 schedule_timeout(1);
2241 goto again;
2243 out:
2244 spin_unlock(&delayed_refs->lock);
2245 return 0;
2248 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2249 struct btrfs_root *root,
2250 u64 bytenr, u64 num_bytes, u64 flags,
2251 int is_data)
2253 struct btrfs_delayed_extent_op *extent_op;
2254 int ret;
2256 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
2257 if (!extent_op)
2258 return -ENOMEM;
2260 extent_op->flags_to_set = flags;
2261 extent_op->update_flags = 1;
2262 extent_op->update_key = 0;
2263 extent_op->is_data = is_data ? 1 : 0;
2265 ret = btrfs_add_delayed_extent_op(trans, bytenr, num_bytes, extent_op);
2266 if (ret)
2267 kfree(extent_op);
2268 return ret;
2271 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2272 struct btrfs_root *root,
2273 struct btrfs_path *path,
2274 u64 objectid, u64 offset, u64 bytenr)
2276 struct btrfs_delayed_ref_head *head;
2277 struct btrfs_delayed_ref_node *ref;
2278 struct btrfs_delayed_data_ref *data_ref;
2279 struct btrfs_delayed_ref_root *delayed_refs;
2280 struct rb_node *node;
2281 int ret = 0;
2283 ret = -ENOENT;
2284 delayed_refs = &trans->transaction->delayed_refs;
2285 spin_lock(&delayed_refs->lock);
2286 head = btrfs_find_delayed_ref_head(trans, bytenr);
2287 if (!head)
2288 goto out;
2290 if (!mutex_trylock(&head->mutex)) {
2291 atomic_inc(&head->node.refs);
2292 spin_unlock(&delayed_refs->lock);
2294 btrfs_release_path(root->fs_info->extent_root, path);
2296 mutex_lock(&head->mutex);
2297 mutex_unlock(&head->mutex);
2298 btrfs_put_delayed_ref(&head->node);
2299 return -EAGAIN;
2302 node = rb_prev(&head->node.rb_node);
2303 if (!node)
2304 goto out_unlock;
2306 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2308 if (ref->bytenr != bytenr)
2309 goto out_unlock;
2311 ret = 1;
2312 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
2313 goto out_unlock;
2315 data_ref = btrfs_delayed_node_to_data_ref(ref);
2317 node = rb_prev(node);
2318 if (node) {
2319 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2320 if (ref->bytenr == bytenr)
2321 goto out_unlock;
2324 if (data_ref->root != root->root_key.objectid ||
2325 data_ref->objectid != objectid || data_ref->offset != offset)
2326 goto out_unlock;
2328 ret = 0;
2329 out_unlock:
2330 mutex_unlock(&head->mutex);
2331 out:
2332 spin_unlock(&delayed_refs->lock);
2333 return ret;
2336 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2337 struct btrfs_root *root,
2338 struct btrfs_path *path,
2339 u64 objectid, u64 offset, u64 bytenr)
2341 struct btrfs_root *extent_root = root->fs_info->extent_root;
2342 struct extent_buffer *leaf;
2343 struct btrfs_extent_data_ref *ref;
2344 struct btrfs_extent_inline_ref *iref;
2345 struct btrfs_extent_item *ei;
2346 struct btrfs_key key;
2347 u32 item_size;
2348 int ret;
2350 key.objectid = bytenr;
2351 key.offset = (u64)-1;
2352 key.type = BTRFS_EXTENT_ITEM_KEY;
2354 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2355 if (ret < 0)
2356 goto out;
2357 BUG_ON(ret == 0);
2359 ret = -ENOENT;
2360 if (path->slots[0] == 0)
2361 goto out;
2363 path->slots[0]--;
2364 leaf = path->nodes[0];
2365 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2367 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2368 goto out;
2370 ret = 1;
2371 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2372 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2373 if (item_size < sizeof(*ei)) {
2374 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2375 goto out;
2377 #endif
2378 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2380 if (item_size != sizeof(*ei) +
2381 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2382 goto out;
2384 if (btrfs_extent_generation(leaf, ei) <=
2385 btrfs_root_last_snapshot(&root->root_item))
2386 goto out;
2388 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2389 if (btrfs_extent_inline_ref_type(leaf, iref) !=
2390 BTRFS_EXTENT_DATA_REF_KEY)
2391 goto out;
2393 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2394 if (btrfs_extent_refs(leaf, ei) !=
2395 btrfs_extent_data_ref_count(leaf, ref) ||
2396 btrfs_extent_data_ref_root(leaf, ref) !=
2397 root->root_key.objectid ||
2398 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2399 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2400 goto out;
2402 ret = 0;
2403 out:
2404 return ret;
2407 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2408 struct btrfs_root *root,
2409 u64 objectid, u64 offset, u64 bytenr)
2411 struct btrfs_path *path;
2412 int ret;
2413 int ret2;
2415 path = btrfs_alloc_path();
2416 if (!path)
2417 return -ENOENT;
2419 do {
2420 ret = check_committed_ref(trans, root, path, objectid,
2421 offset, bytenr);
2422 if (ret && ret != -ENOENT)
2423 goto out;
2425 ret2 = check_delayed_ref(trans, root, path, objectid,
2426 offset, bytenr);
2427 } while (ret2 == -EAGAIN);
2429 if (ret2 && ret2 != -ENOENT) {
2430 ret = ret2;
2431 goto out;
2434 if (ret != -ENOENT || ret2 != -ENOENT)
2435 ret = 0;
2436 out:
2437 btrfs_free_path(path);
2438 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2439 WARN_ON(ret > 0);
2440 return ret;
2443 #if 0
2444 int btrfs_cache_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2445 struct extent_buffer *buf, u32 nr_extents)
2447 struct btrfs_key key;
2448 struct btrfs_file_extent_item *fi;
2449 u64 root_gen;
2450 u32 nritems;
2451 int i;
2452 int level;
2453 int ret = 0;
2454 int shared = 0;
2456 if (!root->ref_cows)
2457 return 0;
2459 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
2460 shared = 0;
2461 root_gen = root->root_key.offset;
2462 } else {
2463 shared = 1;
2464 root_gen = trans->transid - 1;
2467 level = btrfs_header_level(buf);
2468 nritems = btrfs_header_nritems(buf);
2470 if (level == 0) {
2471 struct btrfs_leaf_ref *ref;
2472 struct btrfs_extent_info *info;
2474 ref = btrfs_alloc_leaf_ref(root, nr_extents);
2475 if (!ref) {
2476 ret = -ENOMEM;
2477 goto out;
2480 ref->root_gen = root_gen;
2481 ref->bytenr = buf->start;
2482 ref->owner = btrfs_header_owner(buf);
2483 ref->generation = btrfs_header_generation(buf);
2484 ref->nritems = nr_extents;
2485 info = ref->extents;
2487 for (i = 0; nr_extents > 0 && i < nritems; i++) {
2488 u64 disk_bytenr;
2489 btrfs_item_key_to_cpu(buf, &key, i);
2490 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2491 continue;
2492 fi = btrfs_item_ptr(buf, i,
2493 struct btrfs_file_extent_item);
2494 if (btrfs_file_extent_type(buf, fi) ==
2495 BTRFS_FILE_EXTENT_INLINE)
2496 continue;
2497 disk_bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2498 if (disk_bytenr == 0)
2499 continue;
2501 info->bytenr = disk_bytenr;
2502 info->num_bytes =
2503 btrfs_file_extent_disk_num_bytes(buf, fi);
2504 info->objectid = key.objectid;
2505 info->offset = key.offset;
2506 info++;
2509 ret = btrfs_add_leaf_ref(root, ref, shared);
2510 if (ret == -EEXIST && shared) {
2511 struct btrfs_leaf_ref *old;
2512 old = btrfs_lookup_leaf_ref(root, ref->bytenr);
2513 BUG_ON(!old);
2514 btrfs_remove_leaf_ref(root, old);
2515 btrfs_free_leaf_ref(root, old);
2516 ret = btrfs_add_leaf_ref(root, ref, shared);
2518 WARN_ON(ret);
2519 btrfs_free_leaf_ref(root, ref);
2521 out:
2522 return ret;
2525 /* when a block goes through cow, we update the reference counts of
2526 * everything that block points to. The internal pointers of the block
2527 * can be in just about any order, and it is likely to have clusters of
2528 * things that are close together and clusters of things that are not.
2530 * To help reduce the seeks that come with updating all of these reference
2531 * counts, sort them by byte number before actual updates are done.
2533 * struct refsort is used to match byte number to slot in the btree block.
2534 * we sort based on the byte number and then use the slot to actually
2535 * find the item.
2537 * struct refsort is smaller than strcut btrfs_item and smaller than
2538 * struct btrfs_key_ptr. Since we're currently limited to the page size
2539 * for a btree block, there's no way for a kmalloc of refsorts for a
2540 * single node to be bigger than a page.
2542 struct refsort {
2543 u64 bytenr;
2544 u32 slot;
2548 * for passing into sort()
2550 static int refsort_cmp(const void *a_void, const void *b_void)
2552 const struct refsort *a = a_void;
2553 const struct refsort *b = b_void;
2555 if (a->bytenr < b->bytenr)
2556 return -1;
2557 if (a->bytenr > b->bytenr)
2558 return 1;
2559 return 0;
2561 #endif
2563 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2564 struct btrfs_root *root,
2565 struct extent_buffer *buf,
2566 int full_backref, int inc)
2568 u64 bytenr;
2569 u64 num_bytes;
2570 u64 parent;
2571 u64 ref_root;
2572 u32 nritems;
2573 struct btrfs_key key;
2574 struct btrfs_file_extent_item *fi;
2575 int i;
2576 int level;
2577 int ret = 0;
2578 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
2579 u64, u64, u64, u64, u64, u64);
2581 ref_root = btrfs_header_owner(buf);
2582 nritems = btrfs_header_nritems(buf);
2583 level = btrfs_header_level(buf);
2585 if (!root->ref_cows && level == 0)
2586 return 0;
2588 if (inc)
2589 process_func = btrfs_inc_extent_ref;
2590 else
2591 process_func = btrfs_free_extent;
2593 if (full_backref)
2594 parent = buf->start;
2595 else
2596 parent = 0;
2598 for (i = 0; i < nritems; i++) {
2599 if (level == 0) {
2600 btrfs_item_key_to_cpu(buf, &key, i);
2601 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2602 continue;
2603 fi = btrfs_item_ptr(buf, i,
2604 struct btrfs_file_extent_item);
2605 if (btrfs_file_extent_type(buf, fi) ==
2606 BTRFS_FILE_EXTENT_INLINE)
2607 continue;
2608 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2609 if (bytenr == 0)
2610 continue;
2612 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2613 key.offset -= btrfs_file_extent_offset(buf, fi);
2614 ret = process_func(trans, root, bytenr, num_bytes,
2615 parent, ref_root, key.objectid,
2616 key.offset);
2617 if (ret)
2618 goto fail;
2619 } else {
2620 bytenr = btrfs_node_blockptr(buf, i);
2621 num_bytes = btrfs_level_size(root, level - 1);
2622 ret = process_func(trans, root, bytenr, num_bytes,
2623 parent, ref_root, level - 1, 0);
2624 if (ret)
2625 goto fail;
2628 return 0;
2629 fail:
2630 BUG();
2631 return ret;
2634 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2635 struct extent_buffer *buf, int full_backref)
2637 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2640 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2641 struct extent_buffer *buf, int full_backref)
2643 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2646 static int write_one_cache_group(struct btrfs_trans_handle *trans,
2647 struct btrfs_root *root,
2648 struct btrfs_path *path,
2649 struct btrfs_block_group_cache *cache)
2651 int ret;
2652 struct btrfs_root *extent_root = root->fs_info->extent_root;
2653 unsigned long bi;
2654 struct extent_buffer *leaf;
2656 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
2657 if (ret < 0)
2658 goto fail;
2659 BUG_ON(ret);
2661 leaf = path->nodes[0];
2662 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2663 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
2664 btrfs_mark_buffer_dirty(leaf);
2665 btrfs_release_path(extent_root, path);
2666 fail:
2667 if (ret)
2668 return ret;
2669 return 0;
2673 static struct btrfs_block_group_cache *
2674 next_block_group(struct btrfs_root *root,
2675 struct btrfs_block_group_cache *cache)
2677 struct rb_node *node;
2678 spin_lock(&root->fs_info->block_group_cache_lock);
2679 node = rb_next(&cache->cache_node);
2680 btrfs_put_block_group(cache);
2681 if (node) {
2682 cache = rb_entry(node, struct btrfs_block_group_cache,
2683 cache_node);
2684 btrfs_get_block_group(cache);
2685 } else
2686 cache = NULL;
2687 spin_unlock(&root->fs_info->block_group_cache_lock);
2688 return cache;
2691 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
2692 struct btrfs_root *root)
2694 struct btrfs_block_group_cache *cache;
2695 int err = 0;
2696 struct btrfs_path *path;
2697 u64 last = 0;
2699 path = btrfs_alloc_path();
2700 if (!path)
2701 return -ENOMEM;
2703 while (1) {
2704 if (last == 0) {
2705 err = btrfs_run_delayed_refs(trans, root,
2706 (unsigned long)-1);
2707 BUG_ON(err);
2710 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2711 while (cache) {
2712 if (cache->dirty)
2713 break;
2714 cache = next_block_group(root, cache);
2716 if (!cache) {
2717 if (last == 0)
2718 break;
2719 last = 0;
2720 continue;
2723 cache->dirty = 0;
2724 last = cache->key.objectid + cache->key.offset;
2726 err = write_one_cache_group(trans, root, path, cache);
2727 BUG_ON(err);
2728 btrfs_put_block_group(cache);
2731 btrfs_free_path(path);
2732 return 0;
2735 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
2737 struct btrfs_block_group_cache *block_group;
2738 int readonly = 0;
2740 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
2741 if (!block_group || block_group->ro)
2742 readonly = 1;
2743 if (block_group)
2744 btrfs_put_block_group(block_group);
2745 return readonly;
2748 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
2749 u64 total_bytes, u64 bytes_used,
2750 struct btrfs_space_info **space_info)
2752 struct btrfs_space_info *found;
2753 int i;
2754 int factor;
2756 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
2757 BTRFS_BLOCK_GROUP_RAID10))
2758 factor = 2;
2759 else
2760 factor = 1;
2762 found = __find_space_info(info, flags);
2763 if (found) {
2764 spin_lock(&found->lock);
2765 found->total_bytes += total_bytes;
2766 found->bytes_used += bytes_used;
2767 found->disk_used += bytes_used * factor;
2768 found->full = 0;
2769 spin_unlock(&found->lock);
2770 *space_info = found;
2771 return 0;
2773 found = kzalloc(sizeof(*found), GFP_NOFS);
2774 if (!found)
2775 return -ENOMEM;
2777 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
2778 INIT_LIST_HEAD(&found->block_groups[i]);
2779 init_rwsem(&found->groups_sem);
2780 spin_lock_init(&found->lock);
2781 found->flags = flags & (BTRFS_BLOCK_GROUP_DATA |
2782 BTRFS_BLOCK_GROUP_SYSTEM |
2783 BTRFS_BLOCK_GROUP_METADATA);
2784 found->total_bytes = total_bytes;
2785 found->bytes_used = bytes_used;
2786 found->disk_used = bytes_used * factor;
2787 found->bytes_pinned = 0;
2788 found->bytes_reserved = 0;
2789 found->bytes_readonly = 0;
2790 found->bytes_may_use = 0;
2791 found->full = 0;
2792 found->force_alloc = 0;
2793 *space_info = found;
2794 list_add_rcu(&found->list, &info->space_info);
2795 atomic_set(&found->caching_threads, 0);
2796 return 0;
2799 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
2801 u64 extra_flags = flags & (BTRFS_BLOCK_GROUP_RAID0 |
2802 BTRFS_BLOCK_GROUP_RAID1 |
2803 BTRFS_BLOCK_GROUP_RAID10 |
2804 BTRFS_BLOCK_GROUP_DUP);
2805 if (extra_flags) {
2806 if (flags & BTRFS_BLOCK_GROUP_DATA)
2807 fs_info->avail_data_alloc_bits |= extra_flags;
2808 if (flags & BTRFS_BLOCK_GROUP_METADATA)
2809 fs_info->avail_metadata_alloc_bits |= extra_flags;
2810 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
2811 fs_info->avail_system_alloc_bits |= extra_flags;
2815 u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
2817 u64 num_devices = root->fs_info->fs_devices->rw_devices;
2819 if (num_devices == 1)
2820 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0);
2821 if (num_devices < 4)
2822 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
2824 if ((flags & BTRFS_BLOCK_GROUP_DUP) &&
2825 (flags & (BTRFS_BLOCK_GROUP_RAID1 |
2826 BTRFS_BLOCK_GROUP_RAID10))) {
2827 flags &= ~BTRFS_BLOCK_GROUP_DUP;
2830 if ((flags & BTRFS_BLOCK_GROUP_RAID1) &&
2831 (flags & BTRFS_BLOCK_GROUP_RAID10)) {
2832 flags &= ~BTRFS_BLOCK_GROUP_RAID1;
2835 if ((flags & BTRFS_BLOCK_GROUP_RAID0) &&
2836 ((flags & BTRFS_BLOCK_GROUP_RAID1) |
2837 (flags & BTRFS_BLOCK_GROUP_RAID10) |
2838 (flags & BTRFS_BLOCK_GROUP_DUP)))
2839 flags &= ~BTRFS_BLOCK_GROUP_RAID0;
2840 return flags;
2843 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
2845 if (flags & BTRFS_BLOCK_GROUP_DATA)
2846 flags |= root->fs_info->avail_data_alloc_bits &
2847 root->fs_info->data_alloc_profile;
2848 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
2849 flags |= root->fs_info->avail_system_alloc_bits &
2850 root->fs_info->system_alloc_profile;
2851 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
2852 flags |= root->fs_info->avail_metadata_alloc_bits &
2853 root->fs_info->metadata_alloc_profile;
2854 return btrfs_reduce_alloc_profile(root, flags);
2857 static u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
2859 u64 flags;
2861 if (data)
2862 flags = BTRFS_BLOCK_GROUP_DATA;
2863 else if (root == root->fs_info->chunk_root)
2864 flags = BTRFS_BLOCK_GROUP_SYSTEM;
2865 else
2866 flags = BTRFS_BLOCK_GROUP_METADATA;
2868 return get_alloc_profile(root, flags);
2871 void btrfs_set_inode_space_info(struct btrfs_root *root, struct inode *inode)
2873 BTRFS_I(inode)->space_info = __find_space_info(root->fs_info,
2874 BTRFS_BLOCK_GROUP_DATA);
2878 * This will check the space that the inode allocates from to make sure we have
2879 * enough space for bytes.
2881 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
2883 struct btrfs_space_info *data_sinfo;
2884 struct btrfs_root *root = BTRFS_I(inode)->root;
2885 u64 used;
2886 int ret = 0, committed = 0;
2888 /* make sure bytes are sectorsize aligned */
2889 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
2891 data_sinfo = BTRFS_I(inode)->space_info;
2892 if (!data_sinfo)
2893 goto alloc;
2895 again:
2896 /* make sure we have enough space to handle the data first */
2897 spin_lock(&data_sinfo->lock);
2898 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
2899 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
2900 data_sinfo->bytes_may_use;
2902 if (used + bytes > data_sinfo->total_bytes) {
2903 struct btrfs_trans_handle *trans;
2906 * if we don't have enough free bytes in this space then we need
2907 * to alloc a new chunk.
2909 if (!data_sinfo->full) {
2910 u64 alloc_target;
2912 data_sinfo->force_alloc = 1;
2913 spin_unlock(&data_sinfo->lock);
2914 alloc:
2915 alloc_target = btrfs_get_alloc_profile(root, 1);
2916 trans = btrfs_join_transaction(root, 1);
2917 if (IS_ERR(trans))
2918 return PTR_ERR(trans);
2920 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
2921 bytes + 2 * 1024 * 1024,
2922 alloc_target, 0);
2923 btrfs_end_transaction(trans, root);
2924 if (ret < 0)
2925 return ret;
2927 if (!data_sinfo) {
2928 btrfs_set_inode_space_info(root, inode);
2929 data_sinfo = BTRFS_I(inode)->space_info;
2931 goto again;
2933 spin_unlock(&data_sinfo->lock);
2935 /* commit the current transaction and try again */
2936 if (!committed && !root->fs_info->open_ioctl_trans) {
2937 committed = 1;
2938 trans = btrfs_join_transaction(root, 1);
2939 if (IS_ERR(trans))
2940 return PTR_ERR(trans);
2941 ret = btrfs_commit_transaction(trans, root);
2942 if (ret)
2943 return ret;
2944 goto again;
2947 printk(KERN_ERR "no space left, need %llu, %llu bytes_used, "
2948 "%llu bytes_reserved, " "%llu bytes_pinned, "
2949 "%llu bytes_readonly, %llu may use %llu total\n",
2950 (unsigned long long)bytes,
2951 (unsigned long long)data_sinfo->bytes_used,
2952 (unsigned long long)data_sinfo->bytes_reserved,
2953 (unsigned long long)data_sinfo->bytes_pinned,
2954 (unsigned long long)data_sinfo->bytes_readonly,
2955 (unsigned long long)data_sinfo->bytes_may_use,
2956 (unsigned long long)data_sinfo->total_bytes);
2957 return -ENOSPC;
2959 data_sinfo->bytes_may_use += bytes;
2960 BTRFS_I(inode)->reserved_bytes += bytes;
2961 spin_unlock(&data_sinfo->lock);
2963 return 0;
2967 * called when we are clearing an delalloc extent from the
2968 * inode's io_tree or there was an error for whatever reason
2969 * after calling btrfs_check_data_free_space
2971 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
2973 struct btrfs_root *root = BTRFS_I(inode)->root;
2974 struct btrfs_space_info *data_sinfo;
2976 /* make sure bytes are sectorsize aligned */
2977 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
2979 data_sinfo = BTRFS_I(inode)->space_info;
2980 spin_lock(&data_sinfo->lock);
2981 data_sinfo->bytes_may_use -= bytes;
2982 BTRFS_I(inode)->reserved_bytes -= bytes;
2983 spin_unlock(&data_sinfo->lock);
2986 static void force_metadata_allocation(struct btrfs_fs_info *info)
2988 struct list_head *head = &info->space_info;
2989 struct btrfs_space_info *found;
2991 rcu_read_lock();
2992 list_for_each_entry_rcu(found, head, list) {
2993 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
2994 found->force_alloc = 1;
2996 rcu_read_unlock();
2999 static int should_alloc_chunk(struct btrfs_space_info *sinfo,
3000 u64 alloc_bytes)
3002 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3004 if (sinfo->bytes_used + sinfo->bytes_reserved +
3005 alloc_bytes + 256 * 1024 * 1024 < num_bytes)
3006 return 0;
3008 if (sinfo->bytes_used + sinfo->bytes_reserved +
3009 alloc_bytes < div_factor(num_bytes, 8))
3010 return 0;
3012 return 1;
3015 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3016 struct btrfs_root *extent_root, u64 alloc_bytes,
3017 u64 flags, int force)
3019 struct btrfs_space_info *space_info;
3020 struct btrfs_fs_info *fs_info = extent_root->fs_info;
3021 int ret = 0;
3023 mutex_lock(&fs_info->chunk_mutex);
3025 flags = btrfs_reduce_alloc_profile(extent_root, flags);
3027 space_info = __find_space_info(extent_root->fs_info, flags);
3028 if (!space_info) {
3029 ret = update_space_info(extent_root->fs_info, flags,
3030 0, 0, &space_info);
3031 BUG_ON(ret);
3033 BUG_ON(!space_info);
3035 spin_lock(&space_info->lock);
3036 if (space_info->force_alloc)
3037 force = 1;
3038 if (space_info->full) {
3039 spin_unlock(&space_info->lock);
3040 goto out;
3043 if (!force && !should_alloc_chunk(space_info, alloc_bytes)) {
3044 spin_unlock(&space_info->lock);
3045 goto out;
3047 spin_unlock(&space_info->lock);
3050 * if we're doing a data chunk, go ahead and make sure that
3051 * we keep a reasonable number of metadata chunks allocated in the
3052 * FS as well.
3054 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3055 fs_info->data_chunk_allocations++;
3056 if (!(fs_info->data_chunk_allocations %
3057 fs_info->metadata_ratio))
3058 force_metadata_allocation(fs_info);
3061 ret = btrfs_alloc_chunk(trans, extent_root, flags);
3062 spin_lock(&space_info->lock);
3063 if (ret)
3064 space_info->full = 1;
3065 else
3066 ret = 1;
3067 space_info->force_alloc = 0;
3068 spin_unlock(&space_info->lock);
3069 out:
3070 mutex_unlock(&extent_root->fs_info->chunk_mutex);
3071 return ret;
3074 static int maybe_allocate_chunk(struct btrfs_trans_handle *trans,
3075 struct btrfs_root *root,
3076 struct btrfs_space_info *sinfo, u64 num_bytes)
3078 int ret;
3079 int end_trans = 0;
3081 if (sinfo->full)
3082 return 0;
3084 spin_lock(&sinfo->lock);
3085 ret = should_alloc_chunk(sinfo, num_bytes + 2 * 1024 * 1024);
3086 spin_unlock(&sinfo->lock);
3087 if (!ret)
3088 return 0;
3090 if (!trans) {
3091 trans = btrfs_join_transaction(root, 1);
3092 BUG_ON(IS_ERR(trans));
3093 end_trans = 1;
3096 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3097 num_bytes + 2 * 1024 * 1024,
3098 get_alloc_profile(root, sinfo->flags), 0);
3100 if (end_trans)
3101 btrfs_end_transaction(trans, root);
3103 return ret == 1 ? 1 : 0;
3107 * shrink metadata reservation for delalloc
3109 static int shrink_delalloc(struct btrfs_trans_handle *trans,
3110 struct btrfs_root *root, u64 to_reclaim)
3112 struct btrfs_block_rsv *block_rsv;
3113 u64 reserved;
3114 u64 max_reclaim;
3115 u64 reclaimed = 0;
3116 int pause = 1;
3117 int ret;
3119 block_rsv = &root->fs_info->delalloc_block_rsv;
3120 spin_lock(&block_rsv->lock);
3121 reserved = block_rsv->reserved;
3122 spin_unlock(&block_rsv->lock);
3124 if (reserved == 0)
3125 return 0;
3127 max_reclaim = min(reserved, to_reclaim);
3129 while (1) {
3130 ret = btrfs_start_one_delalloc_inode(root, trans ? 1 : 0);
3131 if (!ret) {
3132 __set_current_state(TASK_INTERRUPTIBLE);
3133 schedule_timeout(pause);
3134 pause <<= 1;
3135 if (pause > HZ / 10)
3136 pause = HZ / 10;
3137 } else {
3138 pause = 1;
3141 spin_lock(&block_rsv->lock);
3142 if (reserved > block_rsv->reserved)
3143 reclaimed = reserved - block_rsv->reserved;
3144 reserved = block_rsv->reserved;
3145 spin_unlock(&block_rsv->lock);
3147 if (reserved == 0 || reclaimed >= max_reclaim)
3148 break;
3150 if (trans && trans->transaction->blocked)
3151 return -EAGAIN;
3153 return reclaimed >= to_reclaim;
3156 static int should_retry_reserve(struct btrfs_trans_handle *trans,
3157 struct btrfs_root *root,
3158 struct btrfs_block_rsv *block_rsv,
3159 u64 num_bytes, int *retries)
3161 struct btrfs_space_info *space_info = block_rsv->space_info;
3162 int ret;
3164 if ((*retries) > 2)
3165 return -ENOSPC;
3167 ret = maybe_allocate_chunk(trans, root, space_info, num_bytes);
3168 if (ret)
3169 return 1;
3171 if (trans && trans->transaction->in_commit)
3172 return -ENOSPC;
3174 ret = shrink_delalloc(trans, root, num_bytes);
3175 if (ret)
3176 return ret;
3178 spin_lock(&space_info->lock);
3179 if (space_info->bytes_pinned < num_bytes)
3180 ret = 1;
3181 spin_unlock(&space_info->lock);
3182 if (ret)
3183 return -ENOSPC;
3185 (*retries)++;
3187 if (trans)
3188 return -EAGAIN;
3190 trans = btrfs_join_transaction(root, 1);
3191 BUG_ON(IS_ERR(trans));
3192 ret = btrfs_commit_transaction(trans, root);
3193 BUG_ON(ret);
3195 return 1;
3198 static int reserve_metadata_bytes(struct btrfs_block_rsv *block_rsv,
3199 u64 num_bytes)
3201 struct btrfs_space_info *space_info = block_rsv->space_info;
3202 u64 unused;
3203 int ret = -ENOSPC;
3205 spin_lock(&space_info->lock);
3206 unused = space_info->bytes_used + space_info->bytes_reserved +
3207 space_info->bytes_pinned + space_info->bytes_readonly;
3209 if (unused < space_info->total_bytes)
3210 unused = space_info->total_bytes - unused;
3211 else
3212 unused = 0;
3214 if (unused >= num_bytes) {
3215 if (block_rsv->priority >= 10) {
3216 space_info->bytes_reserved += num_bytes;
3217 ret = 0;
3218 } else {
3219 if ((unused + block_rsv->reserved) *
3220 block_rsv->priority >=
3221 (num_bytes + block_rsv->reserved) * 10) {
3222 space_info->bytes_reserved += num_bytes;
3223 ret = 0;
3227 spin_unlock(&space_info->lock);
3229 return ret;
3232 static struct btrfs_block_rsv *get_block_rsv(struct btrfs_trans_handle *trans,
3233 struct btrfs_root *root)
3235 struct btrfs_block_rsv *block_rsv;
3236 if (root->ref_cows)
3237 block_rsv = trans->block_rsv;
3238 else
3239 block_rsv = root->block_rsv;
3241 if (!block_rsv)
3242 block_rsv = &root->fs_info->empty_block_rsv;
3244 return block_rsv;
3247 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
3248 u64 num_bytes)
3250 int ret = -ENOSPC;
3251 spin_lock(&block_rsv->lock);
3252 if (block_rsv->reserved >= num_bytes) {
3253 block_rsv->reserved -= num_bytes;
3254 if (block_rsv->reserved < block_rsv->size)
3255 block_rsv->full = 0;
3256 ret = 0;
3258 spin_unlock(&block_rsv->lock);
3259 return ret;
3262 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
3263 u64 num_bytes, int update_size)
3265 spin_lock(&block_rsv->lock);
3266 block_rsv->reserved += num_bytes;
3267 if (update_size)
3268 block_rsv->size += num_bytes;
3269 else if (block_rsv->reserved >= block_rsv->size)
3270 block_rsv->full = 1;
3271 spin_unlock(&block_rsv->lock);
3274 void block_rsv_release_bytes(struct btrfs_block_rsv *block_rsv,
3275 struct btrfs_block_rsv *dest, u64 num_bytes)
3277 struct btrfs_space_info *space_info = block_rsv->space_info;
3279 spin_lock(&block_rsv->lock);
3280 if (num_bytes == (u64)-1)
3281 num_bytes = block_rsv->size;
3282 block_rsv->size -= num_bytes;
3283 if (block_rsv->reserved >= block_rsv->size) {
3284 num_bytes = block_rsv->reserved - block_rsv->size;
3285 block_rsv->reserved = block_rsv->size;
3286 block_rsv->full = 1;
3287 } else {
3288 num_bytes = 0;
3290 spin_unlock(&block_rsv->lock);
3292 if (num_bytes > 0) {
3293 if (dest) {
3294 block_rsv_add_bytes(dest, num_bytes, 0);
3295 } else {
3296 spin_lock(&space_info->lock);
3297 space_info->bytes_reserved -= num_bytes;
3298 spin_unlock(&space_info->lock);
3303 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
3304 struct btrfs_block_rsv *dst, u64 num_bytes)
3306 int ret;
3308 ret = block_rsv_use_bytes(src, num_bytes);
3309 if (ret)
3310 return ret;
3312 block_rsv_add_bytes(dst, num_bytes, 1);
3313 return 0;
3316 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv)
3318 memset(rsv, 0, sizeof(*rsv));
3319 spin_lock_init(&rsv->lock);
3320 atomic_set(&rsv->usage, 1);
3321 rsv->priority = 6;
3322 INIT_LIST_HEAD(&rsv->list);
3325 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root)
3327 struct btrfs_block_rsv *block_rsv;
3328 struct btrfs_fs_info *fs_info = root->fs_info;
3329 u64 alloc_target;
3331 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
3332 if (!block_rsv)
3333 return NULL;
3335 btrfs_init_block_rsv(block_rsv);
3337 alloc_target = btrfs_get_alloc_profile(root, 0);
3338 block_rsv->space_info = __find_space_info(fs_info,
3339 BTRFS_BLOCK_GROUP_METADATA);
3341 return block_rsv;
3344 void btrfs_free_block_rsv(struct btrfs_root *root,
3345 struct btrfs_block_rsv *rsv)
3347 if (rsv && atomic_dec_and_test(&rsv->usage)) {
3348 btrfs_block_rsv_release(root, rsv, (u64)-1);
3349 if (!rsv->durable)
3350 kfree(rsv);
3355 * make the block_rsv struct be able to capture freed space.
3356 * the captured space will re-add to the the block_rsv struct
3357 * after transaction commit
3359 void btrfs_add_durable_block_rsv(struct btrfs_fs_info *fs_info,
3360 struct btrfs_block_rsv *block_rsv)
3362 block_rsv->durable = 1;
3363 mutex_lock(&fs_info->durable_block_rsv_mutex);
3364 list_add_tail(&block_rsv->list, &fs_info->durable_block_rsv_list);
3365 mutex_unlock(&fs_info->durable_block_rsv_mutex);
3368 int btrfs_block_rsv_add(struct btrfs_trans_handle *trans,
3369 struct btrfs_root *root,
3370 struct btrfs_block_rsv *block_rsv,
3371 u64 num_bytes, int *retries)
3373 int ret;
3375 if (num_bytes == 0)
3376 return 0;
3377 again:
3378 ret = reserve_metadata_bytes(block_rsv, num_bytes);
3379 if (!ret) {
3380 block_rsv_add_bytes(block_rsv, num_bytes, 1);
3381 return 0;
3384 ret = should_retry_reserve(trans, root, block_rsv, num_bytes, retries);
3385 if (ret > 0)
3386 goto again;
3388 return ret;
3391 int btrfs_block_rsv_check(struct btrfs_trans_handle *trans,
3392 struct btrfs_root *root,
3393 struct btrfs_block_rsv *block_rsv,
3394 u64 min_reserved, int min_factor)
3396 u64 num_bytes = 0;
3397 int commit_trans = 0;
3398 int ret = -ENOSPC;
3400 if (!block_rsv)
3401 return 0;
3403 spin_lock(&block_rsv->lock);
3404 if (min_factor > 0)
3405 num_bytes = div_factor(block_rsv->size, min_factor);
3406 if (min_reserved > num_bytes)
3407 num_bytes = min_reserved;
3409 if (block_rsv->reserved >= num_bytes) {
3410 ret = 0;
3411 } else {
3412 num_bytes -= block_rsv->reserved;
3413 if (block_rsv->durable &&
3414 block_rsv->freed[0] + block_rsv->freed[1] >= num_bytes)
3415 commit_trans = 1;
3417 spin_unlock(&block_rsv->lock);
3418 if (!ret)
3419 return 0;
3421 if (block_rsv->refill_used) {
3422 ret = reserve_metadata_bytes(block_rsv, num_bytes);
3423 if (!ret) {
3424 block_rsv_add_bytes(block_rsv, num_bytes, 0);
3425 return 0;
3429 if (commit_trans) {
3430 if (trans)
3431 return -EAGAIN;
3433 trans = btrfs_join_transaction(root, 1);
3434 BUG_ON(IS_ERR(trans));
3435 ret = btrfs_commit_transaction(trans, root);
3436 return 0;
3439 WARN_ON(1);
3440 printk(KERN_INFO"block_rsv size %llu reserved %llu freed %llu %llu\n",
3441 block_rsv->size, block_rsv->reserved,
3442 block_rsv->freed[0], block_rsv->freed[1]);
3444 return -ENOSPC;
3447 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
3448 struct btrfs_block_rsv *dst_rsv,
3449 u64 num_bytes)
3451 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
3454 void btrfs_block_rsv_release(struct btrfs_root *root,
3455 struct btrfs_block_rsv *block_rsv,
3456 u64 num_bytes)
3458 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3459 if (global_rsv->full || global_rsv == block_rsv ||
3460 block_rsv->space_info != global_rsv->space_info)
3461 global_rsv = NULL;
3462 block_rsv_release_bytes(block_rsv, global_rsv, num_bytes);
3466 * helper to calculate size of global block reservation.
3467 * the desired value is sum of space used by extent tree,
3468 * checksum tree and root tree
3470 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
3472 struct btrfs_space_info *sinfo;
3473 u64 num_bytes;
3474 u64 meta_used;
3475 u64 data_used;
3476 int csum_size = btrfs_super_csum_size(&fs_info->super_copy);
3477 #if 0
3479 * per tree used space accounting can be inaccuracy, so we
3480 * can't rely on it.
3482 spin_lock(&fs_info->extent_root->accounting_lock);
3483 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item);
3484 spin_unlock(&fs_info->extent_root->accounting_lock);
3486 spin_lock(&fs_info->csum_root->accounting_lock);
3487 num_bytes += btrfs_root_used(&fs_info->csum_root->root_item);
3488 spin_unlock(&fs_info->csum_root->accounting_lock);
3490 spin_lock(&fs_info->tree_root->accounting_lock);
3491 num_bytes += btrfs_root_used(&fs_info->tree_root->root_item);
3492 spin_unlock(&fs_info->tree_root->accounting_lock);
3493 #endif
3494 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
3495 spin_lock(&sinfo->lock);
3496 data_used = sinfo->bytes_used;
3497 spin_unlock(&sinfo->lock);
3499 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
3500 spin_lock(&sinfo->lock);
3501 meta_used = sinfo->bytes_used;
3502 spin_unlock(&sinfo->lock);
3504 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
3505 csum_size * 2;
3506 num_bytes += div64_u64(data_used + meta_used, 50);
3508 if (num_bytes * 3 > meta_used)
3509 num_bytes = div64_u64(meta_used, 3);
3511 return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
3514 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
3516 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3517 struct btrfs_space_info *sinfo = block_rsv->space_info;
3518 u64 num_bytes;
3520 num_bytes = calc_global_metadata_size(fs_info);
3522 spin_lock(&block_rsv->lock);
3523 spin_lock(&sinfo->lock);
3525 block_rsv->size = num_bytes;
3527 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
3528 sinfo->bytes_reserved + sinfo->bytes_readonly;
3530 if (sinfo->total_bytes > num_bytes) {
3531 num_bytes = sinfo->total_bytes - num_bytes;
3532 block_rsv->reserved += num_bytes;
3533 sinfo->bytes_reserved += num_bytes;
3536 if (block_rsv->reserved >= block_rsv->size) {
3537 num_bytes = block_rsv->reserved - block_rsv->size;
3538 sinfo->bytes_reserved -= num_bytes;
3539 block_rsv->reserved = block_rsv->size;
3540 block_rsv->full = 1;
3542 #if 0
3543 printk(KERN_INFO"global block rsv size %llu reserved %llu\n",
3544 block_rsv->size, block_rsv->reserved);
3545 #endif
3546 spin_unlock(&sinfo->lock);
3547 spin_unlock(&block_rsv->lock);
3550 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
3552 struct btrfs_space_info *space_info;
3554 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3555 fs_info->chunk_block_rsv.space_info = space_info;
3556 fs_info->chunk_block_rsv.priority = 10;
3558 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
3559 fs_info->global_block_rsv.space_info = space_info;
3560 fs_info->global_block_rsv.priority = 10;
3561 fs_info->global_block_rsv.refill_used = 1;
3562 fs_info->delalloc_block_rsv.space_info = space_info;
3563 fs_info->trans_block_rsv.space_info = space_info;
3564 fs_info->empty_block_rsv.space_info = space_info;
3565 fs_info->empty_block_rsv.priority = 10;
3567 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
3568 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
3569 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
3570 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3571 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
3573 btrfs_add_durable_block_rsv(fs_info, &fs_info->global_block_rsv);
3575 btrfs_add_durable_block_rsv(fs_info, &fs_info->delalloc_block_rsv);
3577 update_global_block_rsv(fs_info);
3580 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
3582 block_rsv_release_bytes(&fs_info->global_block_rsv, NULL, (u64)-1);
3583 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
3584 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
3585 WARN_ON(fs_info->trans_block_rsv.size > 0);
3586 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
3587 WARN_ON(fs_info->chunk_block_rsv.size > 0);
3588 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
3591 static u64 calc_trans_metadata_size(struct btrfs_root *root, int num_items)
3593 return (root->leafsize + root->nodesize * (BTRFS_MAX_LEVEL - 1)) *
3594 3 * num_items;
3597 int btrfs_trans_reserve_metadata(struct btrfs_trans_handle *trans,
3598 struct btrfs_root *root,
3599 int num_items, int *retries)
3601 u64 num_bytes;
3602 int ret;
3604 if (num_items == 0 || root->fs_info->chunk_root == root)
3605 return 0;
3607 num_bytes = calc_trans_metadata_size(root, num_items);
3608 ret = btrfs_block_rsv_add(trans, root, &root->fs_info->trans_block_rsv,
3609 num_bytes, retries);
3610 if (!ret) {
3611 trans->bytes_reserved += num_bytes;
3612 trans->block_rsv = &root->fs_info->trans_block_rsv;
3614 return ret;
3617 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
3618 struct btrfs_root *root)
3620 if (!trans->bytes_reserved)
3621 return;
3623 BUG_ON(trans->block_rsv != &root->fs_info->trans_block_rsv);
3624 btrfs_block_rsv_release(root, trans->block_rsv,
3625 trans->bytes_reserved);
3626 trans->bytes_reserved = 0;
3629 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
3630 struct inode *inode)
3632 struct btrfs_root *root = BTRFS_I(inode)->root;
3633 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
3634 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
3637 * one for deleting orphan item, one for updating inode and
3638 * two for calling btrfs_truncate_inode_items.
3640 * btrfs_truncate_inode_items is a delete operation, it frees
3641 * more space than it uses in most cases. So two units of
3642 * metadata space should be enough for calling it many times.
3643 * If all of the metadata space is used, we can commit
3644 * transaction and use space it freed.
3646 u64 num_bytes = calc_trans_metadata_size(root, 4);
3647 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
3650 void btrfs_orphan_release_metadata(struct inode *inode)
3652 struct btrfs_root *root = BTRFS_I(inode)->root;
3653 u64 num_bytes = calc_trans_metadata_size(root, 4);
3654 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
3657 int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans,
3658 struct btrfs_pending_snapshot *pending)
3660 struct btrfs_root *root = pending->root;
3661 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
3662 struct btrfs_block_rsv *dst_rsv = &pending->block_rsv;
3664 * two for root back/forward refs, two for directory entries
3665 * and one for root of the snapshot.
3667 u64 num_bytes = calc_trans_metadata_size(root, 5);
3668 dst_rsv->space_info = src_rsv->space_info;
3669 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
3672 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes)
3674 return num_bytes >>= 3;
3677 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
3679 struct btrfs_root *root = BTRFS_I(inode)->root;
3680 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
3681 u64 to_reserve;
3682 int nr_extents;
3683 int retries = 0;
3684 int ret;
3686 if (btrfs_transaction_in_commit(root->fs_info))
3687 schedule_timeout(1);
3689 num_bytes = ALIGN(num_bytes, root->sectorsize);
3690 again:
3691 spin_lock(&BTRFS_I(inode)->accounting_lock);
3692 nr_extents = atomic_read(&BTRFS_I(inode)->outstanding_extents) + 1;
3693 if (nr_extents > BTRFS_I(inode)->reserved_extents) {
3694 nr_extents -= BTRFS_I(inode)->reserved_extents;
3695 to_reserve = calc_trans_metadata_size(root, nr_extents);
3696 } else {
3697 nr_extents = 0;
3698 to_reserve = 0;
3701 to_reserve += calc_csum_metadata_size(inode, num_bytes);
3702 ret = reserve_metadata_bytes(block_rsv, to_reserve);
3703 if (ret) {
3704 spin_unlock(&BTRFS_I(inode)->accounting_lock);
3705 ret = should_retry_reserve(NULL, root, block_rsv, to_reserve,
3706 &retries);
3707 if (ret > 0)
3708 goto again;
3709 return ret;
3712 BTRFS_I(inode)->reserved_extents += nr_extents;
3713 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
3714 spin_unlock(&BTRFS_I(inode)->accounting_lock);
3716 block_rsv_add_bytes(block_rsv, to_reserve, 1);
3718 if (block_rsv->size > 512 * 1024 * 1024)
3719 shrink_delalloc(NULL, root, to_reserve);
3721 return 0;
3724 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
3726 struct btrfs_root *root = BTRFS_I(inode)->root;
3727 u64 to_free;
3728 int nr_extents;
3730 num_bytes = ALIGN(num_bytes, root->sectorsize);
3731 atomic_dec(&BTRFS_I(inode)->outstanding_extents);
3733 spin_lock(&BTRFS_I(inode)->accounting_lock);
3734 nr_extents = atomic_read(&BTRFS_I(inode)->outstanding_extents);
3735 if (nr_extents < BTRFS_I(inode)->reserved_extents) {
3736 nr_extents = BTRFS_I(inode)->reserved_extents - nr_extents;
3737 BTRFS_I(inode)->reserved_extents -= nr_extents;
3738 } else {
3739 nr_extents = 0;
3741 spin_unlock(&BTRFS_I(inode)->accounting_lock);
3743 to_free = calc_csum_metadata_size(inode, num_bytes);
3744 if (nr_extents > 0)
3745 to_free += calc_trans_metadata_size(root, nr_extents);
3747 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
3748 to_free);
3751 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
3753 int ret;
3755 ret = btrfs_check_data_free_space(inode, num_bytes);
3756 if (ret)
3757 return ret;
3759 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
3760 if (ret) {
3761 btrfs_free_reserved_data_space(inode, num_bytes);
3762 return ret;
3765 return 0;
3768 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
3770 btrfs_delalloc_release_metadata(inode, num_bytes);
3771 btrfs_free_reserved_data_space(inode, num_bytes);
3774 static int update_block_group(struct btrfs_trans_handle *trans,
3775 struct btrfs_root *root,
3776 u64 bytenr, u64 num_bytes, int alloc)
3778 struct btrfs_block_group_cache *cache;
3779 struct btrfs_fs_info *info = root->fs_info;
3780 int factor;
3781 u64 total = num_bytes;
3782 u64 old_val;
3783 u64 byte_in_group;
3785 /* block accounting for super block */
3786 spin_lock(&info->delalloc_lock);
3787 old_val = btrfs_super_bytes_used(&info->super_copy);
3788 if (alloc)
3789 old_val += num_bytes;
3790 else
3791 old_val -= num_bytes;
3792 btrfs_set_super_bytes_used(&info->super_copy, old_val);
3793 spin_unlock(&info->delalloc_lock);
3795 while (total) {
3796 cache = btrfs_lookup_block_group(info, bytenr);
3797 if (!cache)
3798 return -1;
3799 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
3800 BTRFS_BLOCK_GROUP_RAID1 |
3801 BTRFS_BLOCK_GROUP_RAID10))
3802 factor = 2;
3803 else
3804 factor = 1;
3805 byte_in_group = bytenr - cache->key.objectid;
3806 WARN_ON(byte_in_group > cache->key.offset);
3808 spin_lock(&cache->space_info->lock);
3809 spin_lock(&cache->lock);
3810 cache->dirty = 1;
3811 old_val = btrfs_block_group_used(&cache->item);
3812 num_bytes = min(total, cache->key.offset - byte_in_group);
3813 if (alloc) {
3814 old_val += num_bytes;
3815 btrfs_set_block_group_used(&cache->item, old_val);
3816 cache->reserved -= num_bytes;
3817 cache->space_info->bytes_reserved -= num_bytes;
3818 cache->space_info->bytes_used += num_bytes;
3819 cache->space_info->disk_used += num_bytes * factor;
3820 spin_unlock(&cache->lock);
3821 spin_unlock(&cache->space_info->lock);
3822 } else {
3823 old_val -= num_bytes;
3824 btrfs_set_block_group_used(&cache->item, old_val);
3825 cache->pinned += num_bytes;
3826 cache->space_info->bytes_pinned += num_bytes;
3827 cache->space_info->bytes_used -= num_bytes;
3828 cache->space_info->disk_used -= num_bytes * factor;
3829 spin_unlock(&cache->lock);
3830 spin_unlock(&cache->space_info->lock);
3832 set_extent_dirty(info->pinned_extents,
3833 bytenr, bytenr + num_bytes - 1,
3834 GFP_NOFS | __GFP_NOFAIL);
3836 btrfs_put_block_group(cache);
3837 total -= num_bytes;
3838 bytenr += num_bytes;
3840 return 0;
3843 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
3845 struct btrfs_block_group_cache *cache;
3846 u64 bytenr;
3848 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
3849 if (!cache)
3850 return 0;
3852 bytenr = cache->key.objectid;
3853 btrfs_put_block_group(cache);
3855 return bytenr;
3858 static int pin_down_extent(struct btrfs_root *root,
3859 struct btrfs_block_group_cache *cache,
3860 u64 bytenr, u64 num_bytes, int reserved)
3862 spin_lock(&cache->space_info->lock);
3863 spin_lock(&cache->lock);
3864 cache->pinned += num_bytes;
3865 cache->space_info->bytes_pinned += num_bytes;
3866 if (reserved) {
3867 cache->reserved -= num_bytes;
3868 cache->space_info->bytes_reserved -= num_bytes;
3870 spin_unlock(&cache->lock);
3871 spin_unlock(&cache->space_info->lock);
3873 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
3874 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
3875 return 0;
3879 * this function must be called within transaction
3881 int btrfs_pin_extent(struct btrfs_root *root,
3882 u64 bytenr, u64 num_bytes, int reserved)
3884 struct btrfs_block_group_cache *cache;
3886 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
3887 BUG_ON(!cache);
3889 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
3891 btrfs_put_block_group(cache);
3892 return 0;
3896 * update size of reserved extents. this function may return -EAGAIN
3897 * if 'reserve' is true or 'sinfo' is false.
3899 static int update_reserved_bytes(struct btrfs_block_group_cache *cache,
3900 u64 num_bytes, int reserve, int sinfo)
3902 int ret = 0;
3903 if (sinfo) {
3904 struct btrfs_space_info *space_info = cache->space_info;
3905 spin_lock(&space_info->lock);
3906 spin_lock(&cache->lock);
3907 if (reserve) {
3908 if (cache->ro) {
3909 ret = -EAGAIN;
3910 } else {
3911 cache->reserved += num_bytes;
3912 space_info->bytes_reserved += num_bytes;
3914 } else {
3915 if (cache->ro)
3916 space_info->bytes_readonly += num_bytes;
3917 cache->reserved -= num_bytes;
3918 space_info->bytes_reserved -= num_bytes;
3920 spin_unlock(&cache->lock);
3921 spin_unlock(&space_info->lock);
3922 } else {
3923 spin_lock(&cache->lock);
3924 if (cache->ro) {
3925 ret = -EAGAIN;
3926 } else {
3927 if (reserve)
3928 cache->reserved += num_bytes;
3929 else
3930 cache->reserved -= num_bytes;
3932 spin_unlock(&cache->lock);
3934 return ret;
3937 int btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
3938 struct btrfs_root *root)
3940 struct btrfs_fs_info *fs_info = root->fs_info;
3941 struct btrfs_caching_control *next;
3942 struct btrfs_caching_control *caching_ctl;
3943 struct btrfs_block_group_cache *cache;
3945 down_write(&fs_info->extent_commit_sem);
3947 list_for_each_entry_safe(caching_ctl, next,
3948 &fs_info->caching_block_groups, list) {
3949 cache = caching_ctl->block_group;
3950 if (block_group_cache_done(cache)) {
3951 cache->last_byte_to_unpin = (u64)-1;
3952 list_del_init(&caching_ctl->list);
3953 put_caching_control(caching_ctl);
3954 } else {
3955 cache->last_byte_to_unpin = caching_ctl->progress;
3959 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
3960 fs_info->pinned_extents = &fs_info->freed_extents[1];
3961 else
3962 fs_info->pinned_extents = &fs_info->freed_extents[0];
3964 up_write(&fs_info->extent_commit_sem);
3966 update_global_block_rsv(fs_info);
3967 return 0;
3970 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
3972 struct btrfs_fs_info *fs_info = root->fs_info;
3973 struct btrfs_block_group_cache *cache = NULL;
3974 u64 len;
3976 while (start <= end) {
3977 if (!cache ||
3978 start >= cache->key.objectid + cache->key.offset) {
3979 if (cache)
3980 btrfs_put_block_group(cache);
3981 cache = btrfs_lookup_block_group(fs_info, start);
3982 BUG_ON(!cache);
3985 len = cache->key.objectid + cache->key.offset - start;
3986 len = min(len, end + 1 - start);
3988 if (start < cache->last_byte_to_unpin) {
3989 len = min(len, cache->last_byte_to_unpin - start);
3990 btrfs_add_free_space(cache, start, len);
3993 start += len;
3995 spin_lock(&cache->space_info->lock);
3996 spin_lock(&cache->lock);
3997 cache->pinned -= len;
3998 cache->space_info->bytes_pinned -= len;
3999 if (cache->ro) {
4000 cache->space_info->bytes_readonly += len;
4001 } else if (cache->reserved_pinned > 0) {
4002 len = min(len, cache->reserved_pinned);
4003 cache->reserved_pinned -= len;
4004 cache->space_info->bytes_reserved += len;
4006 spin_unlock(&cache->lock);
4007 spin_unlock(&cache->space_info->lock);
4010 if (cache)
4011 btrfs_put_block_group(cache);
4012 return 0;
4015 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
4016 struct btrfs_root *root)
4018 struct btrfs_fs_info *fs_info = root->fs_info;
4019 struct extent_io_tree *unpin;
4020 struct btrfs_block_rsv *block_rsv;
4021 struct btrfs_block_rsv *next_rsv;
4022 u64 start;
4023 u64 end;
4024 int idx;
4025 int ret;
4027 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4028 unpin = &fs_info->freed_extents[1];
4029 else
4030 unpin = &fs_info->freed_extents[0];
4032 while (1) {
4033 ret = find_first_extent_bit(unpin, 0, &start, &end,
4034 EXTENT_DIRTY);
4035 if (ret)
4036 break;
4038 ret = btrfs_discard_extent(root, start, end + 1 - start);
4040 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4041 unpin_extent_range(root, start, end);
4042 cond_resched();
4045 mutex_lock(&fs_info->durable_block_rsv_mutex);
4046 list_for_each_entry_safe(block_rsv, next_rsv,
4047 &fs_info->durable_block_rsv_list, list) {
4049 idx = trans->transid & 0x1;
4050 if (block_rsv->freed[idx] > 0) {
4051 block_rsv_add_bytes(block_rsv,
4052 block_rsv->freed[idx], 0);
4053 block_rsv->freed[idx] = 0;
4055 if (atomic_read(&block_rsv->usage) == 0) {
4056 btrfs_block_rsv_release(root, block_rsv, (u64)-1);
4058 if (block_rsv->freed[0] == 0 &&
4059 block_rsv->freed[1] == 0) {
4060 list_del_init(&block_rsv->list);
4061 kfree(block_rsv);
4063 } else {
4064 btrfs_block_rsv_release(root, block_rsv, 0);
4067 mutex_unlock(&fs_info->durable_block_rsv_mutex);
4069 return 0;
4072 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
4073 struct btrfs_root *root,
4074 u64 bytenr, u64 num_bytes, u64 parent,
4075 u64 root_objectid, u64 owner_objectid,
4076 u64 owner_offset, int refs_to_drop,
4077 struct btrfs_delayed_extent_op *extent_op)
4079 struct btrfs_key key;
4080 struct btrfs_path *path;
4081 struct btrfs_fs_info *info = root->fs_info;
4082 struct btrfs_root *extent_root = info->extent_root;
4083 struct extent_buffer *leaf;
4084 struct btrfs_extent_item *ei;
4085 struct btrfs_extent_inline_ref *iref;
4086 int ret;
4087 int is_data;
4088 int extent_slot = 0;
4089 int found_extent = 0;
4090 int num_to_del = 1;
4091 u32 item_size;
4092 u64 refs;
4094 path = btrfs_alloc_path();
4095 if (!path)
4096 return -ENOMEM;
4098 path->reada = 1;
4099 path->leave_spinning = 1;
4101 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
4102 BUG_ON(!is_data && refs_to_drop != 1);
4104 ret = lookup_extent_backref(trans, extent_root, path, &iref,
4105 bytenr, num_bytes, parent,
4106 root_objectid, owner_objectid,
4107 owner_offset);
4108 if (ret == 0) {
4109 extent_slot = path->slots[0];
4110 while (extent_slot >= 0) {
4111 btrfs_item_key_to_cpu(path->nodes[0], &key,
4112 extent_slot);
4113 if (key.objectid != bytenr)
4114 break;
4115 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
4116 key.offset == num_bytes) {
4117 found_extent = 1;
4118 break;
4120 if (path->slots[0] - extent_slot > 5)
4121 break;
4122 extent_slot--;
4124 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4125 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
4126 if (found_extent && item_size < sizeof(*ei))
4127 found_extent = 0;
4128 #endif
4129 if (!found_extent) {
4130 BUG_ON(iref);
4131 ret = remove_extent_backref(trans, extent_root, path,
4132 NULL, refs_to_drop,
4133 is_data);
4134 BUG_ON(ret);
4135 btrfs_release_path(extent_root, path);
4136 path->leave_spinning = 1;
4138 key.objectid = bytenr;
4139 key.type = BTRFS_EXTENT_ITEM_KEY;
4140 key.offset = num_bytes;
4142 ret = btrfs_search_slot(trans, extent_root,
4143 &key, path, -1, 1);
4144 if (ret) {
4145 printk(KERN_ERR "umm, got %d back from search"
4146 ", was looking for %llu\n", ret,
4147 (unsigned long long)bytenr);
4148 btrfs_print_leaf(extent_root, path->nodes[0]);
4150 BUG_ON(ret);
4151 extent_slot = path->slots[0];
4153 } else {
4154 btrfs_print_leaf(extent_root, path->nodes[0]);
4155 WARN_ON(1);
4156 printk(KERN_ERR "btrfs unable to find ref byte nr %llu "
4157 "parent %llu root %llu owner %llu offset %llu\n",
4158 (unsigned long long)bytenr,
4159 (unsigned long long)parent,
4160 (unsigned long long)root_objectid,
4161 (unsigned long long)owner_objectid,
4162 (unsigned long long)owner_offset);
4165 leaf = path->nodes[0];
4166 item_size = btrfs_item_size_nr(leaf, extent_slot);
4167 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4168 if (item_size < sizeof(*ei)) {
4169 BUG_ON(found_extent || extent_slot != path->slots[0]);
4170 ret = convert_extent_item_v0(trans, extent_root, path,
4171 owner_objectid, 0);
4172 BUG_ON(ret < 0);
4174 btrfs_release_path(extent_root, path);
4175 path->leave_spinning = 1;
4177 key.objectid = bytenr;
4178 key.type = BTRFS_EXTENT_ITEM_KEY;
4179 key.offset = num_bytes;
4181 ret = btrfs_search_slot(trans, extent_root, &key, path,
4182 -1, 1);
4183 if (ret) {
4184 printk(KERN_ERR "umm, got %d back from search"
4185 ", was looking for %llu\n", ret,
4186 (unsigned long long)bytenr);
4187 btrfs_print_leaf(extent_root, path->nodes[0]);
4189 BUG_ON(ret);
4190 extent_slot = path->slots[0];
4191 leaf = path->nodes[0];
4192 item_size = btrfs_item_size_nr(leaf, extent_slot);
4194 #endif
4195 BUG_ON(item_size < sizeof(*ei));
4196 ei = btrfs_item_ptr(leaf, extent_slot,
4197 struct btrfs_extent_item);
4198 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) {
4199 struct btrfs_tree_block_info *bi;
4200 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
4201 bi = (struct btrfs_tree_block_info *)(ei + 1);
4202 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
4205 refs = btrfs_extent_refs(leaf, ei);
4206 BUG_ON(refs < refs_to_drop);
4207 refs -= refs_to_drop;
4209 if (refs > 0) {
4210 if (extent_op)
4211 __run_delayed_extent_op(extent_op, leaf, ei);
4213 * In the case of inline back ref, reference count will
4214 * be updated by remove_extent_backref
4216 if (iref) {
4217 BUG_ON(!found_extent);
4218 } else {
4219 btrfs_set_extent_refs(leaf, ei, refs);
4220 btrfs_mark_buffer_dirty(leaf);
4222 if (found_extent) {
4223 ret = remove_extent_backref(trans, extent_root, path,
4224 iref, refs_to_drop,
4225 is_data);
4226 BUG_ON(ret);
4228 } else {
4229 if (found_extent) {
4230 BUG_ON(is_data && refs_to_drop !=
4231 extent_data_ref_count(root, path, iref));
4232 if (iref) {
4233 BUG_ON(path->slots[0] != extent_slot);
4234 } else {
4235 BUG_ON(path->slots[0] != extent_slot + 1);
4236 path->slots[0] = extent_slot;
4237 num_to_del = 2;
4241 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
4242 num_to_del);
4243 BUG_ON(ret);
4244 btrfs_release_path(extent_root, path);
4246 if (is_data) {
4247 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
4248 BUG_ON(ret);
4249 } else {
4250 invalidate_mapping_pages(info->btree_inode->i_mapping,
4251 bytenr >> PAGE_CACHE_SHIFT,
4252 (bytenr + num_bytes - 1) >> PAGE_CACHE_SHIFT);
4255 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
4256 BUG_ON(ret);
4258 btrfs_free_path(path);
4259 return ret;
4263 * when we free an block, it is possible (and likely) that we free the last
4264 * delayed ref for that extent as well. This searches the delayed ref tree for
4265 * a given extent, and if there are no other delayed refs to be processed, it
4266 * removes it from the tree.
4268 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
4269 struct btrfs_root *root, u64 bytenr)
4271 struct btrfs_delayed_ref_head *head;
4272 struct btrfs_delayed_ref_root *delayed_refs;
4273 struct btrfs_delayed_ref_node *ref;
4274 struct rb_node *node;
4275 int ret = 0;
4277 delayed_refs = &trans->transaction->delayed_refs;
4278 spin_lock(&delayed_refs->lock);
4279 head = btrfs_find_delayed_ref_head(trans, bytenr);
4280 if (!head)
4281 goto out;
4283 node = rb_prev(&head->node.rb_node);
4284 if (!node)
4285 goto out;
4287 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
4289 /* there are still entries for this ref, we can't drop it */
4290 if (ref->bytenr == bytenr)
4291 goto out;
4293 if (head->extent_op) {
4294 if (!head->must_insert_reserved)
4295 goto out;
4296 kfree(head->extent_op);
4297 head->extent_op = NULL;
4301 * waiting for the lock here would deadlock. If someone else has it
4302 * locked they are already in the process of dropping it anyway
4304 if (!mutex_trylock(&head->mutex))
4305 goto out;
4308 * at this point we have a head with no other entries. Go
4309 * ahead and process it.
4311 head->node.in_tree = 0;
4312 rb_erase(&head->node.rb_node, &delayed_refs->root);
4314 delayed_refs->num_entries--;
4317 * we don't take a ref on the node because we're removing it from the
4318 * tree, so we just steal the ref the tree was holding.
4320 delayed_refs->num_heads--;
4321 if (list_empty(&head->cluster))
4322 delayed_refs->num_heads_ready--;
4324 list_del_init(&head->cluster);
4325 spin_unlock(&delayed_refs->lock);
4327 BUG_ON(head->extent_op);
4328 if (head->must_insert_reserved)
4329 ret = 1;
4331 mutex_unlock(&head->mutex);
4332 btrfs_put_delayed_ref(&head->node);
4333 return ret;
4334 out:
4335 spin_unlock(&delayed_refs->lock);
4336 return 0;
4339 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
4340 struct btrfs_root *root,
4341 struct extent_buffer *buf,
4342 u64 parent, int last_ref)
4344 struct btrfs_block_rsv *block_rsv;
4345 struct btrfs_block_group_cache *cache = NULL;
4346 int ret;
4348 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4349 ret = btrfs_add_delayed_tree_ref(trans, buf->start, buf->len,
4350 parent, root->root_key.objectid,
4351 btrfs_header_level(buf),
4352 BTRFS_DROP_DELAYED_REF, NULL);
4353 BUG_ON(ret);
4356 if (!last_ref)
4357 return;
4359 block_rsv = get_block_rsv(trans, root);
4360 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
4361 BUG_ON(block_rsv->space_info != cache->space_info);
4363 if (btrfs_header_generation(buf) == trans->transid) {
4364 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4365 ret = check_ref_cleanup(trans, root, buf->start);
4366 if (!ret)
4367 goto pin;
4370 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
4371 pin_down_extent(root, cache, buf->start, buf->len, 1);
4372 goto pin;
4375 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
4377 btrfs_add_free_space(cache, buf->start, buf->len);
4378 ret = update_reserved_bytes(cache, buf->len, 0, 0);
4379 if (ret == -EAGAIN) {
4380 /* block group became read-only */
4381 update_reserved_bytes(cache, buf->len, 0, 1);
4382 goto out;
4385 ret = 1;
4386 spin_lock(&block_rsv->lock);
4387 if (block_rsv->reserved < block_rsv->size) {
4388 block_rsv->reserved += buf->len;
4389 ret = 0;
4391 spin_unlock(&block_rsv->lock);
4393 if (ret) {
4394 spin_lock(&cache->space_info->lock);
4395 cache->space_info->bytes_reserved -= buf->len;
4396 spin_unlock(&cache->space_info->lock);
4398 goto out;
4400 pin:
4401 if (block_rsv->durable && !cache->ro) {
4402 ret = 0;
4403 spin_lock(&cache->lock);
4404 if (!cache->ro) {
4405 cache->reserved_pinned += buf->len;
4406 ret = 1;
4408 spin_unlock(&cache->lock);
4410 if (ret) {
4411 spin_lock(&block_rsv->lock);
4412 block_rsv->freed[trans->transid & 0x1] += buf->len;
4413 spin_unlock(&block_rsv->lock);
4416 out:
4417 btrfs_put_block_group(cache);
4420 int btrfs_free_extent(struct btrfs_trans_handle *trans,
4421 struct btrfs_root *root,
4422 u64 bytenr, u64 num_bytes, u64 parent,
4423 u64 root_objectid, u64 owner, u64 offset)
4425 int ret;
4428 * tree log blocks never actually go into the extent allocation
4429 * tree, just update pinning info and exit early.
4431 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
4432 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
4433 /* unlocks the pinned mutex */
4434 btrfs_pin_extent(root, bytenr, num_bytes, 1);
4435 ret = 0;
4436 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
4437 ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes,
4438 parent, root_objectid, (int)owner,
4439 BTRFS_DROP_DELAYED_REF, NULL);
4440 BUG_ON(ret);
4441 } else {
4442 ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes,
4443 parent, root_objectid, owner,
4444 offset, BTRFS_DROP_DELAYED_REF, NULL);
4445 BUG_ON(ret);
4447 return ret;
4450 static u64 stripe_align(struct btrfs_root *root, u64 val)
4452 u64 mask = ((u64)root->stripesize - 1);
4453 u64 ret = (val + mask) & ~mask;
4454 return ret;
4458 * when we wait for progress in the block group caching, its because
4459 * our allocation attempt failed at least once. So, we must sleep
4460 * and let some progress happen before we try again.
4462 * This function will sleep at least once waiting for new free space to
4463 * show up, and then it will check the block group free space numbers
4464 * for our min num_bytes. Another option is to have it go ahead
4465 * and look in the rbtree for a free extent of a given size, but this
4466 * is a good start.
4468 static noinline int
4469 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
4470 u64 num_bytes)
4472 struct btrfs_caching_control *caching_ctl;
4473 DEFINE_WAIT(wait);
4475 caching_ctl = get_caching_control(cache);
4476 if (!caching_ctl)
4477 return 0;
4479 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
4480 (cache->free_space >= num_bytes));
4482 put_caching_control(caching_ctl);
4483 return 0;
4486 static noinline int
4487 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
4489 struct btrfs_caching_control *caching_ctl;
4490 DEFINE_WAIT(wait);
4492 caching_ctl = get_caching_control(cache);
4493 if (!caching_ctl)
4494 return 0;
4496 wait_event(caching_ctl->wait, block_group_cache_done(cache));
4498 put_caching_control(caching_ctl);
4499 return 0;
4502 static int get_block_group_index(struct btrfs_block_group_cache *cache)
4504 int index;
4505 if (cache->flags & BTRFS_BLOCK_GROUP_RAID10)
4506 index = 0;
4507 else if (cache->flags & BTRFS_BLOCK_GROUP_RAID1)
4508 index = 1;
4509 else if (cache->flags & BTRFS_BLOCK_GROUP_DUP)
4510 index = 2;
4511 else if (cache->flags & BTRFS_BLOCK_GROUP_RAID0)
4512 index = 3;
4513 else
4514 index = 4;
4515 return index;
4518 enum btrfs_loop_type {
4519 LOOP_FIND_IDEAL = 0,
4520 LOOP_CACHING_NOWAIT = 1,
4521 LOOP_CACHING_WAIT = 2,
4522 LOOP_ALLOC_CHUNK = 3,
4523 LOOP_NO_EMPTY_SIZE = 4,
4527 * walks the btree of allocated extents and find a hole of a given size.
4528 * The key ins is changed to record the hole:
4529 * ins->objectid == block start
4530 * ins->flags = BTRFS_EXTENT_ITEM_KEY
4531 * ins->offset == number of blocks
4532 * Any available blocks before search_start are skipped.
4534 static noinline int find_free_extent(struct btrfs_trans_handle *trans,
4535 struct btrfs_root *orig_root,
4536 u64 num_bytes, u64 empty_size,
4537 u64 search_start, u64 search_end,
4538 u64 hint_byte, struct btrfs_key *ins,
4539 int data)
4541 int ret = 0;
4542 struct btrfs_root *root = orig_root->fs_info->extent_root;
4543 struct btrfs_free_cluster *last_ptr = NULL;
4544 struct btrfs_block_group_cache *block_group = NULL;
4545 int empty_cluster = 2 * 1024 * 1024;
4546 int allowed_chunk_alloc = 0;
4547 int done_chunk_alloc = 0;
4548 struct btrfs_space_info *space_info;
4549 int last_ptr_loop = 0;
4550 int loop = 0;
4551 int index = 0;
4552 bool found_uncached_bg = false;
4553 bool failed_cluster_refill = false;
4554 bool failed_alloc = false;
4555 u64 ideal_cache_percent = 0;
4556 u64 ideal_cache_offset = 0;
4558 WARN_ON(num_bytes < root->sectorsize);
4559 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
4560 ins->objectid = 0;
4561 ins->offset = 0;
4563 space_info = __find_space_info(root->fs_info, data);
4564 if (!space_info) {
4565 printk(KERN_ERR "No space info for %d\n", data);
4566 return -ENOSPC;
4569 if (orig_root->ref_cows || empty_size)
4570 allowed_chunk_alloc = 1;
4572 if (data & BTRFS_BLOCK_GROUP_METADATA) {
4573 last_ptr = &root->fs_info->meta_alloc_cluster;
4574 if (!btrfs_test_opt(root, SSD))
4575 empty_cluster = 64 * 1024;
4578 if ((data & BTRFS_BLOCK_GROUP_DATA) && btrfs_test_opt(root, SSD)) {
4579 last_ptr = &root->fs_info->data_alloc_cluster;
4582 if (last_ptr) {
4583 spin_lock(&last_ptr->lock);
4584 if (last_ptr->block_group)
4585 hint_byte = last_ptr->window_start;
4586 spin_unlock(&last_ptr->lock);
4589 search_start = max(search_start, first_logical_byte(root, 0));
4590 search_start = max(search_start, hint_byte);
4592 if (!last_ptr)
4593 empty_cluster = 0;
4595 if (search_start == hint_byte) {
4596 ideal_cache:
4597 block_group = btrfs_lookup_block_group(root->fs_info,
4598 search_start);
4600 * we don't want to use the block group if it doesn't match our
4601 * allocation bits, or if its not cached.
4603 * However if we are re-searching with an ideal block group
4604 * picked out then we don't care that the block group is cached.
4606 if (block_group && block_group_bits(block_group, data) &&
4607 (block_group->cached != BTRFS_CACHE_NO ||
4608 search_start == ideal_cache_offset)) {
4609 down_read(&space_info->groups_sem);
4610 if (list_empty(&block_group->list) ||
4611 block_group->ro) {
4613 * someone is removing this block group,
4614 * we can't jump into the have_block_group
4615 * target because our list pointers are not
4616 * valid
4618 btrfs_put_block_group(block_group);
4619 up_read(&space_info->groups_sem);
4620 } else {
4621 index = get_block_group_index(block_group);
4622 goto have_block_group;
4624 } else if (block_group) {
4625 btrfs_put_block_group(block_group);
4628 search:
4629 down_read(&space_info->groups_sem);
4630 list_for_each_entry(block_group, &space_info->block_groups[index],
4631 list) {
4632 u64 offset;
4633 int cached;
4635 btrfs_get_block_group(block_group);
4636 search_start = block_group->key.objectid;
4638 have_block_group:
4639 if (unlikely(block_group->cached == BTRFS_CACHE_NO)) {
4640 u64 free_percent;
4642 free_percent = btrfs_block_group_used(&block_group->item);
4643 free_percent *= 100;
4644 free_percent = div64_u64(free_percent,
4645 block_group->key.offset);
4646 free_percent = 100 - free_percent;
4647 if (free_percent > ideal_cache_percent &&
4648 likely(!block_group->ro)) {
4649 ideal_cache_offset = block_group->key.objectid;
4650 ideal_cache_percent = free_percent;
4654 * We only want to start kthread caching if we are at
4655 * the point where we will wait for caching to make
4656 * progress, or if our ideal search is over and we've
4657 * found somebody to start caching.
4659 if (loop > LOOP_CACHING_NOWAIT ||
4660 (loop > LOOP_FIND_IDEAL &&
4661 atomic_read(&space_info->caching_threads) < 2)) {
4662 ret = cache_block_group(block_group);
4663 BUG_ON(ret);
4665 found_uncached_bg = true;
4668 * If loop is set for cached only, try the next block
4669 * group.
4671 if (loop == LOOP_FIND_IDEAL)
4672 goto loop;
4675 cached = block_group_cache_done(block_group);
4676 if (unlikely(!cached))
4677 found_uncached_bg = true;
4679 if (unlikely(block_group->ro))
4680 goto loop;
4683 * Ok we want to try and use the cluster allocator, so lets look
4684 * there, unless we are on LOOP_NO_EMPTY_SIZE, since we will
4685 * have tried the cluster allocator plenty of times at this
4686 * point and not have found anything, so we are likely way too
4687 * fragmented for the clustering stuff to find anything, so lets
4688 * just skip it and let the allocator find whatever block it can
4689 * find
4691 if (last_ptr && loop < LOOP_NO_EMPTY_SIZE) {
4693 * the refill lock keeps out other
4694 * people trying to start a new cluster
4696 spin_lock(&last_ptr->refill_lock);
4697 if (last_ptr->block_group &&
4698 (last_ptr->block_group->ro ||
4699 !block_group_bits(last_ptr->block_group, data))) {
4700 offset = 0;
4701 goto refill_cluster;
4704 offset = btrfs_alloc_from_cluster(block_group, last_ptr,
4705 num_bytes, search_start);
4706 if (offset) {
4707 /* we have a block, we're done */
4708 spin_unlock(&last_ptr->refill_lock);
4709 goto checks;
4712 spin_lock(&last_ptr->lock);
4714 * whoops, this cluster doesn't actually point to
4715 * this block group. Get a ref on the block
4716 * group is does point to and try again
4718 if (!last_ptr_loop && last_ptr->block_group &&
4719 last_ptr->block_group != block_group) {
4721 btrfs_put_block_group(block_group);
4722 block_group = last_ptr->block_group;
4723 btrfs_get_block_group(block_group);
4724 spin_unlock(&last_ptr->lock);
4725 spin_unlock(&last_ptr->refill_lock);
4727 last_ptr_loop = 1;
4728 search_start = block_group->key.objectid;
4730 * we know this block group is properly
4731 * in the list because
4732 * btrfs_remove_block_group, drops the
4733 * cluster before it removes the block
4734 * group from the list
4736 goto have_block_group;
4738 spin_unlock(&last_ptr->lock);
4739 refill_cluster:
4741 * this cluster didn't work out, free it and
4742 * start over
4744 btrfs_return_cluster_to_free_space(NULL, last_ptr);
4746 last_ptr_loop = 0;
4748 /* allocate a cluster in this block group */
4749 ret = btrfs_find_space_cluster(trans, root,
4750 block_group, last_ptr,
4751 offset, num_bytes,
4752 empty_cluster + empty_size);
4753 if (ret == 0) {
4755 * now pull our allocation out of this
4756 * cluster
4758 offset = btrfs_alloc_from_cluster(block_group,
4759 last_ptr, num_bytes,
4760 search_start);
4761 if (offset) {
4762 /* we found one, proceed */
4763 spin_unlock(&last_ptr->refill_lock);
4764 goto checks;
4766 } else if (!cached && loop > LOOP_CACHING_NOWAIT
4767 && !failed_cluster_refill) {
4768 spin_unlock(&last_ptr->refill_lock);
4770 failed_cluster_refill = true;
4771 wait_block_group_cache_progress(block_group,
4772 num_bytes + empty_cluster + empty_size);
4773 goto have_block_group;
4777 * at this point we either didn't find a cluster
4778 * or we weren't able to allocate a block from our
4779 * cluster. Free the cluster we've been trying
4780 * to use, and go to the next block group
4782 btrfs_return_cluster_to_free_space(NULL, last_ptr);
4783 spin_unlock(&last_ptr->refill_lock);
4784 goto loop;
4787 offset = btrfs_find_space_for_alloc(block_group, search_start,
4788 num_bytes, empty_size);
4790 * If we didn't find a chunk, and we haven't failed on this
4791 * block group before, and this block group is in the middle of
4792 * caching and we are ok with waiting, then go ahead and wait
4793 * for progress to be made, and set failed_alloc to true.
4795 * If failed_alloc is true then we've already waited on this
4796 * block group once and should move on to the next block group.
4798 if (!offset && !failed_alloc && !cached &&
4799 loop > LOOP_CACHING_NOWAIT) {
4800 wait_block_group_cache_progress(block_group,
4801 num_bytes + empty_size);
4802 failed_alloc = true;
4803 goto have_block_group;
4804 } else if (!offset) {
4805 goto loop;
4807 checks:
4808 search_start = stripe_align(root, offset);
4809 /* move on to the next group */
4810 if (search_start + num_bytes >= search_end) {
4811 btrfs_add_free_space(block_group, offset, num_bytes);
4812 goto loop;
4815 /* move on to the next group */
4816 if (search_start + num_bytes >
4817 block_group->key.objectid + block_group->key.offset) {
4818 btrfs_add_free_space(block_group, offset, num_bytes);
4819 goto loop;
4822 ins->objectid = search_start;
4823 ins->offset = num_bytes;
4825 if (offset < search_start)
4826 btrfs_add_free_space(block_group, offset,
4827 search_start - offset);
4828 BUG_ON(offset > search_start);
4830 ret = update_reserved_bytes(block_group, num_bytes, 1,
4831 (data & BTRFS_BLOCK_GROUP_DATA));
4832 if (ret == -EAGAIN) {
4833 btrfs_add_free_space(block_group, offset, num_bytes);
4834 goto loop;
4837 /* we are all good, lets return */
4838 ins->objectid = search_start;
4839 ins->offset = num_bytes;
4841 if (offset < search_start)
4842 btrfs_add_free_space(block_group, offset,
4843 search_start - offset);
4844 BUG_ON(offset > search_start);
4845 break;
4846 loop:
4847 failed_cluster_refill = false;
4848 failed_alloc = false;
4849 BUG_ON(index != get_block_group_index(block_group));
4850 btrfs_put_block_group(block_group);
4852 up_read(&space_info->groups_sem);
4854 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
4855 goto search;
4857 /* LOOP_FIND_IDEAL, only search caching/cached bg's, and don't wait for
4858 * for them to make caching progress. Also
4859 * determine the best possible bg to cache
4860 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
4861 * caching kthreads as we move along
4862 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
4863 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
4864 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
4865 * again
4867 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE &&
4868 (found_uncached_bg || empty_size || empty_cluster ||
4869 allowed_chunk_alloc)) {
4870 index = 0;
4871 if (loop == LOOP_FIND_IDEAL && found_uncached_bg) {
4872 found_uncached_bg = false;
4873 loop++;
4874 if (!ideal_cache_percent &&
4875 atomic_read(&space_info->caching_threads))
4876 goto search;
4879 * 1 of the following 2 things have happened so far
4881 * 1) We found an ideal block group for caching that
4882 * is mostly full and will cache quickly, so we might
4883 * as well wait for it.
4885 * 2) We searched for cached only and we didn't find
4886 * anything, and we didn't start any caching kthreads
4887 * either, so chances are we will loop through and
4888 * start a couple caching kthreads, and then come back
4889 * around and just wait for them. This will be slower
4890 * because we will have 2 caching kthreads reading at
4891 * the same time when we could have just started one
4892 * and waited for it to get far enough to give us an
4893 * allocation, so go ahead and go to the wait caching
4894 * loop.
4896 loop = LOOP_CACHING_WAIT;
4897 search_start = ideal_cache_offset;
4898 ideal_cache_percent = 0;
4899 goto ideal_cache;
4900 } else if (loop == LOOP_FIND_IDEAL) {
4902 * Didn't find a uncached bg, wait on anything we find
4903 * next.
4905 loop = LOOP_CACHING_WAIT;
4906 goto search;
4909 if (loop < LOOP_CACHING_WAIT) {
4910 loop++;
4911 goto search;
4914 if (loop == LOOP_ALLOC_CHUNK) {
4915 empty_size = 0;
4916 empty_cluster = 0;
4919 if (allowed_chunk_alloc) {
4920 ret = do_chunk_alloc(trans, root, num_bytes +
4921 2 * 1024 * 1024, data, 1);
4922 allowed_chunk_alloc = 0;
4923 done_chunk_alloc = 1;
4924 } else if (!done_chunk_alloc) {
4925 space_info->force_alloc = 1;
4928 if (loop < LOOP_NO_EMPTY_SIZE) {
4929 loop++;
4930 goto search;
4932 ret = -ENOSPC;
4933 } else if (!ins->objectid) {
4934 ret = -ENOSPC;
4937 /* we found what we needed */
4938 if (ins->objectid) {
4939 if (!(data & BTRFS_BLOCK_GROUP_DATA))
4940 trans->block_group = block_group->key.objectid;
4942 btrfs_put_block_group(block_group);
4943 ret = 0;
4946 return ret;
4949 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
4950 int dump_block_groups)
4952 struct btrfs_block_group_cache *cache;
4953 int index = 0;
4955 spin_lock(&info->lock);
4956 printk(KERN_INFO "space_info has %llu free, is %sfull\n",
4957 (unsigned long long)(info->total_bytes - info->bytes_used -
4958 info->bytes_pinned - info->bytes_reserved -
4959 info->bytes_readonly),
4960 (info->full) ? "" : "not ");
4961 printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
4962 "reserved=%llu, may_use=%llu, readonly=%llu\n",
4963 (unsigned long long)info->total_bytes,
4964 (unsigned long long)info->bytes_used,
4965 (unsigned long long)info->bytes_pinned,
4966 (unsigned long long)info->bytes_reserved,
4967 (unsigned long long)info->bytes_may_use,
4968 (unsigned long long)info->bytes_readonly);
4969 spin_unlock(&info->lock);
4971 if (!dump_block_groups)
4972 return;
4974 down_read(&info->groups_sem);
4975 again:
4976 list_for_each_entry(cache, &info->block_groups[index], list) {
4977 spin_lock(&cache->lock);
4978 printk(KERN_INFO "block group %llu has %llu bytes, %llu used "
4979 "%llu pinned %llu reserved\n",
4980 (unsigned long long)cache->key.objectid,
4981 (unsigned long long)cache->key.offset,
4982 (unsigned long long)btrfs_block_group_used(&cache->item),
4983 (unsigned long long)cache->pinned,
4984 (unsigned long long)cache->reserved);
4985 btrfs_dump_free_space(cache, bytes);
4986 spin_unlock(&cache->lock);
4988 if (++index < BTRFS_NR_RAID_TYPES)
4989 goto again;
4990 up_read(&info->groups_sem);
4993 int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
4994 struct btrfs_root *root,
4995 u64 num_bytes, u64 min_alloc_size,
4996 u64 empty_size, u64 hint_byte,
4997 u64 search_end, struct btrfs_key *ins,
4998 u64 data)
5000 int ret;
5001 u64 search_start = 0;
5003 data = btrfs_get_alloc_profile(root, data);
5004 again:
5006 * the only place that sets empty_size is btrfs_realloc_node, which
5007 * is not called recursively on allocations
5009 if (empty_size || root->ref_cows)
5010 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
5011 num_bytes + 2 * 1024 * 1024, data, 0);
5013 WARN_ON(num_bytes < root->sectorsize);
5014 ret = find_free_extent(trans, root, num_bytes, empty_size,
5015 search_start, search_end, hint_byte,
5016 ins, data);
5018 if (ret == -ENOSPC && num_bytes > min_alloc_size) {
5019 num_bytes = num_bytes >> 1;
5020 num_bytes = num_bytes & ~(root->sectorsize - 1);
5021 num_bytes = max(num_bytes, min_alloc_size);
5022 do_chunk_alloc(trans, root->fs_info->extent_root,
5023 num_bytes, data, 1);
5024 goto again;
5026 if (ret == -ENOSPC) {
5027 struct btrfs_space_info *sinfo;
5029 sinfo = __find_space_info(root->fs_info, data);
5030 printk(KERN_ERR "btrfs allocation failed flags %llu, "
5031 "wanted %llu\n", (unsigned long long)data,
5032 (unsigned long long)num_bytes);
5033 dump_space_info(sinfo, num_bytes, 1);
5036 return ret;
5039 int btrfs_free_reserved_extent(struct btrfs_root *root, u64 start, u64 len)
5041 struct btrfs_block_group_cache *cache;
5042 int ret = 0;
5044 cache = btrfs_lookup_block_group(root->fs_info, start);
5045 if (!cache) {
5046 printk(KERN_ERR "Unable to find block group for %llu\n",
5047 (unsigned long long)start);
5048 return -ENOSPC;
5051 ret = btrfs_discard_extent(root, start, len);
5053 btrfs_add_free_space(cache, start, len);
5054 update_reserved_bytes(cache, len, 0, 1);
5055 btrfs_put_block_group(cache);
5057 return ret;
5060 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5061 struct btrfs_root *root,
5062 u64 parent, u64 root_objectid,
5063 u64 flags, u64 owner, u64 offset,
5064 struct btrfs_key *ins, int ref_mod)
5066 int ret;
5067 struct btrfs_fs_info *fs_info = root->fs_info;
5068 struct btrfs_extent_item *extent_item;
5069 struct btrfs_extent_inline_ref *iref;
5070 struct btrfs_path *path;
5071 struct extent_buffer *leaf;
5072 int type;
5073 u32 size;
5075 if (parent > 0)
5076 type = BTRFS_SHARED_DATA_REF_KEY;
5077 else
5078 type = BTRFS_EXTENT_DATA_REF_KEY;
5080 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
5082 path = btrfs_alloc_path();
5083 BUG_ON(!path);
5085 path->leave_spinning = 1;
5086 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
5087 ins, size);
5088 BUG_ON(ret);
5090 leaf = path->nodes[0];
5091 extent_item = btrfs_item_ptr(leaf, path->slots[0],
5092 struct btrfs_extent_item);
5093 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
5094 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
5095 btrfs_set_extent_flags(leaf, extent_item,
5096 flags | BTRFS_EXTENT_FLAG_DATA);
5098 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
5099 btrfs_set_extent_inline_ref_type(leaf, iref, type);
5100 if (parent > 0) {
5101 struct btrfs_shared_data_ref *ref;
5102 ref = (struct btrfs_shared_data_ref *)(iref + 1);
5103 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
5104 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
5105 } else {
5106 struct btrfs_extent_data_ref *ref;
5107 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
5108 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
5109 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
5110 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
5111 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
5114 btrfs_mark_buffer_dirty(path->nodes[0]);
5115 btrfs_free_path(path);
5117 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
5118 if (ret) {
5119 printk(KERN_ERR "btrfs update block group failed for %llu "
5120 "%llu\n", (unsigned long long)ins->objectid,
5121 (unsigned long long)ins->offset);
5122 BUG();
5124 return ret;
5127 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
5128 struct btrfs_root *root,
5129 u64 parent, u64 root_objectid,
5130 u64 flags, struct btrfs_disk_key *key,
5131 int level, struct btrfs_key *ins)
5133 int ret;
5134 struct btrfs_fs_info *fs_info = root->fs_info;
5135 struct btrfs_extent_item *extent_item;
5136 struct btrfs_tree_block_info *block_info;
5137 struct btrfs_extent_inline_ref *iref;
5138 struct btrfs_path *path;
5139 struct extent_buffer *leaf;
5140 u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref);
5142 path = btrfs_alloc_path();
5143 BUG_ON(!path);
5145 path->leave_spinning = 1;
5146 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
5147 ins, size);
5148 BUG_ON(ret);
5150 leaf = path->nodes[0];
5151 extent_item = btrfs_item_ptr(leaf, path->slots[0],
5152 struct btrfs_extent_item);
5153 btrfs_set_extent_refs(leaf, extent_item, 1);
5154 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
5155 btrfs_set_extent_flags(leaf, extent_item,
5156 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5157 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
5159 btrfs_set_tree_block_key(leaf, block_info, key);
5160 btrfs_set_tree_block_level(leaf, block_info, level);
5162 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
5163 if (parent > 0) {
5164 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
5165 btrfs_set_extent_inline_ref_type(leaf, iref,
5166 BTRFS_SHARED_BLOCK_REF_KEY);
5167 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
5168 } else {
5169 btrfs_set_extent_inline_ref_type(leaf, iref,
5170 BTRFS_TREE_BLOCK_REF_KEY);
5171 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
5174 btrfs_mark_buffer_dirty(leaf);
5175 btrfs_free_path(path);
5177 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
5178 if (ret) {
5179 printk(KERN_ERR "btrfs update block group failed for %llu "
5180 "%llu\n", (unsigned long long)ins->objectid,
5181 (unsigned long long)ins->offset);
5182 BUG();
5184 return ret;
5187 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5188 struct btrfs_root *root,
5189 u64 root_objectid, u64 owner,
5190 u64 offset, struct btrfs_key *ins)
5192 int ret;
5194 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
5196 ret = btrfs_add_delayed_data_ref(trans, ins->objectid, ins->offset,
5197 0, root_objectid, owner, offset,
5198 BTRFS_ADD_DELAYED_EXTENT, NULL);
5199 return ret;
5203 * this is used by the tree logging recovery code. It records that
5204 * an extent has been allocated and makes sure to clear the free
5205 * space cache bits as well
5207 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
5208 struct btrfs_root *root,
5209 u64 root_objectid, u64 owner, u64 offset,
5210 struct btrfs_key *ins)
5212 int ret;
5213 struct btrfs_block_group_cache *block_group;
5214 struct btrfs_caching_control *caching_ctl;
5215 u64 start = ins->objectid;
5216 u64 num_bytes = ins->offset;
5218 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
5219 cache_block_group(block_group);
5220 caching_ctl = get_caching_control(block_group);
5222 if (!caching_ctl) {
5223 BUG_ON(!block_group_cache_done(block_group));
5224 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5225 BUG_ON(ret);
5226 } else {
5227 mutex_lock(&caching_ctl->mutex);
5229 if (start >= caching_ctl->progress) {
5230 ret = add_excluded_extent(root, start, num_bytes);
5231 BUG_ON(ret);
5232 } else if (start + num_bytes <= caching_ctl->progress) {
5233 ret = btrfs_remove_free_space(block_group,
5234 start, num_bytes);
5235 BUG_ON(ret);
5236 } else {
5237 num_bytes = caching_ctl->progress - start;
5238 ret = btrfs_remove_free_space(block_group,
5239 start, num_bytes);
5240 BUG_ON(ret);
5242 start = caching_ctl->progress;
5243 num_bytes = ins->objectid + ins->offset -
5244 caching_ctl->progress;
5245 ret = add_excluded_extent(root, start, num_bytes);
5246 BUG_ON(ret);
5249 mutex_unlock(&caching_ctl->mutex);
5250 put_caching_control(caching_ctl);
5253 ret = update_reserved_bytes(block_group, ins->offset, 1, 1);
5254 BUG_ON(ret);
5255 btrfs_put_block_group(block_group);
5256 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
5257 0, owner, offset, ins, 1);
5258 return ret;
5261 struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
5262 struct btrfs_root *root,
5263 u64 bytenr, u32 blocksize,
5264 int level)
5266 struct extent_buffer *buf;
5268 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
5269 if (!buf)
5270 return ERR_PTR(-ENOMEM);
5271 btrfs_set_header_generation(buf, trans->transid);
5272 btrfs_set_buffer_lockdep_class(buf, level);
5273 btrfs_tree_lock(buf);
5274 clean_tree_block(trans, root, buf);
5276 btrfs_set_lock_blocking(buf);
5277 btrfs_set_buffer_uptodate(buf);
5279 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
5281 * we allow two log transactions at a time, use different
5282 * EXENT bit to differentiate dirty pages.
5284 if (root->log_transid % 2 == 0)
5285 set_extent_dirty(&root->dirty_log_pages, buf->start,
5286 buf->start + buf->len - 1, GFP_NOFS);
5287 else
5288 set_extent_new(&root->dirty_log_pages, buf->start,
5289 buf->start + buf->len - 1, GFP_NOFS);
5290 } else {
5291 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
5292 buf->start + buf->len - 1, GFP_NOFS);
5294 trans->blocks_used++;
5295 /* this returns a buffer locked for blocking */
5296 return buf;
5299 static struct btrfs_block_rsv *
5300 use_block_rsv(struct btrfs_trans_handle *trans,
5301 struct btrfs_root *root, u32 blocksize)
5303 struct btrfs_block_rsv *block_rsv;
5304 int ret;
5306 block_rsv = get_block_rsv(trans, root);
5308 if (block_rsv->size == 0) {
5309 ret = reserve_metadata_bytes(block_rsv, blocksize);
5310 if (ret)
5311 return ERR_PTR(ret);
5312 return block_rsv;
5315 ret = block_rsv_use_bytes(block_rsv, blocksize);
5316 if (!ret)
5317 return block_rsv;
5319 WARN_ON(1);
5320 printk(KERN_INFO"block_rsv size %llu reserved %llu freed %llu %llu\n",
5321 block_rsv->size, block_rsv->reserved,
5322 block_rsv->freed[0], block_rsv->freed[1]);
5324 return ERR_PTR(-ENOSPC);
5327 static void unuse_block_rsv(struct btrfs_block_rsv *block_rsv, u32 blocksize)
5329 block_rsv_add_bytes(block_rsv, blocksize, 0);
5330 block_rsv_release_bytes(block_rsv, NULL, 0);
5334 * finds a free extent and does all the dirty work required for allocation
5335 * returns the key for the extent through ins, and a tree buffer for
5336 * the first block of the extent through buf.
5338 * returns the tree buffer or NULL.
5340 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
5341 struct btrfs_root *root, u32 blocksize,
5342 u64 parent, u64 root_objectid,
5343 struct btrfs_disk_key *key, int level,
5344 u64 hint, u64 empty_size)
5346 struct btrfs_key ins;
5347 struct btrfs_block_rsv *block_rsv;
5348 struct extent_buffer *buf;
5349 u64 flags = 0;
5350 int ret;
5353 block_rsv = use_block_rsv(trans, root, blocksize);
5354 if (IS_ERR(block_rsv))
5355 return ERR_CAST(block_rsv);
5357 ret = btrfs_reserve_extent(trans, root, blocksize, blocksize,
5358 empty_size, hint, (u64)-1, &ins, 0);
5359 if (ret) {
5360 unuse_block_rsv(block_rsv, blocksize);
5361 return ERR_PTR(ret);
5364 buf = btrfs_init_new_buffer(trans, root, ins.objectid,
5365 blocksize, level);
5366 BUG_ON(IS_ERR(buf));
5368 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
5369 if (parent == 0)
5370 parent = ins.objectid;
5371 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
5372 } else
5373 BUG_ON(parent > 0);
5375 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
5376 struct btrfs_delayed_extent_op *extent_op;
5377 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
5378 BUG_ON(!extent_op);
5379 if (key)
5380 memcpy(&extent_op->key, key, sizeof(extent_op->key));
5381 else
5382 memset(&extent_op->key, 0, sizeof(extent_op->key));
5383 extent_op->flags_to_set = flags;
5384 extent_op->update_key = 1;
5385 extent_op->update_flags = 1;
5386 extent_op->is_data = 0;
5388 ret = btrfs_add_delayed_tree_ref(trans, ins.objectid,
5389 ins.offset, parent, root_objectid,
5390 level, BTRFS_ADD_DELAYED_EXTENT,
5391 extent_op);
5392 BUG_ON(ret);
5394 return buf;
5397 struct walk_control {
5398 u64 refs[BTRFS_MAX_LEVEL];
5399 u64 flags[BTRFS_MAX_LEVEL];
5400 struct btrfs_key update_progress;
5401 int stage;
5402 int level;
5403 int shared_level;
5404 int update_ref;
5405 int keep_locks;
5406 int reada_slot;
5407 int reada_count;
5410 #define DROP_REFERENCE 1
5411 #define UPDATE_BACKREF 2
5413 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
5414 struct btrfs_root *root,
5415 struct walk_control *wc,
5416 struct btrfs_path *path)
5418 u64 bytenr;
5419 u64 generation;
5420 u64 refs;
5421 u64 flags;
5422 u64 last = 0;
5423 u32 nritems;
5424 u32 blocksize;
5425 struct btrfs_key key;
5426 struct extent_buffer *eb;
5427 int ret;
5428 int slot;
5429 int nread = 0;
5431 if (path->slots[wc->level] < wc->reada_slot) {
5432 wc->reada_count = wc->reada_count * 2 / 3;
5433 wc->reada_count = max(wc->reada_count, 2);
5434 } else {
5435 wc->reada_count = wc->reada_count * 3 / 2;
5436 wc->reada_count = min_t(int, wc->reada_count,
5437 BTRFS_NODEPTRS_PER_BLOCK(root));
5440 eb = path->nodes[wc->level];
5441 nritems = btrfs_header_nritems(eb);
5442 blocksize = btrfs_level_size(root, wc->level - 1);
5444 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
5445 if (nread >= wc->reada_count)
5446 break;
5448 cond_resched();
5449 bytenr = btrfs_node_blockptr(eb, slot);
5450 generation = btrfs_node_ptr_generation(eb, slot);
5452 if (slot == path->slots[wc->level])
5453 goto reada;
5455 if (wc->stage == UPDATE_BACKREF &&
5456 generation <= root->root_key.offset)
5457 continue;
5459 /* We don't lock the tree block, it's OK to be racy here */
5460 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
5461 &refs, &flags);
5462 BUG_ON(ret);
5463 BUG_ON(refs == 0);
5465 if (wc->stage == DROP_REFERENCE) {
5466 if (refs == 1)
5467 goto reada;
5469 if (wc->level == 1 &&
5470 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5471 continue;
5472 if (!wc->update_ref ||
5473 generation <= root->root_key.offset)
5474 continue;
5475 btrfs_node_key_to_cpu(eb, &key, slot);
5476 ret = btrfs_comp_cpu_keys(&key,
5477 &wc->update_progress);
5478 if (ret < 0)
5479 continue;
5480 } else {
5481 if (wc->level == 1 &&
5482 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5483 continue;
5485 reada:
5486 ret = readahead_tree_block(root, bytenr, blocksize,
5487 generation);
5488 if (ret)
5489 break;
5490 last = bytenr + blocksize;
5491 nread++;
5493 wc->reada_slot = slot;
5497 * hepler to process tree block while walking down the tree.
5499 * when wc->stage == UPDATE_BACKREF, this function updates
5500 * back refs for pointers in the block.
5502 * NOTE: return value 1 means we should stop walking down.
5504 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5505 struct btrfs_root *root,
5506 struct btrfs_path *path,
5507 struct walk_control *wc, int lookup_info)
5509 int level = wc->level;
5510 struct extent_buffer *eb = path->nodes[level];
5511 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5512 int ret;
5514 if (wc->stage == UPDATE_BACKREF &&
5515 btrfs_header_owner(eb) != root->root_key.objectid)
5516 return 1;
5519 * when reference count of tree block is 1, it won't increase
5520 * again. once full backref flag is set, we never clear it.
5522 if (lookup_info &&
5523 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
5524 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
5525 BUG_ON(!path->locks[level]);
5526 ret = btrfs_lookup_extent_info(trans, root,
5527 eb->start, eb->len,
5528 &wc->refs[level],
5529 &wc->flags[level]);
5530 BUG_ON(ret);
5531 BUG_ON(wc->refs[level] == 0);
5534 if (wc->stage == DROP_REFERENCE) {
5535 if (wc->refs[level] > 1)
5536 return 1;
5538 if (path->locks[level] && !wc->keep_locks) {
5539 btrfs_tree_unlock(eb);
5540 path->locks[level] = 0;
5542 return 0;
5545 /* wc->stage == UPDATE_BACKREF */
5546 if (!(wc->flags[level] & flag)) {
5547 BUG_ON(!path->locks[level]);
5548 ret = btrfs_inc_ref(trans, root, eb, 1);
5549 BUG_ON(ret);
5550 ret = btrfs_dec_ref(trans, root, eb, 0);
5551 BUG_ON(ret);
5552 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
5553 eb->len, flag, 0);
5554 BUG_ON(ret);
5555 wc->flags[level] |= flag;
5559 * the block is shared by multiple trees, so it's not good to
5560 * keep the tree lock
5562 if (path->locks[level] && level > 0) {
5563 btrfs_tree_unlock(eb);
5564 path->locks[level] = 0;
5566 return 0;
5570 * hepler to process tree block pointer.
5572 * when wc->stage == DROP_REFERENCE, this function checks
5573 * reference count of the block pointed to. if the block
5574 * is shared and we need update back refs for the subtree
5575 * rooted at the block, this function changes wc->stage to
5576 * UPDATE_BACKREF. if the block is shared and there is no
5577 * need to update back, this function drops the reference
5578 * to the block.
5580 * NOTE: return value 1 means we should stop walking down.
5582 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
5583 struct btrfs_root *root,
5584 struct btrfs_path *path,
5585 struct walk_control *wc, int *lookup_info)
5587 u64 bytenr;
5588 u64 generation;
5589 u64 parent;
5590 u32 blocksize;
5591 struct btrfs_key key;
5592 struct extent_buffer *next;
5593 int level = wc->level;
5594 int reada = 0;
5595 int ret = 0;
5597 generation = btrfs_node_ptr_generation(path->nodes[level],
5598 path->slots[level]);
5600 * if the lower level block was created before the snapshot
5601 * was created, we know there is no need to update back refs
5602 * for the subtree
5604 if (wc->stage == UPDATE_BACKREF &&
5605 generation <= root->root_key.offset) {
5606 *lookup_info = 1;
5607 return 1;
5610 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
5611 blocksize = btrfs_level_size(root, level - 1);
5613 next = btrfs_find_tree_block(root, bytenr, blocksize);
5614 if (!next) {
5615 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
5616 if (!next)
5617 return -ENOMEM;
5618 reada = 1;
5620 btrfs_tree_lock(next);
5621 btrfs_set_lock_blocking(next);
5623 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
5624 &wc->refs[level - 1],
5625 &wc->flags[level - 1]);
5626 BUG_ON(ret);
5627 BUG_ON(wc->refs[level - 1] == 0);
5628 *lookup_info = 0;
5630 if (wc->stage == DROP_REFERENCE) {
5631 if (wc->refs[level - 1] > 1) {
5632 if (level == 1 &&
5633 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5634 goto skip;
5636 if (!wc->update_ref ||
5637 generation <= root->root_key.offset)
5638 goto skip;
5640 btrfs_node_key_to_cpu(path->nodes[level], &key,
5641 path->slots[level]);
5642 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
5643 if (ret < 0)
5644 goto skip;
5646 wc->stage = UPDATE_BACKREF;
5647 wc->shared_level = level - 1;
5649 } else {
5650 if (level == 1 &&
5651 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5652 goto skip;
5655 if (!btrfs_buffer_uptodate(next, generation)) {
5656 btrfs_tree_unlock(next);
5657 free_extent_buffer(next);
5658 next = NULL;
5659 *lookup_info = 1;
5662 if (!next) {
5663 if (reada && level == 1)
5664 reada_walk_down(trans, root, wc, path);
5665 next = read_tree_block(root, bytenr, blocksize, generation);
5666 btrfs_tree_lock(next);
5667 btrfs_set_lock_blocking(next);
5670 level--;
5671 BUG_ON(level != btrfs_header_level(next));
5672 path->nodes[level] = next;
5673 path->slots[level] = 0;
5674 path->locks[level] = 1;
5675 wc->level = level;
5676 if (wc->level == 1)
5677 wc->reada_slot = 0;
5678 return 0;
5679 skip:
5680 wc->refs[level - 1] = 0;
5681 wc->flags[level - 1] = 0;
5682 if (wc->stage == DROP_REFERENCE) {
5683 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
5684 parent = path->nodes[level]->start;
5685 } else {
5686 BUG_ON(root->root_key.objectid !=
5687 btrfs_header_owner(path->nodes[level]));
5688 parent = 0;
5691 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
5692 root->root_key.objectid, level - 1, 0);
5693 BUG_ON(ret);
5695 btrfs_tree_unlock(next);
5696 free_extent_buffer(next);
5697 *lookup_info = 1;
5698 return 1;
5702 * hepler to process tree block while walking up the tree.
5704 * when wc->stage == DROP_REFERENCE, this function drops
5705 * reference count on the block.
5707 * when wc->stage == UPDATE_BACKREF, this function changes
5708 * wc->stage back to DROP_REFERENCE if we changed wc->stage
5709 * to UPDATE_BACKREF previously while processing the block.
5711 * NOTE: return value 1 means we should stop walking up.
5713 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
5714 struct btrfs_root *root,
5715 struct btrfs_path *path,
5716 struct walk_control *wc)
5718 int ret;
5719 int level = wc->level;
5720 struct extent_buffer *eb = path->nodes[level];
5721 u64 parent = 0;
5723 if (wc->stage == UPDATE_BACKREF) {
5724 BUG_ON(wc->shared_level < level);
5725 if (level < wc->shared_level)
5726 goto out;
5728 ret = find_next_key(path, level + 1, &wc->update_progress);
5729 if (ret > 0)
5730 wc->update_ref = 0;
5732 wc->stage = DROP_REFERENCE;
5733 wc->shared_level = -1;
5734 path->slots[level] = 0;
5737 * check reference count again if the block isn't locked.
5738 * we should start walking down the tree again if reference
5739 * count is one.
5741 if (!path->locks[level]) {
5742 BUG_ON(level == 0);
5743 btrfs_tree_lock(eb);
5744 btrfs_set_lock_blocking(eb);
5745 path->locks[level] = 1;
5747 ret = btrfs_lookup_extent_info(trans, root,
5748 eb->start, eb->len,
5749 &wc->refs[level],
5750 &wc->flags[level]);
5751 BUG_ON(ret);
5752 BUG_ON(wc->refs[level] == 0);
5753 if (wc->refs[level] == 1) {
5754 btrfs_tree_unlock(eb);
5755 path->locks[level] = 0;
5756 return 1;
5761 /* wc->stage == DROP_REFERENCE */
5762 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5764 if (wc->refs[level] == 1) {
5765 if (level == 0) {
5766 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5767 ret = btrfs_dec_ref(trans, root, eb, 1);
5768 else
5769 ret = btrfs_dec_ref(trans, root, eb, 0);
5770 BUG_ON(ret);
5772 /* make block locked assertion in clean_tree_block happy */
5773 if (!path->locks[level] &&
5774 btrfs_header_generation(eb) == trans->transid) {
5775 btrfs_tree_lock(eb);
5776 btrfs_set_lock_blocking(eb);
5777 path->locks[level] = 1;
5779 clean_tree_block(trans, root, eb);
5782 if (eb == root->node) {
5783 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5784 parent = eb->start;
5785 else
5786 BUG_ON(root->root_key.objectid !=
5787 btrfs_header_owner(eb));
5788 } else {
5789 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5790 parent = path->nodes[level + 1]->start;
5791 else
5792 BUG_ON(root->root_key.objectid !=
5793 btrfs_header_owner(path->nodes[level + 1]));
5796 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
5797 out:
5798 wc->refs[level] = 0;
5799 wc->flags[level] = 0;
5800 return 0;
5803 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
5804 struct btrfs_root *root,
5805 struct btrfs_path *path,
5806 struct walk_control *wc)
5808 int level = wc->level;
5809 int lookup_info = 1;
5810 int ret;
5812 while (level >= 0) {
5813 ret = walk_down_proc(trans, root, path, wc, lookup_info);
5814 if (ret > 0)
5815 break;
5817 if (level == 0)
5818 break;
5820 if (path->slots[level] >=
5821 btrfs_header_nritems(path->nodes[level]))
5822 break;
5824 ret = do_walk_down(trans, root, path, wc, &lookup_info);
5825 if (ret > 0) {
5826 path->slots[level]++;
5827 continue;
5828 } else if (ret < 0)
5829 return ret;
5830 level = wc->level;
5832 return 0;
5835 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
5836 struct btrfs_root *root,
5837 struct btrfs_path *path,
5838 struct walk_control *wc, int max_level)
5840 int level = wc->level;
5841 int ret;
5843 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
5844 while (level < max_level && path->nodes[level]) {
5845 wc->level = level;
5846 if (path->slots[level] + 1 <
5847 btrfs_header_nritems(path->nodes[level])) {
5848 path->slots[level]++;
5849 return 0;
5850 } else {
5851 ret = walk_up_proc(trans, root, path, wc);
5852 if (ret > 0)
5853 return 0;
5855 if (path->locks[level]) {
5856 btrfs_tree_unlock(path->nodes[level]);
5857 path->locks[level] = 0;
5859 free_extent_buffer(path->nodes[level]);
5860 path->nodes[level] = NULL;
5861 level++;
5864 return 1;
5868 * drop a subvolume tree.
5870 * this function traverses the tree freeing any blocks that only
5871 * referenced by the tree.
5873 * when a shared tree block is found. this function decreases its
5874 * reference count by one. if update_ref is true, this function
5875 * also make sure backrefs for the shared block and all lower level
5876 * blocks are properly updated.
5878 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref)
5880 struct btrfs_path *path;
5881 struct btrfs_trans_handle *trans;
5882 struct btrfs_root *tree_root = root->fs_info->tree_root;
5883 struct btrfs_root_item *root_item = &root->root_item;
5884 struct walk_control *wc;
5885 struct btrfs_key key;
5886 int err = 0;
5887 int ret;
5888 int level;
5890 path = btrfs_alloc_path();
5891 BUG_ON(!path);
5893 wc = kzalloc(sizeof(*wc), GFP_NOFS);
5894 BUG_ON(!wc);
5896 trans = btrfs_start_transaction(tree_root, 0);
5898 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
5899 level = btrfs_header_level(root->node);
5900 path->nodes[level] = btrfs_lock_root_node(root);
5901 btrfs_set_lock_blocking(path->nodes[level]);
5902 path->slots[level] = 0;
5903 path->locks[level] = 1;
5904 memset(&wc->update_progress, 0,
5905 sizeof(wc->update_progress));
5906 } else {
5907 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
5908 memcpy(&wc->update_progress, &key,
5909 sizeof(wc->update_progress));
5911 level = root_item->drop_level;
5912 BUG_ON(level == 0);
5913 path->lowest_level = level;
5914 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5915 path->lowest_level = 0;
5916 if (ret < 0) {
5917 err = ret;
5918 goto out;
5920 WARN_ON(ret > 0);
5923 * unlock our path, this is safe because only this
5924 * function is allowed to delete this snapshot
5926 btrfs_unlock_up_safe(path, 0);
5928 level = btrfs_header_level(root->node);
5929 while (1) {
5930 btrfs_tree_lock(path->nodes[level]);
5931 btrfs_set_lock_blocking(path->nodes[level]);
5933 ret = btrfs_lookup_extent_info(trans, root,
5934 path->nodes[level]->start,
5935 path->nodes[level]->len,
5936 &wc->refs[level],
5937 &wc->flags[level]);
5938 BUG_ON(ret);
5939 BUG_ON(wc->refs[level] == 0);
5941 if (level == root_item->drop_level)
5942 break;
5944 btrfs_tree_unlock(path->nodes[level]);
5945 WARN_ON(wc->refs[level] != 1);
5946 level--;
5950 wc->level = level;
5951 wc->shared_level = -1;
5952 wc->stage = DROP_REFERENCE;
5953 wc->update_ref = update_ref;
5954 wc->keep_locks = 0;
5955 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
5957 while (1) {
5958 ret = walk_down_tree(trans, root, path, wc);
5959 if (ret < 0) {
5960 err = ret;
5961 break;
5964 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
5965 if (ret < 0) {
5966 err = ret;
5967 break;
5970 if (ret > 0) {
5971 BUG_ON(wc->stage != DROP_REFERENCE);
5972 break;
5975 if (wc->stage == DROP_REFERENCE) {
5976 level = wc->level;
5977 btrfs_node_key(path->nodes[level],
5978 &root_item->drop_progress,
5979 path->slots[level]);
5980 root_item->drop_level = level;
5983 BUG_ON(wc->level == 0);
5984 if (trans->transaction->in_commit ||
5985 trans->transaction->delayed_refs.flushing) {
5986 ret = btrfs_update_root(trans, tree_root,
5987 &root->root_key,
5988 root_item);
5989 BUG_ON(ret);
5991 btrfs_end_transaction(trans, tree_root);
5992 trans = btrfs_start_transaction(tree_root, 0);
5993 if (IS_ERR(trans))
5994 return PTR_ERR(trans);
5995 } else {
5996 unsigned long update;
5997 update = trans->delayed_ref_updates;
5998 trans->delayed_ref_updates = 0;
5999 if (update)
6000 btrfs_run_delayed_refs(trans, tree_root,
6001 update);
6004 btrfs_release_path(root, path);
6005 BUG_ON(err);
6007 ret = btrfs_del_root(trans, tree_root, &root->root_key);
6008 BUG_ON(ret);
6010 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
6011 ret = btrfs_find_last_root(tree_root, root->root_key.objectid,
6012 NULL, NULL);
6013 BUG_ON(ret < 0);
6014 if (ret > 0) {
6015 ret = btrfs_del_orphan_item(trans, tree_root,
6016 root->root_key.objectid);
6017 BUG_ON(ret);
6021 if (root->in_radix) {
6022 btrfs_free_fs_root(tree_root->fs_info, root);
6023 } else {
6024 free_extent_buffer(root->node);
6025 free_extent_buffer(root->commit_root);
6026 kfree(root);
6028 out:
6029 btrfs_end_transaction(trans, tree_root);
6030 kfree(wc);
6031 btrfs_free_path(path);
6032 return err;
6036 * drop subtree rooted at tree block 'node'.
6038 * NOTE: this function will unlock and release tree block 'node'
6040 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
6041 struct btrfs_root *root,
6042 struct extent_buffer *node,
6043 struct extent_buffer *parent)
6045 struct btrfs_path *path;
6046 struct walk_control *wc;
6047 int level;
6048 int parent_level;
6049 int ret = 0;
6050 int wret;
6052 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
6054 path = btrfs_alloc_path();
6055 BUG_ON(!path);
6057 wc = kzalloc(sizeof(*wc), GFP_NOFS);
6058 BUG_ON(!wc);
6060 btrfs_assert_tree_locked(parent);
6061 parent_level = btrfs_header_level(parent);
6062 extent_buffer_get(parent);
6063 path->nodes[parent_level] = parent;
6064 path->slots[parent_level] = btrfs_header_nritems(parent);
6066 btrfs_assert_tree_locked(node);
6067 level = btrfs_header_level(node);
6068 path->nodes[level] = node;
6069 path->slots[level] = 0;
6070 path->locks[level] = 1;
6072 wc->refs[parent_level] = 1;
6073 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6074 wc->level = level;
6075 wc->shared_level = -1;
6076 wc->stage = DROP_REFERENCE;
6077 wc->update_ref = 0;
6078 wc->keep_locks = 1;
6079 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
6081 while (1) {
6082 wret = walk_down_tree(trans, root, path, wc);
6083 if (wret < 0) {
6084 ret = wret;
6085 break;
6088 wret = walk_up_tree(trans, root, path, wc, parent_level);
6089 if (wret < 0)
6090 ret = wret;
6091 if (wret != 0)
6092 break;
6095 kfree(wc);
6096 btrfs_free_path(path);
6097 return ret;
6100 #if 0
6101 static unsigned long calc_ra(unsigned long start, unsigned long last,
6102 unsigned long nr)
6104 return min(last, start + nr - 1);
6107 static noinline int relocate_inode_pages(struct inode *inode, u64 start,
6108 u64 len)
6110 u64 page_start;
6111 u64 page_end;
6112 unsigned long first_index;
6113 unsigned long last_index;
6114 unsigned long i;
6115 struct page *page;
6116 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6117 struct file_ra_state *ra;
6118 struct btrfs_ordered_extent *ordered;
6119 unsigned int total_read = 0;
6120 unsigned int total_dirty = 0;
6121 int ret = 0;
6123 ra = kzalloc(sizeof(*ra), GFP_NOFS);
6125 mutex_lock(&inode->i_mutex);
6126 first_index = start >> PAGE_CACHE_SHIFT;
6127 last_index = (start + len - 1) >> PAGE_CACHE_SHIFT;
6129 /* make sure the dirty trick played by the caller work */
6130 ret = invalidate_inode_pages2_range(inode->i_mapping,
6131 first_index, last_index);
6132 if (ret)
6133 goto out_unlock;
6135 file_ra_state_init(ra, inode->i_mapping);
6137 for (i = first_index ; i <= last_index; i++) {
6138 if (total_read % ra->ra_pages == 0) {
6139 btrfs_force_ra(inode->i_mapping, ra, NULL, i,
6140 calc_ra(i, last_index, ra->ra_pages));
6142 total_read++;
6143 again:
6144 if (((u64)i << PAGE_CACHE_SHIFT) > i_size_read(inode))
6145 BUG_ON(1);
6146 page = grab_cache_page(inode->i_mapping, i);
6147 if (!page) {
6148 ret = -ENOMEM;
6149 goto out_unlock;
6151 if (!PageUptodate(page)) {
6152 btrfs_readpage(NULL, page);
6153 lock_page(page);
6154 if (!PageUptodate(page)) {
6155 unlock_page(page);
6156 page_cache_release(page);
6157 ret = -EIO;
6158 goto out_unlock;
6161 wait_on_page_writeback(page);
6163 page_start = (u64)page->index << PAGE_CACHE_SHIFT;
6164 page_end = page_start + PAGE_CACHE_SIZE - 1;
6165 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
6167 ordered = btrfs_lookup_ordered_extent(inode, page_start);
6168 if (ordered) {
6169 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
6170 unlock_page(page);
6171 page_cache_release(page);
6172 btrfs_start_ordered_extent(inode, ordered, 1);
6173 btrfs_put_ordered_extent(ordered);
6174 goto again;
6176 set_page_extent_mapped(page);
6178 if (i == first_index)
6179 set_extent_bits(io_tree, page_start, page_end,
6180 EXTENT_BOUNDARY, GFP_NOFS);
6181 btrfs_set_extent_delalloc(inode, page_start, page_end);
6183 set_page_dirty(page);
6184 total_dirty++;
6186 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
6187 unlock_page(page);
6188 page_cache_release(page);
6191 out_unlock:
6192 kfree(ra);
6193 mutex_unlock(&inode->i_mutex);
6194 balance_dirty_pages_ratelimited_nr(inode->i_mapping, total_dirty);
6195 return ret;
6198 static noinline int relocate_data_extent(struct inode *reloc_inode,
6199 struct btrfs_key *extent_key,
6200 u64 offset)
6202 struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
6203 struct extent_map_tree *em_tree = &BTRFS_I(reloc_inode)->extent_tree;
6204 struct extent_map *em;
6205 u64 start = extent_key->objectid - offset;
6206 u64 end = start + extent_key->offset - 1;
6208 em = alloc_extent_map(GFP_NOFS);
6209 BUG_ON(!em || IS_ERR(em));
6211 em->start = start;
6212 em->len = extent_key->offset;
6213 em->block_len = extent_key->offset;
6214 em->block_start = extent_key->objectid;
6215 em->bdev = root->fs_info->fs_devices->latest_bdev;
6216 set_bit(EXTENT_FLAG_PINNED, &em->flags);
6218 /* setup extent map to cheat btrfs_readpage */
6219 lock_extent(&BTRFS_I(reloc_inode)->io_tree, start, end, GFP_NOFS);
6220 while (1) {
6221 int ret;
6222 write_lock(&em_tree->lock);
6223 ret = add_extent_mapping(em_tree, em);
6224 write_unlock(&em_tree->lock);
6225 if (ret != -EEXIST) {
6226 free_extent_map(em);
6227 break;
6229 btrfs_drop_extent_cache(reloc_inode, start, end, 0);
6231 unlock_extent(&BTRFS_I(reloc_inode)->io_tree, start, end, GFP_NOFS);
6233 return relocate_inode_pages(reloc_inode, start, extent_key->offset);
6236 struct btrfs_ref_path {
6237 u64 extent_start;
6238 u64 nodes[BTRFS_MAX_LEVEL];
6239 u64 root_objectid;
6240 u64 root_generation;
6241 u64 owner_objectid;
6242 u32 num_refs;
6243 int lowest_level;
6244 int current_level;
6245 int shared_level;
6247 struct btrfs_key node_keys[BTRFS_MAX_LEVEL];
6248 u64 new_nodes[BTRFS_MAX_LEVEL];
6251 struct disk_extent {
6252 u64 ram_bytes;
6253 u64 disk_bytenr;
6254 u64 disk_num_bytes;
6255 u64 offset;
6256 u64 num_bytes;
6257 u8 compression;
6258 u8 encryption;
6259 u16 other_encoding;
6262 static int is_cowonly_root(u64 root_objectid)
6264 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
6265 root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
6266 root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
6267 root_objectid == BTRFS_DEV_TREE_OBJECTID ||
6268 root_objectid == BTRFS_TREE_LOG_OBJECTID ||
6269 root_objectid == BTRFS_CSUM_TREE_OBJECTID)
6270 return 1;
6271 return 0;
6274 static noinline int __next_ref_path(struct btrfs_trans_handle *trans,
6275 struct btrfs_root *extent_root,
6276 struct btrfs_ref_path *ref_path,
6277 int first_time)
6279 struct extent_buffer *leaf;
6280 struct btrfs_path *path;
6281 struct btrfs_extent_ref *ref;
6282 struct btrfs_key key;
6283 struct btrfs_key found_key;
6284 u64 bytenr;
6285 u32 nritems;
6286 int level;
6287 int ret = 1;
6289 path = btrfs_alloc_path();
6290 if (!path)
6291 return -ENOMEM;
6293 if (first_time) {
6294 ref_path->lowest_level = -1;
6295 ref_path->current_level = -1;
6296 ref_path->shared_level = -1;
6297 goto walk_up;
6299 walk_down:
6300 level = ref_path->current_level - 1;
6301 while (level >= -1) {
6302 u64 parent;
6303 if (level < ref_path->lowest_level)
6304 break;
6306 if (level >= 0)
6307 bytenr = ref_path->nodes[level];
6308 else
6309 bytenr = ref_path->extent_start;
6310 BUG_ON(bytenr == 0);
6312 parent = ref_path->nodes[level + 1];
6313 ref_path->nodes[level + 1] = 0;
6314 ref_path->current_level = level;
6315 BUG_ON(parent == 0);
6317 key.objectid = bytenr;
6318 key.offset = parent + 1;
6319 key.type = BTRFS_EXTENT_REF_KEY;
6321 ret = btrfs_search_slot(trans, extent_root, &key, path, 0, 0);
6322 if (ret < 0)
6323 goto out;
6324 BUG_ON(ret == 0);
6326 leaf = path->nodes[0];
6327 nritems = btrfs_header_nritems(leaf);
6328 if (path->slots[0] >= nritems) {
6329 ret = btrfs_next_leaf(extent_root, path);
6330 if (ret < 0)
6331 goto out;
6332 if (ret > 0)
6333 goto next;
6334 leaf = path->nodes[0];
6337 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6338 if (found_key.objectid == bytenr &&
6339 found_key.type == BTRFS_EXTENT_REF_KEY) {
6340 if (level < ref_path->shared_level)
6341 ref_path->shared_level = level;
6342 goto found;
6344 next:
6345 level--;
6346 btrfs_release_path(extent_root, path);
6347 cond_resched();
6349 /* reached lowest level */
6350 ret = 1;
6351 goto out;
6352 walk_up:
6353 level = ref_path->current_level;
6354 while (level < BTRFS_MAX_LEVEL - 1) {
6355 u64 ref_objectid;
6357 if (level >= 0)
6358 bytenr = ref_path->nodes[level];
6359 else
6360 bytenr = ref_path->extent_start;
6362 BUG_ON(bytenr == 0);
6364 key.objectid = bytenr;
6365 key.offset = 0;
6366 key.type = BTRFS_EXTENT_REF_KEY;
6368 ret = btrfs_search_slot(trans, extent_root, &key, path, 0, 0);
6369 if (ret < 0)
6370 goto out;
6372 leaf = path->nodes[0];
6373 nritems = btrfs_header_nritems(leaf);
6374 if (path->slots[0] >= nritems) {
6375 ret = btrfs_next_leaf(extent_root, path);
6376 if (ret < 0)
6377 goto out;
6378 if (ret > 0) {
6379 /* the extent was freed by someone */
6380 if (ref_path->lowest_level == level)
6381 goto out;
6382 btrfs_release_path(extent_root, path);
6383 goto walk_down;
6385 leaf = path->nodes[0];
6388 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6389 if (found_key.objectid != bytenr ||
6390 found_key.type != BTRFS_EXTENT_REF_KEY) {
6391 /* the extent was freed by someone */
6392 if (ref_path->lowest_level == level) {
6393 ret = 1;
6394 goto out;
6396 btrfs_release_path(extent_root, path);
6397 goto walk_down;
6399 found:
6400 ref = btrfs_item_ptr(leaf, path->slots[0],
6401 struct btrfs_extent_ref);
6402 ref_objectid = btrfs_ref_objectid(leaf, ref);
6403 if (ref_objectid < BTRFS_FIRST_FREE_OBJECTID) {
6404 if (first_time) {
6405 level = (int)ref_objectid;
6406 BUG_ON(level >= BTRFS_MAX_LEVEL);
6407 ref_path->lowest_level = level;
6408 ref_path->current_level = level;
6409 ref_path->nodes[level] = bytenr;
6410 } else {
6411 WARN_ON(ref_objectid != level);
6413 } else {
6414 WARN_ON(level != -1);
6416 first_time = 0;
6418 if (ref_path->lowest_level == level) {
6419 ref_path->owner_objectid = ref_objectid;
6420 ref_path->num_refs = btrfs_ref_num_refs(leaf, ref);
6424 * the block is tree root or the block isn't in reference
6425 * counted tree.
6427 if (found_key.objectid == found_key.offset ||
6428 is_cowonly_root(btrfs_ref_root(leaf, ref))) {
6429 ref_path->root_objectid = btrfs_ref_root(leaf, ref);
6430 ref_path->root_generation =
6431 btrfs_ref_generation(leaf, ref);
6432 if (level < 0) {
6433 /* special reference from the tree log */
6434 ref_path->nodes[0] = found_key.offset;
6435 ref_path->current_level = 0;
6437 ret = 0;
6438 goto out;
6441 level++;
6442 BUG_ON(ref_path->nodes[level] != 0);
6443 ref_path->nodes[level] = found_key.offset;
6444 ref_path->current_level = level;
6447 * the reference was created in the running transaction,
6448 * no need to continue walking up.
6450 if (btrfs_ref_generation(leaf, ref) == trans->transid) {
6451 ref_path->root_objectid = btrfs_ref_root(leaf, ref);
6452 ref_path->root_generation =
6453 btrfs_ref_generation(leaf, ref);
6454 ret = 0;
6455 goto out;
6458 btrfs_release_path(extent_root, path);
6459 cond_resched();
6461 /* reached max tree level, but no tree root found. */
6462 BUG();
6463 out:
6464 btrfs_free_path(path);
6465 return ret;
6468 static int btrfs_first_ref_path(struct btrfs_trans_handle *trans,
6469 struct btrfs_root *extent_root,
6470 struct btrfs_ref_path *ref_path,
6471 u64 extent_start)
6473 memset(ref_path, 0, sizeof(*ref_path));
6474 ref_path->extent_start = extent_start;
6476 return __next_ref_path(trans, extent_root, ref_path, 1);
6479 static int btrfs_next_ref_path(struct btrfs_trans_handle *trans,
6480 struct btrfs_root *extent_root,
6481 struct btrfs_ref_path *ref_path)
6483 return __next_ref_path(trans, extent_root, ref_path, 0);
6486 static noinline int get_new_locations(struct inode *reloc_inode,
6487 struct btrfs_key *extent_key,
6488 u64 offset, int no_fragment,
6489 struct disk_extent **extents,
6490 int *nr_extents)
6492 struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
6493 struct btrfs_path *path;
6494 struct btrfs_file_extent_item *fi;
6495 struct extent_buffer *leaf;
6496 struct disk_extent *exts = *extents;
6497 struct btrfs_key found_key;
6498 u64 cur_pos;
6499 u64 last_byte;
6500 u32 nritems;
6501 int nr = 0;
6502 int max = *nr_extents;
6503 int ret;
6505 WARN_ON(!no_fragment && *extents);
6506 if (!exts) {
6507 max = 1;
6508 exts = kmalloc(sizeof(*exts) * max, GFP_NOFS);
6509 if (!exts)
6510 return -ENOMEM;
6513 path = btrfs_alloc_path();
6514 BUG_ON(!path);
6516 cur_pos = extent_key->objectid - offset;
6517 last_byte = extent_key->objectid + extent_key->offset;
6518 ret = btrfs_lookup_file_extent(NULL, root, path, reloc_inode->i_ino,
6519 cur_pos, 0);
6520 if (ret < 0)
6521 goto out;
6522 if (ret > 0) {
6523 ret = -ENOENT;
6524 goto out;
6527 while (1) {
6528 leaf = path->nodes[0];
6529 nritems = btrfs_header_nritems(leaf);
6530 if (path->slots[0] >= nritems) {
6531 ret = btrfs_next_leaf(root, path);
6532 if (ret < 0)
6533 goto out;
6534 if (ret > 0)
6535 break;
6536 leaf = path->nodes[0];
6539 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6540 if (found_key.offset != cur_pos ||
6541 found_key.type != BTRFS_EXTENT_DATA_KEY ||
6542 found_key.objectid != reloc_inode->i_ino)
6543 break;
6545 fi = btrfs_item_ptr(leaf, path->slots[0],
6546 struct btrfs_file_extent_item);
6547 if (btrfs_file_extent_type(leaf, fi) !=
6548 BTRFS_FILE_EXTENT_REG ||
6549 btrfs_file_extent_disk_bytenr(leaf, fi) == 0)
6550 break;
6552 if (nr == max) {
6553 struct disk_extent *old = exts;
6554 max *= 2;
6555 exts = kzalloc(sizeof(*exts) * max, GFP_NOFS);
6556 memcpy(exts, old, sizeof(*exts) * nr);
6557 if (old != *extents)
6558 kfree(old);
6561 exts[nr].disk_bytenr =
6562 btrfs_file_extent_disk_bytenr(leaf, fi);
6563 exts[nr].disk_num_bytes =
6564 btrfs_file_extent_disk_num_bytes(leaf, fi);
6565 exts[nr].offset = btrfs_file_extent_offset(leaf, fi);
6566 exts[nr].num_bytes = btrfs_file_extent_num_bytes(leaf, fi);
6567 exts[nr].ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
6568 exts[nr].compression = btrfs_file_extent_compression(leaf, fi);
6569 exts[nr].encryption = btrfs_file_extent_encryption(leaf, fi);
6570 exts[nr].other_encoding = btrfs_file_extent_other_encoding(leaf,
6571 fi);
6572 BUG_ON(exts[nr].offset > 0);
6573 BUG_ON(exts[nr].compression || exts[nr].encryption);
6574 BUG_ON(exts[nr].num_bytes != exts[nr].disk_num_bytes);
6576 cur_pos += exts[nr].num_bytes;
6577 nr++;
6579 if (cur_pos + offset >= last_byte)
6580 break;
6582 if (no_fragment) {
6583 ret = 1;
6584 goto out;
6586 path->slots[0]++;
6589 BUG_ON(cur_pos + offset > last_byte);
6590 if (cur_pos + offset < last_byte) {
6591 ret = -ENOENT;
6592 goto out;
6594 ret = 0;
6595 out:
6596 btrfs_free_path(path);
6597 if (ret) {
6598 if (exts != *extents)
6599 kfree(exts);
6600 } else {
6601 *extents = exts;
6602 *nr_extents = nr;
6604 return ret;
6607 static noinline int replace_one_extent(struct btrfs_trans_handle *trans,
6608 struct btrfs_root *root,
6609 struct btrfs_path *path,
6610 struct btrfs_key *extent_key,
6611 struct btrfs_key *leaf_key,
6612 struct btrfs_ref_path *ref_path,
6613 struct disk_extent *new_extents,
6614 int nr_extents)
6616 struct extent_buffer *leaf;
6617 struct btrfs_file_extent_item *fi;
6618 struct inode *inode = NULL;
6619 struct btrfs_key key;
6620 u64 lock_start = 0;
6621 u64 lock_end = 0;
6622 u64 num_bytes;
6623 u64 ext_offset;
6624 u64 search_end = (u64)-1;
6625 u32 nritems;
6626 int nr_scaned = 0;
6627 int extent_locked = 0;
6628 int extent_type;
6629 int ret;
6631 memcpy(&key, leaf_key, sizeof(key));
6632 if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS) {
6633 if (key.objectid < ref_path->owner_objectid ||
6634 (key.objectid == ref_path->owner_objectid &&
6635 key.type < BTRFS_EXTENT_DATA_KEY)) {
6636 key.objectid = ref_path->owner_objectid;
6637 key.type = BTRFS_EXTENT_DATA_KEY;
6638 key.offset = 0;
6642 while (1) {
6643 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
6644 if (ret < 0)
6645 goto out;
6647 leaf = path->nodes[0];
6648 nritems = btrfs_header_nritems(leaf);
6649 next:
6650 if (extent_locked && ret > 0) {
6652 * the file extent item was modified by someone
6653 * before the extent got locked.
6655 unlock_extent(&BTRFS_I(inode)->io_tree, lock_start,
6656 lock_end, GFP_NOFS);
6657 extent_locked = 0;
6660 if (path->slots[0] >= nritems) {
6661 if (++nr_scaned > 2)
6662 break;
6664 BUG_ON(extent_locked);
6665 ret = btrfs_next_leaf(root, path);
6666 if (ret < 0)
6667 goto out;
6668 if (ret > 0)
6669 break;
6670 leaf = path->nodes[0];
6671 nritems = btrfs_header_nritems(leaf);
6674 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
6676 if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS) {
6677 if ((key.objectid > ref_path->owner_objectid) ||
6678 (key.objectid == ref_path->owner_objectid &&
6679 key.type > BTRFS_EXTENT_DATA_KEY) ||
6680 key.offset >= search_end)
6681 break;
6684 if (inode && key.objectid != inode->i_ino) {
6685 BUG_ON(extent_locked);
6686 btrfs_release_path(root, path);
6687 mutex_unlock(&inode->i_mutex);
6688 iput(inode);
6689 inode = NULL;
6690 continue;
6693 if (key.type != BTRFS_EXTENT_DATA_KEY) {
6694 path->slots[0]++;
6695 ret = 1;
6696 goto next;
6698 fi = btrfs_item_ptr(leaf, path->slots[0],
6699 struct btrfs_file_extent_item);
6700 extent_type = btrfs_file_extent_type(leaf, fi);
6701 if ((extent_type != BTRFS_FILE_EXTENT_REG &&
6702 extent_type != BTRFS_FILE_EXTENT_PREALLOC) ||
6703 (btrfs_file_extent_disk_bytenr(leaf, fi) !=
6704 extent_key->objectid)) {
6705 path->slots[0]++;
6706 ret = 1;
6707 goto next;
6710 num_bytes = btrfs_file_extent_num_bytes(leaf, fi);
6711 ext_offset = btrfs_file_extent_offset(leaf, fi);
6713 if (search_end == (u64)-1) {
6714 search_end = key.offset - ext_offset +
6715 btrfs_file_extent_ram_bytes(leaf, fi);
6718 if (!extent_locked) {
6719 lock_start = key.offset;
6720 lock_end = lock_start + num_bytes - 1;
6721 } else {
6722 if (lock_start > key.offset ||
6723 lock_end + 1 < key.offset + num_bytes) {
6724 unlock_extent(&BTRFS_I(inode)->io_tree,
6725 lock_start, lock_end, GFP_NOFS);
6726 extent_locked = 0;
6730 if (!inode) {
6731 btrfs_release_path(root, path);
6733 inode = btrfs_iget_locked(root->fs_info->sb,
6734 key.objectid, root);
6735 if (inode->i_state & I_NEW) {
6736 BTRFS_I(inode)->root = root;
6737 BTRFS_I(inode)->location.objectid =
6738 key.objectid;
6739 BTRFS_I(inode)->location.type =
6740 BTRFS_INODE_ITEM_KEY;
6741 BTRFS_I(inode)->location.offset = 0;
6742 btrfs_read_locked_inode(inode);
6743 unlock_new_inode(inode);
6746 * some code call btrfs_commit_transaction while
6747 * holding the i_mutex, so we can't use mutex_lock
6748 * here.
6750 if (is_bad_inode(inode) ||
6751 !mutex_trylock(&inode->i_mutex)) {
6752 iput(inode);
6753 inode = NULL;
6754 key.offset = (u64)-1;
6755 goto skip;
6759 if (!extent_locked) {
6760 struct btrfs_ordered_extent *ordered;
6762 btrfs_release_path(root, path);
6764 lock_extent(&BTRFS_I(inode)->io_tree, lock_start,
6765 lock_end, GFP_NOFS);
6766 ordered = btrfs_lookup_first_ordered_extent(inode,
6767 lock_end);
6768 if (ordered &&
6769 ordered->file_offset <= lock_end &&
6770 ordered->file_offset + ordered->len > lock_start) {
6771 unlock_extent(&BTRFS_I(inode)->io_tree,
6772 lock_start, lock_end, GFP_NOFS);
6773 btrfs_start_ordered_extent(inode, ordered, 1);
6774 btrfs_put_ordered_extent(ordered);
6775 key.offset += num_bytes;
6776 goto skip;
6778 if (ordered)
6779 btrfs_put_ordered_extent(ordered);
6781 extent_locked = 1;
6782 continue;
6785 if (nr_extents == 1) {
6786 /* update extent pointer in place */
6787 btrfs_set_file_extent_disk_bytenr(leaf, fi,
6788 new_extents[0].disk_bytenr);
6789 btrfs_set_file_extent_disk_num_bytes(leaf, fi,
6790 new_extents[0].disk_num_bytes);
6791 btrfs_mark_buffer_dirty(leaf);
6793 btrfs_drop_extent_cache(inode, key.offset,
6794 key.offset + num_bytes - 1, 0);
6796 ret = btrfs_inc_extent_ref(trans, root,
6797 new_extents[0].disk_bytenr,
6798 new_extents[0].disk_num_bytes,
6799 leaf->start,
6800 root->root_key.objectid,
6801 trans->transid,
6802 key.objectid);
6803 BUG_ON(ret);
6805 ret = btrfs_free_extent(trans, root,
6806 extent_key->objectid,
6807 extent_key->offset,
6808 leaf->start,
6809 btrfs_header_owner(leaf),
6810 btrfs_header_generation(leaf),
6811 key.objectid, 0);
6812 BUG_ON(ret);
6814 btrfs_release_path(root, path);
6815 key.offset += num_bytes;
6816 } else {
6817 BUG_ON(1);
6818 #if 0
6819 u64 alloc_hint;
6820 u64 extent_len;
6821 int i;
6823 * drop old extent pointer at first, then insert the
6824 * new pointers one bye one
6826 btrfs_release_path(root, path);
6827 ret = btrfs_drop_extents(trans, root, inode, key.offset,
6828 key.offset + num_bytes,
6829 key.offset, &alloc_hint);
6830 BUG_ON(ret);
6832 for (i = 0; i < nr_extents; i++) {
6833 if (ext_offset >= new_extents[i].num_bytes) {
6834 ext_offset -= new_extents[i].num_bytes;
6835 continue;
6837 extent_len = min(new_extents[i].num_bytes -
6838 ext_offset, num_bytes);
6840 ret = btrfs_insert_empty_item(trans, root,
6841 path, &key,
6842 sizeof(*fi));
6843 BUG_ON(ret);
6845 leaf = path->nodes[0];
6846 fi = btrfs_item_ptr(leaf, path->slots[0],
6847 struct btrfs_file_extent_item);
6848 btrfs_set_file_extent_generation(leaf, fi,
6849 trans->transid);
6850 btrfs_set_file_extent_type(leaf, fi,
6851 BTRFS_FILE_EXTENT_REG);
6852 btrfs_set_file_extent_disk_bytenr(leaf, fi,
6853 new_extents[i].disk_bytenr);
6854 btrfs_set_file_extent_disk_num_bytes(leaf, fi,
6855 new_extents[i].disk_num_bytes);
6856 btrfs_set_file_extent_ram_bytes(leaf, fi,
6857 new_extents[i].ram_bytes);
6859 btrfs_set_file_extent_compression(leaf, fi,
6860 new_extents[i].compression);
6861 btrfs_set_file_extent_encryption(leaf, fi,
6862 new_extents[i].encryption);
6863 btrfs_set_file_extent_other_encoding(leaf, fi,
6864 new_extents[i].other_encoding);
6866 btrfs_set_file_extent_num_bytes(leaf, fi,
6867 extent_len);
6868 ext_offset += new_extents[i].offset;
6869 btrfs_set_file_extent_offset(leaf, fi,
6870 ext_offset);
6871 btrfs_mark_buffer_dirty(leaf);
6873 btrfs_drop_extent_cache(inode, key.offset,
6874 key.offset + extent_len - 1, 0);
6876 ret = btrfs_inc_extent_ref(trans, root,
6877 new_extents[i].disk_bytenr,
6878 new_extents[i].disk_num_bytes,
6879 leaf->start,
6880 root->root_key.objectid,
6881 trans->transid, key.objectid);
6882 BUG_ON(ret);
6883 btrfs_release_path(root, path);
6885 inode_add_bytes(inode, extent_len);
6887 ext_offset = 0;
6888 num_bytes -= extent_len;
6889 key.offset += extent_len;
6891 if (num_bytes == 0)
6892 break;
6894 BUG_ON(i >= nr_extents);
6895 #endif
6898 if (extent_locked) {
6899 unlock_extent(&BTRFS_I(inode)->io_tree, lock_start,
6900 lock_end, GFP_NOFS);
6901 extent_locked = 0;
6903 skip:
6904 if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS &&
6905 key.offset >= search_end)
6906 break;
6908 cond_resched();
6910 ret = 0;
6911 out:
6912 btrfs_release_path(root, path);
6913 if (inode) {
6914 mutex_unlock(&inode->i_mutex);
6915 if (extent_locked) {
6916 unlock_extent(&BTRFS_I(inode)->io_tree, lock_start,
6917 lock_end, GFP_NOFS);
6919 iput(inode);
6921 return ret;
6924 int btrfs_reloc_tree_cache_ref(struct btrfs_trans_handle *trans,
6925 struct btrfs_root *root,
6926 struct extent_buffer *buf, u64 orig_start)
6928 int level;
6929 int ret;
6931 BUG_ON(btrfs_header_generation(buf) != trans->transid);
6932 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
6934 level = btrfs_header_level(buf);
6935 if (level == 0) {
6936 struct btrfs_leaf_ref *ref;
6937 struct btrfs_leaf_ref *orig_ref;
6939 orig_ref = btrfs_lookup_leaf_ref(root, orig_start);
6940 if (!orig_ref)
6941 return -ENOENT;
6943 ref = btrfs_alloc_leaf_ref(root, orig_ref->nritems);
6944 if (!ref) {
6945 btrfs_free_leaf_ref(root, orig_ref);
6946 return -ENOMEM;
6949 ref->nritems = orig_ref->nritems;
6950 memcpy(ref->extents, orig_ref->extents,
6951 sizeof(ref->extents[0]) * ref->nritems);
6953 btrfs_free_leaf_ref(root, orig_ref);
6955 ref->root_gen = trans->transid;
6956 ref->bytenr = buf->start;
6957 ref->owner = btrfs_header_owner(buf);
6958 ref->generation = btrfs_header_generation(buf);
6960 ret = btrfs_add_leaf_ref(root, ref, 0);
6961 WARN_ON(ret);
6962 btrfs_free_leaf_ref(root, ref);
6964 return 0;
6967 static noinline int invalidate_extent_cache(struct btrfs_root *root,
6968 struct extent_buffer *leaf,
6969 struct btrfs_block_group_cache *group,
6970 struct btrfs_root *target_root)
6972 struct btrfs_key key;
6973 struct inode *inode = NULL;
6974 struct btrfs_file_extent_item *fi;
6975 struct extent_state *cached_state = NULL;
6976 u64 num_bytes;
6977 u64 skip_objectid = 0;
6978 u32 nritems;
6979 u32 i;
6981 nritems = btrfs_header_nritems(leaf);
6982 for (i = 0; i < nritems; i++) {
6983 btrfs_item_key_to_cpu(leaf, &key, i);
6984 if (key.objectid == skip_objectid ||
6985 key.type != BTRFS_EXTENT_DATA_KEY)
6986 continue;
6987 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
6988 if (btrfs_file_extent_type(leaf, fi) ==
6989 BTRFS_FILE_EXTENT_INLINE)
6990 continue;
6991 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0)
6992 continue;
6993 if (!inode || inode->i_ino != key.objectid) {
6994 iput(inode);
6995 inode = btrfs_ilookup(target_root->fs_info->sb,
6996 key.objectid, target_root, 1);
6998 if (!inode) {
6999 skip_objectid = key.objectid;
7000 continue;
7002 num_bytes = btrfs_file_extent_num_bytes(leaf, fi);
7004 lock_extent_bits(&BTRFS_I(inode)->io_tree, key.offset,
7005 key.offset + num_bytes - 1, 0, &cached_state,
7006 GFP_NOFS);
7007 btrfs_drop_extent_cache(inode, key.offset,
7008 key.offset + num_bytes - 1, 1);
7009 unlock_extent_cached(&BTRFS_I(inode)->io_tree, key.offset,
7010 key.offset + num_bytes - 1, &cached_state,
7011 GFP_NOFS);
7012 cond_resched();
7014 iput(inode);
7015 return 0;
7018 static noinline int replace_extents_in_leaf(struct btrfs_trans_handle *trans,
7019 struct btrfs_root *root,
7020 struct extent_buffer *leaf,
7021 struct btrfs_block_group_cache *group,
7022 struct inode *reloc_inode)
7024 struct btrfs_key key;
7025 struct btrfs_key extent_key;
7026 struct btrfs_file_extent_item *fi;
7027 struct btrfs_leaf_ref *ref;
7028 struct disk_extent *new_extent;
7029 u64 bytenr;
7030 u64 num_bytes;
7031 u32 nritems;
7032 u32 i;
7033 int ext_index;
7034 int nr_extent;
7035 int ret;
7037 new_extent = kmalloc(sizeof(*new_extent), GFP_NOFS);
7038 BUG_ON(!new_extent);
7040 ref = btrfs_lookup_leaf_ref(root, leaf->start);
7041 BUG_ON(!ref);
7043 ext_index = -1;
7044 nritems = btrfs_header_nritems(leaf);
7045 for (i = 0; i < nritems; i++) {
7046 btrfs_item_key_to_cpu(leaf, &key, i);
7047 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
7048 continue;
7049 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
7050 if (btrfs_file_extent_type(leaf, fi) ==
7051 BTRFS_FILE_EXTENT_INLINE)
7052 continue;
7053 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7054 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
7055 if (bytenr == 0)
7056 continue;
7058 ext_index++;
7059 if (bytenr >= group->key.objectid + group->key.offset ||
7060 bytenr + num_bytes <= group->key.objectid)
7061 continue;
7063 extent_key.objectid = bytenr;
7064 extent_key.offset = num_bytes;
7065 extent_key.type = BTRFS_EXTENT_ITEM_KEY;
7066 nr_extent = 1;
7067 ret = get_new_locations(reloc_inode, &extent_key,
7068 group->key.objectid, 1,
7069 &new_extent, &nr_extent);
7070 if (ret > 0)
7071 continue;
7072 BUG_ON(ret < 0);
7074 BUG_ON(ref->extents[ext_index].bytenr != bytenr);
7075 BUG_ON(ref->extents[ext_index].num_bytes != num_bytes);
7076 ref->extents[ext_index].bytenr = new_extent->disk_bytenr;
7077 ref->extents[ext_index].num_bytes = new_extent->disk_num_bytes;
7079 btrfs_set_file_extent_disk_bytenr(leaf, fi,
7080 new_extent->disk_bytenr);
7081 btrfs_set_file_extent_disk_num_bytes(leaf, fi,
7082 new_extent->disk_num_bytes);
7083 btrfs_mark_buffer_dirty(leaf);
7085 ret = btrfs_inc_extent_ref(trans, root,
7086 new_extent->disk_bytenr,
7087 new_extent->disk_num_bytes,
7088 leaf->start,
7089 root->root_key.objectid,
7090 trans->transid, key.objectid);
7091 BUG_ON(ret);
7093 ret = btrfs_free_extent(trans, root,
7094 bytenr, num_bytes, leaf->start,
7095 btrfs_header_owner(leaf),
7096 btrfs_header_generation(leaf),
7097 key.objectid, 0);
7098 BUG_ON(ret);
7099 cond_resched();
7101 kfree(new_extent);
7102 BUG_ON(ext_index + 1 != ref->nritems);
7103 btrfs_free_leaf_ref(root, ref);
7104 return 0;
7107 int btrfs_free_reloc_root(struct btrfs_trans_handle *trans,
7108 struct btrfs_root *root)
7110 struct btrfs_root *reloc_root;
7111 int ret;
7113 if (root->reloc_root) {
7114 reloc_root = root->reloc_root;
7115 root->reloc_root = NULL;
7116 list_add(&reloc_root->dead_list,
7117 &root->fs_info->dead_reloc_roots);
7119 btrfs_set_root_bytenr(&reloc_root->root_item,
7120 reloc_root->node->start);
7121 btrfs_set_root_level(&root->root_item,
7122 btrfs_header_level(reloc_root->node));
7123 memset(&reloc_root->root_item.drop_progress, 0,
7124 sizeof(struct btrfs_disk_key));
7125 reloc_root->root_item.drop_level = 0;
7127 ret = btrfs_update_root(trans, root->fs_info->tree_root,
7128 &reloc_root->root_key,
7129 &reloc_root->root_item);
7130 BUG_ON(ret);
7132 return 0;
7135 int btrfs_drop_dead_reloc_roots(struct btrfs_root *root)
7137 struct btrfs_trans_handle *trans;
7138 struct btrfs_root *reloc_root;
7139 struct btrfs_root *prev_root = NULL;
7140 struct list_head dead_roots;
7141 int ret;
7142 unsigned long nr;
7144 INIT_LIST_HEAD(&dead_roots);
7145 list_splice_init(&root->fs_info->dead_reloc_roots, &dead_roots);
7147 while (!list_empty(&dead_roots)) {
7148 reloc_root = list_entry(dead_roots.prev,
7149 struct btrfs_root, dead_list);
7150 list_del_init(&reloc_root->dead_list);
7152 BUG_ON(reloc_root->commit_root != NULL);
7153 while (1) {
7154 trans = btrfs_join_transaction(root, 1);
7155 BUG_ON(!trans);
7157 mutex_lock(&root->fs_info->drop_mutex);
7158 ret = btrfs_drop_snapshot(trans, reloc_root);
7159 if (ret != -EAGAIN)
7160 break;
7161 mutex_unlock(&root->fs_info->drop_mutex);
7163 nr = trans->blocks_used;
7164 ret = btrfs_end_transaction(trans, root);
7165 BUG_ON(ret);
7166 btrfs_btree_balance_dirty(root, nr);
7169 free_extent_buffer(reloc_root->node);
7171 ret = btrfs_del_root(trans, root->fs_info->tree_root,
7172 &reloc_root->root_key);
7173 BUG_ON(ret);
7174 mutex_unlock(&root->fs_info->drop_mutex);
7176 nr = trans->blocks_used;
7177 ret = btrfs_end_transaction(trans, root);
7178 BUG_ON(ret);
7179 btrfs_btree_balance_dirty(root, nr);
7181 kfree(prev_root);
7182 prev_root = reloc_root;
7184 if (prev_root) {
7185 btrfs_remove_leaf_refs(prev_root, (u64)-1, 0);
7186 kfree(prev_root);
7188 return 0;
7191 int btrfs_add_dead_reloc_root(struct btrfs_root *root)
7193 list_add(&root->dead_list, &root->fs_info->dead_reloc_roots);
7194 return 0;
7197 int btrfs_cleanup_reloc_trees(struct btrfs_root *root)
7199 struct btrfs_root *reloc_root;
7200 struct btrfs_trans_handle *trans;
7201 struct btrfs_key location;
7202 int found;
7203 int ret;
7205 mutex_lock(&root->fs_info->tree_reloc_mutex);
7206 ret = btrfs_find_dead_roots(root, BTRFS_TREE_RELOC_OBJECTID, NULL);
7207 BUG_ON(ret);
7208 found = !list_empty(&root->fs_info->dead_reloc_roots);
7209 mutex_unlock(&root->fs_info->tree_reloc_mutex);
7211 if (found) {
7212 trans = btrfs_start_transaction(root, 1);
7213 BUG_ON(!trans);
7214 ret = btrfs_commit_transaction(trans, root);
7215 BUG_ON(ret);
7218 location.objectid = BTRFS_DATA_RELOC_TREE_OBJECTID;
7219 location.offset = (u64)-1;
7220 location.type = BTRFS_ROOT_ITEM_KEY;
7222 reloc_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
7223 BUG_ON(!reloc_root);
7224 btrfs_orphan_cleanup(reloc_root);
7225 return 0;
7228 static noinline int init_reloc_tree(struct btrfs_trans_handle *trans,
7229 struct btrfs_root *root)
7231 struct btrfs_root *reloc_root;
7232 struct extent_buffer *eb;
7233 struct btrfs_root_item *root_item;
7234 struct btrfs_key root_key;
7235 int ret;
7237 BUG_ON(!root->ref_cows);
7238 if (root->reloc_root)
7239 return 0;
7241 root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
7242 BUG_ON(!root_item);
7244 ret = btrfs_copy_root(trans, root, root->commit_root,
7245 &eb, BTRFS_TREE_RELOC_OBJECTID);
7246 BUG_ON(ret);
7248 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
7249 root_key.offset = root->root_key.objectid;
7250 root_key.type = BTRFS_ROOT_ITEM_KEY;
7252 memcpy(root_item, &root->root_item, sizeof(root_item));
7253 btrfs_set_root_refs(root_item, 0);
7254 btrfs_set_root_bytenr(root_item, eb->start);
7255 btrfs_set_root_level(root_item, btrfs_header_level(eb));
7256 btrfs_set_root_generation(root_item, trans->transid);
7258 btrfs_tree_unlock(eb);
7259 free_extent_buffer(eb);
7261 ret = btrfs_insert_root(trans, root->fs_info->tree_root,
7262 &root_key, root_item);
7263 BUG_ON(ret);
7264 kfree(root_item);
7266 reloc_root = btrfs_read_fs_root_no_radix(root->fs_info->tree_root,
7267 &root_key);
7268 BUG_ON(!reloc_root);
7269 reloc_root->last_trans = trans->transid;
7270 reloc_root->commit_root = NULL;
7271 reloc_root->ref_tree = &root->fs_info->reloc_ref_tree;
7273 root->reloc_root = reloc_root;
7274 return 0;
7278 * Core function of space balance.
7280 * The idea is using reloc trees to relocate tree blocks in reference
7281 * counted roots. There is one reloc tree for each subvol, and all
7282 * reloc trees share same root key objectid. Reloc trees are snapshots
7283 * of the latest committed roots of subvols (root->commit_root).
7285 * To relocate a tree block referenced by a subvol, there are two steps.
7286 * COW the block through subvol's reloc tree, then update block pointer
7287 * in the subvol to point to the new block. Since all reloc trees share
7288 * same root key objectid, doing special handing for tree blocks owned
7289 * by them is easy. Once a tree block has been COWed in one reloc tree,
7290 * we can use the resulting new block directly when the same block is
7291 * required to COW again through other reloc trees. By this way, relocated
7292 * tree blocks are shared between reloc trees, so they are also shared
7293 * between subvols.
7295 static noinline int relocate_one_path(struct btrfs_trans_handle *trans,
7296 struct btrfs_root *root,
7297 struct btrfs_path *path,
7298 struct btrfs_key *first_key,
7299 struct btrfs_ref_path *ref_path,
7300 struct btrfs_block_group_cache *group,
7301 struct inode *reloc_inode)
7303 struct btrfs_root *reloc_root;
7304 struct extent_buffer *eb = NULL;
7305 struct btrfs_key *keys;
7306 u64 *nodes;
7307 int level;
7308 int shared_level;
7309 int lowest_level = 0;
7310 int ret;
7312 if (ref_path->owner_objectid < BTRFS_FIRST_FREE_OBJECTID)
7313 lowest_level = ref_path->owner_objectid;
7315 if (!root->ref_cows) {
7316 path->lowest_level = lowest_level;
7317 ret = btrfs_search_slot(trans, root, first_key, path, 0, 1);
7318 BUG_ON(ret < 0);
7319 path->lowest_level = 0;
7320 btrfs_release_path(root, path);
7321 return 0;
7324 mutex_lock(&root->fs_info->tree_reloc_mutex);
7325 ret = init_reloc_tree(trans, root);
7326 BUG_ON(ret);
7327 reloc_root = root->reloc_root;
7329 shared_level = ref_path->shared_level;
7330 ref_path->shared_level = BTRFS_MAX_LEVEL - 1;
7332 keys = ref_path->node_keys;
7333 nodes = ref_path->new_nodes;
7334 memset(&keys[shared_level + 1], 0,
7335 sizeof(*keys) * (BTRFS_MAX_LEVEL - shared_level - 1));
7336 memset(&nodes[shared_level + 1], 0,
7337 sizeof(*nodes) * (BTRFS_MAX_LEVEL - shared_level - 1));
7339 if (nodes[lowest_level] == 0) {
7340 path->lowest_level = lowest_level;
7341 ret = btrfs_search_slot(trans, reloc_root, first_key, path,
7342 0, 1);
7343 BUG_ON(ret);
7344 for (level = lowest_level; level < BTRFS_MAX_LEVEL; level++) {
7345 eb = path->nodes[level];
7346 if (!eb || eb == reloc_root->node)
7347 break;
7348 nodes[level] = eb->start;
7349 if (level == 0)
7350 btrfs_item_key_to_cpu(eb, &keys[level], 0);
7351 else
7352 btrfs_node_key_to_cpu(eb, &keys[level], 0);
7354 if (nodes[0] &&
7355 ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
7356 eb = path->nodes[0];
7357 ret = replace_extents_in_leaf(trans, reloc_root, eb,
7358 group, reloc_inode);
7359 BUG_ON(ret);
7361 btrfs_release_path(reloc_root, path);
7362 } else {
7363 ret = btrfs_merge_path(trans, reloc_root, keys, nodes,
7364 lowest_level);
7365 BUG_ON(ret);
7369 * replace tree blocks in the fs tree with tree blocks in
7370 * the reloc tree.
7372 ret = btrfs_merge_path(trans, root, keys, nodes, lowest_level);
7373 BUG_ON(ret < 0);
7375 if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
7376 ret = btrfs_search_slot(trans, reloc_root, first_key, path,
7377 0, 0);
7378 BUG_ON(ret);
7379 extent_buffer_get(path->nodes[0]);
7380 eb = path->nodes[0];
7381 btrfs_release_path(reloc_root, path);
7382 ret = invalidate_extent_cache(reloc_root, eb, group, root);
7383 BUG_ON(ret);
7384 free_extent_buffer(eb);
7387 mutex_unlock(&root->fs_info->tree_reloc_mutex);
7388 path->lowest_level = 0;
7389 return 0;
7392 static noinline int relocate_tree_block(struct btrfs_trans_handle *trans,
7393 struct btrfs_root *root,
7394 struct btrfs_path *path,
7395 struct btrfs_key *first_key,
7396 struct btrfs_ref_path *ref_path)
7398 int ret;
7400 ret = relocate_one_path(trans, root, path, first_key,
7401 ref_path, NULL, NULL);
7402 BUG_ON(ret);
7404 return 0;
7407 static noinline int del_extent_zero(struct btrfs_trans_handle *trans,
7408 struct btrfs_root *extent_root,
7409 struct btrfs_path *path,
7410 struct btrfs_key *extent_key)
7412 int ret;
7414 ret = btrfs_search_slot(trans, extent_root, extent_key, path, -1, 1);
7415 if (ret)
7416 goto out;
7417 ret = btrfs_del_item(trans, extent_root, path);
7418 out:
7419 btrfs_release_path(extent_root, path);
7420 return ret;
7423 static noinline struct btrfs_root *read_ref_root(struct btrfs_fs_info *fs_info,
7424 struct btrfs_ref_path *ref_path)
7426 struct btrfs_key root_key;
7428 root_key.objectid = ref_path->root_objectid;
7429 root_key.type = BTRFS_ROOT_ITEM_KEY;
7430 if (is_cowonly_root(ref_path->root_objectid))
7431 root_key.offset = 0;
7432 else
7433 root_key.offset = (u64)-1;
7435 return btrfs_read_fs_root_no_name(fs_info, &root_key);
7438 static noinline int relocate_one_extent(struct btrfs_root *extent_root,
7439 struct btrfs_path *path,
7440 struct btrfs_key *extent_key,
7441 struct btrfs_block_group_cache *group,
7442 struct inode *reloc_inode, int pass)
7444 struct btrfs_trans_handle *trans;
7445 struct btrfs_root *found_root;
7446 struct btrfs_ref_path *ref_path = NULL;
7447 struct disk_extent *new_extents = NULL;
7448 int nr_extents = 0;
7449 int loops;
7450 int ret;
7451 int level;
7452 struct btrfs_key first_key;
7453 u64 prev_block = 0;
7456 trans = btrfs_start_transaction(extent_root, 1);
7457 BUG_ON(!trans);
7459 if (extent_key->objectid == 0) {
7460 ret = del_extent_zero(trans, extent_root, path, extent_key);
7461 goto out;
7464 ref_path = kmalloc(sizeof(*ref_path), GFP_NOFS);
7465 if (!ref_path) {
7466 ret = -ENOMEM;
7467 goto out;
7470 for (loops = 0; ; loops++) {
7471 if (loops == 0) {
7472 ret = btrfs_first_ref_path(trans, extent_root, ref_path,
7473 extent_key->objectid);
7474 } else {
7475 ret = btrfs_next_ref_path(trans, extent_root, ref_path);
7477 if (ret < 0)
7478 goto out;
7479 if (ret > 0)
7480 break;
7482 if (ref_path->root_objectid == BTRFS_TREE_LOG_OBJECTID ||
7483 ref_path->root_objectid == BTRFS_TREE_RELOC_OBJECTID)
7484 continue;
7486 found_root = read_ref_root(extent_root->fs_info, ref_path);
7487 BUG_ON(!found_root);
7489 * for reference counted tree, only process reference paths
7490 * rooted at the latest committed root.
7492 if (found_root->ref_cows &&
7493 ref_path->root_generation != found_root->root_key.offset)
7494 continue;
7496 if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
7497 if (pass == 0) {
7499 * copy data extents to new locations
7501 u64 group_start = group->key.objectid;
7502 ret = relocate_data_extent(reloc_inode,
7503 extent_key,
7504 group_start);
7505 if (ret < 0)
7506 goto out;
7507 break;
7509 level = 0;
7510 } else {
7511 level = ref_path->owner_objectid;
7514 if (prev_block != ref_path->nodes[level]) {
7515 struct extent_buffer *eb;
7516 u64 block_start = ref_path->nodes[level];
7517 u64 block_size = btrfs_level_size(found_root, level);
7519 eb = read_tree_block(found_root, block_start,
7520 block_size, 0);
7521 btrfs_tree_lock(eb);
7522 BUG_ON(level != btrfs_header_level(eb));
7524 if (level == 0)
7525 btrfs_item_key_to_cpu(eb, &first_key, 0);
7526 else
7527 btrfs_node_key_to_cpu(eb, &first_key, 0);
7529 btrfs_tree_unlock(eb);
7530 free_extent_buffer(eb);
7531 prev_block = block_start;
7534 mutex_lock(&extent_root->fs_info->trans_mutex);
7535 btrfs_record_root_in_trans(found_root);
7536 mutex_unlock(&extent_root->fs_info->trans_mutex);
7537 if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
7539 * try to update data extent references while
7540 * keeping metadata shared between snapshots.
7542 if (pass == 1) {
7543 ret = relocate_one_path(trans, found_root,
7544 path, &first_key, ref_path,
7545 group, reloc_inode);
7546 if (ret < 0)
7547 goto out;
7548 continue;
7551 * use fallback method to process the remaining
7552 * references.
7554 if (!new_extents) {
7555 u64 group_start = group->key.objectid;
7556 new_extents = kmalloc(sizeof(*new_extents),
7557 GFP_NOFS);
7558 nr_extents = 1;
7559 ret = get_new_locations(reloc_inode,
7560 extent_key,
7561 group_start, 1,
7562 &new_extents,
7563 &nr_extents);
7564 if (ret)
7565 goto out;
7567 ret = replace_one_extent(trans, found_root,
7568 path, extent_key,
7569 &first_key, ref_path,
7570 new_extents, nr_extents);
7571 } else {
7572 ret = relocate_tree_block(trans, found_root, path,
7573 &first_key, ref_path);
7575 if (ret < 0)
7576 goto out;
7578 ret = 0;
7579 out:
7580 btrfs_end_transaction(trans, extent_root);
7581 kfree(new_extents);
7582 kfree(ref_path);
7583 return ret;
7585 #endif
7587 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
7589 u64 num_devices;
7590 u64 stripped = BTRFS_BLOCK_GROUP_RAID0 |
7591 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
7593 num_devices = root->fs_info->fs_devices->rw_devices;
7594 if (num_devices == 1) {
7595 stripped |= BTRFS_BLOCK_GROUP_DUP;
7596 stripped = flags & ~stripped;
7598 /* turn raid0 into single device chunks */
7599 if (flags & BTRFS_BLOCK_GROUP_RAID0)
7600 return stripped;
7602 /* turn mirroring into duplication */
7603 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
7604 BTRFS_BLOCK_GROUP_RAID10))
7605 return stripped | BTRFS_BLOCK_GROUP_DUP;
7606 return flags;
7607 } else {
7608 /* they already had raid on here, just return */
7609 if (flags & stripped)
7610 return flags;
7612 stripped |= BTRFS_BLOCK_GROUP_DUP;
7613 stripped = flags & ~stripped;
7615 /* switch duplicated blocks with raid1 */
7616 if (flags & BTRFS_BLOCK_GROUP_DUP)
7617 return stripped | BTRFS_BLOCK_GROUP_RAID1;
7619 /* turn single device chunks into raid0 */
7620 return stripped | BTRFS_BLOCK_GROUP_RAID0;
7622 return flags;
7625 static int set_block_group_ro(struct btrfs_block_group_cache *cache)
7627 struct btrfs_space_info *sinfo = cache->space_info;
7628 u64 num_bytes;
7629 int ret = -ENOSPC;
7631 if (cache->ro)
7632 return 0;
7634 spin_lock(&sinfo->lock);
7635 spin_lock(&cache->lock);
7636 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7637 cache->bytes_super - btrfs_block_group_used(&cache->item);
7639 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
7640 sinfo->bytes_may_use + sinfo->bytes_readonly +
7641 cache->reserved_pinned + num_bytes < sinfo->total_bytes) {
7642 sinfo->bytes_readonly += num_bytes;
7643 sinfo->bytes_reserved += cache->reserved_pinned;
7644 cache->reserved_pinned = 0;
7645 cache->ro = 1;
7646 ret = 0;
7648 spin_unlock(&cache->lock);
7649 spin_unlock(&sinfo->lock);
7650 return ret;
7653 int btrfs_set_block_group_ro(struct btrfs_root *root,
7654 struct btrfs_block_group_cache *cache)
7657 struct btrfs_trans_handle *trans;
7658 u64 alloc_flags;
7659 int ret;
7661 BUG_ON(cache->ro);
7663 trans = btrfs_join_transaction(root, 1);
7664 BUG_ON(IS_ERR(trans));
7666 alloc_flags = update_block_group_flags(root, cache->flags);
7667 if (alloc_flags != cache->flags)
7668 do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags, 1);
7670 ret = set_block_group_ro(cache);
7671 if (!ret)
7672 goto out;
7673 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
7674 ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags, 1);
7675 if (ret < 0)
7676 goto out;
7677 ret = set_block_group_ro(cache);
7678 out:
7679 btrfs_end_transaction(trans, root);
7680 return ret;
7683 int btrfs_set_block_group_rw(struct btrfs_root *root,
7684 struct btrfs_block_group_cache *cache)
7686 struct btrfs_space_info *sinfo = cache->space_info;
7687 u64 num_bytes;
7689 BUG_ON(!cache->ro);
7691 spin_lock(&sinfo->lock);
7692 spin_lock(&cache->lock);
7693 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7694 cache->bytes_super - btrfs_block_group_used(&cache->item);
7695 sinfo->bytes_readonly -= num_bytes;
7696 cache->ro = 0;
7697 spin_unlock(&cache->lock);
7698 spin_unlock(&sinfo->lock);
7699 return 0;
7703 * checks to see if its even possible to relocate this block group.
7705 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
7706 * ok to go ahead and try.
7708 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
7710 struct btrfs_block_group_cache *block_group;
7711 struct btrfs_space_info *space_info;
7712 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
7713 struct btrfs_device *device;
7714 int full = 0;
7715 int ret = 0;
7717 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
7719 /* odd, couldn't find the block group, leave it alone */
7720 if (!block_group)
7721 return -1;
7723 /* no bytes used, we're good */
7724 if (!btrfs_block_group_used(&block_group->item))
7725 goto out;
7727 space_info = block_group->space_info;
7728 spin_lock(&space_info->lock);
7730 full = space_info->full;
7733 * if this is the last block group we have in this space, we can't
7734 * relocate it unless we're able to allocate a new chunk below.
7736 * Otherwise, we need to make sure we have room in the space to handle
7737 * all of the extents from this block group. If we can, we're good
7739 if ((space_info->total_bytes != block_group->key.offset) &&
7740 (space_info->bytes_used + space_info->bytes_reserved +
7741 space_info->bytes_pinned + space_info->bytes_readonly +
7742 btrfs_block_group_used(&block_group->item) <
7743 space_info->total_bytes)) {
7744 spin_unlock(&space_info->lock);
7745 goto out;
7747 spin_unlock(&space_info->lock);
7750 * ok we don't have enough space, but maybe we have free space on our
7751 * devices to allocate new chunks for relocation, so loop through our
7752 * alloc devices and guess if we have enough space. However, if we
7753 * were marked as full, then we know there aren't enough chunks, and we
7754 * can just return.
7756 ret = -1;
7757 if (full)
7758 goto out;
7760 mutex_lock(&root->fs_info->chunk_mutex);
7761 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7762 u64 min_free = btrfs_block_group_used(&block_group->item);
7763 u64 dev_offset, max_avail;
7766 * check to make sure we can actually find a chunk with enough
7767 * space to fit our block group in.
7769 if (device->total_bytes > device->bytes_used + min_free) {
7770 ret = find_free_dev_extent(NULL, device, min_free,
7771 &dev_offset, &max_avail);
7772 if (!ret)
7773 break;
7774 ret = -1;
7777 mutex_unlock(&root->fs_info->chunk_mutex);
7778 out:
7779 btrfs_put_block_group(block_group);
7780 return ret;
7783 static int find_first_block_group(struct btrfs_root *root,
7784 struct btrfs_path *path, struct btrfs_key *key)
7786 int ret = 0;
7787 struct btrfs_key found_key;
7788 struct extent_buffer *leaf;
7789 int slot;
7791 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
7792 if (ret < 0)
7793 goto out;
7795 while (1) {
7796 slot = path->slots[0];
7797 leaf = path->nodes[0];
7798 if (slot >= btrfs_header_nritems(leaf)) {
7799 ret = btrfs_next_leaf(root, path);
7800 if (ret == 0)
7801 continue;
7802 if (ret < 0)
7803 goto out;
7804 break;
7806 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7808 if (found_key.objectid >= key->objectid &&
7809 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
7810 ret = 0;
7811 goto out;
7813 path->slots[0]++;
7815 out:
7816 return ret;
7819 int btrfs_free_block_groups(struct btrfs_fs_info *info)
7821 struct btrfs_block_group_cache *block_group;
7822 struct btrfs_space_info *space_info;
7823 struct btrfs_caching_control *caching_ctl;
7824 struct rb_node *n;
7826 down_write(&info->extent_commit_sem);
7827 while (!list_empty(&info->caching_block_groups)) {
7828 caching_ctl = list_entry(info->caching_block_groups.next,
7829 struct btrfs_caching_control, list);
7830 list_del(&caching_ctl->list);
7831 put_caching_control(caching_ctl);
7833 up_write(&info->extent_commit_sem);
7835 spin_lock(&info->block_group_cache_lock);
7836 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
7837 block_group = rb_entry(n, struct btrfs_block_group_cache,
7838 cache_node);
7839 rb_erase(&block_group->cache_node,
7840 &info->block_group_cache_tree);
7841 spin_unlock(&info->block_group_cache_lock);
7843 down_write(&block_group->space_info->groups_sem);
7844 list_del(&block_group->list);
7845 up_write(&block_group->space_info->groups_sem);
7847 if (block_group->cached == BTRFS_CACHE_STARTED)
7848 wait_block_group_cache_done(block_group);
7850 btrfs_remove_free_space_cache(block_group);
7851 btrfs_put_block_group(block_group);
7853 spin_lock(&info->block_group_cache_lock);
7855 spin_unlock(&info->block_group_cache_lock);
7857 /* now that all the block groups are freed, go through and
7858 * free all the space_info structs. This is only called during
7859 * the final stages of unmount, and so we know nobody is
7860 * using them. We call synchronize_rcu() once before we start,
7861 * just to be on the safe side.
7863 synchronize_rcu();
7865 release_global_block_rsv(info);
7867 while(!list_empty(&info->space_info)) {
7868 space_info = list_entry(info->space_info.next,
7869 struct btrfs_space_info,
7870 list);
7871 if (space_info->bytes_pinned > 0 ||
7872 space_info->bytes_reserved > 0) {
7873 WARN_ON(1);
7874 dump_space_info(space_info, 0, 0);
7876 list_del(&space_info->list);
7877 kfree(space_info);
7879 return 0;
7882 static void __link_block_group(struct btrfs_space_info *space_info,
7883 struct btrfs_block_group_cache *cache)
7885 int index = get_block_group_index(cache);
7887 down_write(&space_info->groups_sem);
7888 list_add_tail(&cache->list, &space_info->block_groups[index]);
7889 up_write(&space_info->groups_sem);
7892 int btrfs_read_block_groups(struct btrfs_root *root)
7894 struct btrfs_path *path;
7895 int ret;
7896 struct btrfs_block_group_cache *cache;
7897 struct btrfs_fs_info *info = root->fs_info;
7898 struct btrfs_space_info *space_info;
7899 struct btrfs_key key;
7900 struct btrfs_key found_key;
7901 struct extent_buffer *leaf;
7903 root = info->extent_root;
7904 key.objectid = 0;
7905 key.offset = 0;
7906 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
7907 path = btrfs_alloc_path();
7908 if (!path)
7909 return -ENOMEM;
7911 while (1) {
7912 ret = find_first_block_group(root, path, &key);
7913 if (ret > 0)
7914 break;
7915 if (ret != 0)
7916 goto error;
7918 leaf = path->nodes[0];
7919 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7920 cache = kzalloc(sizeof(*cache), GFP_NOFS);
7921 if (!cache) {
7922 ret = -ENOMEM;
7923 goto error;
7926 atomic_set(&cache->count, 1);
7927 spin_lock_init(&cache->lock);
7928 spin_lock_init(&cache->tree_lock);
7929 cache->fs_info = info;
7930 INIT_LIST_HEAD(&cache->list);
7931 INIT_LIST_HEAD(&cache->cluster_list);
7934 * we only want to have 32k of ram per block group for keeping
7935 * track of free space, and if we pass 1/2 of that we want to
7936 * start converting things over to using bitmaps
7938 cache->extents_thresh = ((1024 * 32) / 2) /
7939 sizeof(struct btrfs_free_space);
7941 read_extent_buffer(leaf, &cache->item,
7942 btrfs_item_ptr_offset(leaf, path->slots[0]),
7943 sizeof(cache->item));
7944 memcpy(&cache->key, &found_key, sizeof(found_key));
7946 key.objectid = found_key.objectid + found_key.offset;
7947 btrfs_release_path(root, path);
7948 cache->flags = btrfs_block_group_flags(&cache->item);
7949 cache->sectorsize = root->sectorsize;
7952 * check for two cases, either we are full, and therefore
7953 * don't need to bother with the caching work since we won't
7954 * find any space, or we are empty, and we can just add all
7955 * the space in and be done with it. This saves us _alot_ of
7956 * time, particularly in the full case.
7958 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
7959 exclude_super_stripes(root, cache);
7960 cache->last_byte_to_unpin = (u64)-1;
7961 cache->cached = BTRFS_CACHE_FINISHED;
7962 free_excluded_extents(root, cache);
7963 } else if (btrfs_block_group_used(&cache->item) == 0) {
7964 exclude_super_stripes(root, cache);
7965 cache->last_byte_to_unpin = (u64)-1;
7966 cache->cached = BTRFS_CACHE_FINISHED;
7967 add_new_free_space(cache, root->fs_info,
7968 found_key.objectid,
7969 found_key.objectid +
7970 found_key.offset);
7971 free_excluded_extents(root, cache);
7974 ret = update_space_info(info, cache->flags, found_key.offset,
7975 btrfs_block_group_used(&cache->item),
7976 &space_info);
7977 BUG_ON(ret);
7978 cache->space_info = space_info;
7979 spin_lock(&cache->space_info->lock);
7980 cache->space_info->bytes_readonly += cache->bytes_super;
7981 spin_unlock(&cache->space_info->lock);
7983 __link_block_group(space_info, cache);
7985 ret = btrfs_add_block_group_cache(root->fs_info, cache);
7986 BUG_ON(ret);
7988 set_avail_alloc_bits(root->fs_info, cache->flags);
7989 if (btrfs_chunk_readonly(root, cache->key.objectid))
7990 set_block_group_ro(cache);
7993 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
7994 if (!(get_alloc_profile(root, space_info->flags) &
7995 (BTRFS_BLOCK_GROUP_RAID10 |
7996 BTRFS_BLOCK_GROUP_RAID1 |
7997 BTRFS_BLOCK_GROUP_DUP)))
7998 continue;
8000 * avoid allocating from un-mirrored block group if there are
8001 * mirrored block groups.
8003 list_for_each_entry(cache, &space_info->block_groups[3], list)
8004 set_block_group_ro(cache);
8005 list_for_each_entry(cache, &space_info->block_groups[4], list)
8006 set_block_group_ro(cache);
8009 init_global_block_rsv(info);
8010 ret = 0;
8011 error:
8012 btrfs_free_path(path);
8013 return ret;
8016 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
8017 struct btrfs_root *root, u64 bytes_used,
8018 u64 type, u64 chunk_objectid, u64 chunk_offset,
8019 u64 size)
8021 int ret;
8022 struct btrfs_root *extent_root;
8023 struct btrfs_block_group_cache *cache;
8025 extent_root = root->fs_info->extent_root;
8027 root->fs_info->last_trans_log_full_commit = trans->transid;
8029 cache = kzalloc(sizeof(*cache), GFP_NOFS);
8030 if (!cache)
8031 return -ENOMEM;
8033 cache->key.objectid = chunk_offset;
8034 cache->key.offset = size;
8035 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
8036 cache->sectorsize = root->sectorsize;
8039 * we only want to have 32k of ram per block group for keeping track
8040 * of free space, and if we pass 1/2 of that we want to start
8041 * converting things over to using bitmaps
8043 cache->extents_thresh = ((1024 * 32) / 2) /
8044 sizeof(struct btrfs_free_space);
8045 atomic_set(&cache->count, 1);
8046 spin_lock_init(&cache->lock);
8047 spin_lock_init(&cache->tree_lock);
8048 INIT_LIST_HEAD(&cache->list);
8049 INIT_LIST_HEAD(&cache->cluster_list);
8051 btrfs_set_block_group_used(&cache->item, bytes_used);
8052 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
8053 cache->flags = type;
8054 btrfs_set_block_group_flags(&cache->item, type);
8056 cache->last_byte_to_unpin = (u64)-1;
8057 cache->cached = BTRFS_CACHE_FINISHED;
8058 exclude_super_stripes(root, cache);
8060 add_new_free_space(cache, root->fs_info, chunk_offset,
8061 chunk_offset + size);
8063 free_excluded_extents(root, cache);
8065 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
8066 &cache->space_info);
8067 BUG_ON(ret);
8069 spin_lock(&cache->space_info->lock);
8070 cache->space_info->bytes_readonly += cache->bytes_super;
8071 spin_unlock(&cache->space_info->lock);
8073 __link_block_group(cache->space_info, cache);
8075 ret = btrfs_add_block_group_cache(root->fs_info, cache);
8076 BUG_ON(ret);
8078 ret = btrfs_insert_item(trans, extent_root, &cache->key, &cache->item,
8079 sizeof(cache->item));
8080 BUG_ON(ret);
8082 set_avail_alloc_bits(extent_root->fs_info, type);
8084 return 0;
8087 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
8088 struct btrfs_root *root, u64 group_start)
8090 struct btrfs_path *path;
8091 struct btrfs_block_group_cache *block_group;
8092 struct btrfs_free_cluster *cluster;
8093 struct btrfs_key key;
8094 int ret;
8096 root = root->fs_info->extent_root;
8098 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
8099 BUG_ON(!block_group);
8100 BUG_ON(!block_group->ro);
8102 memcpy(&key, &block_group->key, sizeof(key));
8104 /* make sure this block group isn't part of an allocation cluster */
8105 cluster = &root->fs_info->data_alloc_cluster;
8106 spin_lock(&cluster->refill_lock);
8107 btrfs_return_cluster_to_free_space(block_group, cluster);
8108 spin_unlock(&cluster->refill_lock);
8111 * make sure this block group isn't part of a metadata
8112 * allocation cluster
8114 cluster = &root->fs_info->meta_alloc_cluster;
8115 spin_lock(&cluster->refill_lock);
8116 btrfs_return_cluster_to_free_space(block_group, cluster);
8117 spin_unlock(&cluster->refill_lock);
8119 path = btrfs_alloc_path();
8120 BUG_ON(!path);
8122 spin_lock(&root->fs_info->block_group_cache_lock);
8123 rb_erase(&block_group->cache_node,
8124 &root->fs_info->block_group_cache_tree);
8125 spin_unlock(&root->fs_info->block_group_cache_lock);
8127 down_write(&block_group->space_info->groups_sem);
8129 * we must use list_del_init so people can check to see if they
8130 * are still on the list after taking the semaphore
8132 list_del_init(&block_group->list);
8133 up_write(&block_group->space_info->groups_sem);
8135 if (block_group->cached == BTRFS_CACHE_STARTED)
8136 wait_block_group_cache_done(block_group);
8138 btrfs_remove_free_space_cache(block_group);
8140 spin_lock(&block_group->space_info->lock);
8141 block_group->space_info->total_bytes -= block_group->key.offset;
8142 block_group->space_info->bytes_readonly -= block_group->key.offset;
8143 spin_unlock(&block_group->space_info->lock);
8145 btrfs_clear_space_info_full(root->fs_info);
8147 btrfs_put_block_group(block_group);
8148 btrfs_put_block_group(block_group);
8150 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8151 if (ret > 0)
8152 ret = -EIO;
8153 if (ret < 0)
8154 goto out;
8156 ret = btrfs_del_item(trans, root, path);
8157 out:
8158 btrfs_free_path(path);
8159 return ret;