4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
11 #include <linux/syscalls.h>
12 #include <linux/slab.h>
13 #include <linux/sched.h>
14 #include <linux/smp_lock.h>
15 #include <linux/init.h>
16 #include <linux/kernel.h>
17 #include <linux/acct.h>
18 #include <linux/capability.h>
19 #include <linux/cpumask.h>
20 #include <linux/module.h>
21 #include <linux/sysfs.h>
22 #include <linux/seq_file.h>
23 #include <linux/mnt_namespace.h>
24 #include <linux/namei.h>
25 #include <linux/nsproxy.h>
26 #include <linux/security.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/log2.h>
30 #include <linux/idr.h>
31 #include <linux/fs_struct.h>
32 #include <asm/uaccess.h>
33 #include <asm/unistd.h>
37 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
38 #define HASH_SIZE (1UL << HASH_SHIFT)
40 /* spinlock for vfsmount related operations, inplace of dcache_lock */
41 __cacheline_aligned_in_smp
DEFINE_SPINLOCK(vfsmount_lock
);
44 static DEFINE_IDA(mnt_id_ida
);
45 static DEFINE_IDA(mnt_group_ida
);
46 static int mnt_id_start
= 0;
47 static int mnt_group_start
= 1;
49 static struct list_head
*mount_hashtable __read_mostly
;
50 static struct kmem_cache
*mnt_cache __read_mostly
;
51 static struct rw_semaphore namespace_sem
;
54 struct kobject
*fs_kobj
;
55 EXPORT_SYMBOL_GPL(fs_kobj
);
57 static inline unsigned long hash(struct vfsmount
*mnt
, struct dentry
*dentry
)
59 unsigned long tmp
= ((unsigned long)mnt
/ L1_CACHE_BYTES
);
60 tmp
+= ((unsigned long)dentry
/ L1_CACHE_BYTES
);
61 tmp
= tmp
+ (tmp
>> HASH_SHIFT
);
62 return tmp
& (HASH_SIZE
- 1);
65 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
67 /* allocation is serialized by namespace_sem */
68 static int mnt_alloc_id(struct vfsmount
*mnt
)
73 ida_pre_get(&mnt_id_ida
, GFP_KERNEL
);
74 spin_lock(&vfsmount_lock
);
75 res
= ida_get_new_above(&mnt_id_ida
, mnt_id_start
, &mnt
->mnt_id
);
77 mnt_id_start
= mnt
->mnt_id
+ 1;
78 spin_unlock(&vfsmount_lock
);
85 static void mnt_free_id(struct vfsmount
*mnt
)
88 spin_lock(&vfsmount_lock
);
89 ida_remove(&mnt_id_ida
, id
);
90 if (mnt_id_start
> id
)
92 spin_unlock(&vfsmount_lock
);
96 * Allocate a new peer group ID
98 * mnt_group_ida is protected by namespace_sem
100 static int mnt_alloc_group_id(struct vfsmount
*mnt
)
104 if (!ida_pre_get(&mnt_group_ida
, GFP_KERNEL
))
107 res
= ida_get_new_above(&mnt_group_ida
,
111 mnt_group_start
= mnt
->mnt_group_id
+ 1;
117 * Release a peer group ID
119 void mnt_release_group_id(struct vfsmount
*mnt
)
121 int id
= mnt
->mnt_group_id
;
122 ida_remove(&mnt_group_ida
, id
);
123 if (mnt_group_start
> id
)
124 mnt_group_start
= id
;
125 mnt
->mnt_group_id
= 0;
128 struct vfsmount
*alloc_vfsmnt(const char *name
)
130 struct vfsmount
*mnt
= kmem_cache_zalloc(mnt_cache
, GFP_KERNEL
);
134 err
= mnt_alloc_id(mnt
);
139 mnt
->mnt_devname
= kstrdup(name
, GFP_KERNEL
);
140 if (!mnt
->mnt_devname
)
144 atomic_set(&mnt
->mnt_count
, 1);
145 INIT_LIST_HEAD(&mnt
->mnt_hash
);
146 INIT_LIST_HEAD(&mnt
->mnt_child
);
147 INIT_LIST_HEAD(&mnt
->mnt_mounts
);
148 INIT_LIST_HEAD(&mnt
->mnt_list
);
149 INIT_LIST_HEAD(&mnt
->mnt_expire
);
150 INIT_LIST_HEAD(&mnt
->mnt_share
);
151 INIT_LIST_HEAD(&mnt
->mnt_slave_list
);
152 INIT_LIST_HEAD(&mnt
->mnt_slave
);
154 mnt
->mnt_writers
= alloc_percpu(int);
155 if (!mnt
->mnt_writers
)
156 goto out_free_devname
;
158 mnt
->mnt_writers
= 0;
165 kfree(mnt
->mnt_devname
);
170 kmem_cache_free(mnt_cache
, mnt
);
175 * Most r/o checks on a fs are for operations that take
176 * discrete amounts of time, like a write() or unlink().
177 * We must keep track of when those operations start
178 * (for permission checks) and when they end, so that
179 * we can determine when writes are able to occur to
183 * __mnt_is_readonly: check whether a mount is read-only
184 * @mnt: the mount to check for its write status
186 * This shouldn't be used directly ouside of the VFS.
187 * It does not guarantee that the filesystem will stay
188 * r/w, just that it is right *now*. This can not and
189 * should not be used in place of IS_RDONLY(inode).
190 * mnt_want/drop_write() will _keep_ the filesystem
193 int __mnt_is_readonly(struct vfsmount
*mnt
)
195 if (mnt
->mnt_flags
& MNT_READONLY
)
197 if (mnt
->mnt_sb
->s_flags
& MS_RDONLY
)
201 EXPORT_SYMBOL_GPL(__mnt_is_readonly
);
203 static inline void inc_mnt_writers(struct vfsmount
*mnt
)
206 (*per_cpu_ptr(mnt
->mnt_writers
, smp_processor_id()))++;
212 static inline void dec_mnt_writers(struct vfsmount
*mnt
)
215 (*per_cpu_ptr(mnt
->mnt_writers
, smp_processor_id()))--;
221 static unsigned int count_mnt_writers(struct vfsmount
*mnt
)
224 unsigned int count
= 0;
227 for_each_possible_cpu(cpu
) {
228 count
+= *per_cpu_ptr(mnt
->mnt_writers
, cpu
);
233 return mnt
->mnt_writers
;
238 * Most r/o checks on a fs are for operations that take
239 * discrete amounts of time, like a write() or unlink().
240 * We must keep track of when those operations start
241 * (for permission checks) and when they end, so that
242 * we can determine when writes are able to occur to
246 * mnt_want_write - get write access to a mount
247 * @mnt: the mount on which to take a write
249 * This tells the low-level filesystem that a write is
250 * about to be performed to it, and makes sure that
251 * writes are allowed before returning success. When
252 * the write operation is finished, mnt_drop_write()
253 * must be called. This is effectively a refcount.
255 int mnt_want_write(struct vfsmount
*mnt
)
260 inc_mnt_writers(mnt
);
262 * The store to inc_mnt_writers must be visible before we pass
263 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
264 * incremented count after it has set MNT_WRITE_HOLD.
267 while (mnt
->mnt_flags
& MNT_WRITE_HOLD
)
270 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
271 * be set to match its requirements. So we must not load that until
272 * MNT_WRITE_HOLD is cleared.
275 if (__mnt_is_readonly(mnt
)) {
276 dec_mnt_writers(mnt
);
284 EXPORT_SYMBOL_GPL(mnt_want_write
);
287 * mnt_clone_write - get write access to a mount
288 * @mnt: the mount on which to take a write
290 * This is effectively like mnt_want_write, except
291 * it must only be used to take an extra write reference
292 * on a mountpoint that we already know has a write reference
293 * on it. This allows some optimisation.
295 * After finished, mnt_drop_write must be called as usual to
296 * drop the reference.
298 int mnt_clone_write(struct vfsmount
*mnt
)
300 /* superblock may be r/o */
301 if (__mnt_is_readonly(mnt
))
304 inc_mnt_writers(mnt
);
308 EXPORT_SYMBOL_GPL(mnt_clone_write
);
311 * mnt_want_write_file - get write access to a file's mount
312 * @file: the file who's mount on which to take a write
314 * This is like mnt_want_write, but it takes a file and can
315 * do some optimisations if the file is open for write already
317 int mnt_want_write_file(struct file
*file
)
319 if (!(file
->f_mode
& FMODE_WRITE
))
320 return mnt_want_write(file
->f_path
.mnt
);
322 return mnt_clone_write(file
->f_path
.mnt
);
324 EXPORT_SYMBOL_GPL(mnt_want_write_file
);
327 * mnt_drop_write - give up write access to a mount
328 * @mnt: the mount on which to give up write access
330 * Tells the low-level filesystem that we are done
331 * performing writes to it. Must be matched with
332 * mnt_want_write() call above.
334 void mnt_drop_write(struct vfsmount
*mnt
)
337 dec_mnt_writers(mnt
);
340 EXPORT_SYMBOL_GPL(mnt_drop_write
);
342 static int mnt_make_readonly(struct vfsmount
*mnt
)
346 spin_lock(&vfsmount_lock
);
347 mnt
->mnt_flags
|= MNT_WRITE_HOLD
;
349 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
350 * should be visible before we do.
355 * With writers on hold, if this value is zero, then there are
356 * definitely no active writers (although held writers may subsequently
357 * increment the count, they'll have to wait, and decrement it after
358 * seeing MNT_READONLY).
360 * It is OK to have counter incremented on one CPU and decremented on
361 * another: the sum will add up correctly. The danger would be when we
362 * sum up each counter, if we read a counter before it is incremented,
363 * but then read another CPU's count which it has been subsequently
364 * decremented from -- we would see more decrements than we should.
365 * MNT_WRITE_HOLD protects against this scenario, because
366 * mnt_want_write first increments count, then smp_mb, then spins on
367 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
368 * we're counting up here.
370 if (count_mnt_writers(mnt
) > 0)
373 mnt
->mnt_flags
|= MNT_READONLY
;
375 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
376 * that become unheld will see MNT_READONLY.
379 mnt
->mnt_flags
&= ~MNT_WRITE_HOLD
;
380 spin_unlock(&vfsmount_lock
);
384 static void __mnt_unmake_readonly(struct vfsmount
*mnt
)
386 spin_lock(&vfsmount_lock
);
387 mnt
->mnt_flags
&= ~MNT_READONLY
;
388 spin_unlock(&vfsmount_lock
);
391 void simple_set_mnt(struct vfsmount
*mnt
, struct super_block
*sb
)
394 mnt
->mnt_root
= dget(sb
->s_root
);
397 EXPORT_SYMBOL(simple_set_mnt
);
399 void free_vfsmnt(struct vfsmount
*mnt
)
401 kfree(mnt
->mnt_devname
);
404 free_percpu(mnt
->mnt_writers
);
406 kmem_cache_free(mnt_cache
, mnt
);
410 * find the first or last mount at @dentry on vfsmount @mnt depending on
411 * @dir. If @dir is set return the first mount else return the last mount.
413 struct vfsmount
*__lookup_mnt(struct vfsmount
*mnt
, struct dentry
*dentry
,
416 struct list_head
*head
= mount_hashtable
+ hash(mnt
, dentry
);
417 struct list_head
*tmp
= head
;
418 struct vfsmount
*p
, *found
= NULL
;
421 tmp
= dir
? tmp
->next
: tmp
->prev
;
425 p
= list_entry(tmp
, struct vfsmount
, mnt_hash
);
426 if (p
->mnt_parent
== mnt
&& p
->mnt_mountpoint
== dentry
) {
435 * lookup_mnt increments the ref count before returning
436 * the vfsmount struct.
438 struct vfsmount
*lookup_mnt(struct path
*path
)
440 struct vfsmount
*child_mnt
;
441 spin_lock(&vfsmount_lock
);
442 if ((child_mnt
= __lookup_mnt(path
->mnt
, path
->dentry
, 1)))
444 spin_unlock(&vfsmount_lock
);
448 static inline int check_mnt(struct vfsmount
*mnt
)
450 return mnt
->mnt_ns
== current
->nsproxy
->mnt_ns
;
453 static void touch_mnt_namespace(struct mnt_namespace
*ns
)
457 wake_up_interruptible(&ns
->poll
);
461 static void __touch_mnt_namespace(struct mnt_namespace
*ns
)
463 if (ns
&& ns
->event
!= event
) {
465 wake_up_interruptible(&ns
->poll
);
469 static void detach_mnt(struct vfsmount
*mnt
, struct path
*old_path
)
471 old_path
->dentry
= mnt
->mnt_mountpoint
;
472 old_path
->mnt
= mnt
->mnt_parent
;
473 mnt
->mnt_parent
= mnt
;
474 mnt
->mnt_mountpoint
= mnt
->mnt_root
;
475 list_del_init(&mnt
->mnt_child
);
476 list_del_init(&mnt
->mnt_hash
);
477 old_path
->dentry
->d_mounted
--;
480 void mnt_set_mountpoint(struct vfsmount
*mnt
, struct dentry
*dentry
,
481 struct vfsmount
*child_mnt
)
483 child_mnt
->mnt_parent
= mntget(mnt
);
484 child_mnt
->mnt_mountpoint
= dget(dentry
);
488 static void attach_mnt(struct vfsmount
*mnt
, struct path
*path
)
490 mnt_set_mountpoint(path
->mnt
, path
->dentry
, mnt
);
491 list_add_tail(&mnt
->mnt_hash
, mount_hashtable
+
492 hash(path
->mnt
, path
->dentry
));
493 list_add_tail(&mnt
->mnt_child
, &path
->mnt
->mnt_mounts
);
497 * the caller must hold vfsmount_lock
499 static void commit_tree(struct vfsmount
*mnt
)
501 struct vfsmount
*parent
= mnt
->mnt_parent
;
504 struct mnt_namespace
*n
= parent
->mnt_ns
;
506 BUG_ON(parent
== mnt
);
508 list_add_tail(&head
, &mnt
->mnt_list
);
509 list_for_each_entry(m
, &head
, mnt_list
)
511 list_splice(&head
, n
->list
.prev
);
513 list_add_tail(&mnt
->mnt_hash
, mount_hashtable
+
514 hash(parent
, mnt
->mnt_mountpoint
));
515 list_add_tail(&mnt
->mnt_child
, &parent
->mnt_mounts
);
516 touch_mnt_namespace(n
);
519 static struct vfsmount
*next_mnt(struct vfsmount
*p
, struct vfsmount
*root
)
521 struct list_head
*next
= p
->mnt_mounts
.next
;
522 if (next
== &p
->mnt_mounts
) {
526 next
= p
->mnt_child
.next
;
527 if (next
!= &p
->mnt_parent
->mnt_mounts
)
532 return list_entry(next
, struct vfsmount
, mnt_child
);
535 static struct vfsmount
*skip_mnt_tree(struct vfsmount
*p
)
537 struct list_head
*prev
= p
->mnt_mounts
.prev
;
538 while (prev
!= &p
->mnt_mounts
) {
539 p
= list_entry(prev
, struct vfsmount
, mnt_child
);
540 prev
= p
->mnt_mounts
.prev
;
545 static struct vfsmount
*clone_mnt(struct vfsmount
*old
, struct dentry
*root
,
548 struct super_block
*sb
= old
->mnt_sb
;
549 struct vfsmount
*mnt
= alloc_vfsmnt(old
->mnt_devname
);
552 if (flag
& (CL_SLAVE
| CL_PRIVATE
))
553 mnt
->mnt_group_id
= 0; /* not a peer of original */
555 mnt
->mnt_group_id
= old
->mnt_group_id
;
557 if ((flag
& CL_MAKE_SHARED
) && !mnt
->mnt_group_id
) {
558 int err
= mnt_alloc_group_id(mnt
);
563 mnt
->mnt_flags
= old
->mnt_flags
;
564 atomic_inc(&sb
->s_active
);
566 mnt
->mnt_root
= dget(root
);
567 mnt
->mnt_mountpoint
= mnt
->mnt_root
;
568 mnt
->mnt_parent
= mnt
;
570 if (flag
& CL_SLAVE
) {
571 list_add(&mnt
->mnt_slave
, &old
->mnt_slave_list
);
572 mnt
->mnt_master
= old
;
573 CLEAR_MNT_SHARED(mnt
);
574 } else if (!(flag
& CL_PRIVATE
)) {
575 if ((flag
& CL_PROPAGATION
) || IS_MNT_SHARED(old
))
576 list_add(&mnt
->mnt_share
, &old
->mnt_share
);
577 if (IS_MNT_SLAVE(old
))
578 list_add(&mnt
->mnt_slave
, &old
->mnt_slave
);
579 mnt
->mnt_master
= old
->mnt_master
;
581 if (flag
& CL_MAKE_SHARED
)
584 /* stick the duplicate mount on the same expiry list
585 * as the original if that was on one */
586 if (flag
& CL_EXPIRE
) {
587 if (!list_empty(&old
->mnt_expire
))
588 list_add(&mnt
->mnt_expire
, &old
->mnt_expire
);
598 static inline void __mntput(struct vfsmount
*mnt
)
600 struct super_block
*sb
= mnt
->mnt_sb
;
602 * This probably indicates that somebody messed
603 * up a mnt_want/drop_write() pair. If this
604 * happens, the filesystem was probably unable
605 * to make r/w->r/o transitions.
608 * atomic_dec_and_lock() used to deal with ->mnt_count decrements
609 * provides barriers, so count_mnt_writers() below is safe. AV
611 WARN_ON(count_mnt_writers(mnt
));
614 deactivate_super(sb
);
617 void mntput_no_expire(struct vfsmount
*mnt
)
620 if (atomic_dec_and_lock(&mnt
->mnt_count
, &vfsmount_lock
)) {
621 if (likely(!mnt
->mnt_pinned
)) {
622 spin_unlock(&vfsmount_lock
);
626 atomic_add(mnt
->mnt_pinned
+ 1, &mnt
->mnt_count
);
628 spin_unlock(&vfsmount_lock
);
629 acct_auto_close_mnt(mnt
);
630 security_sb_umount_close(mnt
);
635 EXPORT_SYMBOL(mntput_no_expire
);
637 void mnt_pin(struct vfsmount
*mnt
)
639 spin_lock(&vfsmount_lock
);
641 spin_unlock(&vfsmount_lock
);
644 EXPORT_SYMBOL(mnt_pin
);
646 void mnt_unpin(struct vfsmount
*mnt
)
648 spin_lock(&vfsmount_lock
);
649 if (mnt
->mnt_pinned
) {
650 atomic_inc(&mnt
->mnt_count
);
653 spin_unlock(&vfsmount_lock
);
656 EXPORT_SYMBOL(mnt_unpin
);
658 static inline void mangle(struct seq_file
*m
, const char *s
)
660 seq_escape(m
, s
, " \t\n\\");
664 * Simple .show_options callback for filesystems which don't want to
665 * implement more complex mount option showing.
667 * See also save_mount_options().
669 int generic_show_options(struct seq_file
*m
, struct vfsmount
*mnt
)
674 options
= rcu_dereference(mnt
->mnt_sb
->s_options
);
676 if (options
!= NULL
&& options
[0]) {
684 EXPORT_SYMBOL(generic_show_options
);
687 * If filesystem uses generic_show_options(), this function should be
688 * called from the fill_super() callback.
690 * The .remount_fs callback usually needs to be handled in a special
691 * way, to make sure, that previous options are not overwritten if the
694 * Also note, that if the filesystem's .remount_fs function doesn't
695 * reset all options to their default value, but changes only newly
696 * given options, then the displayed options will not reflect reality
699 void save_mount_options(struct super_block
*sb
, char *options
)
701 BUG_ON(sb
->s_options
);
702 rcu_assign_pointer(sb
->s_options
, kstrdup(options
, GFP_KERNEL
));
704 EXPORT_SYMBOL(save_mount_options
);
706 void replace_mount_options(struct super_block
*sb
, char *options
)
708 char *old
= sb
->s_options
;
709 rcu_assign_pointer(sb
->s_options
, options
);
715 EXPORT_SYMBOL(replace_mount_options
);
717 #ifdef CONFIG_PROC_FS
719 static void *m_start(struct seq_file
*m
, loff_t
*pos
)
721 struct proc_mounts
*p
= m
->private;
723 down_read(&namespace_sem
);
724 return seq_list_start(&p
->ns
->list
, *pos
);
727 static void *m_next(struct seq_file
*m
, void *v
, loff_t
*pos
)
729 struct proc_mounts
*p
= m
->private;
731 return seq_list_next(v
, &p
->ns
->list
, pos
);
734 static void m_stop(struct seq_file
*m
, void *v
)
736 up_read(&namespace_sem
);
739 struct proc_fs_info
{
744 static int show_sb_opts(struct seq_file
*m
, struct super_block
*sb
)
746 static const struct proc_fs_info fs_info
[] = {
747 { MS_SYNCHRONOUS
, ",sync" },
748 { MS_DIRSYNC
, ",dirsync" },
749 { MS_MANDLOCK
, ",mand" },
752 const struct proc_fs_info
*fs_infop
;
754 for (fs_infop
= fs_info
; fs_infop
->flag
; fs_infop
++) {
755 if (sb
->s_flags
& fs_infop
->flag
)
756 seq_puts(m
, fs_infop
->str
);
759 return security_sb_show_options(m
, sb
);
762 static void show_mnt_opts(struct seq_file
*m
, struct vfsmount
*mnt
)
764 static const struct proc_fs_info mnt_info
[] = {
765 { MNT_NOSUID
, ",nosuid" },
766 { MNT_NODEV
, ",nodev" },
767 { MNT_NOEXEC
, ",noexec" },
768 { MNT_NOATIME
, ",noatime" },
769 { MNT_NODIRATIME
, ",nodiratime" },
770 { MNT_RELATIME
, ",relatime" },
771 { MNT_STRICTATIME
, ",strictatime" },
774 const struct proc_fs_info
*fs_infop
;
776 for (fs_infop
= mnt_info
; fs_infop
->flag
; fs_infop
++) {
777 if (mnt
->mnt_flags
& fs_infop
->flag
)
778 seq_puts(m
, fs_infop
->str
);
782 static void show_type(struct seq_file
*m
, struct super_block
*sb
)
784 mangle(m
, sb
->s_type
->name
);
785 if (sb
->s_subtype
&& sb
->s_subtype
[0]) {
787 mangle(m
, sb
->s_subtype
);
791 static int show_vfsmnt(struct seq_file
*m
, void *v
)
793 struct vfsmount
*mnt
= list_entry(v
, struct vfsmount
, mnt_list
);
795 struct path mnt_path
= { .dentry
= mnt
->mnt_root
, .mnt
= mnt
};
797 mangle(m
, mnt
->mnt_devname
? mnt
->mnt_devname
: "none");
799 seq_path(m
, &mnt_path
, " \t\n\\");
801 show_type(m
, mnt
->mnt_sb
);
802 seq_puts(m
, __mnt_is_readonly(mnt
) ? " ro" : " rw");
803 err
= show_sb_opts(m
, mnt
->mnt_sb
);
806 show_mnt_opts(m
, mnt
);
807 if (mnt
->mnt_sb
->s_op
->show_options
)
808 err
= mnt
->mnt_sb
->s_op
->show_options(m
, mnt
);
809 seq_puts(m
, " 0 0\n");
814 const struct seq_operations mounts_op
= {
821 static int show_mountinfo(struct seq_file
*m
, void *v
)
823 struct proc_mounts
*p
= m
->private;
824 struct vfsmount
*mnt
= list_entry(v
, struct vfsmount
, mnt_list
);
825 struct super_block
*sb
= mnt
->mnt_sb
;
826 struct path mnt_path
= { .dentry
= mnt
->mnt_root
, .mnt
= mnt
};
827 struct path root
= p
->root
;
830 seq_printf(m
, "%i %i %u:%u ", mnt
->mnt_id
, mnt
->mnt_parent
->mnt_id
,
831 MAJOR(sb
->s_dev
), MINOR(sb
->s_dev
));
832 seq_dentry(m
, mnt
->mnt_root
, " \t\n\\");
834 seq_path_root(m
, &mnt_path
, &root
, " \t\n\\");
835 if (root
.mnt
!= p
->root
.mnt
|| root
.dentry
!= p
->root
.dentry
) {
837 * Mountpoint is outside root, discard that one. Ugly,
838 * but less so than trying to do that in iterator in a
839 * race-free way (due to renames).
843 seq_puts(m
, mnt
->mnt_flags
& MNT_READONLY
? " ro" : " rw");
844 show_mnt_opts(m
, mnt
);
846 /* Tagged fields ("foo:X" or "bar") */
847 if (IS_MNT_SHARED(mnt
))
848 seq_printf(m
, " shared:%i", mnt
->mnt_group_id
);
849 if (IS_MNT_SLAVE(mnt
)) {
850 int master
= mnt
->mnt_master
->mnt_group_id
;
851 int dom
= get_dominating_id(mnt
, &p
->root
);
852 seq_printf(m
, " master:%i", master
);
853 if (dom
&& dom
!= master
)
854 seq_printf(m
, " propagate_from:%i", dom
);
856 if (IS_MNT_UNBINDABLE(mnt
))
857 seq_puts(m
, " unbindable");
859 /* Filesystem specific data */
863 mangle(m
, mnt
->mnt_devname
? mnt
->mnt_devname
: "none");
864 seq_puts(m
, sb
->s_flags
& MS_RDONLY
? " ro" : " rw");
865 err
= show_sb_opts(m
, sb
);
868 if (sb
->s_op
->show_options
)
869 err
= sb
->s_op
->show_options(m
, mnt
);
875 const struct seq_operations mountinfo_op
= {
879 .show
= show_mountinfo
,
882 static int show_vfsstat(struct seq_file
*m
, void *v
)
884 struct vfsmount
*mnt
= list_entry(v
, struct vfsmount
, mnt_list
);
885 struct path mnt_path
= { .dentry
= mnt
->mnt_root
, .mnt
= mnt
};
889 if (mnt
->mnt_devname
) {
890 seq_puts(m
, "device ");
891 mangle(m
, mnt
->mnt_devname
);
893 seq_puts(m
, "no device");
896 seq_puts(m
, " mounted on ");
897 seq_path(m
, &mnt_path
, " \t\n\\");
900 /* file system type */
901 seq_puts(m
, "with fstype ");
902 show_type(m
, mnt
->mnt_sb
);
904 /* optional statistics */
905 if (mnt
->mnt_sb
->s_op
->show_stats
) {
907 err
= mnt
->mnt_sb
->s_op
->show_stats(m
, mnt
);
914 const struct seq_operations mountstats_op
= {
918 .show
= show_vfsstat
,
920 #endif /* CONFIG_PROC_FS */
923 * may_umount_tree - check if a mount tree is busy
924 * @mnt: root of mount tree
926 * This is called to check if a tree of mounts has any
927 * open files, pwds, chroots or sub mounts that are
930 int may_umount_tree(struct vfsmount
*mnt
)
933 int minimum_refs
= 0;
936 spin_lock(&vfsmount_lock
);
937 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
938 actual_refs
+= atomic_read(&p
->mnt_count
);
941 spin_unlock(&vfsmount_lock
);
943 if (actual_refs
> minimum_refs
)
949 EXPORT_SYMBOL(may_umount_tree
);
952 * may_umount - check if a mount point is busy
953 * @mnt: root of mount
955 * This is called to check if a mount point has any
956 * open files, pwds, chroots or sub mounts. If the
957 * mount has sub mounts this will return busy
958 * regardless of whether the sub mounts are busy.
960 * Doesn't take quota and stuff into account. IOW, in some cases it will
961 * give false negatives. The main reason why it's here is that we need
962 * a non-destructive way to look for easily umountable filesystems.
964 int may_umount(struct vfsmount
*mnt
)
967 spin_lock(&vfsmount_lock
);
968 if (propagate_mount_busy(mnt
, 2))
970 spin_unlock(&vfsmount_lock
);
974 EXPORT_SYMBOL(may_umount
);
976 void release_mounts(struct list_head
*head
)
978 struct vfsmount
*mnt
;
979 while (!list_empty(head
)) {
980 mnt
= list_first_entry(head
, struct vfsmount
, mnt_hash
);
981 list_del_init(&mnt
->mnt_hash
);
982 if (mnt
->mnt_parent
!= mnt
) {
983 struct dentry
*dentry
;
985 spin_lock(&vfsmount_lock
);
986 dentry
= mnt
->mnt_mountpoint
;
988 mnt
->mnt_mountpoint
= mnt
->mnt_root
;
989 mnt
->mnt_parent
= mnt
;
991 spin_unlock(&vfsmount_lock
);
999 void umount_tree(struct vfsmount
*mnt
, int propagate
, struct list_head
*kill
)
1003 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
))
1004 list_move(&p
->mnt_hash
, kill
);
1007 propagate_umount(kill
);
1009 list_for_each_entry(p
, kill
, mnt_hash
) {
1010 list_del_init(&p
->mnt_expire
);
1011 list_del_init(&p
->mnt_list
);
1012 __touch_mnt_namespace(p
->mnt_ns
);
1014 list_del_init(&p
->mnt_child
);
1015 if (p
->mnt_parent
!= p
) {
1016 p
->mnt_parent
->mnt_ghosts
++;
1017 p
->mnt_mountpoint
->d_mounted
--;
1019 change_mnt_propagation(p
, MS_PRIVATE
);
1023 static void shrink_submounts(struct vfsmount
*mnt
, struct list_head
*umounts
);
1025 static int do_umount(struct vfsmount
*mnt
, int flags
)
1027 struct super_block
*sb
= mnt
->mnt_sb
;
1029 LIST_HEAD(umount_list
);
1031 retval
= security_sb_umount(mnt
, flags
);
1036 * Allow userspace to request a mountpoint be expired rather than
1037 * unmounting unconditionally. Unmount only happens if:
1038 * (1) the mark is already set (the mark is cleared by mntput())
1039 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1041 if (flags
& MNT_EXPIRE
) {
1042 if (mnt
== current
->fs
->root
.mnt
||
1043 flags
& (MNT_FORCE
| MNT_DETACH
))
1046 if (atomic_read(&mnt
->mnt_count
) != 2)
1049 if (!xchg(&mnt
->mnt_expiry_mark
, 1))
1054 * If we may have to abort operations to get out of this
1055 * mount, and they will themselves hold resources we must
1056 * allow the fs to do things. In the Unix tradition of
1057 * 'Gee thats tricky lets do it in userspace' the umount_begin
1058 * might fail to complete on the first run through as other tasks
1059 * must return, and the like. Thats for the mount program to worry
1060 * about for the moment.
1063 if (flags
& MNT_FORCE
&& sb
->s_op
->umount_begin
) {
1064 sb
->s_op
->umount_begin(sb
);
1068 * No sense to grab the lock for this test, but test itself looks
1069 * somewhat bogus. Suggestions for better replacement?
1070 * Ho-hum... In principle, we might treat that as umount + switch
1071 * to rootfs. GC would eventually take care of the old vfsmount.
1072 * Actually it makes sense, especially if rootfs would contain a
1073 * /reboot - static binary that would close all descriptors and
1074 * call reboot(9). Then init(8) could umount root and exec /reboot.
1076 if (mnt
== current
->fs
->root
.mnt
&& !(flags
& MNT_DETACH
)) {
1078 * Special case for "unmounting" root ...
1079 * we just try to remount it readonly.
1081 down_write(&sb
->s_umount
);
1082 if (!(sb
->s_flags
& MS_RDONLY
))
1083 retval
= do_remount_sb(sb
, MS_RDONLY
, NULL
, 0);
1084 up_write(&sb
->s_umount
);
1088 down_write(&namespace_sem
);
1089 spin_lock(&vfsmount_lock
);
1092 if (!(flags
& MNT_DETACH
))
1093 shrink_submounts(mnt
, &umount_list
);
1096 if (flags
& MNT_DETACH
|| !propagate_mount_busy(mnt
, 2)) {
1097 if (!list_empty(&mnt
->mnt_list
))
1098 umount_tree(mnt
, 1, &umount_list
);
1101 spin_unlock(&vfsmount_lock
);
1103 security_sb_umount_busy(mnt
);
1104 up_write(&namespace_sem
);
1105 release_mounts(&umount_list
);
1110 * Now umount can handle mount points as well as block devices.
1111 * This is important for filesystems which use unnamed block devices.
1113 * We now support a flag for forced unmount like the other 'big iron'
1114 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1117 SYSCALL_DEFINE2(umount
, char __user
*, name
, int, flags
)
1122 retval
= user_path(name
, &path
);
1126 if (path
.dentry
!= path
.mnt
->mnt_root
)
1128 if (!check_mnt(path
.mnt
))
1132 if (!capable(CAP_SYS_ADMIN
))
1135 retval
= do_umount(path
.mnt
, flags
);
1137 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1139 mntput_no_expire(path
.mnt
);
1144 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1147 * The 2.0 compatible umount. No flags.
1149 SYSCALL_DEFINE1(oldumount
, char __user
*, name
)
1151 return sys_umount(name
, 0);
1156 static int mount_is_safe(struct path
*path
)
1158 if (capable(CAP_SYS_ADMIN
))
1162 if (S_ISLNK(path
->dentry
->d_inode
->i_mode
))
1164 if (path
->dentry
->d_inode
->i_mode
& S_ISVTX
) {
1165 if (current_uid() != path
->dentry
->d_inode
->i_uid
)
1168 if (inode_permission(path
->dentry
->d_inode
, MAY_WRITE
))
1174 struct vfsmount
*copy_tree(struct vfsmount
*mnt
, struct dentry
*dentry
,
1177 struct vfsmount
*res
, *p
, *q
, *r
, *s
;
1180 if (!(flag
& CL_COPY_ALL
) && IS_MNT_UNBINDABLE(mnt
))
1183 res
= q
= clone_mnt(mnt
, dentry
, flag
);
1186 q
->mnt_mountpoint
= mnt
->mnt_mountpoint
;
1189 list_for_each_entry(r
, &mnt
->mnt_mounts
, mnt_child
) {
1190 if (!is_subdir(r
->mnt_mountpoint
, dentry
))
1193 for (s
= r
; s
; s
= next_mnt(s
, r
)) {
1194 if (!(flag
& CL_COPY_ALL
) && IS_MNT_UNBINDABLE(s
)) {
1195 s
= skip_mnt_tree(s
);
1198 while (p
!= s
->mnt_parent
) {
1204 path
.dentry
= p
->mnt_mountpoint
;
1205 q
= clone_mnt(p
, p
->mnt_root
, flag
);
1208 spin_lock(&vfsmount_lock
);
1209 list_add_tail(&q
->mnt_list
, &res
->mnt_list
);
1210 attach_mnt(q
, &path
);
1211 spin_unlock(&vfsmount_lock
);
1217 LIST_HEAD(umount_list
);
1218 spin_lock(&vfsmount_lock
);
1219 umount_tree(res
, 0, &umount_list
);
1220 spin_unlock(&vfsmount_lock
);
1221 release_mounts(&umount_list
);
1226 struct vfsmount
*collect_mounts(struct path
*path
)
1228 struct vfsmount
*tree
;
1229 down_write(&namespace_sem
);
1230 tree
= copy_tree(path
->mnt
, path
->dentry
, CL_COPY_ALL
| CL_PRIVATE
);
1231 up_write(&namespace_sem
);
1235 void drop_collected_mounts(struct vfsmount
*mnt
)
1237 LIST_HEAD(umount_list
);
1238 down_write(&namespace_sem
);
1239 spin_lock(&vfsmount_lock
);
1240 umount_tree(mnt
, 0, &umount_list
);
1241 spin_unlock(&vfsmount_lock
);
1242 up_write(&namespace_sem
);
1243 release_mounts(&umount_list
);
1246 static void cleanup_group_ids(struct vfsmount
*mnt
, struct vfsmount
*end
)
1250 for (p
= mnt
; p
!= end
; p
= next_mnt(p
, mnt
)) {
1251 if (p
->mnt_group_id
&& !IS_MNT_SHARED(p
))
1252 mnt_release_group_id(p
);
1256 static int invent_group_ids(struct vfsmount
*mnt
, bool recurse
)
1260 for (p
= mnt
; p
; p
= recurse
? next_mnt(p
, mnt
) : NULL
) {
1261 if (!p
->mnt_group_id
&& !IS_MNT_SHARED(p
)) {
1262 int err
= mnt_alloc_group_id(p
);
1264 cleanup_group_ids(mnt
, p
);
1274 * @source_mnt : mount tree to be attached
1275 * @nd : place the mount tree @source_mnt is attached
1276 * @parent_nd : if non-null, detach the source_mnt from its parent and
1277 * store the parent mount and mountpoint dentry.
1278 * (done when source_mnt is moved)
1280 * NOTE: in the table below explains the semantics when a source mount
1281 * of a given type is attached to a destination mount of a given type.
1282 * ---------------------------------------------------------------------------
1283 * | BIND MOUNT OPERATION |
1284 * |**************************************************************************
1285 * | source-->| shared | private | slave | unbindable |
1289 * |**************************************************************************
1290 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1292 * |non-shared| shared (+) | private | slave (*) | invalid |
1293 * ***************************************************************************
1294 * A bind operation clones the source mount and mounts the clone on the
1295 * destination mount.
1297 * (++) the cloned mount is propagated to all the mounts in the propagation
1298 * tree of the destination mount and the cloned mount is added to
1299 * the peer group of the source mount.
1300 * (+) the cloned mount is created under the destination mount and is marked
1301 * as shared. The cloned mount is added to the peer group of the source
1303 * (+++) the mount is propagated to all the mounts in the propagation tree
1304 * of the destination mount and the cloned mount is made slave
1305 * of the same master as that of the source mount. The cloned mount
1306 * is marked as 'shared and slave'.
1307 * (*) the cloned mount is made a slave of the same master as that of the
1310 * ---------------------------------------------------------------------------
1311 * | MOVE MOUNT OPERATION |
1312 * |**************************************************************************
1313 * | source-->| shared | private | slave | unbindable |
1317 * |**************************************************************************
1318 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1320 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1321 * ***************************************************************************
1323 * (+) the mount is moved to the destination. And is then propagated to
1324 * all the mounts in the propagation tree of the destination mount.
1325 * (+*) the mount is moved to the destination.
1326 * (+++) the mount is moved to the destination and is then propagated to
1327 * all the mounts belonging to the destination mount's propagation tree.
1328 * the mount is marked as 'shared and slave'.
1329 * (*) the mount continues to be a slave at the new location.
1331 * if the source mount is a tree, the operations explained above is
1332 * applied to each mount in the tree.
1333 * Must be called without spinlocks held, since this function can sleep
1336 static int attach_recursive_mnt(struct vfsmount
*source_mnt
,
1337 struct path
*path
, struct path
*parent_path
)
1339 LIST_HEAD(tree_list
);
1340 struct vfsmount
*dest_mnt
= path
->mnt
;
1341 struct dentry
*dest_dentry
= path
->dentry
;
1342 struct vfsmount
*child
, *p
;
1345 if (IS_MNT_SHARED(dest_mnt
)) {
1346 err
= invent_group_ids(source_mnt
, true);
1350 err
= propagate_mnt(dest_mnt
, dest_dentry
, source_mnt
, &tree_list
);
1352 goto out_cleanup_ids
;
1354 if (IS_MNT_SHARED(dest_mnt
)) {
1355 for (p
= source_mnt
; p
; p
= next_mnt(p
, source_mnt
))
1359 spin_lock(&vfsmount_lock
);
1361 detach_mnt(source_mnt
, parent_path
);
1362 attach_mnt(source_mnt
, path
);
1363 touch_mnt_namespace(parent_path
->mnt
->mnt_ns
);
1365 mnt_set_mountpoint(dest_mnt
, dest_dentry
, source_mnt
);
1366 commit_tree(source_mnt
);
1369 list_for_each_entry_safe(child
, p
, &tree_list
, mnt_hash
) {
1370 list_del_init(&child
->mnt_hash
);
1373 spin_unlock(&vfsmount_lock
);
1377 if (IS_MNT_SHARED(dest_mnt
))
1378 cleanup_group_ids(source_mnt
, NULL
);
1383 static int graft_tree(struct vfsmount
*mnt
, struct path
*path
)
1386 if (mnt
->mnt_sb
->s_flags
& MS_NOUSER
)
1389 if (S_ISDIR(path
->dentry
->d_inode
->i_mode
) !=
1390 S_ISDIR(mnt
->mnt_root
->d_inode
->i_mode
))
1394 mutex_lock(&path
->dentry
->d_inode
->i_mutex
);
1395 if (IS_DEADDIR(path
->dentry
->d_inode
))
1398 err
= security_sb_check_sb(mnt
, path
);
1403 if (!d_unlinked(path
->dentry
))
1404 err
= attach_recursive_mnt(mnt
, path
, NULL
);
1406 mutex_unlock(&path
->dentry
->d_inode
->i_mutex
);
1408 security_sb_post_addmount(mnt
, path
);
1413 * recursively change the type of the mountpoint.
1415 static int do_change_type(struct path
*path
, int flag
)
1417 struct vfsmount
*m
, *mnt
= path
->mnt
;
1418 int recurse
= flag
& MS_REC
;
1419 int type
= flag
& ~MS_REC
;
1422 if (!capable(CAP_SYS_ADMIN
))
1425 if (path
->dentry
!= path
->mnt
->mnt_root
)
1428 down_write(&namespace_sem
);
1429 if (type
== MS_SHARED
) {
1430 err
= invent_group_ids(mnt
, recurse
);
1435 spin_lock(&vfsmount_lock
);
1436 for (m
= mnt
; m
; m
= (recurse
? next_mnt(m
, mnt
) : NULL
))
1437 change_mnt_propagation(m
, type
);
1438 spin_unlock(&vfsmount_lock
);
1441 up_write(&namespace_sem
);
1446 * do loopback mount.
1448 static int do_loopback(struct path
*path
, char *old_name
,
1451 struct path old_path
;
1452 struct vfsmount
*mnt
= NULL
;
1453 int err
= mount_is_safe(path
);
1456 if (!old_name
|| !*old_name
)
1458 err
= kern_path(old_name
, LOOKUP_FOLLOW
, &old_path
);
1462 down_write(&namespace_sem
);
1464 if (IS_MNT_UNBINDABLE(old_path
.mnt
))
1467 if (!check_mnt(path
->mnt
) || !check_mnt(old_path
.mnt
))
1472 mnt
= copy_tree(old_path
.mnt
, old_path
.dentry
, 0);
1474 mnt
= clone_mnt(old_path
.mnt
, old_path
.dentry
, 0);
1479 err
= graft_tree(mnt
, path
);
1481 LIST_HEAD(umount_list
);
1482 spin_lock(&vfsmount_lock
);
1483 umount_tree(mnt
, 0, &umount_list
);
1484 spin_unlock(&vfsmount_lock
);
1485 release_mounts(&umount_list
);
1489 up_write(&namespace_sem
);
1490 path_put(&old_path
);
1494 static int change_mount_flags(struct vfsmount
*mnt
, int ms_flags
)
1497 int readonly_request
= 0;
1499 if (ms_flags
& MS_RDONLY
)
1500 readonly_request
= 1;
1501 if (readonly_request
== __mnt_is_readonly(mnt
))
1504 if (readonly_request
)
1505 error
= mnt_make_readonly(mnt
);
1507 __mnt_unmake_readonly(mnt
);
1512 * change filesystem flags. dir should be a physical root of filesystem.
1513 * If you've mounted a non-root directory somewhere and want to do remount
1514 * on it - tough luck.
1516 static int do_remount(struct path
*path
, int flags
, int mnt_flags
,
1520 struct super_block
*sb
= path
->mnt
->mnt_sb
;
1522 if (!capable(CAP_SYS_ADMIN
))
1525 if (!check_mnt(path
->mnt
))
1528 if (path
->dentry
!= path
->mnt
->mnt_root
)
1531 down_write(&sb
->s_umount
);
1532 if (flags
& MS_BIND
)
1533 err
= change_mount_flags(path
->mnt
, flags
);
1535 err
= do_remount_sb(sb
, flags
, data
, 0);
1537 path
->mnt
->mnt_flags
= mnt_flags
;
1538 up_write(&sb
->s_umount
);
1540 security_sb_post_remount(path
->mnt
, flags
, data
);
1542 spin_lock(&vfsmount_lock
);
1543 touch_mnt_namespace(path
->mnt
->mnt_ns
);
1544 spin_unlock(&vfsmount_lock
);
1549 static inline int tree_contains_unbindable(struct vfsmount
*mnt
)
1552 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
1553 if (IS_MNT_UNBINDABLE(p
))
1559 static int do_move_mount(struct path
*path
, char *old_name
)
1561 struct path old_path
, parent_path
;
1564 if (!capable(CAP_SYS_ADMIN
))
1566 if (!old_name
|| !*old_name
)
1568 err
= kern_path(old_name
, LOOKUP_FOLLOW
, &old_path
);
1572 down_write(&namespace_sem
);
1573 while (d_mountpoint(path
->dentry
) &&
1577 if (!check_mnt(path
->mnt
) || !check_mnt(old_path
.mnt
))
1581 mutex_lock(&path
->dentry
->d_inode
->i_mutex
);
1582 if (IS_DEADDIR(path
->dentry
->d_inode
))
1585 if (d_unlinked(path
->dentry
))
1589 if (old_path
.dentry
!= old_path
.mnt
->mnt_root
)
1592 if (old_path
.mnt
== old_path
.mnt
->mnt_parent
)
1595 if (S_ISDIR(path
->dentry
->d_inode
->i_mode
) !=
1596 S_ISDIR(old_path
.dentry
->d_inode
->i_mode
))
1599 * Don't move a mount residing in a shared parent.
1601 if (old_path
.mnt
->mnt_parent
&&
1602 IS_MNT_SHARED(old_path
.mnt
->mnt_parent
))
1605 * Don't move a mount tree containing unbindable mounts to a destination
1606 * mount which is shared.
1608 if (IS_MNT_SHARED(path
->mnt
) &&
1609 tree_contains_unbindable(old_path
.mnt
))
1612 for (p
= path
->mnt
; p
->mnt_parent
!= p
; p
= p
->mnt_parent
)
1613 if (p
== old_path
.mnt
)
1616 err
= attach_recursive_mnt(old_path
.mnt
, path
, &parent_path
);
1620 /* if the mount is moved, it should no longer be expire
1622 list_del_init(&old_path
.mnt
->mnt_expire
);
1624 mutex_unlock(&path
->dentry
->d_inode
->i_mutex
);
1626 up_write(&namespace_sem
);
1628 path_put(&parent_path
);
1629 path_put(&old_path
);
1634 * create a new mount for userspace and request it to be added into the
1637 static int do_new_mount(struct path
*path
, char *type
, int flags
,
1638 int mnt_flags
, char *name
, void *data
)
1640 struct vfsmount
*mnt
;
1642 if (!type
|| !memchr(type
, 0, PAGE_SIZE
))
1645 /* we need capabilities... */
1646 if (!capable(CAP_SYS_ADMIN
))
1650 mnt
= do_kern_mount(type
, flags
, name
, data
);
1653 return PTR_ERR(mnt
);
1655 return do_add_mount(mnt
, path
, mnt_flags
, NULL
);
1659 * add a mount into a namespace's mount tree
1660 * - provide the option of adding the new mount to an expiration list
1662 int do_add_mount(struct vfsmount
*newmnt
, struct path
*path
,
1663 int mnt_flags
, struct list_head
*fslist
)
1667 down_write(&namespace_sem
);
1668 /* Something was mounted here while we slept */
1669 while (d_mountpoint(path
->dentry
) &&
1673 if (!(mnt_flags
& MNT_SHRINKABLE
) && !check_mnt(path
->mnt
))
1676 /* Refuse the same filesystem on the same mount point */
1678 if (path
->mnt
->mnt_sb
== newmnt
->mnt_sb
&&
1679 path
->mnt
->mnt_root
== path
->dentry
)
1683 if (S_ISLNK(newmnt
->mnt_root
->d_inode
->i_mode
))
1686 newmnt
->mnt_flags
= mnt_flags
;
1687 if ((err
= graft_tree(newmnt
, path
)))
1690 if (fslist
) /* add to the specified expiration list */
1691 list_add_tail(&newmnt
->mnt_expire
, fslist
);
1693 up_write(&namespace_sem
);
1697 up_write(&namespace_sem
);
1702 EXPORT_SYMBOL_GPL(do_add_mount
);
1705 * process a list of expirable mountpoints with the intent of discarding any
1706 * mountpoints that aren't in use and haven't been touched since last we came
1709 void mark_mounts_for_expiry(struct list_head
*mounts
)
1711 struct vfsmount
*mnt
, *next
;
1712 LIST_HEAD(graveyard
);
1715 if (list_empty(mounts
))
1718 down_write(&namespace_sem
);
1719 spin_lock(&vfsmount_lock
);
1721 /* extract from the expiration list every vfsmount that matches the
1722 * following criteria:
1723 * - only referenced by its parent vfsmount
1724 * - still marked for expiry (marked on the last call here; marks are
1725 * cleared by mntput())
1727 list_for_each_entry_safe(mnt
, next
, mounts
, mnt_expire
) {
1728 if (!xchg(&mnt
->mnt_expiry_mark
, 1) ||
1729 propagate_mount_busy(mnt
, 1))
1731 list_move(&mnt
->mnt_expire
, &graveyard
);
1733 while (!list_empty(&graveyard
)) {
1734 mnt
= list_first_entry(&graveyard
, struct vfsmount
, mnt_expire
);
1735 touch_mnt_namespace(mnt
->mnt_ns
);
1736 umount_tree(mnt
, 1, &umounts
);
1738 spin_unlock(&vfsmount_lock
);
1739 up_write(&namespace_sem
);
1741 release_mounts(&umounts
);
1744 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry
);
1747 * Ripoff of 'select_parent()'
1749 * search the list of submounts for a given mountpoint, and move any
1750 * shrinkable submounts to the 'graveyard' list.
1752 static int select_submounts(struct vfsmount
*parent
, struct list_head
*graveyard
)
1754 struct vfsmount
*this_parent
= parent
;
1755 struct list_head
*next
;
1759 next
= this_parent
->mnt_mounts
.next
;
1761 while (next
!= &this_parent
->mnt_mounts
) {
1762 struct list_head
*tmp
= next
;
1763 struct vfsmount
*mnt
= list_entry(tmp
, struct vfsmount
, mnt_child
);
1766 if (!(mnt
->mnt_flags
& MNT_SHRINKABLE
))
1769 * Descend a level if the d_mounts list is non-empty.
1771 if (!list_empty(&mnt
->mnt_mounts
)) {
1776 if (!propagate_mount_busy(mnt
, 1)) {
1777 list_move_tail(&mnt
->mnt_expire
, graveyard
);
1782 * All done at this level ... ascend and resume the search
1784 if (this_parent
!= parent
) {
1785 next
= this_parent
->mnt_child
.next
;
1786 this_parent
= this_parent
->mnt_parent
;
1793 * process a list of expirable mountpoints with the intent of discarding any
1794 * submounts of a specific parent mountpoint
1796 static void shrink_submounts(struct vfsmount
*mnt
, struct list_head
*umounts
)
1798 LIST_HEAD(graveyard
);
1801 /* extract submounts of 'mountpoint' from the expiration list */
1802 while (select_submounts(mnt
, &graveyard
)) {
1803 while (!list_empty(&graveyard
)) {
1804 m
= list_first_entry(&graveyard
, struct vfsmount
,
1806 touch_mnt_namespace(m
->mnt_ns
);
1807 umount_tree(m
, 1, umounts
);
1813 * Some copy_from_user() implementations do not return the exact number of
1814 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
1815 * Note that this function differs from copy_from_user() in that it will oops
1816 * on bad values of `to', rather than returning a short copy.
1818 static long exact_copy_from_user(void *to
, const void __user
* from
,
1822 const char __user
*f
= from
;
1825 if (!access_ok(VERIFY_READ
, from
, n
))
1829 if (__get_user(c
, f
)) {
1840 int copy_mount_options(const void __user
* data
, unsigned long *where
)
1850 if (!(page
= __get_free_page(GFP_KERNEL
)))
1853 /* We only care that *some* data at the address the user
1854 * gave us is valid. Just in case, we'll zero
1855 * the remainder of the page.
1857 /* copy_from_user cannot cross TASK_SIZE ! */
1858 size
= TASK_SIZE
- (unsigned long)data
;
1859 if (size
> PAGE_SIZE
)
1862 i
= size
- exact_copy_from_user((void *)page
, data
, size
);
1868 memset((char *)page
+ i
, 0, PAGE_SIZE
- i
);
1874 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
1875 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
1877 * data is a (void *) that can point to any structure up to
1878 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
1879 * information (or be NULL).
1881 * Pre-0.97 versions of mount() didn't have a flags word.
1882 * When the flags word was introduced its top half was required
1883 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
1884 * Therefore, if this magic number is present, it carries no information
1885 * and must be discarded.
1887 long do_mount(char *dev_name
, char *dir_name
, char *type_page
,
1888 unsigned long flags
, void *data_page
)
1895 if ((flags
& MS_MGC_MSK
) == MS_MGC_VAL
)
1896 flags
&= ~MS_MGC_MSK
;
1898 /* Basic sanity checks */
1900 if (!dir_name
|| !*dir_name
|| !memchr(dir_name
, 0, PAGE_SIZE
))
1902 if (dev_name
&& !memchr(dev_name
, 0, PAGE_SIZE
))
1906 ((char *)data_page
)[PAGE_SIZE
- 1] = 0;
1908 /* Default to relatime unless overriden */
1909 if (!(flags
& MS_NOATIME
))
1910 mnt_flags
|= MNT_RELATIME
;
1912 /* Separate the per-mountpoint flags */
1913 if (flags
& MS_NOSUID
)
1914 mnt_flags
|= MNT_NOSUID
;
1915 if (flags
& MS_NODEV
)
1916 mnt_flags
|= MNT_NODEV
;
1917 if (flags
& MS_NOEXEC
)
1918 mnt_flags
|= MNT_NOEXEC
;
1919 if (flags
& MS_NOATIME
)
1920 mnt_flags
|= MNT_NOATIME
;
1921 if (flags
& MS_NODIRATIME
)
1922 mnt_flags
|= MNT_NODIRATIME
;
1923 if (flags
& MS_STRICTATIME
)
1924 mnt_flags
&= ~(MNT_RELATIME
| MNT_NOATIME
);
1925 if (flags
& MS_RDONLY
)
1926 mnt_flags
|= MNT_READONLY
;
1928 flags
&= ~(MS_NOSUID
| MS_NOEXEC
| MS_NODEV
| MS_ACTIVE
|
1929 MS_NOATIME
| MS_NODIRATIME
| MS_RELATIME
| MS_KERNMOUNT
|
1932 /* ... and get the mountpoint */
1933 retval
= kern_path(dir_name
, LOOKUP_FOLLOW
, &path
);
1937 retval
= security_sb_mount(dev_name
, &path
,
1938 type_page
, flags
, data_page
);
1942 if (flags
& MS_REMOUNT
)
1943 retval
= do_remount(&path
, flags
& ~MS_REMOUNT
, mnt_flags
,
1945 else if (flags
& MS_BIND
)
1946 retval
= do_loopback(&path
, dev_name
, flags
& MS_REC
);
1947 else if (flags
& (MS_SHARED
| MS_PRIVATE
| MS_SLAVE
| MS_UNBINDABLE
))
1948 retval
= do_change_type(&path
, flags
);
1949 else if (flags
& MS_MOVE
)
1950 retval
= do_move_mount(&path
, dev_name
);
1952 retval
= do_new_mount(&path
, type_page
, flags
, mnt_flags
,
1953 dev_name
, data_page
);
1959 static struct mnt_namespace
*alloc_mnt_ns(void)
1961 struct mnt_namespace
*new_ns
;
1963 new_ns
= kmalloc(sizeof(struct mnt_namespace
), GFP_KERNEL
);
1965 return ERR_PTR(-ENOMEM
);
1966 atomic_set(&new_ns
->count
, 1);
1967 new_ns
->root
= NULL
;
1968 INIT_LIST_HEAD(&new_ns
->list
);
1969 init_waitqueue_head(&new_ns
->poll
);
1975 * Allocate a new namespace structure and populate it with contents
1976 * copied from the namespace of the passed in task structure.
1978 static struct mnt_namespace
*dup_mnt_ns(struct mnt_namespace
*mnt_ns
,
1979 struct fs_struct
*fs
)
1981 struct mnt_namespace
*new_ns
;
1982 struct vfsmount
*rootmnt
= NULL
, *pwdmnt
= NULL
;
1983 struct vfsmount
*p
, *q
;
1985 new_ns
= alloc_mnt_ns();
1989 down_write(&namespace_sem
);
1990 /* First pass: copy the tree topology */
1991 new_ns
->root
= copy_tree(mnt_ns
->root
, mnt_ns
->root
->mnt_root
,
1992 CL_COPY_ALL
| CL_EXPIRE
);
1993 if (!new_ns
->root
) {
1994 up_write(&namespace_sem
);
1996 return ERR_PTR(-ENOMEM
);
1998 spin_lock(&vfsmount_lock
);
1999 list_add_tail(&new_ns
->list
, &new_ns
->root
->mnt_list
);
2000 spin_unlock(&vfsmount_lock
);
2003 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2004 * as belonging to new namespace. We have already acquired a private
2005 * fs_struct, so tsk->fs->lock is not needed.
2012 if (p
== fs
->root
.mnt
) {
2014 fs
->root
.mnt
= mntget(q
);
2016 if (p
== fs
->pwd
.mnt
) {
2018 fs
->pwd
.mnt
= mntget(q
);
2021 p
= next_mnt(p
, mnt_ns
->root
);
2022 q
= next_mnt(q
, new_ns
->root
);
2024 up_write(&namespace_sem
);
2034 struct mnt_namespace
*copy_mnt_ns(unsigned long flags
, struct mnt_namespace
*ns
,
2035 struct fs_struct
*new_fs
)
2037 struct mnt_namespace
*new_ns
;
2042 if (!(flags
& CLONE_NEWNS
))
2045 new_ns
= dup_mnt_ns(ns
, new_fs
);
2052 * create_mnt_ns - creates a private namespace and adds a root filesystem
2053 * @mnt: pointer to the new root filesystem mountpoint
2055 struct mnt_namespace
*create_mnt_ns(struct vfsmount
*mnt
)
2057 struct mnt_namespace
*new_ns
;
2059 new_ns
= alloc_mnt_ns();
2060 if (!IS_ERR(new_ns
)) {
2061 mnt
->mnt_ns
= new_ns
;
2063 list_add(&new_ns
->list
, &new_ns
->root
->mnt_list
);
2067 EXPORT_SYMBOL(create_mnt_ns
);
2069 SYSCALL_DEFINE5(mount
, char __user
*, dev_name
, char __user
*, dir_name
,
2070 char __user
*, type
, unsigned long, flags
, void __user
*, data
)
2073 unsigned long data_page
;
2074 unsigned long type_page
;
2075 unsigned long dev_page
;
2078 retval
= copy_mount_options(type
, &type_page
);
2082 dir_page
= getname(dir_name
);
2083 retval
= PTR_ERR(dir_page
);
2084 if (IS_ERR(dir_page
))
2087 retval
= copy_mount_options(dev_name
, &dev_page
);
2091 retval
= copy_mount_options(data
, &data_page
);
2095 retval
= do_mount((char *)dev_page
, dir_page
, (char *)type_page
,
2096 flags
, (void *)data_page
);
2097 free_page(data_page
);
2100 free_page(dev_page
);
2104 free_page(type_page
);
2109 * pivot_root Semantics:
2110 * Moves the root file system of the current process to the directory put_old,
2111 * makes new_root as the new root file system of the current process, and sets
2112 * root/cwd of all processes which had them on the current root to new_root.
2115 * The new_root and put_old must be directories, and must not be on the
2116 * same file system as the current process root. The put_old must be
2117 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2118 * pointed to by put_old must yield the same directory as new_root. No other
2119 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2121 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2122 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2123 * in this situation.
2126 * - we don't move root/cwd if they are not at the root (reason: if something
2127 * cared enough to change them, it's probably wrong to force them elsewhere)
2128 * - it's okay to pick a root that isn't the root of a file system, e.g.
2129 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2130 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2133 SYSCALL_DEFINE2(pivot_root
, const char __user
*, new_root
,
2134 const char __user
*, put_old
)
2136 struct vfsmount
*tmp
;
2137 struct path
new, old
, parent_path
, root_parent
, root
;
2140 if (!capable(CAP_SYS_ADMIN
))
2143 error
= user_path_dir(new_root
, &new);
2147 if (!check_mnt(new.mnt
))
2150 error
= user_path_dir(put_old
, &old
);
2154 error
= security_sb_pivotroot(&old
, &new);
2160 read_lock(¤t
->fs
->lock
);
2161 root
= current
->fs
->root
;
2162 path_get(¤t
->fs
->root
);
2163 read_unlock(¤t
->fs
->lock
);
2164 down_write(&namespace_sem
);
2165 mutex_lock(&old
.dentry
->d_inode
->i_mutex
);
2167 if (IS_MNT_SHARED(old
.mnt
) ||
2168 IS_MNT_SHARED(new.mnt
->mnt_parent
) ||
2169 IS_MNT_SHARED(root
.mnt
->mnt_parent
))
2171 if (!check_mnt(root
.mnt
))
2174 if (IS_DEADDIR(new.dentry
->d_inode
))
2176 if (d_unlinked(new.dentry
))
2178 if (d_unlinked(old
.dentry
))
2181 if (new.mnt
== root
.mnt
||
2182 old
.mnt
== root
.mnt
)
2183 goto out2
; /* loop, on the same file system */
2185 if (root
.mnt
->mnt_root
!= root
.dentry
)
2186 goto out2
; /* not a mountpoint */
2187 if (root
.mnt
->mnt_parent
== root
.mnt
)
2188 goto out2
; /* not attached */
2189 if (new.mnt
->mnt_root
!= new.dentry
)
2190 goto out2
; /* not a mountpoint */
2191 if (new.mnt
->mnt_parent
== new.mnt
)
2192 goto out2
; /* not attached */
2193 /* make sure we can reach put_old from new_root */
2195 spin_lock(&vfsmount_lock
);
2196 if (tmp
!= new.mnt
) {
2198 if (tmp
->mnt_parent
== tmp
)
2199 goto out3
; /* already mounted on put_old */
2200 if (tmp
->mnt_parent
== new.mnt
)
2202 tmp
= tmp
->mnt_parent
;
2204 if (!is_subdir(tmp
->mnt_mountpoint
, new.dentry
))
2206 } else if (!is_subdir(old
.dentry
, new.dentry
))
2208 detach_mnt(new.mnt
, &parent_path
);
2209 detach_mnt(root
.mnt
, &root_parent
);
2210 /* mount old root on put_old */
2211 attach_mnt(root
.mnt
, &old
);
2212 /* mount new_root on / */
2213 attach_mnt(new.mnt
, &root_parent
);
2214 touch_mnt_namespace(current
->nsproxy
->mnt_ns
);
2215 spin_unlock(&vfsmount_lock
);
2216 chroot_fs_refs(&root
, &new);
2217 security_sb_post_pivotroot(&root
, &new);
2219 path_put(&root_parent
);
2220 path_put(&parent_path
);
2222 mutex_unlock(&old
.dentry
->d_inode
->i_mutex
);
2223 up_write(&namespace_sem
);
2231 spin_unlock(&vfsmount_lock
);
2235 static void __init
init_mount_tree(void)
2237 struct vfsmount
*mnt
;
2238 struct mnt_namespace
*ns
;
2241 mnt
= do_kern_mount("rootfs", 0, "rootfs", NULL
);
2243 panic("Can't create rootfs");
2244 ns
= create_mnt_ns(mnt
);
2246 panic("Can't allocate initial namespace");
2248 init_task
.nsproxy
->mnt_ns
= ns
;
2251 root
.mnt
= ns
->root
;
2252 root
.dentry
= ns
->root
->mnt_root
;
2254 set_fs_pwd(current
->fs
, &root
);
2255 set_fs_root(current
->fs
, &root
);
2258 void __init
mnt_init(void)
2263 init_rwsem(&namespace_sem
);
2265 mnt_cache
= kmem_cache_create("mnt_cache", sizeof(struct vfsmount
),
2266 0, SLAB_HWCACHE_ALIGN
| SLAB_PANIC
, NULL
);
2268 mount_hashtable
= (struct list_head
*)__get_free_page(GFP_ATOMIC
);
2270 if (!mount_hashtable
)
2271 panic("Failed to allocate mount hash table\n");
2273 printk("Mount-cache hash table entries: %lu\n", HASH_SIZE
);
2275 for (u
= 0; u
< HASH_SIZE
; u
++)
2276 INIT_LIST_HEAD(&mount_hashtable
[u
]);
2280 printk(KERN_WARNING
"%s: sysfs_init error: %d\n",
2282 fs_kobj
= kobject_create_and_add("fs", NULL
);
2284 printk(KERN_WARNING
"%s: kobj create error\n", __func__
);
2289 void put_mnt_ns(struct mnt_namespace
*ns
)
2291 struct vfsmount
*root
;
2292 LIST_HEAD(umount_list
);
2294 if (!atomic_dec_and_lock(&ns
->count
, &vfsmount_lock
))
2298 spin_unlock(&vfsmount_lock
);
2299 down_write(&namespace_sem
);
2300 spin_lock(&vfsmount_lock
);
2301 umount_tree(root
, 0, &umount_list
);
2302 spin_unlock(&vfsmount_lock
);
2303 up_write(&namespace_sem
);
2304 release_mounts(&umount_list
);
2307 EXPORT_SYMBOL(put_mnt_ns
);