2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/config.h>
36 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/pci.h>
39 #include <linux/init.h>
40 #include <linux/list.h>
42 #include <linux/highmem.h>
43 #include <linux/spinlock.h>
44 #include <linux/blkdev.h>
45 #include <linux/delay.h>
46 #include <linux/timer.h>
47 #include <linux/interrupt.h>
48 #include <linux/completion.h>
49 #include <linux/suspend.h>
50 #include <linux/workqueue.h>
51 #include <linux/jiffies.h>
52 #include <linux/scatterlist.h>
53 #include <scsi/scsi.h>
54 #include "scsi_priv.h"
55 #include <scsi/scsi_cmnd.h>
56 #include <scsi/scsi_host.h>
57 #include <linux/libata.h>
59 #include <asm/semaphore.h>
60 #include <asm/byteorder.h>
64 static unsigned int ata_dev_init_params(struct ata_port
*ap
,
65 struct ata_device
*dev
,
68 static void ata_set_mode(struct ata_port
*ap
);
69 static unsigned int ata_dev_set_xfermode(struct ata_port
*ap
,
70 struct ata_device
*dev
);
71 static void ata_dev_xfermask(struct ata_port
*ap
, struct ata_device
*dev
);
73 static unsigned int ata_unique_id
= 1;
74 static struct workqueue_struct
*ata_wq
;
76 int atapi_enabled
= 1;
77 module_param(atapi_enabled
, int, 0444);
78 MODULE_PARM_DESC(atapi_enabled
, "Enable discovery of ATAPI devices (0=off, 1=on)");
81 module_param_named(fua
, libata_fua
, int, 0444);
82 MODULE_PARM_DESC(fua
, "FUA support (0=off, 1=on)");
84 MODULE_AUTHOR("Jeff Garzik");
85 MODULE_DESCRIPTION("Library module for ATA devices");
86 MODULE_LICENSE("GPL");
87 MODULE_VERSION(DRV_VERSION
);
91 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
92 * @tf: Taskfile to convert
93 * @fis: Buffer into which data will output
94 * @pmp: Port multiplier port
96 * Converts a standard ATA taskfile to a Serial ATA
97 * FIS structure (Register - Host to Device).
100 * Inherited from caller.
103 void ata_tf_to_fis(const struct ata_taskfile
*tf
, u8
*fis
, u8 pmp
)
105 fis
[0] = 0x27; /* Register - Host to Device FIS */
106 fis
[1] = (pmp
& 0xf) | (1 << 7); /* Port multiplier number,
107 bit 7 indicates Command FIS */
108 fis
[2] = tf
->command
;
109 fis
[3] = tf
->feature
;
116 fis
[8] = tf
->hob_lbal
;
117 fis
[9] = tf
->hob_lbam
;
118 fis
[10] = tf
->hob_lbah
;
119 fis
[11] = tf
->hob_feature
;
122 fis
[13] = tf
->hob_nsect
;
133 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
134 * @fis: Buffer from which data will be input
135 * @tf: Taskfile to output
137 * Converts a serial ATA FIS structure to a standard ATA taskfile.
140 * Inherited from caller.
143 void ata_tf_from_fis(const u8
*fis
, struct ata_taskfile
*tf
)
145 tf
->command
= fis
[2]; /* status */
146 tf
->feature
= fis
[3]; /* error */
153 tf
->hob_lbal
= fis
[8];
154 tf
->hob_lbam
= fis
[9];
155 tf
->hob_lbah
= fis
[10];
158 tf
->hob_nsect
= fis
[13];
161 static const u8 ata_rw_cmds
[] = {
165 ATA_CMD_READ_MULTI_EXT
,
166 ATA_CMD_WRITE_MULTI_EXT
,
170 ATA_CMD_WRITE_MULTI_FUA_EXT
,
174 ATA_CMD_PIO_READ_EXT
,
175 ATA_CMD_PIO_WRITE_EXT
,
188 ATA_CMD_WRITE_FUA_EXT
192 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
193 * @qc: command to examine and configure
195 * Examine the device configuration and tf->flags to calculate
196 * the proper read/write commands and protocol to use.
201 int ata_rwcmd_protocol(struct ata_queued_cmd
*qc
)
203 struct ata_taskfile
*tf
= &qc
->tf
;
204 struct ata_device
*dev
= qc
->dev
;
207 int index
, fua
, lba48
, write
;
209 fua
= (tf
->flags
& ATA_TFLAG_FUA
) ? 4 : 0;
210 lba48
= (tf
->flags
& ATA_TFLAG_LBA48
) ? 2 : 0;
211 write
= (tf
->flags
& ATA_TFLAG_WRITE
) ? 1 : 0;
213 if (dev
->flags
& ATA_DFLAG_PIO
) {
214 tf
->protocol
= ATA_PROT_PIO
;
215 index
= dev
->multi_count
? 0 : 8;
216 } else if (lba48
&& (qc
->ap
->flags
& ATA_FLAG_PIO_LBA48
)) {
217 /* Unable to use DMA due to host limitation */
218 tf
->protocol
= ATA_PROT_PIO
;
219 index
= dev
->multi_count
? 0 : 8;
221 tf
->protocol
= ATA_PROT_DMA
;
225 cmd
= ata_rw_cmds
[index
+ fua
+ lba48
+ write
];
234 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
235 * @pio_mask: pio_mask
236 * @mwdma_mask: mwdma_mask
237 * @udma_mask: udma_mask
239 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
240 * unsigned int xfer_mask.
248 static unsigned int ata_pack_xfermask(unsigned int pio_mask
,
249 unsigned int mwdma_mask
,
250 unsigned int udma_mask
)
252 return ((pio_mask
<< ATA_SHIFT_PIO
) & ATA_MASK_PIO
) |
253 ((mwdma_mask
<< ATA_SHIFT_MWDMA
) & ATA_MASK_MWDMA
) |
254 ((udma_mask
<< ATA_SHIFT_UDMA
) & ATA_MASK_UDMA
);
258 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
259 * @xfer_mask: xfer_mask to unpack
260 * @pio_mask: resulting pio_mask
261 * @mwdma_mask: resulting mwdma_mask
262 * @udma_mask: resulting udma_mask
264 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
265 * Any NULL distination masks will be ignored.
267 static void ata_unpack_xfermask(unsigned int xfer_mask
,
268 unsigned int *pio_mask
,
269 unsigned int *mwdma_mask
,
270 unsigned int *udma_mask
)
273 *pio_mask
= (xfer_mask
& ATA_MASK_PIO
) >> ATA_SHIFT_PIO
;
275 *mwdma_mask
= (xfer_mask
& ATA_MASK_MWDMA
) >> ATA_SHIFT_MWDMA
;
277 *udma_mask
= (xfer_mask
& ATA_MASK_UDMA
) >> ATA_SHIFT_UDMA
;
280 static const struct ata_xfer_ent
{
284 { ATA_SHIFT_PIO
, ATA_BITS_PIO
, XFER_PIO_0
},
285 { ATA_SHIFT_MWDMA
, ATA_BITS_MWDMA
, XFER_MW_DMA_0
},
286 { ATA_SHIFT_UDMA
, ATA_BITS_UDMA
, XFER_UDMA_0
},
291 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
292 * @xfer_mask: xfer_mask of interest
294 * Return matching XFER_* value for @xfer_mask. Only the highest
295 * bit of @xfer_mask is considered.
301 * Matching XFER_* value, 0 if no match found.
303 static u8
ata_xfer_mask2mode(unsigned int xfer_mask
)
305 int highbit
= fls(xfer_mask
) - 1;
306 const struct ata_xfer_ent
*ent
;
308 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
309 if (highbit
>= ent
->shift
&& highbit
< ent
->shift
+ ent
->bits
)
310 return ent
->base
+ highbit
- ent
->shift
;
315 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
316 * @xfer_mode: XFER_* of interest
318 * Return matching xfer_mask for @xfer_mode.
324 * Matching xfer_mask, 0 if no match found.
326 static unsigned int ata_xfer_mode2mask(u8 xfer_mode
)
328 const struct ata_xfer_ent
*ent
;
330 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
331 if (xfer_mode
>= ent
->base
&& xfer_mode
< ent
->base
+ ent
->bits
)
332 return 1 << (ent
->shift
+ xfer_mode
- ent
->base
);
337 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
338 * @xfer_mode: XFER_* of interest
340 * Return matching xfer_shift for @xfer_mode.
346 * Matching xfer_shift, -1 if no match found.
348 static int ata_xfer_mode2shift(unsigned int xfer_mode
)
350 const struct ata_xfer_ent
*ent
;
352 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
353 if (xfer_mode
>= ent
->base
&& xfer_mode
< ent
->base
+ ent
->bits
)
359 * ata_mode_string - convert xfer_mask to string
360 * @xfer_mask: mask of bits supported; only highest bit counts.
362 * Determine string which represents the highest speed
363 * (highest bit in @modemask).
369 * Constant C string representing highest speed listed in
370 * @mode_mask, or the constant C string "<n/a>".
372 static const char *ata_mode_string(unsigned int xfer_mask
)
374 static const char * const xfer_mode_str
[] = {
394 highbit
= fls(xfer_mask
) - 1;
395 if (highbit
>= 0 && highbit
< ARRAY_SIZE(xfer_mode_str
))
396 return xfer_mode_str
[highbit
];
400 static void ata_dev_disable(struct ata_port
*ap
, struct ata_device
*dev
)
402 if (ata_dev_present(dev
)) {
403 printk(KERN_WARNING
"ata%u: dev %u disabled\n",
410 * ata_pio_devchk - PATA device presence detection
411 * @ap: ATA channel to examine
412 * @device: Device to examine (starting at zero)
414 * This technique was originally described in
415 * Hale Landis's ATADRVR (www.ata-atapi.com), and
416 * later found its way into the ATA/ATAPI spec.
418 * Write a pattern to the ATA shadow registers,
419 * and if a device is present, it will respond by
420 * correctly storing and echoing back the
421 * ATA shadow register contents.
427 static unsigned int ata_pio_devchk(struct ata_port
*ap
,
430 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
433 ap
->ops
->dev_select(ap
, device
);
435 outb(0x55, ioaddr
->nsect_addr
);
436 outb(0xaa, ioaddr
->lbal_addr
);
438 outb(0xaa, ioaddr
->nsect_addr
);
439 outb(0x55, ioaddr
->lbal_addr
);
441 outb(0x55, ioaddr
->nsect_addr
);
442 outb(0xaa, ioaddr
->lbal_addr
);
444 nsect
= inb(ioaddr
->nsect_addr
);
445 lbal
= inb(ioaddr
->lbal_addr
);
447 if ((nsect
== 0x55) && (lbal
== 0xaa))
448 return 1; /* we found a device */
450 return 0; /* nothing found */
454 * ata_mmio_devchk - PATA device presence detection
455 * @ap: ATA channel to examine
456 * @device: Device to examine (starting at zero)
458 * This technique was originally described in
459 * Hale Landis's ATADRVR (www.ata-atapi.com), and
460 * later found its way into the ATA/ATAPI spec.
462 * Write a pattern to the ATA shadow registers,
463 * and if a device is present, it will respond by
464 * correctly storing and echoing back the
465 * ATA shadow register contents.
471 static unsigned int ata_mmio_devchk(struct ata_port
*ap
,
474 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
477 ap
->ops
->dev_select(ap
, device
);
479 writeb(0x55, (void __iomem
*) ioaddr
->nsect_addr
);
480 writeb(0xaa, (void __iomem
*) ioaddr
->lbal_addr
);
482 writeb(0xaa, (void __iomem
*) ioaddr
->nsect_addr
);
483 writeb(0x55, (void __iomem
*) ioaddr
->lbal_addr
);
485 writeb(0x55, (void __iomem
*) ioaddr
->nsect_addr
);
486 writeb(0xaa, (void __iomem
*) ioaddr
->lbal_addr
);
488 nsect
= readb((void __iomem
*) ioaddr
->nsect_addr
);
489 lbal
= readb((void __iomem
*) ioaddr
->lbal_addr
);
491 if ((nsect
== 0x55) && (lbal
== 0xaa))
492 return 1; /* we found a device */
494 return 0; /* nothing found */
498 * ata_devchk - PATA device presence detection
499 * @ap: ATA channel to examine
500 * @device: Device to examine (starting at zero)
502 * Dispatch ATA device presence detection, depending
503 * on whether we are using PIO or MMIO to talk to the
504 * ATA shadow registers.
510 static unsigned int ata_devchk(struct ata_port
*ap
,
513 if (ap
->flags
& ATA_FLAG_MMIO
)
514 return ata_mmio_devchk(ap
, device
);
515 return ata_pio_devchk(ap
, device
);
519 * ata_dev_classify - determine device type based on ATA-spec signature
520 * @tf: ATA taskfile register set for device to be identified
522 * Determine from taskfile register contents whether a device is
523 * ATA or ATAPI, as per "Signature and persistence" section
524 * of ATA/PI spec (volume 1, sect 5.14).
530 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
531 * the event of failure.
534 unsigned int ata_dev_classify(const struct ata_taskfile
*tf
)
536 /* Apple's open source Darwin code hints that some devices only
537 * put a proper signature into the LBA mid/high registers,
538 * So, we only check those. It's sufficient for uniqueness.
541 if (((tf
->lbam
== 0) && (tf
->lbah
== 0)) ||
542 ((tf
->lbam
== 0x3c) && (tf
->lbah
== 0xc3))) {
543 DPRINTK("found ATA device by sig\n");
547 if (((tf
->lbam
== 0x14) && (tf
->lbah
== 0xeb)) ||
548 ((tf
->lbam
== 0x69) && (tf
->lbah
== 0x96))) {
549 DPRINTK("found ATAPI device by sig\n");
550 return ATA_DEV_ATAPI
;
553 DPRINTK("unknown device\n");
554 return ATA_DEV_UNKNOWN
;
558 * ata_dev_try_classify - Parse returned ATA device signature
559 * @ap: ATA channel to examine
560 * @device: Device to examine (starting at zero)
561 * @r_err: Value of error register on completion
563 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
564 * an ATA/ATAPI-defined set of values is placed in the ATA
565 * shadow registers, indicating the results of device detection
568 * Select the ATA device, and read the values from the ATA shadow
569 * registers. Then parse according to the Error register value,
570 * and the spec-defined values examined by ata_dev_classify().
576 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
580 ata_dev_try_classify(struct ata_port
*ap
, unsigned int device
, u8
*r_err
)
582 struct ata_taskfile tf
;
586 ap
->ops
->dev_select(ap
, device
);
588 memset(&tf
, 0, sizeof(tf
));
590 ap
->ops
->tf_read(ap
, &tf
);
595 /* see if device passed diags */
598 else if ((device
== 0) && (err
== 0x81))
603 /* determine if device is ATA or ATAPI */
604 class = ata_dev_classify(&tf
);
606 if (class == ATA_DEV_UNKNOWN
)
608 if ((class == ATA_DEV_ATA
) && (ata_chk_status(ap
) == 0))
614 * ata_id_string - Convert IDENTIFY DEVICE page into string
615 * @id: IDENTIFY DEVICE results we will examine
616 * @s: string into which data is output
617 * @ofs: offset into identify device page
618 * @len: length of string to return. must be an even number.
620 * The strings in the IDENTIFY DEVICE page are broken up into
621 * 16-bit chunks. Run through the string, and output each
622 * 8-bit chunk linearly, regardless of platform.
628 void ata_id_string(const u16
*id
, unsigned char *s
,
629 unsigned int ofs
, unsigned int len
)
648 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
649 * @id: IDENTIFY DEVICE results we will examine
650 * @s: string into which data is output
651 * @ofs: offset into identify device page
652 * @len: length of string to return. must be an odd number.
654 * This function is identical to ata_id_string except that it
655 * trims trailing spaces and terminates the resulting string with
656 * null. @len must be actual maximum length (even number) + 1.
661 void ata_id_c_string(const u16
*id
, unsigned char *s
,
662 unsigned int ofs
, unsigned int len
)
668 ata_id_string(id
, s
, ofs
, len
- 1);
670 p
= s
+ strnlen(s
, len
- 1);
671 while (p
> s
&& p
[-1] == ' ')
676 static u64
ata_id_n_sectors(const u16
*id
)
678 if (ata_id_has_lba(id
)) {
679 if (ata_id_has_lba48(id
))
680 return ata_id_u64(id
, 100);
682 return ata_id_u32(id
, 60);
684 if (ata_id_current_chs_valid(id
))
685 return ata_id_u32(id
, 57);
687 return id
[1] * id
[3] * id
[6];
692 * ata_noop_dev_select - Select device 0/1 on ATA bus
693 * @ap: ATA channel to manipulate
694 * @device: ATA device (numbered from zero) to select
696 * This function performs no actual function.
698 * May be used as the dev_select() entry in ata_port_operations.
703 void ata_noop_dev_select (struct ata_port
*ap
, unsigned int device
)
709 * ata_std_dev_select - Select device 0/1 on ATA bus
710 * @ap: ATA channel to manipulate
711 * @device: ATA device (numbered from zero) to select
713 * Use the method defined in the ATA specification to
714 * make either device 0, or device 1, active on the
715 * ATA channel. Works with both PIO and MMIO.
717 * May be used as the dev_select() entry in ata_port_operations.
723 void ata_std_dev_select (struct ata_port
*ap
, unsigned int device
)
728 tmp
= ATA_DEVICE_OBS
;
730 tmp
= ATA_DEVICE_OBS
| ATA_DEV1
;
732 if (ap
->flags
& ATA_FLAG_MMIO
) {
733 writeb(tmp
, (void __iomem
*) ap
->ioaddr
.device_addr
);
735 outb(tmp
, ap
->ioaddr
.device_addr
);
737 ata_pause(ap
); /* needed; also flushes, for mmio */
741 * ata_dev_select - Select device 0/1 on ATA bus
742 * @ap: ATA channel to manipulate
743 * @device: ATA device (numbered from zero) to select
744 * @wait: non-zero to wait for Status register BSY bit to clear
745 * @can_sleep: non-zero if context allows sleeping
747 * Use the method defined in the ATA specification to
748 * make either device 0, or device 1, active on the
751 * This is a high-level version of ata_std_dev_select(),
752 * which additionally provides the services of inserting
753 * the proper pauses and status polling, where needed.
759 void ata_dev_select(struct ata_port
*ap
, unsigned int device
,
760 unsigned int wait
, unsigned int can_sleep
)
762 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
763 ap
->id
, device
, wait
);
768 ap
->ops
->dev_select(ap
, device
);
771 if (can_sleep
&& ap
->device
[device
].class == ATA_DEV_ATAPI
)
778 * ata_dump_id - IDENTIFY DEVICE info debugging output
779 * @id: IDENTIFY DEVICE page to dump
781 * Dump selected 16-bit words from the given IDENTIFY DEVICE
788 static inline void ata_dump_id(const u16
*id
)
790 DPRINTK("49==0x%04x "
800 DPRINTK("80==0x%04x "
810 DPRINTK("88==0x%04x "
817 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
818 * @id: IDENTIFY data to compute xfer mask from
820 * Compute the xfermask for this device. This is not as trivial
821 * as it seems if we must consider early devices correctly.
823 * FIXME: pre IDE drive timing (do we care ?).
831 static unsigned int ata_id_xfermask(const u16
*id
)
833 unsigned int pio_mask
, mwdma_mask
, udma_mask
;
835 /* Usual case. Word 53 indicates word 64 is valid */
836 if (id
[ATA_ID_FIELD_VALID
] & (1 << 1)) {
837 pio_mask
= id
[ATA_ID_PIO_MODES
] & 0x03;
841 /* If word 64 isn't valid then Word 51 high byte holds
842 * the PIO timing number for the maximum. Turn it into
845 pio_mask
= (2 << (id
[ATA_ID_OLD_PIO_MODES
] & 0xFF)) - 1 ;
847 /* But wait.. there's more. Design your standards by
848 * committee and you too can get a free iordy field to
849 * process. However its the speeds not the modes that
850 * are supported... Note drivers using the timing API
851 * will get this right anyway
855 mwdma_mask
= id
[ATA_ID_MWDMA_MODES
] & 0x07;
858 if (id
[ATA_ID_FIELD_VALID
] & (1 << 2))
859 udma_mask
= id
[ATA_ID_UDMA_MODES
] & 0xff;
861 return ata_pack_xfermask(pio_mask
, mwdma_mask
, udma_mask
);
865 * ata_port_queue_task - Queue port_task
866 * @ap: The ata_port to queue port_task for
867 * @fn: workqueue function to be scheduled
868 * @data: data value to pass to workqueue function
869 * @delay: delay time for workqueue function
871 * Schedule @fn(@data) for execution after @delay jiffies using
872 * port_task. There is one port_task per port and it's the
873 * user(low level driver)'s responsibility to make sure that only
874 * one task is active at any given time.
876 * libata core layer takes care of synchronization between
877 * port_task and EH. ata_port_queue_task() may be ignored for EH
881 * Inherited from caller.
883 void ata_port_queue_task(struct ata_port
*ap
, void (*fn
)(void *), void *data
,
888 if (ap
->flags
& ATA_FLAG_FLUSH_PORT_TASK
)
891 PREPARE_WORK(&ap
->port_task
, fn
, data
);
894 rc
= queue_work(ata_wq
, &ap
->port_task
);
896 rc
= queue_delayed_work(ata_wq
, &ap
->port_task
, delay
);
898 /* rc == 0 means that another user is using port task */
903 * ata_port_flush_task - Flush port_task
904 * @ap: The ata_port to flush port_task for
906 * After this function completes, port_task is guranteed not to
907 * be running or scheduled.
910 * Kernel thread context (may sleep)
912 void ata_port_flush_task(struct ata_port
*ap
)
918 spin_lock_irqsave(&ap
->host_set
->lock
, flags
);
919 ap
->flags
|= ATA_FLAG_FLUSH_PORT_TASK
;
920 spin_unlock_irqrestore(&ap
->host_set
->lock
, flags
);
922 DPRINTK("flush #1\n");
923 flush_workqueue(ata_wq
);
926 * At this point, if a task is running, it's guaranteed to see
927 * the FLUSH flag; thus, it will never queue pio tasks again.
930 if (!cancel_delayed_work(&ap
->port_task
)) {
931 DPRINTK("flush #2\n");
932 flush_workqueue(ata_wq
);
935 spin_lock_irqsave(&ap
->host_set
->lock
, flags
);
936 ap
->flags
&= ~ATA_FLAG_FLUSH_PORT_TASK
;
937 spin_unlock_irqrestore(&ap
->host_set
->lock
, flags
);
942 void ata_qc_complete_internal(struct ata_queued_cmd
*qc
)
944 struct completion
*waiting
= qc
->private_data
;
946 qc
->ap
->ops
->tf_read(qc
->ap
, &qc
->tf
);
951 * ata_exec_internal - execute libata internal command
952 * @ap: Port to which the command is sent
953 * @dev: Device to which the command is sent
954 * @tf: Taskfile registers for the command and the result
955 * @dma_dir: Data tranfer direction of the command
956 * @buf: Data buffer of the command
957 * @buflen: Length of data buffer
959 * Executes libata internal command with timeout. @tf contains
960 * command on entry and result on return. Timeout and error
961 * conditions are reported via return value. No recovery action
962 * is taken after a command times out. It's caller's duty to
963 * clean up after timeout.
966 * None. Should be called with kernel context, might sleep.
970 ata_exec_internal(struct ata_port
*ap
, struct ata_device
*dev
,
971 struct ata_taskfile
*tf
,
972 int dma_dir
, void *buf
, unsigned int buflen
)
974 u8 command
= tf
->command
;
975 struct ata_queued_cmd
*qc
;
976 DECLARE_COMPLETION(wait
);
978 unsigned int err_mask
;
980 spin_lock_irqsave(&ap
->host_set
->lock
, flags
);
982 qc
= ata_qc_new_init(ap
, dev
);
986 qc
->dma_dir
= dma_dir
;
987 if (dma_dir
!= DMA_NONE
) {
988 ata_sg_init_one(qc
, buf
, buflen
);
989 qc
->nsect
= buflen
/ ATA_SECT_SIZE
;
992 qc
->private_data
= &wait
;
993 qc
->complete_fn
= ata_qc_complete_internal
;
997 spin_unlock_irqrestore(&ap
->host_set
->lock
, flags
);
999 if (!wait_for_completion_timeout(&wait
, ATA_TMOUT_INTERNAL
)) {
1000 ata_port_flush_task(ap
);
1002 spin_lock_irqsave(&ap
->host_set
->lock
, flags
);
1004 /* We're racing with irq here. If we lose, the
1005 * following test prevents us from completing the qc
1006 * again. If completion irq occurs after here but
1007 * before the caller cleans up, it will result in a
1008 * spurious interrupt. We can live with that.
1010 if (qc
->flags
& ATA_QCFLAG_ACTIVE
) {
1011 qc
->err_mask
= AC_ERR_TIMEOUT
;
1012 ata_qc_complete(qc
);
1013 printk(KERN_WARNING
"ata%u: qc timeout (cmd 0x%x)\n",
1017 spin_unlock_irqrestore(&ap
->host_set
->lock
, flags
);
1021 err_mask
= qc
->err_mask
;
1025 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1026 * Until those drivers are fixed, we detect the condition
1027 * here, fail the command with AC_ERR_SYSTEM and reenable the
1030 * Note that this doesn't change any behavior as internal
1031 * command failure results in disabling the device in the
1032 * higher layer for LLDDs without new reset/EH callbacks.
1034 * Kill the following code as soon as those drivers are fixed.
1036 if (ap
->flags
& ATA_FLAG_PORT_DISABLED
) {
1037 err_mask
|= AC_ERR_SYSTEM
;
1045 * ata_pio_need_iordy - check if iordy needed
1048 * Check if the current speed of the device requires IORDY. Used
1049 * by various controllers for chip configuration.
1052 unsigned int ata_pio_need_iordy(const struct ata_device
*adev
)
1055 int speed
= adev
->pio_mode
- XFER_PIO_0
;
1062 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1064 if (adev
->id
[ATA_ID_FIELD_VALID
] & 2) { /* EIDE */
1065 pio
= adev
->id
[ATA_ID_EIDE_PIO
];
1066 /* Is the speed faster than the drive allows non IORDY ? */
1068 /* This is cycle times not frequency - watch the logic! */
1069 if (pio
> 240) /* PIO2 is 240nS per cycle */
1078 * ata_dev_read_id - Read ID data from the specified device
1079 * @ap: port on which target device resides
1080 * @dev: target device
1081 * @p_class: pointer to class of the target device (may be changed)
1082 * @post_reset: is this read ID post-reset?
1083 * @p_id: read IDENTIFY page (newly allocated)
1085 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1086 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1087 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1088 * for pre-ATA4 drives.
1091 * Kernel thread context (may sleep)
1094 * 0 on success, -errno otherwise.
1096 static int ata_dev_read_id(struct ata_port
*ap
, struct ata_device
*dev
,
1097 unsigned int *p_class
, int post_reset
, u16
**p_id
)
1099 unsigned int class = *p_class
;
1100 struct ata_taskfile tf
;
1101 unsigned int err_mask
= 0;
1106 DPRINTK("ENTER, host %u, dev %u\n", ap
->id
, dev
->devno
);
1108 ata_dev_select(ap
, dev
->devno
, 1, 1); /* select device 0/1 */
1110 id
= kmalloc(sizeof(id
[0]) * ATA_ID_WORDS
, GFP_KERNEL
);
1113 reason
= "out of memory";
1118 ata_tf_init(ap
, &tf
, dev
->devno
);
1122 tf
.command
= ATA_CMD_ID_ATA
;
1125 tf
.command
= ATA_CMD_ID_ATAPI
;
1129 reason
= "unsupported class";
1133 tf
.protocol
= ATA_PROT_PIO
;
1135 err_mask
= ata_exec_internal(ap
, dev
, &tf
, DMA_FROM_DEVICE
,
1136 id
, sizeof(id
[0]) * ATA_ID_WORDS
);
1139 reason
= "I/O error";
1143 swap_buf_le16(id
, ATA_ID_WORDS
);
1146 if ((class == ATA_DEV_ATA
) != (ata_id_is_ata(id
) | ata_id_is_cfa(id
))) {
1148 reason
= "device reports illegal type";
1152 if (post_reset
&& class == ATA_DEV_ATA
) {
1154 * The exact sequence expected by certain pre-ATA4 drives is:
1157 * INITIALIZE DEVICE PARAMETERS
1159 * Some drives were very specific about that exact sequence.
1161 if (ata_id_major_version(id
) < 4 || !ata_id_has_lba(id
)) {
1162 err_mask
= ata_dev_init_params(ap
, dev
, id
[3], id
[6]);
1165 reason
= "INIT_DEV_PARAMS failed";
1169 /* current CHS translation info (id[53-58]) might be
1170 * changed. reread the identify device info.
1182 printk(KERN_WARNING
"ata%u: dev %u failed to IDENTIFY (%s)\n",
1183 ap
->id
, dev
->devno
, reason
);
1188 static inline u8
ata_dev_knobble(const struct ata_port
*ap
,
1189 struct ata_device
*dev
)
1191 return ((ap
->cbl
== ATA_CBL_SATA
) && (!ata_id_is_sata(dev
->id
)));
1195 * ata_dev_configure - Configure the specified ATA/ATAPI device
1196 * @ap: Port on which target device resides
1197 * @dev: Target device to configure
1198 * @print_info: Enable device info printout
1200 * Configure @dev according to @dev->id. Generic and low-level
1201 * driver specific fixups are also applied.
1204 * Kernel thread context (may sleep)
1207 * 0 on success, -errno otherwise
1209 static int ata_dev_configure(struct ata_port
*ap
, struct ata_device
*dev
,
1212 const u16
*id
= dev
->id
;
1213 unsigned int xfer_mask
;
1216 if (!ata_dev_present(dev
)) {
1217 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
1218 ap
->id
, dev
->devno
);
1222 DPRINTK("ENTER, host %u, dev %u\n", ap
->id
, dev
->devno
);
1224 /* print device capabilities */
1226 printk(KERN_DEBUG
"ata%u: dev %u cfg 49:%04x 82:%04x 83:%04x "
1227 "84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1228 ap
->id
, dev
->devno
, id
[49], id
[82], id
[83],
1229 id
[84], id
[85], id
[86], id
[87], id
[88]);
1231 /* initialize to-be-configured parameters */
1233 dev
->max_sectors
= 0;
1241 * common ATA, ATAPI feature tests
1244 /* find max transfer mode; for printk only */
1245 xfer_mask
= ata_id_xfermask(id
);
1249 /* ATA-specific feature tests */
1250 if (dev
->class == ATA_DEV_ATA
) {
1251 dev
->n_sectors
= ata_id_n_sectors(id
);
1253 if (ata_id_has_lba(id
)) {
1254 const char *lba_desc
;
1257 dev
->flags
|= ATA_DFLAG_LBA
;
1258 if (ata_id_has_lba48(id
)) {
1259 dev
->flags
|= ATA_DFLAG_LBA48
;
1263 /* print device info to dmesg */
1265 printk(KERN_INFO
"ata%u: dev %u ATA-%d, "
1266 "max %s, %Lu sectors: %s\n",
1268 ata_id_major_version(id
),
1269 ata_mode_string(xfer_mask
),
1270 (unsigned long long)dev
->n_sectors
,
1275 /* Default translation */
1276 dev
->cylinders
= id
[1];
1278 dev
->sectors
= id
[6];
1280 if (ata_id_current_chs_valid(id
)) {
1281 /* Current CHS translation is valid. */
1282 dev
->cylinders
= id
[54];
1283 dev
->heads
= id
[55];
1284 dev
->sectors
= id
[56];
1287 /* print device info to dmesg */
1289 printk(KERN_INFO
"ata%u: dev %u ATA-%d, "
1290 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1292 ata_id_major_version(id
),
1293 ata_mode_string(xfer_mask
),
1294 (unsigned long long)dev
->n_sectors
,
1295 dev
->cylinders
, dev
->heads
, dev
->sectors
);
1301 /* ATAPI-specific feature tests */
1302 else if (dev
->class == ATA_DEV_ATAPI
) {
1303 rc
= atapi_cdb_len(id
);
1304 if ((rc
< 12) || (rc
> ATAPI_CDB_LEN
)) {
1305 printk(KERN_WARNING
"ata%u: unsupported CDB len\n", ap
->id
);
1309 dev
->cdb_len
= (unsigned int) rc
;
1311 /* print device info to dmesg */
1313 printk(KERN_INFO
"ata%u: dev %u ATAPI, max %s\n",
1314 ap
->id
, dev
->devno
, ata_mode_string(xfer_mask
));
1317 ap
->host
->max_cmd_len
= 0;
1318 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++)
1319 ap
->host
->max_cmd_len
= max_t(unsigned int,
1320 ap
->host
->max_cmd_len
,
1321 ap
->device
[i
].cdb_len
);
1323 /* limit bridge transfers to udma5, 200 sectors */
1324 if (ata_dev_knobble(ap
, dev
)) {
1326 printk(KERN_INFO
"ata%u(%u): applying bridge limits\n",
1327 ap
->id
, dev
->devno
);
1328 dev
->udma_mask
&= ATA_UDMA5
;
1329 dev
->max_sectors
= ATA_MAX_SECTORS
;
1332 if (ap
->ops
->dev_config
)
1333 ap
->ops
->dev_config(ap
, dev
);
1335 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap
));
1339 DPRINTK("EXIT, err\n");
1344 * ata_bus_probe - Reset and probe ATA bus
1347 * Master ATA bus probing function. Initiates a hardware-dependent
1348 * bus reset, then attempts to identify any devices found on
1352 * PCI/etc. bus probe sem.
1355 * Zero on success, non-zero on error.
1358 static int ata_bus_probe(struct ata_port
*ap
)
1360 unsigned int classes
[ATA_MAX_DEVICES
];
1361 unsigned int i
, rc
, found
= 0;
1365 /* reset and determine device classes */
1366 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++)
1367 classes
[i
] = ATA_DEV_UNKNOWN
;
1369 if (ap
->ops
->probe_reset
) {
1370 rc
= ap
->ops
->probe_reset(ap
, classes
);
1372 printk("ata%u: reset failed (errno=%d)\n", ap
->id
, rc
);
1376 ap
->ops
->phy_reset(ap
);
1378 if (!(ap
->flags
& ATA_FLAG_PORT_DISABLED
))
1379 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++)
1380 classes
[i
] = ap
->device
[i
].class;
1385 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++)
1386 if (classes
[i
] == ATA_DEV_UNKNOWN
)
1387 classes
[i
] = ATA_DEV_NONE
;
1389 /* read IDENTIFY page and configure devices */
1390 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
1391 struct ata_device
*dev
= &ap
->device
[i
];
1393 dev
->class = classes
[i
];
1395 if (!ata_dev_present(dev
))
1398 WARN_ON(dev
->id
!= NULL
);
1399 if (ata_dev_read_id(ap
, dev
, &dev
->class, 1, &dev
->id
)) {
1400 dev
->class = ATA_DEV_NONE
;
1404 if (ata_dev_configure(ap
, dev
, 1)) {
1405 ata_dev_disable(ap
, dev
);
1413 goto err_out_disable
;
1415 if (ap
->ops
->set_mode
)
1416 ap
->ops
->set_mode(ap
);
1420 if (ap
->flags
& ATA_FLAG_PORT_DISABLED
)
1421 goto err_out_disable
;
1426 ap
->ops
->port_disable(ap
);
1431 * ata_port_probe - Mark port as enabled
1432 * @ap: Port for which we indicate enablement
1434 * Modify @ap data structure such that the system
1435 * thinks that the entire port is enabled.
1437 * LOCKING: host_set lock, or some other form of
1441 void ata_port_probe(struct ata_port
*ap
)
1443 ap
->flags
&= ~ATA_FLAG_PORT_DISABLED
;
1447 * sata_print_link_status - Print SATA link status
1448 * @ap: SATA port to printk link status about
1450 * This function prints link speed and status of a SATA link.
1455 static void sata_print_link_status(struct ata_port
*ap
)
1460 if (!ap
->ops
->scr_read
)
1463 sstatus
= scr_read(ap
, SCR_STATUS
);
1465 if (sata_dev_present(ap
)) {
1466 tmp
= (sstatus
>> 4) & 0xf;
1469 else if (tmp
& (1 << 1))
1472 speed
= "<unknown>";
1473 printk(KERN_INFO
"ata%u: SATA link up %s Gbps (SStatus %X)\n",
1474 ap
->id
, speed
, sstatus
);
1476 printk(KERN_INFO
"ata%u: SATA link down (SStatus %X)\n",
1482 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1483 * @ap: SATA port associated with target SATA PHY.
1485 * This function issues commands to standard SATA Sxxx
1486 * PHY registers, to wake up the phy (and device), and
1487 * clear any reset condition.
1490 * PCI/etc. bus probe sem.
1493 void __sata_phy_reset(struct ata_port
*ap
)
1496 unsigned long timeout
= jiffies
+ (HZ
* 5);
1498 if (ap
->flags
& ATA_FLAG_SATA_RESET
) {
1499 /* issue phy wake/reset */
1500 scr_write_flush(ap
, SCR_CONTROL
, 0x301);
1501 /* Couldn't find anything in SATA I/II specs, but
1502 * AHCI-1.1 10.4.2 says at least 1 ms. */
1505 scr_write_flush(ap
, SCR_CONTROL
, 0x300); /* phy wake/clear reset */
1507 /* wait for phy to become ready, if necessary */
1510 sstatus
= scr_read(ap
, SCR_STATUS
);
1511 if ((sstatus
& 0xf) != 1)
1513 } while (time_before(jiffies
, timeout
));
1515 /* print link status */
1516 sata_print_link_status(ap
);
1518 /* TODO: phy layer with polling, timeouts, etc. */
1519 if (sata_dev_present(ap
))
1522 ata_port_disable(ap
);
1524 if (ap
->flags
& ATA_FLAG_PORT_DISABLED
)
1527 if (ata_busy_sleep(ap
, ATA_TMOUT_BOOT_QUICK
, ATA_TMOUT_BOOT
)) {
1528 ata_port_disable(ap
);
1532 ap
->cbl
= ATA_CBL_SATA
;
1536 * sata_phy_reset - Reset SATA bus.
1537 * @ap: SATA port associated with target SATA PHY.
1539 * This function resets the SATA bus, and then probes
1540 * the bus for devices.
1543 * PCI/etc. bus probe sem.
1546 void sata_phy_reset(struct ata_port
*ap
)
1548 __sata_phy_reset(ap
);
1549 if (ap
->flags
& ATA_FLAG_PORT_DISABLED
)
1555 * ata_dev_pair - return other device on cable
1559 * Obtain the other device on the same cable, or if none is
1560 * present NULL is returned
1563 struct ata_device
*ata_dev_pair(struct ata_port
*ap
, struct ata_device
*adev
)
1565 struct ata_device
*pair
= &ap
->device
[1 - adev
->devno
];
1566 if (!ata_dev_present(pair
))
1572 * ata_port_disable - Disable port.
1573 * @ap: Port to be disabled.
1575 * Modify @ap data structure such that the system
1576 * thinks that the entire port is disabled, and should
1577 * never attempt to probe or communicate with devices
1580 * LOCKING: host_set lock, or some other form of
1584 void ata_port_disable(struct ata_port
*ap
)
1586 ap
->device
[0].class = ATA_DEV_NONE
;
1587 ap
->device
[1].class = ATA_DEV_NONE
;
1588 ap
->flags
|= ATA_FLAG_PORT_DISABLED
;
1592 * This mode timing computation functionality is ported over from
1593 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1596 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1597 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1598 * for PIO 5, which is a nonstandard extension and UDMA6, which
1599 * is currently supported only by Maxtor drives.
1602 static const struct ata_timing ata_timing
[] = {
1604 { XFER_UDMA_6
, 0, 0, 0, 0, 0, 0, 0, 15 },
1605 { XFER_UDMA_5
, 0, 0, 0, 0, 0, 0, 0, 20 },
1606 { XFER_UDMA_4
, 0, 0, 0, 0, 0, 0, 0, 30 },
1607 { XFER_UDMA_3
, 0, 0, 0, 0, 0, 0, 0, 45 },
1609 { XFER_UDMA_2
, 0, 0, 0, 0, 0, 0, 0, 60 },
1610 { XFER_UDMA_1
, 0, 0, 0, 0, 0, 0, 0, 80 },
1611 { XFER_UDMA_0
, 0, 0, 0, 0, 0, 0, 0, 120 },
1613 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
1615 { XFER_MW_DMA_2
, 25, 0, 0, 0, 70, 25, 120, 0 },
1616 { XFER_MW_DMA_1
, 45, 0, 0, 0, 80, 50, 150, 0 },
1617 { XFER_MW_DMA_0
, 60, 0, 0, 0, 215, 215, 480, 0 },
1619 { XFER_SW_DMA_2
, 60, 0, 0, 0, 120, 120, 240, 0 },
1620 { XFER_SW_DMA_1
, 90, 0, 0, 0, 240, 240, 480, 0 },
1621 { XFER_SW_DMA_0
, 120, 0, 0, 0, 480, 480, 960, 0 },
1623 /* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1624 { XFER_PIO_4
, 25, 70, 25, 120, 70, 25, 120, 0 },
1625 { XFER_PIO_3
, 30, 80, 70, 180, 80, 70, 180, 0 },
1627 { XFER_PIO_2
, 30, 290, 40, 330, 100, 90, 240, 0 },
1628 { XFER_PIO_1
, 50, 290, 93, 383, 125, 100, 383, 0 },
1629 { XFER_PIO_0
, 70, 290, 240, 600, 165, 150, 600, 0 },
1631 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1636 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1637 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1639 static void ata_timing_quantize(const struct ata_timing
*t
, struct ata_timing
*q
, int T
, int UT
)
1641 q
->setup
= EZ(t
->setup
* 1000, T
);
1642 q
->act8b
= EZ(t
->act8b
* 1000, T
);
1643 q
->rec8b
= EZ(t
->rec8b
* 1000, T
);
1644 q
->cyc8b
= EZ(t
->cyc8b
* 1000, T
);
1645 q
->active
= EZ(t
->active
* 1000, T
);
1646 q
->recover
= EZ(t
->recover
* 1000, T
);
1647 q
->cycle
= EZ(t
->cycle
* 1000, T
);
1648 q
->udma
= EZ(t
->udma
* 1000, UT
);
1651 void ata_timing_merge(const struct ata_timing
*a
, const struct ata_timing
*b
,
1652 struct ata_timing
*m
, unsigned int what
)
1654 if (what
& ATA_TIMING_SETUP
) m
->setup
= max(a
->setup
, b
->setup
);
1655 if (what
& ATA_TIMING_ACT8B
) m
->act8b
= max(a
->act8b
, b
->act8b
);
1656 if (what
& ATA_TIMING_REC8B
) m
->rec8b
= max(a
->rec8b
, b
->rec8b
);
1657 if (what
& ATA_TIMING_CYC8B
) m
->cyc8b
= max(a
->cyc8b
, b
->cyc8b
);
1658 if (what
& ATA_TIMING_ACTIVE
) m
->active
= max(a
->active
, b
->active
);
1659 if (what
& ATA_TIMING_RECOVER
) m
->recover
= max(a
->recover
, b
->recover
);
1660 if (what
& ATA_TIMING_CYCLE
) m
->cycle
= max(a
->cycle
, b
->cycle
);
1661 if (what
& ATA_TIMING_UDMA
) m
->udma
= max(a
->udma
, b
->udma
);
1664 static const struct ata_timing
* ata_timing_find_mode(unsigned short speed
)
1666 const struct ata_timing
*t
;
1668 for (t
= ata_timing
; t
->mode
!= speed
; t
++)
1669 if (t
->mode
== 0xFF)
1674 int ata_timing_compute(struct ata_device
*adev
, unsigned short speed
,
1675 struct ata_timing
*t
, int T
, int UT
)
1677 const struct ata_timing
*s
;
1678 struct ata_timing p
;
1684 if (!(s
= ata_timing_find_mode(speed
)))
1687 memcpy(t
, s
, sizeof(*s
));
1690 * If the drive is an EIDE drive, it can tell us it needs extended
1691 * PIO/MW_DMA cycle timing.
1694 if (adev
->id
[ATA_ID_FIELD_VALID
] & 2) { /* EIDE drive */
1695 memset(&p
, 0, sizeof(p
));
1696 if(speed
>= XFER_PIO_0
&& speed
<= XFER_SW_DMA_0
) {
1697 if (speed
<= XFER_PIO_2
) p
.cycle
= p
.cyc8b
= adev
->id
[ATA_ID_EIDE_PIO
];
1698 else p
.cycle
= p
.cyc8b
= adev
->id
[ATA_ID_EIDE_PIO_IORDY
];
1699 } else if(speed
>= XFER_MW_DMA_0
&& speed
<= XFER_MW_DMA_2
) {
1700 p
.cycle
= adev
->id
[ATA_ID_EIDE_DMA_MIN
];
1702 ata_timing_merge(&p
, t
, t
, ATA_TIMING_CYCLE
| ATA_TIMING_CYC8B
);
1706 * Convert the timing to bus clock counts.
1709 ata_timing_quantize(t
, t
, T
, UT
);
1712 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
1713 * S.M.A.R.T * and some other commands. We have to ensure that the
1714 * DMA cycle timing is slower/equal than the fastest PIO timing.
1717 if (speed
> XFER_PIO_4
) {
1718 ata_timing_compute(adev
, adev
->pio_mode
, &p
, T
, UT
);
1719 ata_timing_merge(&p
, t
, t
, ATA_TIMING_ALL
);
1723 * Lengthen active & recovery time so that cycle time is correct.
1726 if (t
->act8b
+ t
->rec8b
< t
->cyc8b
) {
1727 t
->act8b
+= (t
->cyc8b
- (t
->act8b
+ t
->rec8b
)) / 2;
1728 t
->rec8b
= t
->cyc8b
- t
->act8b
;
1731 if (t
->active
+ t
->recover
< t
->cycle
) {
1732 t
->active
+= (t
->cycle
- (t
->active
+ t
->recover
)) / 2;
1733 t
->recover
= t
->cycle
- t
->active
;
1739 static int ata_dev_set_mode(struct ata_port
*ap
, struct ata_device
*dev
)
1741 unsigned int err_mask
;
1744 if (dev
->xfer_shift
== ATA_SHIFT_PIO
)
1745 dev
->flags
|= ATA_DFLAG_PIO
;
1747 err_mask
= ata_dev_set_xfermode(ap
, dev
);
1750 "ata%u: failed to set xfermode (err_mask=0x%x)\n",
1755 rc
= ata_dev_revalidate(ap
, dev
, 0);
1758 "ata%u: failed to revalidate after set xfermode\n",
1763 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
1764 dev
->xfer_shift
, (int)dev
->xfer_mode
);
1766 printk(KERN_INFO
"ata%u: dev %u configured for %s\n",
1768 ata_mode_string(ata_xfer_mode2mask(dev
->xfer_mode
)));
1772 static int ata_host_set_pio(struct ata_port
*ap
)
1776 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
1777 struct ata_device
*dev
= &ap
->device
[i
];
1779 if (!ata_dev_present(dev
))
1782 if (!dev
->pio_mode
) {
1783 printk(KERN_WARNING
"ata%u: no PIO support for device %d.\n", ap
->id
, i
);
1787 dev
->xfer_mode
= dev
->pio_mode
;
1788 dev
->xfer_shift
= ATA_SHIFT_PIO
;
1789 if (ap
->ops
->set_piomode
)
1790 ap
->ops
->set_piomode(ap
, dev
);
1796 static void ata_host_set_dma(struct ata_port
*ap
)
1800 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
1801 struct ata_device
*dev
= &ap
->device
[i
];
1803 if (!ata_dev_present(dev
) || !dev
->dma_mode
)
1806 dev
->xfer_mode
= dev
->dma_mode
;
1807 dev
->xfer_shift
= ata_xfer_mode2shift(dev
->dma_mode
);
1808 if (ap
->ops
->set_dmamode
)
1809 ap
->ops
->set_dmamode(ap
, dev
);
1814 * ata_set_mode - Program timings and issue SET FEATURES - XFER
1815 * @ap: port on which timings will be programmed
1817 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.).
1820 * PCI/etc. bus probe sem.
1822 static void ata_set_mode(struct ata_port
*ap
)
1824 int i
, rc
, used_dma
= 0;
1826 /* step 1: calculate xfer_mask */
1827 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
1828 struct ata_device
*dev
= &ap
->device
[i
];
1829 unsigned int pio_mask
, dma_mask
;
1831 if (!ata_dev_present(dev
))
1834 ata_dev_xfermask(ap
, dev
);
1836 /* TODO: let LLDD filter dev->*_mask here */
1838 pio_mask
= ata_pack_xfermask(dev
->pio_mask
, 0, 0);
1839 dma_mask
= ata_pack_xfermask(0, dev
->mwdma_mask
, dev
->udma_mask
);
1840 dev
->pio_mode
= ata_xfer_mask2mode(pio_mask
);
1841 dev
->dma_mode
= ata_xfer_mask2mode(dma_mask
);
1847 /* step 2: always set host PIO timings */
1848 rc
= ata_host_set_pio(ap
);
1852 /* step 3: set host DMA timings */
1853 ata_host_set_dma(ap
);
1855 /* step 4: update devices' xfer mode */
1856 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
1857 struct ata_device
*dev
= &ap
->device
[i
];
1859 if (!ata_dev_present(dev
))
1862 if (ata_dev_set_mode(ap
, dev
))
1867 * Record simplex status. If we selected DMA then the other
1868 * host channels are not permitted to do so.
1871 if (used_dma
&& (ap
->host_set
->flags
& ATA_HOST_SIMPLEX
))
1872 ap
->host_set
->simplex_claimed
= 1;
1875 * Chip specific finalisation
1877 if (ap
->ops
->post_set_mode
)
1878 ap
->ops
->post_set_mode(ap
);
1883 ata_port_disable(ap
);
1887 * ata_tf_to_host - issue ATA taskfile to host controller
1888 * @ap: port to which command is being issued
1889 * @tf: ATA taskfile register set
1891 * Issues ATA taskfile register set to ATA host controller,
1892 * with proper synchronization with interrupt handler and
1896 * spin_lock_irqsave(host_set lock)
1899 static inline void ata_tf_to_host(struct ata_port
*ap
,
1900 const struct ata_taskfile
*tf
)
1902 ap
->ops
->tf_load(ap
, tf
);
1903 ap
->ops
->exec_command(ap
, tf
);
1907 * ata_busy_sleep - sleep until BSY clears, or timeout
1908 * @ap: port containing status register to be polled
1909 * @tmout_pat: impatience timeout
1910 * @tmout: overall timeout
1912 * Sleep until ATA Status register bit BSY clears,
1913 * or a timeout occurs.
1918 unsigned int ata_busy_sleep (struct ata_port
*ap
,
1919 unsigned long tmout_pat
, unsigned long tmout
)
1921 unsigned long timer_start
, timeout
;
1924 status
= ata_busy_wait(ap
, ATA_BUSY
, 300);
1925 timer_start
= jiffies
;
1926 timeout
= timer_start
+ tmout_pat
;
1927 while ((status
& ATA_BUSY
) && (time_before(jiffies
, timeout
))) {
1929 status
= ata_busy_wait(ap
, ATA_BUSY
, 3);
1932 if (status
& ATA_BUSY
)
1933 printk(KERN_WARNING
"ata%u is slow to respond, "
1934 "please be patient\n", ap
->id
);
1936 timeout
= timer_start
+ tmout
;
1937 while ((status
& ATA_BUSY
) && (time_before(jiffies
, timeout
))) {
1939 status
= ata_chk_status(ap
);
1942 if (status
& ATA_BUSY
) {
1943 printk(KERN_ERR
"ata%u failed to respond (%lu secs)\n",
1944 ap
->id
, tmout
/ HZ
);
1951 static void ata_bus_post_reset(struct ata_port
*ap
, unsigned int devmask
)
1953 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
1954 unsigned int dev0
= devmask
& (1 << 0);
1955 unsigned int dev1
= devmask
& (1 << 1);
1956 unsigned long timeout
;
1958 /* if device 0 was found in ata_devchk, wait for its
1962 ata_busy_sleep(ap
, ATA_TMOUT_BOOT_QUICK
, ATA_TMOUT_BOOT
);
1964 /* if device 1 was found in ata_devchk, wait for
1965 * register access, then wait for BSY to clear
1967 timeout
= jiffies
+ ATA_TMOUT_BOOT
;
1971 ap
->ops
->dev_select(ap
, 1);
1972 if (ap
->flags
& ATA_FLAG_MMIO
) {
1973 nsect
= readb((void __iomem
*) ioaddr
->nsect_addr
);
1974 lbal
= readb((void __iomem
*) ioaddr
->lbal_addr
);
1976 nsect
= inb(ioaddr
->nsect_addr
);
1977 lbal
= inb(ioaddr
->lbal_addr
);
1979 if ((nsect
== 1) && (lbal
== 1))
1981 if (time_after(jiffies
, timeout
)) {
1985 msleep(50); /* give drive a breather */
1988 ata_busy_sleep(ap
, ATA_TMOUT_BOOT_QUICK
, ATA_TMOUT_BOOT
);
1990 /* is all this really necessary? */
1991 ap
->ops
->dev_select(ap
, 0);
1993 ap
->ops
->dev_select(ap
, 1);
1995 ap
->ops
->dev_select(ap
, 0);
1998 static unsigned int ata_bus_softreset(struct ata_port
*ap
,
1999 unsigned int devmask
)
2001 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
2003 DPRINTK("ata%u: bus reset via SRST\n", ap
->id
);
2005 /* software reset. causes dev0 to be selected */
2006 if (ap
->flags
& ATA_FLAG_MMIO
) {
2007 writeb(ap
->ctl
, (void __iomem
*) ioaddr
->ctl_addr
);
2008 udelay(20); /* FIXME: flush */
2009 writeb(ap
->ctl
| ATA_SRST
, (void __iomem
*) ioaddr
->ctl_addr
);
2010 udelay(20); /* FIXME: flush */
2011 writeb(ap
->ctl
, (void __iomem
*) ioaddr
->ctl_addr
);
2013 outb(ap
->ctl
, ioaddr
->ctl_addr
);
2015 outb(ap
->ctl
| ATA_SRST
, ioaddr
->ctl_addr
);
2017 outb(ap
->ctl
, ioaddr
->ctl_addr
);
2020 /* spec mandates ">= 2ms" before checking status.
2021 * We wait 150ms, because that was the magic delay used for
2022 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2023 * between when the ATA command register is written, and then
2024 * status is checked. Because waiting for "a while" before
2025 * checking status is fine, post SRST, we perform this magic
2026 * delay here as well.
2028 * Old drivers/ide uses the 2mS rule and then waits for ready
2032 /* Before we perform post reset processing we want to see if
2033 * the bus shows 0xFF because the odd clown forgets the D7
2034 * pulldown resistor.
2036 if (ata_check_status(ap
) == 0xFF)
2037 return AC_ERR_OTHER
;
2039 ata_bus_post_reset(ap
, devmask
);
2045 * ata_bus_reset - reset host port and associated ATA channel
2046 * @ap: port to reset
2048 * This is typically the first time we actually start issuing
2049 * commands to the ATA channel. We wait for BSY to clear, then
2050 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2051 * result. Determine what devices, if any, are on the channel
2052 * by looking at the device 0/1 error register. Look at the signature
2053 * stored in each device's taskfile registers, to determine if
2054 * the device is ATA or ATAPI.
2057 * PCI/etc. bus probe sem.
2058 * Obtains host_set lock.
2061 * Sets ATA_FLAG_PORT_DISABLED if bus reset fails.
2064 void ata_bus_reset(struct ata_port
*ap
)
2066 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
2067 unsigned int slave_possible
= ap
->flags
& ATA_FLAG_SLAVE_POSS
;
2069 unsigned int dev0
, dev1
= 0, devmask
= 0;
2071 DPRINTK("ENTER, host %u, port %u\n", ap
->id
, ap
->port_no
);
2073 /* determine if device 0/1 are present */
2074 if (ap
->flags
& ATA_FLAG_SATA_RESET
)
2077 dev0
= ata_devchk(ap
, 0);
2079 dev1
= ata_devchk(ap
, 1);
2083 devmask
|= (1 << 0);
2085 devmask
|= (1 << 1);
2087 /* select device 0 again */
2088 ap
->ops
->dev_select(ap
, 0);
2090 /* issue bus reset */
2091 if (ap
->flags
& ATA_FLAG_SRST
)
2092 if (ata_bus_softreset(ap
, devmask
))
2096 * determine by signature whether we have ATA or ATAPI devices
2098 ap
->device
[0].class = ata_dev_try_classify(ap
, 0, &err
);
2099 if ((slave_possible
) && (err
!= 0x81))
2100 ap
->device
[1].class = ata_dev_try_classify(ap
, 1, &err
);
2102 /* re-enable interrupts */
2103 if (ap
->ioaddr
.ctl_addr
) /* FIXME: hack. create a hook instead */
2106 /* is double-select really necessary? */
2107 if (ap
->device
[1].class != ATA_DEV_NONE
)
2108 ap
->ops
->dev_select(ap
, 1);
2109 if (ap
->device
[0].class != ATA_DEV_NONE
)
2110 ap
->ops
->dev_select(ap
, 0);
2112 /* if no devices were detected, disable this port */
2113 if ((ap
->device
[0].class == ATA_DEV_NONE
) &&
2114 (ap
->device
[1].class == ATA_DEV_NONE
))
2117 if (ap
->flags
& (ATA_FLAG_SATA_RESET
| ATA_FLAG_SRST
)) {
2118 /* set up device control for ATA_FLAG_SATA_RESET */
2119 if (ap
->flags
& ATA_FLAG_MMIO
)
2120 writeb(ap
->ctl
, (void __iomem
*) ioaddr
->ctl_addr
);
2122 outb(ap
->ctl
, ioaddr
->ctl_addr
);
2129 printk(KERN_ERR
"ata%u: disabling port\n", ap
->id
);
2130 ap
->ops
->port_disable(ap
);
2135 static int sata_phy_resume(struct ata_port
*ap
)
2137 unsigned long timeout
= jiffies
+ (HZ
* 5);
2140 scr_write_flush(ap
, SCR_CONTROL
, 0x300);
2142 /* Wait for phy to become ready, if necessary. */
2145 sstatus
= scr_read(ap
, SCR_STATUS
);
2146 if ((sstatus
& 0xf) != 1)
2148 } while (time_before(jiffies
, timeout
));
2154 * ata_std_probeinit - initialize probing
2155 * @ap: port to be probed
2157 * @ap is about to be probed. Initialize it. This function is
2158 * to be used as standard callback for ata_drive_probe_reset().
2160 * NOTE!!! Do not use this function as probeinit if a low level
2161 * driver implements only hardreset. Just pass NULL as probeinit
2162 * in that case. Using this function is probably okay but doing
2163 * so makes reset sequence different from the original
2164 * ->phy_reset implementation and Jeff nervous. :-P
2166 void ata_std_probeinit(struct ata_port
*ap
)
2168 if ((ap
->flags
& ATA_FLAG_SATA
) && ap
->ops
->scr_read
) {
2169 sata_phy_resume(ap
);
2170 if (sata_dev_present(ap
))
2171 ata_busy_sleep(ap
, ATA_TMOUT_BOOT_QUICK
, ATA_TMOUT_BOOT
);
2176 * ata_std_softreset - reset host port via ATA SRST
2177 * @ap: port to reset
2178 * @verbose: fail verbosely
2179 * @classes: resulting classes of attached devices
2181 * Reset host port using ATA SRST. This function is to be used
2182 * as standard callback for ata_drive_*_reset() functions.
2185 * Kernel thread context (may sleep)
2188 * 0 on success, -errno otherwise.
2190 int ata_std_softreset(struct ata_port
*ap
, int verbose
, unsigned int *classes
)
2192 unsigned int slave_possible
= ap
->flags
& ATA_FLAG_SLAVE_POSS
;
2193 unsigned int devmask
= 0, err_mask
;
2198 if (ap
->ops
->scr_read
&& !sata_dev_present(ap
)) {
2199 classes
[0] = ATA_DEV_NONE
;
2203 /* determine if device 0/1 are present */
2204 if (ata_devchk(ap
, 0))
2205 devmask
|= (1 << 0);
2206 if (slave_possible
&& ata_devchk(ap
, 1))
2207 devmask
|= (1 << 1);
2209 /* select device 0 again */
2210 ap
->ops
->dev_select(ap
, 0);
2212 /* issue bus reset */
2213 DPRINTK("about to softreset, devmask=%x\n", devmask
);
2214 err_mask
= ata_bus_softreset(ap
, devmask
);
2217 printk(KERN_ERR
"ata%u: SRST failed (err_mask=0x%x)\n",
2220 DPRINTK("EXIT, softreset failed (err_mask=0x%x)\n",
2225 /* determine by signature whether we have ATA or ATAPI devices */
2226 classes
[0] = ata_dev_try_classify(ap
, 0, &err
);
2227 if (slave_possible
&& err
!= 0x81)
2228 classes
[1] = ata_dev_try_classify(ap
, 1, &err
);
2231 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes
[0], classes
[1]);
2236 * sata_std_hardreset - reset host port via SATA phy reset
2237 * @ap: port to reset
2238 * @verbose: fail verbosely
2239 * @class: resulting class of attached device
2241 * SATA phy-reset host port using DET bits of SControl register.
2242 * This function is to be used as standard callback for
2243 * ata_drive_*_reset().
2246 * Kernel thread context (may sleep)
2249 * 0 on success, -errno otherwise.
2251 int sata_std_hardreset(struct ata_port
*ap
, int verbose
, unsigned int *class)
2255 /* Issue phy wake/reset */
2256 scr_write_flush(ap
, SCR_CONTROL
, 0x301);
2259 * Couldn't find anything in SATA I/II specs, but AHCI-1.1
2260 * 10.4.2 says at least 1 ms.
2264 /* Bring phy back */
2265 sata_phy_resume(ap
);
2267 /* TODO: phy layer with polling, timeouts, etc. */
2268 if (!sata_dev_present(ap
)) {
2269 *class = ATA_DEV_NONE
;
2270 DPRINTK("EXIT, link offline\n");
2274 if (ata_busy_sleep(ap
, ATA_TMOUT_BOOT_QUICK
, ATA_TMOUT_BOOT
)) {
2276 printk(KERN_ERR
"ata%u: COMRESET failed "
2277 "(device not ready)\n", ap
->id
);
2279 DPRINTK("EXIT, device not ready\n");
2283 ap
->ops
->dev_select(ap
, 0); /* probably unnecessary */
2285 *class = ata_dev_try_classify(ap
, 0, NULL
);
2287 DPRINTK("EXIT, class=%u\n", *class);
2292 * ata_std_postreset - standard postreset callback
2293 * @ap: the target ata_port
2294 * @classes: classes of attached devices
2296 * This function is invoked after a successful reset. Note that
2297 * the device might have been reset more than once using
2298 * different reset methods before postreset is invoked.
2300 * This function is to be used as standard callback for
2301 * ata_drive_*_reset().
2304 * Kernel thread context (may sleep)
2306 void ata_std_postreset(struct ata_port
*ap
, unsigned int *classes
)
2310 /* set cable type if it isn't already set */
2311 if (ap
->cbl
== ATA_CBL_NONE
&& ap
->flags
& ATA_FLAG_SATA
)
2312 ap
->cbl
= ATA_CBL_SATA
;
2314 /* print link status */
2315 if (ap
->cbl
== ATA_CBL_SATA
)
2316 sata_print_link_status(ap
);
2318 /* re-enable interrupts */
2319 if (ap
->ioaddr
.ctl_addr
) /* FIXME: hack. create a hook instead */
2322 /* is double-select really necessary? */
2323 if (classes
[0] != ATA_DEV_NONE
)
2324 ap
->ops
->dev_select(ap
, 1);
2325 if (classes
[1] != ATA_DEV_NONE
)
2326 ap
->ops
->dev_select(ap
, 0);
2328 /* bail out if no device is present */
2329 if (classes
[0] == ATA_DEV_NONE
&& classes
[1] == ATA_DEV_NONE
) {
2330 DPRINTK("EXIT, no device\n");
2334 /* set up device control */
2335 if (ap
->ioaddr
.ctl_addr
) {
2336 if (ap
->flags
& ATA_FLAG_MMIO
)
2337 writeb(ap
->ctl
, (void __iomem
*) ap
->ioaddr
.ctl_addr
);
2339 outb(ap
->ctl
, ap
->ioaddr
.ctl_addr
);
2346 * ata_std_probe_reset - standard probe reset method
2347 * @ap: prot to perform probe-reset
2348 * @classes: resulting classes of attached devices
2350 * The stock off-the-shelf ->probe_reset method.
2353 * Kernel thread context (may sleep)
2356 * 0 on success, -errno otherwise.
2358 int ata_std_probe_reset(struct ata_port
*ap
, unsigned int *classes
)
2360 ata_reset_fn_t hardreset
;
2363 if (ap
->flags
& ATA_FLAG_SATA
&& ap
->ops
->scr_read
)
2364 hardreset
= sata_std_hardreset
;
2366 return ata_drive_probe_reset(ap
, ata_std_probeinit
,
2367 ata_std_softreset
, hardreset
,
2368 ata_std_postreset
, classes
);
2371 static int do_probe_reset(struct ata_port
*ap
, ata_reset_fn_t reset
,
2372 ata_postreset_fn_t postreset
,
2373 unsigned int *classes
)
2377 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++)
2378 classes
[i
] = ATA_DEV_UNKNOWN
;
2380 rc
= reset(ap
, 0, classes
);
2384 /* If any class isn't ATA_DEV_UNKNOWN, consider classification
2385 * is complete and convert all ATA_DEV_UNKNOWN to
2388 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++)
2389 if (classes
[i
] != ATA_DEV_UNKNOWN
)
2392 if (i
< ATA_MAX_DEVICES
)
2393 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++)
2394 if (classes
[i
] == ATA_DEV_UNKNOWN
)
2395 classes
[i
] = ATA_DEV_NONE
;
2398 postreset(ap
, classes
);
2400 return classes
[0] != ATA_DEV_UNKNOWN
? 0 : -ENODEV
;
2404 * ata_drive_probe_reset - Perform probe reset with given methods
2405 * @ap: port to reset
2406 * @probeinit: probeinit method (can be NULL)
2407 * @softreset: softreset method (can be NULL)
2408 * @hardreset: hardreset method (can be NULL)
2409 * @postreset: postreset method (can be NULL)
2410 * @classes: resulting classes of attached devices
2412 * Reset the specified port and classify attached devices using
2413 * given methods. This function prefers softreset but tries all
2414 * possible reset sequences to reset and classify devices. This
2415 * function is intended to be used for constructing ->probe_reset
2416 * callback by low level drivers.
2418 * Reset methods should follow the following rules.
2420 * - Return 0 on sucess, -errno on failure.
2421 * - If classification is supported, fill classes[] with
2422 * recognized class codes.
2423 * - If classification is not supported, leave classes[] alone.
2424 * - If verbose is non-zero, print error message on failure;
2425 * otherwise, shut up.
2428 * Kernel thread context (may sleep)
2431 * 0 on success, -EINVAL if no reset method is avaliable, -ENODEV
2432 * if classification fails, and any error code from reset
2435 int ata_drive_probe_reset(struct ata_port
*ap
, ata_probeinit_fn_t probeinit
,
2436 ata_reset_fn_t softreset
, ata_reset_fn_t hardreset
,
2437 ata_postreset_fn_t postreset
, unsigned int *classes
)
2445 rc
= do_probe_reset(ap
, softreset
, postreset
, classes
);
2453 rc
= do_probe_reset(ap
, hardreset
, postreset
, classes
);
2454 if (rc
== 0 || rc
!= -ENODEV
)
2458 rc
= do_probe_reset(ap
, softreset
, postreset
, classes
);
2464 * ata_dev_same_device - Determine whether new ID matches configured device
2465 * @ap: port on which the device to compare against resides
2466 * @dev: device to compare against
2467 * @new_class: class of the new device
2468 * @new_id: IDENTIFY page of the new device
2470 * Compare @new_class and @new_id against @dev and determine
2471 * whether @dev is the device indicated by @new_class and
2478 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
2480 static int ata_dev_same_device(struct ata_port
*ap
, struct ata_device
*dev
,
2481 unsigned int new_class
, const u16
*new_id
)
2483 const u16
*old_id
= dev
->id
;
2484 unsigned char model
[2][41], serial
[2][21];
2487 if (dev
->class != new_class
) {
2489 "ata%u: dev %u class mismatch %d != %d\n",
2490 ap
->id
, dev
->devno
, dev
->class, new_class
);
2494 ata_id_c_string(old_id
, model
[0], ATA_ID_PROD_OFS
, sizeof(model
[0]));
2495 ata_id_c_string(new_id
, model
[1], ATA_ID_PROD_OFS
, sizeof(model
[1]));
2496 ata_id_c_string(old_id
, serial
[0], ATA_ID_SERNO_OFS
, sizeof(serial
[0]));
2497 ata_id_c_string(new_id
, serial
[1], ATA_ID_SERNO_OFS
, sizeof(serial
[1]));
2498 new_n_sectors
= ata_id_n_sectors(new_id
);
2500 if (strcmp(model
[0], model
[1])) {
2502 "ata%u: dev %u model number mismatch '%s' != '%s'\n",
2503 ap
->id
, dev
->devno
, model
[0], model
[1]);
2507 if (strcmp(serial
[0], serial
[1])) {
2509 "ata%u: dev %u serial number mismatch '%s' != '%s'\n",
2510 ap
->id
, dev
->devno
, serial
[0], serial
[1]);
2514 if (dev
->class == ATA_DEV_ATA
&& dev
->n_sectors
!= new_n_sectors
) {
2516 "ata%u: dev %u n_sectors mismatch %llu != %llu\n",
2517 ap
->id
, dev
->devno
, (unsigned long long)dev
->n_sectors
,
2518 (unsigned long long)new_n_sectors
);
2526 * ata_dev_revalidate - Revalidate ATA device
2527 * @ap: port on which the device to revalidate resides
2528 * @dev: device to revalidate
2529 * @post_reset: is this revalidation after reset?
2531 * Re-read IDENTIFY page and make sure @dev is still attached to
2535 * Kernel thread context (may sleep)
2538 * 0 on success, negative errno otherwise
2540 int ata_dev_revalidate(struct ata_port
*ap
, struct ata_device
*dev
,
2547 if (!ata_dev_present(dev
))
2553 /* allocate & read ID data */
2554 rc
= ata_dev_read_id(ap
, dev
, &class, post_reset
, &id
);
2558 /* is the device still there? */
2559 if (!ata_dev_same_device(ap
, dev
, class, id
)) {
2567 /* configure device according to the new ID */
2568 return ata_dev_configure(ap
, dev
, 0);
2571 printk(KERN_ERR
"ata%u: dev %u revalidation failed (errno=%d)\n",
2572 ap
->id
, dev
->devno
, rc
);
2577 static const char * const ata_dma_blacklist
[] = {
2578 "WDC AC11000H", NULL
,
2579 "WDC AC22100H", NULL
,
2580 "WDC AC32500H", NULL
,
2581 "WDC AC33100H", NULL
,
2582 "WDC AC31600H", NULL
,
2583 "WDC AC32100H", "24.09P07",
2584 "WDC AC23200L", "21.10N21",
2585 "Compaq CRD-8241B", NULL
,
2590 "SanDisk SDP3B", NULL
,
2591 "SanDisk SDP3B-64", NULL
,
2592 "SANYO CD-ROM CRD", NULL
,
2593 "HITACHI CDR-8", NULL
,
2594 "HITACHI CDR-8335", NULL
,
2595 "HITACHI CDR-8435", NULL
,
2596 "Toshiba CD-ROM XM-6202B", NULL
,
2597 "TOSHIBA CD-ROM XM-1702BC", NULL
,
2599 "E-IDE CD-ROM CR-840", NULL
,
2600 "CD-ROM Drive/F5A", NULL
,
2601 "WPI CDD-820", NULL
,
2602 "SAMSUNG CD-ROM SC-148C", NULL
,
2603 "SAMSUNG CD-ROM SC", NULL
,
2604 "SanDisk SDP3B-64", NULL
,
2605 "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL
,
2606 "_NEC DV5800A", NULL
,
2607 "SAMSUNG CD-ROM SN-124", "N001"
2610 static int ata_strim(char *s
, size_t len
)
2612 len
= strnlen(s
, len
);
2614 /* ATAPI specifies that empty space is blank-filled; remove blanks */
2615 while ((len
> 0) && (s
[len
- 1] == ' ')) {
2622 static int ata_dma_blacklisted(const struct ata_device
*dev
)
2624 unsigned char model_num
[40];
2625 unsigned char model_rev
[16];
2626 unsigned int nlen
, rlen
;
2629 ata_id_string(dev
->id
, model_num
, ATA_ID_PROD_OFS
,
2631 ata_id_string(dev
->id
, model_rev
, ATA_ID_FW_REV_OFS
,
2633 nlen
= ata_strim(model_num
, sizeof(model_num
));
2634 rlen
= ata_strim(model_rev
, sizeof(model_rev
));
2636 for (i
= 0; i
< ARRAY_SIZE(ata_dma_blacklist
); i
+= 2) {
2637 if (!strncmp(ata_dma_blacklist
[i
], model_num
, nlen
)) {
2638 if (ata_dma_blacklist
[i
+1] == NULL
)
2640 if (!strncmp(ata_dma_blacklist
[i
], model_rev
, rlen
))
2648 * ata_dev_xfermask - Compute supported xfermask of the given device
2649 * @ap: Port on which the device to compute xfermask for resides
2650 * @dev: Device to compute xfermask for
2652 * Compute supported xfermask of @dev and store it in
2653 * dev->*_mask. This function is responsible for applying all
2654 * known limits including host controller limits, device
2657 * FIXME: The current implementation limits all transfer modes to
2658 * the fastest of the lowested device on the port. This is not
2659 * required on most controllers.
2664 static void ata_dev_xfermask(struct ata_port
*ap
, struct ata_device
*dev
)
2666 struct ata_host_set
*hs
= ap
->host_set
;
2667 unsigned long xfer_mask
;
2670 xfer_mask
= ata_pack_xfermask(ap
->pio_mask
, ap
->mwdma_mask
,
2673 /* FIXME: Use port-wide xfermask for now */
2674 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
2675 struct ata_device
*d
= &ap
->device
[i
];
2676 if (!ata_dev_present(d
))
2678 xfer_mask
&= ata_pack_xfermask(d
->pio_mask
, d
->mwdma_mask
,
2680 xfer_mask
&= ata_id_xfermask(d
->id
);
2681 if (ata_dma_blacklisted(d
))
2682 xfer_mask
&= ~(ATA_MASK_MWDMA
| ATA_MASK_UDMA
);
2683 /* Apply cable rule here. Don't apply it early because when
2684 we handle hot plug the cable type can itself change */
2685 if (ap
->cbl
== ATA_CBL_PATA40
)
2686 xfer_mask
&= ~(0xF8 << ATA_SHIFT_UDMA
);
2689 if (ata_dma_blacklisted(dev
))
2690 printk(KERN_WARNING
"ata%u: dev %u is on DMA blacklist, "
2691 "disabling DMA\n", ap
->id
, dev
->devno
);
2693 if (hs
->flags
& ATA_HOST_SIMPLEX
) {
2694 if (hs
->simplex_claimed
)
2695 xfer_mask
&= ~(ATA_MASK_MWDMA
| ATA_MASK_UDMA
);
2697 if (ap
->ops
->mode_filter
)
2698 xfer_mask
= ap
->ops
->mode_filter(ap
, dev
, xfer_mask
);
2700 ata_unpack_xfermask(xfer_mask
, &dev
->pio_mask
, &dev
->mwdma_mask
,
2705 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
2706 * @ap: Port associated with device @dev
2707 * @dev: Device to which command will be sent
2709 * Issue SET FEATURES - XFER MODE command to device @dev
2713 * PCI/etc. bus probe sem.
2716 * 0 on success, AC_ERR_* mask otherwise.
2719 static unsigned int ata_dev_set_xfermode(struct ata_port
*ap
,
2720 struct ata_device
*dev
)
2722 struct ata_taskfile tf
;
2723 unsigned int err_mask
;
2725 /* set up set-features taskfile */
2726 DPRINTK("set features - xfer mode\n");
2728 ata_tf_init(ap
, &tf
, dev
->devno
);
2729 tf
.command
= ATA_CMD_SET_FEATURES
;
2730 tf
.feature
= SETFEATURES_XFER
;
2731 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
2732 tf
.protocol
= ATA_PROT_NODATA
;
2733 tf
.nsect
= dev
->xfer_mode
;
2735 err_mask
= ata_exec_internal(ap
, dev
, &tf
, DMA_NONE
, NULL
, 0);
2737 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
2742 * ata_dev_init_params - Issue INIT DEV PARAMS command
2743 * @ap: Port associated with device @dev
2744 * @dev: Device to which command will be sent
2745 * @heads: Number of heads (taskfile parameter)
2746 * @sectors: Number of sectors (taskfile parameter)
2749 * Kernel thread context (may sleep)
2752 * 0 on success, AC_ERR_* mask otherwise.
2755 static unsigned int ata_dev_init_params(struct ata_port
*ap
,
2756 struct ata_device
*dev
,
2760 struct ata_taskfile tf
;
2761 unsigned int err_mask
;
2763 /* Number of sectors per track 1-255. Number of heads 1-16 */
2764 if (sectors
< 1 || sectors
> 255 || heads
< 1 || heads
> 16)
2765 return AC_ERR_INVALID
;
2767 /* set up init dev params taskfile */
2768 DPRINTK("init dev params \n");
2770 ata_tf_init(ap
, &tf
, dev
->devno
);
2771 tf
.command
= ATA_CMD_INIT_DEV_PARAMS
;
2772 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
2773 tf
.protocol
= ATA_PROT_NODATA
;
2775 tf
.device
|= (heads
- 1) & 0x0f; /* max head = num. of heads - 1 */
2777 err_mask
= ata_exec_internal(ap
, dev
, &tf
, DMA_NONE
, NULL
, 0);
2779 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
2784 * ata_sg_clean - Unmap DMA memory associated with command
2785 * @qc: Command containing DMA memory to be released
2787 * Unmap all mapped DMA memory associated with this command.
2790 * spin_lock_irqsave(host_set lock)
2793 static void ata_sg_clean(struct ata_queued_cmd
*qc
)
2795 struct ata_port
*ap
= qc
->ap
;
2796 struct scatterlist
*sg
= qc
->__sg
;
2797 int dir
= qc
->dma_dir
;
2798 void *pad_buf
= NULL
;
2800 WARN_ON(!(qc
->flags
& ATA_QCFLAG_DMAMAP
));
2801 WARN_ON(sg
== NULL
);
2803 if (qc
->flags
& ATA_QCFLAG_SINGLE
)
2804 WARN_ON(qc
->n_elem
> 1);
2806 VPRINTK("unmapping %u sg elements\n", qc
->n_elem
);
2808 /* if we padded the buffer out to 32-bit bound, and data
2809 * xfer direction is from-device, we must copy from the
2810 * pad buffer back into the supplied buffer
2812 if (qc
->pad_len
&& !(qc
->tf
.flags
& ATA_TFLAG_WRITE
))
2813 pad_buf
= ap
->pad
+ (qc
->tag
* ATA_DMA_PAD_SZ
);
2815 if (qc
->flags
& ATA_QCFLAG_SG
) {
2817 dma_unmap_sg(ap
->dev
, sg
, qc
->n_elem
, dir
);
2818 /* restore last sg */
2819 sg
[qc
->orig_n_elem
- 1].length
+= qc
->pad_len
;
2821 struct scatterlist
*psg
= &qc
->pad_sgent
;
2822 void *addr
= kmap_atomic(psg
->page
, KM_IRQ0
);
2823 memcpy(addr
+ psg
->offset
, pad_buf
, qc
->pad_len
);
2824 kunmap_atomic(addr
, KM_IRQ0
);
2828 dma_unmap_single(ap
->dev
,
2829 sg_dma_address(&sg
[0]), sg_dma_len(&sg
[0]),
2832 sg
->length
+= qc
->pad_len
;
2834 memcpy(qc
->buf_virt
+ sg
->length
- qc
->pad_len
,
2835 pad_buf
, qc
->pad_len
);
2838 qc
->flags
&= ~ATA_QCFLAG_DMAMAP
;
2843 * ata_fill_sg - Fill PCI IDE PRD table
2844 * @qc: Metadata associated with taskfile to be transferred
2846 * Fill PCI IDE PRD (scatter-gather) table with segments
2847 * associated with the current disk command.
2850 * spin_lock_irqsave(host_set lock)
2853 static void ata_fill_sg(struct ata_queued_cmd
*qc
)
2855 struct ata_port
*ap
= qc
->ap
;
2856 struct scatterlist
*sg
;
2859 WARN_ON(qc
->__sg
== NULL
);
2860 WARN_ON(qc
->n_elem
== 0 && qc
->pad_len
== 0);
2863 ata_for_each_sg(sg
, qc
) {
2867 /* determine if physical DMA addr spans 64K boundary.
2868 * Note h/w doesn't support 64-bit, so we unconditionally
2869 * truncate dma_addr_t to u32.
2871 addr
= (u32
) sg_dma_address(sg
);
2872 sg_len
= sg_dma_len(sg
);
2875 offset
= addr
& 0xffff;
2877 if ((offset
+ sg_len
) > 0x10000)
2878 len
= 0x10000 - offset
;
2880 ap
->prd
[idx
].addr
= cpu_to_le32(addr
);
2881 ap
->prd
[idx
].flags_len
= cpu_to_le32(len
& 0xffff);
2882 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx
, addr
, len
);
2891 ap
->prd
[idx
- 1].flags_len
|= cpu_to_le32(ATA_PRD_EOT
);
2894 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
2895 * @qc: Metadata associated with taskfile to check
2897 * Allow low-level driver to filter ATA PACKET commands, returning
2898 * a status indicating whether or not it is OK to use DMA for the
2899 * supplied PACKET command.
2902 * spin_lock_irqsave(host_set lock)
2904 * RETURNS: 0 when ATAPI DMA can be used
2907 int ata_check_atapi_dma(struct ata_queued_cmd
*qc
)
2909 struct ata_port
*ap
= qc
->ap
;
2910 int rc
= 0; /* Assume ATAPI DMA is OK by default */
2912 if (ap
->ops
->check_atapi_dma
)
2913 rc
= ap
->ops
->check_atapi_dma(qc
);
2918 * ata_qc_prep - Prepare taskfile for submission
2919 * @qc: Metadata associated with taskfile to be prepared
2921 * Prepare ATA taskfile for submission.
2924 * spin_lock_irqsave(host_set lock)
2926 void ata_qc_prep(struct ata_queued_cmd
*qc
)
2928 if (!(qc
->flags
& ATA_QCFLAG_DMAMAP
))
2934 void ata_noop_qc_prep(struct ata_queued_cmd
*qc
) { }
2937 * ata_sg_init_one - Associate command with memory buffer
2938 * @qc: Command to be associated
2939 * @buf: Memory buffer
2940 * @buflen: Length of memory buffer, in bytes.
2942 * Initialize the data-related elements of queued_cmd @qc
2943 * to point to a single memory buffer, @buf of byte length @buflen.
2946 * spin_lock_irqsave(host_set lock)
2949 void ata_sg_init_one(struct ata_queued_cmd
*qc
, void *buf
, unsigned int buflen
)
2951 struct scatterlist
*sg
;
2953 qc
->flags
|= ATA_QCFLAG_SINGLE
;
2955 memset(&qc
->sgent
, 0, sizeof(qc
->sgent
));
2956 qc
->__sg
= &qc
->sgent
;
2958 qc
->orig_n_elem
= 1;
2962 sg_init_one(sg
, buf
, buflen
);
2966 * ata_sg_init - Associate command with scatter-gather table.
2967 * @qc: Command to be associated
2968 * @sg: Scatter-gather table.
2969 * @n_elem: Number of elements in s/g table.
2971 * Initialize the data-related elements of queued_cmd @qc
2972 * to point to a scatter-gather table @sg, containing @n_elem
2976 * spin_lock_irqsave(host_set lock)
2979 void ata_sg_init(struct ata_queued_cmd
*qc
, struct scatterlist
*sg
,
2980 unsigned int n_elem
)
2982 qc
->flags
|= ATA_QCFLAG_SG
;
2984 qc
->n_elem
= n_elem
;
2985 qc
->orig_n_elem
= n_elem
;
2989 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
2990 * @qc: Command with memory buffer to be mapped.
2992 * DMA-map the memory buffer associated with queued_cmd @qc.
2995 * spin_lock_irqsave(host_set lock)
2998 * Zero on success, negative on error.
3001 static int ata_sg_setup_one(struct ata_queued_cmd
*qc
)
3003 struct ata_port
*ap
= qc
->ap
;
3004 int dir
= qc
->dma_dir
;
3005 struct scatterlist
*sg
= qc
->__sg
;
3006 dma_addr_t dma_address
;
3009 /* we must lengthen transfers to end on a 32-bit boundary */
3010 qc
->pad_len
= sg
->length
& 3;
3012 void *pad_buf
= ap
->pad
+ (qc
->tag
* ATA_DMA_PAD_SZ
);
3013 struct scatterlist
*psg
= &qc
->pad_sgent
;
3015 WARN_ON(qc
->dev
->class != ATA_DEV_ATAPI
);
3017 memset(pad_buf
, 0, ATA_DMA_PAD_SZ
);
3019 if (qc
->tf
.flags
& ATA_TFLAG_WRITE
)
3020 memcpy(pad_buf
, qc
->buf_virt
+ sg
->length
- qc
->pad_len
,
3023 sg_dma_address(psg
) = ap
->pad_dma
+ (qc
->tag
* ATA_DMA_PAD_SZ
);
3024 sg_dma_len(psg
) = ATA_DMA_PAD_SZ
;
3026 sg
->length
-= qc
->pad_len
;
3027 if (sg
->length
== 0)
3030 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3031 sg
->length
, qc
->pad_len
);
3039 dma_address
= dma_map_single(ap
->dev
, qc
->buf_virt
,
3041 if (dma_mapping_error(dma_address
)) {
3043 sg
->length
+= qc
->pad_len
;
3047 sg_dma_address(sg
) = dma_address
;
3048 sg_dma_len(sg
) = sg
->length
;
3051 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg
),
3052 qc
->tf
.flags
& ATA_TFLAG_WRITE
? "write" : "read");
3058 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3059 * @qc: Command with scatter-gather table to be mapped.
3061 * DMA-map the scatter-gather table associated with queued_cmd @qc.
3064 * spin_lock_irqsave(host_set lock)
3067 * Zero on success, negative on error.
3071 static int ata_sg_setup(struct ata_queued_cmd
*qc
)
3073 struct ata_port
*ap
= qc
->ap
;
3074 struct scatterlist
*sg
= qc
->__sg
;
3075 struct scatterlist
*lsg
= &sg
[qc
->n_elem
- 1];
3076 int n_elem
, pre_n_elem
, dir
, trim_sg
= 0;
3078 VPRINTK("ENTER, ata%u\n", ap
->id
);
3079 WARN_ON(!(qc
->flags
& ATA_QCFLAG_SG
));
3081 /* we must lengthen transfers to end on a 32-bit boundary */
3082 qc
->pad_len
= lsg
->length
& 3;
3084 void *pad_buf
= ap
->pad
+ (qc
->tag
* ATA_DMA_PAD_SZ
);
3085 struct scatterlist
*psg
= &qc
->pad_sgent
;
3086 unsigned int offset
;
3088 WARN_ON(qc
->dev
->class != ATA_DEV_ATAPI
);
3090 memset(pad_buf
, 0, ATA_DMA_PAD_SZ
);
3093 * psg->page/offset are used to copy to-be-written
3094 * data in this function or read data in ata_sg_clean.
3096 offset
= lsg
->offset
+ lsg
->length
- qc
->pad_len
;
3097 psg
->page
= nth_page(lsg
->page
, offset
>> PAGE_SHIFT
);
3098 psg
->offset
= offset_in_page(offset
);
3100 if (qc
->tf
.flags
& ATA_TFLAG_WRITE
) {
3101 void *addr
= kmap_atomic(psg
->page
, KM_IRQ0
);
3102 memcpy(pad_buf
, addr
+ psg
->offset
, qc
->pad_len
);
3103 kunmap_atomic(addr
, KM_IRQ0
);
3106 sg_dma_address(psg
) = ap
->pad_dma
+ (qc
->tag
* ATA_DMA_PAD_SZ
);
3107 sg_dma_len(psg
) = ATA_DMA_PAD_SZ
;
3109 lsg
->length
-= qc
->pad_len
;
3110 if (lsg
->length
== 0)
3113 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3114 qc
->n_elem
- 1, lsg
->length
, qc
->pad_len
);
3117 pre_n_elem
= qc
->n_elem
;
3118 if (trim_sg
&& pre_n_elem
)
3127 n_elem
= dma_map_sg(ap
->dev
, sg
, pre_n_elem
, dir
);
3129 /* restore last sg */
3130 lsg
->length
+= qc
->pad_len
;
3134 DPRINTK("%d sg elements mapped\n", n_elem
);
3137 qc
->n_elem
= n_elem
;
3143 * ata_poll_qc_complete - turn irq back on and finish qc
3144 * @qc: Command to complete
3145 * @err_mask: ATA status register content
3148 * None. (grabs host lock)
3151 void ata_poll_qc_complete(struct ata_queued_cmd
*qc
)
3153 struct ata_port
*ap
= qc
->ap
;
3154 unsigned long flags
;
3156 spin_lock_irqsave(&ap
->host_set
->lock
, flags
);
3157 ap
->flags
&= ~ATA_FLAG_NOINTR
;
3159 ata_qc_complete(qc
);
3160 spin_unlock_irqrestore(&ap
->host_set
->lock
, flags
);
3164 * ata_pio_poll - poll using PIO, depending on current state
3165 * @ap: the target ata_port
3168 * None. (executing in kernel thread context)
3171 * timeout value to use
3174 static unsigned long ata_pio_poll(struct ata_port
*ap
)
3176 struct ata_queued_cmd
*qc
;
3178 unsigned int poll_state
= HSM_ST_UNKNOWN
;
3179 unsigned int reg_state
= HSM_ST_UNKNOWN
;
3181 qc
= ata_qc_from_tag(ap
, ap
->active_tag
);
3182 WARN_ON(qc
== NULL
);
3184 switch (ap
->hsm_task_state
) {
3187 poll_state
= HSM_ST_POLL
;
3191 case HSM_ST_LAST_POLL
:
3192 poll_state
= HSM_ST_LAST_POLL
;
3193 reg_state
= HSM_ST_LAST
;
3200 status
= ata_chk_status(ap
);
3201 if (status
& ATA_BUSY
) {
3202 if (time_after(jiffies
, ap
->pio_task_timeout
)) {
3203 qc
->err_mask
|= AC_ERR_TIMEOUT
;
3204 ap
->hsm_task_state
= HSM_ST_TMOUT
;
3207 ap
->hsm_task_state
= poll_state
;
3208 return ATA_SHORT_PAUSE
;
3211 ap
->hsm_task_state
= reg_state
;
3216 * ata_pio_complete - check if drive is busy or idle
3217 * @ap: the target ata_port
3220 * None. (executing in kernel thread context)
3223 * Non-zero if qc completed, zero otherwise.
3226 static int ata_pio_complete (struct ata_port
*ap
)
3228 struct ata_queued_cmd
*qc
;
3232 * This is purely heuristic. This is a fast path. Sometimes when
3233 * we enter, BSY will be cleared in a chk-status or two. If not,
3234 * the drive is probably seeking or something. Snooze for a couple
3235 * msecs, then chk-status again. If still busy, fall back to
3236 * HSM_ST_POLL state.
3238 drv_stat
= ata_busy_wait(ap
, ATA_BUSY
, 10);
3239 if (drv_stat
& ATA_BUSY
) {
3241 drv_stat
= ata_busy_wait(ap
, ATA_BUSY
, 10);
3242 if (drv_stat
& ATA_BUSY
) {
3243 ap
->hsm_task_state
= HSM_ST_LAST_POLL
;
3244 ap
->pio_task_timeout
= jiffies
+ ATA_TMOUT_PIO
;
3249 qc
= ata_qc_from_tag(ap
, ap
->active_tag
);
3250 WARN_ON(qc
== NULL
);
3252 drv_stat
= ata_wait_idle(ap
);
3253 if (!ata_ok(drv_stat
)) {
3254 qc
->err_mask
|= __ac_err_mask(drv_stat
);
3255 ap
->hsm_task_state
= HSM_ST_ERR
;
3259 ap
->hsm_task_state
= HSM_ST_IDLE
;
3261 WARN_ON(qc
->err_mask
);
3262 ata_poll_qc_complete(qc
);
3264 /* another command may start at this point */
3271 * swap_buf_le16 - swap halves of 16-bit words in place
3272 * @buf: Buffer to swap
3273 * @buf_words: Number of 16-bit words in buffer.
3275 * Swap halves of 16-bit words if needed to convert from
3276 * little-endian byte order to native cpu byte order, or
3280 * Inherited from caller.
3282 void swap_buf_le16(u16
*buf
, unsigned int buf_words
)
3287 for (i
= 0; i
< buf_words
; i
++)
3288 buf
[i
] = le16_to_cpu(buf
[i
]);
3289 #endif /* __BIG_ENDIAN */
3293 * ata_mmio_data_xfer - Transfer data by MMIO
3294 * @ap: port to read/write
3296 * @buflen: buffer length
3297 * @write_data: read/write
3299 * Transfer data from/to the device data register by MMIO.
3302 * Inherited from caller.
3305 static void ata_mmio_data_xfer(struct ata_port
*ap
, unsigned char *buf
,
3306 unsigned int buflen
, int write_data
)
3309 unsigned int words
= buflen
>> 1;
3310 u16
*buf16
= (u16
*) buf
;
3311 void __iomem
*mmio
= (void __iomem
*)ap
->ioaddr
.data_addr
;
3313 /* Transfer multiple of 2 bytes */
3315 for (i
= 0; i
< words
; i
++)
3316 writew(le16_to_cpu(buf16
[i
]), mmio
);
3318 for (i
= 0; i
< words
; i
++)
3319 buf16
[i
] = cpu_to_le16(readw(mmio
));
3322 /* Transfer trailing 1 byte, if any. */
3323 if (unlikely(buflen
& 0x01)) {
3324 u16 align_buf
[1] = { 0 };
3325 unsigned char *trailing_buf
= buf
+ buflen
- 1;
3328 memcpy(align_buf
, trailing_buf
, 1);
3329 writew(le16_to_cpu(align_buf
[0]), mmio
);
3331 align_buf
[0] = cpu_to_le16(readw(mmio
));
3332 memcpy(trailing_buf
, align_buf
, 1);
3338 * ata_pio_data_xfer - Transfer data by PIO
3339 * @ap: port to read/write
3341 * @buflen: buffer length
3342 * @write_data: read/write
3344 * Transfer data from/to the device data register by PIO.
3347 * Inherited from caller.
3350 static void ata_pio_data_xfer(struct ata_port
*ap
, unsigned char *buf
,
3351 unsigned int buflen
, int write_data
)
3353 unsigned int words
= buflen
>> 1;
3355 /* Transfer multiple of 2 bytes */
3357 outsw(ap
->ioaddr
.data_addr
, buf
, words
);
3359 insw(ap
->ioaddr
.data_addr
, buf
, words
);
3361 /* Transfer trailing 1 byte, if any. */
3362 if (unlikely(buflen
& 0x01)) {
3363 u16 align_buf
[1] = { 0 };
3364 unsigned char *trailing_buf
= buf
+ buflen
- 1;
3367 memcpy(align_buf
, trailing_buf
, 1);
3368 outw(le16_to_cpu(align_buf
[0]), ap
->ioaddr
.data_addr
);
3370 align_buf
[0] = cpu_to_le16(inw(ap
->ioaddr
.data_addr
));
3371 memcpy(trailing_buf
, align_buf
, 1);
3377 * ata_data_xfer - Transfer data from/to the data register.
3378 * @ap: port to read/write
3380 * @buflen: buffer length
3381 * @do_write: read/write
3383 * Transfer data from/to the device data register.
3386 * Inherited from caller.
3389 static void ata_data_xfer(struct ata_port
*ap
, unsigned char *buf
,
3390 unsigned int buflen
, int do_write
)
3392 /* Make the crap hardware pay the costs not the good stuff */
3393 if (unlikely(ap
->flags
& ATA_FLAG_IRQ_MASK
)) {
3394 unsigned long flags
;
3395 local_irq_save(flags
);
3396 if (ap
->flags
& ATA_FLAG_MMIO
)
3397 ata_mmio_data_xfer(ap
, buf
, buflen
, do_write
);
3399 ata_pio_data_xfer(ap
, buf
, buflen
, do_write
);
3400 local_irq_restore(flags
);
3402 if (ap
->flags
& ATA_FLAG_MMIO
)
3403 ata_mmio_data_xfer(ap
, buf
, buflen
, do_write
);
3405 ata_pio_data_xfer(ap
, buf
, buflen
, do_write
);
3410 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3411 * @qc: Command on going
3413 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3416 * Inherited from caller.
3419 static void ata_pio_sector(struct ata_queued_cmd
*qc
)
3421 int do_write
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
);
3422 struct scatterlist
*sg
= qc
->__sg
;
3423 struct ata_port
*ap
= qc
->ap
;
3425 unsigned int offset
;
3428 if (qc
->cursect
== (qc
->nsect
- 1))
3429 ap
->hsm_task_state
= HSM_ST_LAST
;
3431 page
= sg
[qc
->cursg
].page
;
3432 offset
= sg
[qc
->cursg
].offset
+ qc
->cursg_ofs
* ATA_SECT_SIZE
;
3434 /* get the current page and offset */
3435 page
= nth_page(page
, (offset
>> PAGE_SHIFT
));
3436 offset
%= PAGE_SIZE
;
3438 buf
= kmap(page
) + offset
;
3443 if ((qc
->cursg_ofs
* ATA_SECT_SIZE
) == (&sg
[qc
->cursg
])->length
) {
3448 DPRINTK("data %s\n", qc
->tf
.flags
& ATA_TFLAG_WRITE
? "write" : "read");
3450 /* do the actual data transfer */
3451 do_write
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
);
3452 ata_data_xfer(ap
, buf
, ATA_SECT_SIZE
, do_write
);
3458 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3459 * @qc: Command on going
3460 * @bytes: number of bytes
3462 * Transfer Transfer data from/to the ATAPI device.
3465 * Inherited from caller.
3469 static void __atapi_pio_bytes(struct ata_queued_cmd
*qc
, unsigned int bytes
)
3471 int do_write
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
);
3472 struct scatterlist
*sg
= qc
->__sg
;
3473 struct ata_port
*ap
= qc
->ap
;
3476 unsigned int offset
, count
;
3478 if (qc
->curbytes
+ bytes
>= qc
->nbytes
)
3479 ap
->hsm_task_state
= HSM_ST_LAST
;
3482 if (unlikely(qc
->cursg
>= qc
->n_elem
)) {
3484 * The end of qc->sg is reached and the device expects
3485 * more data to transfer. In order not to overrun qc->sg
3486 * and fulfill length specified in the byte count register,
3487 * - for read case, discard trailing data from the device
3488 * - for write case, padding zero data to the device
3490 u16 pad_buf
[1] = { 0 };
3491 unsigned int words
= bytes
>> 1;
3494 if (words
) /* warning if bytes > 1 */
3495 printk(KERN_WARNING
"ata%u: %u bytes trailing data\n",
3498 for (i
= 0; i
< words
; i
++)
3499 ata_data_xfer(ap
, (unsigned char*)pad_buf
, 2, do_write
);
3501 ap
->hsm_task_state
= HSM_ST_LAST
;
3505 sg
= &qc
->__sg
[qc
->cursg
];
3508 offset
= sg
->offset
+ qc
->cursg_ofs
;
3510 /* get the current page and offset */
3511 page
= nth_page(page
, (offset
>> PAGE_SHIFT
));
3512 offset
%= PAGE_SIZE
;
3514 /* don't overrun current sg */
3515 count
= min(sg
->length
- qc
->cursg_ofs
, bytes
);
3517 /* don't cross page boundaries */
3518 count
= min(count
, (unsigned int)PAGE_SIZE
- offset
);
3520 buf
= kmap(page
) + offset
;
3523 qc
->curbytes
+= count
;
3524 qc
->cursg_ofs
+= count
;
3526 if (qc
->cursg_ofs
== sg
->length
) {
3531 DPRINTK("data %s\n", qc
->tf
.flags
& ATA_TFLAG_WRITE
? "write" : "read");
3533 /* do the actual data transfer */
3534 ata_data_xfer(ap
, buf
, count
, do_write
);
3543 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3544 * @qc: Command on going
3546 * Transfer Transfer data from/to the ATAPI device.
3549 * Inherited from caller.
3552 static void atapi_pio_bytes(struct ata_queued_cmd
*qc
)
3554 struct ata_port
*ap
= qc
->ap
;
3555 struct ata_device
*dev
= qc
->dev
;
3556 unsigned int ireason
, bc_lo
, bc_hi
, bytes
;
3557 int i_write
, do_write
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
) ? 1 : 0;
3559 ap
->ops
->tf_read(ap
, &qc
->tf
);
3560 ireason
= qc
->tf
.nsect
;
3561 bc_lo
= qc
->tf
.lbam
;
3562 bc_hi
= qc
->tf
.lbah
;
3563 bytes
= (bc_hi
<< 8) | bc_lo
;
3565 /* shall be cleared to zero, indicating xfer of data */
3566 if (ireason
& (1 << 0))
3569 /* make sure transfer direction matches expected */
3570 i_write
= ((ireason
& (1 << 1)) == 0) ? 1 : 0;
3571 if (do_write
!= i_write
)
3574 __atapi_pio_bytes(qc
, bytes
);
3579 printk(KERN_INFO
"ata%u: dev %u: ATAPI check failed\n",
3580 ap
->id
, dev
->devno
);
3581 qc
->err_mask
|= AC_ERR_HSM
;
3582 ap
->hsm_task_state
= HSM_ST_ERR
;
3586 * ata_pio_block - start PIO on a block
3587 * @ap: the target ata_port
3590 * None. (executing in kernel thread context)
3593 static void ata_pio_block(struct ata_port
*ap
)
3595 struct ata_queued_cmd
*qc
;
3599 * This is purely heuristic. This is a fast path.
3600 * Sometimes when we enter, BSY will be cleared in
3601 * a chk-status or two. If not, the drive is probably seeking
3602 * or something. Snooze for a couple msecs, then
3603 * chk-status again. If still busy, fall back to
3604 * HSM_ST_POLL state.
3606 status
= ata_busy_wait(ap
, ATA_BUSY
, 5);
3607 if (status
& ATA_BUSY
) {
3609 status
= ata_busy_wait(ap
, ATA_BUSY
, 10);
3610 if (status
& ATA_BUSY
) {
3611 ap
->hsm_task_state
= HSM_ST_POLL
;
3612 ap
->pio_task_timeout
= jiffies
+ ATA_TMOUT_PIO
;
3617 qc
= ata_qc_from_tag(ap
, ap
->active_tag
);
3618 WARN_ON(qc
== NULL
);
3621 if (status
& (ATA_ERR
| ATA_DF
)) {
3622 qc
->err_mask
|= AC_ERR_DEV
;
3623 ap
->hsm_task_state
= HSM_ST_ERR
;
3627 /* transfer data if any */
3628 if (is_atapi_taskfile(&qc
->tf
)) {
3629 /* DRQ=0 means no more data to transfer */
3630 if ((status
& ATA_DRQ
) == 0) {
3631 ap
->hsm_task_state
= HSM_ST_LAST
;
3635 atapi_pio_bytes(qc
);
3637 /* handle BSY=0, DRQ=0 as error */
3638 if ((status
& ATA_DRQ
) == 0) {
3639 qc
->err_mask
|= AC_ERR_HSM
;
3640 ap
->hsm_task_state
= HSM_ST_ERR
;
3647 ata_altstatus(ap
); /* flush */
3650 static void ata_pio_error(struct ata_port
*ap
)
3652 struct ata_queued_cmd
*qc
;
3654 qc
= ata_qc_from_tag(ap
, ap
->active_tag
);
3655 WARN_ON(qc
== NULL
);
3657 if (qc
->tf
.command
!= ATA_CMD_PACKET
)
3658 printk(KERN_WARNING
"ata%u: PIO error\n", ap
->id
);
3660 /* make sure qc->err_mask is available to
3661 * know what's wrong and recover
3663 WARN_ON(qc
->err_mask
== 0);
3665 ap
->hsm_task_state
= HSM_ST_IDLE
;
3667 ata_poll_qc_complete(qc
);
3670 static void ata_pio_task(void *_data
)
3672 struct ata_port
*ap
= _data
;
3673 unsigned long timeout
;
3680 switch (ap
->hsm_task_state
) {
3689 qc_completed
= ata_pio_complete(ap
);
3693 case HSM_ST_LAST_POLL
:
3694 timeout
= ata_pio_poll(ap
);
3704 ata_port_queue_task(ap
, ata_pio_task
, ap
, timeout
);
3705 else if (!qc_completed
)
3710 * atapi_packet_task - Write CDB bytes to hardware
3711 * @_data: Port to which ATAPI device is attached.
3713 * When device has indicated its readiness to accept
3714 * a CDB, this function is called. Send the CDB.
3715 * If DMA is to be performed, exit immediately.
3716 * Otherwise, we are in polling mode, so poll
3717 * status under operation succeeds or fails.
3720 * Kernel thread context (may sleep)
3723 static void atapi_packet_task(void *_data
)
3725 struct ata_port
*ap
= _data
;
3726 struct ata_queued_cmd
*qc
;
3729 qc
= ata_qc_from_tag(ap
, ap
->active_tag
);
3730 WARN_ON(qc
== NULL
);
3731 WARN_ON(!(qc
->flags
& ATA_QCFLAG_ACTIVE
));
3733 /* sleep-wait for BSY to clear */
3734 DPRINTK("busy wait\n");
3735 if (ata_busy_sleep(ap
, ATA_TMOUT_CDB_QUICK
, ATA_TMOUT_CDB
)) {
3736 qc
->err_mask
|= AC_ERR_TIMEOUT
;
3740 /* make sure DRQ is set */
3741 status
= ata_chk_status(ap
);
3742 if ((status
& (ATA_BUSY
| ATA_DRQ
)) != ATA_DRQ
) {
3743 qc
->err_mask
|= AC_ERR_HSM
;
3748 DPRINTK("send cdb\n");
3749 WARN_ON(qc
->dev
->cdb_len
< 12);
3751 if (qc
->tf
.protocol
== ATA_PROT_ATAPI_DMA
||
3752 qc
->tf
.protocol
== ATA_PROT_ATAPI_NODATA
) {
3753 unsigned long flags
;
3755 /* Once we're done issuing command and kicking bmdma,
3756 * irq handler takes over. To not lose irq, we need
3757 * to clear NOINTR flag before sending cdb, but
3758 * interrupt handler shouldn't be invoked before we're
3759 * finished. Hence, the following locking.
3761 spin_lock_irqsave(&ap
->host_set
->lock
, flags
);
3762 ap
->flags
&= ~ATA_FLAG_NOINTR
;
3763 ata_data_xfer(ap
, qc
->cdb
, qc
->dev
->cdb_len
, 1);
3764 ata_altstatus(ap
); /* flush */
3766 if (qc
->tf
.protocol
== ATA_PROT_ATAPI_DMA
)
3767 ap
->ops
->bmdma_start(qc
); /* initiate bmdma */
3768 spin_unlock_irqrestore(&ap
->host_set
->lock
, flags
);
3770 ata_data_xfer(ap
, qc
->cdb
, qc
->dev
->cdb_len
, 1);
3771 ata_altstatus(ap
); /* flush */
3773 /* PIO commands are handled by polling */
3774 ap
->hsm_task_state
= HSM_ST
;
3775 ata_port_queue_task(ap
, ata_pio_task
, ap
, 0);
3781 ata_poll_qc_complete(qc
);
3785 * ata_qc_timeout - Handle timeout of queued command
3786 * @qc: Command that timed out
3788 * Some part of the kernel (currently, only the SCSI layer)
3789 * has noticed that the active command on port @ap has not
3790 * completed after a specified length of time. Handle this
3791 * condition by disabling DMA (if necessary) and completing
3792 * transactions, with error if necessary.
3794 * This also handles the case of the "lost interrupt", where
3795 * for some reason (possibly hardware bug, possibly driver bug)
3796 * an interrupt was not delivered to the driver, even though the
3797 * transaction completed successfully.
3800 * Inherited from SCSI layer (none, can sleep)
3803 static void ata_qc_timeout(struct ata_queued_cmd
*qc
)
3805 struct ata_port
*ap
= qc
->ap
;
3806 struct ata_host_set
*host_set
= ap
->host_set
;
3807 u8 host_stat
= 0, drv_stat
;
3808 unsigned long flags
;
3812 ap
->hsm_task_state
= HSM_ST_IDLE
;
3814 spin_lock_irqsave(&host_set
->lock
, flags
);
3816 switch (qc
->tf
.protocol
) {
3819 case ATA_PROT_ATAPI_DMA
:
3820 host_stat
= ap
->ops
->bmdma_status(ap
);
3822 /* before we do anything else, clear DMA-Start bit */
3823 ap
->ops
->bmdma_stop(qc
);
3829 drv_stat
= ata_chk_status(ap
);
3831 /* ack bmdma irq events */
3832 ap
->ops
->irq_clear(ap
);
3834 printk(KERN_ERR
"ata%u: command 0x%x timeout, stat 0x%x host_stat 0x%x\n",
3835 ap
->id
, qc
->tf
.command
, drv_stat
, host_stat
);
3837 /* complete taskfile transaction */
3838 qc
->err_mask
|= ac_err_mask(drv_stat
);
3842 spin_unlock_irqrestore(&host_set
->lock
, flags
);
3844 ata_eh_qc_complete(qc
);
3850 * ata_eng_timeout - Handle timeout of queued command
3851 * @ap: Port on which timed-out command is active
3853 * Some part of the kernel (currently, only the SCSI layer)
3854 * has noticed that the active command on port @ap has not
3855 * completed after a specified length of time. Handle this
3856 * condition by disabling DMA (if necessary) and completing
3857 * transactions, with error if necessary.
3859 * This also handles the case of the "lost interrupt", where
3860 * for some reason (possibly hardware bug, possibly driver bug)
3861 * an interrupt was not delivered to the driver, even though the
3862 * transaction completed successfully.
3865 * Inherited from SCSI layer (none, can sleep)
3868 void ata_eng_timeout(struct ata_port
*ap
)
3872 ata_qc_timeout(ata_qc_from_tag(ap
, ap
->active_tag
));
3878 * ata_qc_new - Request an available ATA command, for queueing
3879 * @ap: Port associated with device @dev
3880 * @dev: Device from whom we request an available command structure
3886 static struct ata_queued_cmd
*ata_qc_new(struct ata_port
*ap
)
3888 struct ata_queued_cmd
*qc
= NULL
;
3891 for (i
= 0; i
< ATA_MAX_QUEUE
; i
++)
3892 if (!test_and_set_bit(i
, &ap
->qactive
)) {
3893 qc
= ata_qc_from_tag(ap
, i
);
3904 * ata_qc_new_init - Request an available ATA command, and initialize it
3905 * @ap: Port associated with device @dev
3906 * @dev: Device from whom we request an available command structure
3912 struct ata_queued_cmd
*ata_qc_new_init(struct ata_port
*ap
,
3913 struct ata_device
*dev
)
3915 struct ata_queued_cmd
*qc
;
3917 qc
= ata_qc_new(ap
);
3930 * ata_qc_free - free unused ata_queued_cmd
3931 * @qc: Command to complete
3933 * Designed to free unused ata_queued_cmd object
3934 * in case something prevents using it.
3937 * spin_lock_irqsave(host_set lock)
3939 void ata_qc_free(struct ata_queued_cmd
*qc
)
3941 struct ata_port
*ap
= qc
->ap
;
3944 WARN_ON(qc
== NULL
); /* ata_qc_from_tag _might_ return NULL */
3948 if (likely(ata_tag_valid(tag
))) {
3949 if (tag
== ap
->active_tag
)
3950 ap
->active_tag
= ATA_TAG_POISON
;
3951 qc
->tag
= ATA_TAG_POISON
;
3952 clear_bit(tag
, &ap
->qactive
);
3956 void __ata_qc_complete(struct ata_queued_cmd
*qc
)
3958 WARN_ON(qc
== NULL
); /* ata_qc_from_tag _might_ return NULL */
3959 WARN_ON(!(qc
->flags
& ATA_QCFLAG_ACTIVE
));
3961 if (likely(qc
->flags
& ATA_QCFLAG_DMAMAP
))
3964 /* atapi: mark qc as inactive to prevent the interrupt handler
3965 * from completing the command twice later, before the error handler
3966 * is called. (when rc != 0 and atapi request sense is needed)
3968 qc
->flags
&= ~ATA_QCFLAG_ACTIVE
;
3970 /* call completion callback */
3971 qc
->complete_fn(qc
);
3974 static inline int ata_should_dma_map(struct ata_queued_cmd
*qc
)
3976 struct ata_port
*ap
= qc
->ap
;
3978 switch (qc
->tf
.protocol
) {
3980 case ATA_PROT_ATAPI_DMA
:
3983 case ATA_PROT_ATAPI
:
3985 if (ap
->flags
& ATA_FLAG_PIO_DMA
)
3998 * ata_qc_issue - issue taskfile to device
3999 * @qc: command to issue to device
4001 * Prepare an ATA command to submission to device.
4002 * This includes mapping the data into a DMA-able
4003 * area, filling in the S/G table, and finally
4004 * writing the taskfile to hardware, starting the command.
4007 * spin_lock_irqsave(host_set lock)
4009 void ata_qc_issue(struct ata_queued_cmd
*qc
)
4011 struct ata_port
*ap
= qc
->ap
;
4013 qc
->ap
->active_tag
= qc
->tag
;
4014 qc
->flags
|= ATA_QCFLAG_ACTIVE
;
4016 if (ata_should_dma_map(qc
)) {
4017 if (qc
->flags
& ATA_QCFLAG_SG
) {
4018 if (ata_sg_setup(qc
))
4020 } else if (qc
->flags
& ATA_QCFLAG_SINGLE
) {
4021 if (ata_sg_setup_one(qc
))
4025 qc
->flags
&= ~ATA_QCFLAG_DMAMAP
;
4028 ap
->ops
->qc_prep(qc
);
4030 qc
->err_mask
|= ap
->ops
->qc_issue(qc
);
4031 if (unlikely(qc
->err_mask
))
4036 qc
->flags
&= ~ATA_QCFLAG_DMAMAP
;
4037 qc
->err_mask
|= AC_ERR_SYSTEM
;
4039 ata_qc_complete(qc
);
4043 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4044 * @qc: command to issue to device
4046 * Using various libata functions and hooks, this function
4047 * starts an ATA command. ATA commands are grouped into
4048 * classes called "protocols", and issuing each type of protocol
4049 * is slightly different.
4051 * May be used as the qc_issue() entry in ata_port_operations.
4054 * spin_lock_irqsave(host_set lock)
4057 * Zero on success, AC_ERR_* mask on failure
4060 unsigned int ata_qc_issue_prot(struct ata_queued_cmd
*qc
)
4062 struct ata_port
*ap
= qc
->ap
;
4064 ata_dev_select(ap
, qc
->dev
->devno
, 1, 0);
4066 switch (qc
->tf
.protocol
) {
4067 case ATA_PROT_NODATA
:
4068 ata_tf_to_host(ap
, &qc
->tf
);
4072 ap
->ops
->tf_load(ap
, &qc
->tf
); /* load tf registers */
4073 ap
->ops
->bmdma_setup(qc
); /* set up bmdma */
4074 ap
->ops
->bmdma_start(qc
); /* initiate bmdma */
4077 case ATA_PROT_PIO
: /* load tf registers, initiate polling pio */
4078 ata_qc_set_polling(qc
);
4079 ata_tf_to_host(ap
, &qc
->tf
);
4080 ap
->hsm_task_state
= HSM_ST
;
4081 ata_port_queue_task(ap
, ata_pio_task
, ap
, 0);
4084 case ATA_PROT_ATAPI
:
4085 ata_qc_set_polling(qc
);
4086 ata_tf_to_host(ap
, &qc
->tf
);
4087 ata_port_queue_task(ap
, atapi_packet_task
, ap
, 0);
4090 case ATA_PROT_ATAPI_NODATA
:
4091 ap
->flags
|= ATA_FLAG_NOINTR
;
4092 ata_tf_to_host(ap
, &qc
->tf
);
4093 ata_port_queue_task(ap
, atapi_packet_task
, ap
, 0);
4096 case ATA_PROT_ATAPI_DMA
:
4097 ap
->flags
|= ATA_FLAG_NOINTR
;
4098 ap
->ops
->tf_load(ap
, &qc
->tf
); /* load tf registers */
4099 ap
->ops
->bmdma_setup(qc
); /* set up bmdma */
4100 ata_port_queue_task(ap
, atapi_packet_task
, ap
, 0);
4105 return AC_ERR_SYSTEM
;
4112 * ata_host_intr - Handle host interrupt for given (port, task)
4113 * @ap: Port on which interrupt arrived (possibly...)
4114 * @qc: Taskfile currently active in engine
4116 * Handle host interrupt for given queued command. Currently,
4117 * only DMA interrupts are handled. All other commands are
4118 * handled via polling with interrupts disabled (nIEN bit).
4121 * spin_lock_irqsave(host_set lock)
4124 * One if interrupt was handled, zero if not (shared irq).
4127 inline unsigned int ata_host_intr (struct ata_port
*ap
,
4128 struct ata_queued_cmd
*qc
)
4130 u8 status
, host_stat
;
4132 switch (qc
->tf
.protocol
) {
4135 case ATA_PROT_ATAPI_DMA
:
4136 case ATA_PROT_ATAPI
:
4137 /* check status of DMA engine */
4138 host_stat
= ap
->ops
->bmdma_status(ap
);
4139 VPRINTK("ata%u: host_stat 0x%X\n", ap
->id
, host_stat
);
4141 /* if it's not our irq... */
4142 if (!(host_stat
& ATA_DMA_INTR
))
4145 /* before we do anything else, clear DMA-Start bit */
4146 ap
->ops
->bmdma_stop(qc
);
4150 case ATA_PROT_ATAPI_NODATA
:
4151 case ATA_PROT_NODATA
:
4152 /* check altstatus */
4153 status
= ata_altstatus(ap
);
4154 if (status
& ATA_BUSY
)
4157 /* check main status, clearing INTRQ */
4158 status
= ata_chk_status(ap
);
4159 if (unlikely(status
& ATA_BUSY
))
4161 DPRINTK("ata%u: protocol %d (dev_stat 0x%X)\n",
4162 ap
->id
, qc
->tf
.protocol
, status
);
4164 /* ack bmdma irq events */
4165 ap
->ops
->irq_clear(ap
);
4167 /* complete taskfile transaction */
4168 qc
->err_mask
|= ac_err_mask(status
);
4169 ata_qc_complete(qc
);
4176 return 1; /* irq handled */
4179 ap
->stats
.idle_irq
++;
4182 if ((ap
->stats
.idle_irq
% 1000) == 0) {
4183 ata_irq_ack(ap
, 0); /* debug trap */
4184 printk(KERN_WARNING
"ata%d: irq trap\n", ap
->id
);
4188 return 0; /* irq not handled */
4192 * ata_interrupt - Default ATA host interrupt handler
4193 * @irq: irq line (unused)
4194 * @dev_instance: pointer to our ata_host_set information structure
4197 * Default interrupt handler for PCI IDE devices. Calls
4198 * ata_host_intr() for each port that is not disabled.
4201 * Obtains host_set lock during operation.
4204 * IRQ_NONE or IRQ_HANDLED.
4207 irqreturn_t
ata_interrupt (int irq
, void *dev_instance
, struct pt_regs
*regs
)
4209 struct ata_host_set
*host_set
= dev_instance
;
4211 unsigned int handled
= 0;
4212 unsigned long flags
;
4214 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4215 spin_lock_irqsave(&host_set
->lock
, flags
);
4217 for (i
= 0; i
< host_set
->n_ports
; i
++) {
4218 struct ata_port
*ap
;
4220 ap
= host_set
->ports
[i
];
4222 !(ap
->flags
& (ATA_FLAG_PORT_DISABLED
| ATA_FLAG_NOINTR
))) {
4223 struct ata_queued_cmd
*qc
;
4225 qc
= ata_qc_from_tag(ap
, ap
->active_tag
);
4226 if (qc
&& (!(qc
->tf
.ctl
& ATA_NIEN
)) &&
4227 (qc
->flags
& ATA_QCFLAG_ACTIVE
))
4228 handled
|= ata_host_intr(ap
, qc
);
4232 spin_unlock_irqrestore(&host_set
->lock
, flags
);
4234 return IRQ_RETVAL(handled
);
4239 * Execute a 'simple' command, that only consists of the opcode 'cmd' itself,
4240 * without filling any other registers
4242 static int ata_do_simple_cmd(struct ata_port
*ap
, struct ata_device
*dev
,
4245 struct ata_taskfile tf
;
4248 ata_tf_init(ap
, &tf
, dev
->devno
);
4251 tf
.flags
|= ATA_TFLAG_DEVICE
;
4252 tf
.protocol
= ATA_PROT_NODATA
;
4254 err
= ata_exec_internal(ap
, dev
, &tf
, DMA_NONE
, NULL
, 0);
4256 printk(KERN_ERR
"%s: ata command failed: %d\n",
4262 static int ata_flush_cache(struct ata_port
*ap
, struct ata_device
*dev
)
4266 if (!ata_try_flush_cache(dev
))
4269 if (ata_id_has_flush_ext(dev
->id
))
4270 cmd
= ATA_CMD_FLUSH_EXT
;
4272 cmd
= ATA_CMD_FLUSH
;
4274 return ata_do_simple_cmd(ap
, dev
, cmd
);
4277 static int ata_standby_drive(struct ata_port
*ap
, struct ata_device
*dev
)
4279 return ata_do_simple_cmd(ap
, dev
, ATA_CMD_STANDBYNOW1
);
4282 static int ata_start_drive(struct ata_port
*ap
, struct ata_device
*dev
)
4284 return ata_do_simple_cmd(ap
, dev
, ATA_CMD_IDLEIMMEDIATE
);
4288 * ata_device_resume - wakeup a previously suspended devices
4289 * @ap: port the device is connected to
4290 * @dev: the device to resume
4292 * Kick the drive back into action, by sending it an idle immediate
4293 * command and making sure its transfer mode matches between drive
4297 int ata_device_resume(struct ata_port
*ap
, struct ata_device
*dev
)
4299 if (ap
->flags
& ATA_FLAG_SUSPENDED
) {
4300 ata_busy_sleep(ap
, ATA_TMOUT_BOOT_QUICK
, ATA_TMOUT_BOOT
);
4301 ata_busy_wait(ap
, ATA_BUSY
| ATA_DRQ
, 200000);
4302 ap
->flags
&= ~ATA_FLAG_SUSPENDED
;
4305 if (!ata_dev_present(dev
))
4307 if (dev
->class == ATA_DEV_ATA
)
4308 ata_start_drive(ap
, dev
);
4314 * ata_device_suspend - prepare a device for suspend
4315 * @ap: port the device is connected to
4316 * @dev: the device to suspend
4317 * @state: target power management state
4319 * Flush the cache on the drive, if appropriate, then issue a
4320 * standbynow command.
4322 int ata_device_suspend(struct ata_port
*ap
, struct ata_device
*dev
, pm_message_t state
)
4324 if (!ata_dev_present(dev
))
4326 if (dev
->class == ATA_DEV_ATA
)
4327 ata_flush_cache(ap
, dev
);
4329 if (state
.event
!= PM_EVENT_FREEZE
)
4330 ata_standby_drive(ap
, dev
);
4331 ap
->flags
|= ATA_FLAG_SUSPENDED
;
4336 * ata_port_start - Set port up for dma.
4337 * @ap: Port to initialize
4339 * Called just after data structures for each port are
4340 * initialized. Allocates space for PRD table.
4342 * May be used as the port_start() entry in ata_port_operations.
4345 * Inherited from caller.
4348 int ata_port_start (struct ata_port
*ap
)
4350 struct device
*dev
= ap
->dev
;
4353 ap
->prd
= dma_alloc_coherent(dev
, ATA_PRD_TBL_SZ
, &ap
->prd_dma
, GFP_KERNEL
);
4357 rc
= ata_pad_alloc(ap
, dev
);
4359 dma_free_coherent(dev
, ATA_PRD_TBL_SZ
, ap
->prd
, ap
->prd_dma
);
4363 DPRINTK("prd alloc, virt %p, dma %llx\n", ap
->prd
, (unsigned long long) ap
->prd_dma
);
4370 * ata_port_stop - Undo ata_port_start()
4371 * @ap: Port to shut down
4373 * Frees the PRD table.
4375 * May be used as the port_stop() entry in ata_port_operations.
4378 * Inherited from caller.
4381 void ata_port_stop (struct ata_port
*ap
)
4383 struct device
*dev
= ap
->dev
;
4385 dma_free_coherent(dev
, ATA_PRD_TBL_SZ
, ap
->prd
, ap
->prd_dma
);
4386 ata_pad_free(ap
, dev
);
4389 void ata_host_stop (struct ata_host_set
*host_set
)
4391 if (host_set
->mmio_base
)
4392 iounmap(host_set
->mmio_base
);
4397 * ata_host_remove - Unregister SCSI host structure with upper layers
4398 * @ap: Port to unregister
4399 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
4402 * Inherited from caller.
4405 static void ata_host_remove(struct ata_port
*ap
, unsigned int do_unregister
)
4407 struct Scsi_Host
*sh
= ap
->host
;
4412 scsi_remove_host(sh
);
4414 ap
->ops
->port_stop(ap
);
4418 * ata_host_init - Initialize an ata_port structure
4419 * @ap: Structure to initialize
4420 * @host: associated SCSI mid-layer structure
4421 * @host_set: Collection of hosts to which @ap belongs
4422 * @ent: Probe information provided by low-level driver
4423 * @port_no: Port number associated with this ata_port
4425 * Initialize a new ata_port structure, and its associated
4429 * Inherited from caller.
4432 static void ata_host_init(struct ata_port
*ap
, struct Scsi_Host
*host
,
4433 struct ata_host_set
*host_set
,
4434 const struct ata_probe_ent
*ent
, unsigned int port_no
)
4440 host
->max_channel
= 1;
4441 host
->unique_id
= ata_unique_id
++;
4442 host
->max_cmd_len
= 12;
4444 ap
->flags
= ATA_FLAG_PORT_DISABLED
;
4445 ap
->id
= host
->unique_id
;
4447 ap
->ctl
= ATA_DEVCTL_OBS
;
4448 ap
->host_set
= host_set
;
4450 ap
->port_no
= port_no
;
4452 ent
->legacy_mode
? ent
->hard_port_no
: port_no
;
4453 ap
->pio_mask
= ent
->pio_mask
;
4454 ap
->mwdma_mask
= ent
->mwdma_mask
;
4455 ap
->udma_mask
= ent
->udma_mask
;
4456 ap
->flags
|= ent
->host_flags
;
4457 ap
->ops
= ent
->port_ops
;
4458 ap
->cbl
= ATA_CBL_NONE
;
4459 ap
->active_tag
= ATA_TAG_POISON
;
4460 ap
->last_ctl
= 0xFF;
4462 INIT_WORK(&ap
->port_task
, NULL
, NULL
);
4463 INIT_LIST_HEAD(&ap
->eh_done_q
);
4465 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
4466 struct ata_device
*dev
= &ap
->device
[i
];
4468 dev
->pio_mask
= UINT_MAX
;
4469 dev
->mwdma_mask
= UINT_MAX
;
4470 dev
->udma_mask
= UINT_MAX
;
4474 ap
->stats
.unhandled_irq
= 1;
4475 ap
->stats
.idle_irq
= 1;
4478 memcpy(&ap
->ioaddr
, &ent
->port
[port_no
], sizeof(struct ata_ioports
));
4482 * ata_host_add - Attach low-level ATA driver to system
4483 * @ent: Information provided by low-level driver
4484 * @host_set: Collections of ports to which we add
4485 * @port_no: Port number associated with this host
4487 * Attach low-level ATA driver to system.
4490 * PCI/etc. bus probe sem.
4493 * New ata_port on success, for NULL on error.
4496 static struct ata_port
* ata_host_add(const struct ata_probe_ent
*ent
,
4497 struct ata_host_set
*host_set
,
4498 unsigned int port_no
)
4500 struct Scsi_Host
*host
;
4501 struct ata_port
*ap
;
4506 if (!ent
->port_ops
->probe_reset
&&
4507 !(ent
->host_flags
& (ATA_FLAG_SATA_RESET
| ATA_FLAG_SRST
))) {
4508 printk(KERN_ERR
"ata%u: no reset mechanism available\n",
4513 host
= scsi_host_alloc(ent
->sht
, sizeof(struct ata_port
));
4517 host
->transportt
= &ata_scsi_transport_template
;
4519 ap
= (struct ata_port
*) &host
->hostdata
[0];
4521 ata_host_init(ap
, host
, host_set
, ent
, port_no
);
4523 rc
= ap
->ops
->port_start(ap
);
4530 scsi_host_put(host
);
4535 * ata_device_add - Register hardware device with ATA and SCSI layers
4536 * @ent: Probe information describing hardware device to be registered
4538 * This function processes the information provided in the probe
4539 * information struct @ent, allocates the necessary ATA and SCSI
4540 * host information structures, initializes them, and registers
4541 * everything with requisite kernel subsystems.
4543 * This function requests irqs, probes the ATA bus, and probes
4547 * PCI/etc. bus probe sem.
4550 * Number of ports registered. Zero on error (no ports registered).
4553 int ata_device_add(const struct ata_probe_ent
*ent
)
4555 unsigned int count
= 0, i
;
4556 struct device
*dev
= ent
->dev
;
4557 struct ata_host_set
*host_set
;
4560 /* alloc a container for our list of ATA ports (buses) */
4561 host_set
= kzalloc(sizeof(struct ata_host_set
) +
4562 (ent
->n_ports
* sizeof(void *)), GFP_KERNEL
);
4565 spin_lock_init(&host_set
->lock
);
4567 host_set
->dev
= dev
;
4568 host_set
->n_ports
= ent
->n_ports
;
4569 host_set
->irq
= ent
->irq
;
4570 host_set
->mmio_base
= ent
->mmio_base
;
4571 host_set
->private_data
= ent
->private_data
;
4572 host_set
->ops
= ent
->port_ops
;
4573 host_set
->flags
= ent
->host_set_flags
;
4575 /* register each port bound to this device */
4576 for (i
= 0; i
< ent
->n_ports
; i
++) {
4577 struct ata_port
*ap
;
4578 unsigned long xfer_mode_mask
;
4580 ap
= ata_host_add(ent
, host_set
, i
);
4584 host_set
->ports
[i
] = ap
;
4585 xfer_mode_mask
=(ap
->udma_mask
<< ATA_SHIFT_UDMA
) |
4586 (ap
->mwdma_mask
<< ATA_SHIFT_MWDMA
) |
4587 (ap
->pio_mask
<< ATA_SHIFT_PIO
);
4589 /* print per-port info to dmesg */
4590 printk(KERN_INFO
"ata%u: %cATA max %s cmd 0x%lX ctl 0x%lX "
4591 "bmdma 0x%lX irq %lu\n",
4593 ap
->flags
& ATA_FLAG_SATA
? 'S' : 'P',
4594 ata_mode_string(xfer_mode_mask
),
4595 ap
->ioaddr
.cmd_addr
,
4596 ap
->ioaddr
.ctl_addr
,
4597 ap
->ioaddr
.bmdma_addr
,
4601 host_set
->ops
->irq_clear(ap
);
4608 /* obtain irq, that is shared between channels */
4609 if (request_irq(ent
->irq
, ent
->port_ops
->irq_handler
, ent
->irq_flags
,
4610 DRV_NAME
, host_set
))
4613 /* perform each probe synchronously */
4614 DPRINTK("probe begin\n");
4615 for (i
= 0; i
< count
; i
++) {
4616 struct ata_port
*ap
;
4619 ap
= host_set
->ports
[i
];
4621 DPRINTK("ata%u: bus probe begin\n", ap
->id
);
4622 rc
= ata_bus_probe(ap
);
4623 DPRINTK("ata%u: bus probe end\n", ap
->id
);
4626 /* FIXME: do something useful here?
4627 * Current libata behavior will
4628 * tear down everything when
4629 * the module is removed
4630 * or the h/w is unplugged.
4634 rc
= scsi_add_host(ap
->host
, dev
);
4636 printk(KERN_ERR
"ata%u: scsi_add_host failed\n",
4638 /* FIXME: do something useful here */
4639 /* FIXME: handle unconditional calls to
4640 * scsi_scan_host and ata_host_remove, below,
4646 /* probes are done, now scan each port's disk(s) */
4647 DPRINTK("host probe begin\n");
4648 for (i
= 0; i
< count
; i
++) {
4649 struct ata_port
*ap
= host_set
->ports
[i
];
4651 ata_scsi_scan_host(ap
);
4654 dev_set_drvdata(dev
, host_set
);
4656 VPRINTK("EXIT, returning %u\n", ent
->n_ports
);
4657 return ent
->n_ports
; /* success */
4660 for (i
= 0; i
< count
; i
++) {
4661 ata_host_remove(host_set
->ports
[i
], 1);
4662 scsi_host_put(host_set
->ports
[i
]->host
);
4666 VPRINTK("EXIT, returning 0\n");
4671 * ata_host_set_remove - PCI layer callback for device removal
4672 * @host_set: ATA host set that was removed
4674 * Unregister all objects associated with this host set. Free those
4678 * Inherited from calling layer (may sleep).
4681 void ata_host_set_remove(struct ata_host_set
*host_set
)
4683 struct ata_port
*ap
;
4686 for (i
= 0; i
< host_set
->n_ports
; i
++) {
4687 ap
= host_set
->ports
[i
];
4688 scsi_remove_host(ap
->host
);
4691 free_irq(host_set
->irq
, host_set
);
4693 for (i
= 0; i
< host_set
->n_ports
; i
++) {
4694 ap
= host_set
->ports
[i
];
4696 ata_scsi_release(ap
->host
);
4698 if ((ap
->flags
& ATA_FLAG_NO_LEGACY
) == 0) {
4699 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
4701 if (ioaddr
->cmd_addr
== 0x1f0)
4702 release_region(0x1f0, 8);
4703 else if (ioaddr
->cmd_addr
== 0x170)
4704 release_region(0x170, 8);
4707 scsi_host_put(ap
->host
);
4710 if (host_set
->ops
->host_stop
)
4711 host_set
->ops
->host_stop(host_set
);
4717 * ata_scsi_release - SCSI layer callback hook for host unload
4718 * @host: libata host to be unloaded
4720 * Performs all duties necessary to shut down a libata port...
4721 * Kill port kthread, disable port, and release resources.
4724 * Inherited from SCSI layer.
4730 int ata_scsi_release(struct Scsi_Host
*host
)
4732 struct ata_port
*ap
= (struct ata_port
*) &host
->hostdata
[0];
4737 ap
->ops
->port_disable(ap
);
4738 ata_host_remove(ap
, 0);
4739 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++)
4740 kfree(ap
->device
[i
].id
);
4747 * ata_std_ports - initialize ioaddr with standard port offsets.
4748 * @ioaddr: IO address structure to be initialized
4750 * Utility function which initializes data_addr, error_addr,
4751 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
4752 * device_addr, status_addr, and command_addr to standard offsets
4753 * relative to cmd_addr.
4755 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
4758 void ata_std_ports(struct ata_ioports
*ioaddr
)
4760 ioaddr
->data_addr
= ioaddr
->cmd_addr
+ ATA_REG_DATA
;
4761 ioaddr
->error_addr
= ioaddr
->cmd_addr
+ ATA_REG_ERR
;
4762 ioaddr
->feature_addr
= ioaddr
->cmd_addr
+ ATA_REG_FEATURE
;
4763 ioaddr
->nsect_addr
= ioaddr
->cmd_addr
+ ATA_REG_NSECT
;
4764 ioaddr
->lbal_addr
= ioaddr
->cmd_addr
+ ATA_REG_LBAL
;
4765 ioaddr
->lbam_addr
= ioaddr
->cmd_addr
+ ATA_REG_LBAM
;
4766 ioaddr
->lbah_addr
= ioaddr
->cmd_addr
+ ATA_REG_LBAH
;
4767 ioaddr
->device_addr
= ioaddr
->cmd_addr
+ ATA_REG_DEVICE
;
4768 ioaddr
->status_addr
= ioaddr
->cmd_addr
+ ATA_REG_STATUS
;
4769 ioaddr
->command_addr
= ioaddr
->cmd_addr
+ ATA_REG_CMD
;
4775 void ata_pci_host_stop (struct ata_host_set
*host_set
)
4777 struct pci_dev
*pdev
= to_pci_dev(host_set
->dev
);
4779 pci_iounmap(pdev
, host_set
->mmio_base
);
4783 * ata_pci_remove_one - PCI layer callback for device removal
4784 * @pdev: PCI device that was removed
4786 * PCI layer indicates to libata via this hook that
4787 * hot-unplug or module unload event has occurred.
4788 * Handle this by unregistering all objects associated
4789 * with this PCI device. Free those objects. Then finally
4790 * release PCI resources and disable device.
4793 * Inherited from PCI layer (may sleep).
4796 void ata_pci_remove_one (struct pci_dev
*pdev
)
4798 struct device
*dev
= pci_dev_to_dev(pdev
);
4799 struct ata_host_set
*host_set
= dev_get_drvdata(dev
);
4801 ata_host_set_remove(host_set
);
4802 pci_release_regions(pdev
);
4803 pci_disable_device(pdev
);
4804 dev_set_drvdata(dev
, NULL
);
4807 /* move to PCI subsystem */
4808 int pci_test_config_bits(struct pci_dev
*pdev
, const struct pci_bits
*bits
)
4810 unsigned long tmp
= 0;
4812 switch (bits
->width
) {
4815 pci_read_config_byte(pdev
, bits
->reg
, &tmp8
);
4821 pci_read_config_word(pdev
, bits
->reg
, &tmp16
);
4827 pci_read_config_dword(pdev
, bits
->reg
, &tmp32
);
4838 return (tmp
== bits
->val
) ? 1 : 0;
4841 int ata_pci_device_suspend(struct pci_dev
*pdev
, pm_message_t state
)
4843 pci_save_state(pdev
);
4844 pci_disable_device(pdev
);
4845 pci_set_power_state(pdev
, PCI_D3hot
);
4849 int ata_pci_device_resume(struct pci_dev
*pdev
)
4851 pci_set_power_state(pdev
, PCI_D0
);
4852 pci_restore_state(pdev
);
4853 pci_enable_device(pdev
);
4854 pci_set_master(pdev
);
4857 #endif /* CONFIG_PCI */
4860 static int __init
ata_init(void)
4862 ata_wq
= create_workqueue("ata");
4866 printk(KERN_DEBUG
"libata version " DRV_VERSION
" loaded.\n");
4870 static void __exit
ata_exit(void)
4872 destroy_workqueue(ata_wq
);
4875 module_init(ata_init
);
4876 module_exit(ata_exit
);
4878 static unsigned long ratelimit_time
;
4879 static spinlock_t ata_ratelimit_lock
= SPIN_LOCK_UNLOCKED
;
4881 int ata_ratelimit(void)
4884 unsigned long flags
;
4886 spin_lock_irqsave(&ata_ratelimit_lock
, flags
);
4888 if (time_after(jiffies
, ratelimit_time
)) {
4890 ratelimit_time
= jiffies
+ (HZ
/5);
4894 spin_unlock_irqrestore(&ata_ratelimit_lock
, flags
);
4900 * libata is essentially a library of internal helper functions for
4901 * low-level ATA host controller drivers. As such, the API/ABI is
4902 * likely to change as new drivers are added and updated.
4903 * Do not depend on ABI/API stability.
4906 EXPORT_SYMBOL_GPL(ata_std_bios_param
);
4907 EXPORT_SYMBOL_GPL(ata_std_ports
);
4908 EXPORT_SYMBOL_GPL(ata_device_add
);
4909 EXPORT_SYMBOL_GPL(ata_host_set_remove
);
4910 EXPORT_SYMBOL_GPL(ata_sg_init
);
4911 EXPORT_SYMBOL_GPL(ata_sg_init_one
);
4912 EXPORT_SYMBOL_GPL(__ata_qc_complete
);
4913 EXPORT_SYMBOL_GPL(ata_qc_issue_prot
);
4914 EXPORT_SYMBOL_GPL(ata_eng_timeout
);
4915 EXPORT_SYMBOL_GPL(ata_tf_load
);
4916 EXPORT_SYMBOL_GPL(ata_tf_read
);
4917 EXPORT_SYMBOL_GPL(ata_noop_dev_select
);
4918 EXPORT_SYMBOL_GPL(ata_std_dev_select
);
4919 EXPORT_SYMBOL_GPL(ata_tf_to_fis
);
4920 EXPORT_SYMBOL_GPL(ata_tf_from_fis
);
4921 EXPORT_SYMBOL_GPL(ata_check_status
);
4922 EXPORT_SYMBOL_GPL(ata_altstatus
);
4923 EXPORT_SYMBOL_GPL(ata_exec_command
);
4924 EXPORT_SYMBOL_GPL(ata_port_start
);
4925 EXPORT_SYMBOL_GPL(ata_port_stop
);
4926 EXPORT_SYMBOL_GPL(ata_host_stop
);
4927 EXPORT_SYMBOL_GPL(ata_interrupt
);
4928 EXPORT_SYMBOL_GPL(ata_qc_prep
);
4929 EXPORT_SYMBOL_GPL(ata_noop_qc_prep
);
4930 EXPORT_SYMBOL_GPL(ata_bmdma_setup
);
4931 EXPORT_SYMBOL_GPL(ata_bmdma_start
);
4932 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear
);
4933 EXPORT_SYMBOL_GPL(ata_bmdma_status
);
4934 EXPORT_SYMBOL_GPL(ata_bmdma_stop
);
4935 EXPORT_SYMBOL_GPL(ata_port_probe
);
4936 EXPORT_SYMBOL_GPL(sata_phy_reset
);
4937 EXPORT_SYMBOL_GPL(__sata_phy_reset
);
4938 EXPORT_SYMBOL_GPL(ata_bus_reset
);
4939 EXPORT_SYMBOL_GPL(ata_std_probeinit
);
4940 EXPORT_SYMBOL_GPL(ata_std_softreset
);
4941 EXPORT_SYMBOL_GPL(sata_std_hardreset
);
4942 EXPORT_SYMBOL_GPL(ata_std_postreset
);
4943 EXPORT_SYMBOL_GPL(ata_std_probe_reset
);
4944 EXPORT_SYMBOL_GPL(ata_drive_probe_reset
);
4945 EXPORT_SYMBOL_GPL(ata_dev_revalidate
);
4946 EXPORT_SYMBOL_GPL(ata_dev_classify
);
4947 EXPORT_SYMBOL_GPL(ata_dev_pair
);
4948 EXPORT_SYMBOL_GPL(ata_port_disable
);
4949 EXPORT_SYMBOL_GPL(ata_ratelimit
);
4950 EXPORT_SYMBOL_GPL(ata_busy_sleep
);
4951 EXPORT_SYMBOL_GPL(ata_port_queue_task
);
4952 EXPORT_SYMBOL_GPL(ata_scsi_ioctl
);
4953 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd
);
4954 EXPORT_SYMBOL_GPL(ata_scsi_slave_config
);
4955 EXPORT_SYMBOL_GPL(ata_scsi_release
);
4956 EXPORT_SYMBOL_GPL(ata_host_intr
);
4957 EXPORT_SYMBOL_GPL(ata_id_string
);
4958 EXPORT_SYMBOL_GPL(ata_id_c_string
);
4959 EXPORT_SYMBOL_GPL(ata_scsi_simulate
);
4960 EXPORT_SYMBOL_GPL(ata_eh_qc_complete
);
4961 EXPORT_SYMBOL_GPL(ata_eh_qc_retry
);
4963 EXPORT_SYMBOL_GPL(ata_pio_need_iordy
);
4964 EXPORT_SYMBOL_GPL(ata_timing_compute
);
4965 EXPORT_SYMBOL_GPL(ata_timing_merge
);
4968 EXPORT_SYMBOL_GPL(pci_test_config_bits
);
4969 EXPORT_SYMBOL_GPL(ata_pci_host_stop
);
4970 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode
);
4971 EXPORT_SYMBOL_GPL(ata_pci_init_one
);
4972 EXPORT_SYMBOL_GPL(ata_pci_remove_one
);
4973 EXPORT_SYMBOL_GPL(ata_pci_device_suspend
);
4974 EXPORT_SYMBOL_GPL(ata_pci_device_resume
);
4975 EXPORT_SYMBOL_GPL(ata_pci_default_filter
);
4976 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex
);
4977 #endif /* CONFIG_PCI */
4979 EXPORT_SYMBOL_GPL(ata_device_suspend
);
4980 EXPORT_SYMBOL_GPL(ata_device_resume
);
4981 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend
);
4982 EXPORT_SYMBOL_GPL(ata_scsi_device_resume
);