xen: add p2m mfn_list_list
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / x86 / xen / mmu.c
blob4740cda3656304162d4936a0c4ce1b3a351aacd5
1 /*
2 * Xen mmu operations
4 * This file contains the various mmu fetch and update operations.
5 * The most important job they must perform is the mapping between the
6 * domain's pfn and the overall machine mfns.
8 * Xen allows guests to directly update the pagetable, in a controlled
9 * fashion. In other words, the guest modifies the same pagetable
10 * that the CPU actually uses, which eliminates the overhead of having
11 * a separate shadow pagetable.
13 * In order to allow this, it falls on the guest domain to map its
14 * notion of a "physical" pfn - which is just a domain-local linear
15 * address - into a real "machine address" which the CPU's MMU can
16 * use.
18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19 * inserted directly into the pagetable. When creating a new
20 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely,
21 * when reading the content back with __(pgd|pmd|pte)_val, it converts
22 * the mfn back into a pfn.
24 * The other constraint is that all pages which make up a pagetable
25 * must be mapped read-only in the guest. This prevents uncontrolled
26 * guest updates to the pagetable. Xen strictly enforces this, and
27 * will disallow any pagetable update which will end up mapping a
28 * pagetable page RW, and will disallow using any writable page as a
29 * pagetable.
31 * Naively, when loading %cr3 with the base of a new pagetable, Xen
32 * would need to validate the whole pagetable before going on.
33 * Naturally, this is quite slow. The solution is to "pin" a
34 * pagetable, which enforces all the constraints on the pagetable even
35 * when it is not actively in use. This menas that Xen can be assured
36 * that it is still valid when you do load it into %cr3, and doesn't
37 * need to revalidate it.
39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
41 #include <linux/sched.h>
42 #include <linux/highmem.h>
43 #include <linux/bug.h>
45 #include <asm/pgtable.h>
46 #include <asm/tlbflush.h>
47 #include <asm/mmu_context.h>
48 #include <asm/paravirt.h>
50 #include <asm/xen/hypercall.h>
51 #include <asm/xen/hypervisor.h>
53 #include <xen/page.h>
54 #include <xen/interface/xen.h>
56 #include "multicalls.h"
57 #include "mmu.h"
59 #define P2M_ENTRIES_PER_PAGE (PAGE_SIZE / sizeof(unsigned long))
60 #define TOP_ENTRIES (MAX_DOMAIN_PAGES / P2M_ENTRIES_PER_PAGE)
62 /* Placeholder for holes in the address space */
63 static unsigned long p2m_missing[P2M_ENTRIES_PER_PAGE]
64 __attribute__((section(".data.page_aligned"))) =
65 { [ 0 ... P2M_ENTRIES_PER_PAGE-1 ] = ~0UL };
67 /* Array of pointers to pages containing p2m entries */
68 static unsigned long *p2m_top[TOP_ENTRIES]
69 __attribute__((section(".data.page_aligned"))) =
70 { [ 0 ... TOP_ENTRIES - 1] = &p2m_missing[0] };
72 /* Arrays of p2m arrays expressed in mfns used for save/restore */
73 static unsigned long p2m_top_mfn[TOP_ENTRIES]
74 __attribute__((section(".bss.page_aligned")));
76 static unsigned long p2m_top_mfn_list[TOP_ENTRIES / P2M_ENTRIES_PER_PAGE]
77 __attribute__((section(".bss.page_aligned")));
79 static inline unsigned p2m_top_index(unsigned long pfn)
81 BUG_ON(pfn >= MAX_DOMAIN_PAGES);
82 return pfn / P2M_ENTRIES_PER_PAGE;
85 static inline unsigned p2m_index(unsigned long pfn)
87 return pfn % P2M_ENTRIES_PER_PAGE;
90 /* Build the parallel p2m_top_mfn structures */
91 void xen_setup_mfn_list_list(void)
93 unsigned pfn, idx;
95 for(pfn = 0; pfn < MAX_DOMAIN_PAGES; pfn += P2M_ENTRIES_PER_PAGE) {
96 unsigned topidx = p2m_top_index(pfn);
98 p2m_top_mfn[topidx] = virt_to_mfn(p2m_top[topidx]);
101 for(idx = 0; idx < ARRAY_SIZE(p2m_top_mfn_list); idx++) {
102 unsigned topidx = idx * P2M_ENTRIES_PER_PAGE;
103 p2m_top_mfn_list[idx] = virt_to_mfn(&p2m_top_mfn[topidx]);
106 BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
108 HYPERVISOR_shared_info->arch.pfn_to_mfn_frame_list_list =
109 virt_to_mfn(p2m_top_mfn_list);
110 HYPERVISOR_shared_info->arch.max_pfn = xen_start_info->nr_pages;
113 /* Set up p2m_top to point to the domain-builder provided p2m pages */
114 void __init xen_build_dynamic_phys_to_machine(void)
116 unsigned long *mfn_list = (unsigned long *)xen_start_info->mfn_list;
117 unsigned long max_pfn = min(MAX_DOMAIN_PAGES, xen_start_info->nr_pages);
118 unsigned pfn;
120 for(pfn = 0; pfn < max_pfn; pfn += P2M_ENTRIES_PER_PAGE) {
121 unsigned topidx = p2m_top_index(pfn);
123 p2m_top[topidx] = &mfn_list[pfn];
127 unsigned long get_phys_to_machine(unsigned long pfn)
129 unsigned topidx, idx;
131 if (unlikely(pfn >= MAX_DOMAIN_PAGES))
132 return INVALID_P2M_ENTRY;
134 topidx = p2m_top_index(pfn);
135 idx = p2m_index(pfn);
136 return p2m_top[topidx][idx];
139 static void alloc_p2m(unsigned long **pp, unsigned long *mfnp)
141 unsigned long *p;
142 unsigned i;
144 p = (void *)__get_free_page(GFP_KERNEL | __GFP_NOFAIL);
145 BUG_ON(p == NULL);
147 for(i = 0; i < P2M_ENTRIES_PER_PAGE; i++)
148 p[i] = INVALID_P2M_ENTRY;
150 if (cmpxchg(pp, p2m_missing, p) != p2m_missing)
151 free_page((unsigned long)p);
152 else
153 *mfnp = virt_to_mfn(p);
156 void set_phys_to_machine(unsigned long pfn, unsigned long mfn)
158 unsigned topidx, idx;
160 if (unlikely(xen_feature(XENFEAT_auto_translated_physmap))) {
161 BUG_ON(pfn != mfn && mfn != INVALID_P2M_ENTRY);
162 return;
165 if (unlikely(pfn >= MAX_DOMAIN_PAGES)) {
166 BUG_ON(mfn != INVALID_P2M_ENTRY);
167 return;
170 topidx = p2m_top_index(pfn);
171 if (p2m_top[topidx] == p2m_missing) {
172 /* no need to allocate a page to store an invalid entry */
173 if (mfn == INVALID_P2M_ENTRY)
174 return;
175 alloc_p2m(&p2m_top[topidx], &p2m_top_mfn[topidx]);
178 idx = p2m_index(pfn);
179 p2m_top[topidx][idx] = mfn;
182 xmaddr_t arbitrary_virt_to_machine(unsigned long address)
184 unsigned int level;
185 pte_t *pte = lookup_address(address, &level);
186 unsigned offset = address & PAGE_MASK;
188 BUG_ON(pte == NULL);
190 return XMADDR((pte_mfn(*pte) << PAGE_SHIFT) + offset);
193 void make_lowmem_page_readonly(void *vaddr)
195 pte_t *pte, ptev;
196 unsigned long address = (unsigned long)vaddr;
197 unsigned int level;
199 pte = lookup_address(address, &level);
200 BUG_ON(pte == NULL);
202 ptev = pte_wrprotect(*pte);
204 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
205 BUG();
208 void make_lowmem_page_readwrite(void *vaddr)
210 pte_t *pte, ptev;
211 unsigned long address = (unsigned long)vaddr;
212 unsigned int level;
214 pte = lookup_address(address, &level);
215 BUG_ON(pte == NULL);
217 ptev = pte_mkwrite(*pte);
219 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
220 BUG();
224 void xen_set_pmd(pmd_t *ptr, pmd_t val)
226 struct multicall_space mcs;
227 struct mmu_update *u;
229 preempt_disable();
231 mcs = xen_mc_entry(sizeof(*u));
232 u = mcs.args;
233 u->ptr = virt_to_machine(ptr).maddr;
234 u->val = pmd_val_ma(val);
235 MULTI_mmu_update(mcs.mc, u, 1, NULL, DOMID_SELF);
237 xen_mc_issue(PARAVIRT_LAZY_MMU);
239 preempt_enable();
243 * Associate a virtual page frame with a given physical page frame
244 * and protection flags for that frame.
246 void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
248 pgd_t *pgd;
249 pud_t *pud;
250 pmd_t *pmd;
251 pte_t *pte;
253 pgd = swapper_pg_dir + pgd_index(vaddr);
254 if (pgd_none(*pgd)) {
255 BUG();
256 return;
258 pud = pud_offset(pgd, vaddr);
259 if (pud_none(*pud)) {
260 BUG();
261 return;
263 pmd = pmd_offset(pud, vaddr);
264 if (pmd_none(*pmd)) {
265 BUG();
266 return;
268 pte = pte_offset_kernel(pmd, vaddr);
269 /* <mfn,flags> stored as-is, to permit clearing entries */
270 xen_set_pte(pte, mfn_pte(mfn, flags));
273 * It's enough to flush this one mapping.
274 * (PGE mappings get flushed as well)
276 __flush_tlb_one(vaddr);
279 void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
280 pte_t *ptep, pte_t pteval)
282 /* updates to init_mm may be done without lock */
283 if (mm == &init_mm)
284 preempt_disable();
286 if (mm == current->mm || mm == &init_mm) {
287 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU) {
288 struct multicall_space mcs;
289 mcs = xen_mc_entry(0);
291 MULTI_update_va_mapping(mcs.mc, addr, pteval, 0);
292 xen_mc_issue(PARAVIRT_LAZY_MMU);
293 goto out;
294 } else
295 if (HYPERVISOR_update_va_mapping(addr, pteval, 0) == 0)
296 goto out;
298 xen_set_pte(ptep, pteval);
300 out:
301 if (mm == &init_mm)
302 preempt_enable();
305 pteval_t xen_pte_val(pte_t pte)
307 pteval_t ret = pte.pte;
309 if (ret & _PAGE_PRESENT)
310 ret = machine_to_phys(XMADDR(ret)).paddr | _PAGE_PRESENT;
312 return ret;
315 pgdval_t xen_pgd_val(pgd_t pgd)
317 pgdval_t ret = pgd.pgd;
318 if (ret & _PAGE_PRESENT)
319 ret = machine_to_phys(XMADDR(ret)).paddr | _PAGE_PRESENT;
320 return ret;
323 pte_t xen_make_pte(pteval_t pte)
325 if (pte & _PAGE_PRESENT) {
326 pte = phys_to_machine(XPADDR(pte)).maddr;
327 pte &= ~(_PAGE_PCD | _PAGE_PWT);
330 return (pte_t){ .pte = pte };
333 pgd_t xen_make_pgd(pgdval_t pgd)
335 if (pgd & _PAGE_PRESENT)
336 pgd = phys_to_machine(XPADDR(pgd)).maddr;
338 return (pgd_t){ pgd };
341 pmdval_t xen_pmd_val(pmd_t pmd)
343 pmdval_t ret = native_pmd_val(pmd);
344 if (ret & _PAGE_PRESENT)
345 ret = machine_to_phys(XMADDR(ret)).paddr | _PAGE_PRESENT;
346 return ret;
349 void xen_set_pud(pud_t *ptr, pud_t val)
351 struct multicall_space mcs;
352 struct mmu_update *u;
354 preempt_disable();
356 mcs = xen_mc_entry(sizeof(*u));
357 u = mcs.args;
358 u->ptr = virt_to_machine(ptr).maddr;
359 u->val = pud_val_ma(val);
360 MULTI_mmu_update(mcs.mc, u, 1, NULL, DOMID_SELF);
362 xen_mc_issue(PARAVIRT_LAZY_MMU);
364 preempt_enable();
367 void xen_set_pte(pte_t *ptep, pte_t pte)
369 ptep->pte_high = pte.pte_high;
370 smp_wmb();
371 ptep->pte_low = pte.pte_low;
374 void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
376 set_64bit((u64 *)ptep, pte_val_ma(pte));
379 void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
381 ptep->pte_low = 0;
382 smp_wmb(); /* make sure low gets written first */
383 ptep->pte_high = 0;
386 void xen_pmd_clear(pmd_t *pmdp)
388 xen_set_pmd(pmdp, __pmd(0));
391 pmd_t xen_make_pmd(pmdval_t pmd)
393 if (pmd & _PAGE_PRESENT)
394 pmd = phys_to_machine(XPADDR(pmd)).maddr;
396 return native_make_pmd(pmd);
400 (Yet another) pagetable walker. This one is intended for pinning a
401 pagetable. This means that it walks a pagetable and calls the
402 callback function on each page it finds making up the page table,
403 at every level. It walks the entire pagetable, but it only bothers
404 pinning pte pages which are below pte_limit. In the normal case
405 this will be TASK_SIZE, but at boot we need to pin up to
406 FIXADDR_TOP. But the important bit is that we don't pin beyond
407 there, because then we start getting into Xen's ptes.
409 static int pgd_walk(pgd_t *pgd_base, int (*func)(struct page *, enum pt_level),
410 unsigned long limit)
412 pgd_t *pgd = pgd_base;
413 int flush = 0;
414 unsigned long addr = 0;
415 unsigned long pgd_next;
417 BUG_ON(limit > FIXADDR_TOP);
419 if (xen_feature(XENFEAT_auto_translated_physmap))
420 return 0;
422 for (; addr != FIXADDR_TOP; pgd++, addr = pgd_next) {
423 pud_t *pud;
424 unsigned long pud_limit, pud_next;
426 pgd_next = pud_limit = pgd_addr_end(addr, FIXADDR_TOP);
428 if (!pgd_val(*pgd))
429 continue;
431 pud = pud_offset(pgd, 0);
433 if (PTRS_PER_PUD > 1) /* not folded */
434 flush |= (*func)(virt_to_page(pud), PT_PUD);
436 for (; addr != pud_limit; pud++, addr = pud_next) {
437 pmd_t *pmd;
438 unsigned long pmd_limit;
440 pud_next = pud_addr_end(addr, pud_limit);
442 if (pud_next < limit)
443 pmd_limit = pud_next;
444 else
445 pmd_limit = limit;
447 if (pud_none(*pud))
448 continue;
450 pmd = pmd_offset(pud, 0);
452 if (PTRS_PER_PMD > 1) /* not folded */
453 flush |= (*func)(virt_to_page(pmd), PT_PMD);
455 for (; addr != pmd_limit; pmd++) {
456 addr += (PAGE_SIZE * PTRS_PER_PTE);
457 if ((pmd_limit-1) < (addr-1)) {
458 addr = pmd_limit;
459 break;
462 if (pmd_none(*pmd))
463 continue;
465 flush |= (*func)(pmd_page(*pmd), PT_PTE);
470 flush |= (*func)(virt_to_page(pgd_base), PT_PGD);
472 return flush;
475 static spinlock_t *lock_pte(struct page *page)
477 spinlock_t *ptl = NULL;
479 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
480 ptl = __pte_lockptr(page);
481 spin_lock(ptl);
482 #endif
484 return ptl;
487 static void do_unlock(void *v)
489 spinlock_t *ptl = v;
490 spin_unlock(ptl);
493 static void xen_do_pin(unsigned level, unsigned long pfn)
495 struct mmuext_op *op;
496 struct multicall_space mcs;
498 mcs = __xen_mc_entry(sizeof(*op));
499 op = mcs.args;
500 op->cmd = level;
501 op->arg1.mfn = pfn_to_mfn(pfn);
502 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
505 static int pin_page(struct page *page, enum pt_level level)
507 unsigned pgfl = TestSetPagePinned(page);
508 int flush;
510 if (pgfl)
511 flush = 0; /* already pinned */
512 else if (PageHighMem(page))
513 /* kmaps need flushing if we found an unpinned
514 highpage */
515 flush = 1;
516 else {
517 void *pt = lowmem_page_address(page);
518 unsigned long pfn = page_to_pfn(page);
519 struct multicall_space mcs = __xen_mc_entry(0);
520 spinlock_t *ptl;
522 flush = 0;
524 ptl = NULL;
525 if (level == PT_PTE)
526 ptl = lock_pte(page);
528 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
529 pfn_pte(pfn, PAGE_KERNEL_RO),
530 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
532 if (level == PT_PTE)
533 xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
535 if (ptl) {
536 /* Queue a deferred unlock for when this batch
537 is completed. */
538 xen_mc_callback(do_unlock, ptl);
542 return flush;
545 /* This is called just after a mm has been created, but it has not
546 been used yet. We need to make sure that its pagetable is all
547 read-only, and can be pinned. */
548 void xen_pgd_pin(pgd_t *pgd)
550 xen_mc_batch();
552 if (pgd_walk(pgd, pin_page, TASK_SIZE)) {
553 /* re-enable interrupts for kmap_flush_unused */
554 xen_mc_issue(0);
555 kmap_flush_unused();
556 xen_mc_batch();
559 xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
560 xen_mc_issue(0);
563 /* The init_mm pagetable is really pinned as soon as its created, but
564 that's before we have page structures to store the bits. So do all
565 the book-keeping now. */
566 static __init int mark_pinned(struct page *page, enum pt_level level)
568 SetPagePinned(page);
569 return 0;
572 void __init xen_mark_init_mm_pinned(void)
574 pgd_walk(init_mm.pgd, mark_pinned, FIXADDR_TOP);
577 static int unpin_page(struct page *page, enum pt_level level)
579 unsigned pgfl = TestClearPagePinned(page);
581 if (pgfl && !PageHighMem(page)) {
582 void *pt = lowmem_page_address(page);
583 unsigned long pfn = page_to_pfn(page);
584 spinlock_t *ptl = NULL;
585 struct multicall_space mcs;
587 if (level == PT_PTE) {
588 ptl = lock_pte(page);
590 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
593 mcs = __xen_mc_entry(0);
595 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
596 pfn_pte(pfn, PAGE_KERNEL),
597 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
599 if (ptl) {
600 /* unlock when batch completed */
601 xen_mc_callback(do_unlock, ptl);
605 return 0; /* never need to flush on unpin */
608 /* Release a pagetables pages back as normal RW */
609 static void xen_pgd_unpin(pgd_t *pgd)
611 xen_mc_batch();
613 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
615 pgd_walk(pgd, unpin_page, TASK_SIZE);
617 xen_mc_issue(0);
620 void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
622 spin_lock(&next->page_table_lock);
623 xen_pgd_pin(next->pgd);
624 spin_unlock(&next->page_table_lock);
627 void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
629 spin_lock(&mm->page_table_lock);
630 xen_pgd_pin(mm->pgd);
631 spin_unlock(&mm->page_table_lock);
635 #ifdef CONFIG_SMP
636 /* Another cpu may still have their %cr3 pointing at the pagetable, so
637 we need to repoint it somewhere else before we can unpin it. */
638 static void drop_other_mm_ref(void *info)
640 struct mm_struct *mm = info;
642 if (__get_cpu_var(cpu_tlbstate).active_mm == mm)
643 leave_mm(smp_processor_id());
645 /* If this cpu still has a stale cr3 reference, then make sure
646 it has been flushed. */
647 if (x86_read_percpu(xen_current_cr3) == __pa(mm->pgd)) {
648 load_cr3(swapper_pg_dir);
649 arch_flush_lazy_cpu_mode();
653 static void drop_mm_ref(struct mm_struct *mm)
655 cpumask_t mask;
656 unsigned cpu;
658 if (current->active_mm == mm) {
659 if (current->mm == mm)
660 load_cr3(swapper_pg_dir);
661 else
662 leave_mm(smp_processor_id());
663 arch_flush_lazy_cpu_mode();
666 /* Get the "official" set of cpus referring to our pagetable. */
667 mask = mm->cpu_vm_mask;
669 /* It's possible that a vcpu may have a stale reference to our
670 cr3, because its in lazy mode, and it hasn't yet flushed
671 its set of pending hypercalls yet. In this case, we can
672 look at its actual current cr3 value, and force it to flush
673 if needed. */
674 for_each_online_cpu(cpu) {
675 if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
676 cpu_set(cpu, mask);
679 if (!cpus_empty(mask))
680 xen_smp_call_function_mask(mask, drop_other_mm_ref, mm, 1);
682 #else
683 static void drop_mm_ref(struct mm_struct *mm)
685 if (current->active_mm == mm)
686 load_cr3(swapper_pg_dir);
688 #endif
691 * While a process runs, Xen pins its pagetables, which means that the
692 * hypervisor forces it to be read-only, and it controls all updates
693 * to it. This means that all pagetable updates have to go via the
694 * hypervisor, which is moderately expensive.
696 * Since we're pulling the pagetable down, we switch to use init_mm,
697 * unpin old process pagetable and mark it all read-write, which
698 * allows further operations on it to be simple memory accesses.
700 * The only subtle point is that another CPU may be still using the
701 * pagetable because of lazy tlb flushing. This means we need need to
702 * switch all CPUs off this pagetable before we can unpin it.
704 void xen_exit_mmap(struct mm_struct *mm)
706 get_cpu(); /* make sure we don't move around */
707 drop_mm_ref(mm);
708 put_cpu();
710 spin_lock(&mm->page_table_lock);
712 /* pgd may not be pinned in the error exit path of execve */
713 if (PagePinned(virt_to_page(mm->pgd)))
714 xen_pgd_unpin(mm->pgd);
716 spin_unlock(&mm->page_table_lock);