2 * Ram backed block device driver.
4 * Copyright (C) 2007 Nick Piggin
5 * Copyright (C) 2007 Novell Inc.
7 * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright
8 * of their respective owners.
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/moduleparam.h>
14 #include <linux/major.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/highmem.h>
18 #include <linux/mutex.h>
19 #include <linux/radix-tree.h>
21 #include <linux/slab.h>
23 #include <asm/uaccess.h>
25 #define SECTOR_SHIFT 9
26 #define PAGE_SECTORS_SHIFT (PAGE_SHIFT - SECTOR_SHIFT)
27 #define PAGE_SECTORS (1 << PAGE_SECTORS_SHIFT)
30 * Each block ramdisk device has a radix_tree brd_pages of pages that stores
31 * the pages containing the block device's contents. A brd page's ->index is
32 * its offset in PAGE_SIZE units. This is similar to, but in no way connected
33 * with, the kernel's pagecache or buffer cache (which sit above our block
39 struct request_queue
*brd_queue
;
40 struct gendisk
*brd_disk
;
41 struct list_head brd_list
;
44 * Backing store of pages and lock to protect it. This is the contents
45 * of the block device.
48 struct radix_tree_root brd_pages
;
52 * Look up and return a brd's page for a given sector.
54 static DEFINE_MUTEX(brd_mutex
);
55 static struct page
*brd_lookup_page(struct brd_device
*brd
, sector_t sector
)
61 * The page lifetime is protected by the fact that we have opened the
62 * device node -- brd pages will never be deleted under us, so we
63 * don't need any further locking or refcounting.
65 * This is strictly true for the radix-tree nodes as well (ie. we
66 * don't actually need the rcu_read_lock()), however that is not a
67 * documented feature of the radix-tree API so it is better to be
68 * safe here (we don't have total exclusion from radix tree updates
69 * here, only deletes).
72 idx
= sector
>> PAGE_SECTORS_SHIFT
; /* sector to page index */
73 page
= radix_tree_lookup(&brd
->brd_pages
, idx
);
76 BUG_ON(page
&& page
->index
!= idx
);
82 * Look up and return a brd's page for a given sector.
83 * If one does not exist, allocate an empty page, and insert that. Then
86 static struct page
*brd_insert_page(struct brd_device
*brd
, sector_t sector
)
92 page
= brd_lookup_page(brd
, sector
);
97 * Must use NOIO because we don't want to recurse back into the
98 * block or filesystem layers from page reclaim.
100 * Cannot support XIP and highmem, because our ->direct_access
101 * routine for XIP must return memory that is always addressable.
102 * If XIP was reworked to use pfns and kmap throughout, this
103 * restriction might be able to be lifted.
105 gfp_flags
= GFP_NOIO
| __GFP_ZERO
;
106 #ifndef CONFIG_BLK_DEV_XIP
107 gfp_flags
|= __GFP_HIGHMEM
;
109 page
= alloc_page(gfp_flags
);
113 if (radix_tree_preload(GFP_NOIO
)) {
118 spin_lock(&brd
->brd_lock
);
119 idx
= sector
>> PAGE_SECTORS_SHIFT
;
120 if (radix_tree_insert(&brd
->brd_pages
, idx
, page
)) {
122 page
= radix_tree_lookup(&brd
->brd_pages
, idx
);
124 BUG_ON(page
->index
!= idx
);
127 spin_unlock(&brd
->brd_lock
);
129 radix_tree_preload_end();
134 static void brd_free_page(struct brd_device
*brd
, sector_t sector
)
139 spin_lock(&brd
->brd_lock
);
140 idx
= sector
>> PAGE_SECTORS_SHIFT
;
141 page
= radix_tree_delete(&brd
->brd_pages
, idx
);
142 spin_unlock(&brd
->brd_lock
);
147 static void brd_zero_page(struct brd_device
*brd
, sector_t sector
)
151 page
= brd_lookup_page(brd
, sector
);
153 clear_highpage(page
);
157 * Free all backing store pages and radix tree. This must only be called when
158 * there are no other users of the device.
160 #define FREE_BATCH 16
161 static void brd_free_pages(struct brd_device
*brd
)
163 unsigned long pos
= 0;
164 struct page
*pages
[FREE_BATCH
];
170 nr_pages
= radix_tree_gang_lookup(&brd
->brd_pages
,
171 (void **)pages
, pos
, FREE_BATCH
);
173 for (i
= 0; i
< nr_pages
; i
++) {
176 BUG_ON(pages
[i
]->index
< pos
);
177 pos
= pages
[i
]->index
;
178 ret
= radix_tree_delete(&brd
->brd_pages
, pos
);
179 BUG_ON(!ret
|| ret
!= pages
[i
]);
180 __free_page(pages
[i
]);
186 * This assumes radix_tree_gang_lookup always returns as
187 * many pages as possible. If the radix-tree code changes,
188 * so will this have to.
190 } while (nr_pages
== FREE_BATCH
);
194 * copy_to_brd_setup must be called before copy_to_brd. It may sleep.
196 static int copy_to_brd_setup(struct brd_device
*brd
, sector_t sector
, size_t n
)
198 unsigned int offset
= (sector
& (PAGE_SECTORS
-1)) << SECTOR_SHIFT
;
201 copy
= min_t(size_t, n
, PAGE_SIZE
- offset
);
202 if (!brd_insert_page(brd
, sector
))
205 sector
+= copy
>> SECTOR_SHIFT
;
206 if (!brd_insert_page(brd
, sector
))
212 static void discard_from_brd(struct brd_device
*brd
,
213 sector_t sector
, size_t n
)
215 while (n
>= PAGE_SIZE
) {
217 * Don't want to actually discard pages here because
218 * re-allocating the pages can result in writeback
219 * deadlocks under heavy load.
222 brd_free_page(brd
, sector
);
224 brd_zero_page(brd
, sector
);
225 sector
+= PAGE_SIZE
>> SECTOR_SHIFT
;
231 * Copy n bytes from src to the brd starting at sector. Does not sleep.
233 static void copy_to_brd(struct brd_device
*brd
, const void *src
,
234 sector_t sector
, size_t n
)
238 unsigned int offset
= (sector
& (PAGE_SECTORS
-1)) << SECTOR_SHIFT
;
241 copy
= min_t(size_t, n
, PAGE_SIZE
- offset
);
242 page
= brd_lookup_page(brd
, sector
);
245 dst
= kmap_atomic(page
, KM_USER1
);
246 memcpy(dst
+ offset
, src
, copy
);
247 kunmap_atomic(dst
, KM_USER1
);
251 sector
+= copy
>> SECTOR_SHIFT
;
253 page
= brd_lookup_page(brd
, sector
);
256 dst
= kmap_atomic(page
, KM_USER1
);
257 memcpy(dst
, src
, copy
);
258 kunmap_atomic(dst
, KM_USER1
);
263 * Copy n bytes to dst from the brd starting at sector. Does not sleep.
265 static void copy_from_brd(void *dst
, struct brd_device
*brd
,
266 sector_t sector
, size_t n
)
270 unsigned int offset
= (sector
& (PAGE_SECTORS
-1)) << SECTOR_SHIFT
;
273 copy
= min_t(size_t, n
, PAGE_SIZE
- offset
);
274 page
= brd_lookup_page(brd
, sector
);
276 src
= kmap_atomic(page
, KM_USER1
);
277 memcpy(dst
, src
+ offset
, copy
);
278 kunmap_atomic(src
, KM_USER1
);
280 memset(dst
, 0, copy
);
284 sector
+= copy
>> SECTOR_SHIFT
;
286 page
= brd_lookup_page(brd
, sector
);
288 src
= kmap_atomic(page
, KM_USER1
);
289 memcpy(dst
, src
, copy
);
290 kunmap_atomic(src
, KM_USER1
);
292 memset(dst
, 0, copy
);
297 * Process a single bvec of a bio.
299 static int brd_do_bvec(struct brd_device
*brd
, struct page
*page
,
300 unsigned int len
, unsigned int off
, int rw
,
307 err
= copy_to_brd_setup(brd
, sector
, len
);
312 mem
= kmap_atomic(page
, KM_USER0
);
314 copy_from_brd(mem
+ off
, brd
, sector
, len
);
315 flush_dcache_page(page
);
317 flush_dcache_page(page
);
318 copy_to_brd(brd
, mem
+ off
, sector
, len
);
320 kunmap_atomic(mem
, KM_USER0
);
326 static void brd_make_request(struct request_queue
*q
, struct bio
*bio
)
328 struct block_device
*bdev
= bio
->bi_bdev
;
329 struct brd_device
*brd
= bdev
->bd_disk
->private_data
;
331 struct bio_vec
*bvec
;
336 sector
= bio
->bi_sector
;
337 if (sector
+ (bio
->bi_size
>> SECTOR_SHIFT
) >
338 get_capacity(bdev
->bd_disk
))
341 if (unlikely(bio
->bi_rw
& REQ_DISCARD
)) {
343 discard_from_brd(brd
, sector
, bio
->bi_size
);
351 bio_for_each_segment(bvec
, bio
, i
) {
352 unsigned int len
= bvec
->bv_len
;
353 err
= brd_do_bvec(brd
, bvec
->bv_page
, len
,
354 bvec
->bv_offset
, rw
, sector
);
357 sector
+= len
>> SECTOR_SHIFT
;
364 #ifdef CONFIG_BLK_DEV_XIP
365 static int brd_direct_access(struct block_device
*bdev
, sector_t sector
,
366 void **kaddr
, unsigned long *pfn
)
368 struct brd_device
*brd
= bdev
->bd_disk
->private_data
;
373 if (sector
& (PAGE_SECTORS
-1))
375 if (sector
+ PAGE_SECTORS
> get_capacity(bdev
->bd_disk
))
377 page
= brd_insert_page(brd
, sector
);
380 *kaddr
= page_address(page
);
381 *pfn
= page_to_pfn(page
);
387 static int brd_ioctl(struct block_device
*bdev
, fmode_t mode
,
388 unsigned int cmd
, unsigned long arg
)
391 struct brd_device
*brd
= bdev
->bd_disk
->private_data
;
393 if (cmd
!= BLKFLSBUF
)
397 * ram device BLKFLSBUF has special semantics, we want to actually
398 * release and destroy the ramdisk data.
400 mutex_lock(&brd_mutex
);
401 mutex_lock(&bdev
->bd_mutex
);
403 if (bdev
->bd_openers
<= 1) {
405 * Kill the cache first, so it isn't written back to the
408 * Another thread might instantiate more buffercache here,
409 * but there is not much we can do to close that race.
415 mutex_unlock(&bdev
->bd_mutex
);
416 mutex_unlock(&brd_mutex
);
421 static const struct block_device_operations brd_fops
= {
422 .owner
= THIS_MODULE
,
424 #ifdef CONFIG_BLK_DEV_XIP
425 .direct_access
= brd_direct_access
,
430 * And now the modules code and kernel interface.
433 int rd_size
= CONFIG_BLK_DEV_RAM_SIZE
;
435 static int part_shift
;
436 module_param(rd_nr
, int, S_IRUGO
);
437 MODULE_PARM_DESC(rd_nr
, "Maximum number of brd devices");
438 module_param(rd_size
, int, S_IRUGO
);
439 MODULE_PARM_DESC(rd_size
, "Size of each RAM disk in kbytes.");
440 module_param(max_part
, int, S_IRUGO
);
441 MODULE_PARM_DESC(max_part
, "Maximum number of partitions per RAM disk");
442 MODULE_LICENSE("GPL");
443 MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR
);
447 /* Legacy boot options - nonmodular */
448 static int __init
ramdisk_size(char *str
)
450 rd_size
= simple_strtol(str
, NULL
, 0);
453 __setup("ramdisk_size=", ramdisk_size
);
457 * The device scheme is derived from loop.c. Keep them in synch where possible
458 * (should share code eventually).
460 static LIST_HEAD(brd_devices
);
461 static DEFINE_MUTEX(brd_devices_mutex
);
463 static struct brd_device
*brd_alloc(int i
)
465 struct brd_device
*brd
;
466 struct gendisk
*disk
;
468 brd
= kzalloc(sizeof(*brd
), GFP_KERNEL
);
472 spin_lock_init(&brd
->brd_lock
);
473 INIT_RADIX_TREE(&brd
->brd_pages
, GFP_ATOMIC
);
475 brd
->brd_queue
= blk_alloc_queue(GFP_KERNEL
);
478 blk_queue_make_request(brd
->brd_queue
, brd_make_request
);
479 blk_queue_max_hw_sectors(brd
->brd_queue
, 1024);
480 blk_queue_bounce_limit(brd
->brd_queue
, BLK_BOUNCE_ANY
);
482 brd
->brd_queue
->limits
.discard_granularity
= PAGE_SIZE
;
483 brd
->brd_queue
->limits
.max_discard_sectors
= UINT_MAX
;
484 brd
->brd_queue
->limits
.discard_zeroes_data
= 1;
485 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD
, brd
->brd_queue
);
487 disk
= brd
->brd_disk
= alloc_disk(1 << part_shift
);
490 disk
->major
= RAMDISK_MAJOR
;
491 disk
->first_minor
= i
<< part_shift
;
492 disk
->fops
= &brd_fops
;
493 disk
->private_data
= brd
;
494 disk
->queue
= brd
->brd_queue
;
495 disk
->flags
|= GENHD_FL_SUPPRESS_PARTITION_INFO
;
496 sprintf(disk
->disk_name
, "ram%d", i
);
497 set_capacity(disk
, rd_size
* 2);
502 blk_cleanup_queue(brd
->brd_queue
);
509 static void brd_free(struct brd_device
*brd
)
511 put_disk(brd
->brd_disk
);
512 blk_cleanup_queue(brd
->brd_queue
);
517 static struct brd_device
*brd_init_one(int i
)
519 struct brd_device
*brd
;
521 list_for_each_entry(brd
, &brd_devices
, brd_list
) {
522 if (brd
->brd_number
== i
)
528 add_disk(brd
->brd_disk
);
529 list_add_tail(&brd
->brd_list
, &brd_devices
);
535 static void brd_del_one(struct brd_device
*brd
)
537 list_del(&brd
->brd_list
);
538 del_gendisk(brd
->brd_disk
);
542 static struct kobject
*brd_probe(dev_t dev
, int *part
, void *data
)
544 struct brd_device
*brd
;
545 struct kobject
*kobj
;
547 mutex_lock(&brd_devices_mutex
);
548 brd
= brd_init_one(MINOR(dev
) >> part_shift
);
549 kobj
= brd
? get_disk(brd
->brd_disk
) : ERR_PTR(-ENOMEM
);
550 mutex_unlock(&brd_devices_mutex
);
556 static int __init
brd_init(void)
560 struct brd_device
*brd
, *next
;
563 * brd module now has a feature to instantiate underlying device
564 * structure on-demand, provided that there is an access dev node.
565 * However, this will not work well with user space tool that doesn't
566 * know about such "feature". In order to not break any existing
567 * tool, we do the following:
569 * (1) if rd_nr is specified, create that many upfront, and this
570 * also becomes a hard limit.
571 * (2) if rd_nr is not specified, create CONFIG_BLK_DEV_RAM_COUNT
572 * (default 16) rd device on module load, user can further
573 * extend brd device by create dev node themselves and have
574 * kernel automatically instantiate actual device on-demand.
579 part_shift
= fls(max_part
);
582 * Adjust max_part according to part_shift as it is exported
583 * to user space so that user can decide correct minor number
584 * if [s]he want to create more devices.
586 * Note that -1 is required because partition 0 is reserved
587 * for the whole disk.
589 max_part
= (1UL << part_shift
) - 1;
592 if ((1UL << part_shift
) > DISK_MAX_PARTS
)
595 if (rd_nr
> 1UL << (MINORBITS
- part_shift
))
600 range
= rd_nr
<< part_shift
;
602 nr
= CONFIG_BLK_DEV_RAM_COUNT
;
603 range
= 1UL << MINORBITS
;
606 if (register_blkdev(RAMDISK_MAJOR
, "ramdisk"))
609 for (i
= 0; i
< nr
; i
++) {
613 list_add_tail(&brd
->brd_list
, &brd_devices
);
616 /* point of no return */
618 list_for_each_entry(brd
, &brd_devices
, brd_list
)
619 add_disk(brd
->brd_disk
);
621 blk_register_region(MKDEV(RAMDISK_MAJOR
, 0), range
,
622 THIS_MODULE
, brd_probe
, NULL
, NULL
);
624 printk(KERN_INFO
"brd: module loaded\n");
628 list_for_each_entry_safe(brd
, next
, &brd_devices
, brd_list
) {
629 list_del(&brd
->brd_list
);
632 unregister_blkdev(RAMDISK_MAJOR
, "ramdisk");
637 static void __exit
brd_exit(void)
640 struct brd_device
*brd
, *next
;
642 range
= rd_nr
? rd_nr
<< part_shift
: 1UL << MINORBITS
;
644 list_for_each_entry_safe(brd
, next
, &brd_devices
, brd_list
)
647 blk_unregister_region(MKDEV(RAMDISK_MAJOR
, 0), range
);
648 unregister_blkdev(RAMDISK_MAJOR
, "ramdisk");
651 module_init(brd_init
);
652 module_exit(brd_exit
);