4 * Copyright (C) 1994-1999 Linus Torvalds
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/module.h>
13 #include <linux/compiler.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include <linux/mm_inline.h> /* for page_is_file_cache() */
40 * FIXME: remove all knowledge of the buffer layer from the core VM
42 #include <linux/buffer_head.h> /* for try_to_free_buffers */
47 * Shared mappings implemented 30.11.1994. It's not fully working yet,
50 * Shared mappings now work. 15.8.1995 Bruno.
52 * finished 'unifying' the page and buffer cache and SMP-threaded the
53 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
55 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
61 * ->i_mmap_lock (truncate_pagecache)
62 * ->private_lock (__free_pte->__set_page_dirty_buffers)
63 * ->swap_lock (exclusive_swap_page, others)
64 * ->mapping->tree_lock
67 * ->i_mmap_lock (truncate->unmap_mapping_range)
71 * ->page_table_lock or pte_lock (various, mainly in memory.c)
72 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
75 * ->lock_page (access_process_vm)
77 * ->i_mutex (generic_file_buffered_write)
78 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
81 * ->i_alloc_sem (various)
84 * ->sb_lock (fs/fs-writeback.c)
85 * ->mapping->tree_lock (__sync_single_inode)
88 * ->anon_vma.lock (vma_adjust)
91 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
93 * ->page_table_lock or pte_lock
94 * ->swap_lock (try_to_unmap_one)
95 * ->private_lock (try_to_unmap_one)
96 * ->tree_lock (try_to_unmap_one)
97 * ->zone.lru_lock (follow_page->mark_page_accessed)
98 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
99 * ->private_lock (page_remove_rmap->set_page_dirty)
100 * ->tree_lock (page_remove_rmap->set_page_dirty)
101 * ->inode_lock (page_remove_rmap->set_page_dirty)
102 * ->inode_lock (zap_pte_range->set_page_dirty)
103 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
106 * ->dcache_lock (proc_pid_lookup)
108 * (code doesn't rely on that order, so you could switch it around)
109 * ->tasklist_lock (memory_failure, collect_procs_ao)
114 * Remove a page from the page cache and free it. Caller has to make
115 * sure the page is locked and that nobody else uses it - or that usage
116 * is safe. The caller must hold the mapping's tree_lock.
118 void __remove_from_page_cache(struct page
*page
)
120 struct address_space
*mapping
= page
->mapping
;
122 radix_tree_delete(&mapping
->page_tree
, page
->index
);
123 page
->mapping
= NULL
;
125 __dec_zone_page_state(page
, NR_FILE_PAGES
);
126 if (PageSwapBacked(page
))
127 __dec_zone_page_state(page
, NR_SHMEM
);
128 BUG_ON(page_mapped(page
));
131 * Some filesystems seem to re-dirty the page even after
132 * the VM has canceled the dirty bit (eg ext3 journaling).
134 * Fix it up by doing a final dirty accounting check after
135 * having removed the page entirely.
137 if (PageDirty(page
) && mapping_cap_account_dirty(mapping
)) {
138 dec_zone_page_state(page
, NR_FILE_DIRTY
);
139 dec_bdi_stat(mapping
->backing_dev_info
, BDI_RECLAIMABLE
);
143 void remove_from_page_cache(struct page
*page
)
145 struct address_space
*mapping
= page
->mapping
;
147 BUG_ON(!PageLocked(page
));
149 spin_lock_irq(&mapping
->tree_lock
);
150 __remove_from_page_cache(page
);
151 spin_unlock_irq(&mapping
->tree_lock
);
152 mem_cgroup_uncharge_cache_page(page
);
154 EXPORT_SYMBOL(remove_from_page_cache
);
156 static int sync_page(void *word
)
158 struct address_space
*mapping
;
161 page
= container_of((unsigned long *)word
, struct page
, flags
);
164 * page_mapping() is being called without PG_locked held.
165 * Some knowledge of the state and use of the page is used to
166 * reduce the requirements down to a memory barrier.
167 * The danger here is of a stale page_mapping() return value
168 * indicating a struct address_space different from the one it's
169 * associated with when it is associated with one.
170 * After smp_mb(), it's either the correct page_mapping() for
171 * the page, or an old page_mapping() and the page's own
172 * page_mapping() has gone NULL.
173 * The ->sync_page() address_space operation must tolerate
174 * page_mapping() going NULL. By an amazing coincidence,
175 * this comes about because none of the users of the page
176 * in the ->sync_page() methods make essential use of the
177 * page_mapping(), merely passing the page down to the backing
178 * device's unplug functions when it's non-NULL, which in turn
179 * ignore it for all cases but swap, where only page_private(page) is
180 * of interest. When page_mapping() does go NULL, the entire
181 * call stack gracefully ignores the page and returns.
185 mapping
= page_mapping(page
);
186 if (mapping
&& mapping
->a_ops
&& mapping
->a_ops
->sync_page
)
187 mapping
->a_ops
->sync_page(page
);
192 static int sync_page_killable(void *word
)
195 return fatal_signal_pending(current
) ? -EINTR
: 0;
199 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
200 * @mapping: address space structure to write
201 * @start: offset in bytes where the range starts
202 * @end: offset in bytes where the range ends (inclusive)
203 * @sync_mode: enable synchronous operation
205 * Start writeback against all of a mapping's dirty pages that lie
206 * within the byte offsets <start, end> inclusive.
208 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
209 * opposed to a regular memory cleansing writeback. The difference between
210 * these two operations is that if a dirty page/buffer is encountered, it must
211 * be waited upon, and not just skipped over.
213 int __filemap_fdatawrite_range(struct address_space
*mapping
, loff_t start
,
214 loff_t end
, int sync_mode
)
217 struct writeback_control wbc
= {
218 .sync_mode
= sync_mode
,
219 .nr_to_write
= LONG_MAX
,
220 .range_start
= start
,
224 if (!mapping_cap_writeback_dirty(mapping
))
227 ret
= do_writepages(mapping
, &wbc
);
231 static inline int __filemap_fdatawrite(struct address_space
*mapping
,
234 return __filemap_fdatawrite_range(mapping
, 0, LLONG_MAX
, sync_mode
);
237 int filemap_fdatawrite(struct address_space
*mapping
)
239 return __filemap_fdatawrite(mapping
, WB_SYNC_ALL
);
241 EXPORT_SYMBOL(filemap_fdatawrite
);
243 int filemap_fdatawrite_range(struct address_space
*mapping
, loff_t start
,
246 return __filemap_fdatawrite_range(mapping
, start
, end
, WB_SYNC_ALL
);
248 EXPORT_SYMBOL(filemap_fdatawrite_range
);
251 * filemap_flush - mostly a non-blocking flush
252 * @mapping: target address_space
254 * This is a mostly non-blocking flush. Not suitable for data-integrity
255 * purposes - I/O may not be started against all dirty pages.
257 int filemap_flush(struct address_space
*mapping
)
259 return __filemap_fdatawrite(mapping
, WB_SYNC_NONE
);
261 EXPORT_SYMBOL(filemap_flush
);
264 * filemap_fdatawait_range - wait for writeback to complete
265 * @mapping: address space structure to wait for
266 * @start_byte: offset in bytes where the range starts
267 * @end_byte: offset in bytes where the range ends (inclusive)
269 * Walk the list of under-writeback pages of the given address space
270 * in the given range and wait for all of them.
272 int filemap_fdatawait_range(struct address_space
*mapping
, loff_t start_byte
,
275 pgoff_t index
= start_byte
>> PAGE_CACHE_SHIFT
;
276 pgoff_t end
= end_byte
>> PAGE_CACHE_SHIFT
;
281 if (end_byte
< start_byte
)
284 pagevec_init(&pvec
, 0);
285 while ((index
<= end
) &&
286 (nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
,
287 PAGECACHE_TAG_WRITEBACK
,
288 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1)) != 0) {
291 for (i
= 0; i
< nr_pages
; i
++) {
292 struct page
*page
= pvec
.pages
[i
];
294 /* until radix tree lookup accepts end_index */
295 if (page
->index
> end
)
298 wait_on_page_writeback(page
);
302 pagevec_release(&pvec
);
306 /* Check for outstanding write errors */
307 if (test_and_clear_bit(AS_ENOSPC
, &mapping
->flags
))
309 if (test_and_clear_bit(AS_EIO
, &mapping
->flags
))
314 EXPORT_SYMBOL(filemap_fdatawait_range
);
317 * filemap_fdatawait - wait for all under-writeback pages to complete
318 * @mapping: address space structure to wait for
320 * Walk the list of under-writeback pages of the given address space
321 * and wait for all of them.
323 int filemap_fdatawait(struct address_space
*mapping
)
325 loff_t i_size
= i_size_read(mapping
->host
);
330 return filemap_fdatawait_range(mapping
, 0, i_size
- 1);
332 EXPORT_SYMBOL(filemap_fdatawait
);
334 int filemap_write_and_wait(struct address_space
*mapping
)
338 if (mapping
->nrpages
) {
339 err
= filemap_fdatawrite(mapping
);
341 * Even if the above returned error, the pages may be
342 * written partially (e.g. -ENOSPC), so we wait for it.
343 * But the -EIO is special case, it may indicate the worst
344 * thing (e.g. bug) happened, so we avoid waiting for it.
347 int err2
= filemap_fdatawait(mapping
);
354 EXPORT_SYMBOL(filemap_write_and_wait
);
357 * filemap_write_and_wait_range - write out & wait on a file range
358 * @mapping: the address_space for the pages
359 * @lstart: offset in bytes where the range starts
360 * @lend: offset in bytes where the range ends (inclusive)
362 * Write out and wait upon file offsets lstart->lend, inclusive.
364 * Note that `lend' is inclusive (describes the last byte to be written) so
365 * that this function can be used to write to the very end-of-file (end = -1).
367 int filemap_write_and_wait_range(struct address_space
*mapping
,
368 loff_t lstart
, loff_t lend
)
372 if (mapping
->nrpages
) {
373 err
= __filemap_fdatawrite_range(mapping
, lstart
, lend
,
375 /* See comment of filemap_write_and_wait() */
377 int err2
= filemap_fdatawait_range(mapping
,
385 EXPORT_SYMBOL(filemap_write_and_wait_range
);
388 * add_to_page_cache_locked - add a locked page to the pagecache
390 * @mapping: the page's address_space
391 * @offset: page index
392 * @gfp_mask: page allocation mode
394 * This function is used to add a page to the pagecache. It must be locked.
395 * This function does not add the page to the LRU. The caller must do that.
397 int add_to_page_cache_locked(struct page
*page
, struct address_space
*mapping
,
398 pgoff_t offset
, gfp_t gfp_mask
)
402 VM_BUG_ON(!PageLocked(page
));
404 error
= mem_cgroup_cache_charge(page
, current
->mm
,
405 gfp_mask
& GFP_RECLAIM_MASK
);
409 error
= radix_tree_preload(gfp_mask
& ~__GFP_HIGHMEM
);
411 page_cache_get(page
);
412 page
->mapping
= mapping
;
413 page
->index
= offset
;
415 spin_lock_irq(&mapping
->tree_lock
);
416 error
= radix_tree_insert(&mapping
->page_tree
, offset
, page
);
417 if (likely(!error
)) {
419 __inc_zone_page_state(page
, NR_FILE_PAGES
);
420 if (PageSwapBacked(page
))
421 __inc_zone_page_state(page
, NR_SHMEM
);
422 spin_unlock_irq(&mapping
->tree_lock
);
424 page
->mapping
= NULL
;
425 spin_unlock_irq(&mapping
->tree_lock
);
426 mem_cgroup_uncharge_cache_page(page
);
427 page_cache_release(page
);
429 radix_tree_preload_end();
431 mem_cgroup_uncharge_cache_page(page
);
435 EXPORT_SYMBOL(add_to_page_cache_locked
);
437 int add_to_page_cache_lru(struct page
*page
, struct address_space
*mapping
,
438 pgoff_t offset
, gfp_t gfp_mask
)
443 * Splice_read and readahead add shmem/tmpfs pages into the page cache
444 * before shmem_readpage has a chance to mark them as SwapBacked: they
445 * need to go on the anon lru below, and mem_cgroup_cache_charge
446 * (called in add_to_page_cache) needs to know where they're going too.
448 if (mapping_cap_swap_backed(mapping
))
449 SetPageSwapBacked(page
);
451 ret
= add_to_page_cache(page
, mapping
, offset
, gfp_mask
);
453 if (page_is_file_cache(page
))
454 lru_cache_add_file(page
);
456 lru_cache_add_anon(page
);
460 EXPORT_SYMBOL_GPL(add_to_page_cache_lru
);
463 struct page
*__page_cache_alloc(gfp_t gfp
)
468 if (cpuset_do_page_mem_spread()) {
470 n
= cpuset_mem_spread_node();
471 page
= alloc_pages_exact_node(n
, gfp
, 0);
475 return alloc_pages(gfp
, 0);
477 EXPORT_SYMBOL(__page_cache_alloc
);
480 static int __sleep_on_page_lock(void *word
)
487 * In order to wait for pages to become available there must be
488 * waitqueues associated with pages. By using a hash table of
489 * waitqueues where the bucket discipline is to maintain all
490 * waiters on the same queue and wake all when any of the pages
491 * become available, and for the woken contexts to check to be
492 * sure the appropriate page became available, this saves space
493 * at a cost of "thundering herd" phenomena during rare hash
496 static wait_queue_head_t
*page_waitqueue(struct page
*page
)
498 const struct zone
*zone
= page_zone(page
);
500 return &zone
->wait_table
[hash_ptr(page
, zone
->wait_table_bits
)];
503 static inline void wake_up_page(struct page
*page
, int bit
)
505 __wake_up_bit(page_waitqueue(page
), &page
->flags
, bit
);
508 void wait_on_page_bit(struct page
*page
, int bit_nr
)
510 DEFINE_WAIT_BIT(wait
, &page
->flags
, bit_nr
);
512 if (test_bit(bit_nr
, &page
->flags
))
513 __wait_on_bit(page_waitqueue(page
), &wait
, sync_page
,
514 TASK_UNINTERRUPTIBLE
);
516 EXPORT_SYMBOL(wait_on_page_bit
);
519 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
520 * @page: Page defining the wait queue of interest
521 * @waiter: Waiter to add to the queue
523 * Add an arbitrary @waiter to the wait queue for the nominated @page.
525 void add_page_wait_queue(struct page
*page
, wait_queue_t
*waiter
)
527 wait_queue_head_t
*q
= page_waitqueue(page
);
530 spin_lock_irqsave(&q
->lock
, flags
);
531 __add_wait_queue(q
, waiter
);
532 spin_unlock_irqrestore(&q
->lock
, flags
);
534 EXPORT_SYMBOL_GPL(add_page_wait_queue
);
537 * unlock_page - unlock a locked page
540 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
541 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
542 * mechananism between PageLocked pages and PageWriteback pages is shared.
543 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
545 * The mb is necessary to enforce ordering between the clear_bit and the read
546 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
548 void unlock_page(struct page
*page
)
550 VM_BUG_ON(!PageLocked(page
));
551 clear_bit_unlock(PG_locked
, &page
->flags
);
552 smp_mb__after_clear_bit();
553 wake_up_page(page
, PG_locked
);
555 EXPORT_SYMBOL(unlock_page
);
558 * end_page_writeback - end writeback against a page
561 void end_page_writeback(struct page
*page
)
563 if (TestClearPageReclaim(page
))
564 rotate_reclaimable_page(page
);
566 if (!test_clear_page_writeback(page
))
569 smp_mb__after_clear_bit();
570 wake_up_page(page
, PG_writeback
);
572 EXPORT_SYMBOL(end_page_writeback
);
575 * __lock_page - get a lock on the page, assuming we need to sleep to get it
576 * @page: the page to lock
578 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
579 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
580 * chances are that on the second loop, the block layer's plug list is empty,
581 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
583 void __lock_page(struct page
*page
)
585 DEFINE_WAIT_BIT(wait
, &page
->flags
, PG_locked
);
587 __wait_on_bit_lock(page_waitqueue(page
), &wait
, sync_page
,
588 TASK_UNINTERRUPTIBLE
);
590 EXPORT_SYMBOL(__lock_page
);
592 int __lock_page_killable(struct page
*page
)
594 DEFINE_WAIT_BIT(wait
, &page
->flags
, PG_locked
);
596 return __wait_on_bit_lock(page_waitqueue(page
), &wait
,
597 sync_page_killable
, TASK_KILLABLE
);
599 EXPORT_SYMBOL_GPL(__lock_page_killable
);
602 * __lock_page_nosync - get a lock on the page, without calling sync_page()
603 * @page: the page to lock
605 * Variant of lock_page that does not require the caller to hold a reference
606 * on the page's mapping.
608 void __lock_page_nosync(struct page
*page
)
610 DEFINE_WAIT_BIT(wait
, &page
->flags
, PG_locked
);
611 __wait_on_bit_lock(page_waitqueue(page
), &wait
, __sleep_on_page_lock
,
612 TASK_UNINTERRUPTIBLE
);
615 int __lock_page_or_retry(struct page
*page
, struct mm_struct
*mm
,
618 if (!(flags
& FAULT_FLAG_ALLOW_RETRY
)) {
622 up_read(&mm
->mmap_sem
);
623 wait_on_page_locked(page
);
629 * find_get_page - find and get a page reference
630 * @mapping: the address_space to search
631 * @offset: the page index
633 * Is there a pagecache struct page at the given (mapping, offset) tuple?
634 * If yes, increment its refcount and return it; if no, return NULL.
636 struct page
*find_get_page(struct address_space
*mapping
, pgoff_t offset
)
644 pagep
= radix_tree_lookup_slot(&mapping
->page_tree
, offset
);
646 page
= radix_tree_deref_slot(pagep
);
649 if (radix_tree_deref_retry(page
))
652 if (!page_cache_get_speculative(page
))
656 * Has the page moved?
657 * This is part of the lockless pagecache protocol. See
658 * include/linux/pagemap.h for details.
660 if (unlikely(page
!= *pagep
)) {
661 page_cache_release(page
);
670 EXPORT_SYMBOL(find_get_page
);
673 * find_lock_page - locate, pin and lock a pagecache page
674 * @mapping: the address_space to search
675 * @offset: the page index
677 * Locates the desired pagecache page, locks it, increments its reference
678 * count and returns its address.
680 * Returns zero if the page was not present. find_lock_page() may sleep.
682 struct page
*find_lock_page(struct address_space
*mapping
, pgoff_t offset
)
687 page
= find_get_page(mapping
, offset
);
690 /* Has the page been truncated? */
691 if (unlikely(page
->mapping
!= mapping
)) {
693 page_cache_release(page
);
696 VM_BUG_ON(page
->index
!= offset
);
700 EXPORT_SYMBOL(find_lock_page
);
703 * find_or_create_page - locate or add a pagecache page
704 * @mapping: the page's address_space
705 * @index: the page's index into the mapping
706 * @gfp_mask: page allocation mode
708 * Locates a page in the pagecache. If the page is not present, a new page
709 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
710 * LRU list. The returned page is locked and has its reference count
713 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
716 * find_or_create_page() returns the desired page's address, or zero on
719 struct page
*find_or_create_page(struct address_space
*mapping
,
720 pgoff_t index
, gfp_t gfp_mask
)
725 page
= find_lock_page(mapping
, index
);
727 page
= __page_cache_alloc(gfp_mask
);
731 * We want a regular kernel memory (not highmem or DMA etc)
732 * allocation for the radix tree nodes, but we need to honour
733 * the context-specific requirements the caller has asked for.
734 * GFP_RECLAIM_MASK collects those requirements.
736 err
= add_to_page_cache_lru(page
, mapping
, index
,
737 (gfp_mask
& GFP_RECLAIM_MASK
));
739 page_cache_release(page
);
747 EXPORT_SYMBOL(find_or_create_page
);
750 * find_get_pages - gang pagecache lookup
751 * @mapping: The address_space to search
752 * @start: The starting page index
753 * @nr_pages: The maximum number of pages
754 * @pages: Where the resulting pages are placed
756 * find_get_pages() will search for and return a group of up to
757 * @nr_pages pages in the mapping. The pages are placed at @pages.
758 * find_get_pages() takes a reference against the returned pages.
760 * The search returns a group of mapping-contiguous pages with ascending
761 * indexes. There may be holes in the indices due to not-present pages.
763 * find_get_pages() returns the number of pages which were found.
765 unsigned find_get_pages(struct address_space
*mapping
, pgoff_t start
,
766 unsigned int nr_pages
, struct page
**pages
)
770 unsigned int nr_found
;
774 nr_found
= radix_tree_gang_lookup_slot(&mapping
->page_tree
,
775 (void ***)pages
, start
, nr_pages
);
777 for (i
= 0; i
< nr_found
; i
++) {
780 page
= radix_tree_deref_slot((void **)pages
[i
]);
783 if (radix_tree_deref_retry(page
)) {
785 start
= pages
[ret
-1]->index
;
789 if (!page_cache_get_speculative(page
))
792 /* Has the page moved? */
793 if (unlikely(page
!= *((void **)pages
[i
]))) {
794 page_cache_release(page
);
806 * find_get_pages_contig - gang contiguous pagecache lookup
807 * @mapping: The address_space to search
808 * @index: The starting page index
809 * @nr_pages: The maximum number of pages
810 * @pages: Where the resulting pages are placed
812 * find_get_pages_contig() works exactly like find_get_pages(), except
813 * that the returned number of pages are guaranteed to be contiguous.
815 * find_get_pages_contig() returns the number of pages which were found.
817 unsigned find_get_pages_contig(struct address_space
*mapping
, pgoff_t index
,
818 unsigned int nr_pages
, struct page
**pages
)
822 unsigned int nr_found
;
826 nr_found
= radix_tree_gang_lookup_slot(&mapping
->page_tree
,
827 (void ***)pages
, index
, nr_pages
);
829 for (i
= 0; i
< nr_found
; i
++) {
832 page
= radix_tree_deref_slot((void **)pages
[i
]);
835 if (radix_tree_deref_retry(page
))
838 if (page
->mapping
== NULL
|| page
->index
!= index
)
841 if (!page_cache_get_speculative(page
))
844 /* Has the page moved? */
845 if (unlikely(page
!= *((void **)pages
[i
]))) {
846 page_cache_release(page
);
857 EXPORT_SYMBOL(find_get_pages_contig
);
860 * find_get_pages_tag - find and return pages that match @tag
861 * @mapping: the address_space to search
862 * @index: the starting page index
863 * @tag: the tag index
864 * @nr_pages: the maximum number of pages
865 * @pages: where the resulting pages are placed
867 * Like find_get_pages, except we only return pages which are tagged with
868 * @tag. We update @index to index the next page for the traversal.
870 unsigned find_get_pages_tag(struct address_space
*mapping
, pgoff_t
*index
,
871 int tag
, unsigned int nr_pages
, struct page
**pages
)
875 unsigned int nr_found
;
879 nr_found
= radix_tree_gang_lookup_tag_slot(&mapping
->page_tree
,
880 (void ***)pages
, *index
, nr_pages
, tag
);
882 for (i
= 0; i
< nr_found
; i
++) {
885 page
= radix_tree_deref_slot((void **)pages
[i
]);
888 if (radix_tree_deref_retry(page
))
891 if (!page_cache_get_speculative(page
))
894 /* Has the page moved? */
895 if (unlikely(page
!= *((void **)pages
[i
]))) {
896 page_cache_release(page
);
906 *index
= pages
[ret
- 1]->index
+ 1;
910 EXPORT_SYMBOL(find_get_pages_tag
);
913 * grab_cache_page_nowait - returns locked page at given index in given cache
914 * @mapping: target address_space
915 * @index: the page index
917 * Same as grab_cache_page(), but do not wait if the page is unavailable.
918 * This is intended for speculative data generators, where the data can
919 * be regenerated if the page couldn't be grabbed. This routine should
920 * be safe to call while holding the lock for another page.
922 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
923 * and deadlock against the caller's locked page.
926 grab_cache_page_nowait(struct address_space
*mapping
, pgoff_t index
)
928 struct page
*page
= find_get_page(mapping
, index
);
931 if (trylock_page(page
))
933 page_cache_release(page
);
936 page
= __page_cache_alloc(mapping_gfp_mask(mapping
) & ~__GFP_FS
);
937 if (page
&& add_to_page_cache_lru(page
, mapping
, index
, GFP_NOFS
)) {
938 page_cache_release(page
);
943 EXPORT_SYMBOL(grab_cache_page_nowait
);
946 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
947 * a _large_ part of the i/o request. Imagine the worst scenario:
949 * ---R__________________________________________B__________
950 * ^ reading here ^ bad block(assume 4k)
952 * read(R) => miss => readahead(R...B) => media error => frustrating retries
953 * => failing the whole request => read(R) => read(R+1) =>
954 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
955 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
956 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
958 * It is going insane. Fix it by quickly scaling down the readahead size.
960 static void shrink_readahead_size_eio(struct file
*filp
,
961 struct file_ra_state
*ra
)
967 * do_generic_file_read - generic file read routine
968 * @filp: the file to read
969 * @ppos: current file position
970 * @desc: read_descriptor
971 * @actor: read method
973 * This is a generic file read routine, and uses the
974 * mapping->a_ops->readpage() function for the actual low-level stuff.
976 * This is really ugly. But the goto's actually try to clarify some
977 * of the logic when it comes to error handling etc.
979 static void do_generic_file_read(struct file
*filp
, loff_t
*ppos
,
980 read_descriptor_t
*desc
, read_actor_t actor
)
982 struct address_space
*mapping
= filp
->f_mapping
;
983 struct inode
*inode
= mapping
->host
;
984 struct file_ra_state
*ra
= &filp
->f_ra
;
988 unsigned long offset
; /* offset into pagecache page */
989 unsigned int prev_offset
;
992 index
= *ppos
>> PAGE_CACHE_SHIFT
;
993 prev_index
= ra
->prev_pos
>> PAGE_CACHE_SHIFT
;
994 prev_offset
= ra
->prev_pos
& (PAGE_CACHE_SIZE
-1);
995 last_index
= (*ppos
+ desc
->count
+ PAGE_CACHE_SIZE
-1) >> PAGE_CACHE_SHIFT
;
996 offset
= *ppos
& ~PAGE_CACHE_MASK
;
1002 unsigned long nr
, ret
;
1006 page
= find_get_page(mapping
, index
);
1008 page_cache_sync_readahead(mapping
,
1010 index
, last_index
- index
);
1011 page
= find_get_page(mapping
, index
);
1012 if (unlikely(page
== NULL
))
1013 goto no_cached_page
;
1015 if (PageReadahead(page
)) {
1016 page_cache_async_readahead(mapping
,
1018 index
, last_index
- index
);
1020 if (!PageUptodate(page
)) {
1021 if (inode
->i_blkbits
== PAGE_CACHE_SHIFT
||
1022 !mapping
->a_ops
->is_partially_uptodate
)
1023 goto page_not_up_to_date
;
1024 if (!trylock_page(page
))
1025 goto page_not_up_to_date
;
1026 /* Did it get truncated before we got the lock? */
1028 goto page_not_up_to_date_locked
;
1029 if (!mapping
->a_ops
->is_partially_uptodate(page
,
1031 goto page_not_up_to_date_locked
;
1036 * i_size must be checked after we know the page is Uptodate.
1038 * Checking i_size after the check allows us to calculate
1039 * the correct value for "nr", which means the zero-filled
1040 * part of the page is not copied back to userspace (unless
1041 * another truncate extends the file - this is desired though).
1044 isize
= i_size_read(inode
);
1045 end_index
= (isize
- 1) >> PAGE_CACHE_SHIFT
;
1046 if (unlikely(!isize
|| index
> end_index
)) {
1047 page_cache_release(page
);
1051 /* nr is the maximum number of bytes to copy from this page */
1052 nr
= PAGE_CACHE_SIZE
;
1053 if (index
== end_index
) {
1054 nr
= ((isize
- 1) & ~PAGE_CACHE_MASK
) + 1;
1056 page_cache_release(page
);
1062 /* If users can be writing to this page using arbitrary
1063 * virtual addresses, take care about potential aliasing
1064 * before reading the page on the kernel side.
1066 if (mapping_writably_mapped(mapping
))
1067 flush_dcache_page(page
);
1070 * When a sequential read accesses a page several times,
1071 * only mark it as accessed the first time.
1073 if (prev_index
!= index
|| offset
!= prev_offset
)
1074 mark_page_accessed(page
);
1078 * Ok, we have the page, and it's up-to-date, so
1079 * now we can copy it to user space...
1081 * The actor routine returns how many bytes were actually used..
1082 * NOTE! This may not be the same as how much of a user buffer
1083 * we filled up (we may be padding etc), so we can only update
1084 * "pos" here (the actor routine has to update the user buffer
1085 * pointers and the remaining count).
1087 ret
= actor(desc
, page
, offset
, nr
);
1089 index
+= offset
>> PAGE_CACHE_SHIFT
;
1090 offset
&= ~PAGE_CACHE_MASK
;
1091 prev_offset
= offset
;
1093 page_cache_release(page
);
1094 if (ret
== nr
&& desc
->count
)
1098 page_not_up_to_date
:
1099 /* Get exclusive access to the page ... */
1100 error
= lock_page_killable(page
);
1101 if (unlikely(error
))
1102 goto readpage_error
;
1104 page_not_up_to_date_locked
:
1105 /* Did it get truncated before we got the lock? */
1106 if (!page
->mapping
) {
1108 page_cache_release(page
);
1112 /* Did somebody else fill it already? */
1113 if (PageUptodate(page
)) {
1120 * A previous I/O error may have been due to temporary
1121 * failures, eg. multipath errors.
1122 * PG_error will be set again if readpage fails.
1124 ClearPageError(page
);
1125 /* Start the actual read. The read will unlock the page. */
1126 error
= mapping
->a_ops
->readpage(filp
, page
);
1128 if (unlikely(error
)) {
1129 if (error
== AOP_TRUNCATED_PAGE
) {
1130 page_cache_release(page
);
1133 goto readpage_error
;
1136 if (!PageUptodate(page
)) {
1137 error
= lock_page_killable(page
);
1138 if (unlikely(error
))
1139 goto readpage_error
;
1140 if (!PageUptodate(page
)) {
1141 if (page
->mapping
== NULL
) {
1143 * invalidate_mapping_pages got it
1146 page_cache_release(page
);
1150 shrink_readahead_size_eio(filp
, ra
);
1152 goto readpage_error
;
1160 /* UHHUH! A synchronous read error occurred. Report it */
1161 desc
->error
= error
;
1162 page_cache_release(page
);
1167 * Ok, it wasn't cached, so we need to create a new
1170 page
= page_cache_alloc_cold(mapping
);
1172 desc
->error
= -ENOMEM
;
1175 error
= add_to_page_cache_lru(page
, mapping
,
1178 page_cache_release(page
);
1179 if (error
== -EEXIST
)
1181 desc
->error
= error
;
1188 ra
->prev_pos
= prev_index
;
1189 ra
->prev_pos
<<= PAGE_CACHE_SHIFT
;
1190 ra
->prev_pos
|= prev_offset
;
1192 *ppos
= ((loff_t
)index
<< PAGE_CACHE_SHIFT
) + offset
;
1193 file_accessed(filp
);
1196 int file_read_actor(read_descriptor_t
*desc
, struct page
*page
,
1197 unsigned long offset
, unsigned long size
)
1200 unsigned long left
, count
= desc
->count
;
1206 * Faults on the destination of a read are common, so do it before
1209 if (!fault_in_pages_writeable(desc
->arg
.buf
, size
)) {
1210 kaddr
= kmap_atomic(page
, KM_USER0
);
1211 left
= __copy_to_user_inatomic(desc
->arg
.buf
,
1212 kaddr
+ offset
, size
);
1213 kunmap_atomic(kaddr
, KM_USER0
);
1218 /* Do it the slow way */
1220 left
= __copy_to_user(desc
->arg
.buf
, kaddr
+ offset
, size
);
1225 desc
->error
= -EFAULT
;
1228 desc
->count
= count
- size
;
1229 desc
->written
+= size
;
1230 desc
->arg
.buf
+= size
;
1235 * Performs necessary checks before doing a write
1236 * @iov: io vector request
1237 * @nr_segs: number of segments in the iovec
1238 * @count: number of bytes to write
1239 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1241 * Adjust number of segments and amount of bytes to write (nr_segs should be
1242 * properly initialized first). Returns appropriate error code that caller
1243 * should return or zero in case that write should be allowed.
1245 int generic_segment_checks(const struct iovec
*iov
,
1246 unsigned long *nr_segs
, size_t *count
, int access_flags
)
1250 for (seg
= 0; seg
< *nr_segs
; seg
++) {
1251 const struct iovec
*iv
= &iov
[seg
];
1254 * If any segment has a negative length, or the cumulative
1255 * length ever wraps negative then return -EINVAL.
1258 if (unlikely((ssize_t
)(cnt
|iv
->iov_len
) < 0))
1260 if (access_ok(access_flags
, iv
->iov_base
, iv
->iov_len
))
1265 cnt
-= iv
->iov_len
; /* This segment is no good */
1271 EXPORT_SYMBOL(generic_segment_checks
);
1274 * generic_file_aio_read - generic filesystem read routine
1275 * @iocb: kernel I/O control block
1276 * @iov: io vector request
1277 * @nr_segs: number of segments in the iovec
1278 * @pos: current file position
1280 * This is the "read()" routine for all filesystems
1281 * that can use the page cache directly.
1284 generic_file_aio_read(struct kiocb
*iocb
, const struct iovec
*iov
,
1285 unsigned long nr_segs
, loff_t pos
)
1287 struct file
*filp
= iocb
->ki_filp
;
1289 unsigned long seg
= 0;
1291 loff_t
*ppos
= &iocb
->ki_pos
;
1294 retval
= generic_segment_checks(iov
, &nr_segs
, &count
, VERIFY_WRITE
);
1298 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1299 if (filp
->f_flags
& O_DIRECT
) {
1301 struct address_space
*mapping
;
1302 struct inode
*inode
;
1304 mapping
= filp
->f_mapping
;
1305 inode
= mapping
->host
;
1307 goto out
; /* skip atime */
1308 size
= i_size_read(inode
);
1310 retval
= filemap_write_and_wait_range(mapping
, pos
,
1311 pos
+ iov_length(iov
, nr_segs
) - 1);
1313 retval
= mapping
->a_ops
->direct_IO(READ
, iocb
,
1317 *ppos
= pos
+ retval
;
1322 * Btrfs can have a short DIO read if we encounter
1323 * compressed extents, so if there was an error, or if
1324 * we've already read everything we wanted to, or if
1325 * there was a short read because we hit EOF, go ahead
1326 * and return. Otherwise fallthrough to buffered io for
1327 * the rest of the read.
1329 if (retval
< 0 || !count
|| *ppos
>= size
) {
1330 file_accessed(filp
);
1337 for (seg
= 0; seg
< nr_segs
; seg
++) {
1338 read_descriptor_t desc
;
1342 * If we did a short DIO read we need to skip the section of the
1343 * iov that we've already read data into.
1346 if (count
> iov
[seg
].iov_len
) {
1347 count
-= iov
[seg
].iov_len
;
1355 desc
.arg
.buf
= iov
[seg
].iov_base
+ offset
;
1356 desc
.count
= iov
[seg
].iov_len
- offset
;
1357 if (desc
.count
== 0)
1360 do_generic_file_read(filp
, ppos
, &desc
, file_read_actor
);
1361 retval
+= desc
.written
;
1363 retval
= retval
?: desc
.error
;
1372 EXPORT_SYMBOL(generic_file_aio_read
);
1375 do_readahead(struct address_space
*mapping
, struct file
*filp
,
1376 pgoff_t index
, unsigned long nr
)
1378 if (!mapping
|| !mapping
->a_ops
|| !mapping
->a_ops
->readpage
)
1381 force_page_cache_readahead(mapping
, filp
, index
, nr
);
1385 SYSCALL_DEFINE(readahead
)(int fd
, loff_t offset
, size_t count
)
1393 if (file
->f_mode
& FMODE_READ
) {
1394 struct address_space
*mapping
= file
->f_mapping
;
1395 pgoff_t start
= offset
>> PAGE_CACHE_SHIFT
;
1396 pgoff_t end
= (offset
+ count
- 1) >> PAGE_CACHE_SHIFT
;
1397 unsigned long len
= end
- start
+ 1;
1398 ret
= do_readahead(mapping
, file
, start
, len
);
1404 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1405 asmlinkage
long SyS_readahead(long fd
, loff_t offset
, long count
)
1407 return SYSC_readahead((int) fd
, offset
, (size_t) count
);
1409 SYSCALL_ALIAS(sys_readahead
, SyS_readahead
);
1414 * page_cache_read - adds requested page to the page cache if not already there
1415 * @file: file to read
1416 * @offset: page index
1418 * This adds the requested page to the page cache if it isn't already there,
1419 * and schedules an I/O to read in its contents from disk.
1421 static int page_cache_read(struct file
*file
, pgoff_t offset
)
1423 struct address_space
*mapping
= file
->f_mapping
;
1428 page
= page_cache_alloc_cold(mapping
);
1432 ret
= add_to_page_cache_lru(page
, mapping
, offset
, GFP_KERNEL
);
1434 ret
= mapping
->a_ops
->readpage(file
, page
);
1435 else if (ret
== -EEXIST
)
1436 ret
= 0; /* losing race to add is OK */
1438 page_cache_release(page
);
1440 } while (ret
== AOP_TRUNCATED_PAGE
);
1445 #define MMAP_LOTSAMISS (100)
1448 * Synchronous readahead happens when we don't even find
1449 * a page in the page cache at all.
1451 static void do_sync_mmap_readahead(struct vm_area_struct
*vma
,
1452 struct file_ra_state
*ra
,
1456 unsigned long ra_pages
;
1457 struct address_space
*mapping
= file
->f_mapping
;
1459 /* If we don't want any read-ahead, don't bother */
1460 if (VM_RandomReadHint(vma
))
1463 if (VM_SequentialReadHint(vma
) ||
1464 offset
- 1 == (ra
->prev_pos
>> PAGE_CACHE_SHIFT
)) {
1465 page_cache_sync_readahead(mapping
, ra
, file
, offset
,
1470 if (ra
->mmap_miss
< INT_MAX
)
1474 * Do we miss much more than hit in this file? If so,
1475 * stop bothering with read-ahead. It will only hurt.
1477 if (ra
->mmap_miss
> MMAP_LOTSAMISS
)
1483 ra_pages
= max_sane_readahead(ra
->ra_pages
);
1485 ra
->start
= max_t(long, 0, offset
- ra_pages
/2);
1486 ra
->size
= ra_pages
;
1488 ra_submit(ra
, mapping
, file
);
1493 * Asynchronous readahead happens when we find the page and PG_readahead,
1494 * so we want to possibly extend the readahead further..
1496 static void do_async_mmap_readahead(struct vm_area_struct
*vma
,
1497 struct file_ra_state
*ra
,
1502 struct address_space
*mapping
= file
->f_mapping
;
1504 /* If we don't want any read-ahead, don't bother */
1505 if (VM_RandomReadHint(vma
))
1507 if (ra
->mmap_miss
> 0)
1509 if (PageReadahead(page
))
1510 page_cache_async_readahead(mapping
, ra
, file
,
1511 page
, offset
, ra
->ra_pages
);
1515 * filemap_fault - read in file data for page fault handling
1516 * @vma: vma in which the fault was taken
1517 * @vmf: struct vm_fault containing details of the fault
1519 * filemap_fault() is invoked via the vma operations vector for a
1520 * mapped memory region to read in file data during a page fault.
1522 * The goto's are kind of ugly, but this streamlines the normal case of having
1523 * it in the page cache, and handles the special cases reasonably without
1524 * having a lot of duplicated code.
1526 int filemap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1529 struct file
*file
= vma
->vm_file
;
1530 struct address_space
*mapping
= file
->f_mapping
;
1531 struct file_ra_state
*ra
= &file
->f_ra
;
1532 struct inode
*inode
= mapping
->host
;
1533 pgoff_t offset
= vmf
->pgoff
;
1538 size
= (i_size_read(inode
) + PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1540 return VM_FAULT_SIGBUS
;
1543 * Do we have something in the page cache already?
1545 page
= find_get_page(mapping
, offset
);
1548 * We found the page, so try async readahead before
1549 * waiting for the lock.
1551 do_async_mmap_readahead(vma
, ra
, file
, page
, offset
);
1553 /* No page in the page cache at all */
1554 do_sync_mmap_readahead(vma
, ra
, file
, offset
);
1555 count_vm_event(PGMAJFAULT
);
1556 ret
= VM_FAULT_MAJOR
;
1558 page
= find_get_page(mapping
, offset
);
1560 goto no_cached_page
;
1563 if (!lock_page_or_retry(page
, vma
->vm_mm
, vmf
->flags
)) {
1564 page_cache_release(page
);
1565 return ret
| VM_FAULT_RETRY
;
1568 /* Did it get truncated? */
1569 if (unlikely(page
->mapping
!= mapping
)) {
1574 VM_BUG_ON(page
->index
!= offset
);
1577 * We have a locked page in the page cache, now we need to check
1578 * that it's up-to-date. If not, it is going to be due to an error.
1580 if (unlikely(!PageUptodate(page
)))
1581 goto page_not_uptodate
;
1584 * Found the page and have a reference on it.
1585 * We must recheck i_size under page lock.
1587 size
= (i_size_read(inode
) + PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1588 if (unlikely(offset
>= size
)) {
1590 page_cache_release(page
);
1591 return VM_FAULT_SIGBUS
;
1594 ra
->prev_pos
= (loff_t
)offset
<< PAGE_CACHE_SHIFT
;
1596 return ret
| VM_FAULT_LOCKED
;
1600 * We're only likely to ever get here if MADV_RANDOM is in
1603 error
= page_cache_read(file
, offset
);
1606 * The page we want has now been added to the page cache.
1607 * In the unlikely event that someone removed it in the
1608 * meantime, we'll just come back here and read it again.
1614 * An error return from page_cache_read can result if the
1615 * system is low on memory, or a problem occurs while trying
1618 if (error
== -ENOMEM
)
1619 return VM_FAULT_OOM
;
1620 return VM_FAULT_SIGBUS
;
1624 * Umm, take care of errors if the page isn't up-to-date.
1625 * Try to re-read it _once_. We do this synchronously,
1626 * because there really aren't any performance issues here
1627 * and we need to check for errors.
1629 ClearPageError(page
);
1630 error
= mapping
->a_ops
->readpage(file
, page
);
1632 wait_on_page_locked(page
);
1633 if (!PageUptodate(page
))
1636 page_cache_release(page
);
1638 if (!error
|| error
== AOP_TRUNCATED_PAGE
)
1641 /* Things didn't work out. Return zero to tell the mm layer so. */
1642 shrink_readahead_size_eio(file
, ra
);
1643 return VM_FAULT_SIGBUS
;
1645 EXPORT_SYMBOL(filemap_fault
);
1647 const struct vm_operations_struct generic_file_vm_ops
= {
1648 .fault
= filemap_fault
,
1651 /* This is used for a general mmap of a disk file */
1653 int generic_file_mmap(struct file
* file
, struct vm_area_struct
* vma
)
1655 struct address_space
*mapping
= file
->f_mapping
;
1657 if (!mapping
->a_ops
->readpage
)
1659 file_accessed(file
);
1660 vma
->vm_ops
= &generic_file_vm_ops
;
1661 vma
->vm_flags
|= VM_CAN_NONLINEAR
;
1666 * This is for filesystems which do not implement ->writepage.
1668 int generic_file_readonly_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1670 if ((vma
->vm_flags
& VM_SHARED
) && (vma
->vm_flags
& VM_MAYWRITE
))
1672 return generic_file_mmap(file
, vma
);
1675 int generic_file_mmap(struct file
* file
, struct vm_area_struct
* vma
)
1679 int generic_file_readonly_mmap(struct file
* file
, struct vm_area_struct
* vma
)
1683 #endif /* CONFIG_MMU */
1685 EXPORT_SYMBOL(generic_file_mmap
);
1686 EXPORT_SYMBOL(generic_file_readonly_mmap
);
1688 static struct page
*__read_cache_page(struct address_space
*mapping
,
1690 int (*filler
)(void *,struct page
*),
1697 page
= find_get_page(mapping
, index
);
1699 page
= __page_cache_alloc(gfp
| __GFP_COLD
);
1701 return ERR_PTR(-ENOMEM
);
1702 err
= add_to_page_cache_lru(page
, mapping
, index
, GFP_KERNEL
);
1703 if (unlikely(err
)) {
1704 page_cache_release(page
);
1707 /* Presumably ENOMEM for radix tree node */
1708 return ERR_PTR(err
);
1710 err
= filler(data
, page
);
1712 page_cache_release(page
);
1713 page
= ERR_PTR(err
);
1719 static struct page
*do_read_cache_page(struct address_space
*mapping
,
1721 int (*filler
)(void *,struct page
*),
1730 page
= __read_cache_page(mapping
, index
, filler
, data
, gfp
);
1733 if (PageUptodate(page
))
1737 if (!page
->mapping
) {
1739 page_cache_release(page
);
1742 if (PageUptodate(page
)) {
1746 err
= filler(data
, page
);
1748 page_cache_release(page
);
1749 return ERR_PTR(err
);
1752 mark_page_accessed(page
);
1757 * read_cache_page_async - read into page cache, fill it if needed
1758 * @mapping: the page's address_space
1759 * @index: the page index
1760 * @filler: function to perform the read
1761 * @data: destination for read data
1763 * Same as read_cache_page, but don't wait for page to become unlocked
1764 * after submitting it to the filler.
1766 * Read into the page cache. If a page already exists, and PageUptodate() is
1767 * not set, try to fill the page but don't wait for it to become unlocked.
1769 * If the page does not get brought uptodate, return -EIO.
1771 struct page
*read_cache_page_async(struct address_space
*mapping
,
1773 int (*filler
)(void *,struct page
*),
1776 return do_read_cache_page(mapping
, index
, filler
, data
, mapping_gfp_mask(mapping
));
1778 EXPORT_SYMBOL(read_cache_page_async
);
1780 static struct page
*wait_on_page_read(struct page
*page
)
1782 if (!IS_ERR(page
)) {
1783 wait_on_page_locked(page
);
1784 if (!PageUptodate(page
)) {
1785 page_cache_release(page
);
1786 page
= ERR_PTR(-EIO
);
1793 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1794 * @mapping: the page's address_space
1795 * @index: the page index
1796 * @gfp: the page allocator flags to use if allocating
1798 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1799 * any new page allocations done using the specified allocation flags. Note
1800 * that the Radix tree operations will still use GFP_KERNEL, so you can't
1801 * expect to do this atomically or anything like that - but you can pass in
1802 * other page requirements.
1804 * If the page does not get brought uptodate, return -EIO.
1806 struct page
*read_cache_page_gfp(struct address_space
*mapping
,
1810 filler_t
*filler
= (filler_t
*)mapping
->a_ops
->readpage
;
1812 return wait_on_page_read(do_read_cache_page(mapping
, index
, filler
, NULL
, gfp
));
1814 EXPORT_SYMBOL(read_cache_page_gfp
);
1817 * read_cache_page - read into page cache, fill it if needed
1818 * @mapping: the page's address_space
1819 * @index: the page index
1820 * @filler: function to perform the read
1821 * @data: destination for read data
1823 * Read into the page cache. If a page already exists, and PageUptodate() is
1824 * not set, try to fill the page then wait for it to become unlocked.
1826 * If the page does not get brought uptodate, return -EIO.
1828 struct page
*read_cache_page(struct address_space
*mapping
,
1830 int (*filler
)(void *,struct page
*),
1833 return wait_on_page_read(read_cache_page_async(mapping
, index
, filler
, data
));
1835 EXPORT_SYMBOL(read_cache_page
);
1838 * The logic we want is
1840 * if suid or (sgid and xgrp)
1843 int should_remove_suid(struct dentry
*dentry
)
1845 mode_t mode
= dentry
->d_inode
->i_mode
;
1848 /* suid always must be killed */
1849 if (unlikely(mode
& S_ISUID
))
1850 kill
= ATTR_KILL_SUID
;
1853 * sgid without any exec bits is just a mandatory locking mark; leave
1854 * it alone. If some exec bits are set, it's a real sgid; kill it.
1856 if (unlikely((mode
& S_ISGID
) && (mode
& S_IXGRP
)))
1857 kill
|= ATTR_KILL_SGID
;
1859 if (unlikely(kill
&& !capable(CAP_FSETID
) && S_ISREG(mode
)))
1864 EXPORT_SYMBOL(should_remove_suid
);
1866 static int __remove_suid(struct dentry
*dentry
, int kill
)
1868 struct iattr newattrs
;
1870 newattrs
.ia_valid
= ATTR_FORCE
| kill
;
1871 return notify_change(dentry
, &newattrs
);
1874 int file_remove_suid(struct file
*file
)
1876 struct dentry
*dentry
= file
->f_path
.dentry
;
1877 int killsuid
= should_remove_suid(dentry
);
1878 int killpriv
= security_inode_need_killpriv(dentry
);
1884 error
= security_inode_killpriv(dentry
);
1885 if (!error
&& killsuid
)
1886 error
= __remove_suid(dentry
, killsuid
);
1890 EXPORT_SYMBOL(file_remove_suid
);
1892 static size_t __iovec_copy_from_user_inatomic(char *vaddr
,
1893 const struct iovec
*iov
, size_t base
, size_t bytes
)
1895 size_t copied
= 0, left
= 0;
1898 char __user
*buf
= iov
->iov_base
+ base
;
1899 int copy
= min(bytes
, iov
->iov_len
- base
);
1902 left
= __copy_from_user_inatomic(vaddr
, buf
, copy
);
1911 return copied
- left
;
1915 * Copy as much as we can into the page and return the number of bytes which
1916 * were successfully copied. If a fault is encountered then return the number of
1917 * bytes which were copied.
1919 size_t iov_iter_copy_from_user_atomic(struct page
*page
,
1920 struct iov_iter
*i
, unsigned long offset
, size_t bytes
)
1925 BUG_ON(!in_atomic());
1926 kaddr
= kmap_atomic(page
, KM_USER0
);
1927 if (likely(i
->nr_segs
== 1)) {
1929 char __user
*buf
= i
->iov
->iov_base
+ i
->iov_offset
;
1930 left
= __copy_from_user_inatomic(kaddr
+ offset
, buf
, bytes
);
1931 copied
= bytes
- left
;
1933 copied
= __iovec_copy_from_user_inatomic(kaddr
+ offset
,
1934 i
->iov
, i
->iov_offset
, bytes
);
1936 kunmap_atomic(kaddr
, KM_USER0
);
1940 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic
);
1943 * This has the same sideeffects and return value as
1944 * iov_iter_copy_from_user_atomic().
1945 * The difference is that it attempts to resolve faults.
1946 * Page must not be locked.
1948 size_t iov_iter_copy_from_user(struct page
*page
,
1949 struct iov_iter
*i
, unsigned long offset
, size_t bytes
)
1955 if (likely(i
->nr_segs
== 1)) {
1957 char __user
*buf
= i
->iov
->iov_base
+ i
->iov_offset
;
1958 left
= __copy_from_user(kaddr
+ offset
, buf
, bytes
);
1959 copied
= bytes
- left
;
1961 copied
= __iovec_copy_from_user_inatomic(kaddr
+ offset
,
1962 i
->iov
, i
->iov_offset
, bytes
);
1967 EXPORT_SYMBOL(iov_iter_copy_from_user
);
1969 void iov_iter_advance(struct iov_iter
*i
, size_t bytes
)
1971 BUG_ON(i
->count
< bytes
);
1973 if (likely(i
->nr_segs
== 1)) {
1974 i
->iov_offset
+= bytes
;
1977 const struct iovec
*iov
= i
->iov
;
1978 size_t base
= i
->iov_offset
;
1981 * The !iov->iov_len check ensures we skip over unlikely
1982 * zero-length segments (without overruning the iovec).
1984 while (bytes
|| unlikely(i
->count
&& !iov
->iov_len
)) {
1987 copy
= min(bytes
, iov
->iov_len
- base
);
1988 BUG_ON(!i
->count
|| i
->count
< copy
);
1992 if (iov
->iov_len
== base
) {
1998 i
->iov_offset
= base
;
2001 EXPORT_SYMBOL(iov_iter_advance
);
2004 * Fault in the first iovec of the given iov_iter, to a maximum length
2005 * of bytes. Returns 0 on success, or non-zero if the memory could not be
2006 * accessed (ie. because it is an invalid address).
2008 * writev-intensive code may want this to prefault several iovecs -- that
2009 * would be possible (callers must not rely on the fact that _only_ the
2010 * first iovec will be faulted with the current implementation).
2012 int iov_iter_fault_in_readable(struct iov_iter
*i
, size_t bytes
)
2014 char __user
*buf
= i
->iov
->iov_base
+ i
->iov_offset
;
2015 bytes
= min(bytes
, i
->iov
->iov_len
- i
->iov_offset
);
2016 return fault_in_pages_readable(buf
, bytes
);
2018 EXPORT_SYMBOL(iov_iter_fault_in_readable
);
2021 * Return the count of just the current iov_iter segment.
2023 size_t iov_iter_single_seg_count(struct iov_iter
*i
)
2025 const struct iovec
*iov
= i
->iov
;
2026 if (i
->nr_segs
== 1)
2029 return min(i
->count
, iov
->iov_len
- i
->iov_offset
);
2031 EXPORT_SYMBOL(iov_iter_single_seg_count
);
2034 * Performs necessary checks before doing a write
2036 * Can adjust writing position or amount of bytes to write.
2037 * Returns appropriate error code that caller should return or
2038 * zero in case that write should be allowed.
2040 inline int generic_write_checks(struct file
*file
, loff_t
*pos
, size_t *count
, int isblk
)
2042 struct inode
*inode
= file
->f_mapping
->host
;
2043 unsigned long limit
= rlimit(RLIMIT_FSIZE
);
2045 if (unlikely(*pos
< 0))
2049 /* FIXME: this is for backwards compatibility with 2.4 */
2050 if (file
->f_flags
& O_APPEND
)
2051 *pos
= i_size_read(inode
);
2053 if (limit
!= RLIM_INFINITY
) {
2054 if (*pos
>= limit
) {
2055 send_sig(SIGXFSZ
, current
, 0);
2058 if (*count
> limit
- (typeof(limit
))*pos
) {
2059 *count
= limit
- (typeof(limit
))*pos
;
2067 if (unlikely(*pos
+ *count
> MAX_NON_LFS
&&
2068 !(file
->f_flags
& O_LARGEFILE
))) {
2069 if (*pos
>= MAX_NON_LFS
) {
2072 if (*count
> MAX_NON_LFS
- (unsigned long)*pos
) {
2073 *count
= MAX_NON_LFS
- (unsigned long)*pos
;
2078 * Are we about to exceed the fs block limit ?
2080 * If we have written data it becomes a short write. If we have
2081 * exceeded without writing data we send a signal and return EFBIG.
2082 * Linus frestrict idea will clean these up nicely..
2084 if (likely(!isblk
)) {
2085 if (unlikely(*pos
>= inode
->i_sb
->s_maxbytes
)) {
2086 if (*count
|| *pos
> inode
->i_sb
->s_maxbytes
) {
2089 /* zero-length writes at ->s_maxbytes are OK */
2092 if (unlikely(*pos
+ *count
> inode
->i_sb
->s_maxbytes
))
2093 *count
= inode
->i_sb
->s_maxbytes
- *pos
;
2097 if (bdev_read_only(I_BDEV(inode
)))
2099 isize
= i_size_read(inode
);
2100 if (*pos
>= isize
) {
2101 if (*count
|| *pos
> isize
)
2105 if (*pos
+ *count
> isize
)
2106 *count
= isize
- *pos
;
2113 EXPORT_SYMBOL(generic_write_checks
);
2115 int pagecache_write_begin(struct file
*file
, struct address_space
*mapping
,
2116 loff_t pos
, unsigned len
, unsigned flags
,
2117 struct page
**pagep
, void **fsdata
)
2119 const struct address_space_operations
*aops
= mapping
->a_ops
;
2121 return aops
->write_begin(file
, mapping
, pos
, len
, flags
,
2124 EXPORT_SYMBOL(pagecache_write_begin
);
2126 int pagecache_write_end(struct file
*file
, struct address_space
*mapping
,
2127 loff_t pos
, unsigned len
, unsigned copied
,
2128 struct page
*page
, void *fsdata
)
2130 const struct address_space_operations
*aops
= mapping
->a_ops
;
2132 mark_page_accessed(page
);
2133 return aops
->write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
2135 EXPORT_SYMBOL(pagecache_write_end
);
2138 generic_file_direct_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2139 unsigned long *nr_segs
, loff_t pos
, loff_t
*ppos
,
2140 size_t count
, size_t ocount
)
2142 struct file
*file
= iocb
->ki_filp
;
2143 struct address_space
*mapping
= file
->f_mapping
;
2144 struct inode
*inode
= mapping
->host
;
2149 if (count
!= ocount
)
2150 *nr_segs
= iov_shorten((struct iovec
*)iov
, *nr_segs
, count
);
2152 write_len
= iov_length(iov
, *nr_segs
);
2153 end
= (pos
+ write_len
- 1) >> PAGE_CACHE_SHIFT
;
2155 written
= filemap_write_and_wait_range(mapping
, pos
, pos
+ write_len
- 1);
2160 * After a write we want buffered reads to be sure to go to disk to get
2161 * the new data. We invalidate clean cached page from the region we're
2162 * about to write. We do this *before* the write so that we can return
2163 * without clobbering -EIOCBQUEUED from ->direct_IO().
2165 if (mapping
->nrpages
) {
2166 written
= invalidate_inode_pages2_range(mapping
,
2167 pos
>> PAGE_CACHE_SHIFT
, end
);
2169 * If a page can not be invalidated, return 0 to fall back
2170 * to buffered write.
2173 if (written
== -EBUSY
)
2179 written
= mapping
->a_ops
->direct_IO(WRITE
, iocb
, iov
, pos
, *nr_segs
);
2182 * Finally, try again to invalidate clean pages which might have been
2183 * cached by non-direct readahead, or faulted in by get_user_pages()
2184 * if the source of the write was an mmap'ed region of the file
2185 * we're writing. Either one is a pretty crazy thing to do,
2186 * so we don't support it 100%. If this invalidation
2187 * fails, tough, the write still worked...
2189 if (mapping
->nrpages
) {
2190 invalidate_inode_pages2_range(mapping
,
2191 pos
>> PAGE_CACHE_SHIFT
, end
);
2196 if (pos
> i_size_read(inode
) && !S_ISBLK(inode
->i_mode
)) {
2197 i_size_write(inode
, pos
);
2198 mark_inode_dirty(inode
);
2205 EXPORT_SYMBOL(generic_file_direct_write
);
2208 * Find or create a page at the given pagecache position. Return the locked
2209 * page. This function is specifically for buffered writes.
2211 struct page
*grab_cache_page_write_begin(struct address_space
*mapping
,
2212 pgoff_t index
, unsigned flags
)
2216 gfp_t gfp_notmask
= 0;
2217 if (flags
& AOP_FLAG_NOFS
)
2218 gfp_notmask
= __GFP_FS
;
2220 page
= find_lock_page(mapping
, index
);
2224 page
= __page_cache_alloc(mapping_gfp_mask(mapping
) & ~gfp_notmask
);
2227 status
= add_to_page_cache_lru(page
, mapping
, index
,
2228 GFP_KERNEL
& ~gfp_notmask
);
2229 if (unlikely(status
)) {
2230 page_cache_release(page
);
2231 if (status
== -EEXIST
)
2237 EXPORT_SYMBOL(grab_cache_page_write_begin
);
2239 static ssize_t
generic_perform_write(struct file
*file
,
2240 struct iov_iter
*i
, loff_t pos
)
2242 struct address_space
*mapping
= file
->f_mapping
;
2243 const struct address_space_operations
*a_ops
= mapping
->a_ops
;
2245 ssize_t written
= 0;
2246 unsigned int flags
= 0;
2249 * Copies from kernel address space cannot fail (NFSD is a big user).
2251 if (segment_eq(get_fs(), KERNEL_DS
))
2252 flags
|= AOP_FLAG_UNINTERRUPTIBLE
;
2256 unsigned long offset
; /* Offset into pagecache page */
2257 unsigned long bytes
; /* Bytes to write to page */
2258 size_t copied
; /* Bytes copied from user */
2261 offset
= (pos
& (PAGE_CACHE_SIZE
- 1));
2262 bytes
= min_t(unsigned long, PAGE_CACHE_SIZE
- offset
,
2268 * Bring in the user page that we will copy from _first_.
2269 * Otherwise there's a nasty deadlock on copying from the
2270 * same page as we're writing to, without it being marked
2273 * Not only is this an optimisation, but it is also required
2274 * to check that the address is actually valid, when atomic
2275 * usercopies are used, below.
2277 if (unlikely(iov_iter_fault_in_readable(i
, bytes
))) {
2282 status
= a_ops
->write_begin(file
, mapping
, pos
, bytes
, flags
,
2284 if (unlikely(status
))
2287 if (mapping_writably_mapped(mapping
))
2288 flush_dcache_page(page
);
2290 pagefault_disable();
2291 copied
= iov_iter_copy_from_user_atomic(page
, i
, offset
, bytes
);
2293 flush_dcache_page(page
);
2295 mark_page_accessed(page
);
2296 status
= a_ops
->write_end(file
, mapping
, pos
, bytes
, copied
,
2298 if (unlikely(status
< 0))
2304 iov_iter_advance(i
, copied
);
2305 if (unlikely(copied
== 0)) {
2307 * If we were unable to copy any data at all, we must
2308 * fall back to a single segment length write.
2310 * If we didn't fallback here, we could livelock
2311 * because not all segments in the iov can be copied at
2312 * once without a pagefault.
2314 bytes
= min_t(unsigned long, PAGE_CACHE_SIZE
- offset
,
2315 iov_iter_single_seg_count(i
));
2321 balance_dirty_pages_ratelimited(mapping
);
2323 } while (iov_iter_count(i
));
2325 return written
? written
: status
;
2329 generic_file_buffered_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2330 unsigned long nr_segs
, loff_t pos
, loff_t
*ppos
,
2331 size_t count
, ssize_t written
)
2333 struct file
*file
= iocb
->ki_filp
;
2337 iov_iter_init(&i
, iov
, nr_segs
, count
, written
);
2338 status
= generic_perform_write(file
, &i
, pos
);
2340 if (likely(status
>= 0)) {
2342 *ppos
= pos
+ status
;
2345 return written
? written
: status
;
2347 EXPORT_SYMBOL(generic_file_buffered_write
);
2350 * __generic_file_aio_write - write data to a file
2351 * @iocb: IO state structure (file, offset, etc.)
2352 * @iov: vector with data to write
2353 * @nr_segs: number of segments in the vector
2354 * @ppos: position where to write
2356 * This function does all the work needed for actually writing data to a
2357 * file. It does all basic checks, removes SUID from the file, updates
2358 * modification times and calls proper subroutines depending on whether we
2359 * do direct IO or a standard buffered write.
2361 * It expects i_mutex to be grabbed unless we work on a block device or similar
2362 * object which does not need locking at all.
2364 * This function does *not* take care of syncing data in case of O_SYNC write.
2365 * A caller has to handle it. This is mainly due to the fact that we want to
2366 * avoid syncing under i_mutex.
2368 ssize_t
__generic_file_aio_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2369 unsigned long nr_segs
, loff_t
*ppos
)
2371 struct file
*file
= iocb
->ki_filp
;
2372 struct address_space
* mapping
= file
->f_mapping
;
2373 size_t ocount
; /* original count */
2374 size_t count
; /* after file limit checks */
2375 struct inode
*inode
= mapping
->host
;
2381 err
= generic_segment_checks(iov
, &nr_segs
, &ocount
, VERIFY_READ
);
2388 vfs_check_frozen(inode
->i_sb
, SB_FREEZE_WRITE
);
2390 /* We can write back this queue in page reclaim */
2391 current
->backing_dev_info
= mapping
->backing_dev_info
;
2394 err
= generic_write_checks(file
, &pos
, &count
, S_ISBLK(inode
->i_mode
));
2401 err
= file_remove_suid(file
);
2405 file_update_time(file
);
2407 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2408 if (unlikely(file
->f_flags
& O_DIRECT
)) {
2410 ssize_t written_buffered
;
2412 written
= generic_file_direct_write(iocb
, iov
, &nr_segs
, pos
,
2413 ppos
, count
, ocount
);
2414 if (written
< 0 || written
== count
)
2417 * direct-io write to a hole: fall through to buffered I/O
2418 * for completing the rest of the request.
2422 written_buffered
= generic_file_buffered_write(iocb
, iov
,
2423 nr_segs
, pos
, ppos
, count
,
2426 * If generic_file_buffered_write() retuned a synchronous error
2427 * then we want to return the number of bytes which were
2428 * direct-written, or the error code if that was zero. Note
2429 * that this differs from normal direct-io semantics, which
2430 * will return -EFOO even if some bytes were written.
2432 if (written_buffered
< 0) {
2433 err
= written_buffered
;
2438 * We need to ensure that the page cache pages are written to
2439 * disk and invalidated to preserve the expected O_DIRECT
2442 endbyte
= pos
+ written_buffered
- written
- 1;
2443 err
= filemap_write_and_wait_range(file
->f_mapping
, pos
, endbyte
);
2445 written
= written_buffered
;
2446 invalidate_mapping_pages(mapping
,
2447 pos
>> PAGE_CACHE_SHIFT
,
2448 endbyte
>> PAGE_CACHE_SHIFT
);
2451 * We don't know how much we wrote, so just return
2452 * the number of bytes which were direct-written
2456 written
= generic_file_buffered_write(iocb
, iov
, nr_segs
,
2457 pos
, ppos
, count
, written
);
2460 current
->backing_dev_info
= NULL
;
2461 return written
? written
: err
;
2463 EXPORT_SYMBOL(__generic_file_aio_write
);
2466 * generic_file_aio_write - write data to a file
2467 * @iocb: IO state structure
2468 * @iov: vector with data to write
2469 * @nr_segs: number of segments in the vector
2470 * @pos: position in file where to write
2472 * This is a wrapper around __generic_file_aio_write() to be used by most
2473 * filesystems. It takes care of syncing the file in case of O_SYNC file
2474 * and acquires i_mutex as needed.
2476 ssize_t
generic_file_aio_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2477 unsigned long nr_segs
, loff_t pos
)
2479 struct file
*file
= iocb
->ki_filp
;
2480 struct inode
*inode
= file
->f_mapping
->host
;
2483 BUG_ON(iocb
->ki_pos
!= pos
);
2485 mutex_lock(&inode
->i_mutex
);
2486 ret
= __generic_file_aio_write(iocb
, iov
, nr_segs
, &iocb
->ki_pos
);
2487 mutex_unlock(&inode
->i_mutex
);
2489 if (ret
> 0 || ret
== -EIOCBQUEUED
) {
2492 err
= generic_write_sync(file
, pos
, ret
);
2493 if (err
< 0 && ret
> 0)
2498 EXPORT_SYMBOL(generic_file_aio_write
);
2501 * try_to_release_page() - release old fs-specific metadata on a page
2503 * @page: the page which the kernel is trying to free
2504 * @gfp_mask: memory allocation flags (and I/O mode)
2506 * The address_space is to try to release any data against the page
2507 * (presumably at page->private). If the release was successful, return `1'.
2508 * Otherwise return zero.
2510 * This may also be called if PG_fscache is set on a page, indicating that the
2511 * page is known to the local caching routines.
2513 * The @gfp_mask argument specifies whether I/O may be performed to release
2514 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2517 int try_to_release_page(struct page
*page
, gfp_t gfp_mask
)
2519 struct address_space
* const mapping
= page
->mapping
;
2521 BUG_ON(!PageLocked(page
));
2522 if (PageWriteback(page
))
2525 if (mapping
&& mapping
->a_ops
->releasepage
)
2526 return mapping
->a_ops
->releasepage(page
, gfp_mask
);
2527 return try_to_free_buffers(page
);
2530 EXPORT_SYMBOL(try_to_release_page
);