2 * linux/kernel/hrtimer.c
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
8 * High-resolution kernel timers
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
14 * These timers are currently used for:
18 * - precise in-kernel timing
20 * Started by: Thomas Gleixner and Ingo Molnar
23 * based on kernel/timer.c
25 * Help, testing, suggestions, bugfixes, improvements were
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
31 * For licencing details see kernel-base/COPYING
34 #include <linux/cpu.h>
35 #include <linux/module.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched.h>
47 #include <linux/timer.h>
49 #include <asm/uaccess.h>
51 #include <trace/events/timer.h>
56 * Note: If we want to add new timer bases, we have to skip the two
57 * clock ids captured by the cpu-timers. We do this by holding empty
58 * entries rather than doing math adjustment of the clock ids.
59 * This ensures that we capture erroneous accesses to these clock ids
60 * rather than moving them into the range of valid clock id's.
62 DEFINE_PER_CPU(struct hrtimer_cpu_base
, hrtimer_bases
) =
68 .index
= CLOCK_REALTIME
,
69 .get_time
= &ktime_get_real
,
70 .resolution
= KTIME_LOW_RES
,
73 .index
= CLOCK_MONOTONIC
,
74 .get_time
= &ktime_get
,
75 .resolution
= KTIME_LOW_RES
,
81 * Get the coarse grained time at the softirq based on xtime and
84 static void hrtimer_get_softirq_time(struct hrtimer_cpu_base
*base
)
87 struct timespec xts
, tom
;
91 seq
= read_seqbegin(&xtime_lock
);
92 xts
= __current_kernel_time();
93 tom
= __get_wall_to_monotonic();
94 } while (read_seqretry(&xtime_lock
, seq
));
96 xtim
= timespec_to_ktime(xts
);
97 tomono
= timespec_to_ktime(tom
);
98 base
->clock_base
[CLOCK_REALTIME
].softirq_time
= xtim
;
99 base
->clock_base
[CLOCK_MONOTONIC
].softirq_time
=
100 ktime_add(xtim
, tomono
);
104 * Functions and macros which are different for UP/SMP systems are kept in a
110 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
111 * means that all timers which are tied to this base via timer->base are
112 * locked, and the base itself is locked too.
114 * So __run_timers/migrate_timers can safely modify all timers which could
115 * be found on the lists/queues.
117 * When the timer's base is locked, and the timer removed from list, it is
118 * possible to set timer->base = NULL and drop the lock: the timer remains
122 struct hrtimer_clock_base
*lock_hrtimer_base(const struct hrtimer
*timer
,
123 unsigned long *flags
)
125 struct hrtimer_clock_base
*base
;
129 if (likely(base
!= NULL
)) {
130 raw_spin_lock_irqsave(&base
->cpu_base
->lock
, *flags
);
131 if (likely(base
== timer
->base
))
133 /* The timer has migrated to another CPU: */
134 raw_spin_unlock_irqrestore(&base
->cpu_base
->lock
, *flags
);
142 * Get the preferred target CPU for NOHZ
144 static int hrtimer_get_target(int this_cpu
, int pinned
)
147 if (!pinned
&& get_sysctl_timer_migration() && idle_cpu(this_cpu
))
148 return get_nohz_timer_target();
154 * With HIGHRES=y we do not migrate the timer when it is expiring
155 * before the next event on the target cpu because we cannot reprogram
156 * the target cpu hardware and we would cause it to fire late.
158 * Called with cpu_base->lock of target cpu held.
161 hrtimer_check_target(struct hrtimer
*timer
, struct hrtimer_clock_base
*new_base
)
163 #ifdef CONFIG_HIGH_RES_TIMERS
166 if (!new_base
->cpu_base
->hres_active
)
169 expires
= ktime_sub(hrtimer_get_expires(timer
), new_base
->offset
);
170 return expires
.tv64
<= new_base
->cpu_base
->expires_next
.tv64
;
177 * Switch the timer base to the current CPU when possible.
179 static inline struct hrtimer_clock_base
*
180 switch_hrtimer_base(struct hrtimer
*timer
, struct hrtimer_clock_base
*base
,
183 struct hrtimer_clock_base
*new_base
;
184 struct hrtimer_cpu_base
*new_cpu_base
;
185 int this_cpu
= smp_processor_id();
186 int cpu
= hrtimer_get_target(this_cpu
, pinned
);
189 new_cpu_base
= &per_cpu(hrtimer_bases
, cpu
);
190 new_base
= &new_cpu_base
->clock_base
[base
->index
];
192 if (base
!= new_base
) {
194 * We are trying to move timer to new_base.
195 * However we can't change timer's base while it is running,
196 * so we keep it on the same CPU. No hassle vs. reprogramming
197 * the event source in the high resolution case. The softirq
198 * code will take care of this when the timer function has
199 * completed. There is no conflict as we hold the lock until
200 * the timer is enqueued.
202 if (unlikely(hrtimer_callback_running(timer
)))
205 /* See the comment in lock_timer_base() */
207 raw_spin_unlock(&base
->cpu_base
->lock
);
208 raw_spin_lock(&new_base
->cpu_base
->lock
);
210 if (cpu
!= this_cpu
&& hrtimer_check_target(timer
, new_base
)) {
212 raw_spin_unlock(&new_base
->cpu_base
->lock
);
213 raw_spin_lock(&base
->cpu_base
->lock
);
217 timer
->base
= new_base
;
222 #else /* CONFIG_SMP */
224 static inline struct hrtimer_clock_base
*
225 lock_hrtimer_base(const struct hrtimer
*timer
, unsigned long *flags
)
227 struct hrtimer_clock_base
*base
= timer
->base
;
229 raw_spin_lock_irqsave(&base
->cpu_base
->lock
, *flags
);
234 # define switch_hrtimer_base(t, b, p) (b)
236 #endif /* !CONFIG_SMP */
239 * Functions for the union type storage format of ktime_t which are
240 * too large for inlining:
242 #if BITS_PER_LONG < 64
243 # ifndef CONFIG_KTIME_SCALAR
245 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
247 * @nsec: the scalar nsec value to add
249 * Returns the sum of kt and nsec in ktime_t format
251 ktime_t
ktime_add_ns(const ktime_t kt
, u64 nsec
)
255 if (likely(nsec
< NSEC_PER_SEC
)) {
258 unsigned long rem
= do_div(nsec
, NSEC_PER_SEC
);
260 tmp
= ktime_set((long)nsec
, rem
);
263 return ktime_add(kt
, tmp
);
266 EXPORT_SYMBOL_GPL(ktime_add_ns
);
269 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
271 * @nsec: the scalar nsec value to subtract
273 * Returns the subtraction of @nsec from @kt in ktime_t format
275 ktime_t
ktime_sub_ns(const ktime_t kt
, u64 nsec
)
279 if (likely(nsec
< NSEC_PER_SEC
)) {
282 unsigned long rem
= do_div(nsec
, NSEC_PER_SEC
);
284 tmp
= ktime_set((long)nsec
, rem
);
287 return ktime_sub(kt
, tmp
);
290 EXPORT_SYMBOL_GPL(ktime_sub_ns
);
291 # endif /* !CONFIG_KTIME_SCALAR */
294 * Divide a ktime value by a nanosecond value
296 u64
ktime_divns(const ktime_t kt
, s64 div
)
301 dclc
= ktime_to_ns(kt
);
302 /* Make sure the divisor is less than 2^32: */
308 do_div(dclc
, (unsigned long) div
);
312 #endif /* BITS_PER_LONG >= 64 */
315 * Add two ktime values and do a safety check for overflow:
317 ktime_t
ktime_add_safe(const ktime_t lhs
, const ktime_t rhs
)
319 ktime_t res
= ktime_add(lhs
, rhs
);
322 * We use KTIME_SEC_MAX here, the maximum timeout which we can
323 * return to user space in a timespec:
325 if (res
.tv64
< 0 || res
.tv64
< lhs
.tv64
|| res
.tv64
< rhs
.tv64
)
326 res
= ktime_set(KTIME_SEC_MAX
, 0);
331 EXPORT_SYMBOL_GPL(ktime_add_safe
);
333 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
335 static struct debug_obj_descr hrtimer_debug_descr
;
338 * fixup_init is called when:
339 * - an active object is initialized
341 static int hrtimer_fixup_init(void *addr
, enum debug_obj_state state
)
343 struct hrtimer
*timer
= addr
;
346 case ODEBUG_STATE_ACTIVE
:
347 hrtimer_cancel(timer
);
348 debug_object_init(timer
, &hrtimer_debug_descr
);
356 * fixup_activate is called when:
357 * - an active object is activated
358 * - an unknown object is activated (might be a statically initialized object)
360 static int hrtimer_fixup_activate(void *addr
, enum debug_obj_state state
)
364 case ODEBUG_STATE_NOTAVAILABLE
:
368 case ODEBUG_STATE_ACTIVE
:
377 * fixup_free is called when:
378 * - an active object is freed
380 static int hrtimer_fixup_free(void *addr
, enum debug_obj_state state
)
382 struct hrtimer
*timer
= addr
;
385 case ODEBUG_STATE_ACTIVE
:
386 hrtimer_cancel(timer
);
387 debug_object_free(timer
, &hrtimer_debug_descr
);
394 static struct debug_obj_descr hrtimer_debug_descr
= {
396 .fixup_init
= hrtimer_fixup_init
,
397 .fixup_activate
= hrtimer_fixup_activate
,
398 .fixup_free
= hrtimer_fixup_free
,
401 static inline void debug_hrtimer_init(struct hrtimer
*timer
)
403 debug_object_init(timer
, &hrtimer_debug_descr
);
406 static inline void debug_hrtimer_activate(struct hrtimer
*timer
)
408 debug_object_activate(timer
, &hrtimer_debug_descr
);
411 static inline void debug_hrtimer_deactivate(struct hrtimer
*timer
)
413 debug_object_deactivate(timer
, &hrtimer_debug_descr
);
416 static inline void debug_hrtimer_free(struct hrtimer
*timer
)
418 debug_object_free(timer
, &hrtimer_debug_descr
);
421 static void __hrtimer_init(struct hrtimer
*timer
, clockid_t clock_id
,
422 enum hrtimer_mode mode
);
424 void hrtimer_init_on_stack(struct hrtimer
*timer
, clockid_t clock_id
,
425 enum hrtimer_mode mode
)
427 debug_object_init_on_stack(timer
, &hrtimer_debug_descr
);
428 __hrtimer_init(timer
, clock_id
, mode
);
430 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack
);
432 void destroy_hrtimer_on_stack(struct hrtimer
*timer
)
434 debug_object_free(timer
, &hrtimer_debug_descr
);
438 static inline void debug_hrtimer_init(struct hrtimer
*timer
) { }
439 static inline void debug_hrtimer_activate(struct hrtimer
*timer
) { }
440 static inline void debug_hrtimer_deactivate(struct hrtimer
*timer
) { }
444 debug_init(struct hrtimer
*timer
, clockid_t clockid
,
445 enum hrtimer_mode mode
)
447 debug_hrtimer_init(timer
);
448 trace_hrtimer_init(timer
, clockid
, mode
);
451 static inline void debug_activate(struct hrtimer
*timer
)
453 debug_hrtimer_activate(timer
);
454 trace_hrtimer_start(timer
);
457 static inline void debug_deactivate(struct hrtimer
*timer
)
459 debug_hrtimer_deactivate(timer
);
460 trace_hrtimer_cancel(timer
);
463 /* High resolution timer related functions */
464 #ifdef CONFIG_HIGH_RES_TIMERS
467 * High resolution timer enabled ?
469 static int hrtimer_hres_enabled __read_mostly
= 1;
472 * Enable / Disable high resolution mode
474 static int __init
setup_hrtimer_hres(char *str
)
476 if (!strcmp(str
, "off"))
477 hrtimer_hres_enabled
= 0;
478 else if (!strcmp(str
, "on"))
479 hrtimer_hres_enabled
= 1;
485 __setup("highres=", setup_hrtimer_hres
);
488 * hrtimer_high_res_enabled - query, if the highres mode is enabled
490 static inline int hrtimer_is_hres_enabled(void)
492 return hrtimer_hres_enabled
;
496 * Is the high resolution mode active ?
498 static inline int hrtimer_hres_active(void)
500 return __get_cpu_var(hrtimer_bases
).hres_active
;
504 * Reprogram the event source with checking both queues for the
506 * Called with interrupts disabled and base->lock held
509 hrtimer_force_reprogram(struct hrtimer_cpu_base
*cpu_base
, int skip_equal
)
512 struct hrtimer_clock_base
*base
= cpu_base
->clock_base
;
513 ktime_t expires
, expires_next
;
515 expires_next
.tv64
= KTIME_MAX
;
517 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++, base
++) {
518 struct hrtimer
*timer
;
522 timer
= rb_entry(base
->first
, struct hrtimer
, node
);
523 expires
= ktime_sub(hrtimer_get_expires(timer
), base
->offset
);
525 * clock_was_set() has changed base->offset so the
526 * result might be negative. Fix it up to prevent a
527 * false positive in clockevents_program_event()
529 if (expires
.tv64
< 0)
531 if (expires
.tv64
< expires_next
.tv64
)
532 expires_next
= expires
;
535 if (skip_equal
&& expires_next
.tv64
== cpu_base
->expires_next
.tv64
)
538 cpu_base
->expires_next
.tv64
= expires_next
.tv64
;
540 if (cpu_base
->expires_next
.tv64
!= KTIME_MAX
)
541 tick_program_event(cpu_base
->expires_next
, 1);
545 * Shared reprogramming for clock_realtime and clock_monotonic
547 * When a timer is enqueued and expires earlier than the already enqueued
548 * timers, we have to check, whether it expires earlier than the timer for
549 * which the clock event device was armed.
551 * Called with interrupts disabled and base->cpu_base.lock held
553 static int hrtimer_reprogram(struct hrtimer
*timer
,
554 struct hrtimer_clock_base
*base
)
556 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
557 ktime_t expires
= ktime_sub(hrtimer_get_expires(timer
), base
->offset
);
560 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer
) < 0);
563 * When the callback is running, we do not reprogram the clock event
564 * device. The timer callback is either running on a different CPU or
565 * the callback is executed in the hrtimer_interrupt context. The
566 * reprogramming is handled either by the softirq, which called the
567 * callback or at the end of the hrtimer_interrupt.
569 if (hrtimer_callback_running(timer
))
573 * CLOCK_REALTIME timer might be requested with an absolute
574 * expiry time which is less than base->offset. Nothing wrong
575 * about that, just avoid to call into the tick code, which
576 * has now objections against negative expiry values.
578 if (expires
.tv64
< 0)
581 if (expires
.tv64
>= cpu_base
->expires_next
.tv64
)
585 * If a hang was detected in the last timer interrupt then we
586 * do not schedule a timer which is earlier than the expiry
587 * which we enforced in the hang detection. We want the system
590 if (cpu_base
->hang_detected
)
594 * Clockevents returns -ETIME, when the event was in the past.
596 res
= tick_program_event(expires
, 0);
597 if (!IS_ERR_VALUE(res
))
598 cpu_base
->expires_next
= expires
;
604 * Retrigger next event is called after clock was set
606 * Called with interrupts disabled via on_each_cpu()
608 static void retrigger_next_event(void *arg
)
610 struct hrtimer_cpu_base
*base
;
611 struct timespec realtime_offset
, wtm
;
614 if (!hrtimer_hres_active())
618 seq
= read_seqbegin(&xtime_lock
);
619 wtm
= __get_wall_to_monotonic();
620 } while (read_seqretry(&xtime_lock
, seq
));
621 set_normalized_timespec(&realtime_offset
, -wtm
.tv_sec
, -wtm
.tv_nsec
);
623 base
= &__get_cpu_var(hrtimer_bases
);
625 /* Adjust CLOCK_REALTIME offset */
626 raw_spin_lock(&base
->lock
);
627 base
->clock_base
[CLOCK_REALTIME
].offset
=
628 timespec_to_ktime(realtime_offset
);
630 hrtimer_force_reprogram(base
, 0);
631 raw_spin_unlock(&base
->lock
);
635 * Clock realtime was set
637 * Change the offset of the realtime clock vs. the monotonic
640 * We might have to reprogram the high resolution timer interrupt. On
641 * SMP we call the architecture specific code to retrigger _all_ high
642 * resolution timer interrupts. On UP we just disable interrupts and
643 * call the high resolution interrupt code.
645 void clock_was_set(void)
647 /* Retrigger the CPU local events everywhere */
648 on_each_cpu(retrigger_next_event
, NULL
, 1);
652 * During resume we might have to reprogram the high resolution timer
653 * interrupt (on the local CPU):
655 void hres_timers_resume(void)
657 WARN_ONCE(!irqs_disabled(),
658 KERN_INFO
"hres_timers_resume() called with IRQs enabled!");
660 retrigger_next_event(NULL
);
664 * Initialize the high resolution related parts of cpu_base
666 static inline void hrtimer_init_hres(struct hrtimer_cpu_base
*base
)
668 base
->expires_next
.tv64
= KTIME_MAX
;
669 base
->hres_active
= 0;
673 * Initialize the high resolution related parts of a hrtimer
675 static inline void hrtimer_init_timer_hres(struct hrtimer
*timer
)
681 * When High resolution timers are active, try to reprogram. Note, that in case
682 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
683 * check happens. The timer gets enqueued into the rbtree. The reprogramming
684 * and expiry check is done in the hrtimer_interrupt or in the softirq.
686 static inline int hrtimer_enqueue_reprogram(struct hrtimer
*timer
,
687 struct hrtimer_clock_base
*base
,
690 if (base
->cpu_base
->hres_active
&& hrtimer_reprogram(timer
, base
)) {
692 raw_spin_unlock(&base
->cpu_base
->lock
);
693 raise_softirq_irqoff(HRTIMER_SOFTIRQ
);
694 raw_spin_lock(&base
->cpu_base
->lock
);
696 __raise_softirq_irqoff(HRTIMER_SOFTIRQ
);
705 * Switch to high resolution mode
707 static int hrtimer_switch_to_hres(void)
709 int cpu
= smp_processor_id();
710 struct hrtimer_cpu_base
*base
= &per_cpu(hrtimer_bases
, cpu
);
713 if (base
->hres_active
)
716 local_irq_save(flags
);
718 if (tick_init_highres()) {
719 local_irq_restore(flags
);
720 printk(KERN_WARNING
"Could not switch to high resolution "
721 "mode on CPU %d\n", cpu
);
724 base
->hres_active
= 1;
725 base
->clock_base
[CLOCK_REALTIME
].resolution
= KTIME_HIGH_RES
;
726 base
->clock_base
[CLOCK_MONOTONIC
].resolution
= KTIME_HIGH_RES
;
728 tick_setup_sched_timer();
730 /* "Retrigger" the interrupt to get things going */
731 retrigger_next_event(NULL
);
732 local_irq_restore(flags
);
738 static inline int hrtimer_hres_active(void) { return 0; }
739 static inline int hrtimer_is_hres_enabled(void) { return 0; }
740 static inline int hrtimer_switch_to_hres(void) { return 0; }
742 hrtimer_force_reprogram(struct hrtimer_cpu_base
*base
, int skip_equal
) { }
743 static inline int hrtimer_enqueue_reprogram(struct hrtimer
*timer
,
744 struct hrtimer_clock_base
*base
,
749 static inline void hrtimer_init_hres(struct hrtimer_cpu_base
*base
) { }
750 static inline void hrtimer_init_timer_hres(struct hrtimer
*timer
) { }
752 #endif /* CONFIG_HIGH_RES_TIMERS */
754 static inline void timer_stats_hrtimer_set_start_info(struct hrtimer
*timer
)
756 #ifdef CONFIG_TIMER_STATS
757 if (timer
->start_site
)
759 timer
->start_site
= __builtin_return_address(0);
760 memcpy(timer
->start_comm
, current
->comm
, TASK_COMM_LEN
);
761 timer
->start_pid
= current
->pid
;
765 static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer
*timer
)
767 #ifdef CONFIG_TIMER_STATS
768 timer
->start_site
= NULL
;
772 static inline void timer_stats_account_hrtimer(struct hrtimer
*timer
)
774 #ifdef CONFIG_TIMER_STATS
775 if (likely(!timer_stats_active
))
777 timer_stats_update_stats(timer
, timer
->start_pid
, timer
->start_site
,
778 timer
->function
, timer
->start_comm
, 0);
783 * Counterpart to lock_hrtimer_base above:
786 void unlock_hrtimer_base(const struct hrtimer
*timer
, unsigned long *flags
)
788 raw_spin_unlock_irqrestore(&timer
->base
->cpu_base
->lock
, *flags
);
792 * hrtimer_forward - forward the timer expiry
793 * @timer: hrtimer to forward
794 * @now: forward past this time
795 * @interval: the interval to forward
797 * Forward the timer expiry so it will expire in the future.
798 * Returns the number of overruns.
800 u64
hrtimer_forward(struct hrtimer
*timer
, ktime_t now
, ktime_t interval
)
805 delta
= ktime_sub(now
, hrtimer_get_expires(timer
));
810 if (interval
.tv64
< timer
->base
->resolution
.tv64
)
811 interval
.tv64
= timer
->base
->resolution
.tv64
;
813 if (unlikely(delta
.tv64
>= interval
.tv64
)) {
814 s64 incr
= ktime_to_ns(interval
);
816 orun
= ktime_divns(delta
, incr
);
817 hrtimer_add_expires_ns(timer
, incr
* orun
);
818 if (hrtimer_get_expires_tv64(timer
) > now
.tv64
)
821 * This (and the ktime_add() below) is the
822 * correction for exact:
826 hrtimer_add_expires(timer
, interval
);
830 EXPORT_SYMBOL_GPL(hrtimer_forward
);
833 * enqueue_hrtimer - internal function to (re)start a timer
835 * The timer is inserted in expiry order. Insertion into the
836 * red black tree is O(log(n)). Must hold the base lock.
838 * Returns 1 when the new timer is the leftmost timer in the tree.
840 static int enqueue_hrtimer(struct hrtimer
*timer
,
841 struct hrtimer_clock_base
*base
)
843 struct rb_node
**link
= &base
->active
.rb_node
;
844 struct rb_node
*parent
= NULL
;
845 struct hrtimer
*entry
;
848 debug_activate(timer
);
851 * Find the right place in the rbtree:
855 entry
= rb_entry(parent
, struct hrtimer
, node
);
857 * We dont care about collisions. Nodes with
858 * the same expiry time stay together.
860 if (hrtimer_get_expires_tv64(timer
) <
861 hrtimer_get_expires_tv64(entry
)) {
862 link
= &(*link
)->rb_left
;
864 link
= &(*link
)->rb_right
;
870 * Insert the timer to the rbtree and check whether it
871 * replaces the first pending timer
874 base
->first
= &timer
->node
;
876 rb_link_node(&timer
->node
, parent
, link
);
877 rb_insert_color(&timer
->node
, &base
->active
);
879 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
880 * state of a possibly running callback.
882 timer
->state
|= HRTIMER_STATE_ENQUEUED
;
888 * __remove_hrtimer - internal function to remove a timer
890 * Caller must hold the base lock.
892 * High resolution timer mode reprograms the clock event device when the
893 * timer is the one which expires next. The caller can disable this by setting
894 * reprogram to zero. This is useful, when the context does a reprogramming
895 * anyway (e.g. timer interrupt)
897 static void __remove_hrtimer(struct hrtimer
*timer
,
898 struct hrtimer_clock_base
*base
,
899 unsigned long newstate
, int reprogram
)
901 if (!(timer
->state
& HRTIMER_STATE_ENQUEUED
))
905 * Remove the timer from the rbtree and replace the first
906 * entry pointer if necessary.
908 if (base
->first
== &timer
->node
) {
909 base
->first
= rb_next(&timer
->node
);
910 #ifdef CONFIG_HIGH_RES_TIMERS
911 /* Reprogram the clock event device. if enabled */
912 if (reprogram
&& hrtimer_hres_active()) {
915 expires
= ktime_sub(hrtimer_get_expires(timer
),
917 if (base
->cpu_base
->expires_next
.tv64
== expires
.tv64
)
918 hrtimer_force_reprogram(base
->cpu_base
, 1);
922 rb_erase(&timer
->node
, &base
->active
);
924 timer
->state
= newstate
;
928 * remove hrtimer, called with base lock held
931 remove_hrtimer(struct hrtimer
*timer
, struct hrtimer_clock_base
*base
)
933 if (hrtimer_is_queued(timer
)) {
938 * Remove the timer and force reprogramming when high
939 * resolution mode is active and the timer is on the current
940 * CPU. If we remove a timer on another CPU, reprogramming is
941 * skipped. The interrupt event on this CPU is fired and
942 * reprogramming happens in the interrupt handler. This is a
943 * rare case and less expensive than a smp call.
945 debug_deactivate(timer
);
946 timer_stats_hrtimer_clear_start_info(timer
);
947 reprogram
= base
->cpu_base
== &__get_cpu_var(hrtimer_bases
);
949 * We must preserve the CALLBACK state flag here,
950 * otherwise we could move the timer base in
951 * switch_hrtimer_base.
953 state
= timer
->state
& HRTIMER_STATE_CALLBACK
;
954 __remove_hrtimer(timer
, base
, state
, reprogram
);
960 int __hrtimer_start_range_ns(struct hrtimer
*timer
, ktime_t tim
,
961 unsigned long delta_ns
, const enum hrtimer_mode mode
,
964 struct hrtimer_clock_base
*base
, *new_base
;
968 base
= lock_hrtimer_base(timer
, &flags
);
970 /* Remove an active timer from the queue: */
971 ret
= remove_hrtimer(timer
, base
);
973 /* Switch the timer base, if necessary: */
974 new_base
= switch_hrtimer_base(timer
, base
, mode
& HRTIMER_MODE_PINNED
);
976 if (mode
& HRTIMER_MODE_REL
) {
977 tim
= ktime_add_safe(tim
, new_base
->get_time());
979 * CONFIG_TIME_LOW_RES is a temporary way for architectures
980 * to signal that they simply return xtime in
981 * do_gettimeoffset(). In this case we want to round up by
982 * resolution when starting a relative timer, to avoid short
983 * timeouts. This will go away with the GTOD framework.
985 #ifdef CONFIG_TIME_LOW_RES
986 tim
= ktime_add_safe(tim
, base
->resolution
);
990 hrtimer_set_expires_range_ns(timer
, tim
, delta_ns
);
992 timer_stats_hrtimer_set_start_info(timer
);
994 leftmost
= enqueue_hrtimer(timer
, new_base
);
997 * Only allow reprogramming if the new base is on this CPU.
998 * (it might still be on another CPU if the timer was pending)
1000 * XXX send_remote_softirq() ?
1002 if (leftmost
&& new_base
->cpu_base
== &__get_cpu_var(hrtimer_bases
))
1003 hrtimer_enqueue_reprogram(timer
, new_base
, wakeup
);
1005 unlock_hrtimer_base(timer
, &flags
);
1011 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
1012 * @timer: the timer to be added
1014 * @delta_ns: "slack" range for the timer
1015 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
1019 * 1 when the timer was active
1021 int hrtimer_start_range_ns(struct hrtimer
*timer
, ktime_t tim
,
1022 unsigned long delta_ns
, const enum hrtimer_mode mode
)
1024 return __hrtimer_start_range_ns(timer
, tim
, delta_ns
, mode
, 1);
1026 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns
);
1029 * hrtimer_start - (re)start an hrtimer on the current CPU
1030 * @timer: the timer to be added
1032 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
1036 * 1 when the timer was active
1039 hrtimer_start(struct hrtimer
*timer
, ktime_t tim
, const enum hrtimer_mode mode
)
1041 return __hrtimer_start_range_ns(timer
, tim
, 0, mode
, 1);
1043 EXPORT_SYMBOL_GPL(hrtimer_start
);
1047 * hrtimer_try_to_cancel - try to deactivate a timer
1048 * @timer: hrtimer to stop
1051 * 0 when the timer was not active
1052 * 1 when the timer was active
1053 * -1 when the timer is currently excuting the callback function and
1056 int hrtimer_try_to_cancel(struct hrtimer
*timer
)
1058 struct hrtimer_clock_base
*base
;
1059 unsigned long flags
;
1062 base
= lock_hrtimer_base(timer
, &flags
);
1064 if (!hrtimer_callback_running(timer
))
1065 ret
= remove_hrtimer(timer
, base
);
1067 unlock_hrtimer_base(timer
, &flags
);
1072 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel
);
1075 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1076 * @timer: the timer to be cancelled
1079 * 0 when the timer was not active
1080 * 1 when the timer was active
1082 int hrtimer_cancel(struct hrtimer
*timer
)
1085 int ret
= hrtimer_try_to_cancel(timer
);
1092 EXPORT_SYMBOL_GPL(hrtimer_cancel
);
1095 * hrtimer_get_remaining - get remaining time for the timer
1096 * @timer: the timer to read
1098 ktime_t
hrtimer_get_remaining(const struct hrtimer
*timer
)
1100 unsigned long flags
;
1103 lock_hrtimer_base(timer
, &flags
);
1104 rem
= hrtimer_expires_remaining(timer
);
1105 unlock_hrtimer_base(timer
, &flags
);
1109 EXPORT_SYMBOL_GPL(hrtimer_get_remaining
);
1113 * hrtimer_get_next_event - get the time until next expiry event
1115 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1118 ktime_t
hrtimer_get_next_event(void)
1120 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
1121 struct hrtimer_clock_base
*base
= cpu_base
->clock_base
;
1122 ktime_t delta
, mindelta
= { .tv64
= KTIME_MAX
};
1123 unsigned long flags
;
1126 raw_spin_lock_irqsave(&cpu_base
->lock
, flags
);
1128 if (!hrtimer_hres_active()) {
1129 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++, base
++) {
1130 struct hrtimer
*timer
;
1135 timer
= rb_entry(base
->first
, struct hrtimer
, node
);
1136 delta
.tv64
= hrtimer_get_expires_tv64(timer
);
1137 delta
= ktime_sub(delta
, base
->get_time());
1138 if (delta
.tv64
< mindelta
.tv64
)
1139 mindelta
.tv64
= delta
.tv64
;
1143 raw_spin_unlock_irqrestore(&cpu_base
->lock
, flags
);
1145 if (mindelta
.tv64
< 0)
1151 static void __hrtimer_init(struct hrtimer
*timer
, clockid_t clock_id
,
1152 enum hrtimer_mode mode
)
1154 struct hrtimer_cpu_base
*cpu_base
;
1156 memset(timer
, 0, sizeof(struct hrtimer
));
1158 cpu_base
= &__raw_get_cpu_var(hrtimer_bases
);
1160 if (clock_id
== CLOCK_REALTIME
&& mode
!= HRTIMER_MODE_ABS
)
1161 clock_id
= CLOCK_MONOTONIC
;
1163 timer
->base
= &cpu_base
->clock_base
[clock_id
];
1164 hrtimer_init_timer_hres(timer
);
1166 #ifdef CONFIG_TIMER_STATS
1167 timer
->start_site
= NULL
;
1168 timer
->start_pid
= -1;
1169 memset(timer
->start_comm
, 0, TASK_COMM_LEN
);
1174 * hrtimer_init - initialize a timer to the given clock
1175 * @timer: the timer to be initialized
1176 * @clock_id: the clock to be used
1177 * @mode: timer mode abs/rel
1179 void hrtimer_init(struct hrtimer
*timer
, clockid_t clock_id
,
1180 enum hrtimer_mode mode
)
1182 debug_init(timer
, clock_id
, mode
);
1183 __hrtimer_init(timer
, clock_id
, mode
);
1185 EXPORT_SYMBOL_GPL(hrtimer_init
);
1188 * hrtimer_get_res - get the timer resolution for a clock
1189 * @which_clock: which clock to query
1190 * @tp: pointer to timespec variable to store the resolution
1192 * Store the resolution of the clock selected by @which_clock in the
1193 * variable pointed to by @tp.
1195 int hrtimer_get_res(const clockid_t which_clock
, struct timespec
*tp
)
1197 struct hrtimer_cpu_base
*cpu_base
;
1199 cpu_base
= &__raw_get_cpu_var(hrtimer_bases
);
1200 *tp
= ktime_to_timespec(cpu_base
->clock_base
[which_clock
].resolution
);
1204 EXPORT_SYMBOL_GPL(hrtimer_get_res
);
1206 static void __run_hrtimer(struct hrtimer
*timer
, ktime_t
*now
)
1208 struct hrtimer_clock_base
*base
= timer
->base
;
1209 struct hrtimer_cpu_base
*cpu_base
= base
->cpu_base
;
1210 enum hrtimer_restart (*fn
)(struct hrtimer
*);
1213 WARN_ON(!irqs_disabled());
1215 debug_deactivate(timer
);
1216 __remove_hrtimer(timer
, base
, HRTIMER_STATE_CALLBACK
, 0);
1217 timer_stats_account_hrtimer(timer
);
1218 fn
= timer
->function
;
1221 * Because we run timers from hardirq context, there is no chance
1222 * they get migrated to another cpu, therefore its safe to unlock
1225 raw_spin_unlock(&cpu_base
->lock
);
1226 trace_hrtimer_expire_entry(timer
, now
);
1227 restart
= fn(timer
);
1228 trace_hrtimer_expire_exit(timer
);
1229 raw_spin_lock(&cpu_base
->lock
);
1232 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1233 * we do not reprogramm the event hardware. Happens either in
1234 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1236 if (restart
!= HRTIMER_NORESTART
) {
1237 BUG_ON(timer
->state
!= HRTIMER_STATE_CALLBACK
);
1238 enqueue_hrtimer(timer
, base
);
1241 WARN_ON_ONCE(!(timer
->state
& HRTIMER_STATE_CALLBACK
));
1243 timer
->state
&= ~HRTIMER_STATE_CALLBACK
;
1246 #ifdef CONFIG_HIGH_RES_TIMERS
1249 * High resolution timer interrupt
1250 * Called with interrupts disabled
1252 void hrtimer_interrupt(struct clock_event_device
*dev
)
1254 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
1255 struct hrtimer_clock_base
*base
;
1256 ktime_t expires_next
, now
, entry_time
, delta
;
1259 BUG_ON(!cpu_base
->hres_active
);
1260 cpu_base
->nr_events
++;
1261 dev
->next_event
.tv64
= KTIME_MAX
;
1263 entry_time
= now
= ktime_get();
1265 expires_next
.tv64
= KTIME_MAX
;
1267 raw_spin_lock(&cpu_base
->lock
);
1269 * We set expires_next to KTIME_MAX here with cpu_base->lock
1270 * held to prevent that a timer is enqueued in our queue via
1271 * the migration code. This does not affect enqueueing of
1272 * timers which run their callback and need to be requeued on
1275 cpu_base
->expires_next
.tv64
= KTIME_MAX
;
1277 base
= cpu_base
->clock_base
;
1279 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++) {
1281 struct rb_node
*node
;
1283 basenow
= ktime_add(now
, base
->offset
);
1285 while ((node
= base
->first
)) {
1286 struct hrtimer
*timer
;
1288 timer
= rb_entry(node
, struct hrtimer
, node
);
1291 * The immediate goal for using the softexpires is
1292 * minimizing wakeups, not running timers at the
1293 * earliest interrupt after their soft expiration.
1294 * This allows us to avoid using a Priority Search
1295 * Tree, which can answer a stabbing querry for
1296 * overlapping intervals and instead use the simple
1297 * BST we already have.
1298 * We don't add extra wakeups by delaying timers that
1299 * are right-of a not yet expired timer, because that
1300 * timer will have to trigger a wakeup anyway.
1303 if (basenow
.tv64
< hrtimer_get_softexpires_tv64(timer
)) {
1306 expires
= ktime_sub(hrtimer_get_expires(timer
),
1308 if (expires
.tv64
< expires_next
.tv64
)
1309 expires_next
= expires
;
1313 __run_hrtimer(timer
, &basenow
);
1319 * Store the new expiry value so the migration code can verify
1322 cpu_base
->expires_next
= expires_next
;
1323 raw_spin_unlock(&cpu_base
->lock
);
1325 /* Reprogramming necessary ? */
1326 if (expires_next
.tv64
== KTIME_MAX
||
1327 !tick_program_event(expires_next
, 0)) {
1328 cpu_base
->hang_detected
= 0;
1333 * The next timer was already expired due to:
1335 * - long lasting callbacks
1336 * - being scheduled away when running in a VM
1338 * We need to prevent that we loop forever in the hrtimer
1339 * interrupt routine. We give it 3 attempts to avoid
1340 * overreacting on some spurious event.
1343 cpu_base
->nr_retries
++;
1347 * Give the system a chance to do something else than looping
1348 * here. We stored the entry time, so we know exactly how long
1349 * we spent here. We schedule the next event this amount of
1352 cpu_base
->nr_hangs
++;
1353 cpu_base
->hang_detected
= 1;
1354 delta
= ktime_sub(now
, entry_time
);
1355 if (delta
.tv64
> cpu_base
->max_hang_time
.tv64
)
1356 cpu_base
->max_hang_time
= delta
;
1358 * Limit it to a sensible value as we enforce a longer
1359 * delay. Give the CPU at least 100ms to catch up.
1361 if (delta
.tv64
> 100 * NSEC_PER_MSEC
)
1362 expires_next
= ktime_add_ns(now
, 100 * NSEC_PER_MSEC
);
1364 expires_next
= ktime_add(now
, delta
);
1365 tick_program_event(expires_next
, 1);
1366 printk_once(KERN_WARNING
"hrtimer: interrupt took %llu ns\n",
1367 ktime_to_ns(delta
));
1371 * local version of hrtimer_peek_ahead_timers() called with interrupts
1374 static void __hrtimer_peek_ahead_timers(void)
1376 struct tick_device
*td
;
1378 if (!hrtimer_hres_active())
1381 td
= &__get_cpu_var(tick_cpu_device
);
1382 if (td
&& td
->evtdev
)
1383 hrtimer_interrupt(td
->evtdev
);
1387 * hrtimer_peek_ahead_timers -- run soft-expired timers now
1389 * hrtimer_peek_ahead_timers will peek at the timer queue of
1390 * the current cpu and check if there are any timers for which
1391 * the soft expires time has passed. If any such timers exist,
1392 * they are run immediately and then removed from the timer queue.
1395 void hrtimer_peek_ahead_timers(void)
1397 unsigned long flags
;
1399 local_irq_save(flags
);
1400 __hrtimer_peek_ahead_timers();
1401 local_irq_restore(flags
);
1404 static void run_hrtimer_softirq(struct softirq_action
*h
)
1406 hrtimer_peek_ahead_timers();
1409 #else /* CONFIG_HIGH_RES_TIMERS */
1411 static inline void __hrtimer_peek_ahead_timers(void) { }
1413 #endif /* !CONFIG_HIGH_RES_TIMERS */
1416 * Called from timer softirq every jiffy, expire hrtimers:
1418 * For HRT its the fall back code to run the softirq in the timer
1419 * softirq context in case the hrtimer initialization failed or has
1420 * not been done yet.
1422 void hrtimer_run_pending(void)
1424 if (hrtimer_hres_active())
1428 * This _is_ ugly: We have to check in the softirq context,
1429 * whether we can switch to highres and / or nohz mode. The
1430 * clocksource switch happens in the timer interrupt with
1431 * xtime_lock held. Notification from there only sets the
1432 * check bit in the tick_oneshot code, otherwise we might
1433 * deadlock vs. xtime_lock.
1435 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1436 hrtimer_switch_to_hres();
1440 * Called from hardirq context every jiffy
1442 void hrtimer_run_queues(void)
1444 struct rb_node
*node
;
1445 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
1446 struct hrtimer_clock_base
*base
;
1447 int index
, gettime
= 1;
1449 if (hrtimer_hres_active())
1452 for (index
= 0; index
< HRTIMER_MAX_CLOCK_BASES
; index
++) {
1453 base
= &cpu_base
->clock_base
[index
];
1459 hrtimer_get_softirq_time(cpu_base
);
1463 raw_spin_lock(&cpu_base
->lock
);
1465 while ((node
= base
->first
)) {
1466 struct hrtimer
*timer
;
1468 timer
= rb_entry(node
, struct hrtimer
, node
);
1469 if (base
->softirq_time
.tv64
<=
1470 hrtimer_get_expires_tv64(timer
))
1473 __run_hrtimer(timer
, &base
->softirq_time
);
1475 raw_spin_unlock(&cpu_base
->lock
);
1480 * Sleep related functions:
1482 static enum hrtimer_restart
hrtimer_wakeup(struct hrtimer
*timer
)
1484 struct hrtimer_sleeper
*t
=
1485 container_of(timer
, struct hrtimer_sleeper
, timer
);
1486 struct task_struct
*task
= t
->task
;
1490 wake_up_process(task
);
1492 return HRTIMER_NORESTART
;
1495 void hrtimer_init_sleeper(struct hrtimer_sleeper
*sl
, struct task_struct
*task
)
1497 sl
->timer
.function
= hrtimer_wakeup
;
1500 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper
);
1502 static int __sched
do_nanosleep(struct hrtimer_sleeper
*t
, enum hrtimer_mode mode
)
1504 hrtimer_init_sleeper(t
, current
);
1507 set_current_state(TASK_INTERRUPTIBLE
);
1508 hrtimer_start_expires(&t
->timer
, mode
);
1509 if (!hrtimer_active(&t
->timer
))
1512 if (likely(t
->task
))
1515 hrtimer_cancel(&t
->timer
);
1516 mode
= HRTIMER_MODE_ABS
;
1518 } while (t
->task
&& !signal_pending(current
));
1520 __set_current_state(TASK_RUNNING
);
1522 return t
->task
== NULL
;
1525 static int update_rmtp(struct hrtimer
*timer
, struct timespec __user
*rmtp
)
1527 struct timespec rmt
;
1530 rem
= hrtimer_expires_remaining(timer
);
1533 rmt
= ktime_to_timespec(rem
);
1535 if (copy_to_user(rmtp
, &rmt
, sizeof(*rmtp
)))
1541 long __sched
hrtimer_nanosleep_restart(struct restart_block
*restart
)
1543 struct hrtimer_sleeper t
;
1544 struct timespec __user
*rmtp
;
1547 hrtimer_init_on_stack(&t
.timer
, restart
->nanosleep
.index
,
1549 hrtimer_set_expires_tv64(&t
.timer
, restart
->nanosleep
.expires
);
1551 if (do_nanosleep(&t
, HRTIMER_MODE_ABS
))
1554 rmtp
= restart
->nanosleep
.rmtp
;
1556 ret
= update_rmtp(&t
.timer
, rmtp
);
1561 /* The other values in restart are already filled in */
1562 ret
= -ERESTART_RESTARTBLOCK
;
1564 destroy_hrtimer_on_stack(&t
.timer
);
1568 long hrtimer_nanosleep(struct timespec
*rqtp
, struct timespec __user
*rmtp
,
1569 const enum hrtimer_mode mode
, const clockid_t clockid
)
1571 struct restart_block
*restart
;
1572 struct hrtimer_sleeper t
;
1574 unsigned long slack
;
1576 slack
= current
->timer_slack_ns
;
1577 if (rt_task(current
))
1580 hrtimer_init_on_stack(&t
.timer
, clockid
, mode
);
1581 hrtimer_set_expires_range_ns(&t
.timer
, timespec_to_ktime(*rqtp
), slack
);
1582 if (do_nanosleep(&t
, mode
))
1585 /* Absolute timers do not update the rmtp value and restart: */
1586 if (mode
== HRTIMER_MODE_ABS
) {
1587 ret
= -ERESTARTNOHAND
;
1592 ret
= update_rmtp(&t
.timer
, rmtp
);
1597 restart
= ¤t_thread_info()->restart_block
;
1598 restart
->fn
= hrtimer_nanosleep_restart
;
1599 restart
->nanosleep
.index
= t
.timer
.base
->index
;
1600 restart
->nanosleep
.rmtp
= rmtp
;
1601 restart
->nanosleep
.expires
= hrtimer_get_expires_tv64(&t
.timer
);
1603 ret
= -ERESTART_RESTARTBLOCK
;
1605 destroy_hrtimer_on_stack(&t
.timer
);
1609 SYSCALL_DEFINE2(nanosleep
, struct timespec __user
*, rqtp
,
1610 struct timespec __user
*, rmtp
)
1614 if (copy_from_user(&tu
, rqtp
, sizeof(tu
)))
1617 if (!timespec_valid(&tu
))
1620 return hrtimer_nanosleep(&tu
, rmtp
, HRTIMER_MODE_REL
, CLOCK_MONOTONIC
);
1624 * Functions related to boot-time initialization:
1626 static void __cpuinit
init_hrtimers_cpu(int cpu
)
1628 struct hrtimer_cpu_base
*cpu_base
= &per_cpu(hrtimer_bases
, cpu
);
1631 raw_spin_lock_init(&cpu_base
->lock
);
1633 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++)
1634 cpu_base
->clock_base
[i
].cpu_base
= cpu_base
;
1636 hrtimer_init_hres(cpu_base
);
1639 #ifdef CONFIG_HOTPLUG_CPU
1641 static void migrate_hrtimer_list(struct hrtimer_clock_base
*old_base
,
1642 struct hrtimer_clock_base
*new_base
)
1644 struct hrtimer
*timer
;
1645 struct rb_node
*node
;
1647 while ((node
= rb_first(&old_base
->active
))) {
1648 timer
= rb_entry(node
, struct hrtimer
, node
);
1649 BUG_ON(hrtimer_callback_running(timer
));
1650 debug_deactivate(timer
);
1653 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1654 * timer could be seen as !active and just vanish away
1655 * under us on another CPU
1657 __remove_hrtimer(timer
, old_base
, HRTIMER_STATE_MIGRATE
, 0);
1658 timer
->base
= new_base
;
1660 * Enqueue the timers on the new cpu. This does not
1661 * reprogram the event device in case the timer
1662 * expires before the earliest on this CPU, but we run
1663 * hrtimer_interrupt after we migrated everything to
1664 * sort out already expired timers and reprogram the
1667 enqueue_hrtimer(timer
, new_base
);
1669 /* Clear the migration state bit */
1670 timer
->state
&= ~HRTIMER_STATE_MIGRATE
;
1674 static void migrate_hrtimers(int scpu
)
1676 struct hrtimer_cpu_base
*old_base
, *new_base
;
1679 BUG_ON(cpu_online(scpu
));
1680 tick_cancel_sched_timer(scpu
);
1682 local_irq_disable();
1683 old_base
= &per_cpu(hrtimer_bases
, scpu
);
1684 new_base
= &__get_cpu_var(hrtimer_bases
);
1686 * The caller is globally serialized and nobody else
1687 * takes two locks at once, deadlock is not possible.
1689 raw_spin_lock(&new_base
->lock
);
1690 raw_spin_lock_nested(&old_base
->lock
, SINGLE_DEPTH_NESTING
);
1692 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++) {
1693 migrate_hrtimer_list(&old_base
->clock_base
[i
],
1694 &new_base
->clock_base
[i
]);
1697 raw_spin_unlock(&old_base
->lock
);
1698 raw_spin_unlock(&new_base
->lock
);
1700 /* Check, if we got expired work to do */
1701 __hrtimer_peek_ahead_timers();
1705 #endif /* CONFIG_HOTPLUG_CPU */
1707 static int __cpuinit
hrtimer_cpu_notify(struct notifier_block
*self
,
1708 unsigned long action
, void *hcpu
)
1710 int scpu
= (long)hcpu
;
1714 case CPU_UP_PREPARE
:
1715 case CPU_UP_PREPARE_FROZEN
:
1716 init_hrtimers_cpu(scpu
);
1719 #ifdef CONFIG_HOTPLUG_CPU
1721 case CPU_DYING_FROZEN
:
1722 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING
, &scpu
);
1725 case CPU_DEAD_FROZEN
:
1727 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD
, &scpu
);
1728 migrate_hrtimers(scpu
);
1740 static struct notifier_block __cpuinitdata hrtimers_nb
= {
1741 .notifier_call
= hrtimer_cpu_notify
,
1744 void __init
hrtimers_init(void)
1746 hrtimer_cpu_notify(&hrtimers_nb
, (unsigned long)CPU_UP_PREPARE
,
1747 (void *)(long)smp_processor_id());
1748 register_cpu_notifier(&hrtimers_nb
);
1749 #ifdef CONFIG_HIGH_RES_TIMERS
1750 open_softirq(HRTIMER_SOFTIRQ
, run_hrtimer_softirq
);
1755 * schedule_hrtimeout_range_clock - sleep until timeout
1756 * @expires: timeout value (ktime_t)
1757 * @delta: slack in expires timeout (ktime_t)
1758 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1759 * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1762 schedule_hrtimeout_range_clock(ktime_t
*expires
, unsigned long delta
,
1763 const enum hrtimer_mode mode
, int clock
)
1765 struct hrtimer_sleeper t
;
1768 * Optimize when a zero timeout value is given. It does not
1769 * matter whether this is an absolute or a relative time.
1771 if (expires
&& !expires
->tv64
) {
1772 __set_current_state(TASK_RUNNING
);
1777 * A NULL parameter means "inifinte"
1781 __set_current_state(TASK_RUNNING
);
1785 hrtimer_init_on_stack(&t
.timer
, clock
, mode
);
1786 hrtimer_set_expires_range_ns(&t
.timer
, *expires
, delta
);
1788 hrtimer_init_sleeper(&t
, current
);
1790 hrtimer_start_expires(&t
.timer
, mode
);
1791 if (!hrtimer_active(&t
.timer
))
1797 hrtimer_cancel(&t
.timer
);
1798 destroy_hrtimer_on_stack(&t
.timer
);
1800 __set_current_state(TASK_RUNNING
);
1802 return !t
.task
? 0 : -EINTR
;
1806 * schedule_hrtimeout_range - sleep until timeout
1807 * @expires: timeout value (ktime_t)
1808 * @delta: slack in expires timeout (ktime_t)
1809 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1811 * Make the current task sleep until the given expiry time has
1812 * elapsed. The routine will return immediately unless
1813 * the current task state has been set (see set_current_state()).
1815 * The @delta argument gives the kernel the freedom to schedule the
1816 * actual wakeup to a time that is both power and performance friendly.
1817 * The kernel give the normal best effort behavior for "@expires+@delta",
1818 * but may decide to fire the timer earlier, but no earlier than @expires.
1820 * You can set the task state as follows -
1822 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1823 * pass before the routine returns.
1825 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1826 * delivered to the current task.
1828 * The current task state is guaranteed to be TASK_RUNNING when this
1831 * Returns 0 when the timer has expired otherwise -EINTR
1833 int __sched
schedule_hrtimeout_range(ktime_t
*expires
, unsigned long delta
,
1834 const enum hrtimer_mode mode
)
1836 return schedule_hrtimeout_range_clock(expires
, delta
, mode
,
1839 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range
);
1842 * schedule_hrtimeout - sleep until timeout
1843 * @expires: timeout value (ktime_t)
1844 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1846 * Make the current task sleep until the given expiry time has
1847 * elapsed. The routine will return immediately unless
1848 * the current task state has been set (see set_current_state()).
1850 * You can set the task state as follows -
1852 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1853 * pass before the routine returns.
1855 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1856 * delivered to the current task.
1858 * The current task state is guaranteed to be TASK_RUNNING when this
1861 * Returns 0 when the timer has expired otherwise -EINTR
1863 int __sched
schedule_hrtimeout(ktime_t
*expires
,
1864 const enum hrtimer_mode mode
)
1866 return schedule_hrtimeout_range(expires
, 0, mode
);
1868 EXPORT_SYMBOL_GPL(schedule_hrtimeout
);