Btrfs: add dummy extent if dst offset excceeds file end in
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / include / linux / clocksource.h
blob18a1baf31f2d531493526a48132dc38a5f2f0f03
1 /* linux/include/linux/clocksource.h
3 * This file contains the structure definitions for clocksources.
5 * If you are not a clocksource, or timekeeping code, you should
6 * not be including this file!
7 */
8 #ifndef _LINUX_CLOCKSOURCE_H
9 #define _LINUX_CLOCKSOURCE_H
11 #include <linux/types.h>
12 #include <linux/timex.h>
13 #include <linux/time.h>
14 #include <linux/list.h>
15 #include <linux/cache.h>
16 #include <linux/timer.h>
17 #include <linux/init.h>
18 #include <asm/div64.h>
19 #include <asm/io.h>
21 /* clocksource cycle base type */
22 typedef u64 cycle_t;
23 struct clocksource;
25 /**
26 * struct cyclecounter - hardware abstraction for a free running counter
27 * Provides completely state-free accessors to the underlying hardware.
28 * Depending on which hardware it reads, the cycle counter may wrap
29 * around quickly. Locking rules (if necessary) have to be defined
30 * by the implementor and user of specific instances of this API.
32 * @read: returns the current cycle value
33 * @mask: bitmask for two's complement
34 * subtraction of non 64 bit counters,
35 * see CLOCKSOURCE_MASK() helper macro
36 * @mult: cycle to nanosecond multiplier
37 * @shift: cycle to nanosecond divisor (power of two)
39 struct cyclecounter {
40 cycle_t (*read)(const struct cyclecounter *cc);
41 cycle_t mask;
42 u32 mult;
43 u32 shift;
46 /**
47 * struct timecounter - layer above a %struct cyclecounter which counts nanoseconds
48 * Contains the state needed by timecounter_read() to detect
49 * cycle counter wrap around. Initialize with
50 * timecounter_init(). Also used to convert cycle counts into the
51 * corresponding nanosecond counts with timecounter_cyc2time(). Users
52 * of this code are responsible for initializing the underlying
53 * cycle counter hardware, locking issues and reading the time
54 * more often than the cycle counter wraps around. The nanosecond
55 * counter will only wrap around after ~585 years.
57 * @cc: the cycle counter used by this instance
58 * @cycle_last: most recent cycle counter value seen by
59 * timecounter_read()
60 * @nsec: continuously increasing count
62 struct timecounter {
63 const struct cyclecounter *cc;
64 cycle_t cycle_last;
65 u64 nsec;
68 /**
69 * cyclecounter_cyc2ns - converts cycle counter cycles to nanoseconds
70 * @tc: Pointer to cycle counter.
71 * @cycles: Cycles
73 * XXX - This could use some mult_lxl_ll() asm optimization. Same code
74 * as in cyc2ns, but with unsigned result.
76 static inline u64 cyclecounter_cyc2ns(const struct cyclecounter *cc,
77 cycle_t cycles)
79 u64 ret = (u64)cycles;
80 ret = (ret * cc->mult) >> cc->shift;
81 return ret;
84 /**
85 * timecounter_init - initialize a time counter
86 * @tc: Pointer to time counter which is to be initialized/reset
87 * @cc: A cycle counter, ready to be used.
88 * @start_tstamp: Arbitrary initial time stamp.
90 * After this call the current cycle register (roughly) corresponds to
91 * the initial time stamp. Every call to timecounter_read() increments
92 * the time stamp counter by the number of elapsed nanoseconds.
94 extern void timecounter_init(struct timecounter *tc,
95 const struct cyclecounter *cc,
96 u64 start_tstamp);
98 /**
99 * timecounter_read - return nanoseconds elapsed since timecounter_init()
100 * plus the initial time stamp
101 * @tc: Pointer to time counter.
103 * In other words, keeps track of time since the same epoch as
104 * the function which generated the initial time stamp.
106 extern u64 timecounter_read(struct timecounter *tc);
109 * timecounter_cyc2time - convert a cycle counter to same
110 * time base as values returned by
111 * timecounter_read()
112 * @tc: Pointer to time counter.
113 * @cycle: a value returned by tc->cc->read()
115 * Cycle counts that are converted correctly as long as they
116 * fall into the interval [-1/2 max cycle count, +1/2 max cycle count],
117 * with "max cycle count" == cs->mask+1.
119 * This allows conversion of cycle counter values which were generated
120 * in the past.
122 extern u64 timecounter_cyc2time(struct timecounter *tc,
123 cycle_t cycle_tstamp);
126 * struct clocksource - hardware abstraction for a free running counter
127 * Provides mostly state-free accessors to the underlying hardware.
128 * This is the structure used for system time.
130 * @name: ptr to clocksource name
131 * @list: list head for registration
132 * @rating: rating value for selection (higher is better)
133 * To avoid rating inflation the following
134 * list should give you a guide as to how
135 * to assign your clocksource a rating
136 * 1-99: Unfit for real use
137 * Only available for bootup and testing purposes.
138 * 100-199: Base level usability.
139 * Functional for real use, but not desired.
140 * 200-299: Good.
141 * A correct and usable clocksource.
142 * 300-399: Desired.
143 * A reasonably fast and accurate clocksource.
144 * 400-499: Perfect
145 * The ideal clocksource. A must-use where
146 * available.
147 * @read: returns a cycle value, passes clocksource as argument
148 * @enable: optional function to enable the clocksource
149 * @disable: optional function to disable the clocksource
150 * @mask: bitmask for two's complement
151 * subtraction of non 64 bit counters
152 * @mult: cycle to nanosecond multiplier
153 * @shift: cycle to nanosecond divisor (power of two)
154 * @max_idle_ns: max idle time permitted by the clocksource (nsecs)
155 * @flags: flags describing special properties
156 * @vread: vsyscall based read
157 * @suspend: suspend function for the clocksource, if necessary
158 * @resume: resume function for the clocksource, if necessary
160 struct clocksource {
162 * Hotpath data, fits in a single cache line when the
163 * clocksource itself is cacheline aligned.
165 cycle_t (*read)(struct clocksource *cs);
166 cycle_t cycle_last;
167 cycle_t mask;
168 u32 mult;
169 u32 shift;
170 u64 max_idle_ns;
172 #ifdef CONFIG_IA64
173 void *fsys_mmio; /* used by fsyscall asm code */
174 #define CLKSRC_FSYS_MMIO_SET(mmio, addr) ((mmio) = (addr))
175 #else
176 #define CLKSRC_FSYS_MMIO_SET(mmio, addr) do { } while (0)
177 #endif
178 const char *name;
179 struct list_head list;
180 int rating;
181 cycle_t (*vread)(void);
182 int (*enable)(struct clocksource *cs);
183 void (*disable)(struct clocksource *cs);
184 unsigned long flags;
185 void (*suspend)(struct clocksource *cs);
186 void (*resume)(struct clocksource *cs);
188 #ifdef CONFIG_CLOCKSOURCE_WATCHDOG
189 /* Watchdog related data, used by the framework */
190 struct list_head wd_list;
191 cycle_t cs_last;
192 cycle_t wd_last;
193 #endif
194 } ____cacheline_aligned;
197 * Clock source flags bits::
199 #define CLOCK_SOURCE_IS_CONTINUOUS 0x01
200 #define CLOCK_SOURCE_MUST_VERIFY 0x02
202 #define CLOCK_SOURCE_WATCHDOG 0x10
203 #define CLOCK_SOURCE_VALID_FOR_HRES 0x20
204 #define CLOCK_SOURCE_UNSTABLE 0x40
206 /* simplify initialization of mask field */
207 #define CLOCKSOURCE_MASK(bits) (cycle_t)((bits) < 64 ? ((1ULL<<(bits))-1) : -1)
210 * clocksource_khz2mult - calculates mult from khz and shift
211 * @khz: Clocksource frequency in KHz
212 * @shift_constant: Clocksource shift factor
214 * Helper functions that converts a khz counter frequency to a timsource
215 * multiplier, given the clocksource shift value
217 static inline u32 clocksource_khz2mult(u32 khz, u32 shift_constant)
219 /* khz = cyc/(Million ns)
220 * mult/2^shift = ns/cyc
221 * mult = ns/cyc * 2^shift
222 * mult = 1Million/khz * 2^shift
223 * mult = 1000000 * 2^shift / khz
224 * mult = (1000000<<shift) / khz
226 u64 tmp = ((u64)1000000) << shift_constant;
228 tmp += khz/2; /* round for do_div */
229 do_div(tmp, khz);
231 return (u32)tmp;
235 * clocksource_hz2mult - calculates mult from hz and shift
236 * @hz: Clocksource frequency in Hz
237 * @shift_constant: Clocksource shift factor
239 * Helper functions that converts a hz counter
240 * frequency to a timsource multiplier, given the
241 * clocksource shift value
243 static inline u32 clocksource_hz2mult(u32 hz, u32 shift_constant)
245 /* hz = cyc/(Billion ns)
246 * mult/2^shift = ns/cyc
247 * mult = ns/cyc * 2^shift
248 * mult = 1Billion/hz * 2^shift
249 * mult = 1000000000 * 2^shift / hz
250 * mult = (1000000000<<shift) / hz
252 u64 tmp = ((u64)1000000000) << shift_constant;
254 tmp += hz/2; /* round for do_div */
255 do_div(tmp, hz);
257 return (u32)tmp;
261 * clocksource_cyc2ns - converts clocksource cycles to nanoseconds
263 * Converts cycles to nanoseconds, using the given mult and shift.
265 * XXX - This could use some mult_lxl_ll() asm optimization
267 static inline s64 clocksource_cyc2ns(cycle_t cycles, u32 mult, u32 shift)
269 return ((u64) cycles * mult) >> shift;
273 extern int clocksource_register(struct clocksource*);
274 extern void clocksource_unregister(struct clocksource*);
275 extern void clocksource_touch_watchdog(void);
276 extern struct clocksource* clocksource_get_next(void);
277 extern void clocksource_change_rating(struct clocksource *cs, int rating);
278 extern void clocksource_suspend(void);
279 extern void clocksource_resume(void);
280 extern struct clocksource * __init __weak clocksource_default_clock(void);
281 extern void clocksource_mark_unstable(struct clocksource *cs);
283 extern void
284 clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 minsec);
287 * Don't call __clocksource_register_scale directly, use
288 * clocksource_register_hz/khz
290 extern int
291 __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq);
292 extern void
293 __clocksource_updatefreq_scale(struct clocksource *cs, u32 scale, u32 freq);
295 static inline int clocksource_register_hz(struct clocksource *cs, u32 hz)
297 return __clocksource_register_scale(cs, 1, hz);
300 static inline int clocksource_register_khz(struct clocksource *cs, u32 khz)
302 return __clocksource_register_scale(cs, 1000, khz);
305 static inline void __clocksource_updatefreq_hz(struct clocksource *cs, u32 hz)
307 __clocksource_updatefreq_scale(cs, 1, hz);
310 static inline void __clocksource_updatefreq_khz(struct clocksource *cs, u32 khz)
312 __clocksource_updatefreq_scale(cs, 1000, khz);
315 static inline void
316 clocksource_calc_mult_shift(struct clocksource *cs, u32 freq, u32 minsec)
318 return clocks_calc_mult_shift(&cs->mult, &cs->shift, freq,
319 NSEC_PER_SEC, minsec);
322 #ifdef CONFIG_GENERIC_TIME_VSYSCALL
323 extern void
324 update_vsyscall(struct timespec *ts, struct timespec *wtm,
325 struct clocksource *c, u32 mult);
326 extern void update_vsyscall_tz(void);
327 #else
328 static inline void
329 update_vsyscall(struct timespec *ts, struct timespec *wtm,
330 struct clocksource *c, u32 mult)
334 static inline void update_vsyscall_tz(void)
337 #endif
339 extern void timekeeping_notify(struct clocksource *clock);
341 extern cycle_t clocksource_mmio_readl_up(struct clocksource *);
342 extern cycle_t clocksource_mmio_readl_down(struct clocksource *);
343 extern cycle_t clocksource_mmio_readw_up(struct clocksource *);
344 extern cycle_t clocksource_mmio_readw_down(struct clocksource *);
346 extern int clocksource_mmio_init(void __iomem *, const char *,
347 unsigned long, int, unsigned, cycle_t (*)(struct clocksource *));
349 extern int clocksource_i8253_init(void);
351 #endif /* _LINUX_CLOCKSOURCE_H */