Merge branch 'fixes-for-3.8' of git://git.kernel.org/pub/scm/linux/kernel/git/coolone...
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / btrfs / scrub.c
blobbdbb94f245c9070802c65acb6eba392ba1a4c932
1 /*
2 * Copyright (C) 2011, 2012 STRATO. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/blkdev.h>
20 #include <linux/ratelimit.h>
21 #include "ctree.h"
22 #include "volumes.h"
23 #include "disk-io.h"
24 #include "ordered-data.h"
25 #include "transaction.h"
26 #include "backref.h"
27 #include "extent_io.h"
28 #include "dev-replace.h"
29 #include "check-integrity.h"
30 #include "rcu-string.h"
33 * This is only the first step towards a full-features scrub. It reads all
34 * extent and super block and verifies the checksums. In case a bad checksum
35 * is found or the extent cannot be read, good data will be written back if
36 * any can be found.
38 * Future enhancements:
39 * - In case an unrepairable extent is encountered, track which files are
40 * affected and report them
41 * - track and record media errors, throw out bad devices
42 * - add a mode to also read unallocated space
45 struct scrub_block;
46 struct scrub_ctx;
49 * the following three values only influence the performance.
50 * The last one configures the number of parallel and outstanding I/O
51 * operations. The first two values configure an upper limit for the number
52 * of (dynamically allocated) pages that are added to a bio.
54 #define SCRUB_PAGES_PER_RD_BIO 32 /* 128k per bio */
55 #define SCRUB_PAGES_PER_WR_BIO 32 /* 128k per bio */
56 #define SCRUB_BIOS_PER_SCTX 64 /* 8MB per device in flight */
59 * the following value times PAGE_SIZE needs to be large enough to match the
60 * largest node/leaf/sector size that shall be supported.
61 * Values larger than BTRFS_STRIPE_LEN are not supported.
63 #define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */
65 struct scrub_page {
66 struct scrub_block *sblock;
67 struct page *page;
68 struct btrfs_device *dev;
69 u64 flags; /* extent flags */
70 u64 generation;
71 u64 logical;
72 u64 physical;
73 u64 physical_for_dev_replace;
74 atomic_t ref_count;
75 struct {
76 unsigned int mirror_num:8;
77 unsigned int have_csum:1;
78 unsigned int io_error:1;
80 u8 csum[BTRFS_CSUM_SIZE];
83 struct scrub_bio {
84 int index;
85 struct scrub_ctx *sctx;
86 struct btrfs_device *dev;
87 struct bio *bio;
88 int err;
89 u64 logical;
90 u64 physical;
91 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
92 struct scrub_page *pagev[SCRUB_PAGES_PER_WR_BIO];
93 #else
94 struct scrub_page *pagev[SCRUB_PAGES_PER_RD_BIO];
95 #endif
96 int page_count;
97 int next_free;
98 struct btrfs_work work;
101 struct scrub_block {
102 struct scrub_page *pagev[SCRUB_MAX_PAGES_PER_BLOCK];
103 int page_count;
104 atomic_t outstanding_pages;
105 atomic_t ref_count; /* free mem on transition to zero */
106 struct scrub_ctx *sctx;
107 struct {
108 unsigned int header_error:1;
109 unsigned int checksum_error:1;
110 unsigned int no_io_error_seen:1;
111 unsigned int generation_error:1; /* also sets header_error */
115 struct scrub_wr_ctx {
116 struct scrub_bio *wr_curr_bio;
117 struct btrfs_device *tgtdev;
118 int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
119 atomic_t flush_all_writes;
120 struct mutex wr_lock;
123 struct scrub_ctx {
124 struct scrub_bio *bios[SCRUB_BIOS_PER_SCTX];
125 struct btrfs_root *dev_root;
126 int first_free;
127 int curr;
128 atomic_t bios_in_flight;
129 atomic_t workers_pending;
130 spinlock_t list_lock;
131 wait_queue_head_t list_wait;
132 u16 csum_size;
133 struct list_head csum_list;
134 atomic_t cancel_req;
135 int readonly;
136 int pages_per_rd_bio;
137 u32 sectorsize;
138 u32 nodesize;
139 u32 leafsize;
141 int is_dev_replace;
142 struct scrub_wr_ctx wr_ctx;
145 * statistics
147 struct btrfs_scrub_progress stat;
148 spinlock_t stat_lock;
151 struct scrub_fixup_nodatasum {
152 struct scrub_ctx *sctx;
153 struct btrfs_device *dev;
154 u64 logical;
155 struct btrfs_root *root;
156 struct btrfs_work work;
157 int mirror_num;
160 struct scrub_copy_nocow_ctx {
161 struct scrub_ctx *sctx;
162 u64 logical;
163 u64 len;
164 int mirror_num;
165 u64 physical_for_dev_replace;
166 struct btrfs_work work;
169 struct scrub_warning {
170 struct btrfs_path *path;
171 u64 extent_item_size;
172 char *scratch_buf;
173 char *msg_buf;
174 const char *errstr;
175 sector_t sector;
176 u64 logical;
177 struct btrfs_device *dev;
178 int msg_bufsize;
179 int scratch_bufsize;
183 static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
184 static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
185 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
186 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
187 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
188 static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
189 struct btrfs_fs_info *fs_info,
190 struct scrub_block *original_sblock,
191 u64 length, u64 logical,
192 struct scrub_block *sblocks_for_recheck);
193 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
194 struct scrub_block *sblock, int is_metadata,
195 int have_csum, u8 *csum, u64 generation,
196 u16 csum_size);
197 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
198 struct scrub_block *sblock,
199 int is_metadata, int have_csum,
200 const u8 *csum, u64 generation,
201 u16 csum_size);
202 static void scrub_complete_bio_end_io(struct bio *bio, int err);
203 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
204 struct scrub_block *sblock_good,
205 int force_write);
206 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
207 struct scrub_block *sblock_good,
208 int page_num, int force_write);
209 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
210 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
211 int page_num);
212 static int scrub_checksum_data(struct scrub_block *sblock);
213 static int scrub_checksum_tree_block(struct scrub_block *sblock);
214 static int scrub_checksum_super(struct scrub_block *sblock);
215 static void scrub_block_get(struct scrub_block *sblock);
216 static void scrub_block_put(struct scrub_block *sblock);
217 static void scrub_page_get(struct scrub_page *spage);
218 static void scrub_page_put(struct scrub_page *spage);
219 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
220 struct scrub_page *spage);
221 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
222 u64 physical, struct btrfs_device *dev, u64 flags,
223 u64 gen, int mirror_num, u8 *csum, int force,
224 u64 physical_for_dev_replace);
225 static void scrub_bio_end_io(struct bio *bio, int err);
226 static void scrub_bio_end_io_worker(struct btrfs_work *work);
227 static void scrub_block_complete(struct scrub_block *sblock);
228 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
229 u64 extent_logical, u64 extent_len,
230 u64 *extent_physical,
231 struct btrfs_device **extent_dev,
232 int *extent_mirror_num);
233 static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
234 struct scrub_wr_ctx *wr_ctx,
235 struct btrfs_fs_info *fs_info,
236 struct btrfs_device *dev,
237 int is_dev_replace);
238 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
239 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
240 struct scrub_page *spage);
241 static void scrub_wr_submit(struct scrub_ctx *sctx);
242 static void scrub_wr_bio_end_io(struct bio *bio, int err);
243 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
244 static int write_page_nocow(struct scrub_ctx *sctx,
245 u64 physical_for_dev_replace, struct page *page);
246 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
247 void *ctx);
248 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
249 int mirror_num, u64 physical_for_dev_replace);
250 static void copy_nocow_pages_worker(struct btrfs_work *work);
253 static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
255 atomic_inc(&sctx->bios_in_flight);
258 static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
260 atomic_dec(&sctx->bios_in_flight);
261 wake_up(&sctx->list_wait);
265 * used for workers that require transaction commits (i.e., for the
266 * NOCOW case)
268 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
270 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
273 * increment scrubs_running to prevent cancel requests from
274 * completing as long as a worker is running. we must also
275 * increment scrubs_paused to prevent deadlocking on pause
276 * requests used for transactions commits (as the worker uses a
277 * transaction context). it is safe to regard the worker
278 * as paused for all matters practical. effectively, we only
279 * avoid cancellation requests from completing.
281 mutex_lock(&fs_info->scrub_lock);
282 atomic_inc(&fs_info->scrubs_running);
283 atomic_inc(&fs_info->scrubs_paused);
284 mutex_unlock(&fs_info->scrub_lock);
285 atomic_inc(&sctx->workers_pending);
288 /* used for workers that require transaction commits */
289 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
291 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
294 * see scrub_pending_trans_workers_inc() why we're pretending
295 * to be paused in the scrub counters
297 mutex_lock(&fs_info->scrub_lock);
298 atomic_dec(&fs_info->scrubs_running);
299 atomic_dec(&fs_info->scrubs_paused);
300 mutex_unlock(&fs_info->scrub_lock);
301 atomic_dec(&sctx->workers_pending);
302 wake_up(&fs_info->scrub_pause_wait);
303 wake_up(&sctx->list_wait);
306 static void scrub_free_csums(struct scrub_ctx *sctx)
308 while (!list_empty(&sctx->csum_list)) {
309 struct btrfs_ordered_sum *sum;
310 sum = list_first_entry(&sctx->csum_list,
311 struct btrfs_ordered_sum, list);
312 list_del(&sum->list);
313 kfree(sum);
317 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
319 int i;
321 if (!sctx)
322 return;
324 scrub_free_wr_ctx(&sctx->wr_ctx);
326 /* this can happen when scrub is cancelled */
327 if (sctx->curr != -1) {
328 struct scrub_bio *sbio = sctx->bios[sctx->curr];
330 for (i = 0; i < sbio->page_count; i++) {
331 WARN_ON(!sbio->pagev[i]->page);
332 scrub_block_put(sbio->pagev[i]->sblock);
334 bio_put(sbio->bio);
337 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
338 struct scrub_bio *sbio = sctx->bios[i];
340 if (!sbio)
341 break;
342 kfree(sbio);
345 scrub_free_csums(sctx);
346 kfree(sctx);
349 static noinline_for_stack
350 struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
352 struct scrub_ctx *sctx;
353 int i;
354 struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
355 int pages_per_rd_bio;
356 int ret;
359 * the setting of pages_per_rd_bio is correct for scrub but might
360 * be wrong for the dev_replace code where we might read from
361 * different devices in the initial huge bios. However, that
362 * code is able to correctly handle the case when adding a page
363 * to a bio fails.
365 if (dev->bdev)
366 pages_per_rd_bio = min_t(int, SCRUB_PAGES_PER_RD_BIO,
367 bio_get_nr_vecs(dev->bdev));
368 else
369 pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
370 sctx = kzalloc(sizeof(*sctx), GFP_NOFS);
371 if (!sctx)
372 goto nomem;
373 sctx->is_dev_replace = is_dev_replace;
374 sctx->pages_per_rd_bio = pages_per_rd_bio;
375 sctx->curr = -1;
376 sctx->dev_root = dev->dev_root;
377 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
378 struct scrub_bio *sbio;
380 sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
381 if (!sbio)
382 goto nomem;
383 sctx->bios[i] = sbio;
385 sbio->index = i;
386 sbio->sctx = sctx;
387 sbio->page_count = 0;
388 sbio->work.func = scrub_bio_end_io_worker;
390 if (i != SCRUB_BIOS_PER_SCTX - 1)
391 sctx->bios[i]->next_free = i + 1;
392 else
393 sctx->bios[i]->next_free = -1;
395 sctx->first_free = 0;
396 sctx->nodesize = dev->dev_root->nodesize;
397 sctx->leafsize = dev->dev_root->leafsize;
398 sctx->sectorsize = dev->dev_root->sectorsize;
399 atomic_set(&sctx->bios_in_flight, 0);
400 atomic_set(&sctx->workers_pending, 0);
401 atomic_set(&sctx->cancel_req, 0);
402 sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
403 INIT_LIST_HEAD(&sctx->csum_list);
405 spin_lock_init(&sctx->list_lock);
406 spin_lock_init(&sctx->stat_lock);
407 init_waitqueue_head(&sctx->list_wait);
409 ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info,
410 fs_info->dev_replace.tgtdev, is_dev_replace);
411 if (ret) {
412 scrub_free_ctx(sctx);
413 return ERR_PTR(ret);
415 return sctx;
417 nomem:
418 scrub_free_ctx(sctx);
419 return ERR_PTR(-ENOMEM);
422 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
423 void *warn_ctx)
425 u64 isize;
426 u32 nlink;
427 int ret;
428 int i;
429 struct extent_buffer *eb;
430 struct btrfs_inode_item *inode_item;
431 struct scrub_warning *swarn = warn_ctx;
432 struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
433 struct inode_fs_paths *ipath = NULL;
434 struct btrfs_root *local_root;
435 struct btrfs_key root_key;
437 root_key.objectid = root;
438 root_key.type = BTRFS_ROOT_ITEM_KEY;
439 root_key.offset = (u64)-1;
440 local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
441 if (IS_ERR(local_root)) {
442 ret = PTR_ERR(local_root);
443 goto err;
446 ret = inode_item_info(inum, 0, local_root, swarn->path);
447 if (ret) {
448 btrfs_release_path(swarn->path);
449 goto err;
452 eb = swarn->path->nodes[0];
453 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
454 struct btrfs_inode_item);
455 isize = btrfs_inode_size(eb, inode_item);
456 nlink = btrfs_inode_nlink(eb, inode_item);
457 btrfs_release_path(swarn->path);
459 ipath = init_ipath(4096, local_root, swarn->path);
460 if (IS_ERR(ipath)) {
461 ret = PTR_ERR(ipath);
462 ipath = NULL;
463 goto err;
465 ret = paths_from_inode(inum, ipath);
467 if (ret < 0)
468 goto err;
471 * we deliberately ignore the bit ipath might have been too small to
472 * hold all of the paths here
474 for (i = 0; i < ipath->fspath->elem_cnt; ++i)
475 printk_in_rcu(KERN_WARNING "btrfs: %s at logical %llu on dev "
476 "%s, sector %llu, root %llu, inode %llu, offset %llu, "
477 "length %llu, links %u (path: %s)\n", swarn->errstr,
478 swarn->logical, rcu_str_deref(swarn->dev->name),
479 (unsigned long long)swarn->sector, root, inum, offset,
480 min(isize - offset, (u64)PAGE_SIZE), nlink,
481 (char *)(unsigned long)ipath->fspath->val[i]);
483 free_ipath(ipath);
484 return 0;
486 err:
487 printk_in_rcu(KERN_WARNING "btrfs: %s at logical %llu on dev "
488 "%s, sector %llu, root %llu, inode %llu, offset %llu: path "
489 "resolving failed with ret=%d\n", swarn->errstr,
490 swarn->logical, rcu_str_deref(swarn->dev->name),
491 (unsigned long long)swarn->sector, root, inum, offset, ret);
493 free_ipath(ipath);
494 return 0;
497 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
499 struct btrfs_device *dev;
500 struct btrfs_fs_info *fs_info;
501 struct btrfs_path *path;
502 struct btrfs_key found_key;
503 struct extent_buffer *eb;
504 struct btrfs_extent_item *ei;
505 struct scrub_warning swarn;
506 unsigned long ptr = 0;
507 u64 extent_item_pos;
508 u64 flags = 0;
509 u64 ref_root;
510 u32 item_size;
511 u8 ref_level;
512 const int bufsize = 4096;
513 int ret;
515 WARN_ON(sblock->page_count < 1);
516 dev = sblock->pagev[0]->dev;
517 fs_info = sblock->sctx->dev_root->fs_info;
519 path = btrfs_alloc_path();
521 swarn.scratch_buf = kmalloc(bufsize, GFP_NOFS);
522 swarn.msg_buf = kmalloc(bufsize, GFP_NOFS);
523 swarn.sector = (sblock->pagev[0]->physical) >> 9;
524 swarn.logical = sblock->pagev[0]->logical;
525 swarn.errstr = errstr;
526 swarn.dev = NULL;
527 swarn.msg_bufsize = bufsize;
528 swarn.scratch_bufsize = bufsize;
530 if (!path || !swarn.scratch_buf || !swarn.msg_buf)
531 goto out;
533 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
534 &flags);
535 if (ret < 0)
536 goto out;
538 extent_item_pos = swarn.logical - found_key.objectid;
539 swarn.extent_item_size = found_key.offset;
541 eb = path->nodes[0];
542 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
543 item_size = btrfs_item_size_nr(eb, path->slots[0]);
544 btrfs_release_path(path);
546 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
547 do {
548 ret = tree_backref_for_extent(&ptr, eb, ei, item_size,
549 &ref_root, &ref_level);
550 printk_in_rcu(KERN_WARNING
551 "btrfs: %s at logical %llu on dev %s, "
552 "sector %llu: metadata %s (level %d) in tree "
553 "%llu\n", errstr, swarn.logical,
554 rcu_str_deref(dev->name),
555 (unsigned long long)swarn.sector,
556 ref_level ? "node" : "leaf",
557 ret < 0 ? -1 : ref_level,
558 ret < 0 ? -1 : ref_root);
559 } while (ret != 1);
560 } else {
561 swarn.path = path;
562 swarn.dev = dev;
563 iterate_extent_inodes(fs_info, found_key.objectid,
564 extent_item_pos, 1,
565 scrub_print_warning_inode, &swarn);
568 out:
569 btrfs_free_path(path);
570 kfree(swarn.scratch_buf);
571 kfree(swarn.msg_buf);
574 static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
576 struct page *page = NULL;
577 unsigned long index;
578 struct scrub_fixup_nodatasum *fixup = fixup_ctx;
579 int ret;
580 int corrected = 0;
581 struct btrfs_key key;
582 struct inode *inode = NULL;
583 u64 end = offset + PAGE_SIZE - 1;
584 struct btrfs_root *local_root;
586 key.objectid = root;
587 key.type = BTRFS_ROOT_ITEM_KEY;
588 key.offset = (u64)-1;
589 local_root = btrfs_read_fs_root_no_name(fixup->root->fs_info, &key);
590 if (IS_ERR(local_root))
591 return PTR_ERR(local_root);
593 key.type = BTRFS_INODE_ITEM_KEY;
594 key.objectid = inum;
595 key.offset = 0;
596 inode = btrfs_iget(fixup->root->fs_info->sb, &key, local_root, NULL);
597 if (IS_ERR(inode))
598 return PTR_ERR(inode);
600 index = offset >> PAGE_CACHE_SHIFT;
602 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
603 if (!page) {
604 ret = -ENOMEM;
605 goto out;
608 if (PageUptodate(page)) {
609 struct btrfs_fs_info *fs_info;
610 if (PageDirty(page)) {
612 * we need to write the data to the defect sector. the
613 * data that was in that sector is not in memory,
614 * because the page was modified. we must not write the
615 * modified page to that sector.
617 * TODO: what could be done here: wait for the delalloc
618 * runner to write out that page (might involve
619 * COW) and see whether the sector is still
620 * referenced afterwards.
622 * For the meantime, we'll treat this error
623 * incorrectable, although there is a chance that a
624 * later scrub will find the bad sector again and that
625 * there's no dirty page in memory, then.
627 ret = -EIO;
628 goto out;
630 fs_info = BTRFS_I(inode)->root->fs_info;
631 ret = repair_io_failure(fs_info, offset, PAGE_SIZE,
632 fixup->logical, page,
633 fixup->mirror_num);
634 unlock_page(page);
635 corrected = !ret;
636 } else {
638 * we need to get good data first. the general readpage path
639 * will call repair_io_failure for us, we just have to make
640 * sure we read the bad mirror.
642 ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
643 EXTENT_DAMAGED, GFP_NOFS);
644 if (ret) {
645 /* set_extent_bits should give proper error */
646 WARN_ON(ret > 0);
647 if (ret > 0)
648 ret = -EFAULT;
649 goto out;
652 ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
653 btrfs_get_extent,
654 fixup->mirror_num);
655 wait_on_page_locked(page);
657 corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
658 end, EXTENT_DAMAGED, 0, NULL);
659 if (!corrected)
660 clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
661 EXTENT_DAMAGED, GFP_NOFS);
664 out:
665 if (page)
666 put_page(page);
667 if (inode)
668 iput(inode);
670 if (ret < 0)
671 return ret;
673 if (ret == 0 && corrected) {
675 * we only need to call readpage for one of the inodes belonging
676 * to this extent. so make iterate_extent_inodes stop
678 return 1;
681 return -EIO;
684 static void scrub_fixup_nodatasum(struct btrfs_work *work)
686 int ret;
687 struct scrub_fixup_nodatasum *fixup;
688 struct scrub_ctx *sctx;
689 struct btrfs_trans_handle *trans = NULL;
690 struct btrfs_fs_info *fs_info;
691 struct btrfs_path *path;
692 int uncorrectable = 0;
694 fixup = container_of(work, struct scrub_fixup_nodatasum, work);
695 sctx = fixup->sctx;
696 fs_info = fixup->root->fs_info;
698 path = btrfs_alloc_path();
699 if (!path) {
700 spin_lock(&sctx->stat_lock);
701 ++sctx->stat.malloc_errors;
702 spin_unlock(&sctx->stat_lock);
703 uncorrectable = 1;
704 goto out;
707 trans = btrfs_join_transaction(fixup->root);
708 if (IS_ERR(trans)) {
709 uncorrectable = 1;
710 goto out;
714 * the idea is to trigger a regular read through the standard path. we
715 * read a page from the (failed) logical address by specifying the
716 * corresponding copynum of the failed sector. thus, that readpage is
717 * expected to fail.
718 * that is the point where on-the-fly error correction will kick in
719 * (once it's finished) and rewrite the failed sector if a good copy
720 * can be found.
722 ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
723 path, scrub_fixup_readpage,
724 fixup);
725 if (ret < 0) {
726 uncorrectable = 1;
727 goto out;
729 WARN_ON(ret != 1);
731 spin_lock(&sctx->stat_lock);
732 ++sctx->stat.corrected_errors;
733 spin_unlock(&sctx->stat_lock);
735 out:
736 if (trans && !IS_ERR(trans))
737 btrfs_end_transaction(trans, fixup->root);
738 if (uncorrectable) {
739 spin_lock(&sctx->stat_lock);
740 ++sctx->stat.uncorrectable_errors;
741 spin_unlock(&sctx->stat_lock);
742 btrfs_dev_replace_stats_inc(
743 &sctx->dev_root->fs_info->dev_replace.
744 num_uncorrectable_read_errors);
745 printk_ratelimited_in_rcu(KERN_ERR
746 "btrfs: unable to fixup (nodatasum) error at logical %llu on dev %s\n",
747 (unsigned long long)fixup->logical,
748 rcu_str_deref(fixup->dev->name));
751 btrfs_free_path(path);
752 kfree(fixup);
754 scrub_pending_trans_workers_dec(sctx);
758 * scrub_handle_errored_block gets called when either verification of the
759 * pages failed or the bio failed to read, e.g. with EIO. In the latter
760 * case, this function handles all pages in the bio, even though only one
761 * may be bad.
762 * The goal of this function is to repair the errored block by using the
763 * contents of one of the mirrors.
765 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
767 struct scrub_ctx *sctx = sblock_to_check->sctx;
768 struct btrfs_device *dev;
769 struct btrfs_fs_info *fs_info;
770 u64 length;
771 u64 logical;
772 u64 generation;
773 unsigned int failed_mirror_index;
774 unsigned int is_metadata;
775 unsigned int have_csum;
776 u8 *csum;
777 struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
778 struct scrub_block *sblock_bad;
779 int ret;
780 int mirror_index;
781 int page_num;
782 int success;
783 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
784 DEFAULT_RATELIMIT_BURST);
786 BUG_ON(sblock_to_check->page_count < 1);
787 fs_info = sctx->dev_root->fs_info;
788 if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
790 * if we find an error in a super block, we just report it.
791 * They will get written with the next transaction commit
792 * anyway
794 spin_lock(&sctx->stat_lock);
795 ++sctx->stat.super_errors;
796 spin_unlock(&sctx->stat_lock);
797 return 0;
799 length = sblock_to_check->page_count * PAGE_SIZE;
800 logical = sblock_to_check->pagev[0]->logical;
801 generation = sblock_to_check->pagev[0]->generation;
802 BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
803 failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
804 is_metadata = !(sblock_to_check->pagev[0]->flags &
805 BTRFS_EXTENT_FLAG_DATA);
806 have_csum = sblock_to_check->pagev[0]->have_csum;
807 csum = sblock_to_check->pagev[0]->csum;
808 dev = sblock_to_check->pagev[0]->dev;
810 if (sctx->is_dev_replace && !is_metadata && !have_csum) {
811 sblocks_for_recheck = NULL;
812 goto nodatasum_case;
816 * read all mirrors one after the other. This includes to
817 * re-read the extent or metadata block that failed (that was
818 * the cause that this fixup code is called) another time,
819 * page by page this time in order to know which pages
820 * caused I/O errors and which ones are good (for all mirrors).
821 * It is the goal to handle the situation when more than one
822 * mirror contains I/O errors, but the errors do not
823 * overlap, i.e. the data can be repaired by selecting the
824 * pages from those mirrors without I/O error on the
825 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
826 * would be that mirror #1 has an I/O error on the first page,
827 * the second page is good, and mirror #2 has an I/O error on
828 * the second page, but the first page is good.
829 * Then the first page of the first mirror can be repaired by
830 * taking the first page of the second mirror, and the
831 * second page of the second mirror can be repaired by
832 * copying the contents of the 2nd page of the 1st mirror.
833 * One more note: if the pages of one mirror contain I/O
834 * errors, the checksum cannot be verified. In order to get
835 * the best data for repairing, the first attempt is to find
836 * a mirror without I/O errors and with a validated checksum.
837 * Only if this is not possible, the pages are picked from
838 * mirrors with I/O errors without considering the checksum.
839 * If the latter is the case, at the end, the checksum of the
840 * repaired area is verified in order to correctly maintain
841 * the statistics.
844 sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS *
845 sizeof(*sblocks_for_recheck),
846 GFP_NOFS);
847 if (!sblocks_for_recheck) {
848 spin_lock(&sctx->stat_lock);
849 sctx->stat.malloc_errors++;
850 sctx->stat.read_errors++;
851 sctx->stat.uncorrectable_errors++;
852 spin_unlock(&sctx->stat_lock);
853 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
854 goto out;
857 /* setup the context, map the logical blocks and alloc the pages */
858 ret = scrub_setup_recheck_block(sctx, fs_info, sblock_to_check, length,
859 logical, sblocks_for_recheck);
860 if (ret) {
861 spin_lock(&sctx->stat_lock);
862 sctx->stat.read_errors++;
863 sctx->stat.uncorrectable_errors++;
864 spin_unlock(&sctx->stat_lock);
865 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
866 goto out;
868 BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
869 sblock_bad = sblocks_for_recheck + failed_mirror_index;
871 /* build and submit the bios for the failed mirror, check checksums */
872 scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum,
873 csum, generation, sctx->csum_size);
875 if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
876 sblock_bad->no_io_error_seen) {
878 * the error disappeared after reading page by page, or
879 * the area was part of a huge bio and other parts of the
880 * bio caused I/O errors, or the block layer merged several
881 * read requests into one and the error is caused by a
882 * different bio (usually one of the two latter cases is
883 * the cause)
885 spin_lock(&sctx->stat_lock);
886 sctx->stat.unverified_errors++;
887 spin_unlock(&sctx->stat_lock);
889 if (sctx->is_dev_replace)
890 scrub_write_block_to_dev_replace(sblock_bad);
891 goto out;
894 if (!sblock_bad->no_io_error_seen) {
895 spin_lock(&sctx->stat_lock);
896 sctx->stat.read_errors++;
897 spin_unlock(&sctx->stat_lock);
898 if (__ratelimit(&_rs))
899 scrub_print_warning("i/o error", sblock_to_check);
900 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
901 } else if (sblock_bad->checksum_error) {
902 spin_lock(&sctx->stat_lock);
903 sctx->stat.csum_errors++;
904 spin_unlock(&sctx->stat_lock);
905 if (__ratelimit(&_rs))
906 scrub_print_warning("checksum error", sblock_to_check);
907 btrfs_dev_stat_inc_and_print(dev,
908 BTRFS_DEV_STAT_CORRUPTION_ERRS);
909 } else if (sblock_bad->header_error) {
910 spin_lock(&sctx->stat_lock);
911 sctx->stat.verify_errors++;
912 spin_unlock(&sctx->stat_lock);
913 if (__ratelimit(&_rs))
914 scrub_print_warning("checksum/header error",
915 sblock_to_check);
916 if (sblock_bad->generation_error)
917 btrfs_dev_stat_inc_and_print(dev,
918 BTRFS_DEV_STAT_GENERATION_ERRS);
919 else
920 btrfs_dev_stat_inc_and_print(dev,
921 BTRFS_DEV_STAT_CORRUPTION_ERRS);
924 if (sctx->readonly && !sctx->is_dev_replace)
925 goto did_not_correct_error;
927 if (!is_metadata && !have_csum) {
928 struct scrub_fixup_nodatasum *fixup_nodatasum;
930 nodatasum_case:
931 WARN_ON(sctx->is_dev_replace);
934 * !is_metadata and !have_csum, this means that the data
935 * might not be COW'ed, that it might be modified
936 * concurrently. The general strategy to work on the
937 * commit root does not help in the case when COW is not
938 * used.
940 fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
941 if (!fixup_nodatasum)
942 goto did_not_correct_error;
943 fixup_nodatasum->sctx = sctx;
944 fixup_nodatasum->dev = dev;
945 fixup_nodatasum->logical = logical;
946 fixup_nodatasum->root = fs_info->extent_root;
947 fixup_nodatasum->mirror_num = failed_mirror_index + 1;
948 scrub_pending_trans_workers_inc(sctx);
949 fixup_nodatasum->work.func = scrub_fixup_nodatasum;
950 btrfs_queue_worker(&fs_info->scrub_workers,
951 &fixup_nodatasum->work);
952 goto out;
956 * now build and submit the bios for the other mirrors, check
957 * checksums.
958 * First try to pick the mirror which is completely without I/O
959 * errors and also does not have a checksum error.
960 * If one is found, and if a checksum is present, the full block
961 * that is known to contain an error is rewritten. Afterwards
962 * the block is known to be corrected.
963 * If a mirror is found which is completely correct, and no
964 * checksum is present, only those pages are rewritten that had
965 * an I/O error in the block to be repaired, since it cannot be
966 * determined, which copy of the other pages is better (and it
967 * could happen otherwise that a correct page would be
968 * overwritten by a bad one).
970 for (mirror_index = 0;
971 mirror_index < BTRFS_MAX_MIRRORS &&
972 sblocks_for_recheck[mirror_index].page_count > 0;
973 mirror_index++) {
974 struct scrub_block *sblock_other;
976 if (mirror_index == failed_mirror_index)
977 continue;
978 sblock_other = sblocks_for_recheck + mirror_index;
980 /* build and submit the bios, check checksums */
981 scrub_recheck_block(fs_info, sblock_other, is_metadata,
982 have_csum, csum, generation,
983 sctx->csum_size);
985 if (!sblock_other->header_error &&
986 !sblock_other->checksum_error &&
987 sblock_other->no_io_error_seen) {
988 if (sctx->is_dev_replace) {
989 scrub_write_block_to_dev_replace(sblock_other);
990 } else {
991 int force_write = is_metadata || have_csum;
993 ret = scrub_repair_block_from_good_copy(
994 sblock_bad, sblock_other,
995 force_write);
997 if (0 == ret)
998 goto corrected_error;
1003 * for dev_replace, pick good pages and write to the target device.
1005 if (sctx->is_dev_replace) {
1006 success = 1;
1007 for (page_num = 0; page_num < sblock_bad->page_count;
1008 page_num++) {
1009 int sub_success;
1011 sub_success = 0;
1012 for (mirror_index = 0;
1013 mirror_index < BTRFS_MAX_MIRRORS &&
1014 sblocks_for_recheck[mirror_index].page_count > 0;
1015 mirror_index++) {
1016 struct scrub_block *sblock_other =
1017 sblocks_for_recheck + mirror_index;
1018 struct scrub_page *page_other =
1019 sblock_other->pagev[page_num];
1021 if (!page_other->io_error) {
1022 ret = scrub_write_page_to_dev_replace(
1023 sblock_other, page_num);
1024 if (ret == 0) {
1025 /* succeeded for this page */
1026 sub_success = 1;
1027 break;
1028 } else {
1029 btrfs_dev_replace_stats_inc(
1030 &sctx->dev_root->
1031 fs_info->dev_replace.
1032 num_write_errors);
1037 if (!sub_success) {
1039 * did not find a mirror to fetch the page
1040 * from. scrub_write_page_to_dev_replace()
1041 * handles this case (page->io_error), by
1042 * filling the block with zeros before
1043 * submitting the write request
1045 success = 0;
1046 ret = scrub_write_page_to_dev_replace(
1047 sblock_bad, page_num);
1048 if (ret)
1049 btrfs_dev_replace_stats_inc(
1050 &sctx->dev_root->fs_info->
1051 dev_replace.num_write_errors);
1055 goto out;
1059 * for regular scrub, repair those pages that are errored.
1060 * In case of I/O errors in the area that is supposed to be
1061 * repaired, continue by picking good copies of those pages.
1062 * Select the good pages from mirrors to rewrite bad pages from
1063 * the area to fix. Afterwards verify the checksum of the block
1064 * that is supposed to be repaired. This verification step is
1065 * only done for the purpose of statistic counting and for the
1066 * final scrub report, whether errors remain.
1067 * A perfect algorithm could make use of the checksum and try
1068 * all possible combinations of pages from the different mirrors
1069 * until the checksum verification succeeds. For example, when
1070 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1071 * of mirror #2 is readable but the final checksum test fails,
1072 * then the 2nd page of mirror #3 could be tried, whether now
1073 * the final checksum succeedes. But this would be a rare
1074 * exception and is therefore not implemented. At least it is
1075 * avoided that the good copy is overwritten.
1076 * A more useful improvement would be to pick the sectors
1077 * without I/O error based on sector sizes (512 bytes on legacy
1078 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1079 * mirror could be repaired by taking 512 byte of a different
1080 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1081 * area are unreadable.
1084 /* can only fix I/O errors from here on */
1085 if (sblock_bad->no_io_error_seen)
1086 goto did_not_correct_error;
1088 success = 1;
1089 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1090 struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1092 if (!page_bad->io_error)
1093 continue;
1095 for (mirror_index = 0;
1096 mirror_index < BTRFS_MAX_MIRRORS &&
1097 sblocks_for_recheck[mirror_index].page_count > 0;
1098 mirror_index++) {
1099 struct scrub_block *sblock_other = sblocks_for_recheck +
1100 mirror_index;
1101 struct scrub_page *page_other = sblock_other->pagev[
1102 page_num];
1104 if (!page_other->io_error) {
1105 ret = scrub_repair_page_from_good_copy(
1106 sblock_bad, sblock_other, page_num, 0);
1107 if (0 == ret) {
1108 page_bad->io_error = 0;
1109 break; /* succeeded for this page */
1114 if (page_bad->io_error) {
1115 /* did not find a mirror to copy the page from */
1116 success = 0;
1120 if (success) {
1121 if (is_metadata || have_csum) {
1123 * need to verify the checksum now that all
1124 * sectors on disk are repaired (the write
1125 * request for data to be repaired is on its way).
1126 * Just be lazy and use scrub_recheck_block()
1127 * which re-reads the data before the checksum
1128 * is verified, but most likely the data comes out
1129 * of the page cache.
1131 scrub_recheck_block(fs_info, sblock_bad,
1132 is_metadata, have_csum, csum,
1133 generation, sctx->csum_size);
1134 if (!sblock_bad->header_error &&
1135 !sblock_bad->checksum_error &&
1136 sblock_bad->no_io_error_seen)
1137 goto corrected_error;
1138 else
1139 goto did_not_correct_error;
1140 } else {
1141 corrected_error:
1142 spin_lock(&sctx->stat_lock);
1143 sctx->stat.corrected_errors++;
1144 spin_unlock(&sctx->stat_lock);
1145 printk_ratelimited_in_rcu(KERN_ERR
1146 "btrfs: fixed up error at logical %llu on dev %s\n",
1147 (unsigned long long)logical,
1148 rcu_str_deref(dev->name));
1150 } else {
1151 did_not_correct_error:
1152 spin_lock(&sctx->stat_lock);
1153 sctx->stat.uncorrectable_errors++;
1154 spin_unlock(&sctx->stat_lock);
1155 printk_ratelimited_in_rcu(KERN_ERR
1156 "btrfs: unable to fixup (regular) error at logical %llu on dev %s\n",
1157 (unsigned long long)logical,
1158 rcu_str_deref(dev->name));
1161 out:
1162 if (sblocks_for_recheck) {
1163 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1164 mirror_index++) {
1165 struct scrub_block *sblock = sblocks_for_recheck +
1166 mirror_index;
1167 int page_index;
1169 for (page_index = 0; page_index < sblock->page_count;
1170 page_index++) {
1171 sblock->pagev[page_index]->sblock = NULL;
1172 scrub_page_put(sblock->pagev[page_index]);
1175 kfree(sblocks_for_recheck);
1178 return 0;
1181 static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
1182 struct btrfs_fs_info *fs_info,
1183 struct scrub_block *original_sblock,
1184 u64 length, u64 logical,
1185 struct scrub_block *sblocks_for_recheck)
1187 int page_index;
1188 int mirror_index;
1189 int ret;
1192 * note: the two members ref_count and outstanding_pages
1193 * are not used (and not set) in the blocks that are used for
1194 * the recheck procedure
1197 page_index = 0;
1198 while (length > 0) {
1199 u64 sublen = min_t(u64, length, PAGE_SIZE);
1200 u64 mapped_length = sublen;
1201 struct btrfs_bio *bbio = NULL;
1204 * with a length of PAGE_SIZE, each returned stripe
1205 * represents one mirror
1207 ret = btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, logical,
1208 &mapped_length, &bbio, 0);
1209 if (ret || !bbio || mapped_length < sublen) {
1210 kfree(bbio);
1211 return -EIO;
1214 BUG_ON(page_index >= SCRUB_PAGES_PER_RD_BIO);
1215 for (mirror_index = 0; mirror_index < (int)bbio->num_stripes;
1216 mirror_index++) {
1217 struct scrub_block *sblock;
1218 struct scrub_page *page;
1220 if (mirror_index >= BTRFS_MAX_MIRRORS)
1221 continue;
1223 sblock = sblocks_for_recheck + mirror_index;
1224 sblock->sctx = sctx;
1225 page = kzalloc(sizeof(*page), GFP_NOFS);
1226 if (!page) {
1227 leave_nomem:
1228 spin_lock(&sctx->stat_lock);
1229 sctx->stat.malloc_errors++;
1230 spin_unlock(&sctx->stat_lock);
1231 kfree(bbio);
1232 return -ENOMEM;
1234 scrub_page_get(page);
1235 sblock->pagev[page_index] = page;
1236 page->logical = logical;
1237 page->physical = bbio->stripes[mirror_index].physical;
1238 BUG_ON(page_index >= original_sblock->page_count);
1239 page->physical_for_dev_replace =
1240 original_sblock->pagev[page_index]->
1241 physical_for_dev_replace;
1242 /* for missing devices, dev->bdev is NULL */
1243 page->dev = bbio->stripes[mirror_index].dev;
1244 page->mirror_num = mirror_index + 1;
1245 sblock->page_count++;
1246 page->page = alloc_page(GFP_NOFS);
1247 if (!page->page)
1248 goto leave_nomem;
1250 kfree(bbio);
1251 length -= sublen;
1252 logical += sublen;
1253 page_index++;
1256 return 0;
1260 * this function will check the on disk data for checksum errors, header
1261 * errors and read I/O errors. If any I/O errors happen, the exact pages
1262 * which are errored are marked as being bad. The goal is to enable scrub
1263 * to take those pages that are not errored from all the mirrors so that
1264 * the pages that are errored in the just handled mirror can be repaired.
1266 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1267 struct scrub_block *sblock, int is_metadata,
1268 int have_csum, u8 *csum, u64 generation,
1269 u16 csum_size)
1271 int page_num;
1273 sblock->no_io_error_seen = 1;
1274 sblock->header_error = 0;
1275 sblock->checksum_error = 0;
1277 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1278 struct bio *bio;
1279 struct scrub_page *page = sblock->pagev[page_num];
1280 DECLARE_COMPLETION_ONSTACK(complete);
1282 if (page->dev->bdev == NULL) {
1283 page->io_error = 1;
1284 sblock->no_io_error_seen = 0;
1285 continue;
1288 WARN_ON(!page->page);
1289 bio = bio_alloc(GFP_NOFS, 1);
1290 if (!bio) {
1291 page->io_error = 1;
1292 sblock->no_io_error_seen = 0;
1293 continue;
1295 bio->bi_bdev = page->dev->bdev;
1296 bio->bi_sector = page->physical >> 9;
1297 bio->bi_end_io = scrub_complete_bio_end_io;
1298 bio->bi_private = &complete;
1300 bio_add_page(bio, page->page, PAGE_SIZE, 0);
1301 btrfsic_submit_bio(READ, bio);
1303 /* this will also unplug the queue */
1304 wait_for_completion(&complete);
1306 page->io_error = !test_bit(BIO_UPTODATE, &bio->bi_flags);
1307 if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1308 sblock->no_io_error_seen = 0;
1309 bio_put(bio);
1312 if (sblock->no_io_error_seen)
1313 scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
1314 have_csum, csum, generation,
1315 csum_size);
1317 return;
1320 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
1321 struct scrub_block *sblock,
1322 int is_metadata, int have_csum,
1323 const u8 *csum, u64 generation,
1324 u16 csum_size)
1326 int page_num;
1327 u8 calculated_csum[BTRFS_CSUM_SIZE];
1328 u32 crc = ~(u32)0;
1329 struct btrfs_root *root = fs_info->extent_root;
1330 void *mapped_buffer;
1332 WARN_ON(!sblock->pagev[0]->page);
1333 if (is_metadata) {
1334 struct btrfs_header *h;
1336 mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1337 h = (struct btrfs_header *)mapped_buffer;
1339 if (sblock->pagev[0]->logical != le64_to_cpu(h->bytenr) ||
1340 memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE) ||
1341 memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1342 BTRFS_UUID_SIZE)) {
1343 sblock->header_error = 1;
1344 } else if (generation != le64_to_cpu(h->generation)) {
1345 sblock->header_error = 1;
1346 sblock->generation_error = 1;
1348 csum = h->csum;
1349 } else {
1350 if (!have_csum)
1351 return;
1353 mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1356 for (page_num = 0;;) {
1357 if (page_num == 0 && is_metadata)
1358 crc = btrfs_csum_data(root,
1359 ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE,
1360 crc, PAGE_SIZE - BTRFS_CSUM_SIZE);
1361 else
1362 crc = btrfs_csum_data(root, mapped_buffer, crc,
1363 PAGE_SIZE);
1365 kunmap_atomic(mapped_buffer);
1366 page_num++;
1367 if (page_num >= sblock->page_count)
1368 break;
1369 WARN_ON(!sblock->pagev[page_num]->page);
1371 mapped_buffer = kmap_atomic(sblock->pagev[page_num]->page);
1374 btrfs_csum_final(crc, calculated_csum);
1375 if (memcmp(calculated_csum, csum, csum_size))
1376 sblock->checksum_error = 1;
1379 static void scrub_complete_bio_end_io(struct bio *bio, int err)
1381 complete((struct completion *)bio->bi_private);
1384 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1385 struct scrub_block *sblock_good,
1386 int force_write)
1388 int page_num;
1389 int ret = 0;
1391 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1392 int ret_sub;
1394 ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1395 sblock_good,
1396 page_num,
1397 force_write);
1398 if (ret_sub)
1399 ret = ret_sub;
1402 return ret;
1405 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1406 struct scrub_block *sblock_good,
1407 int page_num, int force_write)
1409 struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1410 struct scrub_page *page_good = sblock_good->pagev[page_num];
1412 BUG_ON(page_bad->page == NULL);
1413 BUG_ON(page_good->page == NULL);
1414 if (force_write || sblock_bad->header_error ||
1415 sblock_bad->checksum_error || page_bad->io_error) {
1416 struct bio *bio;
1417 int ret;
1418 DECLARE_COMPLETION_ONSTACK(complete);
1420 if (!page_bad->dev->bdev) {
1421 printk_ratelimited(KERN_WARNING
1422 "btrfs: scrub_repair_page_from_good_copy(bdev == NULL) is unexpected!\n");
1423 return -EIO;
1426 bio = bio_alloc(GFP_NOFS, 1);
1427 if (!bio)
1428 return -EIO;
1429 bio->bi_bdev = page_bad->dev->bdev;
1430 bio->bi_sector = page_bad->physical >> 9;
1431 bio->bi_end_io = scrub_complete_bio_end_io;
1432 bio->bi_private = &complete;
1434 ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1435 if (PAGE_SIZE != ret) {
1436 bio_put(bio);
1437 return -EIO;
1439 btrfsic_submit_bio(WRITE, bio);
1441 /* this will also unplug the queue */
1442 wait_for_completion(&complete);
1443 if (!bio_flagged(bio, BIO_UPTODATE)) {
1444 btrfs_dev_stat_inc_and_print(page_bad->dev,
1445 BTRFS_DEV_STAT_WRITE_ERRS);
1446 btrfs_dev_replace_stats_inc(
1447 &sblock_bad->sctx->dev_root->fs_info->
1448 dev_replace.num_write_errors);
1449 bio_put(bio);
1450 return -EIO;
1452 bio_put(bio);
1455 return 0;
1458 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1460 int page_num;
1462 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1463 int ret;
1465 ret = scrub_write_page_to_dev_replace(sblock, page_num);
1466 if (ret)
1467 btrfs_dev_replace_stats_inc(
1468 &sblock->sctx->dev_root->fs_info->dev_replace.
1469 num_write_errors);
1473 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1474 int page_num)
1476 struct scrub_page *spage = sblock->pagev[page_num];
1478 BUG_ON(spage->page == NULL);
1479 if (spage->io_error) {
1480 void *mapped_buffer = kmap_atomic(spage->page);
1482 memset(mapped_buffer, 0, PAGE_CACHE_SIZE);
1483 flush_dcache_page(spage->page);
1484 kunmap_atomic(mapped_buffer);
1486 return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1489 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1490 struct scrub_page *spage)
1492 struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1493 struct scrub_bio *sbio;
1494 int ret;
1496 mutex_lock(&wr_ctx->wr_lock);
1497 again:
1498 if (!wr_ctx->wr_curr_bio) {
1499 wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
1500 GFP_NOFS);
1501 if (!wr_ctx->wr_curr_bio) {
1502 mutex_unlock(&wr_ctx->wr_lock);
1503 return -ENOMEM;
1505 wr_ctx->wr_curr_bio->sctx = sctx;
1506 wr_ctx->wr_curr_bio->page_count = 0;
1508 sbio = wr_ctx->wr_curr_bio;
1509 if (sbio->page_count == 0) {
1510 struct bio *bio;
1512 sbio->physical = spage->physical_for_dev_replace;
1513 sbio->logical = spage->logical;
1514 sbio->dev = wr_ctx->tgtdev;
1515 bio = sbio->bio;
1516 if (!bio) {
1517 bio = bio_alloc(GFP_NOFS, wr_ctx->pages_per_wr_bio);
1518 if (!bio) {
1519 mutex_unlock(&wr_ctx->wr_lock);
1520 return -ENOMEM;
1522 sbio->bio = bio;
1525 bio->bi_private = sbio;
1526 bio->bi_end_io = scrub_wr_bio_end_io;
1527 bio->bi_bdev = sbio->dev->bdev;
1528 bio->bi_sector = sbio->physical >> 9;
1529 sbio->err = 0;
1530 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1531 spage->physical_for_dev_replace ||
1532 sbio->logical + sbio->page_count * PAGE_SIZE !=
1533 spage->logical) {
1534 scrub_wr_submit(sctx);
1535 goto again;
1538 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1539 if (ret != PAGE_SIZE) {
1540 if (sbio->page_count < 1) {
1541 bio_put(sbio->bio);
1542 sbio->bio = NULL;
1543 mutex_unlock(&wr_ctx->wr_lock);
1544 return -EIO;
1546 scrub_wr_submit(sctx);
1547 goto again;
1550 sbio->pagev[sbio->page_count] = spage;
1551 scrub_page_get(spage);
1552 sbio->page_count++;
1553 if (sbio->page_count == wr_ctx->pages_per_wr_bio)
1554 scrub_wr_submit(sctx);
1555 mutex_unlock(&wr_ctx->wr_lock);
1557 return 0;
1560 static void scrub_wr_submit(struct scrub_ctx *sctx)
1562 struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1563 struct scrub_bio *sbio;
1565 if (!wr_ctx->wr_curr_bio)
1566 return;
1568 sbio = wr_ctx->wr_curr_bio;
1569 wr_ctx->wr_curr_bio = NULL;
1570 WARN_ON(!sbio->bio->bi_bdev);
1571 scrub_pending_bio_inc(sctx);
1572 /* process all writes in a single worker thread. Then the block layer
1573 * orders the requests before sending them to the driver which
1574 * doubled the write performance on spinning disks when measured
1575 * with Linux 3.5 */
1576 btrfsic_submit_bio(WRITE, sbio->bio);
1579 static void scrub_wr_bio_end_io(struct bio *bio, int err)
1581 struct scrub_bio *sbio = bio->bi_private;
1582 struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
1584 sbio->err = err;
1585 sbio->bio = bio;
1587 sbio->work.func = scrub_wr_bio_end_io_worker;
1588 btrfs_queue_worker(&fs_info->scrub_wr_completion_workers, &sbio->work);
1591 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1593 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1594 struct scrub_ctx *sctx = sbio->sctx;
1595 int i;
1597 WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1598 if (sbio->err) {
1599 struct btrfs_dev_replace *dev_replace =
1600 &sbio->sctx->dev_root->fs_info->dev_replace;
1602 for (i = 0; i < sbio->page_count; i++) {
1603 struct scrub_page *spage = sbio->pagev[i];
1605 spage->io_error = 1;
1606 btrfs_dev_replace_stats_inc(&dev_replace->
1607 num_write_errors);
1611 for (i = 0; i < sbio->page_count; i++)
1612 scrub_page_put(sbio->pagev[i]);
1614 bio_put(sbio->bio);
1615 kfree(sbio);
1616 scrub_pending_bio_dec(sctx);
1619 static int scrub_checksum(struct scrub_block *sblock)
1621 u64 flags;
1622 int ret;
1624 WARN_ON(sblock->page_count < 1);
1625 flags = sblock->pagev[0]->flags;
1626 ret = 0;
1627 if (flags & BTRFS_EXTENT_FLAG_DATA)
1628 ret = scrub_checksum_data(sblock);
1629 else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1630 ret = scrub_checksum_tree_block(sblock);
1631 else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1632 (void)scrub_checksum_super(sblock);
1633 else
1634 WARN_ON(1);
1635 if (ret)
1636 scrub_handle_errored_block(sblock);
1638 return ret;
1641 static int scrub_checksum_data(struct scrub_block *sblock)
1643 struct scrub_ctx *sctx = sblock->sctx;
1644 u8 csum[BTRFS_CSUM_SIZE];
1645 u8 *on_disk_csum;
1646 struct page *page;
1647 void *buffer;
1648 u32 crc = ~(u32)0;
1649 int fail = 0;
1650 struct btrfs_root *root = sctx->dev_root;
1651 u64 len;
1652 int index;
1654 BUG_ON(sblock->page_count < 1);
1655 if (!sblock->pagev[0]->have_csum)
1656 return 0;
1658 on_disk_csum = sblock->pagev[0]->csum;
1659 page = sblock->pagev[0]->page;
1660 buffer = kmap_atomic(page);
1662 len = sctx->sectorsize;
1663 index = 0;
1664 for (;;) {
1665 u64 l = min_t(u64, len, PAGE_SIZE);
1667 crc = btrfs_csum_data(root, buffer, crc, l);
1668 kunmap_atomic(buffer);
1669 len -= l;
1670 if (len == 0)
1671 break;
1672 index++;
1673 BUG_ON(index >= sblock->page_count);
1674 BUG_ON(!sblock->pagev[index]->page);
1675 page = sblock->pagev[index]->page;
1676 buffer = kmap_atomic(page);
1679 btrfs_csum_final(crc, csum);
1680 if (memcmp(csum, on_disk_csum, sctx->csum_size))
1681 fail = 1;
1683 return fail;
1686 static int scrub_checksum_tree_block(struct scrub_block *sblock)
1688 struct scrub_ctx *sctx = sblock->sctx;
1689 struct btrfs_header *h;
1690 struct btrfs_root *root = sctx->dev_root;
1691 struct btrfs_fs_info *fs_info = root->fs_info;
1692 u8 calculated_csum[BTRFS_CSUM_SIZE];
1693 u8 on_disk_csum[BTRFS_CSUM_SIZE];
1694 struct page *page;
1695 void *mapped_buffer;
1696 u64 mapped_size;
1697 void *p;
1698 u32 crc = ~(u32)0;
1699 int fail = 0;
1700 int crc_fail = 0;
1701 u64 len;
1702 int index;
1704 BUG_ON(sblock->page_count < 1);
1705 page = sblock->pagev[0]->page;
1706 mapped_buffer = kmap_atomic(page);
1707 h = (struct btrfs_header *)mapped_buffer;
1708 memcpy(on_disk_csum, h->csum, sctx->csum_size);
1711 * we don't use the getter functions here, as we
1712 * a) don't have an extent buffer and
1713 * b) the page is already kmapped
1716 if (sblock->pagev[0]->logical != le64_to_cpu(h->bytenr))
1717 ++fail;
1719 if (sblock->pagev[0]->generation != le64_to_cpu(h->generation))
1720 ++fail;
1722 if (memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1723 ++fail;
1725 if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1726 BTRFS_UUID_SIZE))
1727 ++fail;
1729 WARN_ON(sctx->nodesize != sctx->leafsize);
1730 len = sctx->nodesize - BTRFS_CSUM_SIZE;
1731 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1732 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1733 index = 0;
1734 for (;;) {
1735 u64 l = min_t(u64, len, mapped_size);
1737 crc = btrfs_csum_data(root, p, crc, l);
1738 kunmap_atomic(mapped_buffer);
1739 len -= l;
1740 if (len == 0)
1741 break;
1742 index++;
1743 BUG_ON(index >= sblock->page_count);
1744 BUG_ON(!sblock->pagev[index]->page);
1745 page = sblock->pagev[index]->page;
1746 mapped_buffer = kmap_atomic(page);
1747 mapped_size = PAGE_SIZE;
1748 p = mapped_buffer;
1751 btrfs_csum_final(crc, calculated_csum);
1752 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1753 ++crc_fail;
1755 return fail || crc_fail;
1758 static int scrub_checksum_super(struct scrub_block *sblock)
1760 struct btrfs_super_block *s;
1761 struct scrub_ctx *sctx = sblock->sctx;
1762 struct btrfs_root *root = sctx->dev_root;
1763 struct btrfs_fs_info *fs_info = root->fs_info;
1764 u8 calculated_csum[BTRFS_CSUM_SIZE];
1765 u8 on_disk_csum[BTRFS_CSUM_SIZE];
1766 struct page *page;
1767 void *mapped_buffer;
1768 u64 mapped_size;
1769 void *p;
1770 u32 crc = ~(u32)0;
1771 int fail_gen = 0;
1772 int fail_cor = 0;
1773 u64 len;
1774 int index;
1776 BUG_ON(sblock->page_count < 1);
1777 page = sblock->pagev[0]->page;
1778 mapped_buffer = kmap_atomic(page);
1779 s = (struct btrfs_super_block *)mapped_buffer;
1780 memcpy(on_disk_csum, s->csum, sctx->csum_size);
1782 if (sblock->pagev[0]->logical != le64_to_cpu(s->bytenr))
1783 ++fail_cor;
1785 if (sblock->pagev[0]->generation != le64_to_cpu(s->generation))
1786 ++fail_gen;
1788 if (memcmp(s->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1789 ++fail_cor;
1791 len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1792 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1793 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1794 index = 0;
1795 for (;;) {
1796 u64 l = min_t(u64, len, mapped_size);
1798 crc = btrfs_csum_data(root, p, crc, l);
1799 kunmap_atomic(mapped_buffer);
1800 len -= l;
1801 if (len == 0)
1802 break;
1803 index++;
1804 BUG_ON(index >= sblock->page_count);
1805 BUG_ON(!sblock->pagev[index]->page);
1806 page = sblock->pagev[index]->page;
1807 mapped_buffer = kmap_atomic(page);
1808 mapped_size = PAGE_SIZE;
1809 p = mapped_buffer;
1812 btrfs_csum_final(crc, calculated_csum);
1813 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1814 ++fail_cor;
1816 if (fail_cor + fail_gen) {
1818 * if we find an error in a super block, we just report it.
1819 * They will get written with the next transaction commit
1820 * anyway
1822 spin_lock(&sctx->stat_lock);
1823 ++sctx->stat.super_errors;
1824 spin_unlock(&sctx->stat_lock);
1825 if (fail_cor)
1826 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1827 BTRFS_DEV_STAT_CORRUPTION_ERRS);
1828 else
1829 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1830 BTRFS_DEV_STAT_GENERATION_ERRS);
1833 return fail_cor + fail_gen;
1836 static void scrub_block_get(struct scrub_block *sblock)
1838 atomic_inc(&sblock->ref_count);
1841 static void scrub_block_put(struct scrub_block *sblock)
1843 if (atomic_dec_and_test(&sblock->ref_count)) {
1844 int i;
1846 for (i = 0; i < sblock->page_count; i++)
1847 scrub_page_put(sblock->pagev[i]);
1848 kfree(sblock);
1852 static void scrub_page_get(struct scrub_page *spage)
1854 atomic_inc(&spage->ref_count);
1857 static void scrub_page_put(struct scrub_page *spage)
1859 if (atomic_dec_and_test(&spage->ref_count)) {
1860 if (spage->page)
1861 __free_page(spage->page);
1862 kfree(spage);
1866 static void scrub_submit(struct scrub_ctx *sctx)
1868 struct scrub_bio *sbio;
1870 if (sctx->curr == -1)
1871 return;
1873 sbio = sctx->bios[sctx->curr];
1874 sctx->curr = -1;
1875 scrub_pending_bio_inc(sctx);
1877 if (!sbio->bio->bi_bdev) {
1879 * this case should not happen. If btrfs_map_block() is
1880 * wrong, it could happen for dev-replace operations on
1881 * missing devices when no mirrors are available, but in
1882 * this case it should already fail the mount.
1883 * This case is handled correctly (but _very_ slowly).
1885 printk_ratelimited(KERN_WARNING
1886 "btrfs: scrub_submit(bio bdev == NULL) is unexpected!\n");
1887 bio_endio(sbio->bio, -EIO);
1888 } else {
1889 btrfsic_submit_bio(READ, sbio->bio);
1893 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
1894 struct scrub_page *spage)
1896 struct scrub_block *sblock = spage->sblock;
1897 struct scrub_bio *sbio;
1898 int ret;
1900 again:
1902 * grab a fresh bio or wait for one to become available
1904 while (sctx->curr == -1) {
1905 spin_lock(&sctx->list_lock);
1906 sctx->curr = sctx->first_free;
1907 if (sctx->curr != -1) {
1908 sctx->first_free = sctx->bios[sctx->curr]->next_free;
1909 sctx->bios[sctx->curr]->next_free = -1;
1910 sctx->bios[sctx->curr]->page_count = 0;
1911 spin_unlock(&sctx->list_lock);
1912 } else {
1913 spin_unlock(&sctx->list_lock);
1914 wait_event(sctx->list_wait, sctx->first_free != -1);
1917 sbio = sctx->bios[sctx->curr];
1918 if (sbio->page_count == 0) {
1919 struct bio *bio;
1921 sbio->physical = spage->physical;
1922 sbio->logical = spage->logical;
1923 sbio->dev = spage->dev;
1924 bio = sbio->bio;
1925 if (!bio) {
1926 bio = bio_alloc(GFP_NOFS, sctx->pages_per_rd_bio);
1927 if (!bio)
1928 return -ENOMEM;
1929 sbio->bio = bio;
1932 bio->bi_private = sbio;
1933 bio->bi_end_io = scrub_bio_end_io;
1934 bio->bi_bdev = sbio->dev->bdev;
1935 bio->bi_sector = sbio->physical >> 9;
1936 sbio->err = 0;
1937 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1938 spage->physical ||
1939 sbio->logical + sbio->page_count * PAGE_SIZE !=
1940 spage->logical ||
1941 sbio->dev != spage->dev) {
1942 scrub_submit(sctx);
1943 goto again;
1946 sbio->pagev[sbio->page_count] = spage;
1947 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1948 if (ret != PAGE_SIZE) {
1949 if (sbio->page_count < 1) {
1950 bio_put(sbio->bio);
1951 sbio->bio = NULL;
1952 return -EIO;
1954 scrub_submit(sctx);
1955 goto again;
1958 scrub_block_get(sblock); /* one for the page added to the bio */
1959 atomic_inc(&sblock->outstanding_pages);
1960 sbio->page_count++;
1961 if (sbio->page_count == sctx->pages_per_rd_bio)
1962 scrub_submit(sctx);
1964 return 0;
1967 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
1968 u64 physical, struct btrfs_device *dev, u64 flags,
1969 u64 gen, int mirror_num, u8 *csum, int force,
1970 u64 physical_for_dev_replace)
1972 struct scrub_block *sblock;
1973 int index;
1975 sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
1976 if (!sblock) {
1977 spin_lock(&sctx->stat_lock);
1978 sctx->stat.malloc_errors++;
1979 spin_unlock(&sctx->stat_lock);
1980 return -ENOMEM;
1983 /* one ref inside this function, plus one for each page added to
1984 * a bio later on */
1985 atomic_set(&sblock->ref_count, 1);
1986 sblock->sctx = sctx;
1987 sblock->no_io_error_seen = 1;
1989 for (index = 0; len > 0; index++) {
1990 struct scrub_page *spage;
1991 u64 l = min_t(u64, len, PAGE_SIZE);
1993 spage = kzalloc(sizeof(*spage), GFP_NOFS);
1994 if (!spage) {
1995 leave_nomem:
1996 spin_lock(&sctx->stat_lock);
1997 sctx->stat.malloc_errors++;
1998 spin_unlock(&sctx->stat_lock);
1999 scrub_block_put(sblock);
2000 return -ENOMEM;
2002 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2003 scrub_page_get(spage);
2004 sblock->pagev[index] = spage;
2005 spage->sblock = sblock;
2006 spage->dev = dev;
2007 spage->flags = flags;
2008 spage->generation = gen;
2009 spage->logical = logical;
2010 spage->physical = physical;
2011 spage->physical_for_dev_replace = physical_for_dev_replace;
2012 spage->mirror_num = mirror_num;
2013 if (csum) {
2014 spage->have_csum = 1;
2015 memcpy(spage->csum, csum, sctx->csum_size);
2016 } else {
2017 spage->have_csum = 0;
2019 sblock->page_count++;
2020 spage->page = alloc_page(GFP_NOFS);
2021 if (!spage->page)
2022 goto leave_nomem;
2023 len -= l;
2024 logical += l;
2025 physical += l;
2026 physical_for_dev_replace += l;
2029 WARN_ON(sblock->page_count == 0);
2030 for (index = 0; index < sblock->page_count; index++) {
2031 struct scrub_page *spage = sblock->pagev[index];
2032 int ret;
2034 ret = scrub_add_page_to_rd_bio(sctx, spage);
2035 if (ret) {
2036 scrub_block_put(sblock);
2037 return ret;
2041 if (force)
2042 scrub_submit(sctx);
2044 /* last one frees, either here or in bio completion for last page */
2045 scrub_block_put(sblock);
2046 return 0;
2049 static void scrub_bio_end_io(struct bio *bio, int err)
2051 struct scrub_bio *sbio = bio->bi_private;
2052 struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
2054 sbio->err = err;
2055 sbio->bio = bio;
2057 btrfs_queue_worker(&fs_info->scrub_workers, &sbio->work);
2060 static void scrub_bio_end_io_worker(struct btrfs_work *work)
2062 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2063 struct scrub_ctx *sctx = sbio->sctx;
2064 int i;
2066 BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2067 if (sbio->err) {
2068 for (i = 0; i < sbio->page_count; i++) {
2069 struct scrub_page *spage = sbio->pagev[i];
2071 spage->io_error = 1;
2072 spage->sblock->no_io_error_seen = 0;
2076 /* now complete the scrub_block items that have all pages completed */
2077 for (i = 0; i < sbio->page_count; i++) {
2078 struct scrub_page *spage = sbio->pagev[i];
2079 struct scrub_block *sblock = spage->sblock;
2081 if (atomic_dec_and_test(&sblock->outstanding_pages))
2082 scrub_block_complete(sblock);
2083 scrub_block_put(sblock);
2086 bio_put(sbio->bio);
2087 sbio->bio = NULL;
2088 spin_lock(&sctx->list_lock);
2089 sbio->next_free = sctx->first_free;
2090 sctx->first_free = sbio->index;
2091 spin_unlock(&sctx->list_lock);
2093 if (sctx->is_dev_replace &&
2094 atomic_read(&sctx->wr_ctx.flush_all_writes)) {
2095 mutex_lock(&sctx->wr_ctx.wr_lock);
2096 scrub_wr_submit(sctx);
2097 mutex_unlock(&sctx->wr_ctx.wr_lock);
2100 scrub_pending_bio_dec(sctx);
2103 static void scrub_block_complete(struct scrub_block *sblock)
2105 if (!sblock->no_io_error_seen) {
2106 scrub_handle_errored_block(sblock);
2107 } else {
2109 * if has checksum error, write via repair mechanism in
2110 * dev replace case, otherwise write here in dev replace
2111 * case.
2113 if (!scrub_checksum(sblock) && sblock->sctx->is_dev_replace)
2114 scrub_write_block_to_dev_replace(sblock);
2118 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u64 len,
2119 u8 *csum)
2121 struct btrfs_ordered_sum *sum = NULL;
2122 int ret = 0;
2123 unsigned long i;
2124 unsigned long num_sectors;
2126 while (!list_empty(&sctx->csum_list)) {
2127 sum = list_first_entry(&sctx->csum_list,
2128 struct btrfs_ordered_sum, list);
2129 if (sum->bytenr > logical)
2130 return 0;
2131 if (sum->bytenr + sum->len > logical)
2132 break;
2134 ++sctx->stat.csum_discards;
2135 list_del(&sum->list);
2136 kfree(sum);
2137 sum = NULL;
2139 if (!sum)
2140 return 0;
2142 num_sectors = sum->len / sctx->sectorsize;
2143 for (i = 0; i < num_sectors; ++i) {
2144 if (sum->sums[i].bytenr == logical) {
2145 memcpy(csum, &sum->sums[i].sum, sctx->csum_size);
2146 ret = 1;
2147 break;
2150 if (ret && i == num_sectors - 1) {
2151 list_del(&sum->list);
2152 kfree(sum);
2154 return ret;
2157 /* scrub extent tries to collect up to 64 kB for each bio */
2158 static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
2159 u64 physical, struct btrfs_device *dev, u64 flags,
2160 u64 gen, int mirror_num, u64 physical_for_dev_replace)
2162 int ret;
2163 u8 csum[BTRFS_CSUM_SIZE];
2164 u32 blocksize;
2166 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2167 blocksize = sctx->sectorsize;
2168 spin_lock(&sctx->stat_lock);
2169 sctx->stat.data_extents_scrubbed++;
2170 sctx->stat.data_bytes_scrubbed += len;
2171 spin_unlock(&sctx->stat_lock);
2172 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2173 WARN_ON(sctx->nodesize != sctx->leafsize);
2174 blocksize = sctx->nodesize;
2175 spin_lock(&sctx->stat_lock);
2176 sctx->stat.tree_extents_scrubbed++;
2177 sctx->stat.tree_bytes_scrubbed += len;
2178 spin_unlock(&sctx->stat_lock);
2179 } else {
2180 blocksize = sctx->sectorsize;
2181 WARN_ON(1);
2184 while (len) {
2185 u64 l = min_t(u64, len, blocksize);
2186 int have_csum = 0;
2188 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2189 /* push csums to sbio */
2190 have_csum = scrub_find_csum(sctx, logical, l, csum);
2191 if (have_csum == 0)
2192 ++sctx->stat.no_csum;
2193 if (sctx->is_dev_replace && !have_csum) {
2194 ret = copy_nocow_pages(sctx, logical, l,
2195 mirror_num,
2196 physical_for_dev_replace);
2197 goto behind_scrub_pages;
2200 ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2201 mirror_num, have_csum ? csum : NULL, 0,
2202 physical_for_dev_replace);
2203 behind_scrub_pages:
2204 if (ret)
2205 return ret;
2206 len -= l;
2207 logical += l;
2208 physical += l;
2209 physical_for_dev_replace += l;
2211 return 0;
2214 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2215 struct map_lookup *map,
2216 struct btrfs_device *scrub_dev,
2217 int num, u64 base, u64 length,
2218 int is_dev_replace)
2220 struct btrfs_path *path;
2221 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
2222 struct btrfs_root *root = fs_info->extent_root;
2223 struct btrfs_root *csum_root = fs_info->csum_root;
2224 struct btrfs_extent_item *extent;
2225 struct blk_plug plug;
2226 u64 flags;
2227 int ret;
2228 int slot;
2229 int i;
2230 u64 nstripes;
2231 struct extent_buffer *l;
2232 struct btrfs_key key;
2233 u64 physical;
2234 u64 logical;
2235 u64 generation;
2236 int mirror_num;
2237 struct reada_control *reada1;
2238 struct reada_control *reada2;
2239 struct btrfs_key key_start;
2240 struct btrfs_key key_end;
2241 u64 increment = map->stripe_len;
2242 u64 offset;
2243 u64 extent_logical;
2244 u64 extent_physical;
2245 u64 extent_len;
2246 struct btrfs_device *extent_dev;
2247 int extent_mirror_num;
2249 nstripes = length;
2250 offset = 0;
2251 do_div(nstripes, map->stripe_len);
2252 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
2253 offset = map->stripe_len * num;
2254 increment = map->stripe_len * map->num_stripes;
2255 mirror_num = 1;
2256 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2257 int factor = map->num_stripes / map->sub_stripes;
2258 offset = map->stripe_len * (num / map->sub_stripes);
2259 increment = map->stripe_len * factor;
2260 mirror_num = num % map->sub_stripes + 1;
2261 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
2262 increment = map->stripe_len;
2263 mirror_num = num % map->num_stripes + 1;
2264 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
2265 increment = map->stripe_len;
2266 mirror_num = num % map->num_stripes + 1;
2267 } else {
2268 increment = map->stripe_len;
2269 mirror_num = 1;
2272 path = btrfs_alloc_path();
2273 if (!path)
2274 return -ENOMEM;
2277 * work on commit root. The related disk blocks are static as
2278 * long as COW is applied. This means, it is save to rewrite
2279 * them to repair disk errors without any race conditions
2281 path->search_commit_root = 1;
2282 path->skip_locking = 1;
2285 * trigger the readahead for extent tree csum tree and wait for
2286 * completion. During readahead, the scrub is officially paused
2287 * to not hold off transaction commits
2289 logical = base + offset;
2291 wait_event(sctx->list_wait,
2292 atomic_read(&sctx->bios_in_flight) == 0);
2293 atomic_inc(&fs_info->scrubs_paused);
2294 wake_up(&fs_info->scrub_pause_wait);
2296 /* FIXME it might be better to start readahead at commit root */
2297 key_start.objectid = logical;
2298 key_start.type = BTRFS_EXTENT_ITEM_KEY;
2299 key_start.offset = (u64)0;
2300 key_end.objectid = base + offset + nstripes * increment;
2301 key_end.type = BTRFS_EXTENT_ITEM_KEY;
2302 key_end.offset = (u64)0;
2303 reada1 = btrfs_reada_add(root, &key_start, &key_end);
2305 key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
2306 key_start.type = BTRFS_EXTENT_CSUM_KEY;
2307 key_start.offset = logical;
2308 key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
2309 key_end.type = BTRFS_EXTENT_CSUM_KEY;
2310 key_end.offset = base + offset + nstripes * increment;
2311 reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);
2313 if (!IS_ERR(reada1))
2314 btrfs_reada_wait(reada1);
2315 if (!IS_ERR(reada2))
2316 btrfs_reada_wait(reada2);
2318 mutex_lock(&fs_info->scrub_lock);
2319 while (atomic_read(&fs_info->scrub_pause_req)) {
2320 mutex_unlock(&fs_info->scrub_lock);
2321 wait_event(fs_info->scrub_pause_wait,
2322 atomic_read(&fs_info->scrub_pause_req) == 0);
2323 mutex_lock(&fs_info->scrub_lock);
2325 atomic_dec(&fs_info->scrubs_paused);
2326 mutex_unlock(&fs_info->scrub_lock);
2327 wake_up(&fs_info->scrub_pause_wait);
2330 * collect all data csums for the stripe to avoid seeking during
2331 * the scrub. This might currently (crc32) end up to be about 1MB
2333 blk_start_plug(&plug);
2336 * now find all extents for each stripe and scrub them
2338 logical = base + offset;
2339 physical = map->stripes[num].physical;
2340 ret = 0;
2341 for (i = 0; i < nstripes; ++i) {
2343 * canceled?
2345 if (atomic_read(&fs_info->scrub_cancel_req) ||
2346 atomic_read(&sctx->cancel_req)) {
2347 ret = -ECANCELED;
2348 goto out;
2351 * check to see if we have to pause
2353 if (atomic_read(&fs_info->scrub_pause_req)) {
2354 /* push queued extents */
2355 atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
2356 scrub_submit(sctx);
2357 mutex_lock(&sctx->wr_ctx.wr_lock);
2358 scrub_wr_submit(sctx);
2359 mutex_unlock(&sctx->wr_ctx.wr_lock);
2360 wait_event(sctx->list_wait,
2361 atomic_read(&sctx->bios_in_flight) == 0);
2362 atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
2363 atomic_inc(&fs_info->scrubs_paused);
2364 wake_up(&fs_info->scrub_pause_wait);
2365 mutex_lock(&fs_info->scrub_lock);
2366 while (atomic_read(&fs_info->scrub_pause_req)) {
2367 mutex_unlock(&fs_info->scrub_lock);
2368 wait_event(fs_info->scrub_pause_wait,
2369 atomic_read(&fs_info->scrub_pause_req) == 0);
2370 mutex_lock(&fs_info->scrub_lock);
2372 atomic_dec(&fs_info->scrubs_paused);
2373 mutex_unlock(&fs_info->scrub_lock);
2374 wake_up(&fs_info->scrub_pause_wait);
2377 ret = btrfs_lookup_csums_range(csum_root, logical,
2378 logical + map->stripe_len - 1,
2379 &sctx->csum_list, 1);
2380 if (ret)
2381 goto out;
2383 key.objectid = logical;
2384 key.type = BTRFS_EXTENT_ITEM_KEY;
2385 key.offset = (u64)0;
2387 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2388 if (ret < 0)
2389 goto out;
2390 if (ret > 0) {
2391 ret = btrfs_previous_item(root, path, 0,
2392 BTRFS_EXTENT_ITEM_KEY);
2393 if (ret < 0)
2394 goto out;
2395 if (ret > 0) {
2396 /* there's no smaller item, so stick with the
2397 * larger one */
2398 btrfs_release_path(path);
2399 ret = btrfs_search_slot(NULL, root, &key,
2400 path, 0, 0);
2401 if (ret < 0)
2402 goto out;
2406 while (1) {
2407 l = path->nodes[0];
2408 slot = path->slots[0];
2409 if (slot >= btrfs_header_nritems(l)) {
2410 ret = btrfs_next_leaf(root, path);
2411 if (ret == 0)
2412 continue;
2413 if (ret < 0)
2414 goto out;
2416 break;
2418 btrfs_item_key_to_cpu(l, &key, slot);
2420 if (key.objectid + key.offset <= logical)
2421 goto next;
2423 if (key.objectid >= logical + map->stripe_len)
2424 break;
2426 if (btrfs_key_type(&key) != BTRFS_EXTENT_ITEM_KEY)
2427 goto next;
2429 extent = btrfs_item_ptr(l, slot,
2430 struct btrfs_extent_item);
2431 flags = btrfs_extent_flags(l, extent);
2432 generation = btrfs_extent_generation(l, extent);
2434 if (key.objectid < logical &&
2435 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
2436 printk(KERN_ERR
2437 "btrfs scrub: tree block %llu spanning "
2438 "stripes, ignored. logical=%llu\n",
2439 (unsigned long long)key.objectid,
2440 (unsigned long long)logical);
2441 goto next;
2445 * trim extent to this stripe
2447 if (key.objectid < logical) {
2448 key.offset -= logical - key.objectid;
2449 key.objectid = logical;
2451 if (key.objectid + key.offset >
2452 logical + map->stripe_len) {
2453 key.offset = logical + map->stripe_len -
2454 key.objectid;
2457 extent_logical = key.objectid;
2458 extent_physical = key.objectid - logical + physical;
2459 extent_len = key.offset;
2460 extent_dev = scrub_dev;
2461 extent_mirror_num = mirror_num;
2462 if (is_dev_replace)
2463 scrub_remap_extent(fs_info, extent_logical,
2464 extent_len, &extent_physical,
2465 &extent_dev,
2466 &extent_mirror_num);
2467 ret = scrub_extent(sctx, extent_logical, extent_len,
2468 extent_physical, extent_dev, flags,
2469 generation, extent_mirror_num,
2470 key.objectid - logical + physical);
2471 if (ret)
2472 goto out;
2474 next:
2475 path->slots[0]++;
2477 btrfs_release_path(path);
2478 logical += increment;
2479 physical += map->stripe_len;
2480 spin_lock(&sctx->stat_lock);
2481 sctx->stat.last_physical = physical;
2482 spin_unlock(&sctx->stat_lock);
2484 out:
2485 /* push queued extents */
2486 scrub_submit(sctx);
2487 mutex_lock(&sctx->wr_ctx.wr_lock);
2488 scrub_wr_submit(sctx);
2489 mutex_unlock(&sctx->wr_ctx.wr_lock);
2491 blk_finish_plug(&plug);
2492 btrfs_free_path(path);
2493 return ret < 0 ? ret : 0;
2496 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
2497 struct btrfs_device *scrub_dev,
2498 u64 chunk_tree, u64 chunk_objectid,
2499 u64 chunk_offset, u64 length,
2500 u64 dev_offset, int is_dev_replace)
2502 struct btrfs_mapping_tree *map_tree =
2503 &sctx->dev_root->fs_info->mapping_tree;
2504 struct map_lookup *map;
2505 struct extent_map *em;
2506 int i;
2507 int ret = 0;
2509 read_lock(&map_tree->map_tree.lock);
2510 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
2511 read_unlock(&map_tree->map_tree.lock);
2513 if (!em)
2514 return -EINVAL;
2516 map = (struct map_lookup *)em->bdev;
2517 if (em->start != chunk_offset)
2518 goto out;
2520 if (em->len < length)
2521 goto out;
2523 for (i = 0; i < map->num_stripes; ++i) {
2524 if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
2525 map->stripes[i].physical == dev_offset) {
2526 ret = scrub_stripe(sctx, map, scrub_dev, i,
2527 chunk_offset, length,
2528 is_dev_replace);
2529 if (ret)
2530 goto out;
2533 out:
2534 free_extent_map(em);
2536 return ret;
2539 static noinline_for_stack
2540 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
2541 struct btrfs_device *scrub_dev, u64 start, u64 end,
2542 int is_dev_replace)
2544 struct btrfs_dev_extent *dev_extent = NULL;
2545 struct btrfs_path *path;
2546 struct btrfs_root *root = sctx->dev_root;
2547 struct btrfs_fs_info *fs_info = root->fs_info;
2548 u64 length;
2549 u64 chunk_tree;
2550 u64 chunk_objectid;
2551 u64 chunk_offset;
2552 int ret;
2553 int slot;
2554 struct extent_buffer *l;
2555 struct btrfs_key key;
2556 struct btrfs_key found_key;
2557 struct btrfs_block_group_cache *cache;
2558 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
2560 path = btrfs_alloc_path();
2561 if (!path)
2562 return -ENOMEM;
2564 path->reada = 2;
2565 path->search_commit_root = 1;
2566 path->skip_locking = 1;
2568 key.objectid = scrub_dev->devid;
2569 key.offset = 0ull;
2570 key.type = BTRFS_DEV_EXTENT_KEY;
2572 while (1) {
2573 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2574 if (ret < 0)
2575 break;
2576 if (ret > 0) {
2577 if (path->slots[0] >=
2578 btrfs_header_nritems(path->nodes[0])) {
2579 ret = btrfs_next_leaf(root, path);
2580 if (ret)
2581 break;
2585 l = path->nodes[0];
2586 slot = path->slots[0];
2588 btrfs_item_key_to_cpu(l, &found_key, slot);
2590 if (found_key.objectid != scrub_dev->devid)
2591 break;
2593 if (btrfs_key_type(&found_key) != BTRFS_DEV_EXTENT_KEY)
2594 break;
2596 if (found_key.offset >= end)
2597 break;
2599 if (found_key.offset < key.offset)
2600 break;
2602 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2603 length = btrfs_dev_extent_length(l, dev_extent);
2605 if (found_key.offset + length <= start) {
2606 key.offset = found_key.offset + length;
2607 btrfs_release_path(path);
2608 continue;
2611 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2612 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2613 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2616 * get a reference on the corresponding block group to prevent
2617 * the chunk from going away while we scrub it
2619 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2620 if (!cache) {
2621 ret = -ENOENT;
2622 break;
2624 dev_replace->cursor_right = found_key.offset + length;
2625 dev_replace->cursor_left = found_key.offset;
2626 dev_replace->item_needs_writeback = 1;
2627 ret = scrub_chunk(sctx, scrub_dev, chunk_tree, chunk_objectid,
2628 chunk_offset, length, found_key.offset,
2629 is_dev_replace);
2632 * flush, submit all pending read and write bios, afterwards
2633 * wait for them.
2634 * Note that in the dev replace case, a read request causes
2635 * write requests that are submitted in the read completion
2636 * worker. Therefore in the current situation, it is required
2637 * that all write requests are flushed, so that all read and
2638 * write requests are really completed when bios_in_flight
2639 * changes to 0.
2641 atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
2642 scrub_submit(sctx);
2643 mutex_lock(&sctx->wr_ctx.wr_lock);
2644 scrub_wr_submit(sctx);
2645 mutex_unlock(&sctx->wr_ctx.wr_lock);
2647 wait_event(sctx->list_wait,
2648 atomic_read(&sctx->bios_in_flight) == 0);
2649 atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
2650 atomic_inc(&fs_info->scrubs_paused);
2651 wake_up(&fs_info->scrub_pause_wait);
2652 wait_event(sctx->list_wait,
2653 atomic_read(&sctx->workers_pending) == 0);
2655 mutex_lock(&fs_info->scrub_lock);
2656 while (atomic_read(&fs_info->scrub_pause_req)) {
2657 mutex_unlock(&fs_info->scrub_lock);
2658 wait_event(fs_info->scrub_pause_wait,
2659 atomic_read(&fs_info->scrub_pause_req) == 0);
2660 mutex_lock(&fs_info->scrub_lock);
2662 atomic_dec(&fs_info->scrubs_paused);
2663 mutex_unlock(&fs_info->scrub_lock);
2664 wake_up(&fs_info->scrub_pause_wait);
2666 dev_replace->cursor_left = dev_replace->cursor_right;
2667 dev_replace->item_needs_writeback = 1;
2668 btrfs_put_block_group(cache);
2669 if (ret)
2670 break;
2671 if (is_dev_replace &&
2672 atomic64_read(&dev_replace->num_write_errors) > 0) {
2673 ret = -EIO;
2674 break;
2676 if (sctx->stat.malloc_errors > 0) {
2677 ret = -ENOMEM;
2678 break;
2681 key.offset = found_key.offset + length;
2682 btrfs_release_path(path);
2685 btrfs_free_path(path);
2688 * ret can still be 1 from search_slot or next_leaf,
2689 * that's not an error
2691 return ret < 0 ? ret : 0;
2694 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
2695 struct btrfs_device *scrub_dev)
2697 int i;
2698 u64 bytenr;
2699 u64 gen;
2700 int ret;
2701 struct btrfs_root *root = sctx->dev_root;
2703 if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
2704 return -EIO;
2706 gen = root->fs_info->last_trans_committed;
2708 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2709 bytenr = btrfs_sb_offset(i);
2710 if (bytenr + BTRFS_SUPER_INFO_SIZE > scrub_dev->total_bytes)
2711 break;
2713 ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
2714 scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
2715 NULL, 1, bytenr);
2716 if (ret)
2717 return ret;
2719 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
2721 return 0;
2725 * get a reference count on fs_info->scrub_workers. start worker if necessary
2727 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
2728 int is_dev_replace)
2730 int ret = 0;
2732 mutex_lock(&fs_info->scrub_lock);
2733 if (fs_info->scrub_workers_refcnt == 0) {
2734 if (is_dev_replace)
2735 btrfs_init_workers(&fs_info->scrub_workers, "scrub", 1,
2736 &fs_info->generic_worker);
2737 else
2738 btrfs_init_workers(&fs_info->scrub_workers, "scrub",
2739 fs_info->thread_pool_size,
2740 &fs_info->generic_worker);
2741 fs_info->scrub_workers.idle_thresh = 4;
2742 ret = btrfs_start_workers(&fs_info->scrub_workers);
2743 if (ret)
2744 goto out;
2745 btrfs_init_workers(&fs_info->scrub_wr_completion_workers,
2746 "scrubwrc",
2747 fs_info->thread_pool_size,
2748 &fs_info->generic_worker);
2749 fs_info->scrub_wr_completion_workers.idle_thresh = 2;
2750 ret = btrfs_start_workers(
2751 &fs_info->scrub_wr_completion_workers);
2752 if (ret)
2753 goto out;
2754 btrfs_init_workers(&fs_info->scrub_nocow_workers, "scrubnc", 1,
2755 &fs_info->generic_worker);
2756 ret = btrfs_start_workers(&fs_info->scrub_nocow_workers);
2757 if (ret)
2758 goto out;
2760 ++fs_info->scrub_workers_refcnt;
2761 out:
2762 mutex_unlock(&fs_info->scrub_lock);
2764 return ret;
2767 static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
2769 mutex_lock(&fs_info->scrub_lock);
2770 if (--fs_info->scrub_workers_refcnt == 0) {
2771 btrfs_stop_workers(&fs_info->scrub_workers);
2772 btrfs_stop_workers(&fs_info->scrub_wr_completion_workers);
2773 btrfs_stop_workers(&fs_info->scrub_nocow_workers);
2775 WARN_ON(fs_info->scrub_workers_refcnt < 0);
2776 mutex_unlock(&fs_info->scrub_lock);
2779 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
2780 u64 end, struct btrfs_scrub_progress *progress,
2781 int readonly, int is_dev_replace)
2783 struct scrub_ctx *sctx;
2784 int ret;
2785 struct btrfs_device *dev;
2787 if (btrfs_fs_closing(fs_info))
2788 return -EINVAL;
2791 * check some assumptions
2793 if (fs_info->chunk_root->nodesize != fs_info->chunk_root->leafsize) {
2794 printk(KERN_ERR
2795 "btrfs_scrub: size assumption nodesize == leafsize (%d == %d) fails\n",
2796 fs_info->chunk_root->nodesize,
2797 fs_info->chunk_root->leafsize);
2798 return -EINVAL;
2801 if (fs_info->chunk_root->nodesize > BTRFS_STRIPE_LEN) {
2803 * in this case scrub is unable to calculate the checksum
2804 * the way scrub is implemented. Do not handle this
2805 * situation at all because it won't ever happen.
2807 printk(KERN_ERR
2808 "btrfs_scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails\n",
2809 fs_info->chunk_root->nodesize, BTRFS_STRIPE_LEN);
2810 return -EINVAL;
2813 if (fs_info->chunk_root->sectorsize != PAGE_SIZE) {
2814 /* not supported for data w/o checksums */
2815 printk(KERN_ERR
2816 "btrfs_scrub: size assumption sectorsize != PAGE_SIZE (%d != %lld) fails\n",
2817 fs_info->chunk_root->sectorsize,
2818 (unsigned long long)PAGE_SIZE);
2819 return -EINVAL;
2822 if (fs_info->chunk_root->nodesize >
2823 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
2824 fs_info->chunk_root->sectorsize >
2825 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
2827 * would exhaust the array bounds of pagev member in
2828 * struct scrub_block
2830 pr_err("btrfs_scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails\n",
2831 fs_info->chunk_root->nodesize,
2832 SCRUB_MAX_PAGES_PER_BLOCK,
2833 fs_info->chunk_root->sectorsize,
2834 SCRUB_MAX_PAGES_PER_BLOCK);
2835 return -EINVAL;
2838 ret = scrub_workers_get(fs_info, is_dev_replace);
2839 if (ret)
2840 return ret;
2842 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2843 dev = btrfs_find_device(fs_info, devid, NULL, NULL);
2844 if (!dev || (dev->missing && !is_dev_replace)) {
2845 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2846 scrub_workers_put(fs_info);
2847 return -ENODEV;
2849 mutex_lock(&fs_info->scrub_lock);
2851 if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
2852 mutex_unlock(&fs_info->scrub_lock);
2853 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2854 scrub_workers_put(fs_info);
2855 return -EIO;
2858 btrfs_dev_replace_lock(&fs_info->dev_replace);
2859 if (dev->scrub_device ||
2860 (!is_dev_replace &&
2861 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
2862 btrfs_dev_replace_unlock(&fs_info->dev_replace);
2863 mutex_unlock(&fs_info->scrub_lock);
2864 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2865 scrub_workers_put(fs_info);
2866 return -EINPROGRESS;
2868 btrfs_dev_replace_unlock(&fs_info->dev_replace);
2869 sctx = scrub_setup_ctx(dev, is_dev_replace);
2870 if (IS_ERR(sctx)) {
2871 mutex_unlock(&fs_info->scrub_lock);
2872 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2873 scrub_workers_put(fs_info);
2874 return PTR_ERR(sctx);
2876 sctx->readonly = readonly;
2877 dev->scrub_device = sctx;
2879 atomic_inc(&fs_info->scrubs_running);
2880 mutex_unlock(&fs_info->scrub_lock);
2881 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2883 if (!is_dev_replace) {
2884 down_read(&fs_info->scrub_super_lock);
2885 ret = scrub_supers(sctx, dev);
2886 up_read(&fs_info->scrub_super_lock);
2889 if (!ret)
2890 ret = scrub_enumerate_chunks(sctx, dev, start, end,
2891 is_dev_replace);
2893 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
2894 atomic_dec(&fs_info->scrubs_running);
2895 wake_up(&fs_info->scrub_pause_wait);
2897 wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
2899 if (progress)
2900 memcpy(progress, &sctx->stat, sizeof(*progress));
2902 mutex_lock(&fs_info->scrub_lock);
2903 dev->scrub_device = NULL;
2904 mutex_unlock(&fs_info->scrub_lock);
2906 scrub_free_ctx(sctx);
2907 scrub_workers_put(fs_info);
2909 return ret;
2912 void btrfs_scrub_pause(struct btrfs_root *root)
2914 struct btrfs_fs_info *fs_info = root->fs_info;
2916 mutex_lock(&fs_info->scrub_lock);
2917 atomic_inc(&fs_info->scrub_pause_req);
2918 while (atomic_read(&fs_info->scrubs_paused) !=
2919 atomic_read(&fs_info->scrubs_running)) {
2920 mutex_unlock(&fs_info->scrub_lock);
2921 wait_event(fs_info->scrub_pause_wait,
2922 atomic_read(&fs_info->scrubs_paused) ==
2923 atomic_read(&fs_info->scrubs_running));
2924 mutex_lock(&fs_info->scrub_lock);
2926 mutex_unlock(&fs_info->scrub_lock);
2929 void btrfs_scrub_continue(struct btrfs_root *root)
2931 struct btrfs_fs_info *fs_info = root->fs_info;
2933 atomic_dec(&fs_info->scrub_pause_req);
2934 wake_up(&fs_info->scrub_pause_wait);
2937 void btrfs_scrub_pause_super(struct btrfs_root *root)
2939 down_write(&root->fs_info->scrub_super_lock);
2942 void btrfs_scrub_continue_super(struct btrfs_root *root)
2944 up_write(&root->fs_info->scrub_super_lock);
2947 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
2949 mutex_lock(&fs_info->scrub_lock);
2950 if (!atomic_read(&fs_info->scrubs_running)) {
2951 mutex_unlock(&fs_info->scrub_lock);
2952 return -ENOTCONN;
2955 atomic_inc(&fs_info->scrub_cancel_req);
2956 while (atomic_read(&fs_info->scrubs_running)) {
2957 mutex_unlock(&fs_info->scrub_lock);
2958 wait_event(fs_info->scrub_pause_wait,
2959 atomic_read(&fs_info->scrubs_running) == 0);
2960 mutex_lock(&fs_info->scrub_lock);
2962 atomic_dec(&fs_info->scrub_cancel_req);
2963 mutex_unlock(&fs_info->scrub_lock);
2965 return 0;
2968 int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
2969 struct btrfs_device *dev)
2971 struct scrub_ctx *sctx;
2973 mutex_lock(&fs_info->scrub_lock);
2974 sctx = dev->scrub_device;
2975 if (!sctx) {
2976 mutex_unlock(&fs_info->scrub_lock);
2977 return -ENOTCONN;
2979 atomic_inc(&sctx->cancel_req);
2980 while (dev->scrub_device) {
2981 mutex_unlock(&fs_info->scrub_lock);
2982 wait_event(fs_info->scrub_pause_wait,
2983 dev->scrub_device == NULL);
2984 mutex_lock(&fs_info->scrub_lock);
2986 mutex_unlock(&fs_info->scrub_lock);
2988 return 0;
2991 int btrfs_scrub_cancel_devid(struct btrfs_root *root, u64 devid)
2993 struct btrfs_fs_info *fs_info = root->fs_info;
2994 struct btrfs_device *dev;
2995 int ret;
2998 * we have to hold the device_list_mutex here so the device
2999 * does not go away in cancel_dev. FIXME: find a better solution
3001 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3002 dev = btrfs_find_device(fs_info, devid, NULL, NULL);
3003 if (!dev) {
3004 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3005 return -ENODEV;
3007 ret = btrfs_scrub_cancel_dev(fs_info, dev);
3008 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3010 return ret;
3013 int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
3014 struct btrfs_scrub_progress *progress)
3016 struct btrfs_device *dev;
3017 struct scrub_ctx *sctx = NULL;
3019 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3020 dev = btrfs_find_device(root->fs_info, devid, NULL, NULL);
3021 if (dev)
3022 sctx = dev->scrub_device;
3023 if (sctx)
3024 memcpy(progress, &sctx->stat, sizeof(*progress));
3025 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3027 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
3030 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
3031 u64 extent_logical, u64 extent_len,
3032 u64 *extent_physical,
3033 struct btrfs_device **extent_dev,
3034 int *extent_mirror_num)
3036 u64 mapped_length;
3037 struct btrfs_bio *bbio = NULL;
3038 int ret;
3040 mapped_length = extent_len;
3041 ret = btrfs_map_block(fs_info, READ, extent_logical,
3042 &mapped_length, &bbio, 0);
3043 if (ret || !bbio || mapped_length < extent_len ||
3044 !bbio->stripes[0].dev->bdev) {
3045 kfree(bbio);
3046 return;
3049 *extent_physical = bbio->stripes[0].physical;
3050 *extent_mirror_num = bbio->mirror_num;
3051 *extent_dev = bbio->stripes[0].dev;
3052 kfree(bbio);
3055 static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
3056 struct scrub_wr_ctx *wr_ctx,
3057 struct btrfs_fs_info *fs_info,
3058 struct btrfs_device *dev,
3059 int is_dev_replace)
3061 WARN_ON(wr_ctx->wr_curr_bio != NULL);
3063 mutex_init(&wr_ctx->wr_lock);
3064 wr_ctx->wr_curr_bio = NULL;
3065 if (!is_dev_replace)
3066 return 0;
3068 WARN_ON(!dev->bdev);
3069 wr_ctx->pages_per_wr_bio = min_t(int, SCRUB_PAGES_PER_WR_BIO,
3070 bio_get_nr_vecs(dev->bdev));
3071 wr_ctx->tgtdev = dev;
3072 atomic_set(&wr_ctx->flush_all_writes, 0);
3073 return 0;
3076 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
3078 mutex_lock(&wr_ctx->wr_lock);
3079 kfree(wr_ctx->wr_curr_bio);
3080 wr_ctx->wr_curr_bio = NULL;
3081 mutex_unlock(&wr_ctx->wr_lock);
3084 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
3085 int mirror_num, u64 physical_for_dev_replace)
3087 struct scrub_copy_nocow_ctx *nocow_ctx;
3088 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
3090 nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
3091 if (!nocow_ctx) {
3092 spin_lock(&sctx->stat_lock);
3093 sctx->stat.malloc_errors++;
3094 spin_unlock(&sctx->stat_lock);
3095 return -ENOMEM;
3098 scrub_pending_trans_workers_inc(sctx);
3100 nocow_ctx->sctx = sctx;
3101 nocow_ctx->logical = logical;
3102 nocow_ctx->len = len;
3103 nocow_ctx->mirror_num = mirror_num;
3104 nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
3105 nocow_ctx->work.func = copy_nocow_pages_worker;
3106 btrfs_queue_worker(&fs_info->scrub_nocow_workers,
3107 &nocow_ctx->work);
3109 return 0;
3112 static void copy_nocow_pages_worker(struct btrfs_work *work)
3114 struct scrub_copy_nocow_ctx *nocow_ctx =
3115 container_of(work, struct scrub_copy_nocow_ctx, work);
3116 struct scrub_ctx *sctx = nocow_ctx->sctx;
3117 u64 logical = nocow_ctx->logical;
3118 u64 len = nocow_ctx->len;
3119 int mirror_num = nocow_ctx->mirror_num;
3120 u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
3121 int ret;
3122 struct btrfs_trans_handle *trans = NULL;
3123 struct btrfs_fs_info *fs_info;
3124 struct btrfs_path *path;
3125 struct btrfs_root *root;
3126 int not_written = 0;
3128 fs_info = sctx->dev_root->fs_info;
3129 root = fs_info->extent_root;
3131 path = btrfs_alloc_path();
3132 if (!path) {
3133 spin_lock(&sctx->stat_lock);
3134 sctx->stat.malloc_errors++;
3135 spin_unlock(&sctx->stat_lock);
3136 not_written = 1;
3137 goto out;
3140 trans = btrfs_join_transaction(root);
3141 if (IS_ERR(trans)) {
3142 not_written = 1;
3143 goto out;
3146 ret = iterate_inodes_from_logical(logical, fs_info, path,
3147 copy_nocow_pages_for_inode,
3148 nocow_ctx);
3149 if (ret != 0 && ret != -ENOENT) {
3150 pr_warn("iterate_inodes_from_logical() failed: log %llu, phys %llu, len %llu, mir %llu, ret %d\n",
3151 (unsigned long long)logical,
3152 (unsigned long long)physical_for_dev_replace,
3153 (unsigned long long)len,
3154 (unsigned long long)mirror_num, ret);
3155 not_written = 1;
3156 goto out;
3159 out:
3160 if (trans && !IS_ERR(trans))
3161 btrfs_end_transaction(trans, root);
3162 if (not_written)
3163 btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
3164 num_uncorrectable_read_errors);
3166 btrfs_free_path(path);
3167 kfree(nocow_ctx);
3169 scrub_pending_trans_workers_dec(sctx);
3172 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root, void *ctx)
3174 unsigned long index;
3175 struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
3176 int ret = 0;
3177 struct btrfs_key key;
3178 struct inode *inode = NULL;
3179 struct btrfs_root *local_root;
3180 u64 physical_for_dev_replace;
3181 u64 len;
3182 struct btrfs_fs_info *fs_info = nocow_ctx->sctx->dev_root->fs_info;
3184 key.objectid = root;
3185 key.type = BTRFS_ROOT_ITEM_KEY;
3186 key.offset = (u64)-1;
3187 local_root = btrfs_read_fs_root_no_name(fs_info, &key);
3188 if (IS_ERR(local_root))
3189 return PTR_ERR(local_root);
3191 key.type = BTRFS_INODE_ITEM_KEY;
3192 key.objectid = inum;
3193 key.offset = 0;
3194 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
3195 if (IS_ERR(inode))
3196 return PTR_ERR(inode);
3198 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
3199 len = nocow_ctx->len;
3200 while (len >= PAGE_CACHE_SIZE) {
3201 struct page *page = NULL;
3202 int ret_sub;
3204 index = offset >> PAGE_CACHE_SHIFT;
3206 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
3207 if (!page) {
3208 pr_err("find_or_create_page() failed\n");
3209 ret = -ENOMEM;
3210 goto next_page;
3213 if (PageUptodate(page)) {
3214 if (PageDirty(page))
3215 goto next_page;
3216 } else {
3217 ClearPageError(page);
3218 ret_sub = extent_read_full_page(&BTRFS_I(inode)->
3219 io_tree,
3220 page, btrfs_get_extent,
3221 nocow_ctx->mirror_num);
3222 if (ret_sub) {
3223 ret = ret_sub;
3224 goto next_page;
3226 wait_on_page_locked(page);
3227 if (!PageUptodate(page)) {
3228 ret = -EIO;
3229 goto next_page;
3232 ret_sub = write_page_nocow(nocow_ctx->sctx,
3233 physical_for_dev_replace, page);
3234 if (ret_sub) {
3235 ret = ret_sub;
3236 goto next_page;
3239 next_page:
3240 if (page) {
3241 unlock_page(page);
3242 put_page(page);
3244 offset += PAGE_CACHE_SIZE;
3245 physical_for_dev_replace += PAGE_CACHE_SIZE;
3246 len -= PAGE_CACHE_SIZE;
3249 if (inode)
3250 iput(inode);
3251 return ret;
3254 static int write_page_nocow(struct scrub_ctx *sctx,
3255 u64 physical_for_dev_replace, struct page *page)
3257 struct bio *bio;
3258 struct btrfs_device *dev;
3259 int ret;
3260 DECLARE_COMPLETION_ONSTACK(compl);
3262 dev = sctx->wr_ctx.tgtdev;
3263 if (!dev)
3264 return -EIO;
3265 if (!dev->bdev) {
3266 printk_ratelimited(KERN_WARNING
3267 "btrfs: scrub write_page_nocow(bdev == NULL) is unexpected!\n");
3268 return -EIO;
3270 bio = bio_alloc(GFP_NOFS, 1);
3271 if (!bio) {
3272 spin_lock(&sctx->stat_lock);
3273 sctx->stat.malloc_errors++;
3274 spin_unlock(&sctx->stat_lock);
3275 return -ENOMEM;
3277 bio->bi_private = &compl;
3278 bio->bi_end_io = scrub_complete_bio_end_io;
3279 bio->bi_size = 0;
3280 bio->bi_sector = physical_for_dev_replace >> 9;
3281 bio->bi_bdev = dev->bdev;
3282 ret = bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
3283 if (ret != PAGE_CACHE_SIZE) {
3284 leave_with_eio:
3285 bio_put(bio);
3286 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
3287 return -EIO;
3289 btrfsic_submit_bio(WRITE_SYNC, bio);
3290 wait_for_completion(&compl);
3292 if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
3293 goto leave_with_eio;
3295 bio_put(bio);
3296 return 0;