Merge branch 'fixes-for-3.8' of git://git.kernel.org/pub/scm/linux/kernel/git/coolone...
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / btrfs / free-space-cache.c
blob59ea2e4349c9cdbecb105a3a384376f52b0a5da6
1 /*
2 * Copyright (C) 2008 Red Hat. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/pagemap.h>
20 #include <linux/sched.h>
21 #include <linux/slab.h>
22 #include <linux/math64.h>
23 #include <linux/ratelimit.h>
24 #include "ctree.h"
25 #include "free-space-cache.h"
26 #include "transaction.h"
27 #include "disk-io.h"
28 #include "extent_io.h"
29 #include "inode-map.h"
31 #define BITS_PER_BITMAP (PAGE_CACHE_SIZE * 8)
32 #define MAX_CACHE_BYTES_PER_GIG (32 * 1024)
34 static int link_free_space(struct btrfs_free_space_ctl *ctl,
35 struct btrfs_free_space *info);
36 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
37 struct btrfs_free_space *info);
39 static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
40 struct btrfs_path *path,
41 u64 offset)
43 struct btrfs_key key;
44 struct btrfs_key location;
45 struct btrfs_disk_key disk_key;
46 struct btrfs_free_space_header *header;
47 struct extent_buffer *leaf;
48 struct inode *inode = NULL;
49 int ret;
51 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
52 key.offset = offset;
53 key.type = 0;
55 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
56 if (ret < 0)
57 return ERR_PTR(ret);
58 if (ret > 0) {
59 btrfs_release_path(path);
60 return ERR_PTR(-ENOENT);
63 leaf = path->nodes[0];
64 header = btrfs_item_ptr(leaf, path->slots[0],
65 struct btrfs_free_space_header);
66 btrfs_free_space_key(leaf, header, &disk_key);
67 btrfs_disk_key_to_cpu(&location, &disk_key);
68 btrfs_release_path(path);
70 inode = btrfs_iget(root->fs_info->sb, &location, root, NULL);
71 if (!inode)
72 return ERR_PTR(-ENOENT);
73 if (IS_ERR(inode))
74 return inode;
75 if (is_bad_inode(inode)) {
76 iput(inode);
77 return ERR_PTR(-ENOENT);
80 mapping_set_gfp_mask(inode->i_mapping,
81 mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS);
83 return inode;
86 struct inode *lookup_free_space_inode(struct btrfs_root *root,
87 struct btrfs_block_group_cache
88 *block_group, struct btrfs_path *path)
90 struct inode *inode = NULL;
91 u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
93 spin_lock(&block_group->lock);
94 if (block_group->inode)
95 inode = igrab(block_group->inode);
96 spin_unlock(&block_group->lock);
97 if (inode)
98 return inode;
100 inode = __lookup_free_space_inode(root, path,
101 block_group->key.objectid);
102 if (IS_ERR(inode))
103 return inode;
105 spin_lock(&block_group->lock);
106 if (!((BTRFS_I(inode)->flags & flags) == flags)) {
107 printk(KERN_INFO "Old style space inode found, converting.\n");
108 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
109 BTRFS_INODE_NODATACOW;
110 block_group->disk_cache_state = BTRFS_DC_CLEAR;
113 if (!block_group->iref) {
114 block_group->inode = igrab(inode);
115 block_group->iref = 1;
117 spin_unlock(&block_group->lock);
119 return inode;
122 int __create_free_space_inode(struct btrfs_root *root,
123 struct btrfs_trans_handle *trans,
124 struct btrfs_path *path, u64 ino, u64 offset)
126 struct btrfs_key key;
127 struct btrfs_disk_key disk_key;
128 struct btrfs_free_space_header *header;
129 struct btrfs_inode_item *inode_item;
130 struct extent_buffer *leaf;
131 u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
132 int ret;
134 ret = btrfs_insert_empty_inode(trans, root, path, ino);
135 if (ret)
136 return ret;
138 /* We inline crc's for the free disk space cache */
139 if (ino != BTRFS_FREE_INO_OBJECTID)
140 flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
142 leaf = path->nodes[0];
143 inode_item = btrfs_item_ptr(leaf, path->slots[0],
144 struct btrfs_inode_item);
145 btrfs_item_key(leaf, &disk_key, path->slots[0]);
146 memset_extent_buffer(leaf, 0, (unsigned long)inode_item,
147 sizeof(*inode_item));
148 btrfs_set_inode_generation(leaf, inode_item, trans->transid);
149 btrfs_set_inode_size(leaf, inode_item, 0);
150 btrfs_set_inode_nbytes(leaf, inode_item, 0);
151 btrfs_set_inode_uid(leaf, inode_item, 0);
152 btrfs_set_inode_gid(leaf, inode_item, 0);
153 btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
154 btrfs_set_inode_flags(leaf, inode_item, flags);
155 btrfs_set_inode_nlink(leaf, inode_item, 1);
156 btrfs_set_inode_transid(leaf, inode_item, trans->transid);
157 btrfs_set_inode_block_group(leaf, inode_item, offset);
158 btrfs_mark_buffer_dirty(leaf);
159 btrfs_release_path(path);
161 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
162 key.offset = offset;
163 key.type = 0;
165 ret = btrfs_insert_empty_item(trans, root, path, &key,
166 sizeof(struct btrfs_free_space_header));
167 if (ret < 0) {
168 btrfs_release_path(path);
169 return ret;
171 leaf = path->nodes[0];
172 header = btrfs_item_ptr(leaf, path->slots[0],
173 struct btrfs_free_space_header);
174 memset_extent_buffer(leaf, 0, (unsigned long)header, sizeof(*header));
175 btrfs_set_free_space_key(leaf, header, &disk_key);
176 btrfs_mark_buffer_dirty(leaf);
177 btrfs_release_path(path);
179 return 0;
182 int create_free_space_inode(struct btrfs_root *root,
183 struct btrfs_trans_handle *trans,
184 struct btrfs_block_group_cache *block_group,
185 struct btrfs_path *path)
187 int ret;
188 u64 ino;
190 ret = btrfs_find_free_objectid(root, &ino);
191 if (ret < 0)
192 return ret;
194 return __create_free_space_inode(root, trans, path, ino,
195 block_group->key.objectid);
198 int btrfs_truncate_free_space_cache(struct btrfs_root *root,
199 struct btrfs_trans_handle *trans,
200 struct btrfs_path *path,
201 struct inode *inode)
203 struct btrfs_block_rsv *rsv;
204 u64 needed_bytes;
205 loff_t oldsize;
206 int ret = 0;
208 rsv = trans->block_rsv;
209 trans->block_rsv = &root->fs_info->global_block_rsv;
211 /* 1 for slack space, 1 for updating the inode */
212 needed_bytes = btrfs_calc_trunc_metadata_size(root, 1) +
213 btrfs_calc_trans_metadata_size(root, 1);
215 spin_lock(&trans->block_rsv->lock);
216 if (trans->block_rsv->reserved < needed_bytes) {
217 spin_unlock(&trans->block_rsv->lock);
218 trans->block_rsv = rsv;
219 return -ENOSPC;
221 spin_unlock(&trans->block_rsv->lock);
223 oldsize = i_size_read(inode);
224 btrfs_i_size_write(inode, 0);
225 truncate_pagecache(inode, oldsize, 0);
228 * We don't need an orphan item because truncating the free space cache
229 * will never be split across transactions.
231 ret = btrfs_truncate_inode_items(trans, root, inode,
232 0, BTRFS_EXTENT_DATA_KEY);
234 if (ret) {
235 trans->block_rsv = rsv;
236 btrfs_abort_transaction(trans, root, ret);
237 return ret;
240 ret = btrfs_update_inode(trans, root, inode);
241 if (ret)
242 btrfs_abort_transaction(trans, root, ret);
243 trans->block_rsv = rsv;
245 return ret;
248 static int readahead_cache(struct inode *inode)
250 struct file_ra_state *ra;
251 unsigned long last_index;
253 ra = kzalloc(sizeof(*ra), GFP_NOFS);
254 if (!ra)
255 return -ENOMEM;
257 file_ra_state_init(ra, inode->i_mapping);
258 last_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
260 page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
262 kfree(ra);
264 return 0;
267 struct io_ctl {
268 void *cur, *orig;
269 struct page *page;
270 struct page **pages;
271 struct btrfs_root *root;
272 unsigned long size;
273 int index;
274 int num_pages;
275 unsigned check_crcs:1;
278 static int io_ctl_init(struct io_ctl *io_ctl, struct inode *inode,
279 struct btrfs_root *root)
281 memset(io_ctl, 0, sizeof(struct io_ctl));
282 io_ctl->num_pages = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >>
283 PAGE_CACHE_SHIFT;
284 io_ctl->pages = kzalloc(sizeof(struct page *) * io_ctl->num_pages,
285 GFP_NOFS);
286 if (!io_ctl->pages)
287 return -ENOMEM;
288 io_ctl->root = root;
289 if (btrfs_ino(inode) != BTRFS_FREE_INO_OBJECTID)
290 io_ctl->check_crcs = 1;
291 return 0;
294 static void io_ctl_free(struct io_ctl *io_ctl)
296 kfree(io_ctl->pages);
299 static void io_ctl_unmap_page(struct io_ctl *io_ctl)
301 if (io_ctl->cur) {
302 kunmap(io_ctl->page);
303 io_ctl->cur = NULL;
304 io_ctl->orig = NULL;
308 static void io_ctl_map_page(struct io_ctl *io_ctl, int clear)
310 BUG_ON(io_ctl->index >= io_ctl->num_pages);
311 io_ctl->page = io_ctl->pages[io_ctl->index++];
312 io_ctl->cur = kmap(io_ctl->page);
313 io_ctl->orig = io_ctl->cur;
314 io_ctl->size = PAGE_CACHE_SIZE;
315 if (clear)
316 memset(io_ctl->cur, 0, PAGE_CACHE_SIZE);
319 static void io_ctl_drop_pages(struct io_ctl *io_ctl)
321 int i;
323 io_ctl_unmap_page(io_ctl);
325 for (i = 0; i < io_ctl->num_pages; i++) {
326 if (io_ctl->pages[i]) {
327 ClearPageChecked(io_ctl->pages[i]);
328 unlock_page(io_ctl->pages[i]);
329 page_cache_release(io_ctl->pages[i]);
334 static int io_ctl_prepare_pages(struct io_ctl *io_ctl, struct inode *inode,
335 int uptodate)
337 struct page *page;
338 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
339 int i;
341 for (i = 0; i < io_ctl->num_pages; i++) {
342 page = find_or_create_page(inode->i_mapping, i, mask);
343 if (!page) {
344 io_ctl_drop_pages(io_ctl);
345 return -ENOMEM;
347 io_ctl->pages[i] = page;
348 if (uptodate && !PageUptodate(page)) {
349 btrfs_readpage(NULL, page);
350 lock_page(page);
351 if (!PageUptodate(page)) {
352 printk(KERN_ERR "btrfs: error reading free "
353 "space cache\n");
354 io_ctl_drop_pages(io_ctl);
355 return -EIO;
360 for (i = 0; i < io_ctl->num_pages; i++) {
361 clear_page_dirty_for_io(io_ctl->pages[i]);
362 set_page_extent_mapped(io_ctl->pages[i]);
365 return 0;
368 static void io_ctl_set_generation(struct io_ctl *io_ctl, u64 generation)
370 __le64 *val;
372 io_ctl_map_page(io_ctl, 1);
375 * Skip the csum areas. If we don't check crcs then we just have a
376 * 64bit chunk at the front of the first page.
378 if (io_ctl->check_crcs) {
379 io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
380 io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
381 } else {
382 io_ctl->cur += sizeof(u64);
383 io_ctl->size -= sizeof(u64) * 2;
386 val = io_ctl->cur;
387 *val = cpu_to_le64(generation);
388 io_ctl->cur += sizeof(u64);
391 static int io_ctl_check_generation(struct io_ctl *io_ctl, u64 generation)
393 __le64 *gen;
396 * Skip the crc area. If we don't check crcs then we just have a 64bit
397 * chunk at the front of the first page.
399 if (io_ctl->check_crcs) {
400 io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
401 io_ctl->size -= sizeof(u64) +
402 (sizeof(u32) * io_ctl->num_pages);
403 } else {
404 io_ctl->cur += sizeof(u64);
405 io_ctl->size -= sizeof(u64) * 2;
408 gen = io_ctl->cur;
409 if (le64_to_cpu(*gen) != generation) {
410 printk_ratelimited(KERN_ERR "btrfs: space cache generation "
411 "(%Lu) does not match inode (%Lu)\n", *gen,
412 generation);
413 io_ctl_unmap_page(io_ctl);
414 return -EIO;
416 io_ctl->cur += sizeof(u64);
417 return 0;
420 static void io_ctl_set_crc(struct io_ctl *io_ctl, int index)
422 u32 *tmp;
423 u32 crc = ~(u32)0;
424 unsigned offset = 0;
426 if (!io_ctl->check_crcs) {
427 io_ctl_unmap_page(io_ctl);
428 return;
431 if (index == 0)
432 offset = sizeof(u32) * io_ctl->num_pages;
434 crc = btrfs_csum_data(io_ctl->root, io_ctl->orig + offset, crc,
435 PAGE_CACHE_SIZE - offset);
436 btrfs_csum_final(crc, (char *)&crc);
437 io_ctl_unmap_page(io_ctl);
438 tmp = kmap(io_ctl->pages[0]);
439 tmp += index;
440 *tmp = crc;
441 kunmap(io_ctl->pages[0]);
444 static int io_ctl_check_crc(struct io_ctl *io_ctl, int index)
446 u32 *tmp, val;
447 u32 crc = ~(u32)0;
448 unsigned offset = 0;
450 if (!io_ctl->check_crcs) {
451 io_ctl_map_page(io_ctl, 0);
452 return 0;
455 if (index == 0)
456 offset = sizeof(u32) * io_ctl->num_pages;
458 tmp = kmap(io_ctl->pages[0]);
459 tmp += index;
460 val = *tmp;
461 kunmap(io_ctl->pages[0]);
463 io_ctl_map_page(io_ctl, 0);
464 crc = btrfs_csum_data(io_ctl->root, io_ctl->orig + offset, crc,
465 PAGE_CACHE_SIZE - offset);
466 btrfs_csum_final(crc, (char *)&crc);
467 if (val != crc) {
468 printk_ratelimited(KERN_ERR "btrfs: csum mismatch on free "
469 "space cache\n");
470 io_ctl_unmap_page(io_ctl);
471 return -EIO;
474 return 0;
477 static int io_ctl_add_entry(struct io_ctl *io_ctl, u64 offset, u64 bytes,
478 void *bitmap)
480 struct btrfs_free_space_entry *entry;
482 if (!io_ctl->cur)
483 return -ENOSPC;
485 entry = io_ctl->cur;
486 entry->offset = cpu_to_le64(offset);
487 entry->bytes = cpu_to_le64(bytes);
488 entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
489 BTRFS_FREE_SPACE_EXTENT;
490 io_ctl->cur += sizeof(struct btrfs_free_space_entry);
491 io_ctl->size -= sizeof(struct btrfs_free_space_entry);
493 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
494 return 0;
496 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
498 /* No more pages to map */
499 if (io_ctl->index >= io_ctl->num_pages)
500 return 0;
502 /* map the next page */
503 io_ctl_map_page(io_ctl, 1);
504 return 0;
507 static int io_ctl_add_bitmap(struct io_ctl *io_ctl, void *bitmap)
509 if (!io_ctl->cur)
510 return -ENOSPC;
513 * If we aren't at the start of the current page, unmap this one and
514 * map the next one if there is any left.
516 if (io_ctl->cur != io_ctl->orig) {
517 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
518 if (io_ctl->index >= io_ctl->num_pages)
519 return -ENOSPC;
520 io_ctl_map_page(io_ctl, 0);
523 memcpy(io_ctl->cur, bitmap, PAGE_CACHE_SIZE);
524 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
525 if (io_ctl->index < io_ctl->num_pages)
526 io_ctl_map_page(io_ctl, 0);
527 return 0;
530 static void io_ctl_zero_remaining_pages(struct io_ctl *io_ctl)
533 * If we're not on the boundary we know we've modified the page and we
534 * need to crc the page.
536 if (io_ctl->cur != io_ctl->orig)
537 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
538 else
539 io_ctl_unmap_page(io_ctl);
541 while (io_ctl->index < io_ctl->num_pages) {
542 io_ctl_map_page(io_ctl, 1);
543 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
547 static int io_ctl_read_entry(struct io_ctl *io_ctl,
548 struct btrfs_free_space *entry, u8 *type)
550 struct btrfs_free_space_entry *e;
551 int ret;
553 if (!io_ctl->cur) {
554 ret = io_ctl_check_crc(io_ctl, io_ctl->index);
555 if (ret)
556 return ret;
559 e = io_ctl->cur;
560 entry->offset = le64_to_cpu(e->offset);
561 entry->bytes = le64_to_cpu(e->bytes);
562 *type = e->type;
563 io_ctl->cur += sizeof(struct btrfs_free_space_entry);
564 io_ctl->size -= sizeof(struct btrfs_free_space_entry);
566 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
567 return 0;
569 io_ctl_unmap_page(io_ctl);
571 return 0;
574 static int io_ctl_read_bitmap(struct io_ctl *io_ctl,
575 struct btrfs_free_space *entry)
577 int ret;
579 ret = io_ctl_check_crc(io_ctl, io_ctl->index);
580 if (ret)
581 return ret;
583 memcpy(entry->bitmap, io_ctl->cur, PAGE_CACHE_SIZE);
584 io_ctl_unmap_page(io_ctl);
586 return 0;
590 * Since we attach pinned extents after the fact we can have contiguous sections
591 * of free space that are split up in entries. This poses a problem with the
592 * tree logging stuff since it could have allocated across what appears to be 2
593 * entries since we would have merged the entries when adding the pinned extents
594 * back to the free space cache. So run through the space cache that we just
595 * loaded and merge contiguous entries. This will make the log replay stuff not
596 * blow up and it will make for nicer allocator behavior.
598 static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
600 struct btrfs_free_space *e, *prev = NULL;
601 struct rb_node *n;
603 again:
604 spin_lock(&ctl->tree_lock);
605 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
606 e = rb_entry(n, struct btrfs_free_space, offset_index);
607 if (!prev)
608 goto next;
609 if (e->bitmap || prev->bitmap)
610 goto next;
611 if (prev->offset + prev->bytes == e->offset) {
612 unlink_free_space(ctl, prev);
613 unlink_free_space(ctl, e);
614 prev->bytes += e->bytes;
615 kmem_cache_free(btrfs_free_space_cachep, e);
616 link_free_space(ctl, prev);
617 prev = NULL;
618 spin_unlock(&ctl->tree_lock);
619 goto again;
621 next:
622 prev = e;
624 spin_unlock(&ctl->tree_lock);
627 int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
628 struct btrfs_free_space_ctl *ctl,
629 struct btrfs_path *path, u64 offset)
631 struct btrfs_free_space_header *header;
632 struct extent_buffer *leaf;
633 struct io_ctl io_ctl;
634 struct btrfs_key key;
635 struct btrfs_free_space *e, *n;
636 struct list_head bitmaps;
637 u64 num_entries;
638 u64 num_bitmaps;
639 u64 generation;
640 u8 type;
641 int ret = 0;
643 INIT_LIST_HEAD(&bitmaps);
645 /* Nothing in the space cache, goodbye */
646 if (!i_size_read(inode))
647 return 0;
649 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
650 key.offset = offset;
651 key.type = 0;
653 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
654 if (ret < 0)
655 return 0;
656 else if (ret > 0) {
657 btrfs_release_path(path);
658 return 0;
661 ret = -1;
663 leaf = path->nodes[0];
664 header = btrfs_item_ptr(leaf, path->slots[0],
665 struct btrfs_free_space_header);
666 num_entries = btrfs_free_space_entries(leaf, header);
667 num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
668 generation = btrfs_free_space_generation(leaf, header);
669 btrfs_release_path(path);
671 if (BTRFS_I(inode)->generation != generation) {
672 printk(KERN_ERR "btrfs: free space inode generation (%llu) did"
673 " not match free space cache generation (%llu)\n",
674 (unsigned long long)BTRFS_I(inode)->generation,
675 (unsigned long long)generation);
676 return 0;
679 if (!num_entries)
680 return 0;
682 ret = io_ctl_init(&io_ctl, inode, root);
683 if (ret)
684 return ret;
686 ret = readahead_cache(inode);
687 if (ret)
688 goto out;
690 ret = io_ctl_prepare_pages(&io_ctl, inode, 1);
691 if (ret)
692 goto out;
694 ret = io_ctl_check_crc(&io_ctl, 0);
695 if (ret)
696 goto free_cache;
698 ret = io_ctl_check_generation(&io_ctl, generation);
699 if (ret)
700 goto free_cache;
702 while (num_entries) {
703 e = kmem_cache_zalloc(btrfs_free_space_cachep,
704 GFP_NOFS);
705 if (!e)
706 goto free_cache;
708 ret = io_ctl_read_entry(&io_ctl, e, &type);
709 if (ret) {
710 kmem_cache_free(btrfs_free_space_cachep, e);
711 goto free_cache;
714 if (!e->bytes) {
715 kmem_cache_free(btrfs_free_space_cachep, e);
716 goto free_cache;
719 if (type == BTRFS_FREE_SPACE_EXTENT) {
720 spin_lock(&ctl->tree_lock);
721 ret = link_free_space(ctl, e);
722 spin_unlock(&ctl->tree_lock);
723 if (ret) {
724 printk(KERN_ERR "Duplicate entries in "
725 "free space cache, dumping\n");
726 kmem_cache_free(btrfs_free_space_cachep, e);
727 goto free_cache;
729 } else {
730 BUG_ON(!num_bitmaps);
731 num_bitmaps--;
732 e->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
733 if (!e->bitmap) {
734 kmem_cache_free(
735 btrfs_free_space_cachep, e);
736 goto free_cache;
738 spin_lock(&ctl->tree_lock);
739 ret = link_free_space(ctl, e);
740 ctl->total_bitmaps++;
741 ctl->op->recalc_thresholds(ctl);
742 spin_unlock(&ctl->tree_lock);
743 if (ret) {
744 printk(KERN_ERR "Duplicate entries in "
745 "free space cache, dumping\n");
746 kmem_cache_free(btrfs_free_space_cachep, e);
747 goto free_cache;
749 list_add_tail(&e->list, &bitmaps);
752 num_entries--;
755 io_ctl_unmap_page(&io_ctl);
758 * We add the bitmaps at the end of the entries in order that
759 * the bitmap entries are added to the cache.
761 list_for_each_entry_safe(e, n, &bitmaps, list) {
762 list_del_init(&e->list);
763 ret = io_ctl_read_bitmap(&io_ctl, e);
764 if (ret)
765 goto free_cache;
768 io_ctl_drop_pages(&io_ctl);
769 merge_space_tree(ctl);
770 ret = 1;
771 out:
772 io_ctl_free(&io_ctl);
773 return ret;
774 free_cache:
775 io_ctl_drop_pages(&io_ctl);
776 __btrfs_remove_free_space_cache(ctl);
777 goto out;
780 int load_free_space_cache(struct btrfs_fs_info *fs_info,
781 struct btrfs_block_group_cache *block_group)
783 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
784 struct btrfs_root *root = fs_info->tree_root;
785 struct inode *inode;
786 struct btrfs_path *path;
787 int ret = 0;
788 bool matched;
789 u64 used = btrfs_block_group_used(&block_group->item);
792 * If this block group has been marked to be cleared for one reason or
793 * another then we can't trust the on disk cache, so just return.
795 spin_lock(&block_group->lock);
796 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
797 spin_unlock(&block_group->lock);
798 return 0;
800 spin_unlock(&block_group->lock);
802 path = btrfs_alloc_path();
803 if (!path)
804 return 0;
805 path->search_commit_root = 1;
806 path->skip_locking = 1;
808 inode = lookup_free_space_inode(root, block_group, path);
809 if (IS_ERR(inode)) {
810 btrfs_free_path(path);
811 return 0;
814 /* We may have converted the inode and made the cache invalid. */
815 spin_lock(&block_group->lock);
816 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
817 spin_unlock(&block_group->lock);
818 btrfs_free_path(path);
819 goto out;
821 spin_unlock(&block_group->lock);
823 ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
824 path, block_group->key.objectid);
825 btrfs_free_path(path);
826 if (ret <= 0)
827 goto out;
829 spin_lock(&ctl->tree_lock);
830 matched = (ctl->free_space == (block_group->key.offset - used -
831 block_group->bytes_super));
832 spin_unlock(&ctl->tree_lock);
834 if (!matched) {
835 __btrfs_remove_free_space_cache(ctl);
836 printk(KERN_ERR "block group %llu has an wrong amount of free "
837 "space\n", block_group->key.objectid);
838 ret = -1;
840 out:
841 if (ret < 0) {
842 /* This cache is bogus, make sure it gets cleared */
843 spin_lock(&block_group->lock);
844 block_group->disk_cache_state = BTRFS_DC_CLEAR;
845 spin_unlock(&block_group->lock);
846 ret = 0;
848 printk(KERN_ERR "btrfs: failed to load free space cache "
849 "for block group %llu\n", block_group->key.objectid);
852 iput(inode);
853 return ret;
857 * __btrfs_write_out_cache - write out cached info to an inode
858 * @root - the root the inode belongs to
859 * @ctl - the free space cache we are going to write out
860 * @block_group - the block_group for this cache if it belongs to a block_group
861 * @trans - the trans handle
862 * @path - the path to use
863 * @offset - the offset for the key we'll insert
865 * This function writes out a free space cache struct to disk for quick recovery
866 * on mount. This will return 0 if it was successfull in writing the cache out,
867 * and -1 if it was not.
869 int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
870 struct btrfs_free_space_ctl *ctl,
871 struct btrfs_block_group_cache *block_group,
872 struct btrfs_trans_handle *trans,
873 struct btrfs_path *path, u64 offset)
875 struct btrfs_free_space_header *header;
876 struct extent_buffer *leaf;
877 struct rb_node *node;
878 struct list_head *pos, *n;
879 struct extent_state *cached_state = NULL;
880 struct btrfs_free_cluster *cluster = NULL;
881 struct extent_io_tree *unpin = NULL;
882 struct io_ctl io_ctl;
883 struct list_head bitmap_list;
884 struct btrfs_key key;
885 u64 start, extent_start, extent_end, len;
886 int entries = 0;
887 int bitmaps = 0;
888 int ret;
889 int err = -1;
891 INIT_LIST_HEAD(&bitmap_list);
893 if (!i_size_read(inode))
894 return -1;
896 ret = io_ctl_init(&io_ctl, inode, root);
897 if (ret)
898 return -1;
900 /* Get the cluster for this block_group if it exists */
901 if (block_group && !list_empty(&block_group->cluster_list))
902 cluster = list_entry(block_group->cluster_list.next,
903 struct btrfs_free_cluster,
904 block_group_list);
906 /* Lock all pages first so we can lock the extent safely. */
907 io_ctl_prepare_pages(&io_ctl, inode, 0);
909 lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
910 0, &cached_state);
912 node = rb_first(&ctl->free_space_offset);
913 if (!node && cluster) {
914 node = rb_first(&cluster->root);
915 cluster = NULL;
918 /* Make sure we can fit our crcs into the first page */
919 if (io_ctl.check_crcs &&
920 (io_ctl.num_pages * sizeof(u32)) >= PAGE_CACHE_SIZE) {
921 WARN_ON(1);
922 goto out_nospc;
925 io_ctl_set_generation(&io_ctl, trans->transid);
927 /* Write out the extent entries */
928 while (node) {
929 struct btrfs_free_space *e;
931 e = rb_entry(node, struct btrfs_free_space, offset_index);
932 entries++;
934 ret = io_ctl_add_entry(&io_ctl, e->offset, e->bytes,
935 e->bitmap);
936 if (ret)
937 goto out_nospc;
939 if (e->bitmap) {
940 list_add_tail(&e->list, &bitmap_list);
941 bitmaps++;
943 node = rb_next(node);
944 if (!node && cluster) {
945 node = rb_first(&cluster->root);
946 cluster = NULL;
951 * We want to add any pinned extents to our free space cache
952 * so we don't leak the space
956 * We shouldn't have switched the pinned extents yet so this is the
957 * right one
959 unpin = root->fs_info->pinned_extents;
961 if (block_group)
962 start = block_group->key.objectid;
964 while (block_group && (start < block_group->key.objectid +
965 block_group->key.offset)) {
966 ret = find_first_extent_bit(unpin, start,
967 &extent_start, &extent_end,
968 EXTENT_DIRTY, NULL);
969 if (ret) {
970 ret = 0;
971 break;
974 /* This pinned extent is out of our range */
975 if (extent_start >= block_group->key.objectid +
976 block_group->key.offset)
977 break;
979 extent_start = max(extent_start, start);
980 extent_end = min(block_group->key.objectid +
981 block_group->key.offset, extent_end + 1);
982 len = extent_end - extent_start;
984 entries++;
985 ret = io_ctl_add_entry(&io_ctl, extent_start, len, NULL);
986 if (ret)
987 goto out_nospc;
989 start = extent_end;
992 /* Write out the bitmaps */
993 list_for_each_safe(pos, n, &bitmap_list) {
994 struct btrfs_free_space *entry =
995 list_entry(pos, struct btrfs_free_space, list);
997 ret = io_ctl_add_bitmap(&io_ctl, entry->bitmap);
998 if (ret)
999 goto out_nospc;
1000 list_del_init(&entry->list);
1003 /* Zero out the rest of the pages just to make sure */
1004 io_ctl_zero_remaining_pages(&io_ctl);
1006 ret = btrfs_dirty_pages(root, inode, io_ctl.pages, io_ctl.num_pages,
1007 0, i_size_read(inode), &cached_state);
1008 io_ctl_drop_pages(&io_ctl);
1009 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1010 i_size_read(inode) - 1, &cached_state, GFP_NOFS);
1012 if (ret)
1013 goto out;
1016 btrfs_wait_ordered_range(inode, 0, (u64)-1);
1018 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
1019 key.offset = offset;
1020 key.type = 0;
1022 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1023 if (ret < 0) {
1024 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1025 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL,
1026 GFP_NOFS);
1027 goto out;
1029 leaf = path->nodes[0];
1030 if (ret > 0) {
1031 struct btrfs_key found_key;
1032 BUG_ON(!path->slots[0]);
1033 path->slots[0]--;
1034 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1035 if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1036 found_key.offset != offset) {
1037 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1038 inode->i_size - 1,
1039 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0,
1040 NULL, GFP_NOFS);
1041 btrfs_release_path(path);
1042 goto out;
1046 BTRFS_I(inode)->generation = trans->transid;
1047 header = btrfs_item_ptr(leaf, path->slots[0],
1048 struct btrfs_free_space_header);
1049 btrfs_set_free_space_entries(leaf, header, entries);
1050 btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1051 btrfs_set_free_space_generation(leaf, header, trans->transid);
1052 btrfs_mark_buffer_dirty(leaf);
1053 btrfs_release_path(path);
1055 err = 0;
1056 out:
1057 io_ctl_free(&io_ctl);
1058 if (err) {
1059 invalidate_inode_pages2(inode->i_mapping);
1060 BTRFS_I(inode)->generation = 0;
1062 btrfs_update_inode(trans, root, inode);
1063 return err;
1065 out_nospc:
1066 list_for_each_safe(pos, n, &bitmap_list) {
1067 struct btrfs_free_space *entry =
1068 list_entry(pos, struct btrfs_free_space, list);
1069 list_del_init(&entry->list);
1071 io_ctl_drop_pages(&io_ctl);
1072 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1073 i_size_read(inode) - 1, &cached_state, GFP_NOFS);
1074 goto out;
1077 int btrfs_write_out_cache(struct btrfs_root *root,
1078 struct btrfs_trans_handle *trans,
1079 struct btrfs_block_group_cache *block_group,
1080 struct btrfs_path *path)
1082 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1083 struct inode *inode;
1084 int ret = 0;
1086 root = root->fs_info->tree_root;
1088 spin_lock(&block_group->lock);
1089 if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1090 spin_unlock(&block_group->lock);
1091 return 0;
1093 spin_unlock(&block_group->lock);
1095 inode = lookup_free_space_inode(root, block_group, path);
1096 if (IS_ERR(inode))
1097 return 0;
1099 ret = __btrfs_write_out_cache(root, inode, ctl, block_group, trans,
1100 path, block_group->key.objectid);
1101 if (ret) {
1102 spin_lock(&block_group->lock);
1103 block_group->disk_cache_state = BTRFS_DC_ERROR;
1104 spin_unlock(&block_group->lock);
1105 ret = 0;
1106 #ifdef DEBUG
1107 printk(KERN_ERR "btrfs: failed to write free space cache "
1108 "for block group %llu\n", block_group->key.objectid);
1109 #endif
1112 iput(inode);
1113 return ret;
1116 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1117 u64 offset)
1119 BUG_ON(offset < bitmap_start);
1120 offset -= bitmap_start;
1121 return (unsigned long)(div_u64(offset, unit));
1124 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1126 return (unsigned long)(div_u64(bytes, unit));
1129 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1130 u64 offset)
1132 u64 bitmap_start;
1133 u64 bytes_per_bitmap;
1135 bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1136 bitmap_start = offset - ctl->start;
1137 bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1138 bitmap_start *= bytes_per_bitmap;
1139 bitmap_start += ctl->start;
1141 return bitmap_start;
1144 static int tree_insert_offset(struct rb_root *root, u64 offset,
1145 struct rb_node *node, int bitmap)
1147 struct rb_node **p = &root->rb_node;
1148 struct rb_node *parent = NULL;
1149 struct btrfs_free_space *info;
1151 while (*p) {
1152 parent = *p;
1153 info = rb_entry(parent, struct btrfs_free_space, offset_index);
1155 if (offset < info->offset) {
1156 p = &(*p)->rb_left;
1157 } else if (offset > info->offset) {
1158 p = &(*p)->rb_right;
1159 } else {
1161 * we could have a bitmap entry and an extent entry
1162 * share the same offset. If this is the case, we want
1163 * the extent entry to always be found first if we do a
1164 * linear search through the tree, since we want to have
1165 * the quickest allocation time, and allocating from an
1166 * extent is faster than allocating from a bitmap. So
1167 * if we're inserting a bitmap and we find an entry at
1168 * this offset, we want to go right, or after this entry
1169 * logically. If we are inserting an extent and we've
1170 * found a bitmap, we want to go left, or before
1171 * logically.
1173 if (bitmap) {
1174 if (info->bitmap) {
1175 WARN_ON_ONCE(1);
1176 return -EEXIST;
1178 p = &(*p)->rb_right;
1179 } else {
1180 if (!info->bitmap) {
1181 WARN_ON_ONCE(1);
1182 return -EEXIST;
1184 p = &(*p)->rb_left;
1189 rb_link_node(node, parent, p);
1190 rb_insert_color(node, root);
1192 return 0;
1196 * searches the tree for the given offset.
1198 * fuzzy - If this is set, then we are trying to make an allocation, and we just
1199 * want a section that has at least bytes size and comes at or after the given
1200 * offset.
1202 static struct btrfs_free_space *
1203 tree_search_offset(struct btrfs_free_space_ctl *ctl,
1204 u64 offset, int bitmap_only, int fuzzy)
1206 struct rb_node *n = ctl->free_space_offset.rb_node;
1207 struct btrfs_free_space *entry, *prev = NULL;
1209 /* find entry that is closest to the 'offset' */
1210 while (1) {
1211 if (!n) {
1212 entry = NULL;
1213 break;
1216 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1217 prev = entry;
1219 if (offset < entry->offset)
1220 n = n->rb_left;
1221 else if (offset > entry->offset)
1222 n = n->rb_right;
1223 else
1224 break;
1227 if (bitmap_only) {
1228 if (!entry)
1229 return NULL;
1230 if (entry->bitmap)
1231 return entry;
1234 * bitmap entry and extent entry may share same offset,
1235 * in that case, bitmap entry comes after extent entry.
1237 n = rb_next(n);
1238 if (!n)
1239 return NULL;
1240 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1241 if (entry->offset != offset)
1242 return NULL;
1244 WARN_ON(!entry->bitmap);
1245 return entry;
1246 } else if (entry) {
1247 if (entry->bitmap) {
1249 * if previous extent entry covers the offset,
1250 * we should return it instead of the bitmap entry
1252 n = rb_prev(&entry->offset_index);
1253 if (n) {
1254 prev = rb_entry(n, struct btrfs_free_space,
1255 offset_index);
1256 if (!prev->bitmap &&
1257 prev->offset + prev->bytes > offset)
1258 entry = prev;
1261 return entry;
1264 if (!prev)
1265 return NULL;
1267 /* find last entry before the 'offset' */
1268 entry = prev;
1269 if (entry->offset > offset) {
1270 n = rb_prev(&entry->offset_index);
1271 if (n) {
1272 entry = rb_entry(n, struct btrfs_free_space,
1273 offset_index);
1274 BUG_ON(entry->offset > offset);
1275 } else {
1276 if (fuzzy)
1277 return entry;
1278 else
1279 return NULL;
1283 if (entry->bitmap) {
1284 n = rb_prev(&entry->offset_index);
1285 if (n) {
1286 prev = rb_entry(n, struct btrfs_free_space,
1287 offset_index);
1288 if (!prev->bitmap &&
1289 prev->offset + prev->bytes > offset)
1290 return prev;
1292 if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1293 return entry;
1294 } else if (entry->offset + entry->bytes > offset)
1295 return entry;
1297 if (!fuzzy)
1298 return NULL;
1300 while (1) {
1301 if (entry->bitmap) {
1302 if (entry->offset + BITS_PER_BITMAP *
1303 ctl->unit > offset)
1304 break;
1305 } else {
1306 if (entry->offset + entry->bytes > offset)
1307 break;
1310 n = rb_next(&entry->offset_index);
1311 if (!n)
1312 return NULL;
1313 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1315 return entry;
1318 static inline void
1319 __unlink_free_space(struct btrfs_free_space_ctl *ctl,
1320 struct btrfs_free_space *info)
1322 rb_erase(&info->offset_index, &ctl->free_space_offset);
1323 ctl->free_extents--;
1326 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1327 struct btrfs_free_space *info)
1329 __unlink_free_space(ctl, info);
1330 ctl->free_space -= info->bytes;
1333 static int link_free_space(struct btrfs_free_space_ctl *ctl,
1334 struct btrfs_free_space *info)
1336 int ret = 0;
1338 BUG_ON(!info->bitmap && !info->bytes);
1339 ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1340 &info->offset_index, (info->bitmap != NULL));
1341 if (ret)
1342 return ret;
1344 ctl->free_space += info->bytes;
1345 ctl->free_extents++;
1346 return ret;
1349 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
1351 struct btrfs_block_group_cache *block_group = ctl->private;
1352 u64 max_bytes;
1353 u64 bitmap_bytes;
1354 u64 extent_bytes;
1355 u64 size = block_group->key.offset;
1356 u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
1357 int max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
1359 BUG_ON(ctl->total_bitmaps > max_bitmaps);
1362 * The goal is to keep the total amount of memory used per 1gb of space
1363 * at or below 32k, so we need to adjust how much memory we allow to be
1364 * used by extent based free space tracking
1366 if (size < 1024 * 1024 * 1024)
1367 max_bytes = MAX_CACHE_BYTES_PER_GIG;
1368 else
1369 max_bytes = MAX_CACHE_BYTES_PER_GIG *
1370 div64_u64(size, 1024 * 1024 * 1024);
1373 * we want to account for 1 more bitmap than what we have so we can make
1374 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1375 * we add more bitmaps.
1377 bitmap_bytes = (ctl->total_bitmaps + 1) * PAGE_CACHE_SIZE;
1379 if (bitmap_bytes >= max_bytes) {
1380 ctl->extents_thresh = 0;
1381 return;
1385 * we want the extent entry threshold to always be at most 1/2 the maxw
1386 * bytes we can have, or whatever is less than that.
1388 extent_bytes = max_bytes - bitmap_bytes;
1389 extent_bytes = min_t(u64, extent_bytes, div64_u64(max_bytes, 2));
1391 ctl->extents_thresh =
1392 div64_u64(extent_bytes, (sizeof(struct btrfs_free_space)));
1395 static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1396 struct btrfs_free_space *info,
1397 u64 offset, u64 bytes)
1399 unsigned long start, count;
1401 start = offset_to_bit(info->offset, ctl->unit, offset);
1402 count = bytes_to_bits(bytes, ctl->unit);
1403 BUG_ON(start + count > BITS_PER_BITMAP);
1405 bitmap_clear(info->bitmap, start, count);
1407 info->bytes -= bytes;
1410 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1411 struct btrfs_free_space *info, u64 offset,
1412 u64 bytes)
1414 __bitmap_clear_bits(ctl, info, offset, bytes);
1415 ctl->free_space -= bytes;
1418 static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1419 struct btrfs_free_space *info, u64 offset,
1420 u64 bytes)
1422 unsigned long start, count;
1424 start = offset_to_bit(info->offset, ctl->unit, offset);
1425 count = bytes_to_bits(bytes, ctl->unit);
1426 BUG_ON(start + count > BITS_PER_BITMAP);
1428 bitmap_set(info->bitmap, start, count);
1430 info->bytes += bytes;
1431 ctl->free_space += bytes;
1434 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1435 struct btrfs_free_space *bitmap_info, u64 *offset,
1436 u64 *bytes)
1438 unsigned long found_bits = 0;
1439 unsigned long bits, i;
1440 unsigned long next_zero;
1442 i = offset_to_bit(bitmap_info->offset, ctl->unit,
1443 max_t(u64, *offset, bitmap_info->offset));
1444 bits = bytes_to_bits(*bytes, ctl->unit);
1446 for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1447 next_zero = find_next_zero_bit(bitmap_info->bitmap,
1448 BITS_PER_BITMAP, i);
1449 if ((next_zero - i) >= bits) {
1450 found_bits = next_zero - i;
1451 break;
1453 i = next_zero;
1456 if (found_bits) {
1457 *offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1458 *bytes = (u64)(found_bits) * ctl->unit;
1459 return 0;
1462 return -1;
1465 static struct btrfs_free_space *
1466 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes)
1468 struct btrfs_free_space *entry;
1469 struct rb_node *node;
1470 int ret;
1472 if (!ctl->free_space_offset.rb_node)
1473 return NULL;
1475 entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1476 if (!entry)
1477 return NULL;
1479 for (node = &entry->offset_index; node; node = rb_next(node)) {
1480 entry = rb_entry(node, struct btrfs_free_space, offset_index);
1481 if (entry->bytes < *bytes)
1482 continue;
1484 if (entry->bitmap) {
1485 ret = search_bitmap(ctl, entry, offset, bytes);
1486 if (!ret)
1487 return entry;
1488 continue;
1491 *offset = entry->offset;
1492 *bytes = entry->bytes;
1493 return entry;
1496 return NULL;
1499 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1500 struct btrfs_free_space *info, u64 offset)
1502 info->offset = offset_to_bitmap(ctl, offset);
1503 info->bytes = 0;
1504 INIT_LIST_HEAD(&info->list);
1505 link_free_space(ctl, info);
1506 ctl->total_bitmaps++;
1508 ctl->op->recalc_thresholds(ctl);
1511 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1512 struct btrfs_free_space *bitmap_info)
1514 unlink_free_space(ctl, bitmap_info);
1515 kfree(bitmap_info->bitmap);
1516 kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1517 ctl->total_bitmaps--;
1518 ctl->op->recalc_thresholds(ctl);
1521 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1522 struct btrfs_free_space *bitmap_info,
1523 u64 *offset, u64 *bytes)
1525 u64 end;
1526 u64 search_start, search_bytes;
1527 int ret;
1529 again:
1530 end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1533 * We need to search for bits in this bitmap. We could only cover some
1534 * of the extent in this bitmap thanks to how we add space, so we need
1535 * to search for as much as it as we can and clear that amount, and then
1536 * go searching for the next bit.
1538 search_start = *offset;
1539 search_bytes = ctl->unit;
1540 search_bytes = min(search_bytes, end - search_start + 1);
1541 ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes);
1542 BUG_ON(ret < 0 || search_start != *offset);
1544 /* We may have found more bits than what we need */
1545 search_bytes = min(search_bytes, *bytes);
1547 /* Cannot clear past the end of the bitmap */
1548 search_bytes = min(search_bytes, end - search_start + 1);
1550 bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
1551 *offset += search_bytes;
1552 *bytes -= search_bytes;
1554 if (*bytes) {
1555 struct rb_node *next = rb_next(&bitmap_info->offset_index);
1556 if (!bitmap_info->bytes)
1557 free_bitmap(ctl, bitmap_info);
1560 * no entry after this bitmap, but we still have bytes to
1561 * remove, so something has gone wrong.
1563 if (!next)
1564 return -EINVAL;
1566 bitmap_info = rb_entry(next, struct btrfs_free_space,
1567 offset_index);
1570 * if the next entry isn't a bitmap we need to return to let the
1571 * extent stuff do its work.
1573 if (!bitmap_info->bitmap)
1574 return -EAGAIN;
1577 * Ok the next item is a bitmap, but it may not actually hold
1578 * the information for the rest of this free space stuff, so
1579 * look for it, and if we don't find it return so we can try
1580 * everything over again.
1582 search_start = *offset;
1583 search_bytes = ctl->unit;
1584 ret = search_bitmap(ctl, bitmap_info, &search_start,
1585 &search_bytes);
1586 if (ret < 0 || search_start != *offset)
1587 return -EAGAIN;
1589 goto again;
1590 } else if (!bitmap_info->bytes)
1591 free_bitmap(ctl, bitmap_info);
1593 return 0;
1596 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
1597 struct btrfs_free_space *info, u64 offset,
1598 u64 bytes)
1600 u64 bytes_to_set = 0;
1601 u64 end;
1603 end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
1605 bytes_to_set = min(end - offset, bytes);
1607 bitmap_set_bits(ctl, info, offset, bytes_to_set);
1609 return bytes_to_set;
1613 static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
1614 struct btrfs_free_space *info)
1616 struct btrfs_block_group_cache *block_group = ctl->private;
1619 * If we are below the extents threshold then we can add this as an
1620 * extent, and don't have to deal with the bitmap
1622 if (ctl->free_extents < ctl->extents_thresh) {
1624 * If this block group has some small extents we don't want to
1625 * use up all of our free slots in the cache with them, we want
1626 * to reserve them to larger extents, however if we have plent
1627 * of cache left then go ahead an dadd them, no sense in adding
1628 * the overhead of a bitmap if we don't have to.
1630 if (info->bytes <= block_group->sectorsize * 4) {
1631 if (ctl->free_extents * 2 <= ctl->extents_thresh)
1632 return false;
1633 } else {
1634 return false;
1639 * some block groups are so tiny they can't be enveloped by a bitmap, so
1640 * don't even bother to create a bitmap for this
1642 if (BITS_PER_BITMAP * ctl->unit > block_group->key.offset)
1643 return false;
1645 return true;
1648 static struct btrfs_free_space_op free_space_op = {
1649 .recalc_thresholds = recalculate_thresholds,
1650 .use_bitmap = use_bitmap,
1653 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
1654 struct btrfs_free_space *info)
1656 struct btrfs_free_space *bitmap_info;
1657 struct btrfs_block_group_cache *block_group = NULL;
1658 int added = 0;
1659 u64 bytes, offset, bytes_added;
1660 int ret;
1662 bytes = info->bytes;
1663 offset = info->offset;
1665 if (!ctl->op->use_bitmap(ctl, info))
1666 return 0;
1668 if (ctl->op == &free_space_op)
1669 block_group = ctl->private;
1670 again:
1672 * Since we link bitmaps right into the cluster we need to see if we
1673 * have a cluster here, and if so and it has our bitmap we need to add
1674 * the free space to that bitmap.
1676 if (block_group && !list_empty(&block_group->cluster_list)) {
1677 struct btrfs_free_cluster *cluster;
1678 struct rb_node *node;
1679 struct btrfs_free_space *entry;
1681 cluster = list_entry(block_group->cluster_list.next,
1682 struct btrfs_free_cluster,
1683 block_group_list);
1684 spin_lock(&cluster->lock);
1685 node = rb_first(&cluster->root);
1686 if (!node) {
1687 spin_unlock(&cluster->lock);
1688 goto no_cluster_bitmap;
1691 entry = rb_entry(node, struct btrfs_free_space, offset_index);
1692 if (!entry->bitmap) {
1693 spin_unlock(&cluster->lock);
1694 goto no_cluster_bitmap;
1697 if (entry->offset == offset_to_bitmap(ctl, offset)) {
1698 bytes_added = add_bytes_to_bitmap(ctl, entry,
1699 offset, bytes);
1700 bytes -= bytes_added;
1701 offset += bytes_added;
1703 spin_unlock(&cluster->lock);
1704 if (!bytes) {
1705 ret = 1;
1706 goto out;
1710 no_cluster_bitmap:
1711 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
1712 1, 0);
1713 if (!bitmap_info) {
1714 BUG_ON(added);
1715 goto new_bitmap;
1718 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
1719 bytes -= bytes_added;
1720 offset += bytes_added;
1721 added = 0;
1723 if (!bytes) {
1724 ret = 1;
1725 goto out;
1726 } else
1727 goto again;
1729 new_bitmap:
1730 if (info && info->bitmap) {
1731 add_new_bitmap(ctl, info, offset);
1732 added = 1;
1733 info = NULL;
1734 goto again;
1735 } else {
1736 spin_unlock(&ctl->tree_lock);
1738 /* no pre-allocated info, allocate a new one */
1739 if (!info) {
1740 info = kmem_cache_zalloc(btrfs_free_space_cachep,
1741 GFP_NOFS);
1742 if (!info) {
1743 spin_lock(&ctl->tree_lock);
1744 ret = -ENOMEM;
1745 goto out;
1749 /* allocate the bitmap */
1750 info->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
1751 spin_lock(&ctl->tree_lock);
1752 if (!info->bitmap) {
1753 ret = -ENOMEM;
1754 goto out;
1756 goto again;
1759 out:
1760 if (info) {
1761 if (info->bitmap)
1762 kfree(info->bitmap);
1763 kmem_cache_free(btrfs_free_space_cachep, info);
1766 return ret;
1769 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
1770 struct btrfs_free_space *info, bool update_stat)
1772 struct btrfs_free_space *left_info;
1773 struct btrfs_free_space *right_info;
1774 bool merged = false;
1775 u64 offset = info->offset;
1776 u64 bytes = info->bytes;
1779 * first we want to see if there is free space adjacent to the range we
1780 * are adding, if there is remove that struct and add a new one to
1781 * cover the entire range
1783 right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
1784 if (right_info && rb_prev(&right_info->offset_index))
1785 left_info = rb_entry(rb_prev(&right_info->offset_index),
1786 struct btrfs_free_space, offset_index);
1787 else
1788 left_info = tree_search_offset(ctl, offset - 1, 0, 0);
1790 if (right_info && !right_info->bitmap) {
1791 if (update_stat)
1792 unlink_free_space(ctl, right_info);
1793 else
1794 __unlink_free_space(ctl, right_info);
1795 info->bytes += right_info->bytes;
1796 kmem_cache_free(btrfs_free_space_cachep, right_info);
1797 merged = true;
1800 if (left_info && !left_info->bitmap &&
1801 left_info->offset + left_info->bytes == offset) {
1802 if (update_stat)
1803 unlink_free_space(ctl, left_info);
1804 else
1805 __unlink_free_space(ctl, left_info);
1806 info->offset = left_info->offset;
1807 info->bytes += left_info->bytes;
1808 kmem_cache_free(btrfs_free_space_cachep, left_info);
1809 merged = true;
1812 return merged;
1815 int __btrfs_add_free_space(struct btrfs_free_space_ctl *ctl,
1816 u64 offset, u64 bytes)
1818 struct btrfs_free_space *info;
1819 int ret = 0;
1821 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
1822 if (!info)
1823 return -ENOMEM;
1825 info->offset = offset;
1826 info->bytes = bytes;
1828 spin_lock(&ctl->tree_lock);
1830 if (try_merge_free_space(ctl, info, true))
1831 goto link;
1834 * There was no extent directly to the left or right of this new
1835 * extent then we know we're going to have to allocate a new extent, so
1836 * before we do that see if we need to drop this into a bitmap
1838 ret = insert_into_bitmap(ctl, info);
1839 if (ret < 0) {
1840 goto out;
1841 } else if (ret) {
1842 ret = 0;
1843 goto out;
1845 link:
1846 ret = link_free_space(ctl, info);
1847 if (ret)
1848 kmem_cache_free(btrfs_free_space_cachep, info);
1849 out:
1850 spin_unlock(&ctl->tree_lock);
1852 if (ret) {
1853 printk(KERN_CRIT "btrfs: unable to add free space :%d\n", ret);
1854 BUG_ON(ret == -EEXIST);
1857 return ret;
1860 int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
1861 u64 offset, u64 bytes)
1863 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1864 struct btrfs_free_space *info;
1865 int ret = 0;
1867 spin_lock(&ctl->tree_lock);
1869 again:
1870 if (!bytes)
1871 goto out_lock;
1873 info = tree_search_offset(ctl, offset, 0, 0);
1874 if (!info) {
1876 * oops didn't find an extent that matched the space we wanted
1877 * to remove, look for a bitmap instead
1879 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
1880 1, 0);
1881 if (!info) {
1882 /* the tree logging code might be calling us before we
1883 * have fully loaded the free space rbtree for this
1884 * block group. So it is possible the entry won't
1885 * be in the rbtree yet at all. The caching code
1886 * will make sure not to put it in the rbtree if
1887 * the logging code has pinned it.
1889 goto out_lock;
1893 if (!info->bitmap) {
1894 unlink_free_space(ctl, info);
1895 if (offset == info->offset) {
1896 u64 to_free = min(bytes, info->bytes);
1898 info->bytes -= to_free;
1899 info->offset += to_free;
1900 if (info->bytes) {
1901 ret = link_free_space(ctl, info);
1902 WARN_ON(ret);
1903 } else {
1904 kmem_cache_free(btrfs_free_space_cachep, info);
1907 offset += to_free;
1908 bytes -= to_free;
1909 goto again;
1910 } else {
1911 u64 old_end = info->bytes + info->offset;
1913 info->bytes = offset - info->offset;
1914 ret = link_free_space(ctl, info);
1915 WARN_ON(ret);
1916 if (ret)
1917 goto out_lock;
1919 /* Not enough bytes in this entry to satisfy us */
1920 if (old_end < offset + bytes) {
1921 bytes -= old_end - offset;
1922 offset = old_end;
1923 goto again;
1924 } else if (old_end == offset + bytes) {
1925 /* all done */
1926 goto out_lock;
1928 spin_unlock(&ctl->tree_lock);
1930 ret = btrfs_add_free_space(block_group, offset + bytes,
1931 old_end - (offset + bytes));
1932 WARN_ON(ret);
1933 goto out;
1937 ret = remove_from_bitmap(ctl, info, &offset, &bytes);
1938 if (ret == -EAGAIN)
1939 goto again;
1940 BUG_ON(ret); /* logic error */
1941 out_lock:
1942 spin_unlock(&ctl->tree_lock);
1943 out:
1944 return ret;
1947 void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
1948 u64 bytes)
1950 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1951 struct btrfs_free_space *info;
1952 struct rb_node *n;
1953 int count = 0;
1955 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
1956 info = rb_entry(n, struct btrfs_free_space, offset_index);
1957 if (info->bytes >= bytes && !block_group->ro)
1958 count++;
1959 printk(KERN_CRIT "entry offset %llu, bytes %llu, bitmap %s\n",
1960 (unsigned long long)info->offset,
1961 (unsigned long long)info->bytes,
1962 (info->bitmap) ? "yes" : "no");
1964 printk(KERN_INFO "block group has cluster?: %s\n",
1965 list_empty(&block_group->cluster_list) ? "no" : "yes");
1966 printk(KERN_INFO "%d blocks of free space at or bigger than bytes is"
1967 "\n", count);
1970 void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group)
1972 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1974 spin_lock_init(&ctl->tree_lock);
1975 ctl->unit = block_group->sectorsize;
1976 ctl->start = block_group->key.objectid;
1977 ctl->private = block_group;
1978 ctl->op = &free_space_op;
1981 * we only want to have 32k of ram per block group for keeping
1982 * track of free space, and if we pass 1/2 of that we want to
1983 * start converting things over to using bitmaps
1985 ctl->extents_thresh = ((1024 * 32) / 2) /
1986 sizeof(struct btrfs_free_space);
1990 * for a given cluster, put all of its extents back into the free
1991 * space cache. If the block group passed doesn't match the block group
1992 * pointed to by the cluster, someone else raced in and freed the
1993 * cluster already. In that case, we just return without changing anything
1995 static int
1996 __btrfs_return_cluster_to_free_space(
1997 struct btrfs_block_group_cache *block_group,
1998 struct btrfs_free_cluster *cluster)
2000 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2001 struct btrfs_free_space *entry;
2002 struct rb_node *node;
2004 spin_lock(&cluster->lock);
2005 if (cluster->block_group != block_group)
2006 goto out;
2008 cluster->block_group = NULL;
2009 cluster->window_start = 0;
2010 list_del_init(&cluster->block_group_list);
2012 node = rb_first(&cluster->root);
2013 while (node) {
2014 bool bitmap;
2016 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2017 node = rb_next(&entry->offset_index);
2018 rb_erase(&entry->offset_index, &cluster->root);
2020 bitmap = (entry->bitmap != NULL);
2021 if (!bitmap)
2022 try_merge_free_space(ctl, entry, false);
2023 tree_insert_offset(&ctl->free_space_offset,
2024 entry->offset, &entry->offset_index, bitmap);
2026 cluster->root = RB_ROOT;
2028 out:
2029 spin_unlock(&cluster->lock);
2030 btrfs_put_block_group(block_group);
2031 return 0;
2034 void __btrfs_remove_free_space_cache_locked(struct btrfs_free_space_ctl *ctl)
2036 struct btrfs_free_space *info;
2037 struct rb_node *node;
2039 while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
2040 info = rb_entry(node, struct btrfs_free_space, offset_index);
2041 if (!info->bitmap) {
2042 unlink_free_space(ctl, info);
2043 kmem_cache_free(btrfs_free_space_cachep, info);
2044 } else {
2045 free_bitmap(ctl, info);
2047 if (need_resched()) {
2048 spin_unlock(&ctl->tree_lock);
2049 cond_resched();
2050 spin_lock(&ctl->tree_lock);
2055 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
2057 spin_lock(&ctl->tree_lock);
2058 __btrfs_remove_free_space_cache_locked(ctl);
2059 spin_unlock(&ctl->tree_lock);
2062 void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
2064 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2065 struct btrfs_free_cluster *cluster;
2066 struct list_head *head;
2068 spin_lock(&ctl->tree_lock);
2069 while ((head = block_group->cluster_list.next) !=
2070 &block_group->cluster_list) {
2071 cluster = list_entry(head, struct btrfs_free_cluster,
2072 block_group_list);
2074 WARN_ON(cluster->block_group != block_group);
2075 __btrfs_return_cluster_to_free_space(block_group, cluster);
2076 if (need_resched()) {
2077 spin_unlock(&ctl->tree_lock);
2078 cond_resched();
2079 spin_lock(&ctl->tree_lock);
2082 __btrfs_remove_free_space_cache_locked(ctl);
2083 spin_unlock(&ctl->tree_lock);
2087 u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
2088 u64 offset, u64 bytes, u64 empty_size)
2090 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2091 struct btrfs_free_space *entry = NULL;
2092 u64 bytes_search = bytes + empty_size;
2093 u64 ret = 0;
2095 spin_lock(&ctl->tree_lock);
2096 entry = find_free_space(ctl, &offset, &bytes_search);
2097 if (!entry)
2098 goto out;
2100 ret = offset;
2101 if (entry->bitmap) {
2102 bitmap_clear_bits(ctl, entry, offset, bytes);
2103 if (!entry->bytes)
2104 free_bitmap(ctl, entry);
2105 } else {
2106 unlink_free_space(ctl, entry);
2107 entry->offset += bytes;
2108 entry->bytes -= bytes;
2109 if (!entry->bytes)
2110 kmem_cache_free(btrfs_free_space_cachep, entry);
2111 else
2112 link_free_space(ctl, entry);
2115 out:
2116 spin_unlock(&ctl->tree_lock);
2118 return ret;
2122 * given a cluster, put all of its extents back into the free space
2123 * cache. If a block group is passed, this function will only free
2124 * a cluster that belongs to the passed block group.
2126 * Otherwise, it'll get a reference on the block group pointed to by the
2127 * cluster and remove the cluster from it.
2129 int btrfs_return_cluster_to_free_space(
2130 struct btrfs_block_group_cache *block_group,
2131 struct btrfs_free_cluster *cluster)
2133 struct btrfs_free_space_ctl *ctl;
2134 int ret;
2136 /* first, get a safe pointer to the block group */
2137 spin_lock(&cluster->lock);
2138 if (!block_group) {
2139 block_group = cluster->block_group;
2140 if (!block_group) {
2141 spin_unlock(&cluster->lock);
2142 return 0;
2144 } else if (cluster->block_group != block_group) {
2145 /* someone else has already freed it don't redo their work */
2146 spin_unlock(&cluster->lock);
2147 return 0;
2149 atomic_inc(&block_group->count);
2150 spin_unlock(&cluster->lock);
2152 ctl = block_group->free_space_ctl;
2154 /* now return any extents the cluster had on it */
2155 spin_lock(&ctl->tree_lock);
2156 ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
2157 spin_unlock(&ctl->tree_lock);
2159 /* finally drop our ref */
2160 btrfs_put_block_group(block_group);
2161 return ret;
2164 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
2165 struct btrfs_free_cluster *cluster,
2166 struct btrfs_free_space *entry,
2167 u64 bytes, u64 min_start)
2169 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2170 int err;
2171 u64 search_start = cluster->window_start;
2172 u64 search_bytes = bytes;
2173 u64 ret = 0;
2175 search_start = min_start;
2176 search_bytes = bytes;
2178 err = search_bitmap(ctl, entry, &search_start, &search_bytes);
2179 if (err)
2180 return 0;
2182 ret = search_start;
2183 __bitmap_clear_bits(ctl, entry, ret, bytes);
2185 return ret;
2189 * given a cluster, try to allocate 'bytes' from it, returns 0
2190 * if it couldn't find anything suitably large, or a logical disk offset
2191 * if things worked out
2193 u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
2194 struct btrfs_free_cluster *cluster, u64 bytes,
2195 u64 min_start)
2197 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2198 struct btrfs_free_space *entry = NULL;
2199 struct rb_node *node;
2200 u64 ret = 0;
2202 spin_lock(&cluster->lock);
2203 if (bytes > cluster->max_size)
2204 goto out;
2206 if (cluster->block_group != block_group)
2207 goto out;
2209 node = rb_first(&cluster->root);
2210 if (!node)
2211 goto out;
2213 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2214 while(1) {
2215 if (entry->bytes < bytes ||
2216 (!entry->bitmap && entry->offset < min_start)) {
2217 node = rb_next(&entry->offset_index);
2218 if (!node)
2219 break;
2220 entry = rb_entry(node, struct btrfs_free_space,
2221 offset_index);
2222 continue;
2225 if (entry->bitmap) {
2226 ret = btrfs_alloc_from_bitmap(block_group,
2227 cluster, entry, bytes,
2228 cluster->window_start);
2229 if (ret == 0) {
2230 node = rb_next(&entry->offset_index);
2231 if (!node)
2232 break;
2233 entry = rb_entry(node, struct btrfs_free_space,
2234 offset_index);
2235 continue;
2237 cluster->window_start += bytes;
2238 } else {
2239 ret = entry->offset;
2241 entry->offset += bytes;
2242 entry->bytes -= bytes;
2245 if (entry->bytes == 0)
2246 rb_erase(&entry->offset_index, &cluster->root);
2247 break;
2249 out:
2250 spin_unlock(&cluster->lock);
2252 if (!ret)
2253 return 0;
2255 spin_lock(&ctl->tree_lock);
2257 ctl->free_space -= bytes;
2258 if (entry->bytes == 0) {
2259 ctl->free_extents--;
2260 if (entry->bitmap) {
2261 kfree(entry->bitmap);
2262 ctl->total_bitmaps--;
2263 ctl->op->recalc_thresholds(ctl);
2265 kmem_cache_free(btrfs_free_space_cachep, entry);
2268 spin_unlock(&ctl->tree_lock);
2270 return ret;
2273 static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
2274 struct btrfs_free_space *entry,
2275 struct btrfs_free_cluster *cluster,
2276 u64 offset, u64 bytes,
2277 u64 cont1_bytes, u64 min_bytes)
2279 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2280 unsigned long next_zero;
2281 unsigned long i;
2282 unsigned long want_bits;
2283 unsigned long min_bits;
2284 unsigned long found_bits;
2285 unsigned long start = 0;
2286 unsigned long total_found = 0;
2287 int ret;
2289 i = offset_to_bit(entry->offset, ctl->unit,
2290 max_t(u64, offset, entry->offset));
2291 want_bits = bytes_to_bits(bytes, ctl->unit);
2292 min_bits = bytes_to_bits(min_bytes, ctl->unit);
2294 again:
2295 found_bits = 0;
2296 for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
2297 next_zero = find_next_zero_bit(entry->bitmap,
2298 BITS_PER_BITMAP, i);
2299 if (next_zero - i >= min_bits) {
2300 found_bits = next_zero - i;
2301 break;
2303 i = next_zero;
2306 if (!found_bits)
2307 return -ENOSPC;
2309 if (!total_found) {
2310 start = i;
2311 cluster->max_size = 0;
2314 total_found += found_bits;
2316 if (cluster->max_size < found_bits * ctl->unit)
2317 cluster->max_size = found_bits * ctl->unit;
2319 if (total_found < want_bits || cluster->max_size < cont1_bytes) {
2320 i = next_zero + 1;
2321 goto again;
2324 cluster->window_start = start * ctl->unit + entry->offset;
2325 rb_erase(&entry->offset_index, &ctl->free_space_offset);
2326 ret = tree_insert_offset(&cluster->root, entry->offset,
2327 &entry->offset_index, 1);
2328 BUG_ON(ret); /* -EEXIST; Logic error */
2330 trace_btrfs_setup_cluster(block_group, cluster,
2331 total_found * ctl->unit, 1);
2332 return 0;
2336 * This searches the block group for just extents to fill the cluster with.
2337 * Try to find a cluster with at least bytes total bytes, at least one
2338 * extent of cont1_bytes, and other clusters of at least min_bytes.
2340 static noinline int
2341 setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
2342 struct btrfs_free_cluster *cluster,
2343 struct list_head *bitmaps, u64 offset, u64 bytes,
2344 u64 cont1_bytes, u64 min_bytes)
2346 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2347 struct btrfs_free_space *first = NULL;
2348 struct btrfs_free_space *entry = NULL;
2349 struct btrfs_free_space *last;
2350 struct rb_node *node;
2351 u64 window_start;
2352 u64 window_free;
2353 u64 max_extent;
2354 u64 total_size = 0;
2356 entry = tree_search_offset(ctl, offset, 0, 1);
2357 if (!entry)
2358 return -ENOSPC;
2361 * We don't want bitmaps, so just move along until we find a normal
2362 * extent entry.
2364 while (entry->bitmap || entry->bytes < min_bytes) {
2365 if (entry->bitmap && list_empty(&entry->list))
2366 list_add_tail(&entry->list, bitmaps);
2367 node = rb_next(&entry->offset_index);
2368 if (!node)
2369 return -ENOSPC;
2370 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2373 window_start = entry->offset;
2374 window_free = entry->bytes;
2375 max_extent = entry->bytes;
2376 first = entry;
2377 last = entry;
2379 for (node = rb_next(&entry->offset_index); node;
2380 node = rb_next(&entry->offset_index)) {
2381 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2383 if (entry->bitmap) {
2384 if (list_empty(&entry->list))
2385 list_add_tail(&entry->list, bitmaps);
2386 continue;
2389 if (entry->bytes < min_bytes)
2390 continue;
2392 last = entry;
2393 window_free += entry->bytes;
2394 if (entry->bytes > max_extent)
2395 max_extent = entry->bytes;
2398 if (window_free < bytes || max_extent < cont1_bytes)
2399 return -ENOSPC;
2401 cluster->window_start = first->offset;
2403 node = &first->offset_index;
2406 * now we've found our entries, pull them out of the free space
2407 * cache and put them into the cluster rbtree
2409 do {
2410 int ret;
2412 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2413 node = rb_next(&entry->offset_index);
2414 if (entry->bitmap || entry->bytes < min_bytes)
2415 continue;
2417 rb_erase(&entry->offset_index, &ctl->free_space_offset);
2418 ret = tree_insert_offset(&cluster->root, entry->offset,
2419 &entry->offset_index, 0);
2420 total_size += entry->bytes;
2421 BUG_ON(ret); /* -EEXIST; Logic error */
2422 } while (node && entry != last);
2424 cluster->max_size = max_extent;
2425 trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
2426 return 0;
2430 * This specifically looks for bitmaps that may work in the cluster, we assume
2431 * that we have already failed to find extents that will work.
2433 static noinline int
2434 setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
2435 struct btrfs_free_cluster *cluster,
2436 struct list_head *bitmaps, u64 offset, u64 bytes,
2437 u64 cont1_bytes, u64 min_bytes)
2439 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2440 struct btrfs_free_space *entry;
2441 int ret = -ENOSPC;
2442 u64 bitmap_offset = offset_to_bitmap(ctl, offset);
2444 if (ctl->total_bitmaps == 0)
2445 return -ENOSPC;
2448 * The bitmap that covers offset won't be in the list unless offset
2449 * is just its start offset.
2451 entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
2452 if (entry->offset != bitmap_offset) {
2453 entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
2454 if (entry && list_empty(&entry->list))
2455 list_add(&entry->list, bitmaps);
2458 list_for_each_entry(entry, bitmaps, list) {
2459 if (entry->bytes < bytes)
2460 continue;
2461 ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
2462 bytes, cont1_bytes, min_bytes);
2463 if (!ret)
2464 return 0;
2468 * The bitmaps list has all the bitmaps that record free space
2469 * starting after offset, so no more search is required.
2471 return -ENOSPC;
2475 * here we try to find a cluster of blocks in a block group. The goal
2476 * is to find at least bytes+empty_size.
2477 * We might not find them all in one contiguous area.
2479 * returns zero and sets up cluster if things worked out, otherwise
2480 * it returns -enospc
2482 int btrfs_find_space_cluster(struct btrfs_trans_handle *trans,
2483 struct btrfs_root *root,
2484 struct btrfs_block_group_cache *block_group,
2485 struct btrfs_free_cluster *cluster,
2486 u64 offset, u64 bytes, u64 empty_size)
2488 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2489 struct btrfs_free_space *entry, *tmp;
2490 LIST_HEAD(bitmaps);
2491 u64 min_bytes;
2492 u64 cont1_bytes;
2493 int ret;
2496 * Choose the minimum extent size we'll require for this
2497 * cluster. For SSD_SPREAD, don't allow any fragmentation.
2498 * For metadata, allow allocates with smaller extents. For
2499 * data, keep it dense.
2501 if (btrfs_test_opt(root, SSD_SPREAD)) {
2502 cont1_bytes = min_bytes = bytes + empty_size;
2503 } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
2504 cont1_bytes = bytes;
2505 min_bytes = block_group->sectorsize;
2506 } else {
2507 cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
2508 min_bytes = block_group->sectorsize;
2511 spin_lock(&ctl->tree_lock);
2514 * If we know we don't have enough space to make a cluster don't even
2515 * bother doing all the work to try and find one.
2517 if (ctl->free_space < bytes) {
2518 spin_unlock(&ctl->tree_lock);
2519 return -ENOSPC;
2522 spin_lock(&cluster->lock);
2524 /* someone already found a cluster, hooray */
2525 if (cluster->block_group) {
2526 ret = 0;
2527 goto out;
2530 trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
2531 min_bytes);
2533 INIT_LIST_HEAD(&bitmaps);
2534 ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
2535 bytes + empty_size,
2536 cont1_bytes, min_bytes);
2537 if (ret)
2538 ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
2539 offset, bytes + empty_size,
2540 cont1_bytes, min_bytes);
2542 /* Clear our temporary list */
2543 list_for_each_entry_safe(entry, tmp, &bitmaps, list)
2544 list_del_init(&entry->list);
2546 if (!ret) {
2547 atomic_inc(&block_group->count);
2548 list_add_tail(&cluster->block_group_list,
2549 &block_group->cluster_list);
2550 cluster->block_group = block_group;
2551 } else {
2552 trace_btrfs_failed_cluster_setup(block_group);
2554 out:
2555 spin_unlock(&cluster->lock);
2556 spin_unlock(&ctl->tree_lock);
2558 return ret;
2562 * simple code to zero out a cluster
2564 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
2566 spin_lock_init(&cluster->lock);
2567 spin_lock_init(&cluster->refill_lock);
2568 cluster->root = RB_ROOT;
2569 cluster->max_size = 0;
2570 INIT_LIST_HEAD(&cluster->block_group_list);
2571 cluster->block_group = NULL;
2574 static int do_trimming(struct btrfs_block_group_cache *block_group,
2575 u64 *total_trimmed, u64 start, u64 bytes,
2576 u64 reserved_start, u64 reserved_bytes)
2578 struct btrfs_space_info *space_info = block_group->space_info;
2579 struct btrfs_fs_info *fs_info = block_group->fs_info;
2580 int ret;
2581 int update = 0;
2582 u64 trimmed = 0;
2584 spin_lock(&space_info->lock);
2585 spin_lock(&block_group->lock);
2586 if (!block_group->ro) {
2587 block_group->reserved += reserved_bytes;
2588 space_info->bytes_reserved += reserved_bytes;
2589 update = 1;
2591 spin_unlock(&block_group->lock);
2592 spin_unlock(&space_info->lock);
2594 ret = btrfs_error_discard_extent(fs_info->extent_root,
2595 start, bytes, &trimmed);
2596 if (!ret)
2597 *total_trimmed += trimmed;
2599 btrfs_add_free_space(block_group, reserved_start, reserved_bytes);
2601 if (update) {
2602 spin_lock(&space_info->lock);
2603 spin_lock(&block_group->lock);
2604 if (block_group->ro)
2605 space_info->bytes_readonly += reserved_bytes;
2606 block_group->reserved -= reserved_bytes;
2607 space_info->bytes_reserved -= reserved_bytes;
2608 spin_unlock(&space_info->lock);
2609 spin_unlock(&block_group->lock);
2612 return ret;
2615 static int trim_no_bitmap(struct btrfs_block_group_cache *block_group,
2616 u64 *total_trimmed, u64 start, u64 end, u64 minlen)
2618 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2619 struct btrfs_free_space *entry;
2620 struct rb_node *node;
2621 int ret = 0;
2622 u64 extent_start;
2623 u64 extent_bytes;
2624 u64 bytes;
2626 while (start < end) {
2627 spin_lock(&ctl->tree_lock);
2629 if (ctl->free_space < minlen) {
2630 spin_unlock(&ctl->tree_lock);
2631 break;
2634 entry = tree_search_offset(ctl, start, 0, 1);
2635 if (!entry) {
2636 spin_unlock(&ctl->tree_lock);
2637 break;
2640 /* skip bitmaps */
2641 while (entry->bitmap) {
2642 node = rb_next(&entry->offset_index);
2643 if (!node) {
2644 spin_unlock(&ctl->tree_lock);
2645 goto out;
2647 entry = rb_entry(node, struct btrfs_free_space,
2648 offset_index);
2651 if (entry->offset >= end) {
2652 spin_unlock(&ctl->tree_lock);
2653 break;
2656 extent_start = entry->offset;
2657 extent_bytes = entry->bytes;
2658 start = max(start, extent_start);
2659 bytes = min(extent_start + extent_bytes, end) - start;
2660 if (bytes < minlen) {
2661 spin_unlock(&ctl->tree_lock);
2662 goto next;
2665 unlink_free_space(ctl, entry);
2666 kmem_cache_free(btrfs_free_space_cachep, entry);
2668 spin_unlock(&ctl->tree_lock);
2670 ret = do_trimming(block_group, total_trimmed, start, bytes,
2671 extent_start, extent_bytes);
2672 if (ret)
2673 break;
2674 next:
2675 start += bytes;
2677 if (fatal_signal_pending(current)) {
2678 ret = -ERESTARTSYS;
2679 break;
2682 cond_resched();
2684 out:
2685 return ret;
2688 static int trim_bitmaps(struct btrfs_block_group_cache *block_group,
2689 u64 *total_trimmed, u64 start, u64 end, u64 minlen)
2691 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2692 struct btrfs_free_space *entry;
2693 int ret = 0;
2694 int ret2;
2695 u64 bytes;
2696 u64 offset = offset_to_bitmap(ctl, start);
2698 while (offset < end) {
2699 bool next_bitmap = false;
2701 spin_lock(&ctl->tree_lock);
2703 if (ctl->free_space < minlen) {
2704 spin_unlock(&ctl->tree_lock);
2705 break;
2708 entry = tree_search_offset(ctl, offset, 1, 0);
2709 if (!entry) {
2710 spin_unlock(&ctl->tree_lock);
2711 next_bitmap = true;
2712 goto next;
2715 bytes = minlen;
2716 ret2 = search_bitmap(ctl, entry, &start, &bytes);
2717 if (ret2 || start >= end) {
2718 spin_unlock(&ctl->tree_lock);
2719 next_bitmap = true;
2720 goto next;
2723 bytes = min(bytes, end - start);
2724 if (bytes < minlen) {
2725 spin_unlock(&ctl->tree_lock);
2726 goto next;
2729 bitmap_clear_bits(ctl, entry, start, bytes);
2730 if (entry->bytes == 0)
2731 free_bitmap(ctl, entry);
2733 spin_unlock(&ctl->tree_lock);
2735 ret = do_trimming(block_group, total_trimmed, start, bytes,
2736 start, bytes);
2737 if (ret)
2738 break;
2739 next:
2740 if (next_bitmap) {
2741 offset += BITS_PER_BITMAP * ctl->unit;
2742 } else {
2743 start += bytes;
2744 if (start >= offset + BITS_PER_BITMAP * ctl->unit)
2745 offset += BITS_PER_BITMAP * ctl->unit;
2748 if (fatal_signal_pending(current)) {
2749 ret = -ERESTARTSYS;
2750 break;
2753 cond_resched();
2756 return ret;
2759 int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
2760 u64 *trimmed, u64 start, u64 end, u64 minlen)
2762 int ret;
2764 *trimmed = 0;
2766 ret = trim_no_bitmap(block_group, trimmed, start, end, minlen);
2767 if (ret)
2768 return ret;
2770 ret = trim_bitmaps(block_group, trimmed, start, end, minlen);
2772 return ret;
2776 * Find the left-most item in the cache tree, and then return the
2777 * smallest inode number in the item.
2779 * Note: the returned inode number may not be the smallest one in
2780 * the tree, if the left-most item is a bitmap.
2782 u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
2784 struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
2785 struct btrfs_free_space *entry = NULL;
2786 u64 ino = 0;
2788 spin_lock(&ctl->tree_lock);
2790 if (RB_EMPTY_ROOT(&ctl->free_space_offset))
2791 goto out;
2793 entry = rb_entry(rb_first(&ctl->free_space_offset),
2794 struct btrfs_free_space, offset_index);
2796 if (!entry->bitmap) {
2797 ino = entry->offset;
2799 unlink_free_space(ctl, entry);
2800 entry->offset++;
2801 entry->bytes--;
2802 if (!entry->bytes)
2803 kmem_cache_free(btrfs_free_space_cachep, entry);
2804 else
2805 link_free_space(ctl, entry);
2806 } else {
2807 u64 offset = 0;
2808 u64 count = 1;
2809 int ret;
2811 ret = search_bitmap(ctl, entry, &offset, &count);
2812 /* Logic error; Should be empty if it can't find anything */
2813 BUG_ON(ret);
2815 ino = offset;
2816 bitmap_clear_bits(ctl, entry, offset, 1);
2817 if (entry->bytes == 0)
2818 free_bitmap(ctl, entry);
2820 out:
2821 spin_unlock(&ctl->tree_lock);
2823 return ino;
2826 struct inode *lookup_free_ino_inode(struct btrfs_root *root,
2827 struct btrfs_path *path)
2829 struct inode *inode = NULL;
2831 spin_lock(&root->cache_lock);
2832 if (root->cache_inode)
2833 inode = igrab(root->cache_inode);
2834 spin_unlock(&root->cache_lock);
2835 if (inode)
2836 return inode;
2838 inode = __lookup_free_space_inode(root, path, 0);
2839 if (IS_ERR(inode))
2840 return inode;
2842 spin_lock(&root->cache_lock);
2843 if (!btrfs_fs_closing(root->fs_info))
2844 root->cache_inode = igrab(inode);
2845 spin_unlock(&root->cache_lock);
2847 return inode;
2850 int create_free_ino_inode(struct btrfs_root *root,
2851 struct btrfs_trans_handle *trans,
2852 struct btrfs_path *path)
2854 return __create_free_space_inode(root, trans, path,
2855 BTRFS_FREE_INO_OBJECTID, 0);
2858 int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2860 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
2861 struct btrfs_path *path;
2862 struct inode *inode;
2863 int ret = 0;
2864 u64 root_gen = btrfs_root_generation(&root->root_item);
2866 if (!btrfs_test_opt(root, INODE_MAP_CACHE))
2867 return 0;
2870 * If we're unmounting then just return, since this does a search on the
2871 * normal root and not the commit root and we could deadlock.
2873 if (btrfs_fs_closing(fs_info))
2874 return 0;
2876 path = btrfs_alloc_path();
2877 if (!path)
2878 return 0;
2880 inode = lookup_free_ino_inode(root, path);
2881 if (IS_ERR(inode))
2882 goto out;
2884 if (root_gen != BTRFS_I(inode)->generation)
2885 goto out_put;
2887 ret = __load_free_space_cache(root, inode, ctl, path, 0);
2889 if (ret < 0)
2890 printk(KERN_ERR "btrfs: failed to load free ino cache for "
2891 "root %llu\n", root->root_key.objectid);
2892 out_put:
2893 iput(inode);
2894 out:
2895 btrfs_free_path(path);
2896 return ret;
2899 int btrfs_write_out_ino_cache(struct btrfs_root *root,
2900 struct btrfs_trans_handle *trans,
2901 struct btrfs_path *path)
2903 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
2904 struct inode *inode;
2905 int ret;
2907 if (!btrfs_test_opt(root, INODE_MAP_CACHE))
2908 return 0;
2910 inode = lookup_free_ino_inode(root, path);
2911 if (IS_ERR(inode))
2912 return 0;
2914 ret = __btrfs_write_out_cache(root, inode, ctl, NULL, trans, path, 0);
2915 if (ret) {
2916 btrfs_delalloc_release_metadata(inode, inode->i_size);
2917 #ifdef DEBUG
2918 printk(KERN_ERR "btrfs: failed to write free ino cache "
2919 "for root %llu\n", root->root_key.objectid);
2920 #endif
2923 iput(inode);
2924 return ret;