TI DaVinci EMAC: Convert to dev_pm_ops
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / perf_event.c
bloba661e7991865bdeb22d6631b01a96d8a4b6c3047
1 /*
2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/dcache.h>
20 #include <linux/percpu.h>
21 #include <linux/ptrace.h>
22 #include <linux/vmstat.h>
23 #include <linux/vmalloc.h>
24 #include <linux/hardirq.h>
25 #include <linux/rculist.h>
26 #include <linux/uaccess.h>
27 #include <linux/syscalls.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/perf_event.h>
31 #include <linux/ftrace_event.h>
32 #include <linux/hw_breakpoint.h>
34 #include <asm/irq_regs.h>
37 * Each CPU has a list of per CPU events:
39 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
41 int perf_max_events __read_mostly = 1;
42 static int perf_reserved_percpu __read_mostly;
43 static int perf_overcommit __read_mostly = 1;
45 static atomic_t nr_events __read_mostly;
46 static atomic_t nr_mmap_events __read_mostly;
47 static atomic_t nr_comm_events __read_mostly;
48 static atomic_t nr_task_events __read_mostly;
51 * perf event paranoia level:
52 * -1 - not paranoid at all
53 * 0 - disallow raw tracepoint access for unpriv
54 * 1 - disallow cpu events for unpriv
55 * 2 - disallow kernel profiling for unpriv
57 int sysctl_perf_event_paranoid __read_mostly = 1;
59 static inline bool perf_paranoid_tracepoint_raw(void)
61 return sysctl_perf_event_paranoid > -1;
64 static inline bool perf_paranoid_cpu(void)
66 return sysctl_perf_event_paranoid > 0;
69 static inline bool perf_paranoid_kernel(void)
71 return sysctl_perf_event_paranoid > 1;
74 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
77 * max perf event sample rate
79 int sysctl_perf_event_sample_rate __read_mostly = 100000;
81 static atomic64_t perf_event_id;
84 * Lock for (sysadmin-configurable) event reservations:
86 static DEFINE_SPINLOCK(perf_resource_lock);
89 * Architecture provided APIs - weak aliases:
91 extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
93 return NULL;
96 void __weak hw_perf_disable(void) { barrier(); }
97 void __weak hw_perf_enable(void) { barrier(); }
99 void __weak hw_perf_event_setup(int cpu) { barrier(); }
100 void __weak hw_perf_event_setup_online(int cpu) { barrier(); }
101 void __weak hw_perf_event_setup_offline(int cpu) { barrier(); }
103 int __weak
104 hw_perf_group_sched_in(struct perf_event *group_leader,
105 struct perf_cpu_context *cpuctx,
106 struct perf_event_context *ctx)
108 return 0;
111 void __weak perf_event_print_debug(void) { }
113 static DEFINE_PER_CPU(int, perf_disable_count);
115 void __perf_disable(void)
117 __get_cpu_var(perf_disable_count)++;
120 bool __perf_enable(void)
122 return !--__get_cpu_var(perf_disable_count);
125 void perf_disable(void)
127 __perf_disable();
128 hw_perf_disable();
131 void perf_enable(void)
133 if (__perf_enable())
134 hw_perf_enable();
137 static void get_ctx(struct perf_event_context *ctx)
139 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
142 static void free_ctx(struct rcu_head *head)
144 struct perf_event_context *ctx;
146 ctx = container_of(head, struct perf_event_context, rcu_head);
147 kfree(ctx);
150 static void put_ctx(struct perf_event_context *ctx)
152 if (atomic_dec_and_test(&ctx->refcount)) {
153 if (ctx->parent_ctx)
154 put_ctx(ctx->parent_ctx);
155 if (ctx->task)
156 put_task_struct(ctx->task);
157 call_rcu(&ctx->rcu_head, free_ctx);
161 static void unclone_ctx(struct perf_event_context *ctx)
163 if (ctx->parent_ctx) {
164 put_ctx(ctx->parent_ctx);
165 ctx->parent_ctx = NULL;
170 * If we inherit events we want to return the parent event id
171 * to userspace.
173 static u64 primary_event_id(struct perf_event *event)
175 u64 id = event->id;
177 if (event->parent)
178 id = event->parent->id;
180 return id;
184 * Get the perf_event_context for a task and lock it.
185 * This has to cope with with the fact that until it is locked,
186 * the context could get moved to another task.
188 static struct perf_event_context *
189 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
191 struct perf_event_context *ctx;
193 rcu_read_lock();
194 retry:
195 ctx = rcu_dereference(task->perf_event_ctxp);
196 if (ctx) {
198 * If this context is a clone of another, it might
199 * get swapped for another underneath us by
200 * perf_event_task_sched_out, though the
201 * rcu_read_lock() protects us from any context
202 * getting freed. Lock the context and check if it
203 * got swapped before we could get the lock, and retry
204 * if so. If we locked the right context, then it
205 * can't get swapped on us any more.
207 raw_spin_lock_irqsave(&ctx->lock, *flags);
208 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
209 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
210 goto retry;
213 if (!atomic_inc_not_zero(&ctx->refcount)) {
214 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
215 ctx = NULL;
218 rcu_read_unlock();
219 return ctx;
223 * Get the context for a task and increment its pin_count so it
224 * can't get swapped to another task. This also increments its
225 * reference count so that the context can't get freed.
227 static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
229 struct perf_event_context *ctx;
230 unsigned long flags;
232 ctx = perf_lock_task_context(task, &flags);
233 if (ctx) {
234 ++ctx->pin_count;
235 raw_spin_unlock_irqrestore(&ctx->lock, flags);
237 return ctx;
240 static void perf_unpin_context(struct perf_event_context *ctx)
242 unsigned long flags;
244 raw_spin_lock_irqsave(&ctx->lock, flags);
245 --ctx->pin_count;
246 raw_spin_unlock_irqrestore(&ctx->lock, flags);
247 put_ctx(ctx);
250 static inline u64 perf_clock(void)
252 return cpu_clock(raw_smp_processor_id());
256 * Update the record of the current time in a context.
258 static void update_context_time(struct perf_event_context *ctx)
260 u64 now = perf_clock();
262 ctx->time += now - ctx->timestamp;
263 ctx->timestamp = now;
267 * Update the total_time_enabled and total_time_running fields for a event.
269 static void update_event_times(struct perf_event *event)
271 struct perf_event_context *ctx = event->ctx;
272 u64 run_end;
274 if (event->state < PERF_EVENT_STATE_INACTIVE ||
275 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
276 return;
278 if (ctx->is_active)
279 run_end = ctx->time;
280 else
281 run_end = event->tstamp_stopped;
283 event->total_time_enabled = run_end - event->tstamp_enabled;
285 if (event->state == PERF_EVENT_STATE_INACTIVE)
286 run_end = event->tstamp_stopped;
287 else
288 run_end = ctx->time;
290 event->total_time_running = run_end - event->tstamp_running;
293 static struct list_head *
294 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
296 if (event->attr.pinned)
297 return &ctx->pinned_groups;
298 else
299 return &ctx->flexible_groups;
303 * Add a event from the lists for its context.
304 * Must be called with ctx->mutex and ctx->lock held.
306 static void
307 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
309 struct perf_event *group_leader = event->group_leader;
312 * Depending on whether it is a standalone or sibling event,
313 * add it straight to the context's event list, or to the group
314 * leader's sibling list:
316 if (group_leader == event) {
317 struct list_head *list;
319 if (is_software_event(event))
320 event->group_flags |= PERF_GROUP_SOFTWARE;
322 list = ctx_group_list(event, ctx);
323 list_add_tail(&event->group_entry, list);
324 } else {
325 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
326 !is_software_event(event))
327 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
329 list_add_tail(&event->group_entry, &group_leader->sibling_list);
330 group_leader->nr_siblings++;
333 list_add_rcu(&event->event_entry, &ctx->event_list);
334 ctx->nr_events++;
335 if (event->attr.inherit_stat)
336 ctx->nr_stat++;
340 * Remove a event from the lists for its context.
341 * Must be called with ctx->mutex and ctx->lock held.
343 static void
344 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
346 struct perf_event *sibling, *tmp;
348 if (list_empty(&event->group_entry))
349 return;
350 ctx->nr_events--;
351 if (event->attr.inherit_stat)
352 ctx->nr_stat--;
354 list_del_init(&event->group_entry);
355 list_del_rcu(&event->event_entry);
357 if (event->group_leader != event)
358 event->group_leader->nr_siblings--;
360 update_event_times(event);
363 * If event was in error state, then keep it
364 * that way, otherwise bogus counts will be
365 * returned on read(). The only way to get out
366 * of error state is by explicit re-enabling
367 * of the event
369 if (event->state > PERF_EVENT_STATE_OFF)
370 event->state = PERF_EVENT_STATE_OFF;
373 * If this was a group event with sibling events then
374 * upgrade the siblings to singleton events by adding them
375 * to the context list directly:
377 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
378 struct list_head *list;
380 list = ctx_group_list(event, ctx);
381 list_move_tail(&sibling->group_entry, list);
382 sibling->group_leader = sibling;
384 /* Inherit group flags from the previous leader */
385 sibling->group_flags = event->group_flags;
389 static void
390 event_sched_out(struct perf_event *event,
391 struct perf_cpu_context *cpuctx,
392 struct perf_event_context *ctx)
394 if (event->state != PERF_EVENT_STATE_ACTIVE)
395 return;
397 event->state = PERF_EVENT_STATE_INACTIVE;
398 if (event->pending_disable) {
399 event->pending_disable = 0;
400 event->state = PERF_EVENT_STATE_OFF;
402 event->tstamp_stopped = ctx->time;
403 event->pmu->disable(event);
404 event->oncpu = -1;
406 if (!is_software_event(event))
407 cpuctx->active_oncpu--;
408 ctx->nr_active--;
409 if (event->attr.exclusive || !cpuctx->active_oncpu)
410 cpuctx->exclusive = 0;
413 static void
414 group_sched_out(struct perf_event *group_event,
415 struct perf_cpu_context *cpuctx,
416 struct perf_event_context *ctx)
418 struct perf_event *event;
420 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
421 return;
423 event_sched_out(group_event, cpuctx, ctx);
426 * Schedule out siblings (if any):
428 list_for_each_entry(event, &group_event->sibling_list, group_entry)
429 event_sched_out(event, cpuctx, ctx);
431 if (group_event->attr.exclusive)
432 cpuctx->exclusive = 0;
436 * Cross CPU call to remove a performance event
438 * We disable the event on the hardware level first. After that we
439 * remove it from the context list.
441 static void __perf_event_remove_from_context(void *info)
443 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
444 struct perf_event *event = info;
445 struct perf_event_context *ctx = event->ctx;
448 * If this is a task context, we need to check whether it is
449 * the current task context of this cpu. If not it has been
450 * scheduled out before the smp call arrived.
452 if (ctx->task && cpuctx->task_ctx != ctx)
453 return;
455 raw_spin_lock(&ctx->lock);
457 * Protect the list operation against NMI by disabling the
458 * events on a global level.
460 perf_disable();
462 event_sched_out(event, cpuctx, ctx);
464 list_del_event(event, ctx);
466 if (!ctx->task) {
468 * Allow more per task events with respect to the
469 * reservation:
471 cpuctx->max_pertask =
472 min(perf_max_events - ctx->nr_events,
473 perf_max_events - perf_reserved_percpu);
476 perf_enable();
477 raw_spin_unlock(&ctx->lock);
482 * Remove the event from a task's (or a CPU's) list of events.
484 * Must be called with ctx->mutex held.
486 * CPU events are removed with a smp call. For task events we only
487 * call when the task is on a CPU.
489 * If event->ctx is a cloned context, callers must make sure that
490 * every task struct that event->ctx->task could possibly point to
491 * remains valid. This is OK when called from perf_release since
492 * that only calls us on the top-level context, which can't be a clone.
493 * When called from perf_event_exit_task, it's OK because the
494 * context has been detached from its task.
496 static void perf_event_remove_from_context(struct perf_event *event)
498 struct perf_event_context *ctx = event->ctx;
499 struct task_struct *task = ctx->task;
501 if (!task) {
503 * Per cpu events are removed via an smp call and
504 * the removal is always successful.
506 smp_call_function_single(event->cpu,
507 __perf_event_remove_from_context,
508 event, 1);
509 return;
512 retry:
513 task_oncpu_function_call(task, __perf_event_remove_from_context,
514 event);
516 raw_spin_lock_irq(&ctx->lock);
518 * If the context is active we need to retry the smp call.
520 if (ctx->nr_active && !list_empty(&event->group_entry)) {
521 raw_spin_unlock_irq(&ctx->lock);
522 goto retry;
526 * The lock prevents that this context is scheduled in so we
527 * can remove the event safely, if the call above did not
528 * succeed.
530 if (!list_empty(&event->group_entry))
531 list_del_event(event, ctx);
532 raw_spin_unlock_irq(&ctx->lock);
536 * Update total_time_enabled and total_time_running for all events in a group.
538 static void update_group_times(struct perf_event *leader)
540 struct perf_event *event;
542 update_event_times(leader);
543 list_for_each_entry(event, &leader->sibling_list, group_entry)
544 update_event_times(event);
548 * Cross CPU call to disable a performance event
550 static void __perf_event_disable(void *info)
552 struct perf_event *event = info;
553 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
554 struct perf_event_context *ctx = event->ctx;
557 * If this is a per-task event, need to check whether this
558 * event's task is the current task on this cpu.
560 if (ctx->task && cpuctx->task_ctx != ctx)
561 return;
563 raw_spin_lock(&ctx->lock);
566 * If the event is on, turn it off.
567 * If it is in error state, leave it in error state.
569 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
570 update_context_time(ctx);
571 update_group_times(event);
572 if (event == event->group_leader)
573 group_sched_out(event, cpuctx, ctx);
574 else
575 event_sched_out(event, cpuctx, ctx);
576 event->state = PERF_EVENT_STATE_OFF;
579 raw_spin_unlock(&ctx->lock);
583 * Disable a event.
585 * If event->ctx is a cloned context, callers must make sure that
586 * every task struct that event->ctx->task could possibly point to
587 * remains valid. This condition is satisifed when called through
588 * perf_event_for_each_child or perf_event_for_each because they
589 * hold the top-level event's child_mutex, so any descendant that
590 * goes to exit will block in sync_child_event.
591 * When called from perf_pending_event it's OK because event->ctx
592 * is the current context on this CPU and preemption is disabled,
593 * hence we can't get into perf_event_task_sched_out for this context.
595 void perf_event_disable(struct perf_event *event)
597 struct perf_event_context *ctx = event->ctx;
598 struct task_struct *task = ctx->task;
600 if (!task) {
602 * Disable the event on the cpu that it's on
604 smp_call_function_single(event->cpu, __perf_event_disable,
605 event, 1);
606 return;
609 retry:
610 task_oncpu_function_call(task, __perf_event_disable, event);
612 raw_spin_lock_irq(&ctx->lock);
614 * If the event is still active, we need to retry the cross-call.
616 if (event->state == PERF_EVENT_STATE_ACTIVE) {
617 raw_spin_unlock_irq(&ctx->lock);
618 goto retry;
622 * Since we have the lock this context can't be scheduled
623 * in, so we can change the state safely.
625 if (event->state == PERF_EVENT_STATE_INACTIVE) {
626 update_group_times(event);
627 event->state = PERF_EVENT_STATE_OFF;
630 raw_spin_unlock_irq(&ctx->lock);
633 static int
634 event_sched_in(struct perf_event *event,
635 struct perf_cpu_context *cpuctx,
636 struct perf_event_context *ctx)
638 if (event->state <= PERF_EVENT_STATE_OFF)
639 return 0;
641 event->state = PERF_EVENT_STATE_ACTIVE;
642 event->oncpu = smp_processor_id();
644 * The new state must be visible before we turn it on in the hardware:
646 smp_wmb();
648 if (event->pmu->enable(event)) {
649 event->state = PERF_EVENT_STATE_INACTIVE;
650 event->oncpu = -1;
651 return -EAGAIN;
654 event->tstamp_running += ctx->time - event->tstamp_stopped;
656 if (!is_software_event(event))
657 cpuctx->active_oncpu++;
658 ctx->nr_active++;
660 if (event->attr.exclusive)
661 cpuctx->exclusive = 1;
663 return 0;
666 static int
667 group_sched_in(struct perf_event *group_event,
668 struct perf_cpu_context *cpuctx,
669 struct perf_event_context *ctx)
671 struct perf_event *event, *partial_group;
672 int ret;
674 if (group_event->state == PERF_EVENT_STATE_OFF)
675 return 0;
677 ret = hw_perf_group_sched_in(group_event, cpuctx, ctx);
678 if (ret)
679 return ret < 0 ? ret : 0;
681 if (event_sched_in(group_event, cpuctx, ctx))
682 return -EAGAIN;
685 * Schedule in siblings as one group (if any):
687 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
688 if (event_sched_in(event, cpuctx, ctx)) {
689 partial_group = event;
690 goto group_error;
694 return 0;
696 group_error:
698 * Groups can be scheduled in as one unit only, so undo any
699 * partial group before returning:
701 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
702 if (event == partial_group)
703 break;
704 event_sched_out(event, cpuctx, ctx);
706 event_sched_out(group_event, cpuctx, ctx);
708 return -EAGAIN;
712 * Work out whether we can put this event group on the CPU now.
714 static int group_can_go_on(struct perf_event *event,
715 struct perf_cpu_context *cpuctx,
716 int can_add_hw)
719 * Groups consisting entirely of software events can always go on.
721 if (event->group_flags & PERF_GROUP_SOFTWARE)
722 return 1;
724 * If an exclusive group is already on, no other hardware
725 * events can go on.
727 if (cpuctx->exclusive)
728 return 0;
730 * If this group is exclusive and there are already
731 * events on the CPU, it can't go on.
733 if (event->attr.exclusive && cpuctx->active_oncpu)
734 return 0;
736 * Otherwise, try to add it if all previous groups were able
737 * to go on.
739 return can_add_hw;
742 static void add_event_to_ctx(struct perf_event *event,
743 struct perf_event_context *ctx)
745 list_add_event(event, ctx);
746 event->tstamp_enabled = ctx->time;
747 event->tstamp_running = ctx->time;
748 event->tstamp_stopped = ctx->time;
752 * Cross CPU call to install and enable a performance event
754 * Must be called with ctx->mutex held
756 static void __perf_install_in_context(void *info)
758 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
759 struct perf_event *event = info;
760 struct perf_event_context *ctx = event->ctx;
761 struct perf_event *leader = event->group_leader;
762 int err;
765 * If this is a task context, we need to check whether it is
766 * the current task context of this cpu. If not it has been
767 * scheduled out before the smp call arrived.
768 * Or possibly this is the right context but it isn't
769 * on this cpu because it had no events.
771 if (ctx->task && cpuctx->task_ctx != ctx) {
772 if (cpuctx->task_ctx || ctx->task != current)
773 return;
774 cpuctx->task_ctx = ctx;
777 raw_spin_lock(&ctx->lock);
778 ctx->is_active = 1;
779 update_context_time(ctx);
782 * Protect the list operation against NMI by disabling the
783 * events on a global level. NOP for non NMI based events.
785 perf_disable();
787 add_event_to_ctx(event, ctx);
789 if (event->cpu != -1 && event->cpu != smp_processor_id())
790 goto unlock;
793 * Don't put the event on if it is disabled or if
794 * it is in a group and the group isn't on.
796 if (event->state != PERF_EVENT_STATE_INACTIVE ||
797 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
798 goto unlock;
801 * An exclusive event can't go on if there are already active
802 * hardware events, and no hardware event can go on if there
803 * is already an exclusive event on.
805 if (!group_can_go_on(event, cpuctx, 1))
806 err = -EEXIST;
807 else
808 err = event_sched_in(event, cpuctx, ctx);
810 if (err) {
812 * This event couldn't go on. If it is in a group
813 * then we have to pull the whole group off.
814 * If the event group is pinned then put it in error state.
816 if (leader != event)
817 group_sched_out(leader, cpuctx, ctx);
818 if (leader->attr.pinned) {
819 update_group_times(leader);
820 leader->state = PERF_EVENT_STATE_ERROR;
824 if (!err && !ctx->task && cpuctx->max_pertask)
825 cpuctx->max_pertask--;
827 unlock:
828 perf_enable();
830 raw_spin_unlock(&ctx->lock);
834 * Attach a performance event to a context
836 * First we add the event to the list with the hardware enable bit
837 * in event->hw_config cleared.
839 * If the event is attached to a task which is on a CPU we use a smp
840 * call to enable it in the task context. The task might have been
841 * scheduled away, but we check this in the smp call again.
843 * Must be called with ctx->mutex held.
845 static void
846 perf_install_in_context(struct perf_event_context *ctx,
847 struct perf_event *event,
848 int cpu)
850 struct task_struct *task = ctx->task;
852 if (!task) {
854 * Per cpu events are installed via an smp call and
855 * the install is always successful.
857 smp_call_function_single(cpu, __perf_install_in_context,
858 event, 1);
859 return;
862 retry:
863 task_oncpu_function_call(task, __perf_install_in_context,
864 event);
866 raw_spin_lock_irq(&ctx->lock);
868 * we need to retry the smp call.
870 if (ctx->is_active && list_empty(&event->group_entry)) {
871 raw_spin_unlock_irq(&ctx->lock);
872 goto retry;
876 * The lock prevents that this context is scheduled in so we
877 * can add the event safely, if it the call above did not
878 * succeed.
880 if (list_empty(&event->group_entry))
881 add_event_to_ctx(event, ctx);
882 raw_spin_unlock_irq(&ctx->lock);
886 * Put a event into inactive state and update time fields.
887 * Enabling the leader of a group effectively enables all
888 * the group members that aren't explicitly disabled, so we
889 * have to update their ->tstamp_enabled also.
890 * Note: this works for group members as well as group leaders
891 * since the non-leader members' sibling_lists will be empty.
893 static void __perf_event_mark_enabled(struct perf_event *event,
894 struct perf_event_context *ctx)
896 struct perf_event *sub;
898 event->state = PERF_EVENT_STATE_INACTIVE;
899 event->tstamp_enabled = ctx->time - event->total_time_enabled;
900 list_for_each_entry(sub, &event->sibling_list, group_entry)
901 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
902 sub->tstamp_enabled =
903 ctx->time - sub->total_time_enabled;
907 * Cross CPU call to enable a performance event
909 static void __perf_event_enable(void *info)
911 struct perf_event *event = info;
912 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
913 struct perf_event_context *ctx = event->ctx;
914 struct perf_event *leader = event->group_leader;
915 int err;
918 * If this is a per-task event, need to check whether this
919 * event's task is the current task on this cpu.
921 if (ctx->task && cpuctx->task_ctx != ctx) {
922 if (cpuctx->task_ctx || ctx->task != current)
923 return;
924 cpuctx->task_ctx = ctx;
927 raw_spin_lock(&ctx->lock);
928 ctx->is_active = 1;
929 update_context_time(ctx);
931 if (event->state >= PERF_EVENT_STATE_INACTIVE)
932 goto unlock;
933 __perf_event_mark_enabled(event, ctx);
935 if (event->cpu != -1 && event->cpu != smp_processor_id())
936 goto unlock;
939 * If the event is in a group and isn't the group leader,
940 * then don't put it on unless the group is on.
942 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
943 goto unlock;
945 if (!group_can_go_on(event, cpuctx, 1)) {
946 err = -EEXIST;
947 } else {
948 perf_disable();
949 if (event == leader)
950 err = group_sched_in(event, cpuctx, ctx);
951 else
952 err = event_sched_in(event, cpuctx, ctx);
953 perf_enable();
956 if (err) {
958 * If this event can't go on and it's part of a
959 * group, then the whole group has to come off.
961 if (leader != event)
962 group_sched_out(leader, cpuctx, ctx);
963 if (leader->attr.pinned) {
964 update_group_times(leader);
965 leader->state = PERF_EVENT_STATE_ERROR;
969 unlock:
970 raw_spin_unlock(&ctx->lock);
974 * Enable a event.
976 * If event->ctx is a cloned context, callers must make sure that
977 * every task struct that event->ctx->task could possibly point to
978 * remains valid. This condition is satisfied when called through
979 * perf_event_for_each_child or perf_event_for_each as described
980 * for perf_event_disable.
982 void perf_event_enable(struct perf_event *event)
984 struct perf_event_context *ctx = event->ctx;
985 struct task_struct *task = ctx->task;
987 if (!task) {
989 * Enable the event on the cpu that it's on
991 smp_call_function_single(event->cpu, __perf_event_enable,
992 event, 1);
993 return;
996 raw_spin_lock_irq(&ctx->lock);
997 if (event->state >= PERF_EVENT_STATE_INACTIVE)
998 goto out;
1001 * If the event is in error state, clear that first.
1002 * That way, if we see the event in error state below, we
1003 * know that it has gone back into error state, as distinct
1004 * from the task having been scheduled away before the
1005 * cross-call arrived.
1007 if (event->state == PERF_EVENT_STATE_ERROR)
1008 event->state = PERF_EVENT_STATE_OFF;
1010 retry:
1011 raw_spin_unlock_irq(&ctx->lock);
1012 task_oncpu_function_call(task, __perf_event_enable, event);
1014 raw_spin_lock_irq(&ctx->lock);
1017 * If the context is active and the event is still off,
1018 * we need to retry the cross-call.
1020 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1021 goto retry;
1024 * Since we have the lock this context can't be scheduled
1025 * in, so we can change the state safely.
1027 if (event->state == PERF_EVENT_STATE_OFF)
1028 __perf_event_mark_enabled(event, ctx);
1030 out:
1031 raw_spin_unlock_irq(&ctx->lock);
1034 static int perf_event_refresh(struct perf_event *event, int refresh)
1037 * not supported on inherited events
1039 if (event->attr.inherit)
1040 return -EINVAL;
1042 atomic_add(refresh, &event->event_limit);
1043 perf_event_enable(event);
1045 return 0;
1048 enum event_type_t {
1049 EVENT_FLEXIBLE = 0x1,
1050 EVENT_PINNED = 0x2,
1051 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1054 static void ctx_sched_out(struct perf_event_context *ctx,
1055 struct perf_cpu_context *cpuctx,
1056 enum event_type_t event_type)
1058 struct perf_event *event;
1060 raw_spin_lock(&ctx->lock);
1061 ctx->is_active = 0;
1062 if (likely(!ctx->nr_events))
1063 goto out;
1064 update_context_time(ctx);
1066 perf_disable();
1067 if (!ctx->nr_active)
1068 goto out_enable;
1070 if (event_type & EVENT_PINNED)
1071 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1072 group_sched_out(event, cpuctx, ctx);
1074 if (event_type & EVENT_FLEXIBLE)
1075 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1076 group_sched_out(event, cpuctx, ctx);
1078 out_enable:
1079 perf_enable();
1080 out:
1081 raw_spin_unlock(&ctx->lock);
1085 * Test whether two contexts are equivalent, i.e. whether they
1086 * have both been cloned from the same version of the same context
1087 * and they both have the same number of enabled events.
1088 * If the number of enabled events is the same, then the set
1089 * of enabled events should be the same, because these are both
1090 * inherited contexts, therefore we can't access individual events
1091 * in them directly with an fd; we can only enable/disable all
1092 * events via prctl, or enable/disable all events in a family
1093 * via ioctl, which will have the same effect on both contexts.
1095 static int context_equiv(struct perf_event_context *ctx1,
1096 struct perf_event_context *ctx2)
1098 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1099 && ctx1->parent_gen == ctx2->parent_gen
1100 && !ctx1->pin_count && !ctx2->pin_count;
1103 static void __perf_event_sync_stat(struct perf_event *event,
1104 struct perf_event *next_event)
1106 u64 value;
1108 if (!event->attr.inherit_stat)
1109 return;
1112 * Update the event value, we cannot use perf_event_read()
1113 * because we're in the middle of a context switch and have IRQs
1114 * disabled, which upsets smp_call_function_single(), however
1115 * we know the event must be on the current CPU, therefore we
1116 * don't need to use it.
1118 switch (event->state) {
1119 case PERF_EVENT_STATE_ACTIVE:
1120 event->pmu->read(event);
1121 /* fall-through */
1123 case PERF_EVENT_STATE_INACTIVE:
1124 update_event_times(event);
1125 break;
1127 default:
1128 break;
1132 * In order to keep per-task stats reliable we need to flip the event
1133 * values when we flip the contexts.
1135 value = atomic64_read(&next_event->count);
1136 value = atomic64_xchg(&event->count, value);
1137 atomic64_set(&next_event->count, value);
1139 swap(event->total_time_enabled, next_event->total_time_enabled);
1140 swap(event->total_time_running, next_event->total_time_running);
1143 * Since we swizzled the values, update the user visible data too.
1145 perf_event_update_userpage(event);
1146 perf_event_update_userpage(next_event);
1149 #define list_next_entry(pos, member) \
1150 list_entry(pos->member.next, typeof(*pos), member)
1152 static void perf_event_sync_stat(struct perf_event_context *ctx,
1153 struct perf_event_context *next_ctx)
1155 struct perf_event *event, *next_event;
1157 if (!ctx->nr_stat)
1158 return;
1160 update_context_time(ctx);
1162 event = list_first_entry(&ctx->event_list,
1163 struct perf_event, event_entry);
1165 next_event = list_first_entry(&next_ctx->event_list,
1166 struct perf_event, event_entry);
1168 while (&event->event_entry != &ctx->event_list &&
1169 &next_event->event_entry != &next_ctx->event_list) {
1171 __perf_event_sync_stat(event, next_event);
1173 event = list_next_entry(event, event_entry);
1174 next_event = list_next_entry(next_event, event_entry);
1179 * Called from scheduler to remove the events of the current task,
1180 * with interrupts disabled.
1182 * We stop each event and update the event value in event->count.
1184 * This does not protect us against NMI, but disable()
1185 * sets the disabled bit in the control field of event _before_
1186 * accessing the event control register. If a NMI hits, then it will
1187 * not restart the event.
1189 void perf_event_task_sched_out(struct task_struct *task,
1190 struct task_struct *next)
1192 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1193 struct perf_event_context *ctx = task->perf_event_ctxp;
1194 struct perf_event_context *next_ctx;
1195 struct perf_event_context *parent;
1196 struct pt_regs *regs;
1197 int do_switch = 1;
1199 regs = task_pt_regs(task);
1200 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1202 if (likely(!ctx || !cpuctx->task_ctx))
1203 return;
1205 rcu_read_lock();
1206 parent = rcu_dereference(ctx->parent_ctx);
1207 next_ctx = next->perf_event_ctxp;
1208 if (parent && next_ctx &&
1209 rcu_dereference(next_ctx->parent_ctx) == parent) {
1211 * Looks like the two contexts are clones, so we might be
1212 * able to optimize the context switch. We lock both
1213 * contexts and check that they are clones under the
1214 * lock (including re-checking that neither has been
1215 * uncloned in the meantime). It doesn't matter which
1216 * order we take the locks because no other cpu could
1217 * be trying to lock both of these tasks.
1219 raw_spin_lock(&ctx->lock);
1220 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1221 if (context_equiv(ctx, next_ctx)) {
1223 * XXX do we need a memory barrier of sorts
1224 * wrt to rcu_dereference() of perf_event_ctxp
1226 task->perf_event_ctxp = next_ctx;
1227 next->perf_event_ctxp = ctx;
1228 ctx->task = next;
1229 next_ctx->task = task;
1230 do_switch = 0;
1232 perf_event_sync_stat(ctx, next_ctx);
1234 raw_spin_unlock(&next_ctx->lock);
1235 raw_spin_unlock(&ctx->lock);
1237 rcu_read_unlock();
1239 if (do_switch) {
1240 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1241 cpuctx->task_ctx = NULL;
1245 static void task_ctx_sched_out(struct perf_event_context *ctx,
1246 enum event_type_t event_type)
1248 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1250 if (!cpuctx->task_ctx)
1251 return;
1253 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1254 return;
1256 ctx_sched_out(ctx, cpuctx, event_type);
1257 cpuctx->task_ctx = NULL;
1261 * Called with IRQs disabled
1263 static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1265 task_ctx_sched_out(ctx, EVENT_ALL);
1269 * Called with IRQs disabled
1271 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1272 enum event_type_t event_type)
1274 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1277 static void
1278 ctx_pinned_sched_in(struct perf_event_context *ctx,
1279 struct perf_cpu_context *cpuctx)
1281 struct perf_event *event;
1283 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1284 if (event->state <= PERF_EVENT_STATE_OFF)
1285 continue;
1286 if (event->cpu != -1 && event->cpu != smp_processor_id())
1287 continue;
1289 if (group_can_go_on(event, cpuctx, 1))
1290 group_sched_in(event, cpuctx, ctx);
1293 * If this pinned group hasn't been scheduled,
1294 * put it in error state.
1296 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1297 update_group_times(event);
1298 event->state = PERF_EVENT_STATE_ERROR;
1303 static void
1304 ctx_flexible_sched_in(struct perf_event_context *ctx,
1305 struct perf_cpu_context *cpuctx)
1307 struct perf_event *event;
1308 int can_add_hw = 1;
1310 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1311 /* Ignore events in OFF or ERROR state */
1312 if (event->state <= PERF_EVENT_STATE_OFF)
1313 continue;
1315 * Listen to the 'cpu' scheduling filter constraint
1316 * of events:
1318 if (event->cpu != -1 && event->cpu != smp_processor_id())
1319 continue;
1321 if (group_can_go_on(event, cpuctx, can_add_hw))
1322 if (group_sched_in(event, cpuctx, ctx))
1323 can_add_hw = 0;
1327 static void
1328 ctx_sched_in(struct perf_event_context *ctx,
1329 struct perf_cpu_context *cpuctx,
1330 enum event_type_t event_type)
1332 raw_spin_lock(&ctx->lock);
1333 ctx->is_active = 1;
1334 if (likely(!ctx->nr_events))
1335 goto out;
1337 ctx->timestamp = perf_clock();
1339 perf_disable();
1342 * First go through the list and put on any pinned groups
1343 * in order to give them the best chance of going on.
1345 if (event_type & EVENT_PINNED)
1346 ctx_pinned_sched_in(ctx, cpuctx);
1348 /* Then walk through the lower prio flexible groups */
1349 if (event_type & EVENT_FLEXIBLE)
1350 ctx_flexible_sched_in(ctx, cpuctx);
1352 perf_enable();
1353 out:
1354 raw_spin_unlock(&ctx->lock);
1357 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1358 enum event_type_t event_type)
1360 struct perf_event_context *ctx = &cpuctx->ctx;
1362 ctx_sched_in(ctx, cpuctx, event_type);
1365 static void task_ctx_sched_in(struct task_struct *task,
1366 enum event_type_t event_type)
1368 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1369 struct perf_event_context *ctx = task->perf_event_ctxp;
1371 if (likely(!ctx))
1372 return;
1373 if (cpuctx->task_ctx == ctx)
1374 return;
1375 ctx_sched_in(ctx, cpuctx, event_type);
1376 cpuctx->task_ctx = ctx;
1379 * Called from scheduler to add the events of the current task
1380 * with interrupts disabled.
1382 * We restore the event value and then enable it.
1384 * This does not protect us against NMI, but enable()
1385 * sets the enabled bit in the control field of event _before_
1386 * accessing the event control register. If a NMI hits, then it will
1387 * keep the event running.
1389 void perf_event_task_sched_in(struct task_struct *task)
1391 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1392 struct perf_event_context *ctx = task->perf_event_ctxp;
1394 if (likely(!ctx))
1395 return;
1397 if (cpuctx->task_ctx == ctx)
1398 return;
1401 * We want to keep the following priority order:
1402 * cpu pinned (that don't need to move), task pinned,
1403 * cpu flexible, task flexible.
1405 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1407 ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1408 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1409 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1411 cpuctx->task_ctx = ctx;
1414 #define MAX_INTERRUPTS (~0ULL)
1416 static void perf_log_throttle(struct perf_event *event, int enable);
1418 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1420 u64 frequency = event->attr.sample_freq;
1421 u64 sec = NSEC_PER_SEC;
1422 u64 divisor, dividend;
1424 int count_fls, nsec_fls, frequency_fls, sec_fls;
1426 count_fls = fls64(count);
1427 nsec_fls = fls64(nsec);
1428 frequency_fls = fls64(frequency);
1429 sec_fls = 30;
1432 * We got @count in @nsec, with a target of sample_freq HZ
1433 * the target period becomes:
1435 * @count * 10^9
1436 * period = -------------------
1437 * @nsec * sample_freq
1442 * Reduce accuracy by one bit such that @a and @b converge
1443 * to a similar magnitude.
1445 #define REDUCE_FLS(a, b) \
1446 do { \
1447 if (a##_fls > b##_fls) { \
1448 a >>= 1; \
1449 a##_fls--; \
1450 } else { \
1451 b >>= 1; \
1452 b##_fls--; \
1454 } while (0)
1457 * Reduce accuracy until either term fits in a u64, then proceed with
1458 * the other, so that finally we can do a u64/u64 division.
1460 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1461 REDUCE_FLS(nsec, frequency);
1462 REDUCE_FLS(sec, count);
1465 if (count_fls + sec_fls > 64) {
1466 divisor = nsec * frequency;
1468 while (count_fls + sec_fls > 64) {
1469 REDUCE_FLS(count, sec);
1470 divisor >>= 1;
1473 dividend = count * sec;
1474 } else {
1475 dividend = count * sec;
1477 while (nsec_fls + frequency_fls > 64) {
1478 REDUCE_FLS(nsec, frequency);
1479 dividend >>= 1;
1482 divisor = nsec * frequency;
1485 return div64_u64(dividend, divisor);
1488 static void perf_event_stop(struct perf_event *event)
1490 if (!event->pmu->stop)
1491 return event->pmu->disable(event);
1493 return event->pmu->stop(event);
1496 static int perf_event_start(struct perf_event *event)
1498 if (!event->pmu->start)
1499 return event->pmu->enable(event);
1501 return event->pmu->start(event);
1504 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1506 struct hw_perf_event *hwc = &event->hw;
1507 u64 period, sample_period;
1508 s64 delta;
1510 period = perf_calculate_period(event, nsec, count);
1512 delta = (s64)(period - hwc->sample_period);
1513 delta = (delta + 7) / 8; /* low pass filter */
1515 sample_period = hwc->sample_period + delta;
1517 if (!sample_period)
1518 sample_period = 1;
1520 hwc->sample_period = sample_period;
1522 if (atomic64_read(&hwc->period_left) > 8*sample_period) {
1523 perf_disable();
1524 perf_event_stop(event);
1525 atomic64_set(&hwc->period_left, 0);
1526 perf_event_start(event);
1527 perf_enable();
1531 static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1533 struct perf_event *event;
1534 struct hw_perf_event *hwc;
1535 u64 interrupts, now;
1536 s64 delta;
1538 raw_spin_lock(&ctx->lock);
1539 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1540 if (event->state != PERF_EVENT_STATE_ACTIVE)
1541 continue;
1543 if (event->cpu != -1 && event->cpu != smp_processor_id())
1544 continue;
1546 hwc = &event->hw;
1548 interrupts = hwc->interrupts;
1549 hwc->interrupts = 0;
1552 * unthrottle events on the tick
1554 if (interrupts == MAX_INTERRUPTS) {
1555 perf_log_throttle(event, 1);
1556 event->pmu->unthrottle(event);
1559 if (!event->attr.freq || !event->attr.sample_freq)
1560 continue;
1562 event->pmu->read(event);
1563 now = atomic64_read(&event->count);
1564 delta = now - hwc->freq_count_stamp;
1565 hwc->freq_count_stamp = now;
1567 if (delta > 0)
1568 perf_adjust_period(event, TICK_NSEC, delta);
1570 raw_spin_unlock(&ctx->lock);
1574 * Round-robin a context's events:
1576 static void rotate_ctx(struct perf_event_context *ctx)
1578 if (!ctx->nr_events)
1579 return;
1581 raw_spin_lock(&ctx->lock);
1583 /* Rotate the first entry last of non-pinned groups */
1584 list_rotate_left(&ctx->flexible_groups);
1586 raw_spin_unlock(&ctx->lock);
1589 void perf_event_task_tick(struct task_struct *curr)
1591 struct perf_cpu_context *cpuctx;
1592 struct perf_event_context *ctx;
1594 if (!atomic_read(&nr_events))
1595 return;
1597 cpuctx = &__get_cpu_var(perf_cpu_context);
1598 ctx = curr->perf_event_ctxp;
1600 perf_disable();
1602 perf_ctx_adjust_freq(&cpuctx->ctx);
1603 if (ctx)
1604 perf_ctx_adjust_freq(ctx);
1606 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1607 if (ctx)
1608 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1610 rotate_ctx(&cpuctx->ctx);
1611 if (ctx)
1612 rotate_ctx(ctx);
1614 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1615 if (ctx)
1616 task_ctx_sched_in(curr, EVENT_FLEXIBLE);
1618 perf_enable();
1621 static int event_enable_on_exec(struct perf_event *event,
1622 struct perf_event_context *ctx)
1624 if (!event->attr.enable_on_exec)
1625 return 0;
1627 event->attr.enable_on_exec = 0;
1628 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1629 return 0;
1631 __perf_event_mark_enabled(event, ctx);
1633 return 1;
1637 * Enable all of a task's events that have been marked enable-on-exec.
1638 * This expects task == current.
1640 static void perf_event_enable_on_exec(struct task_struct *task)
1642 struct perf_event_context *ctx;
1643 struct perf_event *event;
1644 unsigned long flags;
1645 int enabled = 0;
1646 int ret;
1648 local_irq_save(flags);
1649 ctx = task->perf_event_ctxp;
1650 if (!ctx || !ctx->nr_events)
1651 goto out;
1653 __perf_event_task_sched_out(ctx);
1655 raw_spin_lock(&ctx->lock);
1657 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1658 ret = event_enable_on_exec(event, ctx);
1659 if (ret)
1660 enabled = 1;
1663 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1664 ret = event_enable_on_exec(event, ctx);
1665 if (ret)
1666 enabled = 1;
1670 * Unclone this context if we enabled any event.
1672 if (enabled)
1673 unclone_ctx(ctx);
1675 raw_spin_unlock(&ctx->lock);
1677 perf_event_task_sched_in(task);
1678 out:
1679 local_irq_restore(flags);
1683 * Cross CPU call to read the hardware event
1685 static void __perf_event_read(void *info)
1687 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1688 struct perf_event *event = info;
1689 struct perf_event_context *ctx = event->ctx;
1692 * If this is a task context, we need to check whether it is
1693 * the current task context of this cpu. If not it has been
1694 * scheduled out before the smp call arrived. In that case
1695 * event->count would have been updated to a recent sample
1696 * when the event was scheduled out.
1698 if (ctx->task && cpuctx->task_ctx != ctx)
1699 return;
1701 raw_spin_lock(&ctx->lock);
1702 update_context_time(ctx);
1703 update_event_times(event);
1704 raw_spin_unlock(&ctx->lock);
1706 event->pmu->read(event);
1709 static u64 perf_event_read(struct perf_event *event)
1712 * If event is enabled and currently active on a CPU, update the
1713 * value in the event structure:
1715 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1716 smp_call_function_single(event->oncpu,
1717 __perf_event_read, event, 1);
1718 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1719 struct perf_event_context *ctx = event->ctx;
1720 unsigned long flags;
1722 raw_spin_lock_irqsave(&ctx->lock, flags);
1723 update_context_time(ctx);
1724 update_event_times(event);
1725 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1728 return atomic64_read(&event->count);
1732 * Initialize the perf_event context in a task_struct:
1734 static void
1735 __perf_event_init_context(struct perf_event_context *ctx,
1736 struct task_struct *task)
1738 raw_spin_lock_init(&ctx->lock);
1739 mutex_init(&ctx->mutex);
1740 INIT_LIST_HEAD(&ctx->pinned_groups);
1741 INIT_LIST_HEAD(&ctx->flexible_groups);
1742 INIT_LIST_HEAD(&ctx->event_list);
1743 atomic_set(&ctx->refcount, 1);
1744 ctx->task = task;
1747 static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1749 struct perf_event_context *ctx;
1750 struct perf_cpu_context *cpuctx;
1751 struct task_struct *task;
1752 unsigned long flags;
1753 int err;
1755 if (pid == -1 && cpu != -1) {
1756 /* Must be root to operate on a CPU event: */
1757 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1758 return ERR_PTR(-EACCES);
1760 if (cpu < 0 || cpu >= nr_cpumask_bits)
1761 return ERR_PTR(-EINVAL);
1764 * We could be clever and allow to attach a event to an
1765 * offline CPU and activate it when the CPU comes up, but
1766 * that's for later.
1768 if (!cpu_online(cpu))
1769 return ERR_PTR(-ENODEV);
1771 cpuctx = &per_cpu(perf_cpu_context, cpu);
1772 ctx = &cpuctx->ctx;
1773 get_ctx(ctx);
1775 return ctx;
1778 rcu_read_lock();
1779 if (!pid)
1780 task = current;
1781 else
1782 task = find_task_by_vpid(pid);
1783 if (task)
1784 get_task_struct(task);
1785 rcu_read_unlock();
1787 if (!task)
1788 return ERR_PTR(-ESRCH);
1791 * Can't attach events to a dying task.
1793 err = -ESRCH;
1794 if (task->flags & PF_EXITING)
1795 goto errout;
1797 /* Reuse ptrace permission checks for now. */
1798 err = -EACCES;
1799 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1800 goto errout;
1802 retry:
1803 ctx = perf_lock_task_context(task, &flags);
1804 if (ctx) {
1805 unclone_ctx(ctx);
1806 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1809 if (!ctx) {
1810 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1811 err = -ENOMEM;
1812 if (!ctx)
1813 goto errout;
1814 __perf_event_init_context(ctx, task);
1815 get_ctx(ctx);
1816 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1818 * We raced with some other task; use
1819 * the context they set.
1821 kfree(ctx);
1822 goto retry;
1824 get_task_struct(task);
1827 put_task_struct(task);
1828 return ctx;
1830 errout:
1831 put_task_struct(task);
1832 return ERR_PTR(err);
1835 static void perf_event_free_filter(struct perf_event *event);
1837 static void free_event_rcu(struct rcu_head *head)
1839 struct perf_event *event;
1841 event = container_of(head, struct perf_event, rcu_head);
1842 if (event->ns)
1843 put_pid_ns(event->ns);
1844 perf_event_free_filter(event);
1845 kfree(event);
1848 static void perf_pending_sync(struct perf_event *event);
1850 static void free_event(struct perf_event *event)
1852 perf_pending_sync(event);
1854 if (!event->parent) {
1855 atomic_dec(&nr_events);
1856 if (event->attr.mmap)
1857 atomic_dec(&nr_mmap_events);
1858 if (event->attr.comm)
1859 atomic_dec(&nr_comm_events);
1860 if (event->attr.task)
1861 atomic_dec(&nr_task_events);
1864 if (event->output) {
1865 fput(event->output->filp);
1866 event->output = NULL;
1869 if (event->destroy)
1870 event->destroy(event);
1872 put_ctx(event->ctx);
1873 call_rcu(&event->rcu_head, free_event_rcu);
1876 int perf_event_release_kernel(struct perf_event *event)
1878 struct perf_event_context *ctx = event->ctx;
1880 WARN_ON_ONCE(ctx->parent_ctx);
1881 mutex_lock(&ctx->mutex);
1882 perf_event_remove_from_context(event);
1883 mutex_unlock(&ctx->mutex);
1885 mutex_lock(&event->owner->perf_event_mutex);
1886 list_del_init(&event->owner_entry);
1887 mutex_unlock(&event->owner->perf_event_mutex);
1888 put_task_struct(event->owner);
1890 free_event(event);
1892 return 0;
1894 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
1897 * Called when the last reference to the file is gone.
1899 static int perf_release(struct inode *inode, struct file *file)
1901 struct perf_event *event = file->private_data;
1903 file->private_data = NULL;
1905 return perf_event_release_kernel(event);
1908 static int perf_event_read_size(struct perf_event *event)
1910 int entry = sizeof(u64); /* value */
1911 int size = 0;
1912 int nr = 1;
1914 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1915 size += sizeof(u64);
1917 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1918 size += sizeof(u64);
1920 if (event->attr.read_format & PERF_FORMAT_ID)
1921 entry += sizeof(u64);
1923 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1924 nr += event->group_leader->nr_siblings;
1925 size += sizeof(u64);
1928 size += entry * nr;
1930 return size;
1933 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
1935 struct perf_event *child;
1936 u64 total = 0;
1938 *enabled = 0;
1939 *running = 0;
1941 mutex_lock(&event->child_mutex);
1942 total += perf_event_read(event);
1943 *enabled += event->total_time_enabled +
1944 atomic64_read(&event->child_total_time_enabled);
1945 *running += event->total_time_running +
1946 atomic64_read(&event->child_total_time_running);
1948 list_for_each_entry(child, &event->child_list, child_list) {
1949 total += perf_event_read(child);
1950 *enabled += child->total_time_enabled;
1951 *running += child->total_time_running;
1953 mutex_unlock(&event->child_mutex);
1955 return total;
1957 EXPORT_SYMBOL_GPL(perf_event_read_value);
1959 static int perf_event_read_group(struct perf_event *event,
1960 u64 read_format, char __user *buf)
1962 struct perf_event *leader = event->group_leader, *sub;
1963 int n = 0, size = 0, ret = -EFAULT;
1964 struct perf_event_context *ctx = leader->ctx;
1965 u64 values[5];
1966 u64 count, enabled, running;
1968 mutex_lock(&ctx->mutex);
1969 count = perf_event_read_value(leader, &enabled, &running);
1971 values[n++] = 1 + leader->nr_siblings;
1972 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1973 values[n++] = enabled;
1974 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1975 values[n++] = running;
1976 values[n++] = count;
1977 if (read_format & PERF_FORMAT_ID)
1978 values[n++] = primary_event_id(leader);
1980 size = n * sizeof(u64);
1982 if (copy_to_user(buf, values, size))
1983 goto unlock;
1985 ret = size;
1987 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1988 n = 0;
1990 values[n++] = perf_event_read_value(sub, &enabled, &running);
1991 if (read_format & PERF_FORMAT_ID)
1992 values[n++] = primary_event_id(sub);
1994 size = n * sizeof(u64);
1996 if (copy_to_user(buf + ret, values, size)) {
1997 ret = -EFAULT;
1998 goto unlock;
2001 ret += size;
2003 unlock:
2004 mutex_unlock(&ctx->mutex);
2006 return ret;
2009 static int perf_event_read_one(struct perf_event *event,
2010 u64 read_format, char __user *buf)
2012 u64 enabled, running;
2013 u64 values[4];
2014 int n = 0;
2016 values[n++] = perf_event_read_value(event, &enabled, &running);
2017 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2018 values[n++] = enabled;
2019 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2020 values[n++] = running;
2021 if (read_format & PERF_FORMAT_ID)
2022 values[n++] = primary_event_id(event);
2024 if (copy_to_user(buf, values, n * sizeof(u64)))
2025 return -EFAULT;
2027 return n * sizeof(u64);
2031 * Read the performance event - simple non blocking version for now
2033 static ssize_t
2034 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2036 u64 read_format = event->attr.read_format;
2037 int ret;
2040 * Return end-of-file for a read on a event that is in
2041 * error state (i.e. because it was pinned but it couldn't be
2042 * scheduled on to the CPU at some point).
2044 if (event->state == PERF_EVENT_STATE_ERROR)
2045 return 0;
2047 if (count < perf_event_read_size(event))
2048 return -ENOSPC;
2050 WARN_ON_ONCE(event->ctx->parent_ctx);
2051 if (read_format & PERF_FORMAT_GROUP)
2052 ret = perf_event_read_group(event, read_format, buf);
2053 else
2054 ret = perf_event_read_one(event, read_format, buf);
2056 return ret;
2059 static ssize_t
2060 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2062 struct perf_event *event = file->private_data;
2064 return perf_read_hw(event, buf, count);
2067 static unsigned int perf_poll(struct file *file, poll_table *wait)
2069 struct perf_event *event = file->private_data;
2070 struct perf_mmap_data *data;
2071 unsigned int events = POLL_HUP;
2073 rcu_read_lock();
2074 data = rcu_dereference(event->data);
2075 if (data)
2076 events = atomic_xchg(&data->poll, 0);
2077 rcu_read_unlock();
2079 poll_wait(file, &event->waitq, wait);
2081 return events;
2084 static void perf_event_reset(struct perf_event *event)
2086 (void)perf_event_read(event);
2087 atomic64_set(&event->count, 0);
2088 perf_event_update_userpage(event);
2092 * Holding the top-level event's child_mutex means that any
2093 * descendant process that has inherited this event will block
2094 * in sync_child_event if it goes to exit, thus satisfying the
2095 * task existence requirements of perf_event_enable/disable.
2097 static void perf_event_for_each_child(struct perf_event *event,
2098 void (*func)(struct perf_event *))
2100 struct perf_event *child;
2102 WARN_ON_ONCE(event->ctx->parent_ctx);
2103 mutex_lock(&event->child_mutex);
2104 func(event);
2105 list_for_each_entry(child, &event->child_list, child_list)
2106 func(child);
2107 mutex_unlock(&event->child_mutex);
2110 static void perf_event_for_each(struct perf_event *event,
2111 void (*func)(struct perf_event *))
2113 struct perf_event_context *ctx = event->ctx;
2114 struct perf_event *sibling;
2116 WARN_ON_ONCE(ctx->parent_ctx);
2117 mutex_lock(&ctx->mutex);
2118 event = event->group_leader;
2120 perf_event_for_each_child(event, func);
2121 func(event);
2122 list_for_each_entry(sibling, &event->sibling_list, group_entry)
2123 perf_event_for_each_child(event, func);
2124 mutex_unlock(&ctx->mutex);
2127 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2129 struct perf_event_context *ctx = event->ctx;
2130 unsigned long size;
2131 int ret = 0;
2132 u64 value;
2134 if (!event->attr.sample_period)
2135 return -EINVAL;
2137 size = copy_from_user(&value, arg, sizeof(value));
2138 if (size != sizeof(value))
2139 return -EFAULT;
2141 if (!value)
2142 return -EINVAL;
2144 raw_spin_lock_irq(&ctx->lock);
2145 if (event->attr.freq) {
2146 if (value > sysctl_perf_event_sample_rate) {
2147 ret = -EINVAL;
2148 goto unlock;
2151 event->attr.sample_freq = value;
2152 } else {
2153 event->attr.sample_period = value;
2154 event->hw.sample_period = value;
2156 unlock:
2157 raw_spin_unlock_irq(&ctx->lock);
2159 return ret;
2162 static int perf_event_set_output(struct perf_event *event, int output_fd);
2163 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2165 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2167 struct perf_event *event = file->private_data;
2168 void (*func)(struct perf_event *);
2169 u32 flags = arg;
2171 switch (cmd) {
2172 case PERF_EVENT_IOC_ENABLE:
2173 func = perf_event_enable;
2174 break;
2175 case PERF_EVENT_IOC_DISABLE:
2176 func = perf_event_disable;
2177 break;
2178 case PERF_EVENT_IOC_RESET:
2179 func = perf_event_reset;
2180 break;
2182 case PERF_EVENT_IOC_REFRESH:
2183 return perf_event_refresh(event, arg);
2185 case PERF_EVENT_IOC_PERIOD:
2186 return perf_event_period(event, (u64 __user *)arg);
2188 case PERF_EVENT_IOC_SET_OUTPUT:
2189 return perf_event_set_output(event, arg);
2191 case PERF_EVENT_IOC_SET_FILTER:
2192 return perf_event_set_filter(event, (void __user *)arg);
2194 default:
2195 return -ENOTTY;
2198 if (flags & PERF_IOC_FLAG_GROUP)
2199 perf_event_for_each(event, func);
2200 else
2201 perf_event_for_each_child(event, func);
2203 return 0;
2206 int perf_event_task_enable(void)
2208 struct perf_event *event;
2210 mutex_lock(&current->perf_event_mutex);
2211 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2212 perf_event_for_each_child(event, perf_event_enable);
2213 mutex_unlock(&current->perf_event_mutex);
2215 return 0;
2218 int perf_event_task_disable(void)
2220 struct perf_event *event;
2222 mutex_lock(&current->perf_event_mutex);
2223 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2224 perf_event_for_each_child(event, perf_event_disable);
2225 mutex_unlock(&current->perf_event_mutex);
2227 return 0;
2230 #ifndef PERF_EVENT_INDEX_OFFSET
2231 # define PERF_EVENT_INDEX_OFFSET 0
2232 #endif
2234 static int perf_event_index(struct perf_event *event)
2236 if (event->state != PERF_EVENT_STATE_ACTIVE)
2237 return 0;
2239 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2243 * Callers need to ensure there can be no nesting of this function, otherwise
2244 * the seqlock logic goes bad. We can not serialize this because the arch
2245 * code calls this from NMI context.
2247 void perf_event_update_userpage(struct perf_event *event)
2249 struct perf_event_mmap_page *userpg;
2250 struct perf_mmap_data *data;
2252 rcu_read_lock();
2253 data = rcu_dereference(event->data);
2254 if (!data)
2255 goto unlock;
2257 userpg = data->user_page;
2260 * Disable preemption so as to not let the corresponding user-space
2261 * spin too long if we get preempted.
2263 preempt_disable();
2264 ++userpg->lock;
2265 barrier();
2266 userpg->index = perf_event_index(event);
2267 userpg->offset = atomic64_read(&event->count);
2268 if (event->state == PERF_EVENT_STATE_ACTIVE)
2269 userpg->offset -= atomic64_read(&event->hw.prev_count);
2271 userpg->time_enabled = event->total_time_enabled +
2272 atomic64_read(&event->child_total_time_enabled);
2274 userpg->time_running = event->total_time_running +
2275 atomic64_read(&event->child_total_time_running);
2277 barrier();
2278 ++userpg->lock;
2279 preempt_enable();
2280 unlock:
2281 rcu_read_unlock();
2284 static unsigned long perf_data_size(struct perf_mmap_data *data)
2286 return data->nr_pages << (PAGE_SHIFT + data->data_order);
2289 #ifndef CONFIG_PERF_USE_VMALLOC
2292 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2295 static struct page *
2296 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2298 if (pgoff > data->nr_pages)
2299 return NULL;
2301 if (pgoff == 0)
2302 return virt_to_page(data->user_page);
2304 return virt_to_page(data->data_pages[pgoff - 1]);
2307 static struct perf_mmap_data *
2308 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2310 struct perf_mmap_data *data;
2311 unsigned long size;
2312 int i;
2314 WARN_ON(atomic_read(&event->mmap_count));
2316 size = sizeof(struct perf_mmap_data);
2317 size += nr_pages * sizeof(void *);
2319 data = kzalloc(size, GFP_KERNEL);
2320 if (!data)
2321 goto fail;
2323 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
2324 if (!data->user_page)
2325 goto fail_user_page;
2327 for (i = 0; i < nr_pages; i++) {
2328 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
2329 if (!data->data_pages[i])
2330 goto fail_data_pages;
2333 data->data_order = 0;
2334 data->nr_pages = nr_pages;
2336 return data;
2338 fail_data_pages:
2339 for (i--; i >= 0; i--)
2340 free_page((unsigned long)data->data_pages[i]);
2342 free_page((unsigned long)data->user_page);
2344 fail_user_page:
2345 kfree(data);
2347 fail:
2348 return NULL;
2351 static void perf_mmap_free_page(unsigned long addr)
2353 struct page *page = virt_to_page((void *)addr);
2355 page->mapping = NULL;
2356 __free_page(page);
2359 static void perf_mmap_data_free(struct perf_mmap_data *data)
2361 int i;
2363 perf_mmap_free_page((unsigned long)data->user_page);
2364 for (i = 0; i < data->nr_pages; i++)
2365 perf_mmap_free_page((unsigned long)data->data_pages[i]);
2366 kfree(data);
2369 #else
2372 * Back perf_mmap() with vmalloc memory.
2374 * Required for architectures that have d-cache aliasing issues.
2377 static struct page *
2378 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2380 if (pgoff > (1UL << data->data_order))
2381 return NULL;
2383 return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
2386 static void perf_mmap_unmark_page(void *addr)
2388 struct page *page = vmalloc_to_page(addr);
2390 page->mapping = NULL;
2393 static void perf_mmap_data_free_work(struct work_struct *work)
2395 struct perf_mmap_data *data;
2396 void *base;
2397 int i, nr;
2399 data = container_of(work, struct perf_mmap_data, work);
2400 nr = 1 << data->data_order;
2402 base = data->user_page;
2403 for (i = 0; i < nr + 1; i++)
2404 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2406 vfree(base);
2407 kfree(data);
2410 static void perf_mmap_data_free(struct perf_mmap_data *data)
2412 schedule_work(&data->work);
2415 static struct perf_mmap_data *
2416 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2418 struct perf_mmap_data *data;
2419 unsigned long size;
2420 void *all_buf;
2422 WARN_ON(atomic_read(&event->mmap_count));
2424 size = sizeof(struct perf_mmap_data);
2425 size += sizeof(void *);
2427 data = kzalloc(size, GFP_KERNEL);
2428 if (!data)
2429 goto fail;
2431 INIT_WORK(&data->work, perf_mmap_data_free_work);
2433 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2434 if (!all_buf)
2435 goto fail_all_buf;
2437 data->user_page = all_buf;
2438 data->data_pages[0] = all_buf + PAGE_SIZE;
2439 data->data_order = ilog2(nr_pages);
2440 data->nr_pages = 1;
2442 return data;
2444 fail_all_buf:
2445 kfree(data);
2447 fail:
2448 return NULL;
2451 #endif
2453 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2455 struct perf_event *event = vma->vm_file->private_data;
2456 struct perf_mmap_data *data;
2457 int ret = VM_FAULT_SIGBUS;
2459 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2460 if (vmf->pgoff == 0)
2461 ret = 0;
2462 return ret;
2465 rcu_read_lock();
2466 data = rcu_dereference(event->data);
2467 if (!data)
2468 goto unlock;
2470 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2471 goto unlock;
2473 vmf->page = perf_mmap_to_page(data, vmf->pgoff);
2474 if (!vmf->page)
2475 goto unlock;
2477 get_page(vmf->page);
2478 vmf->page->mapping = vma->vm_file->f_mapping;
2479 vmf->page->index = vmf->pgoff;
2481 ret = 0;
2482 unlock:
2483 rcu_read_unlock();
2485 return ret;
2488 static void
2489 perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
2491 long max_size = perf_data_size(data);
2493 atomic_set(&data->lock, -1);
2495 if (event->attr.watermark) {
2496 data->watermark = min_t(long, max_size,
2497 event->attr.wakeup_watermark);
2500 if (!data->watermark)
2501 data->watermark = max_size / 2;
2504 rcu_assign_pointer(event->data, data);
2507 static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
2509 struct perf_mmap_data *data;
2511 data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2512 perf_mmap_data_free(data);
2515 static void perf_mmap_data_release(struct perf_event *event)
2517 struct perf_mmap_data *data = event->data;
2519 WARN_ON(atomic_read(&event->mmap_count));
2521 rcu_assign_pointer(event->data, NULL);
2522 call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
2525 static void perf_mmap_open(struct vm_area_struct *vma)
2527 struct perf_event *event = vma->vm_file->private_data;
2529 atomic_inc(&event->mmap_count);
2532 static void perf_mmap_close(struct vm_area_struct *vma)
2534 struct perf_event *event = vma->vm_file->private_data;
2536 WARN_ON_ONCE(event->ctx->parent_ctx);
2537 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2538 unsigned long size = perf_data_size(event->data);
2539 struct user_struct *user = current_user();
2541 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2542 vma->vm_mm->locked_vm -= event->data->nr_locked;
2543 perf_mmap_data_release(event);
2544 mutex_unlock(&event->mmap_mutex);
2548 static const struct vm_operations_struct perf_mmap_vmops = {
2549 .open = perf_mmap_open,
2550 .close = perf_mmap_close,
2551 .fault = perf_mmap_fault,
2552 .page_mkwrite = perf_mmap_fault,
2555 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2557 struct perf_event *event = file->private_data;
2558 unsigned long user_locked, user_lock_limit;
2559 struct user_struct *user = current_user();
2560 unsigned long locked, lock_limit;
2561 struct perf_mmap_data *data;
2562 unsigned long vma_size;
2563 unsigned long nr_pages;
2564 long user_extra, extra;
2565 int ret = 0;
2567 if (!(vma->vm_flags & VM_SHARED))
2568 return -EINVAL;
2570 vma_size = vma->vm_end - vma->vm_start;
2571 nr_pages = (vma_size / PAGE_SIZE) - 1;
2574 * If we have data pages ensure they're a power-of-two number, so we
2575 * can do bitmasks instead of modulo.
2577 if (nr_pages != 0 && !is_power_of_2(nr_pages))
2578 return -EINVAL;
2580 if (vma_size != PAGE_SIZE * (1 + nr_pages))
2581 return -EINVAL;
2583 if (vma->vm_pgoff != 0)
2584 return -EINVAL;
2586 WARN_ON_ONCE(event->ctx->parent_ctx);
2587 mutex_lock(&event->mmap_mutex);
2588 if (event->output) {
2589 ret = -EINVAL;
2590 goto unlock;
2593 if (atomic_inc_not_zero(&event->mmap_count)) {
2594 if (nr_pages != event->data->nr_pages)
2595 ret = -EINVAL;
2596 goto unlock;
2599 user_extra = nr_pages + 1;
2600 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2603 * Increase the limit linearly with more CPUs:
2605 user_lock_limit *= num_online_cpus();
2607 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2609 extra = 0;
2610 if (user_locked > user_lock_limit)
2611 extra = user_locked - user_lock_limit;
2613 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
2614 lock_limit >>= PAGE_SHIFT;
2615 locked = vma->vm_mm->locked_vm + extra;
2617 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2618 !capable(CAP_IPC_LOCK)) {
2619 ret = -EPERM;
2620 goto unlock;
2623 WARN_ON(event->data);
2625 data = perf_mmap_data_alloc(event, nr_pages);
2626 ret = -ENOMEM;
2627 if (!data)
2628 goto unlock;
2630 ret = 0;
2631 perf_mmap_data_init(event, data);
2633 atomic_set(&event->mmap_count, 1);
2634 atomic_long_add(user_extra, &user->locked_vm);
2635 vma->vm_mm->locked_vm += extra;
2636 event->data->nr_locked = extra;
2637 if (vma->vm_flags & VM_WRITE)
2638 event->data->writable = 1;
2640 unlock:
2641 mutex_unlock(&event->mmap_mutex);
2643 vma->vm_flags |= VM_RESERVED;
2644 vma->vm_ops = &perf_mmap_vmops;
2646 return ret;
2649 static int perf_fasync(int fd, struct file *filp, int on)
2651 struct inode *inode = filp->f_path.dentry->d_inode;
2652 struct perf_event *event = filp->private_data;
2653 int retval;
2655 mutex_lock(&inode->i_mutex);
2656 retval = fasync_helper(fd, filp, on, &event->fasync);
2657 mutex_unlock(&inode->i_mutex);
2659 if (retval < 0)
2660 return retval;
2662 return 0;
2665 static const struct file_operations perf_fops = {
2666 .release = perf_release,
2667 .read = perf_read,
2668 .poll = perf_poll,
2669 .unlocked_ioctl = perf_ioctl,
2670 .compat_ioctl = perf_ioctl,
2671 .mmap = perf_mmap,
2672 .fasync = perf_fasync,
2676 * Perf event wakeup
2678 * If there's data, ensure we set the poll() state and publish everything
2679 * to user-space before waking everybody up.
2682 void perf_event_wakeup(struct perf_event *event)
2684 wake_up_all(&event->waitq);
2686 if (event->pending_kill) {
2687 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2688 event->pending_kill = 0;
2693 * Pending wakeups
2695 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2697 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2698 * single linked list and use cmpxchg() to add entries lockless.
2701 static void perf_pending_event(struct perf_pending_entry *entry)
2703 struct perf_event *event = container_of(entry,
2704 struct perf_event, pending);
2706 if (event->pending_disable) {
2707 event->pending_disable = 0;
2708 __perf_event_disable(event);
2711 if (event->pending_wakeup) {
2712 event->pending_wakeup = 0;
2713 perf_event_wakeup(event);
2717 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2719 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2720 PENDING_TAIL,
2723 static void perf_pending_queue(struct perf_pending_entry *entry,
2724 void (*func)(struct perf_pending_entry *))
2726 struct perf_pending_entry **head;
2728 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2729 return;
2731 entry->func = func;
2733 head = &get_cpu_var(perf_pending_head);
2735 do {
2736 entry->next = *head;
2737 } while (cmpxchg(head, entry->next, entry) != entry->next);
2739 set_perf_event_pending();
2741 put_cpu_var(perf_pending_head);
2744 static int __perf_pending_run(void)
2746 struct perf_pending_entry *list;
2747 int nr = 0;
2749 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2750 while (list != PENDING_TAIL) {
2751 void (*func)(struct perf_pending_entry *);
2752 struct perf_pending_entry *entry = list;
2754 list = list->next;
2756 func = entry->func;
2757 entry->next = NULL;
2759 * Ensure we observe the unqueue before we issue the wakeup,
2760 * so that we won't be waiting forever.
2761 * -- see perf_not_pending().
2763 smp_wmb();
2765 func(entry);
2766 nr++;
2769 return nr;
2772 static inline int perf_not_pending(struct perf_event *event)
2775 * If we flush on whatever cpu we run, there is a chance we don't
2776 * need to wait.
2778 get_cpu();
2779 __perf_pending_run();
2780 put_cpu();
2783 * Ensure we see the proper queue state before going to sleep
2784 * so that we do not miss the wakeup. -- see perf_pending_handle()
2786 smp_rmb();
2787 return event->pending.next == NULL;
2790 static void perf_pending_sync(struct perf_event *event)
2792 wait_event(event->waitq, perf_not_pending(event));
2795 void perf_event_do_pending(void)
2797 __perf_pending_run();
2801 * Callchain support -- arch specific
2804 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2806 return NULL;
2810 * Output
2812 static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
2813 unsigned long offset, unsigned long head)
2815 unsigned long mask;
2817 if (!data->writable)
2818 return true;
2820 mask = perf_data_size(data) - 1;
2822 offset = (offset - tail) & mask;
2823 head = (head - tail) & mask;
2825 if ((int)(head - offset) < 0)
2826 return false;
2828 return true;
2831 static void perf_output_wakeup(struct perf_output_handle *handle)
2833 atomic_set(&handle->data->poll, POLL_IN);
2835 if (handle->nmi) {
2836 handle->event->pending_wakeup = 1;
2837 perf_pending_queue(&handle->event->pending,
2838 perf_pending_event);
2839 } else
2840 perf_event_wakeup(handle->event);
2844 * Curious locking construct.
2846 * We need to ensure a later event_id doesn't publish a head when a former
2847 * event_id isn't done writing. However since we need to deal with NMIs we
2848 * cannot fully serialize things.
2850 * What we do is serialize between CPUs so we only have to deal with NMI
2851 * nesting on a single CPU.
2853 * We only publish the head (and generate a wakeup) when the outer-most
2854 * event_id completes.
2856 static void perf_output_lock(struct perf_output_handle *handle)
2858 struct perf_mmap_data *data = handle->data;
2859 int cur, cpu = get_cpu();
2861 handle->locked = 0;
2863 for (;;) {
2864 cur = atomic_cmpxchg(&data->lock, -1, cpu);
2865 if (cur == -1) {
2866 handle->locked = 1;
2867 break;
2869 if (cur == cpu)
2870 break;
2872 cpu_relax();
2876 static void perf_output_unlock(struct perf_output_handle *handle)
2878 struct perf_mmap_data *data = handle->data;
2879 unsigned long head;
2880 int cpu;
2882 data->done_head = data->head;
2884 if (!handle->locked)
2885 goto out;
2887 again:
2889 * The xchg implies a full barrier that ensures all writes are done
2890 * before we publish the new head, matched by a rmb() in userspace when
2891 * reading this position.
2893 while ((head = atomic_long_xchg(&data->done_head, 0)))
2894 data->user_page->data_head = head;
2897 * NMI can happen here, which means we can miss a done_head update.
2900 cpu = atomic_xchg(&data->lock, -1);
2901 WARN_ON_ONCE(cpu != smp_processor_id());
2904 * Therefore we have to validate we did not indeed do so.
2906 if (unlikely(atomic_long_read(&data->done_head))) {
2908 * Since we had it locked, we can lock it again.
2910 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2911 cpu_relax();
2913 goto again;
2916 if (atomic_xchg(&data->wakeup, 0))
2917 perf_output_wakeup(handle);
2918 out:
2919 put_cpu();
2922 void perf_output_copy(struct perf_output_handle *handle,
2923 const void *buf, unsigned int len)
2925 unsigned int pages_mask;
2926 unsigned long offset;
2927 unsigned int size;
2928 void **pages;
2930 offset = handle->offset;
2931 pages_mask = handle->data->nr_pages - 1;
2932 pages = handle->data->data_pages;
2934 do {
2935 unsigned long page_offset;
2936 unsigned long page_size;
2937 int nr;
2939 nr = (offset >> PAGE_SHIFT) & pages_mask;
2940 page_size = 1UL << (handle->data->data_order + PAGE_SHIFT);
2941 page_offset = offset & (page_size - 1);
2942 size = min_t(unsigned int, page_size - page_offset, len);
2944 memcpy(pages[nr] + page_offset, buf, size);
2946 len -= size;
2947 buf += size;
2948 offset += size;
2949 } while (len);
2951 handle->offset = offset;
2954 * Check we didn't copy past our reservation window, taking the
2955 * possible unsigned int wrap into account.
2957 WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2960 int perf_output_begin(struct perf_output_handle *handle,
2961 struct perf_event *event, unsigned int size,
2962 int nmi, int sample)
2964 struct perf_event *output_event;
2965 struct perf_mmap_data *data;
2966 unsigned long tail, offset, head;
2967 int have_lost;
2968 struct {
2969 struct perf_event_header header;
2970 u64 id;
2971 u64 lost;
2972 } lost_event;
2974 rcu_read_lock();
2976 * For inherited events we send all the output towards the parent.
2978 if (event->parent)
2979 event = event->parent;
2981 output_event = rcu_dereference(event->output);
2982 if (output_event)
2983 event = output_event;
2985 data = rcu_dereference(event->data);
2986 if (!data)
2987 goto out;
2989 handle->data = data;
2990 handle->event = event;
2991 handle->nmi = nmi;
2992 handle->sample = sample;
2994 if (!data->nr_pages)
2995 goto fail;
2997 have_lost = atomic_read(&data->lost);
2998 if (have_lost)
2999 size += sizeof(lost_event);
3001 perf_output_lock(handle);
3003 do {
3005 * Userspace could choose to issue a mb() before updating the
3006 * tail pointer. So that all reads will be completed before the
3007 * write is issued.
3009 tail = ACCESS_ONCE(data->user_page->data_tail);
3010 smp_rmb();
3011 offset = head = atomic_long_read(&data->head);
3012 head += size;
3013 if (unlikely(!perf_output_space(data, tail, offset, head)))
3014 goto fail;
3015 } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
3017 handle->offset = offset;
3018 handle->head = head;
3020 if (head - tail > data->watermark)
3021 atomic_set(&data->wakeup, 1);
3023 if (have_lost) {
3024 lost_event.header.type = PERF_RECORD_LOST;
3025 lost_event.header.misc = 0;
3026 lost_event.header.size = sizeof(lost_event);
3027 lost_event.id = event->id;
3028 lost_event.lost = atomic_xchg(&data->lost, 0);
3030 perf_output_put(handle, lost_event);
3033 return 0;
3035 fail:
3036 atomic_inc(&data->lost);
3037 perf_output_unlock(handle);
3038 out:
3039 rcu_read_unlock();
3041 return -ENOSPC;
3044 void perf_output_end(struct perf_output_handle *handle)
3046 struct perf_event *event = handle->event;
3047 struct perf_mmap_data *data = handle->data;
3049 int wakeup_events = event->attr.wakeup_events;
3051 if (handle->sample && wakeup_events) {
3052 int events = atomic_inc_return(&data->events);
3053 if (events >= wakeup_events) {
3054 atomic_sub(wakeup_events, &data->events);
3055 atomic_set(&data->wakeup, 1);
3059 perf_output_unlock(handle);
3060 rcu_read_unlock();
3063 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3066 * only top level events have the pid namespace they were created in
3068 if (event->parent)
3069 event = event->parent;
3071 return task_tgid_nr_ns(p, event->ns);
3074 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3077 * only top level events have the pid namespace they were created in
3079 if (event->parent)
3080 event = event->parent;
3082 return task_pid_nr_ns(p, event->ns);
3085 static void perf_output_read_one(struct perf_output_handle *handle,
3086 struct perf_event *event)
3088 u64 read_format = event->attr.read_format;
3089 u64 values[4];
3090 int n = 0;
3092 values[n++] = atomic64_read(&event->count);
3093 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3094 values[n++] = event->total_time_enabled +
3095 atomic64_read(&event->child_total_time_enabled);
3097 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3098 values[n++] = event->total_time_running +
3099 atomic64_read(&event->child_total_time_running);
3101 if (read_format & PERF_FORMAT_ID)
3102 values[n++] = primary_event_id(event);
3104 perf_output_copy(handle, values, n * sizeof(u64));
3108 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3110 static void perf_output_read_group(struct perf_output_handle *handle,
3111 struct perf_event *event)
3113 struct perf_event *leader = event->group_leader, *sub;
3114 u64 read_format = event->attr.read_format;
3115 u64 values[5];
3116 int n = 0;
3118 values[n++] = 1 + leader->nr_siblings;
3120 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3121 values[n++] = leader->total_time_enabled;
3123 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3124 values[n++] = leader->total_time_running;
3126 if (leader != event)
3127 leader->pmu->read(leader);
3129 values[n++] = atomic64_read(&leader->count);
3130 if (read_format & PERF_FORMAT_ID)
3131 values[n++] = primary_event_id(leader);
3133 perf_output_copy(handle, values, n * sizeof(u64));
3135 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3136 n = 0;
3138 if (sub != event)
3139 sub->pmu->read(sub);
3141 values[n++] = atomic64_read(&sub->count);
3142 if (read_format & PERF_FORMAT_ID)
3143 values[n++] = primary_event_id(sub);
3145 perf_output_copy(handle, values, n * sizeof(u64));
3149 static void perf_output_read(struct perf_output_handle *handle,
3150 struct perf_event *event)
3152 if (event->attr.read_format & PERF_FORMAT_GROUP)
3153 perf_output_read_group(handle, event);
3154 else
3155 perf_output_read_one(handle, event);
3158 void perf_output_sample(struct perf_output_handle *handle,
3159 struct perf_event_header *header,
3160 struct perf_sample_data *data,
3161 struct perf_event *event)
3163 u64 sample_type = data->type;
3165 perf_output_put(handle, *header);
3167 if (sample_type & PERF_SAMPLE_IP)
3168 perf_output_put(handle, data->ip);
3170 if (sample_type & PERF_SAMPLE_TID)
3171 perf_output_put(handle, data->tid_entry);
3173 if (sample_type & PERF_SAMPLE_TIME)
3174 perf_output_put(handle, data->time);
3176 if (sample_type & PERF_SAMPLE_ADDR)
3177 perf_output_put(handle, data->addr);
3179 if (sample_type & PERF_SAMPLE_ID)
3180 perf_output_put(handle, data->id);
3182 if (sample_type & PERF_SAMPLE_STREAM_ID)
3183 perf_output_put(handle, data->stream_id);
3185 if (sample_type & PERF_SAMPLE_CPU)
3186 perf_output_put(handle, data->cpu_entry);
3188 if (sample_type & PERF_SAMPLE_PERIOD)
3189 perf_output_put(handle, data->period);
3191 if (sample_type & PERF_SAMPLE_READ)
3192 perf_output_read(handle, event);
3194 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3195 if (data->callchain) {
3196 int size = 1;
3198 if (data->callchain)
3199 size += data->callchain->nr;
3201 size *= sizeof(u64);
3203 perf_output_copy(handle, data->callchain, size);
3204 } else {
3205 u64 nr = 0;
3206 perf_output_put(handle, nr);
3210 if (sample_type & PERF_SAMPLE_RAW) {
3211 if (data->raw) {
3212 perf_output_put(handle, data->raw->size);
3213 perf_output_copy(handle, data->raw->data,
3214 data->raw->size);
3215 } else {
3216 struct {
3217 u32 size;
3218 u32 data;
3219 } raw = {
3220 .size = sizeof(u32),
3221 .data = 0,
3223 perf_output_put(handle, raw);
3228 void perf_prepare_sample(struct perf_event_header *header,
3229 struct perf_sample_data *data,
3230 struct perf_event *event,
3231 struct pt_regs *regs)
3233 u64 sample_type = event->attr.sample_type;
3235 data->type = sample_type;
3237 header->type = PERF_RECORD_SAMPLE;
3238 header->size = sizeof(*header);
3240 header->misc = 0;
3241 header->misc |= perf_misc_flags(regs);
3243 if (sample_type & PERF_SAMPLE_IP) {
3244 data->ip = perf_instruction_pointer(regs);
3246 header->size += sizeof(data->ip);
3249 if (sample_type & PERF_SAMPLE_TID) {
3250 /* namespace issues */
3251 data->tid_entry.pid = perf_event_pid(event, current);
3252 data->tid_entry.tid = perf_event_tid(event, current);
3254 header->size += sizeof(data->tid_entry);
3257 if (sample_type & PERF_SAMPLE_TIME) {
3258 data->time = perf_clock();
3260 header->size += sizeof(data->time);
3263 if (sample_type & PERF_SAMPLE_ADDR)
3264 header->size += sizeof(data->addr);
3266 if (sample_type & PERF_SAMPLE_ID) {
3267 data->id = primary_event_id(event);
3269 header->size += sizeof(data->id);
3272 if (sample_type & PERF_SAMPLE_STREAM_ID) {
3273 data->stream_id = event->id;
3275 header->size += sizeof(data->stream_id);
3278 if (sample_type & PERF_SAMPLE_CPU) {
3279 data->cpu_entry.cpu = raw_smp_processor_id();
3280 data->cpu_entry.reserved = 0;
3282 header->size += sizeof(data->cpu_entry);
3285 if (sample_type & PERF_SAMPLE_PERIOD)
3286 header->size += sizeof(data->period);
3288 if (sample_type & PERF_SAMPLE_READ)
3289 header->size += perf_event_read_size(event);
3291 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3292 int size = 1;
3294 data->callchain = perf_callchain(regs);
3296 if (data->callchain)
3297 size += data->callchain->nr;
3299 header->size += size * sizeof(u64);
3302 if (sample_type & PERF_SAMPLE_RAW) {
3303 int size = sizeof(u32);
3305 if (data->raw)
3306 size += data->raw->size;
3307 else
3308 size += sizeof(u32);
3310 WARN_ON_ONCE(size & (sizeof(u64)-1));
3311 header->size += size;
3315 static void perf_event_output(struct perf_event *event, int nmi,
3316 struct perf_sample_data *data,
3317 struct pt_regs *regs)
3319 struct perf_output_handle handle;
3320 struct perf_event_header header;
3322 perf_prepare_sample(&header, data, event, regs);
3324 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3325 return;
3327 perf_output_sample(&handle, &header, data, event);
3329 perf_output_end(&handle);
3333 * read event_id
3336 struct perf_read_event {
3337 struct perf_event_header header;
3339 u32 pid;
3340 u32 tid;
3343 static void
3344 perf_event_read_event(struct perf_event *event,
3345 struct task_struct *task)
3347 struct perf_output_handle handle;
3348 struct perf_read_event read_event = {
3349 .header = {
3350 .type = PERF_RECORD_READ,
3351 .misc = 0,
3352 .size = sizeof(read_event) + perf_event_read_size(event),
3354 .pid = perf_event_pid(event, task),
3355 .tid = perf_event_tid(event, task),
3357 int ret;
3359 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3360 if (ret)
3361 return;
3363 perf_output_put(&handle, read_event);
3364 perf_output_read(&handle, event);
3366 perf_output_end(&handle);
3370 * task tracking -- fork/exit
3372 * enabled by: attr.comm | attr.mmap | attr.task
3375 struct perf_task_event {
3376 struct task_struct *task;
3377 struct perf_event_context *task_ctx;
3379 struct {
3380 struct perf_event_header header;
3382 u32 pid;
3383 u32 ppid;
3384 u32 tid;
3385 u32 ptid;
3386 u64 time;
3387 } event_id;
3390 static void perf_event_task_output(struct perf_event *event,
3391 struct perf_task_event *task_event)
3393 struct perf_output_handle handle;
3394 int size;
3395 struct task_struct *task = task_event->task;
3396 int ret;
3398 size = task_event->event_id.header.size;
3399 ret = perf_output_begin(&handle, event, size, 0, 0);
3401 if (ret)
3402 return;
3404 task_event->event_id.pid = perf_event_pid(event, task);
3405 task_event->event_id.ppid = perf_event_pid(event, current);
3407 task_event->event_id.tid = perf_event_tid(event, task);
3408 task_event->event_id.ptid = perf_event_tid(event, current);
3410 perf_output_put(&handle, task_event->event_id);
3412 perf_output_end(&handle);
3415 static int perf_event_task_match(struct perf_event *event)
3417 if (event->state < PERF_EVENT_STATE_INACTIVE)
3418 return 0;
3420 if (event->cpu != -1 && event->cpu != smp_processor_id())
3421 return 0;
3423 if (event->attr.comm || event->attr.mmap || event->attr.task)
3424 return 1;
3426 return 0;
3429 static void perf_event_task_ctx(struct perf_event_context *ctx,
3430 struct perf_task_event *task_event)
3432 struct perf_event *event;
3434 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3435 if (perf_event_task_match(event))
3436 perf_event_task_output(event, task_event);
3440 static void perf_event_task_event(struct perf_task_event *task_event)
3442 struct perf_cpu_context *cpuctx;
3443 struct perf_event_context *ctx = task_event->task_ctx;
3445 rcu_read_lock();
3446 cpuctx = &get_cpu_var(perf_cpu_context);
3447 perf_event_task_ctx(&cpuctx->ctx, task_event);
3448 if (!ctx)
3449 ctx = rcu_dereference(current->perf_event_ctxp);
3450 if (ctx)
3451 perf_event_task_ctx(ctx, task_event);
3452 put_cpu_var(perf_cpu_context);
3453 rcu_read_unlock();
3456 static void perf_event_task(struct task_struct *task,
3457 struct perf_event_context *task_ctx,
3458 int new)
3460 struct perf_task_event task_event;
3462 if (!atomic_read(&nr_comm_events) &&
3463 !atomic_read(&nr_mmap_events) &&
3464 !atomic_read(&nr_task_events))
3465 return;
3467 task_event = (struct perf_task_event){
3468 .task = task,
3469 .task_ctx = task_ctx,
3470 .event_id = {
3471 .header = {
3472 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3473 .misc = 0,
3474 .size = sizeof(task_event.event_id),
3476 /* .pid */
3477 /* .ppid */
3478 /* .tid */
3479 /* .ptid */
3480 .time = perf_clock(),
3484 perf_event_task_event(&task_event);
3487 void perf_event_fork(struct task_struct *task)
3489 perf_event_task(task, NULL, 1);
3493 * comm tracking
3496 struct perf_comm_event {
3497 struct task_struct *task;
3498 char *comm;
3499 int comm_size;
3501 struct {
3502 struct perf_event_header header;
3504 u32 pid;
3505 u32 tid;
3506 } event_id;
3509 static void perf_event_comm_output(struct perf_event *event,
3510 struct perf_comm_event *comm_event)
3512 struct perf_output_handle handle;
3513 int size = comm_event->event_id.header.size;
3514 int ret = perf_output_begin(&handle, event, size, 0, 0);
3516 if (ret)
3517 return;
3519 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3520 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3522 perf_output_put(&handle, comm_event->event_id);
3523 perf_output_copy(&handle, comm_event->comm,
3524 comm_event->comm_size);
3525 perf_output_end(&handle);
3528 static int perf_event_comm_match(struct perf_event *event)
3530 if (event->state < PERF_EVENT_STATE_INACTIVE)
3531 return 0;
3533 if (event->cpu != -1 && event->cpu != smp_processor_id())
3534 return 0;
3536 if (event->attr.comm)
3537 return 1;
3539 return 0;
3542 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3543 struct perf_comm_event *comm_event)
3545 struct perf_event *event;
3547 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3548 if (perf_event_comm_match(event))
3549 perf_event_comm_output(event, comm_event);
3553 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3555 struct perf_cpu_context *cpuctx;
3556 struct perf_event_context *ctx;
3557 unsigned int size;
3558 char comm[TASK_COMM_LEN];
3560 memset(comm, 0, sizeof(comm));
3561 strlcpy(comm, comm_event->task->comm, sizeof(comm));
3562 size = ALIGN(strlen(comm)+1, sizeof(u64));
3564 comm_event->comm = comm;
3565 comm_event->comm_size = size;
3567 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3569 rcu_read_lock();
3570 cpuctx = &get_cpu_var(perf_cpu_context);
3571 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3572 ctx = rcu_dereference(current->perf_event_ctxp);
3573 if (ctx)
3574 perf_event_comm_ctx(ctx, comm_event);
3575 put_cpu_var(perf_cpu_context);
3576 rcu_read_unlock();
3579 void perf_event_comm(struct task_struct *task)
3581 struct perf_comm_event comm_event;
3583 if (task->perf_event_ctxp)
3584 perf_event_enable_on_exec(task);
3586 if (!atomic_read(&nr_comm_events))
3587 return;
3589 comm_event = (struct perf_comm_event){
3590 .task = task,
3591 /* .comm */
3592 /* .comm_size */
3593 .event_id = {
3594 .header = {
3595 .type = PERF_RECORD_COMM,
3596 .misc = 0,
3597 /* .size */
3599 /* .pid */
3600 /* .tid */
3604 perf_event_comm_event(&comm_event);
3608 * mmap tracking
3611 struct perf_mmap_event {
3612 struct vm_area_struct *vma;
3614 const char *file_name;
3615 int file_size;
3617 struct {
3618 struct perf_event_header header;
3620 u32 pid;
3621 u32 tid;
3622 u64 start;
3623 u64 len;
3624 u64 pgoff;
3625 } event_id;
3628 static void perf_event_mmap_output(struct perf_event *event,
3629 struct perf_mmap_event *mmap_event)
3631 struct perf_output_handle handle;
3632 int size = mmap_event->event_id.header.size;
3633 int ret = perf_output_begin(&handle, event, size, 0, 0);
3635 if (ret)
3636 return;
3638 mmap_event->event_id.pid = perf_event_pid(event, current);
3639 mmap_event->event_id.tid = perf_event_tid(event, current);
3641 perf_output_put(&handle, mmap_event->event_id);
3642 perf_output_copy(&handle, mmap_event->file_name,
3643 mmap_event->file_size);
3644 perf_output_end(&handle);
3647 static int perf_event_mmap_match(struct perf_event *event,
3648 struct perf_mmap_event *mmap_event)
3650 if (event->state < PERF_EVENT_STATE_INACTIVE)
3651 return 0;
3653 if (event->cpu != -1 && event->cpu != smp_processor_id())
3654 return 0;
3656 if (event->attr.mmap)
3657 return 1;
3659 return 0;
3662 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3663 struct perf_mmap_event *mmap_event)
3665 struct perf_event *event;
3667 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3668 if (perf_event_mmap_match(event, mmap_event))
3669 perf_event_mmap_output(event, mmap_event);
3673 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3675 struct perf_cpu_context *cpuctx;
3676 struct perf_event_context *ctx;
3677 struct vm_area_struct *vma = mmap_event->vma;
3678 struct file *file = vma->vm_file;
3679 unsigned int size;
3680 char tmp[16];
3681 char *buf = NULL;
3682 const char *name;
3684 memset(tmp, 0, sizeof(tmp));
3686 if (file) {
3688 * d_path works from the end of the buffer backwards, so we
3689 * need to add enough zero bytes after the string to handle
3690 * the 64bit alignment we do later.
3692 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3693 if (!buf) {
3694 name = strncpy(tmp, "//enomem", sizeof(tmp));
3695 goto got_name;
3697 name = d_path(&file->f_path, buf, PATH_MAX);
3698 if (IS_ERR(name)) {
3699 name = strncpy(tmp, "//toolong", sizeof(tmp));
3700 goto got_name;
3702 } else {
3703 if (arch_vma_name(mmap_event->vma)) {
3704 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3705 sizeof(tmp));
3706 goto got_name;
3709 if (!vma->vm_mm) {
3710 name = strncpy(tmp, "[vdso]", sizeof(tmp));
3711 goto got_name;
3714 name = strncpy(tmp, "//anon", sizeof(tmp));
3715 goto got_name;
3718 got_name:
3719 size = ALIGN(strlen(name)+1, sizeof(u64));
3721 mmap_event->file_name = name;
3722 mmap_event->file_size = size;
3724 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3726 rcu_read_lock();
3727 cpuctx = &get_cpu_var(perf_cpu_context);
3728 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
3729 ctx = rcu_dereference(current->perf_event_ctxp);
3730 if (ctx)
3731 perf_event_mmap_ctx(ctx, mmap_event);
3732 put_cpu_var(perf_cpu_context);
3733 rcu_read_unlock();
3735 kfree(buf);
3738 void __perf_event_mmap(struct vm_area_struct *vma)
3740 struct perf_mmap_event mmap_event;
3742 if (!atomic_read(&nr_mmap_events))
3743 return;
3745 mmap_event = (struct perf_mmap_event){
3746 .vma = vma,
3747 /* .file_name */
3748 /* .file_size */
3749 .event_id = {
3750 .header = {
3751 .type = PERF_RECORD_MMAP,
3752 .misc = 0,
3753 /* .size */
3755 /* .pid */
3756 /* .tid */
3757 .start = vma->vm_start,
3758 .len = vma->vm_end - vma->vm_start,
3759 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
3763 perf_event_mmap_event(&mmap_event);
3767 * IRQ throttle logging
3770 static void perf_log_throttle(struct perf_event *event, int enable)
3772 struct perf_output_handle handle;
3773 int ret;
3775 struct {
3776 struct perf_event_header header;
3777 u64 time;
3778 u64 id;
3779 u64 stream_id;
3780 } throttle_event = {
3781 .header = {
3782 .type = PERF_RECORD_THROTTLE,
3783 .misc = 0,
3784 .size = sizeof(throttle_event),
3786 .time = perf_clock(),
3787 .id = primary_event_id(event),
3788 .stream_id = event->id,
3791 if (enable)
3792 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3794 ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3795 if (ret)
3796 return;
3798 perf_output_put(&handle, throttle_event);
3799 perf_output_end(&handle);
3803 * Generic event overflow handling, sampling.
3806 static int __perf_event_overflow(struct perf_event *event, int nmi,
3807 int throttle, struct perf_sample_data *data,
3808 struct pt_regs *regs)
3810 int events = atomic_read(&event->event_limit);
3811 struct hw_perf_event *hwc = &event->hw;
3812 int ret = 0;
3814 throttle = (throttle && event->pmu->unthrottle != NULL);
3816 if (!throttle) {
3817 hwc->interrupts++;
3818 } else {
3819 if (hwc->interrupts != MAX_INTERRUPTS) {
3820 hwc->interrupts++;
3821 if (HZ * hwc->interrupts >
3822 (u64)sysctl_perf_event_sample_rate) {
3823 hwc->interrupts = MAX_INTERRUPTS;
3824 perf_log_throttle(event, 0);
3825 ret = 1;
3827 } else {
3829 * Keep re-disabling events even though on the previous
3830 * pass we disabled it - just in case we raced with a
3831 * sched-in and the event got enabled again:
3833 ret = 1;
3837 if (event->attr.freq) {
3838 u64 now = perf_clock();
3839 s64 delta = now - hwc->freq_time_stamp;
3841 hwc->freq_time_stamp = now;
3843 if (delta > 0 && delta < 2*TICK_NSEC)
3844 perf_adjust_period(event, delta, hwc->last_period);
3848 * XXX event_limit might not quite work as expected on inherited
3849 * events
3852 event->pending_kill = POLL_IN;
3853 if (events && atomic_dec_and_test(&event->event_limit)) {
3854 ret = 1;
3855 event->pending_kill = POLL_HUP;
3856 if (nmi) {
3857 event->pending_disable = 1;
3858 perf_pending_queue(&event->pending,
3859 perf_pending_event);
3860 } else
3861 perf_event_disable(event);
3864 if (event->overflow_handler)
3865 event->overflow_handler(event, nmi, data, regs);
3866 else
3867 perf_event_output(event, nmi, data, regs);
3869 return ret;
3872 int perf_event_overflow(struct perf_event *event, int nmi,
3873 struct perf_sample_data *data,
3874 struct pt_regs *regs)
3876 return __perf_event_overflow(event, nmi, 1, data, regs);
3880 * Generic software event infrastructure
3884 * We directly increment event->count and keep a second value in
3885 * event->hw.period_left to count intervals. This period event
3886 * is kept in the range [-sample_period, 0] so that we can use the
3887 * sign as trigger.
3890 static u64 perf_swevent_set_period(struct perf_event *event)
3892 struct hw_perf_event *hwc = &event->hw;
3893 u64 period = hwc->last_period;
3894 u64 nr, offset;
3895 s64 old, val;
3897 hwc->last_period = hwc->sample_period;
3899 again:
3900 old = val = atomic64_read(&hwc->period_left);
3901 if (val < 0)
3902 return 0;
3904 nr = div64_u64(period + val, period);
3905 offset = nr * period;
3906 val -= offset;
3907 if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
3908 goto again;
3910 return nr;
3913 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
3914 int nmi, struct perf_sample_data *data,
3915 struct pt_regs *regs)
3917 struct hw_perf_event *hwc = &event->hw;
3918 int throttle = 0;
3920 data->period = event->hw.last_period;
3921 if (!overflow)
3922 overflow = perf_swevent_set_period(event);
3924 if (hwc->interrupts == MAX_INTERRUPTS)
3925 return;
3927 for (; overflow; overflow--) {
3928 if (__perf_event_overflow(event, nmi, throttle,
3929 data, regs)) {
3931 * We inhibit the overflow from happening when
3932 * hwc->interrupts == MAX_INTERRUPTS.
3934 break;
3936 throttle = 1;
3940 static void perf_swevent_unthrottle(struct perf_event *event)
3943 * Nothing to do, we already reset hwc->interrupts.
3947 static void perf_swevent_add(struct perf_event *event, u64 nr,
3948 int nmi, struct perf_sample_data *data,
3949 struct pt_regs *regs)
3951 struct hw_perf_event *hwc = &event->hw;
3953 atomic64_add(nr, &event->count);
3955 if (!regs)
3956 return;
3958 if (!hwc->sample_period)
3959 return;
3961 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
3962 return perf_swevent_overflow(event, 1, nmi, data, regs);
3964 if (atomic64_add_negative(nr, &hwc->period_left))
3965 return;
3967 perf_swevent_overflow(event, 0, nmi, data, regs);
3970 static int perf_swevent_is_counting(struct perf_event *event)
3973 * The event is active, we're good!
3975 if (event->state == PERF_EVENT_STATE_ACTIVE)
3976 return 1;
3979 * The event is off/error, not counting.
3981 if (event->state != PERF_EVENT_STATE_INACTIVE)
3982 return 0;
3985 * The event is inactive, if the context is active
3986 * we're part of a group that didn't make it on the 'pmu',
3987 * not counting.
3989 if (event->ctx->is_active)
3990 return 0;
3993 * We're inactive and the context is too, this means the
3994 * task is scheduled out, we're counting events that happen
3995 * to us, like migration events.
3997 return 1;
4000 static int perf_tp_event_match(struct perf_event *event,
4001 struct perf_sample_data *data);
4003 static int perf_exclude_event(struct perf_event *event,
4004 struct pt_regs *regs)
4006 if (regs) {
4007 if (event->attr.exclude_user && user_mode(regs))
4008 return 1;
4010 if (event->attr.exclude_kernel && !user_mode(regs))
4011 return 1;
4014 return 0;
4017 static int perf_swevent_match(struct perf_event *event,
4018 enum perf_type_id type,
4019 u32 event_id,
4020 struct perf_sample_data *data,
4021 struct pt_regs *regs)
4023 if (event->cpu != -1 && event->cpu != smp_processor_id())
4024 return 0;
4026 if (!perf_swevent_is_counting(event))
4027 return 0;
4029 if (event->attr.type != type)
4030 return 0;
4032 if (event->attr.config != event_id)
4033 return 0;
4035 if (perf_exclude_event(event, regs))
4036 return 0;
4038 if (event->attr.type == PERF_TYPE_TRACEPOINT &&
4039 !perf_tp_event_match(event, data))
4040 return 0;
4042 return 1;
4045 static void perf_swevent_ctx_event(struct perf_event_context *ctx,
4046 enum perf_type_id type,
4047 u32 event_id, u64 nr, int nmi,
4048 struct perf_sample_data *data,
4049 struct pt_regs *regs)
4051 struct perf_event *event;
4053 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4054 if (perf_swevent_match(event, type, event_id, data, regs))
4055 perf_swevent_add(event, nr, nmi, data, regs);
4059 int perf_swevent_get_recursion_context(void)
4061 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
4062 int rctx;
4064 if (in_nmi())
4065 rctx = 3;
4066 else if (in_irq())
4067 rctx = 2;
4068 else if (in_softirq())
4069 rctx = 1;
4070 else
4071 rctx = 0;
4073 if (cpuctx->recursion[rctx]) {
4074 put_cpu_var(perf_cpu_context);
4075 return -1;
4078 cpuctx->recursion[rctx]++;
4079 barrier();
4081 return rctx;
4083 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4085 void perf_swevent_put_recursion_context(int rctx)
4087 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4088 barrier();
4089 cpuctx->recursion[rctx]--;
4090 put_cpu_var(perf_cpu_context);
4092 EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context);
4094 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4095 u64 nr, int nmi,
4096 struct perf_sample_data *data,
4097 struct pt_regs *regs)
4099 struct perf_cpu_context *cpuctx;
4100 struct perf_event_context *ctx;
4102 cpuctx = &__get_cpu_var(perf_cpu_context);
4103 rcu_read_lock();
4104 perf_swevent_ctx_event(&cpuctx->ctx, type, event_id,
4105 nr, nmi, data, regs);
4107 * doesn't really matter which of the child contexts the
4108 * events ends up in.
4110 ctx = rcu_dereference(current->perf_event_ctxp);
4111 if (ctx)
4112 perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs);
4113 rcu_read_unlock();
4116 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4117 struct pt_regs *regs, u64 addr)
4119 struct perf_sample_data data;
4120 int rctx;
4122 rctx = perf_swevent_get_recursion_context();
4123 if (rctx < 0)
4124 return;
4126 data.addr = addr;
4127 data.raw = NULL;
4129 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4131 perf_swevent_put_recursion_context(rctx);
4134 static void perf_swevent_read(struct perf_event *event)
4138 static int perf_swevent_enable(struct perf_event *event)
4140 struct hw_perf_event *hwc = &event->hw;
4142 if (hwc->sample_period) {
4143 hwc->last_period = hwc->sample_period;
4144 perf_swevent_set_period(event);
4146 return 0;
4149 static void perf_swevent_disable(struct perf_event *event)
4153 static const struct pmu perf_ops_generic = {
4154 .enable = perf_swevent_enable,
4155 .disable = perf_swevent_disable,
4156 .read = perf_swevent_read,
4157 .unthrottle = perf_swevent_unthrottle,
4161 * hrtimer based swevent callback
4164 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4166 enum hrtimer_restart ret = HRTIMER_RESTART;
4167 struct perf_sample_data data;
4168 struct pt_regs *regs;
4169 struct perf_event *event;
4170 u64 period;
4172 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4173 event->pmu->read(event);
4175 data.addr = 0;
4176 data.raw = NULL;
4177 data.period = event->hw.last_period;
4178 regs = get_irq_regs();
4180 * In case we exclude kernel IPs or are somehow not in interrupt
4181 * context, provide the next best thing, the user IP.
4183 if ((event->attr.exclude_kernel || !regs) &&
4184 !event->attr.exclude_user)
4185 regs = task_pt_regs(current);
4187 if (regs) {
4188 if (!(event->attr.exclude_idle && current->pid == 0))
4189 if (perf_event_overflow(event, 0, &data, regs))
4190 ret = HRTIMER_NORESTART;
4193 period = max_t(u64, 10000, event->hw.sample_period);
4194 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4196 return ret;
4199 static void perf_swevent_start_hrtimer(struct perf_event *event)
4201 struct hw_perf_event *hwc = &event->hw;
4203 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4204 hwc->hrtimer.function = perf_swevent_hrtimer;
4205 if (hwc->sample_period) {
4206 u64 period;
4208 if (hwc->remaining) {
4209 if (hwc->remaining < 0)
4210 period = 10000;
4211 else
4212 period = hwc->remaining;
4213 hwc->remaining = 0;
4214 } else {
4215 period = max_t(u64, 10000, hwc->sample_period);
4217 __hrtimer_start_range_ns(&hwc->hrtimer,
4218 ns_to_ktime(period), 0,
4219 HRTIMER_MODE_REL, 0);
4223 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4225 struct hw_perf_event *hwc = &event->hw;
4227 if (hwc->sample_period) {
4228 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4229 hwc->remaining = ktime_to_ns(remaining);
4231 hrtimer_cancel(&hwc->hrtimer);
4236 * Software event: cpu wall time clock
4239 static void cpu_clock_perf_event_update(struct perf_event *event)
4241 int cpu = raw_smp_processor_id();
4242 s64 prev;
4243 u64 now;
4245 now = cpu_clock(cpu);
4246 prev = atomic64_xchg(&event->hw.prev_count, now);
4247 atomic64_add(now - prev, &event->count);
4250 static int cpu_clock_perf_event_enable(struct perf_event *event)
4252 struct hw_perf_event *hwc = &event->hw;
4253 int cpu = raw_smp_processor_id();
4255 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
4256 perf_swevent_start_hrtimer(event);
4258 return 0;
4261 static void cpu_clock_perf_event_disable(struct perf_event *event)
4263 perf_swevent_cancel_hrtimer(event);
4264 cpu_clock_perf_event_update(event);
4267 static void cpu_clock_perf_event_read(struct perf_event *event)
4269 cpu_clock_perf_event_update(event);
4272 static const struct pmu perf_ops_cpu_clock = {
4273 .enable = cpu_clock_perf_event_enable,
4274 .disable = cpu_clock_perf_event_disable,
4275 .read = cpu_clock_perf_event_read,
4279 * Software event: task time clock
4282 static void task_clock_perf_event_update(struct perf_event *event, u64 now)
4284 u64 prev;
4285 s64 delta;
4287 prev = atomic64_xchg(&event->hw.prev_count, now);
4288 delta = now - prev;
4289 atomic64_add(delta, &event->count);
4292 static int task_clock_perf_event_enable(struct perf_event *event)
4294 struct hw_perf_event *hwc = &event->hw;
4295 u64 now;
4297 now = event->ctx->time;
4299 atomic64_set(&hwc->prev_count, now);
4301 perf_swevent_start_hrtimer(event);
4303 return 0;
4306 static void task_clock_perf_event_disable(struct perf_event *event)
4308 perf_swevent_cancel_hrtimer(event);
4309 task_clock_perf_event_update(event, event->ctx->time);
4313 static void task_clock_perf_event_read(struct perf_event *event)
4315 u64 time;
4317 if (!in_nmi()) {
4318 update_context_time(event->ctx);
4319 time = event->ctx->time;
4320 } else {
4321 u64 now = perf_clock();
4322 u64 delta = now - event->ctx->timestamp;
4323 time = event->ctx->time + delta;
4326 task_clock_perf_event_update(event, time);
4329 static const struct pmu perf_ops_task_clock = {
4330 .enable = task_clock_perf_event_enable,
4331 .disable = task_clock_perf_event_disable,
4332 .read = task_clock_perf_event_read,
4335 #ifdef CONFIG_EVENT_TRACING
4337 void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
4338 int entry_size)
4340 struct perf_raw_record raw = {
4341 .size = entry_size,
4342 .data = record,
4345 struct perf_sample_data data = {
4346 .addr = addr,
4347 .raw = &raw,
4350 struct pt_regs *regs = get_irq_regs();
4352 if (!regs)
4353 regs = task_pt_regs(current);
4355 /* Trace events already protected against recursion */
4356 do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
4357 &data, regs);
4359 EXPORT_SYMBOL_GPL(perf_tp_event);
4361 static int perf_tp_event_match(struct perf_event *event,
4362 struct perf_sample_data *data)
4364 void *record = data->raw->data;
4366 if (likely(!event->filter) || filter_match_preds(event->filter, record))
4367 return 1;
4368 return 0;
4371 static void tp_perf_event_destroy(struct perf_event *event)
4373 ftrace_profile_disable(event->attr.config);
4376 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4379 * Raw tracepoint data is a severe data leak, only allow root to
4380 * have these.
4382 if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4383 perf_paranoid_tracepoint_raw() &&
4384 !capable(CAP_SYS_ADMIN))
4385 return ERR_PTR(-EPERM);
4387 if (ftrace_profile_enable(event->attr.config))
4388 return NULL;
4390 event->destroy = tp_perf_event_destroy;
4392 return &perf_ops_generic;
4395 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4397 char *filter_str;
4398 int ret;
4400 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4401 return -EINVAL;
4403 filter_str = strndup_user(arg, PAGE_SIZE);
4404 if (IS_ERR(filter_str))
4405 return PTR_ERR(filter_str);
4407 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4409 kfree(filter_str);
4410 return ret;
4413 static void perf_event_free_filter(struct perf_event *event)
4415 ftrace_profile_free_filter(event);
4418 #else
4420 static int perf_tp_event_match(struct perf_event *event,
4421 struct perf_sample_data *data)
4423 return 1;
4426 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4428 return NULL;
4431 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4433 return -ENOENT;
4436 static void perf_event_free_filter(struct perf_event *event)
4440 #endif /* CONFIG_EVENT_TRACING */
4442 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4443 static void bp_perf_event_destroy(struct perf_event *event)
4445 release_bp_slot(event);
4448 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4450 int err;
4452 err = register_perf_hw_breakpoint(bp);
4453 if (err)
4454 return ERR_PTR(err);
4456 bp->destroy = bp_perf_event_destroy;
4458 return &perf_ops_bp;
4461 void perf_bp_event(struct perf_event *bp, void *data)
4463 struct perf_sample_data sample;
4464 struct pt_regs *regs = data;
4466 sample.raw = NULL;
4467 sample.addr = bp->attr.bp_addr;
4469 if (!perf_exclude_event(bp, regs))
4470 perf_swevent_add(bp, 1, 1, &sample, regs);
4472 #else
4473 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4475 return NULL;
4478 void perf_bp_event(struct perf_event *bp, void *regs)
4481 #endif
4483 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4485 static void sw_perf_event_destroy(struct perf_event *event)
4487 u64 event_id = event->attr.config;
4489 WARN_ON(event->parent);
4491 atomic_dec(&perf_swevent_enabled[event_id]);
4494 static const struct pmu *sw_perf_event_init(struct perf_event *event)
4496 const struct pmu *pmu = NULL;
4497 u64 event_id = event->attr.config;
4500 * Software events (currently) can't in general distinguish
4501 * between user, kernel and hypervisor events.
4502 * However, context switches and cpu migrations are considered
4503 * to be kernel events, and page faults are never hypervisor
4504 * events.
4506 switch (event_id) {
4507 case PERF_COUNT_SW_CPU_CLOCK:
4508 pmu = &perf_ops_cpu_clock;
4510 break;
4511 case PERF_COUNT_SW_TASK_CLOCK:
4513 * If the user instantiates this as a per-cpu event,
4514 * use the cpu_clock event instead.
4516 if (event->ctx->task)
4517 pmu = &perf_ops_task_clock;
4518 else
4519 pmu = &perf_ops_cpu_clock;
4521 break;
4522 case PERF_COUNT_SW_PAGE_FAULTS:
4523 case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4524 case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4525 case PERF_COUNT_SW_CONTEXT_SWITCHES:
4526 case PERF_COUNT_SW_CPU_MIGRATIONS:
4527 case PERF_COUNT_SW_ALIGNMENT_FAULTS:
4528 case PERF_COUNT_SW_EMULATION_FAULTS:
4529 if (!event->parent) {
4530 atomic_inc(&perf_swevent_enabled[event_id]);
4531 event->destroy = sw_perf_event_destroy;
4533 pmu = &perf_ops_generic;
4534 break;
4537 return pmu;
4541 * Allocate and initialize a event structure
4543 static struct perf_event *
4544 perf_event_alloc(struct perf_event_attr *attr,
4545 int cpu,
4546 struct perf_event_context *ctx,
4547 struct perf_event *group_leader,
4548 struct perf_event *parent_event,
4549 perf_overflow_handler_t overflow_handler,
4550 gfp_t gfpflags)
4552 const struct pmu *pmu;
4553 struct perf_event *event;
4554 struct hw_perf_event *hwc;
4555 long err;
4557 event = kzalloc(sizeof(*event), gfpflags);
4558 if (!event)
4559 return ERR_PTR(-ENOMEM);
4562 * Single events are their own group leaders, with an
4563 * empty sibling list:
4565 if (!group_leader)
4566 group_leader = event;
4568 mutex_init(&event->child_mutex);
4569 INIT_LIST_HEAD(&event->child_list);
4571 INIT_LIST_HEAD(&event->group_entry);
4572 INIT_LIST_HEAD(&event->event_entry);
4573 INIT_LIST_HEAD(&event->sibling_list);
4574 init_waitqueue_head(&event->waitq);
4576 mutex_init(&event->mmap_mutex);
4578 event->cpu = cpu;
4579 event->attr = *attr;
4580 event->group_leader = group_leader;
4581 event->pmu = NULL;
4582 event->ctx = ctx;
4583 event->oncpu = -1;
4585 event->parent = parent_event;
4587 event->ns = get_pid_ns(current->nsproxy->pid_ns);
4588 event->id = atomic64_inc_return(&perf_event_id);
4590 event->state = PERF_EVENT_STATE_INACTIVE;
4592 if (!overflow_handler && parent_event)
4593 overflow_handler = parent_event->overflow_handler;
4595 event->overflow_handler = overflow_handler;
4597 if (attr->disabled)
4598 event->state = PERF_EVENT_STATE_OFF;
4600 pmu = NULL;
4602 hwc = &event->hw;
4603 hwc->sample_period = attr->sample_period;
4604 if (attr->freq && attr->sample_freq)
4605 hwc->sample_period = 1;
4606 hwc->last_period = hwc->sample_period;
4608 atomic64_set(&hwc->period_left, hwc->sample_period);
4611 * we currently do not support PERF_FORMAT_GROUP on inherited events
4613 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4614 goto done;
4616 switch (attr->type) {
4617 case PERF_TYPE_RAW:
4618 case PERF_TYPE_HARDWARE:
4619 case PERF_TYPE_HW_CACHE:
4620 pmu = hw_perf_event_init(event);
4621 break;
4623 case PERF_TYPE_SOFTWARE:
4624 pmu = sw_perf_event_init(event);
4625 break;
4627 case PERF_TYPE_TRACEPOINT:
4628 pmu = tp_perf_event_init(event);
4629 break;
4631 case PERF_TYPE_BREAKPOINT:
4632 pmu = bp_perf_event_init(event);
4633 break;
4636 default:
4637 break;
4639 done:
4640 err = 0;
4641 if (!pmu)
4642 err = -EINVAL;
4643 else if (IS_ERR(pmu))
4644 err = PTR_ERR(pmu);
4646 if (err) {
4647 if (event->ns)
4648 put_pid_ns(event->ns);
4649 kfree(event);
4650 return ERR_PTR(err);
4653 event->pmu = pmu;
4655 if (!event->parent) {
4656 atomic_inc(&nr_events);
4657 if (event->attr.mmap)
4658 atomic_inc(&nr_mmap_events);
4659 if (event->attr.comm)
4660 atomic_inc(&nr_comm_events);
4661 if (event->attr.task)
4662 atomic_inc(&nr_task_events);
4665 return event;
4668 static int perf_copy_attr(struct perf_event_attr __user *uattr,
4669 struct perf_event_attr *attr)
4671 u32 size;
4672 int ret;
4674 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4675 return -EFAULT;
4678 * zero the full structure, so that a short copy will be nice.
4680 memset(attr, 0, sizeof(*attr));
4682 ret = get_user(size, &uattr->size);
4683 if (ret)
4684 return ret;
4686 if (size > PAGE_SIZE) /* silly large */
4687 goto err_size;
4689 if (!size) /* abi compat */
4690 size = PERF_ATTR_SIZE_VER0;
4692 if (size < PERF_ATTR_SIZE_VER0)
4693 goto err_size;
4696 * If we're handed a bigger struct than we know of,
4697 * ensure all the unknown bits are 0 - i.e. new
4698 * user-space does not rely on any kernel feature
4699 * extensions we dont know about yet.
4701 if (size > sizeof(*attr)) {
4702 unsigned char __user *addr;
4703 unsigned char __user *end;
4704 unsigned char val;
4706 addr = (void __user *)uattr + sizeof(*attr);
4707 end = (void __user *)uattr + size;
4709 for (; addr < end; addr++) {
4710 ret = get_user(val, addr);
4711 if (ret)
4712 return ret;
4713 if (val)
4714 goto err_size;
4716 size = sizeof(*attr);
4719 ret = copy_from_user(attr, uattr, size);
4720 if (ret)
4721 return -EFAULT;
4724 * If the type exists, the corresponding creation will verify
4725 * the attr->config.
4727 if (attr->type >= PERF_TYPE_MAX)
4728 return -EINVAL;
4730 if (attr->__reserved_1)
4731 return -EINVAL;
4733 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4734 return -EINVAL;
4736 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
4737 return -EINVAL;
4739 out:
4740 return ret;
4742 err_size:
4743 put_user(sizeof(*attr), &uattr->size);
4744 ret = -E2BIG;
4745 goto out;
4748 static int perf_event_set_output(struct perf_event *event, int output_fd)
4750 struct perf_event *output_event = NULL;
4751 struct file *output_file = NULL;
4752 struct perf_event *old_output;
4753 int fput_needed = 0;
4754 int ret = -EINVAL;
4756 if (!output_fd)
4757 goto set;
4759 output_file = fget_light(output_fd, &fput_needed);
4760 if (!output_file)
4761 return -EBADF;
4763 if (output_file->f_op != &perf_fops)
4764 goto out;
4766 output_event = output_file->private_data;
4768 /* Don't chain output fds */
4769 if (output_event->output)
4770 goto out;
4772 /* Don't set an output fd when we already have an output channel */
4773 if (event->data)
4774 goto out;
4776 atomic_long_inc(&output_file->f_count);
4778 set:
4779 mutex_lock(&event->mmap_mutex);
4780 old_output = event->output;
4781 rcu_assign_pointer(event->output, output_event);
4782 mutex_unlock(&event->mmap_mutex);
4784 if (old_output) {
4786 * we need to make sure no existing perf_output_*()
4787 * is still referencing this event.
4789 synchronize_rcu();
4790 fput(old_output->filp);
4793 ret = 0;
4794 out:
4795 fput_light(output_file, fput_needed);
4796 return ret;
4800 * sys_perf_event_open - open a performance event, associate it to a task/cpu
4802 * @attr_uptr: event_id type attributes for monitoring/sampling
4803 * @pid: target pid
4804 * @cpu: target cpu
4805 * @group_fd: group leader event fd
4807 SYSCALL_DEFINE5(perf_event_open,
4808 struct perf_event_attr __user *, attr_uptr,
4809 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
4811 struct perf_event *event, *group_leader;
4812 struct perf_event_attr attr;
4813 struct perf_event_context *ctx;
4814 struct file *event_file = NULL;
4815 struct file *group_file = NULL;
4816 int fput_needed = 0;
4817 int fput_needed2 = 0;
4818 int err;
4820 /* for future expandability... */
4821 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4822 return -EINVAL;
4824 err = perf_copy_attr(attr_uptr, &attr);
4825 if (err)
4826 return err;
4828 if (!attr.exclude_kernel) {
4829 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
4830 return -EACCES;
4833 if (attr.freq) {
4834 if (attr.sample_freq > sysctl_perf_event_sample_rate)
4835 return -EINVAL;
4839 * Get the target context (task or percpu):
4841 ctx = find_get_context(pid, cpu);
4842 if (IS_ERR(ctx))
4843 return PTR_ERR(ctx);
4846 * Look up the group leader (we will attach this event to it):
4848 group_leader = NULL;
4849 if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4850 err = -EINVAL;
4851 group_file = fget_light(group_fd, &fput_needed);
4852 if (!group_file)
4853 goto err_put_context;
4854 if (group_file->f_op != &perf_fops)
4855 goto err_put_context;
4857 group_leader = group_file->private_data;
4859 * Do not allow a recursive hierarchy (this new sibling
4860 * becoming part of another group-sibling):
4862 if (group_leader->group_leader != group_leader)
4863 goto err_put_context;
4865 * Do not allow to attach to a group in a different
4866 * task or CPU context:
4868 if (group_leader->ctx != ctx)
4869 goto err_put_context;
4871 * Only a group leader can be exclusive or pinned
4873 if (attr.exclusive || attr.pinned)
4874 goto err_put_context;
4877 event = perf_event_alloc(&attr, cpu, ctx, group_leader,
4878 NULL, NULL, GFP_KERNEL);
4879 err = PTR_ERR(event);
4880 if (IS_ERR(event))
4881 goto err_put_context;
4883 err = anon_inode_getfd("[perf_event]", &perf_fops, event, O_RDWR);
4884 if (err < 0)
4885 goto err_free_put_context;
4887 event_file = fget_light(err, &fput_needed2);
4888 if (!event_file)
4889 goto err_free_put_context;
4891 if (flags & PERF_FLAG_FD_OUTPUT) {
4892 err = perf_event_set_output(event, group_fd);
4893 if (err)
4894 goto err_fput_free_put_context;
4897 event->filp = event_file;
4898 WARN_ON_ONCE(ctx->parent_ctx);
4899 mutex_lock(&ctx->mutex);
4900 perf_install_in_context(ctx, event, cpu);
4901 ++ctx->generation;
4902 mutex_unlock(&ctx->mutex);
4904 event->owner = current;
4905 get_task_struct(current);
4906 mutex_lock(&current->perf_event_mutex);
4907 list_add_tail(&event->owner_entry, &current->perf_event_list);
4908 mutex_unlock(&current->perf_event_mutex);
4910 err_fput_free_put_context:
4911 fput_light(event_file, fput_needed2);
4913 err_free_put_context:
4914 if (err < 0)
4915 kfree(event);
4917 err_put_context:
4918 if (err < 0)
4919 put_ctx(ctx);
4921 fput_light(group_file, fput_needed);
4923 return err;
4927 * perf_event_create_kernel_counter
4929 * @attr: attributes of the counter to create
4930 * @cpu: cpu in which the counter is bound
4931 * @pid: task to profile
4933 struct perf_event *
4934 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
4935 pid_t pid,
4936 perf_overflow_handler_t overflow_handler)
4938 struct perf_event *event;
4939 struct perf_event_context *ctx;
4940 int err;
4943 * Get the target context (task or percpu):
4946 ctx = find_get_context(pid, cpu);
4947 if (IS_ERR(ctx)) {
4948 err = PTR_ERR(ctx);
4949 goto err_exit;
4952 event = perf_event_alloc(attr, cpu, ctx, NULL,
4953 NULL, overflow_handler, GFP_KERNEL);
4954 if (IS_ERR(event)) {
4955 err = PTR_ERR(event);
4956 goto err_put_context;
4959 event->filp = NULL;
4960 WARN_ON_ONCE(ctx->parent_ctx);
4961 mutex_lock(&ctx->mutex);
4962 perf_install_in_context(ctx, event, cpu);
4963 ++ctx->generation;
4964 mutex_unlock(&ctx->mutex);
4966 event->owner = current;
4967 get_task_struct(current);
4968 mutex_lock(&current->perf_event_mutex);
4969 list_add_tail(&event->owner_entry, &current->perf_event_list);
4970 mutex_unlock(&current->perf_event_mutex);
4972 return event;
4974 err_put_context:
4975 put_ctx(ctx);
4976 err_exit:
4977 return ERR_PTR(err);
4979 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
4982 * inherit a event from parent task to child task:
4984 static struct perf_event *
4985 inherit_event(struct perf_event *parent_event,
4986 struct task_struct *parent,
4987 struct perf_event_context *parent_ctx,
4988 struct task_struct *child,
4989 struct perf_event *group_leader,
4990 struct perf_event_context *child_ctx)
4992 struct perf_event *child_event;
4995 * Instead of creating recursive hierarchies of events,
4996 * we link inherited events back to the original parent,
4997 * which has a filp for sure, which we use as the reference
4998 * count:
5000 if (parent_event->parent)
5001 parent_event = parent_event->parent;
5003 child_event = perf_event_alloc(&parent_event->attr,
5004 parent_event->cpu, child_ctx,
5005 group_leader, parent_event,
5006 NULL, GFP_KERNEL);
5007 if (IS_ERR(child_event))
5008 return child_event;
5009 get_ctx(child_ctx);
5012 * Make the child state follow the state of the parent event,
5013 * not its attr.disabled bit. We hold the parent's mutex,
5014 * so we won't race with perf_event_{en, dis}able_family.
5016 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
5017 child_event->state = PERF_EVENT_STATE_INACTIVE;
5018 else
5019 child_event->state = PERF_EVENT_STATE_OFF;
5021 if (parent_event->attr.freq) {
5022 u64 sample_period = parent_event->hw.sample_period;
5023 struct hw_perf_event *hwc = &child_event->hw;
5025 hwc->sample_period = sample_period;
5026 hwc->last_period = sample_period;
5028 atomic64_set(&hwc->period_left, sample_period);
5031 child_event->overflow_handler = parent_event->overflow_handler;
5034 * Link it up in the child's context:
5036 add_event_to_ctx(child_event, child_ctx);
5039 * Get a reference to the parent filp - we will fput it
5040 * when the child event exits. This is safe to do because
5041 * we are in the parent and we know that the filp still
5042 * exists and has a nonzero count:
5044 atomic_long_inc(&parent_event->filp->f_count);
5047 * Link this into the parent event's child list
5049 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5050 mutex_lock(&parent_event->child_mutex);
5051 list_add_tail(&child_event->child_list, &parent_event->child_list);
5052 mutex_unlock(&parent_event->child_mutex);
5054 return child_event;
5057 static int inherit_group(struct perf_event *parent_event,
5058 struct task_struct *parent,
5059 struct perf_event_context *parent_ctx,
5060 struct task_struct *child,
5061 struct perf_event_context *child_ctx)
5063 struct perf_event *leader;
5064 struct perf_event *sub;
5065 struct perf_event *child_ctr;
5067 leader = inherit_event(parent_event, parent, parent_ctx,
5068 child, NULL, child_ctx);
5069 if (IS_ERR(leader))
5070 return PTR_ERR(leader);
5071 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
5072 child_ctr = inherit_event(sub, parent, parent_ctx,
5073 child, leader, child_ctx);
5074 if (IS_ERR(child_ctr))
5075 return PTR_ERR(child_ctr);
5077 return 0;
5080 static void sync_child_event(struct perf_event *child_event,
5081 struct task_struct *child)
5083 struct perf_event *parent_event = child_event->parent;
5084 u64 child_val;
5086 if (child_event->attr.inherit_stat)
5087 perf_event_read_event(child_event, child);
5089 child_val = atomic64_read(&child_event->count);
5092 * Add back the child's count to the parent's count:
5094 atomic64_add(child_val, &parent_event->count);
5095 atomic64_add(child_event->total_time_enabled,
5096 &parent_event->child_total_time_enabled);
5097 atomic64_add(child_event->total_time_running,
5098 &parent_event->child_total_time_running);
5101 * Remove this event from the parent's list
5103 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5104 mutex_lock(&parent_event->child_mutex);
5105 list_del_init(&child_event->child_list);
5106 mutex_unlock(&parent_event->child_mutex);
5109 * Release the parent event, if this was the last
5110 * reference to it.
5112 fput(parent_event->filp);
5115 static void
5116 __perf_event_exit_task(struct perf_event *child_event,
5117 struct perf_event_context *child_ctx,
5118 struct task_struct *child)
5120 struct perf_event *parent_event;
5122 perf_event_remove_from_context(child_event);
5124 parent_event = child_event->parent;
5126 * It can happen that parent exits first, and has events
5127 * that are still around due to the child reference. These
5128 * events need to be zapped - but otherwise linger.
5130 if (parent_event) {
5131 sync_child_event(child_event, child);
5132 free_event(child_event);
5137 * When a child task exits, feed back event values to parent events.
5139 void perf_event_exit_task(struct task_struct *child)
5141 struct perf_event *child_event, *tmp;
5142 struct perf_event_context *child_ctx;
5143 unsigned long flags;
5145 if (likely(!child->perf_event_ctxp)) {
5146 perf_event_task(child, NULL, 0);
5147 return;
5150 local_irq_save(flags);
5152 * We can't reschedule here because interrupts are disabled,
5153 * and either child is current or it is a task that can't be
5154 * scheduled, so we are now safe from rescheduling changing
5155 * our context.
5157 child_ctx = child->perf_event_ctxp;
5158 __perf_event_task_sched_out(child_ctx);
5161 * Take the context lock here so that if find_get_context is
5162 * reading child->perf_event_ctxp, we wait until it has
5163 * incremented the context's refcount before we do put_ctx below.
5165 raw_spin_lock(&child_ctx->lock);
5166 child->perf_event_ctxp = NULL;
5168 * If this context is a clone; unclone it so it can't get
5169 * swapped to another process while we're removing all
5170 * the events from it.
5172 unclone_ctx(child_ctx);
5173 update_context_time(child_ctx);
5174 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5177 * Report the task dead after unscheduling the events so that we
5178 * won't get any samples after PERF_RECORD_EXIT. We can however still
5179 * get a few PERF_RECORD_READ events.
5181 perf_event_task(child, child_ctx, 0);
5184 * We can recurse on the same lock type through:
5186 * __perf_event_exit_task()
5187 * sync_child_event()
5188 * fput(parent_event->filp)
5189 * perf_release()
5190 * mutex_lock(&ctx->mutex)
5192 * But since its the parent context it won't be the same instance.
5194 mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
5196 again:
5197 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5198 group_entry)
5199 __perf_event_exit_task(child_event, child_ctx, child);
5201 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5202 group_entry)
5203 __perf_event_exit_task(child_event, child_ctx, child);
5206 * If the last event was a group event, it will have appended all
5207 * its siblings to the list, but we obtained 'tmp' before that which
5208 * will still point to the list head terminating the iteration.
5210 if (!list_empty(&child_ctx->pinned_groups) ||
5211 !list_empty(&child_ctx->flexible_groups))
5212 goto again;
5214 mutex_unlock(&child_ctx->mutex);
5216 put_ctx(child_ctx);
5219 static void perf_free_event(struct perf_event *event,
5220 struct perf_event_context *ctx)
5222 struct perf_event *parent = event->parent;
5224 if (WARN_ON_ONCE(!parent))
5225 return;
5227 mutex_lock(&parent->child_mutex);
5228 list_del_init(&event->child_list);
5229 mutex_unlock(&parent->child_mutex);
5231 fput(parent->filp);
5233 list_del_event(event, ctx);
5234 free_event(event);
5238 * free an unexposed, unused context as created by inheritance by
5239 * init_task below, used by fork() in case of fail.
5241 void perf_event_free_task(struct task_struct *task)
5243 struct perf_event_context *ctx = task->perf_event_ctxp;
5244 struct perf_event *event, *tmp;
5246 if (!ctx)
5247 return;
5249 mutex_lock(&ctx->mutex);
5250 again:
5251 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5252 perf_free_event(event, ctx);
5254 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5255 group_entry)
5256 perf_free_event(event, ctx);
5258 if (!list_empty(&ctx->pinned_groups) ||
5259 !list_empty(&ctx->flexible_groups))
5260 goto again;
5262 mutex_unlock(&ctx->mutex);
5264 put_ctx(ctx);
5267 static int
5268 inherit_task_group(struct perf_event *event, struct task_struct *parent,
5269 struct perf_event_context *parent_ctx,
5270 struct task_struct *child,
5271 int *inherited_all)
5273 int ret;
5274 struct perf_event_context *child_ctx = child->perf_event_ctxp;
5276 if (!event->attr.inherit) {
5277 *inherited_all = 0;
5278 return 0;
5281 if (!child_ctx) {
5283 * This is executed from the parent task context, so
5284 * inherit events that have been marked for cloning.
5285 * First allocate and initialize a context for the
5286 * child.
5289 child_ctx = kzalloc(sizeof(struct perf_event_context),
5290 GFP_KERNEL);
5291 if (!child_ctx)
5292 return -ENOMEM;
5294 __perf_event_init_context(child_ctx, child);
5295 child->perf_event_ctxp = child_ctx;
5296 get_task_struct(child);
5299 ret = inherit_group(event, parent, parent_ctx,
5300 child, child_ctx);
5302 if (ret)
5303 *inherited_all = 0;
5305 return ret;
5310 * Initialize the perf_event context in task_struct
5312 int perf_event_init_task(struct task_struct *child)
5314 struct perf_event_context *child_ctx, *parent_ctx;
5315 struct perf_event_context *cloned_ctx;
5316 struct perf_event *event;
5317 struct task_struct *parent = current;
5318 int inherited_all = 1;
5319 int ret = 0;
5321 child->perf_event_ctxp = NULL;
5323 mutex_init(&child->perf_event_mutex);
5324 INIT_LIST_HEAD(&child->perf_event_list);
5326 if (likely(!parent->perf_event_ctxp))
5327 return 0;
5330 * If the parent's context is a clone, pin it so it won't get
5331 * swapped under us.
5333 parent_ctx = perf_pin_task_context(parent);
5336 * No need to check if parent_ctx != NULL here; since we saw
5337 * it non-NULL earlier, the only reason for it to become NULL
5338 * is if we exit, and since we're currently in the middle of
5339 * a fork we can't be exiting at the same time.
5343 * Lock the parent list. No need to lock the child - not PID
5344 * hashed yet and not running, so nobody can access it.
5346 mutex_lock(&parent_ctx->mutex);
5349 * We dont have to disable NMIs - we are only looking at
5350 * the list, not manipulating it:
5352 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
5353 ret = inherit_task_group(event, parent, parent_ctx, child,
5354 &inherited_all);
5355 if (ret)
5356 break;
5359 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
5360 ret = inherit_task_group(event, parent, parent_ctx, child,
5361 &inherited_all);
5362 if (ret)
5363 break;
5366 child_ctx = child->perf_event_ctxp;
5368 if (child_ctx && inherited_all) {
5370 * Mark the child context as a clone of the parent
5371 * context, or of whatever the parent is a clone of.
5372 * Note that if the parent is a clone, it could get
5373 * uncloned at any point, but that doesn't matter
5374 * because the list of events and the generation
5375 * count can't have changed since we took the mutex.
5377 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
5378 if (cloned_ctx) {
5379 child_ctx->parent_ctx = cloned_ctx;
5380 child_ctx->parent_gen = parent_ctx->parent_gen;
5381 } else {
5382 child_ctx->parent_ctx = parent_ctx;
5383 child_ctx->parent_gen = parent_ctx->generation;
5385 get_ctx(child_ctx->parent_ctx);
5388 mutex_unlock(&parent_ctx->mutex);
5390 perf_unpin_context(parent_ctx);
5392 return ret;
5395 static void __cpuinit perf_event_init_cpu(int cpu)
5397 struct perf_cpu_context *cpuctx;
5399 cpuctx = &per_cpu(perf_cpu_context, cpu);
5400 __perf_event_init_context(&cpuctx->ctx, NULL);
5402 spin_lock(&perf_resource_lock);
5403 cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5404 spin_unlock(&perf_resource_lock);
5406 hw_perf_event_setup(cpu);
5409 #ifdef CONFIG_HOTPLUG_CPU
5410 static void __perf_event_exit_cpu(void *info)
5412 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5413 struct perf_event_context *ctx = &cpuctx->ctx;
5414 struct perf_event *event, *tmp;
5416 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5417 __perf_event_remove_from_context(event);
5418 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
5419 __perf_event_remove_from_context(event);
5421 static void perf_event_exit_cpu(int cpu)
5423 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5424 struct perf_event_context *ctx = &cpuctx->ctx;
5426 mutex_lock(&ctx->mutex);
5427 smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5428 mutex_unlock(&ctx->mutex);
5430 #else
5431 static inline void perf_event_exit_cpu(int cpu) { }
5432 #endif
5434 static int __cpuinit
5435 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5437 unsigned int cpu = (long)hcpu;
5439 switch (action) {
5441 case CPU_UP_PREPARE:
5442 case CPU_UP_PREPARE_FROZEN:
5443 perf_event_init_cpu(cpu);
5444 break;
5446 case CPU_ONLINE:
5447 case CPU_ONLINE_FROZEN:
5448 hw_perf_event_setup_online(cpu);
5449 break;
5451 case CPU_DOWN_PREPARE:
5452 case CPU_DOWN_PREPARE_FROZEN:
5453 perf_event_exit_cpu(cpu);
5454 break;
5456 case CPU_DEAD:
5457 hw_perf_event_setup_offline(cpu);
5458 break;
5460 default:
5461 break;
5464 return NOTIFY_OK;
5468 * This has to have a higher priority than migration_notifier in sched.c.
5470 static struct notifier_block __cpuinitdata perf_cpu_nb = {
5471 .notifier_call = perf_cpu_notify,
5472 .priority = 20,
5475 void __init perf_event_init(void)
5477 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
5478 (void *)(long)smp_processor_id());
5479 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
5480 (void *)(long)smp_processor_id());
5481 register_cpu_notifier(&perf_cpu_nb);
5484 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
5486 return sprintf(buf, "%d\n", perf_reserved_percpu);
5489 static ssize_t
5490 perf_set_reserve_percpu(struct sysdev_class *class,
5491 const char *buf,
5492 size_t count)
5494 struct perf_cpu_context *cpuctx;
5495 unsigned long val;
5496 int err, cpu, mpt;
5498 err = strict_strtoul(buf, 10, &val);
5499 if (err)
5500 return err;
5501 if (val > perf_max_events)
5502 return -EINVAL;
5504 spin_lock(&perf_resource_lock);
5505 perf_reserved_percpu = val;
5506 for_each_online_cpu(cpu) {
5507 cpuctx = &per_cpu(perf_cpu_context, cpu);
5508 raw_spin_lock_irq(&cpuctx->ctx.lock);
5509 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
5510 perf_max_events - perf_reserved_percpu);
5511 cpuctx->max_pertask = mpt;
5512 raw_spin_unlock_irq(&cpuctx->ctx.lock);
5514 spin_unlock(&perf_resource_lock);
5516 return count;
5519 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
5521 return sprintf(buf, "%d\n", perf_overcommit);
5524 static ssize_t
5525 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
5527 unsigned long val;
5528 int err;
5530 err = strict_strtoul(buf, 10, &val);
5531 if (err)
5532 return err;
5533 if (val > 1)
5534 return -EINVAL;
5536 spin_lock(&perf_resource_lock);
5537 perf_overcommit = val;
5538 spin_unlock(&perf_resource_lock);
5540 return count;
5543 static SYSDEV_CLASS_ATTR(
5544 reserve_percpu,
5545 0644,
5546 perf_show_reserve_percpu,
5547 perf_set_reserve_percpu
5550 static SYSDEV_CLASS_ATTR(
5551 overcommit,
5552 0644,
5553 perf_show_overcommit,
5554 perf_set_overcommit
5557 static struct attribute *perfclass_attrs[] = {
5558 &attr_reserve_percpu.attr,
5559 &attr_overcommit.attr,
5560 NULL
5563 static struct attribute_group perfclass_attr_group = {
5564 .attrs = perfclass_attrs,
5565 .name = "perf_events",
5568 static int __init perf_event_sysfs_init(void)
5570 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
5571 &perfclass_attr_group);
5573 device_initcall(perf_event_sysfs_init);