1 #define DRV_NAME "advansys"
2 #define ASC_VERSION "3.4" /* AdvanSys Driver Version */
5 * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
7 * Copyright (c) 1995-2000 Advanced System Products, Inc.
8 * Copyright (c) 2000-2001 ConnectCom Solutions, Inc.
9 * Copyright (c) 2007 Matthew Wilcox <matthew@wil.cx>
10 * All Rights Reserved.
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
19 * As of March 8, 2000 Advanced System Products, Inc. (AdvanSys)
20 * changed its name to ConnectCom Solutions, Inc.
21 * On June 18, 2001 Initio Corp. acquired ConnectCom's SCSI assets
24 #include <linux/module.h>
25 #include <linux/string.h>
26 #include <linux/kernel.h>
27 #include <linux/types.h>
28 #include <linux/ioport.h>
29 #include <linux/interrupt.h>
30 #include <linux/delay.h>
31 #include <linux/slab.h>
33 #include <linux/proc_fs.h>
34 #include <linux/init.h>
35 #include <linux/blkdev.h>
36 #include <linux/isa.h>
37 #include <linux/eisa.h>
38 #include <linux/pci.h>
39 #include <linux/spinlock.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/firmware.h>
44 #include <asm/system.h>
47 #include <scsi/scsi_cmnd.h>
48 #include <scsi/scsi_device.h>
49 #include <scsi/scsi_tcq.h>
50 #include <scsi/scsi.h>
51 #include <scsi/scsi_host.h>
55 * 1. Although all of the necessary command mapping places have the
56 * appropriate dma_map.. APIs, the driver still processes its internal
57 * queue using bus_to_virt() and virt_to_bus() which are illegal under
58 * the API. The entire queue processing structure will need to be
59 * altered to fix this.
60 * 2. Need to add memory mapping workaround. Test the memory mapping.
61 * If it doesn't work revert to I/O port access. Can a test be done
63 * 3. Handle an interrupt not working. Keep an interrupt counter in
64 * the interrupt handler. In the timeout function if the interrupt
65 * has not occurred then print a message and run in polled mode.
66 * 4. Need to add support for target mode commands, cf. CAM XPT.
67 * 5. check DMA mapping functions for failure
68 * 6. Use scsi_transport_spi
69 * 7. advansys_info is not safe against multiple simultaneous callers
70 * 8. Add module_param to override ISA/VLB ioport array
72 #warning this driver is still not properly converted to the DMA API
74 /* Enable driver /proc statistics. */
75 #define ADVANSYS_STATS
77 /* Enable driver tracing. */
83 * Any instance where a 32-bit long or pointer type is assumed
84 * for precision or HW defined structures, the following define
85 * types must be used. In Linux the char, short, and int types
86 * are all consistent at 8, 16, and 32 bits respectively. Pointers
87 * and long types are 64 bits on Alpha and UltraSPARC.
89 #define ASC_PADDR __u32 /* Physical/Bus address data type. */
90 #define ASC_VADDR __u32 /* Virtual address data type. */
91 #define ASC_DCNT __u32 /* Unsigned Data count type. */
92 #define ASC_SDCNT __s32 /* Signed Data count type. */
94 typedef unsigned char uchar
;
104 #define UW_ERR (uint)(0xFFFF)
105 #define isodd_word(val) ((((uint)val) & (uint)0x0001) != 0)
107 #define PCI_VENDOR_ID_ASP 0x10cd
108 #define PCI_DEVICE_ID_ASP_1200A 0x1100
109 #define PCI_DEVICE_ID_ASP_ABP940 0x1200
110 #define PCI_DEVICE_ID_ASP_ABP940U 0x1300
111 #define PCI_DEVICE_ID_ASP_ABP940UW 0x2300
112 #define PCI_DEVICE_ID_38C0800_REV1 0x2500
113 #define PCI_DEVICE_ID_38C1600_REV1 0x2700
116 * Enable CC_VERY_LONG_SG_LIST to support up to 64K element SG lists.
117 * The SRB structure will have to be changed and the ASC_SRB2SCSIQ()
118 * macro re-defined to be able to obtain a ASC_SCSI_Q pointer from the
121 #define CC_VERY_LONG_SG_LIST 0
122 #define ASC_SRB2SCSIQ(srb_ptr) (srb_ptr)
124 #define PortAddr unsigned int /* port address size */
125 #define inp(port) inb(port)
126 #define outp(port, byte) outb((byte), (port))
128 #define inpw(port) inw(port)
129 #define outpw(port, word) outw((word), (port))
131 #define ASC_MAX_SG_QUEUE 7
132 #define ASC_MAX_SG_LIST 255
134 #define ASC_CS_TYPE unsigned short
136 #define ASC_IS_ISA (0x0001)
137 #define ASC_IS_ISAPNP (0x0081)
138 #define ASC_IS_EISA (0x0002)
139 #define ASC_IS_PCI (0x0004)
140 #define ASC_IS_PCI_ULTRA (0x0104)
141 #define ASC_IS_PCMCIA (0x0008)
142 #define ASC_IS_MCA (0x0020)
143 #define ASC_IS_VL (0x0040)
144 #define ASC_IS_WIDESCSI_16 (0x0100)
145 #define ASC_IS_WIDESCSI_32 (0x0200)
146 #define ASC_IS_BIG_ENDIAN (0x8000)
148 #define ASC_CHIP_MIN_VER_VL (0x01)
149 #define ASC_CHIP_MAX_VER_VL (0x07)
150 #define ASC_CHIP_MIN_VER_PCI (0x09)
151 #define ASC_CHIP_MAX_VER_PCI (0x0F)
152 #define ASC_CHIP_VER_PCI_BIT (0x08)
153 #define ASC_CHIP_MIN_VER_ISA (0x11)
154 #define ASC_CHIP_MIN_VER_ISA_PNP (0x21)
155 #define ASC_CHIP_MAX_VER_ISA (0x27)
156 #define ASC_CHIP_VER_ISA_BIT (0x30)
157 #define ASC_CHIP_VER_ISAPNP_BIT (0x20)
158 #define ASC_CHIP_VER_ASYN_BUG (0x21)
159 #define ASC_CHIP_VER_PCI 0x08
160 #define ASC_CHIP_VER_PCI_ULTRA_3150 (ASC_CHIP_VER_PCI | 0x02)
161 #define ASC_CHIP_VER_PCI_ULTRA_3050 (ASC_CHIP_VER_PCI | 0x03)
162 #define ASC_CHIP_MIN_VER_EISA (0x41)
163 #define ASC_CHIP_MAX_VER_EISA (0x47)
164 #define ASC_CHIP_VER_EISA_BIT (0x40)
165 #define ASC_CHIP_LATEST_VER_EISA ((ASC_CHIP_MIN_VER_EISA - 1) + 3)
166 #define ASC_MAX_VL_DMA_COUNT (0x07FFFFFFL)
167 #define ASC_MAX_PCI_DMA_COUNT (0xFFFFFFFFL)
168 #define ASC_MAX_ISA_DMA_COUNT (0x00FFFFFFL)
170 #define ASC_SCSI_ID_BITS 3
171 #define ASC_SCSI_TIX_TYPE uchar
172 #define ASC_ALL_DEVICE_BIT_SET 0xFF
173 #define ASC_SCSI_BIT_ID_TYPE uchar
174 #define ASC_MAX_TID 7
175 #define ASC_MAX_LUN 7
176 #define ASC_SCSI_WIDTH_BIT_SET 0xFF
177 #define ASC_MAX_SENSE_LEN 32
178 #define ASC_MIN_SENSE_LEN 14
179 #define ASC_SCSI_RESET_HOLD_TIME_US 60
182 * Narrow boards only support 12-byte commands, while wide boards
183 * extend to 16-byte commands.
185 #define ASC_MAX_CDB_LEN 12
186 #define ADV_MAX_CDB_LEN 16
188 #define MS_SDTR_LEN 0x03
189 #define MS_WDTR_LEN 0x02
191 #define ASC_SG_LIST_PER_Q 7
193 #define QS_READY 0x01
194 #define QS_DISC1 0x02
195 #define QS_DISC2 0x04
197 #define QS_ABORTED 0x40
199 #define QC_NO_CALLBACK 0x01
200 #define QC_SG_SWAP_QUEUE 0x02
201 #define QC_SG_HEAD 0x04
202 #define QC_DATA_IN 0x08
203 #define QC_DATA_OUT 0x10
204 #define QC_URGENT 0x20
205 #define QC_MSG_OUT 0x40
206 #define QC_REQ_SENSE 0x80
207 #define QCSG_SG_XFER_LIST 0x02
208 #define QCSG_SG_XFER_MORE 0x04
209 #define QCSG_SG_XFER_END 0x08
210 #define QD_IN_PROGRESS 0x00
211 #define QD_NO_ERROR 0x01
212 #define QD_ABORTED_BY_HOST 0x02
213 #define QD_WITH_ERROR 0x04
214 #define QD_INVALID_REQUEST 0x80
215 #define QD_INVALID_HOST_NUM 0x81
216 #define QD_INVALID_DEVICE 0x82
217 #define QD_ERR_INTERNAL 0xFF
218 #define QHSTA_NO_ERROR 0x00
219 #define QHSTA_M_SEL_TIMEOUT 0x11
220 #define QHSTA_M_DATA_OVER_RUN 0x12
221 #define QHSTA_M_DATA_UNDER_RUN 0x12
222 #define QHSTA_M_UNEXPECTED_BUS_FREE 0x13
223 #define QHSTA_M_BAD_BUS_PHASE_SEQ 0x14
224 #define QHSTA_D_QDONE_SG_LIST_CORRUPTED 0x21
225 #define QHSTA_D_ASC_DVC_ERROR_CODE_SET 0x22
226 #define QHSTA_D_HOST_ABORT_FAILED 0x23
227 #define QHSTA_D_EXE_SCSI_Q_FAILED 0x24
228 #define QHSTA_D_EXE_SCSI_Q_BUSY_TIMEOUT 0x25
229 #define QHSTA_D_ASPI_NO_BUF_POOL 0x26
230 #define QHSTA_M_WTM_TIMEOUT 0x41
231 #define QHSTA_M_BAD_CMPL_STATUS_IN 0x42
232 #define QHSTA_M_NO_AUTO_REQ_SENSE 0x43
233 #define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44
234 #define QHSTA_M_TARGET_STATUS_BUSY 0x45
235 #define QHSTA_M_BAD_TAG_CODE 0x46
236 #define QHSTA_M_BAD_QUEUE_FULL_OR_BUSY 0x47
237 #define QHSTA_M_HUNG_REQ_SCSI_BUS_RESET 0x48
238 #define QHSTA_D_LRAM_CMP_ERROR 0x81
239 #define QHSTA_M_MICRO_CODE_ERROR_HALT 0xA1
240 #define ASC_FLAG_SCSIQ_REQ 0x01
241 #define ASC_FLAG_BIOS_SCSIQ_REQ 0x02
242 #define ASC_FLAG_BIOS_ASYNC_IO 0x04
243 #define ASC_FLAG_SRB_LINEAR_ADDR 0x08
244 #define ASC_FLAG_WIN16 0x10
245 #define ASC_FLAG_WIN32 0x20
246 #define ASC_FLAG_ISA_OVER_16MB 0x40
247 #define ASC_FLAG_DOS_VM_CALLBACK 0x80
248 #define ASC_TAG_FLAG_EXTRA_BYTES 0x10
249 #define ASC_TAG_FLAG_DISABLE_DISCONNECT 0x04
250 #define ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX 0x08
251 #define ASC_TAG_FLAG_DISABLE_CHK_COND_INT_HOST 0x40
252 #define ASC_SCSIQ_CPY_BEG 4
253 #define ASC_SCSIQ_SGHD_CPY_BEG 2
254 #define ASC_SCSIQ_B_FWD 0
255 #define ASC_SCSIQ_B_BWD 1
256 #define ASC_SCSIQ_B_STATUS 2
257 #define ASC_SCSIQ_B_QNO 3
258 #define ASC_SCSIQ_B_CNTL 4
259 #define ASC_SCSIQ_B_SG_QUEUE_CNT 5
260 #define ASC_SCSIQ_D_DATA_ADDR 8
261 #define ASC_SCSIQ_D_DATA_CNT 12
262 #define ASC_SCSIQ_B_SENSE_LEN 20
263 #define ASC_SCSIQ_DONE_INFO_BEG 22
264 #define ASC_SCSIQ_D_SRBPTR 22
265 #define ASC_SCSIQ_B_TARGET_IX 26
266 #define ASC_SCSIQ_B_CDB_LEN 28
267 #define ASC_SCSIQ_B_TAG_CODE 29
268 #define ASC_SCSIQ_W_VM_ID 30
269 #define ASC_SCSIQ_DONE_STATUS 32
270 #define ASC_SCSIQ_HOST_STATUS 33
271 #define ASC_SCSIQ_SCSI_STATUS 34
272 #define ASC_SCSIQ_CDB_BEG 36
273 #define ASC_SCSIQ_DW_REMAIN_XFER_ADDR 56
274 #define ASC_SCSIQ_DW_REMAIN_XFER_CNT 60
275 #define ASC_SCSIQ_B_FIRST_SG_WK_QP 48
276 #define ASC_SCSIQ_B_SG_WK_QP 49
277 #define ASC_SCSIQ_B_SG_WK_IX 50
278 #define ASC_SCSIQ_W_ALT_DC1 52
279 #define ASC_SCSIQ_B_LIST_CNT 6
280 #define ASC_SCSIQ_B_CUR_LIST_CNT 7
281 #define ASC_SGQ_B_SG_CNTL 4
282 #define ASC_SGQ_B_SG_HEAD_QP 5
283 #define ASC_SGQ_B_SG_LIST_CNT 6
284 #define ASC_SGQ_B_SG_CUR_LIST_CNT 7
285 #define ASC_SGQ_LIST_BEG 8
286 #define ASC_DEF_SCSI1_QNG 4
287 #define ASC_MAX_SCSI1_QNG 4
288 #define ASC_DEF_SCSI2_QNG 16
289 #define ASC_MAX_SCSI2_QNG 32
290 #define ASC_TAG_CODE_MASK 0x23
291 #define ASC_STOP_REQ_RISC_STOP 0x01
292 #define ASC_STOP_ACK_RISC_STOP 0x03
293 #define ASC_STOP_CLEAN_UP_BUSY_Q 0x10
294 #define ASC_STOP_CLEAN_UP_DISC_Q 0x20
295 #define ASC_STOP_HOST_REQ_RISC_HALT 0x40
296 #define ASC_TIDLUN_TO_IX(tid, lun) (ASC_SCSI_TIX_TYPE)((tid) + ((lun)<<ASC_SCSI_ID_BITS))
297 #define ASC_TID_TO_TARGET_ID(tid) (ASC_SCSI_BIT_ID_TYPE)(0x01 << (tid))
298 #define ASC_TIX_TO_TARGET_ID(tix) (0x01 << ((tix) & ASC_MAX_TID))
299 #define ASC_TIX_TO_TID(tix) ((tix) & ASC_MAX_TID)
300 #define ASC_TID_TO_TIX(tid) ((tid) & ASC_MAX_TID)
301 #define ASC_TIX_TO_LUN(tix) (((tix) >> ASC_SCSI_ID_BITS) & ASC_MAX_LUN)
302 #define ASC_QNO_TO_QADDR(q_no) ((ASC_QADR_BEG)+((int)(q_no) << 6))
304 typedef struct asc_scsiq_1
{
313 ASC_PADDR sense_addr
;
318 typedef struct asc_scsiq_2
{
327 typedef struct asc_scsiq_3
{
334 typedef struct asc_scsiq_4
{
335 uchar cdb
[ASC_MAX_CDB_LEN
];
336 uchar y_first_sg_list_qp
;
337 uchar y_working_sg_qp
;
338 uchar y_working_sg_ix
;
341 ushort x_reconnect_rtn
;
342 ASC_PADDR x_saved_data_addr
;
343 ASC_DCNT x_saved_data_cnt
;
346 typedef struct asc_q_done_info
{
355 ASC_DCNT remain_bytes
;
358 typedef struct asc_sg_list
{
363 typedef struct asc_sg_head
{
366 ushort entry_to_copy
;
368 ASC_SG_LIST sg_list
[0];
371 typedef struct asc_scsi_q
{
375 ASC_SG_HEAD
*sg_head
;
376 ushort remain_sg_entry_cnt
;
377 ushort next_sg_index
;
380 typedef struct asc_scsi_req_q
{
384 ASC_SG_HEAD
*sg_head
;
387 uchar cdb
[ASC_MAX_CDB_LEN
];
388 uchar sense
[ASC_MIN_SENSE_LEN
];
391 typedef struct asc_scsi_bios_req_q
{
395 ASC_SG_HEAD
*sg_head
;
398 uchar cdb
[ASC_MAX_CDB_LEN
];
399 uchar sense
[ASC_MIN_SENSE_LEN
];
400 } ASC_SCSI_BIOS_REQ_Q
;
402 typedef struct asc_risc_q
{
411 typedef struct asc_sg_list_q
{
417 uchar sg_cur_list_cnt
;
420 typedef struct asc_risc_sg_list_q
{
424 ASC_SG_LIST sg_list
[7];
425 } ASC_RISC_SG_LIST_Q
;
427 #define ASCQ_ERR_Q_STATUS 0x0D
428 #define ASCQ_ERR_CUR_QNG 0x17
429 #define ASCQ_ERR_SG_Q_LINKS 0x18
430 #define ASCQ_ERR_ISR_RE_ENTRY 0x1A
431 #define ASCQ_ERR_CRITICAL_RE_ENTRY 0x1B
432 #define ASCQ_ERR_ISR_ON_CRITICAL 0x1C
435 * Warning code values are set in ASC_DVC_VAR 'warn_code'.
437 #define ASC_WARN_NO_ERROR 0x0000
438 #define ASC_WARN_IO_PORT_ROTATE 0x0001
439 #define ASC_WARN_EEPROM_CHKSUM 0x0002
440 #define ASC_WARN_IRQ_MODIFIED 0x0004
441 #define ASC_WARN_AUTO_CONFIG 0x0008
442 #define ASC_WARN_CMD_QNG_CONFLICT 0x0010
443 #define ASC_WARN_EEPROM_RECOVER 0x0020
444 #define ASC_WARN_CFG_MSW_RECOVER 0x0040
447 * Error code values are set in {ASC/ADV}_DVC_VAR 'err_code'.
449 #define ASC_IERR_NO_CARRIER 0x0001 /* No more carrier memory */
450 #define ASC_IERR_MCODE_CHKSUM 0x0002 /* micro code check sum error */
451 #define ASC_IERR_SET_PC_ADDR 0x0004
452 #define ASC_IERR_START_STOP_CHIP 0x0008 /* start/stop chip failed */
453 #define ASC_IERR_ILLEGAL_CONNECTION 0x0010 /* Illegal cable connection */
454 #define ASC_IERR_SINGLE_END_DEVICE 0x0020 /* SE device on DIFF bus */
455 #define ASC_IERR_REVERSED_CABLE 0x0040 /* Narrow flat cable reversed */
456 #define ASC_IERR_SET_SCSI_ID 0x0080 /* set SCSI ID failed */
457 #define ASC_IERR_HVD_DEVICE 0x0100 /* HVD device on LVD port */
458 #define ASC_IERR_BAD_SIGNATURE 0x0200 /* signature not found */
459 #define ASC_IERR_NO_BUS_TYPE 0x0400
460 #define ASC_IERR_BIST_PRE_TEST 0x0800 /* BIST pre-test error */
461 #define ASC_IERR_BIST_RAM_TEST 0x1000 /* BIST RAM test error */
462 #define ASC_IERR_BAD_CHIPTYPE 0x2000 /* Invalid chip_type setting */
464 #define ASC_DEF_MAX_TOTAL_QNG (0xF0)
465 #define ASC_MIN_TAG_Q_PER_DVC (0x04)
466 #define ASC_MIN_FREE_Q (0x02)
467 #define ASC_MIN_TOTAL_QNG ((ASC_MAX_SG_QUEUE)+(ASC_MIN_FREE_Q))
468 #define ASC_MAX_TOTAL_QNG 240
469 #define ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG 16
470 #define ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG 8
471 #define ASC_MAX_PCI_INRAM_TOTAL_QNG 20
472 #define ASC_MAX_INRAM_TAG_QNG 16
473 #define ASC_IOADR_GAP 0x10
474 #define ASC_SYN_MAX_OFFSET 0x0F
475 #define ASC_DEF_SDTR_OFFSET 0x0F
476 #define ASC_SDTR_ULTRA_PCI_10MB_INDEX 0x02
477 #define ASYN_SDTR_DATA_FIX_PCI_REV_AB 0x41
479 /* The narrow chip only supports a limited selection of transfer rates.
480 * These are encoded in the range 0..7 or 0..15 depending whether the chip
481 * is Ultra-capable or not. These tables let us convert from one to the other.
483 static const unsigned char asc_syn_xfer_period
[8] = {
484 25, 30, 35, 40, 50, 60, 70, 85
487 static const unsigned char asc_syn_ultra_xfer_period
[16] = {
488 12, 19, 25, 32, 38, 44, 50, 57, 63, 69, 75, 82, 88, 94, 100, 107
491 typedef struct ext_msg
{
497 uchar sdtr_xfer_period
;
498 uchar sdtr_req_ack_offset
;
513 #define xfer_period u_ext_msg.sdtr.sdtr_xfer_period
514 #define req_ack_offset u_ext_msg.sdtr.sdtr_req_ack_offset
515 #define wdtr_width u_ext_msg.wdtr.wdtr_width
516 #define mdp_b3 u_ext_msg.mdp_b3
517 #define mdp_b2 u_ext_msg.mdp_b2
518 #define mdp_b1 u_ext_msg.mdp_b1
519 #define mdp_b0 u_ext_msg.mdp_b0
521 typedef struct asc_dvc_cfg
{
522 ASC_SCSI_BIT_ID_TYPE can_tagged_qng
;
523 ASC_SCSI_BIT_ID_TYPE cmd_qng_enabled
;
524 ASC_SCSI_BIT_ID_TYPE disc_enable
;
525 ASC_SCSI_BIT_ID_TYPE sdtr_enable
;
528 uchar isa_dma_channel
;
531 ushort mcode_version
;
532 uchar max_tag_qng
[ASC_MAX_TID
+ 1];
533 uchar sdtr_period_offset
[ASC_MAX_TID
+ 1];
534 uchar adapter_info
[6];
537 #define ASC_DEF_DVC_CNTL 0xFFFF
538 #define ASC_DEF_CHIP_SCSI_ID 7
539 #define ASC_DEF_ISA_DMA_SPEED 4
540 #define ASC_INIT_STATE_BEG_GET_CFG 0x0001
541 #define ASC_INIT_STATE_END_GET_CFG 0x0002
542 #define ASC_INIT_STATE_BEG_SET_CFG 0x0004
543 #define ASC_INIT_STATE_END_SET_CFG 0x0008
544 #define ASC_INIT_STATE_BEG_LOAD_MC 0x0010
545 #define ASC_INIT_STATE_END_LOAD_MC 0x0020
546 #define ASC_INIT_STATE_BEG_INQUIRY 0x0040
547 #define ASC_INIT_STATE_END_INQUIRY 0x0080
548 #define ASC_INIT_RESET_SCSI_DONE 0x0100
549 #define ASC_INIT_STATE_WITHOUT_EEP 0x8000
550 #define ASC_BUG_FIX_IF_NOT_DWB 0x0001
551 #define ASC_BUG_FIX_ASYN_USE_SYN 0x0002
552 #define ASC_MIN_TAGGED_CMD 7
553 #define ASC_MAX_SCSI_RESET_WAIT 30
554 #define ASC_OVERRUN_BSIZE 64
556 struct asc_dvc_var
; /* Forward Declaration. */
558 typedef struct asc_dvc_var
{
564 ASC_SCSI_BIT_ID_TYPE init_sdtr
;
565 ASC_SCSI_BIT_ID_TYPE sdtr_done
;
566 ASC_SCSI_BIT_ID_TYPE use_tagged_qng
;
567 ASC_SCSI_BIT_ID_TYPE unit_not_ready
;
568 ASC_SCSI_BIT_ID_TYPE queue_full_or_busy
;
569 ASC_SCSI_BIT_ID_TYPE start_motor
;
571 dma_addr_t overrun_dma
;
572 uchar scsi_reset_wait
;
577 uchar in_critical_cnt
;
578 uchar last_q_shortage
;
580 uchar cur_dvc_qng
[ASC_MAX_TID
+ 1];
581 uchar max_dvc_qng
[ASC_MAX_TID
+ 1];
582 ASC_SCSI_Q
*scsiq_busy_head
[ASC_MAX_TID
+ 1];
583 ASC_SCSI_Q
*scsiq_busy_tail
[ASC_MAX_TID
+ 1];
584 const uchar
*sdtr_period_tbl
;
586 ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer_always
;
589 uchar dos_int13_table
[ASC_MAX_TID
+ 1];
590 ASC_DCNT max_dma_count
;
591 ASC_SCSI_BIT_ID_TYPE no_scam
;
592 ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer
;
593 uchar min_sdtr_index
;
594 uchar max_sdtr_index
;
595 struct asc_board
*drv_ptr
;
601 typedef struct asc_dvc_inq_info
{
602 uchar type
[ASC_MAX_TID
+ 1][ASC_MAX_LUN
+ 1];
605 typedef struct asc_cap_info
{
610 typedef struct asc_cap_info_array
{
611 ASC_CAP_INFO cap_info
[ASC_MAX_TID
+ 1][ASC_MAX_LUN
+ 1];
612 } ASC_CAP_INFO_ARRAY
;
614 #define ASC_MCNTL_NO_SEL_TIMEOUT (ushort)0x0001
615 #define ASC_MCNTL_NULL_TARGET (ushort)0x0002
616 #define ASC_CNTL_INITIATOR (ushort)0x0001
617 #define ASC_CNTL_BIOS_GT_1GB (ushort)0x0002
618 #define ASC_CNTL_BIOS_GT_2_DISK (ushort)0x0004
619 #define ASC_CNTL_BIOS_REMOVABLE (ushort)0x0008
620 #define ASC_CNTL_NO_SCAM (ushort)0x0010
621 #define ASC_CNTL_INT_MULTI_Q (ushort)0x0080
622 #define ASC_CNTL_NO_LUN_SUPPORT (ushort)0x0040
623 #define ASC_CNTL_NO_VERIFY_COPY (ushort)0x0100
624 #define ASC_CNTL_RESET_SCSI (ushort)0x0200
625 #define ASC_CNTL_INIT_INQUIRY (ushort)0x0400
626 #define ASC_CNTL_INIT_VERBOSE (ushort)0x0800
627 #define ASC_CNTL_SCSI_PARITY (ushort)0x1000
628 #define ASC_CNTL_BURST_MODE (ushort)0x2000
629 #define ASC_CNTL_SDTR_ENABLE_ULTRA (ushort)0x4000
630 #define ASC_EEP_DVC_CFG_BEG_VL 2
631 #define ASC_EEP_MAX_DVC_ADDR_VL 15
632 #define ASC_EEP_DVC_CFG_BEG 32
633 #define ASC_EEP_MAX_DVC_ADDR 45
634 #define ASC_EEP_MAX_RETRY 20
637 * These macros keep the chip SCSI id and ISA DMA speed
638 * bitfields in board order. C bitfields aren't portable
639 * between big and little-endian platforms so they are
643 #define ASC_EEP_GET_CHIP_ID(cfg) ((cfg)->id_speed & 0x0f)
644 #define ASC_EEP_GET_DMA_SPD(cfg) (((cfg)->id_speed & 0xf0) >> 4)
645 #define ASC_EEP_SET_CHIP_ID(cfg, sid) \
646 ((cfg)->id_speed = ((cfg)->id_speed & 0xf0) | ((sid) & ASC_MAX_TID))
647 #define ASC_EEP_SET_DMA_SPD(cfg, spd) \
648 ((cfg)->id_speed = ((cfg)->id_speed & 0x0f) | ((spd) & 0x0f) << 4)
650 typedef struct asceep_config
{
662 uchar id_speed
; /* low order 4 bits is chip scsi id */
663 /* high order 4 bits is isa dma speed */
664 uchar dos_int13_table
[ASC_MAX_TID
+ 1];
665 uchar adapter_info
[6];
670 #define ASC_EEP_CMD_READ 0x80
671 #define ASC_EEP_CMD_WRITE 0x40
672 #define ASC_EEP_CMD_WRITE_ABLE 0x30
673 #define ASC_EEP_CMD_WRITE_DISABLE 0x00
674 #define ASCV_MSGOUT_BEG 0x0000
675 #define ASCV_MSGOUT_SDTR_PERIOD (ASCV_MSGOUT_BEG+3)
676 #define ASCV_MSGOUT_SDTR_OFFSET (ASCV_MSGOUT_BEG+4)
677 #define ASCV_BREAK_SAVED_CODE (ushort)0x0006
678 #define ASCV_MSGIN_BEG (ASCV_MSGOUT_BEG+8)
679 #define ASCV_MSGIN_SDTR_PERIOD (ASCV_MSGIN_BEG+3)
680 #define ASCV_MSGIN_SDTR_OFFSET (ASCV_MSGIN_BEG+4)
681 #define ASCV_SDTR_DATA_BEG (ASCV_MSGIN_BEG+8)
682 #define ASCV_SDTR_DONE_BEG (ASCV_SDTR_DATA_BEG+8)
683 #define ASCV_MAX_DVC_QNG_BEG (ushort)0x0020
684 #define ASCV_BREAK_ADDR (ushort)0x0028
685 #define ASCV_BREAK_NOTIFY_COUNT (ushort)0x002A
686 #define ASCV_BREAK_CONTROL (ushort)0x002C
687 #define ASCV_BREAK_HIT_COUNT (ushort)0x002E
689 #define ASCV_ASCDVC_ERR_CODE_W (ushort)0x0030
690 #define ASCV_MCODE_CHKSUM_W (ushort)0x0032
691 #define ASCV_MCODE_SIZE_W (ushort)0x0034
692 #define ASCV_STOP_CODE_B (ushort)0x0036
693 #define ASCV_DVC_ERR_CODE_B (ushort)0x0037
694 #define ASCV_OVERRUN_PADDR_D (ushort)0x0038
695 #define ASCV_OVERRUN_BSIZE_D (ushort)0x003C
696 #define ASCV_HALTCODE_W (ushort)0x0040
697 #define ASCV_CHKSUM_W (ushort)0x0042
698 #define ASCV_MC_DATE_W (ushort)0x0044
699 #define ASCV_MC_VER_W (ushort)0x0046
700 #define ASCV_NEXTRDY_B (ushort)0x0048
701 #define ASCV_DONENEXT_B (ushort)0x0049
702 #define ASCV_USE_TAGGED_QNG_B (ushort)0x004A
703 #define ASCV_SCSIBUSY_B (ushort)0x004B
704 #define ASCV_Q_DONE_IN_PROGRESS_B (ushort)0x004C
705 #define ASCV_CURCDB_B (ushort)0x004D
706 #define ASCV_RCLUN_B (ushort)0x004E
707 #define ASCV_BUSY_QHEAD_B (ushort)0x004F
708 #define ASCV_DISC1_QHEAD_B (ushort)0x0050
709 #define ASCV_DISC_ENABLE_B (ushort)0x0052
710 #define ASCV_CAN_TAGGED_QNG_B (ushort)0x0053
711 #define ASCV_HOSTSCSI_ID_B (ushort)0x0055
712 #define ASCV_MCODE_CNTL_B (ushort)0x0056
713 #define ASCV_NULL_TARGET_B (ushort)0x0057
714 #define ASCV_FREE_Q_HEAD_W (ushort)0x0058
715 #define ASCV_DONE_Q_TAIL_W (ushort)0x005A
716 #define ASCV_FREE_Q_HEAD_B (ushort)(ASCV_FREE_Q_HEAD_W+1)
717 #define ASCV_DONE_Q_TAIL_B (ushort)(ASCV_DONE_Q_TAIL_W+1)
718 #define ASCV_HOST_FLAG_B (ushort)0x005D
719 #define ASCV_TOTAL_READY_Q_B (ushort)0x0064
720 #define ASCV_VER_SERIAL_B (ushort)0x0065
721 #define ASCV_HALTCODE_SAVED_W (ushort)0x0066
722 #define ASCV_WTM_FLAG_B (ushort)0x0068
723 #define ASCV_RISC_FLAG_B (ushort)0x006A
724 #define ASCV_REQ_SG_LIST_QP (ushort)0x006B
725 #define ASC_HOST_FLAG_IN_ISR 0x01
726 #define ASC_HOST_FLAG_ACK_INT 0x02
727 #define ASC_RISC_FLAG_GEN_INT 0x01
728 #define ASC_RISC_FLAG_REQ_SG_LIST 0x02
729 #define IOP_CTRL (0x0F)
730 #define IOP_STATUS (0x0E)
731 #define IOP_INT_ACK IOP_STATUS
732 #define IOP_REG_IFC (0x0D)
733 #define IOP_SYN_OFFSET (0x0B)
734 #define IOP_EXTRA_CONTROL (0x0D)
735 #define IOP_REG_PC (0x0C)
736 #define IOP_RAM_ADDR (0x0A)
737 #define IOP_RAM_DATA (0x08)
738 #define IOP_EEP_DATA (0x06)
739 #define IOP_EEP_CMD (0x07)
740 #define IOP_VERSION (0x03)
741 #define IOP_CONFIG_HIGH (0x04)
742 #define IOP_CONFIG_LOW (0x02)
743 #define IOP_SIG_BYTE (0x01)
744 #define IOP_SIG_WORD (0x00)
745 #define IOP_REG_DC1 (0x0E)
746 #define IOP_REG_DC0 (0x0C)
747 #define IOP_REG_SB (0x0B)
748 #define IOP_REG_DA1 (0x0A)
749 #define IOP_REG_DA0 (0x08)
750 #define IOP_REG_SC (0x09)
751 #define IOP_DMA_SPEED (0x07)
752 #define IOP_REG_FLAG (0x07)
753 #define IOP_FIFO_H (0x06)
754 #define IOP_FIFO_L (0x04)
755 #define IOP_REG_ID (0x05)
756 #define IOP_REG_QP (0x03)
757 #define IOP_REG_IH (0x02)
758 #define IOP_REG_IX (0x01)
759 #define IOP_REG_AX (0x00)
760 #define IFC_REG_LOCK (0x00)
761 #define IFC_REG_UNLOCK (0x09)
762 #define IFC_WR_EN_FILTER (0x10)
763 #define IFC_RD_NO_EEPROM (0x10)
764 #define IFC_SLEW_RATE (0x20)
765 #define IFC_ACT_NEG (0x40)
766 #define IFC_INP_FILTER (0x80)
767 #define IFC_INIT_DEFAULT (IFC_ACT_NEG | IFC_REG_UNLOCK)
768 #define SC_SEL (uchar)(0x80)
769 #define SC_BSY (uchar)(0x40)
770 #define SC_ACK (uchar)(0x20)
771 #define SC_REQ (uchar)(0x10)
772 #define SC_ATN (uchar)(0x08)
773 #define SC_IO (uchar)(0x04)
774 #define SC_CD (uchar)(0x02)
775 #define SC_MSG (uchar)(0x01)
776 #define SEC_SCSI_CTL (uchar)(0x80)
777 #define SEC_ACTIVE_NEGATE (uchar)(0x40)
778 #define SEC_SLEW_RATE (uchar)(0x20)
779 #define SEC_ENABLE_FILTER (uchar)(0x10)
780 #define ASC_HALT_EXTMSG_IN (ushort)0x8000
781 #define ASC_HALT_CHK_CONDITION (ushort)0x8100
782 #define ASC_HALT_SS_QUEUE_FULL (ushort)0x8200
783 #define ASC_HALT_DISABLE_ASYN_USE_SYN_FIX (ushort)0x8300
784 #define ASC_HALT_ENABLE_ASYN_USE_SYN_FIX (ushort)0x8400
785 #define ASC_HALT_SDTR_REJECTED (ushort)0x4000
786 #define ASC_HALT_HOST_COPY_SG_LIST_TO_RISC ( ushort )0x2000
787 #define ASC_MAX_QNO 0xF8
788 #define ASC_DATA_SEC_BEG (ushort)0x0080
789 #define ASC_DATA_SEC_END (ushort)0x0080
790 #define ASC_CODE_SEC_BEG (ushort)0x0080
791 #define ASC_CODE_SEC_END (ushort)0x0080
792 #define ASC_QADR_BEG (0x4000)
793 #define ASC_QADR_USED (ushort)(ASC_MAX_QNO * 64)
794 #define ASC_QADR_END (ushort)0x7FFF
795 #define ASC_QLAST_ADR (ushort)0x7FC0
796 #define ASC_QBLK_SIZE 0x40
797 #define ASC_BIOS_DATA_QBEG 0xF8
798 #define ASC_MIN_ACTIVE_QNO 0x01
799 #define ASC_QLINK_END 0xFF
800 #define ASC_EEPROM_WORDS 0x10
801 #define ASC_MAX_MGS_LEN 0x10
802 #define ASC_BIOS_ADDR_DEF 0xDC00
803 #define ASC_BIOS_SIZE 0x3800
804 #define ASC_BIOS_RAM_OFF 0x3800
805 #define ASC_BIOS_RAM_SIZE 0x800
806 #define ASC_BIOS_MIN_ADDR 0xC000
807 #define ASC_BIOS_MAX_ADDR 0xEC00
808 #define ASC_BIOS_BANK_SIZE 0x0400
809 #define ASC_MCODE_START_ADDR 0x0080
810 #define ASC_CFG0_HOST_INT_ON 0x0020
811 #define ASC_CFG0_BIOS_ON 0x0040
812 #define ASC_CFG0_VERA_BURST_ON 0x0080
813 #define ASC_CFG0_SCSI_PARITY_ON 0x0800
814 #define ASC_CFG1_SCSI_TARGET_ON 0x0080
815 #define ASC_CFG1_LRAM_8BITS_ON 0x0800
816 #define ASC_CFG_MSW_CLR_MASK 0x3080
817 #define CSW_TEST1 (ASC_CS_TYPE)0x8000
818 #define CSW_AUTO_CONFIG (ASC_CS_TYPE)0x4000
819 #define CSW_RESERVED1 (ASC_CS_TYPE)0x2000
820 #define CSW_IRQ_WRITTEN (ASC_CS_TYPE)0x1000
821 #define CSW_33MHZ_SELECTED (ASC_CS_TYPE)0x0800
822 #define CSW_TEST2 (ASC_CS_TYPE)0x0400
823 #define CSW_TEST3 (ASC_CS_TYPE)0x0200
824 #define CSW_RESERVED2 (ASC_CS_TYPE)0x0100
825 #define CSW_DMA_DONE (ASC_CS_TYPE)0x0080
826 #define CSW_FIFO_RDY (ASC_CS_TYPE)0x0040
827 #define CSW_EEP_READ_DONE (ASC_CS_TYPE)0x0020
828 #define CSW_HALTED (ASC_CS_TYPE)0x0010
829 #define CSW_SCSI_RESET_ACTIVE (ASC_CS_TYPE)0x0008
830 #define CSW_PARITY_ERR (ASC_CS_TYPE)0x0004
831 #define CSW_SCSI_RESET_LATCH (ASC_CS_TYPE)0x0002
832 #define CSW_INT_PENDING (ASC_CS_TYPE)0x0001
833 #define CIW_CLR_SCSI_RESET_INT (ASC_CS_TYPE)0x1000
834 #define CIW_INT_ACK (ASC_CS_TYPE)0x0100
835 #define CIW_TEST1 (ASC_CS_TYPE)0x0200
836 #define CIW_TEST2 (ASC_CS_TYPE)0x0400
837 #define CIW_SEL_33MHZ (ASC_CS_TYPE)0x0800
838 #define CIW_IRQ_ACT (ASC_CS_TYPE)0x1000
839 #define CC_CHIP_RESET (uchar)0x80
840 #define CC_SCSI_RESET (uchar)0x40
841 #define CC_HALT (uchar)0x20
842 #define CC_SINGLE_STEP (uchar)0x10
843 #define CC_DMA_ABLE (uchar)0x08
844 #define CC_TEST (uchar)0x04
845 #define CC_BANK_ONE (uchar)0x02
846 #define CC_DIAG (uchar)0x01
847 #define ASC_1000_ID0W 0x04C1
848 #define ASC_1000_ID0W_FIX 0x00C1
849 #define ASC_1000_ID1B 0x25
850 #define ASC_EISA_REV_IOP_MASK (0x0C83)
851 #define ASC_EISA_CFG_IOP_MASK (0x0C86)
852 #define ASC_GET_EISA_SLOT(iop) (PortAddr)((iop) & 0xF000)
853 #define INS_HALTINT (ushort)0x6281
854 #define INS_HALT (ushort)0x6280
855 #define INS_SINT (ushort)0x6200
856 #define INS_RFLAG_WTM (ushort)0x7380
857 #define ASC_MC_SAVE_CODE_WSIZE 0x500
858 #define ASC_MC_SAVE_DATA_WSIZE 0x40
860 typedef struct asc_mc_saved
{
861 ushort data
[ASC_MC_SAVE_DATA_WSIZE
];
862 ushort code
[ASC_MC_SAVE_CODE_WSIZE
];
865 #define AscGetQDoneInProgress(port) AscReadLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B)
866 #define AscPutQDoneInProgress(port, val) AscWriteLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B, val)
867 #define AscGetVarFreeQHead(port) AscReadLramWord((port), ASCV_FREE_Q_HEAD_W)
868 #define AscGetVarDoneQTail(port) AscReadLramWord((port), ASCV_DONE_Q_TAIL_W)
869 #define AscPutVarFreeQHead(port, val) AscWriteLramWord((port), ASCV_FREE_Q_HEAD_W, val)
870 #define AscPutVarDoneQTail(port, val) AscWriteLramWord((port), ASCV_DONE_Q_TAIL_W, val)
871 #define AscGetRiscVarFreeQHead(port) AscReadLramByte((port), ASCV_NEXTRDY_B)
872 #define AscGetRiscVarDoneQTail(port) AscReadLramByte((port), ASCV_DONENEXT_B)
873 #define AscPutRiscVarFreeQHead(port, val) AscWriteLramByte((port), ASCV_NEXTRDY_B, val)
874 #define AscPutRiscVarDoneQTail(port, val) AscWriteLramByte((port), ASCV_DONENEXT_B, val)
875 #define AscPutMCodeSDTRDoneAtID(port, id, data) AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id), (data))
876 #define AscGetMCodeSDTRDoneAtID(port, id) AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id))
877 #define AscPutMCodeInitSDTRAtID(port, id, data) AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id), data)
878 #define AscGetMCodeInitSDTRAtID(port, id) AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id))
879 #define AscGetChipSignatureByte(port) (uchar)inp((port)+IOP_SIG_BYTE)
880 #define AscGetChipSignatureWord(port) (ushort)inpw((port)+IOP_SIG_WORD)
881 #define AscGetChipVerNo(port) (uchar)inp((port)+IOP_VERSION)
882 #define AscGetChipCfgLsw(port) (ushort)inpw((port)+IOP_CONFIG_LOW)
883 #define AscGetChipCfgMsw(port) (ushort)inpw((port)+IOP_CONFIG_HIGH)
884 #define AscSetChipCfgLsw(port, data) outpw((port)+IOP_CONFIG_LOW, data)
885 #define AscSetChipCfgMsw(port, data) outpw((port)+IOP_CONFIG_HIGH, data)
886 #define AscGetChipEEPCmd(port) (uchar)inp((port)+IOP_EEP_CMD)
887 #define AscSetChipEEPCmd(port, data) outp((port)+IOP_EEP_CMD, data)
888 #define AscGetChipEEPData(port) (ushort)inpw((port)+IOP_EEP_DATA)
889 #define AscSetChipEEPData(port, data) outpw((port)+IOP_EEP_DATA, data)
890 #define AscGetChipLramAddr(port) (ushort)inpw((PortAddr)((port)+IOP_RAM_ADDR))
891 #define AscSetChipLramAddr(port, addr) outpw((PortAddr)((port)+IOP_RAM_ADDR), addr)
892 #define AscGetChipLramData(port) (ushort)inpw((port)+IOP_RAM_DATA)
893 #define AscSetChipLramData(port, data) outpw((port)+IOP_RAM_DATA, data)
894 #define AscGetChipIFC(port) (uchar)inp((port)+IOP_REG_IFC)
895 #define AscSetChipIFC(port, data) outp((port)+IOP_REG_IFC, data)
896 #define AscGetChipStatus(port) (ASC_CS_TYPE)inpw((port)+IOP_STATUS)
897 #define AscSetChipStatus(port, cs_val) outpw((port)+IOP_STATUS, cs_val)
898 #define AscGetChipControl(port) (uchar)inp((port)+IOP_CTRL)
899 #define AscSetChipControl(port, cc_val) outp((port)+IOP_CTRL, cc_val)
900 #define AscGetChipSyn(port) (uchar)inp((port)+IOP_SYN_OFFSET)
901 #define AscSetChipSyn(port, data) outp((port)+IOP_SYN_OFFSET, data)
902 #define AscSetPCAddr(port, data) outpw((port)+IOP_REG_PC, data)
903 #define AscGetPCAddr(port) (ushort)inpw((port)+IOP_REG_PC)
904 #define AscIsIntPending(port) (AscGetChipStatus(port) & (CSW_INT_PENDING | CSW_SCSI_RESET_LATCH))
905 #define AscGetChipScsiID(port) ((AscGetChipCfgLsw(port) >> 8) & ASC_MAX_TID)
906 #define AscGetExtraControl(port) (uchar)inp((port)+IOP_EXTRA_CONTROL)
907 #define AscSetExtraControl(port, data) outp((port)+IOP_EXTRA_CONTROL, data)
908 #define AscReadChipAX(port) (ushort)inpw((port)+IOP_REG_AX)
909 #define AscWriteChipAX(port, data) outpw((port)+IOP_REG_AX, data)
910 #define AscReadChipIX(port) (uchar)inp((port)+IOP_REG_IX)
911 #define AscWriteChipIX(port, data) outp((port)+IOP_REG_IX, data)
912 #define AscReadChipIH(port) (ushort)inpw((port)+IOP_REG_IH)
913 #define AscWriteChipIH(port, data) outpw((port)+IOP_REG_IH, data)
914 #define AscReadChipQP(port) (uchar)inp((port)+IOP_REG_QP)
915 #define AscWriteChipQP(port, data) outp((port)+IOP_REG_QP, data)
916 #define AscReadChipFIFO_L(port) (ushort)inpw((port)+IOP_REG_FIFO_L)
917 #define AscWriteChipFIFO_L(port, data) outpw((port)+IOP_REG_FIFO_L, data)
918 #define AscReadChipFIFO_H(port) (ushort)inpw((port)+IOP_REG_FIFO_H)
919 #define AscWriteChipFIFO_H(port, data) outpw((port)+IOP_REG_FIFO_H, data)
920 #define AscReadChipDmaSpeed(port) (uchar)inp((port)+IOP_DMA_SPEED)
921 #define AscWriteChipDmaSpeed(port, data) outp((port)+IOP_DMA_SPEED, data)
922 #define AscReadChipDA0(port) (ushort)inpw((port)+IOP_REG_DA0)
923 #define AscWriteChipDA0(port) outpw((port)+IOP_REG_DA0, data)
924 #define AscReadChipDA1(port) (ushort)inpw((port)+IOP_REG_DA1)
925 #define AscWriteChipDA1(port) outpw((port)+IOP_REG_DA1, data)
926 #define AscReadChipDC0(port) (ushort)inpw((port)+IOP_REG_DC0)
927 #define AscWriteChipDC0(port) outpw((port)+IOP_REG_DC0, data)
928 #define AscReadChipDC1(port) (ushort)inpw((port)+IOP_REG_DC1)
929 #define AscWriteChipDC1(port) outpw((port)+IOP_REG_DC1, data)
930 #define AscReadChipDvcID(port) (uchar)inp((port)+IOP_REG_ID)
931 #define AscWriteChipDvcID(port, data) outp((port)+IOP_REG_ID, data)
934 * Portable Data Types
936 * Any instance where a 32-bit long or pointer type is assumed
937 * for precision or HW defined structures, the following define
938 * types must be used. In Linux the char, short, and int types
939 * are all consistent at 8, 16, and 32 bits respectively. Pointers
940 * and long types are 64 bits on Alpha and UltraSPARC.
942 #define ADV_PADDR __u32 /* Physical address data type. */
943 #define ADV_VADDR __u32 /* Virtual address data type. */
944 #define ADV_DCNT __u32 /* Unsigned Data count type. */
945 #define ADV_SDCNT __s32 /* Signed Data count type. */
948 * These macros are used to convert a virtual address to a
949 * 32-bit value. This currently can be used on Linux Alpha
950 * which uses 64-bit virtual address but a 32-bit bus address.
951 * This is likely to break in the future, but doing this now
952 * will give us time to change the HW and FW to handle 64-bit
955 #define ADV_VADDR_TO_U32 virt_to_bus
956 #define ADV_U32_TO_VADDR bus_to_virt
958 #define AdvPortAddr void __iomem * /* Virtual memory address size */
961 * Define Adv Library required memory access macros.
963 #define ADV_MEM_READB(addr) readb(addr)
964 #define ADV_MEM_READW(addr) readw(addr)
965 #define ADV_MEM_WRITEB(addr, byte) writeb(byte, addr)
966 #define ADV_MEM_WRITEW(addr, word) writew(word, addr)
967 #define ADV_MEM_WRITEDW(addr, dword) writel(dword, addr)
969 #define ADV_CARRIER_COUNT (ASC_DEF_MAX_HOST_QNG + 15)
972 * Define total number of simultaneous maximum element scatter-gather
973 * request blocks per wide adapter. ASC_DEF_MAX_HOST_QNG (253) is the
974 * maximum number of outstanding commands per wide host adapter. Each
975 * command uses one or more ADV_SG_BLOCK each with 15 scatter-gather
976 * elements. Allow each command to have at least one ADV_SG_BLOCK structure.
977 * This allows about 15 commands to have the maximum 17 ADV_SG_BLOCK
978 * structures or 255 scatter-gather elements.
980 #define ADV_TOT_SG_BLOCK ASC_DEF_MAX_HOST_QNG
983 * Define maximum number of scatter-gather elements per request.
985 #define ADV_MAX_SG_LIST 255
986 #define NO_OF_SG_PER_BLOCK 15
988 #define ADV_EEP_DVC_CFG_BEGIN (0x00)
989 #define ADV_EEP_DVC_CFG_END (0x15)
990 #define ADV_EEP_DVC_CTL_BEGIN (0x16) /* location of OEM name */
991 #define ADV_EEP_MAX_WORD_ADDR (0x1E)
993 #define ADV_EEP_DELAY_MS 100
995 #define ADV_EEPROM_BIG_ENDIAN 0x8000 /* EEPROM Bit 15 */
996 #define ADV_EEPROM_BIOS_ENABLE 0x4000 /* EEPROM Bit 14 */
998 * For the ASC3550 Bit 13 is Termination Polarity control bit.
999 * For later ICs Bit 13 controls whether the CIS (Card Information
1000 * Service Section) is loaded from EEPROM.
1002 #define ADV_EEPROM_TERM_POL 0x2000 /* EEPROM Bit 13 */
1003 #define ADV_EEPROM_CIS_LD 0x2000 /* EEPROM Bit 13 */
1007 * If EEPROM Bit 11 is 0 for Function 0, then Function 0 will specify
1008 * INT A in the PCI Configuration Space Int Pin field. If it is 1, then
1009 * Function 0 will specify INT B.
1011 * If EEPROM Bit 11 is 0 for Function 1, then Function 1 will specify
1012 * INT B in the PCI Configuration Space Int Pin field. If it is 1, then
1013 * Function 1 will specify INT A.
1015 #define ADV_EEPROM_INTAB 0x0800 /* EEPROM Bit 11 */
1017 typedef struct adveep_3550_config
{
1018 /* Word Offset, Description */
1020 ushort cfg_lsw
; /* 00 power up initialization */
1021 /* bit 13 set - Term Polarity Control */
1022 /* bit 14 set - BIOS Enable */
1023 /* bit 15 set - Big Endian Mode */
1024 ushort cfg_msw
; /* 01 unused */
1025 ushort disc_enable
; /* 02 disconnect enable */
1026 ushort wdtr_able
; /* 03 Wide DTR able */
1027 ushort sdtr_able
; /* 04 Synchronous DTR able */
1028 ushort start_motor
; /* 05 send start up motor */
1029 ushort tagqng_able
; /* 06 tag queuing able */
1030 ushort bios_scan
; /* 07 BIOS device control */
1031 ushort scam_tolerant
; /* 08 no scam */
1033 uchar adapter_scsi_id
; /* 09 Host Adapter ID */
1034 uchar bios_boot_delay
; /* power up wait */
1036 uchar scsi_reset_delay
; /* 10 reset delay */
1037 uchar bios_id_lun
; /* first boot device scsi id & lun */
1038 /* high nibble is lun */
1039 /* low nibble is scsi id */
1041 uchar termination
; /* 11 0 - automatic */
1042 /* 1 - low off / high off */
1043 /* 2 - low off / high on */
1044 /* 3 - low on / high on */
1045 /* There is no low on / high off */
1047 uchar reserved1
; /* reserved byte (not used) */
1049 ushort bios_ctrl
; /* 12 BIOS control bits */
1050 /* bit 0 BIOS don't act as initiator. */
1051 /* bit 1 BIOS > 1 GB support */
1052 /* bit 2 BIOS > 2 Disk Support */
1053 /* bit 3 BIOS don't support removables */
1054 /* bit 4 BIOS support bootable CD */
1055 /* bit 5 BIOS scan enabled */
1056 /* bit 6 BIOS support multiple LUNs */
1057 /* bit 7 BIOS display of message */
1058 /* bit 8 SCAM disabled */
1059 /* bit 9 Reset SCSI bus during init. */
1061 /* bit 11 No verbose initialization. */
1062 /* bit 12 SCSI parity enabled */
1066 ushort ultra_able
; /* 13 ULTRA speed able */
1067 ushort reserved2
; /* 14 reserved */
1068 uchar max_host_qng
; /* 15 maximum host queuing */
1069 uchar max_dvc_qng
; /* maximum per device queuing */
1070 ushort dvc_cntl
; /* 16 control bit for driver */
1071 ushort bug_fix
; /* 17 control bit for bug fix */
1072 ushort serial_number_word1
; /* 18 Board serial number word 1 */
1073 ushort serial_number_word2
; /* 19 Board serial number word 2 */
1074 ushort serial_number_word3
; /* 20 Board serial number word 3 */
1075 ushort check_sum
; /* 21 EEP check sum */
1076 uchar oem_name
[16]; /* 22 OEM name */
1077 ushort dvc_err_code
; /* 30 last device driver error code */
1078 ushort adv_err_code
; /* 31 last uc and Adv Lib error code */
1079 ushort adv_err_addr
; /* 32 last uc error address */
1080 ushort saved_dvc_err_code
; /* 33 saved last dev. driver error code */
1081 ushort saved_adv_err_code
; /* 34 saved last uc and Adv Lib error code */
1082 ushort saved_adv_err_addr
; /* 35 saved last uc error address */
1083 ushort num_of_err
; /* 36 number of error */
1084 } ADVEEP_3550_CONFIG
;
1086 typedef struct adveep_38C0800_config
{
1087 /* Word Offset, Description */
1089 ushort cfg_lsw
; /* 00 power up initialization */
1090 /* bit 13 set - Load CIS */
1091 /* bit 14 set - BIOS Enable */
1092 /* bit 15 set - Big Endian Mode */
1093 ushort cfg_msw
; /* 01 unused */
1094 ushort disc_enable
; /* 02 disconnect enable */
1095 ushort wdtr_able
; /* 03 Wide DTR able */
1096 ushort sdtr_speed1
; /* 04 SDTR Speed TID 0-3 */
1097 ushort start_motor
; /* 05 send start up motor */
1098 ushort tagqng_able
; /* 06 tag queuing able */
1099 ushort bios_scan
; /* 07 BIOS device control */
1100 ushort scam_tolerant
; /* 08 no scam */
1102 uchar adapter_scsi_id
; /* 09 Host Adapter ID */
1103 uchar bios_boot_delay
; /* power up wait */
1105 uchar scsi_reset_delay
; /* 10 reset delay */
1106 uchar bios_id_lun
; /* first boot device scsi id & lun */
1107 /* high nibble is lun */
1108 /* low nibble is scsi id */
1110 uchar termination_se
; /* 11 0 - automatic */
1111 /* 1 - low off / high off */
1112 /* 2 - low off / high on */
1113 /* 3 - low on / high on */
1114 /* There is no low on / high off */
1116 uchar termination_lvd
; /* 11 0 - automatic */
1117 /* 1 - low off / high off */
1118 /* 2 - low off / high on */
1119 /* 3 - low on / high on */
1120 /* There is no low on / high off */
1122 ushort bios_ctrl
; /* 12 BIOS control bits */
1123 /* bit 0 BIOS don't act as initiator. */
1124 /* bit 1 BIOS > 1 GB support */
1125 /* bit 2 BIOS > 2 Disk Support */
1126 /* bit 3 BIOS don't support removables */
1127 /* bit 4 BIOS support bootable CD */
1128 /* bit 5 BIOS scan enabled */
1129 /* bit 6 BIOS support multiple LUNs */
1130 /* bit 7 BIOS display of message */
1131 /* bit 8 SCAM disabled */
1132 /* bit 9 Reset SCSI bus during init. */
1134 /* bit 11 No verbose initialization. */
1135 /* bit 12 SCSI parity enabled */
1139 ushort sdtr_speed2
; /* 13 SDTR speed TID 4-7 */
1140 ushort sdtr_speed3
; /* 14 SDTR speed TID 8-11 */
1141 uchar max_host_qng
; /* 15 maximum host queueing */
1142 uchar max_dvc_qng
; /* maximum per device queuing */
1143 ushort dvc_cntl
; /* 16 control bit for driver */
1144 ushort sdtr_speed4
; /* 17 SDTR speed 4 TID 12-15 */
1145 ushort serial_number_word1
; /* 18 Board serial number word 1 */
1146 ushort serial_number_word2
; /* 19 Board serial number word 2 */
1147 ushort serial_number_word3
; /* 20 Board serial number word 3 */
1148 ushort check_sum
; /* 21 EEP check sum */
1149 uchar oem_name
[16]; /* 22 OEM name */
1150 ushort dvc_err_code
; /* 30 last device driver error code */
1151 ushort adv_err_code
; /* 31 last uc and Adv Lib error code */
1152 ushort adv_err_addr
; /* 32 last uc error address */
1153 ushort saved_dvc_err_code
; /* 33 saved last dev. driver error code */
1154 ushort saved_adv_err_code
; /* 34 saved last uc and Adv Lib error code */
1155 ushort saved_adv_err_addr
; /* 35 saved last uc error address */
1156 ushort reserved36
; /* 36 reserved */
1157 ushort reserved37
; /* 37 reserved */
1158 ushort reserved38
; /* 38 reserved */
1159 ushort reserved39
; /* 39 reserved */
1160 ushort reserved40
; /* 40 reserved */
1161 ushort reserved41
; /* 41 reserved */
1162 ushort reserved42
; /* 42 reserved */
1163 ushort reserved43
; /* 43 reserved */
1164 ushort reserved44
; /* 44 reserved */
1165 ushort reserved45
; /* 45 reserved */
1166 ushort reserved46
; /* 46 reserved */
1167 ushort reserved47
; /* 47 reserved */
1168 ushort reserved48
; /* 48 reserved */
1169 ushort reserved49
; /* 49 reserved */
1170 ushort reserved50
; /* 50 reserved */
1171 ushort reserved51
; /* 51 reserved */
1172 ushort reserved52
; /* 52 reserved */
1173 ushort reserved53
; /* 53 reserved */
1174 ushort reserved54
; /* 54 reserved */
1175 ushort reserved55
; /* 55 reserved */
1176 ushort cisptr_lsw
; /* 56 CIS PTR LSW */
1177 ushort cisprt_msw
; /* 57 CIS PTR MSW */
1178 ushort subsysvid
; /* 58 SubSystem Vendor ID */
1179 ushort subsysid
; /* 59 SubSystem ID */
1180 ushort reserved60
; /* 60 reserved */
1181 ushort reserved61
; /* 61 reserved */
1182 ushort reserved62
; /* 62 reserved */
1183 ushort reserved63
; /* 63 reserved */
1184 } ADVEEP_38C0800_CONFIG
;
1186 typedef struct adveep_38C1600_config
{
1187 /* Word Offset, Description */
1189 ushort cfg_lsw
; /* 00 power up initialization */
1190 /* bit 11 set - Func. 0 INTB, Func. 1 INTA */
1191 /* clear - Func. 0 INTA, Func. 1 INTB */
1192 /* bit 13 set - Load CIS */
1193 /* bit 14 set - BIOS Enable */
1194 /* bit 15 set - Big Endian Mode */
1195 ushort cfg_msw
; /* 01 unused */
1196 ushort disc_enable
; /* 02 disconnect enable */
1197 ushort wdtr_able
; /* 03 Wide DTR able */
1198 ushort sdtr_speed1
; /* 04 SDTR Speed TID 0-3 */
1199 ushort start_motor
; /* 05 send start up motor */
1200 ushort tagqng_able
; /* 06 tag queuing able */
1201 ushort bios_scan
; /* 07 BIOS device control */
1202 ushort scam_tolerant
; /* 08 no scam */
1204 uchar adapter_scsi_id
; /* 09 Host Adapter ID */
1205 uchar bios_boot_delay
; /* power up wait */
1207 uchar scsi_reset_delay
; /* 10 reset delay */
1208 uchar bios_id_lun
; /* first boot device scsi id & lun */
1209 /* high nibble is lun */
1210 /* low nibble is scsi id */
1212 uchar termination_se
; /* 11 0 - automatic */
1213 /* 1 - low off / high off */
1214 /* 2 - low off / high on */
1215 /* 3 - low on / high on */
1216 /* There is no low on / high off */
1218 uchar termination_lvd
; /* 11 0 - automatic */
1219 /* 1 - low off / high off */
1220 /* 2 - low off / high on */
1221 /* 3 - low on / high on */
1222 /* There is no low on / high off */
1224 ushort bios_ctrl
; /* 12 BIOS control bits */
1225 /* bit 0 BIOS don't act as initiator. */
1226 /* bit 1 BIOS > 1 GB support */
1227 /* bit 2 BIOS > 2 Disk Support */
1228 /* bit 3 BIOS don't support removables */
1229 /* bit 4 BIOS support bootable CD */
1230 /* bit 5 BIOS scan enabled */
1231 /* bit 6 BIOS support multiple LUNs */
1232 /* bit 7 BIOS display of message */
1233 /* bit 8 SCAM disabled */
1234 /* bit 9 Reset SCSI bus during init. */
1235 /* bit 10 Basic Integrity Checking disabled */
1236 /* bit 11 No verbose initialization. */
1237 /* bit 12 SCSI parity enabled */
1238 /* bit 13 AIPP (Asyn. Info. Ph. Prot.) dis. */
1241 ushort sdtr_speed2
; /* 13 SDTR speed TID 4-7 */
1242 ushort sdtr_speed3
; /* 14 SDTR speed TID 8-11 */
1243 uchar max_host_qng
; /* 15 maximum host queueing */
1244 uchar max_dvc_qng
; /* maximum per device queuing */
1245 ushort dvc_cntl
; /* 16 control bit for driver */
1246 ushort sdtr_speed4
; /* 17 SDTR speed 4 TID 12-15 */
1247 ushort serial_number_word1
; /* 18 Board serial number word 1 */
1248 ushort serial_number_word2
; /* 19 Board serial number word 2 */
1249 ushort serial_number_word3
; /* 20 Board serial number word 3 */
1250 ushort check_sum
; /* 21 EEP check sum */
1251 uchar oem_name
[16]; /* 22 OEM name */
1252 ushort dvc_err_code
; /* 30 last device driver error code */
1253 ushort adv_err_code
; /* 31 last uc and Adv Lib error code */
1254 ushort adv_err_addr
; /* 32 last uc error address */
1255 ushort saved_dvc_err_code
; /* 33 saved last dev. driver error code */
1256 ushort saved_adv_err_code
; /* 34 saved last uc and Adv Lib error code */
1257 ushort saved_adv_err_addr
; /* 35 saved last uc error address */
1258 ushort reserved36
; /* 36 reserved */
1259 ushort reserved37
; /* 37 reserved */
1260 ushort reserved38
; /* 38 reserved */
1261 ushort reserved39
; /* 39 reserved */
1262 ushort reserved40
; /* 40 reserved */
1263 ushort reserved41
; /* 41 reserved */
1264 ushort reserved42
; /* 42 reserved */
1265 ushort reserved43
; /* 43 reserved */
1266 ushort reserved44
; /* 44 reserved */
1267 ushort reserved45
; /* 45 reserved */
1268 ushort reserved46
; /* 46 reserved */
1269 ushort reserved47
; /* 47 reserved */
1270 ushort reserved48
; /* 48 reserved */
1271 ushort reserved49
; /* 49 reserved */
1272 ushort reserved50
; /* 50 reserved */
1273 ushort reserved51
; /* 51 reserved */
1274 ushort reserved52
; /* 52 reserved */
1275 ushort reserved53
; /* 53 reserved */
1276 ushort reserved54
; /* 54 reserved */
1277 ushort reserved55
; /* 55 reserved */
1278 ushort cisptr_lsw
; /* 56 CIS PTR LSW */
1279 ushort cisprt_msw
; /* 57 CIS PTR MSW */
1280 ushort subsysvid
; /* 58 SubSystem Vendor ID */
1281 ushort subsysid
; /* 59 SubSystem ID */
1282 ushort reserved60
; /* 60 reserved */
1283 ushort reserved61
; /* 61 reserved */
1284 ushort reserved62
; /* 62 reserved */
1285 ushort reserved63
; /* 63 reserved */
1286 } ADVEEP_38C1600_CONFIG
;
1291 #define ASC_EEP_CMD_DONE 0x0200
1294 #define BIOS_CTRL_BIOS 0x0001
1295 #define BIOS_CTRL_EXTENDED_XLAT 0x0002
1296 #define BIOS_CTRL_GT_2_DISK 0x0004
1297 #define BIOS_CTRL_BIOS_REMOVABLE 0x0008
1298 #define BIOS_CTRL_BOOTABLE_CD 0x0010
1299 #define BIOS_CTRL_MULTIPLE_LUN 0x0040
1300 #define BIOS_CTRL_DISPLAY_MSG 0x0080
1301 #define BIOS_CTRL_NO_SCAM 0x0100
1302 #define BIOS_CTRL_RESET_SCSI_BUS 0x0200
1303 #define BIOS_CTRL_INIT_VERBOSE 0x0800
1304 #define BIOS_CTRL_SCSI_PARITY 0x1000
1305 #define BIOS_CTRL_AIPP_DIS 0x2000
1307 #define ADV_3550_MEMSIZE 0x2000 /* 8 KB Internal Memory */
1309 #define ADV_38C0800_MEMSIZE 0x4000 /* 16 KB Internal Memory */
1312 * XXX - Since ASC38C1600 Rev.3 has a local RAM failure issue, there is
1313 * a special 16K Adv Library and Microcode version. After the issue is
1314 * resolved, should restore 32K support.
1316 * #define ADV_38C1600_MEMSIZE 0x8000L * 32 KB Internal Memory *
1318 #define ADV_38C1600_MEMSIZE 0x4000 /* 16 KB Internal Memory */
1321 * Byte I/O register address from base of 'iop_base'.
1323 #define IOPB_INTR_STATUS_REG 0x00
1324 #define IOPB_CHIP_ID_1 0x01
1325 #define IOPB_INTR_ENABLES 0x02
1326 #define IOPB_CHIP_TYPE_REV 0x03
1327 #define IOPB_RES_ADDR_4 0x04
1328 #define IOPB_RES_ADDR_5 0x05
1329 #define IOPB_RAM_DATA 0x06
1330 #define IOPB_RES_ADDR_7 0x07
1331 #define IOPB_FLAG_REG 0x08
1332 #define IOPB_RES_ADDR_9 0x09
1333 #define IOPB_RISC_CSR 0x0A
1334 #define IOPB_RES_ADDR_B 0x0B
1335 #define IOPB_RES_ADDR_C 0x0C
1336 #define IOPB_RES_ADDR_D 0x0D
1337 #define IOPB_SOFT_OVER_WR 0x0E
1338 #define IOPB_RES_ADDR_F 0x0F
1339 #define IOPB_MEM_CFG 0x10
1340 #define IOPB_RES_ADDR_11 0x11
1341 #define IOPB_GPIO_DATA 0x12
1342 #define IOPB_RES_ADDR_13 0x13
1343 #define IOPB_FLASH_PAGE 0x14
1344 #define IOPB_RES_ADDR_15 0x15
1345 #define IOPB_GPIO_CNTL 0x16
1346 #define IOPB_RES_ADDR_17 0x17
1347 #define IOPB_FLASH_DATA 0x18
1348 #define IOPB_RES_ADDR_19 0x19
1349 #define IOPB_RES_ADDR_1A 0x1A
1350 #define IOPB_RES_ADDR_1B 0x1B
1351 #define IOPB_RES_ADDR_1C 0x1C
1352 #define IOPB_RES_ADDR_1D 0x1D
1353 #define IOPB_RES_ADDR_1E 0x1E
1354 #define IOPB_RES_ADDR_1F 0x1F
1355 #define IOPB_DMA_CFG0 0x20
1356 #define IOPB_DMA_CFG1 0x21
1357 #define IOPB_TICKLE 0x22
1358 #define IOPB_DMA_REG_WR 0x23
1359 #define IOPB_SDMA_STATUS 0x24
1360 #define IOPB_SCSI_BYTE_CNT 0x25
1361 #define IOPB_HOST_BYTE_CNT 0x26
1362 #define IOPB_BYTE_LEFT_TO_XFER 0x27
1363 #define IOPB_BYTE_TO_XFER_0 0x28
1364 #define IOPB_BYTE_TO_XFER_1 0x29
1365 #define IOPB_BYTE_TO_XFER_2 0x2A
1366 #define IOPB_BYTE_TO_XFER_3 0x2B
1367 #define IOPB_ACC_GRP 0x2C
1368 #define IOPB_RES_ADDR_2D 0x2D
1369 #define IOPB_DEV_ID 0x2E
1370 #define IOPB_RES_ADDR_2F 0x2F
1371 #define IOPB_SCSI_DATA 0x30
1372 #define IOPB_RES_ADDR_31 0x31
1373 #define IOPB_RES_ADDR_32 0x32
1374 #define IOPB_SCSI_DATA_HSHK 0x33
1375 #define IOPB_SCSI_CTRL 0x34
1376 #define IOPB_RES_ADDR_35 0x35
1377 #define IOPB_RES_ADDR_36 0x36
1378 #define IOPB_RES_ADDR_37 0x37
1379 #define IOPB_RAM_BIST 0x38
1380 #define IOPB_PLL_TEST 0x39
1381 #define IOPB_PCI_INT_CFG 0x3A
1382 #define IOPB_RES_ADDR_3B 0x3B
1383 #define IOPB_RFIFO_CNT 0x3C
1384 #define IOPB_RES_ADDR_3D 0x3D
1385 #define IOPB_RES_ADDR_3E 0x3E
1386 #define IOPB_RES_ADDR_3F 0x3F
1389 * Word I/O register address from base of 'iop_base'.
1391 #define IOPW_CHIP_ID_0 0x00 /* CID0 */
1392 #define IOPW_CTRL_REG 0x02 /* CC */
1393 #define IOPW_RAM_ADDR 0x04 /* LA */
1394 #define IOPW_RAM_DATA 0x06 /* LD */
1395 #define IOPW_RES_ADDR_08 0x08
1396 #define IOPW_RISC_CSR 0x0A /* CSR */
1397 #define IOPW_SCSI_CFG0 0x0C /* CFG0 */
1398 #define IOPW_SCSI_CFG1 0x0E /* CFG1 */
1399 #define IOPW_RES_ADDR_10 0x10
1400 #define IOPW_SEL_MASK 0x12 /* SM */
1401 #define IOPW_RES_ADDR_14 0x14
1402 #define IOPW_FLASH_ADDR 0x16 /* FA */
1403 #define IOPW_RES_ADDR_18 0x18
1404 #define IOPW_EE_CMD 0x1A /* EC */
1405 #define IOPW_EE_DATA 0x1C /* ED */
1406 #define IOPW_SFIFO_CNT 0x1E /* SFC */
1407 #define IOPW_RES_ADDR_20 0x20
1408 #define IOPW_Q_BASE 0x22 /* QB */
1409 #define IOPW_QP 0x24 /* QP */
1410 #define IOPW_IX 0x26 /* IX */
1411 #define IOPW_SP 0x28 /* SP */
1412 #define IOPW_PC 0x2A /* PC */
1413 #define IOPW_RES_ADDR_2C 0x2C
1414 #define IOPW_RES_ADDR_2E 0x2E
1415 #define IOPW_SCSI_DATA 0x30 /* SD */
1416 #define IOPW_SCSI_DATA_HSHK 0x32 /* SDH */
1417 #define IOPW_SCSI_CTRL 0x34 /* SC */
1418 #define IOPW_HSHK_CFG 0x36 /* HCFG */
1419 #define IOPW_SXFR_STATUS 0x36 /* SXS */
1420 #define IOPW_SXFR_CNTL 0x38 /* SXL */
1421 #define IOPW_SXFR_CNTH 0x3A /* SXH */
1422 #define IOPW_RES_ADDR_3C 0x3C
1423 #define IOPW_RFIFO_DATA 0x3E /* RFD */
1426 * Doubleword I/O register address from base of 'iop_base'.
1428 #define IOPDW_RES_ADDR_0 0x00
1429 #define IOPDW_RAM_DATA 0x04
1430 #define IOPDW_RES_ADDR_8 0x08
1431 #define IOPDW_RES_ADDR_C 0x0C
1432 #define IOPDW_RES_ADDR_10 0x10
1433 #define IOPDW_COMMA 0x14
1434 #define IOPDW_COMMB 0x18
1435 #define IOPDW_RES_ADDR_1C 0x1C
1436 #define IOPDW_SDMA_ADDR0 0x20
1437 #define IOPDW_SDMA_ADDR1 0x24
1438 #define IOPDW_SDMA_COUNT 0x28
1439 #define IOPDW_SDMA_ERROR 0x2C
1440 #define IOPDW_RDMA_ADDR0 0x30
1441 #define IOPDW_RDMA_ADDR1 0x34
1442 #define IOPDW_RDMA_COUNT 0x38
1443 #define IOPDW_RDMA_ERROR 0x3C
1445 #define ADV_CHIP_ID_BYTE 0x25
1446 #define ADV_CHIP_ID_WORD 0x04C1
1448 #define ADV_INTR_ENABLE_HOST_INTR 0x01
1449 #define ADV_INTR_ENABLE_SEL_INTR 0x02
1450 #define ADV_INTR_ENABLE_DPR_INTR 0x04
1451 #define ADV_INTR_ENABLE_RTA_INTR 0x08
1452 #define ADV_INTR_ENABLE_RMA_INTR 0x10
1453 #define ADV_INTR_ENABLE_RST_INTR 0x20
1454 #define ADV_INTR_ENABLE_DPE_INTR 0x40
1455 #define ADV_INTR_ENABLE_GLOBAL_INTR 0x80
1457 #define ADV_INTR_STATUS_INTRA 0x01
1458 #define ADV_INTR_STATUS_INTRB 0x02
1459 #define ADV_INTR_STATUS_INTRC 0x04
1461 #define ADV_RISC_CSR_STOP (0x0000)
1462 #define ADV_RISC_TEST_COND (0x2000)
1463 #define ADV_RISC_CSR_RUN (0x4000)
1464 #define ADV_RISC_CSR_SINGLE_STEP (0x8000)
1466 #define ADV_CTRL_REG_HOST_INTR 0x0100
1467 #define ADV_CTRL_REG_SEL_INTR 0x0200
1468 #define ADV_CTRL_REG_DPR_INTR 0x0400
1469 #define ADV_CTRL_REG_RTA_INTR 0x0800
1470 #define ADV_CTRL_REG_RMA_INTR 0x1000
1471 #define ADV_CTRL_REG_RES_BIT14 0x2000
1472 #define ADV_CTRL_REG_DPE_INTR 0x4000
1473 #define ADV_CTRL_REG_POWER_DONE 0x8000
1474 #define ADV_CTRL_REG_ANY_INTR 0xFF00
1476 #define ADV_CTRL_REG_CMD_RESET 0x00C6
1477 #define ADV_CTRL_REG_CMD_WR_IO_REG 0x00C5
1478 #define ADV_CTRL_REG_CMD_RD_IO_REG 0x00C4
1479 #define ADV_CTRL_REG_CMD_WR_PCI_CFG_SPACE 0x00C3
1480 #define ADV_CTRL_REG_CMD_RD_PCI_CFG_SPACE 0x00C2
1482 #define ADV_TICKLE_NOP 0x00
1483 #define ADV_TICKLE_A 0x01
1484 #define ADV_TICKLE_B 0x02
1485 #define ADV_TICKLE_C 0x03
1487 #define AdvIsIntPending(port) \
1488 (AdvReadWordRegister(port, IOPW_CTRL_REG) & ADV_CTRL_REG_HOST_INTR)
1491 * SCSI_CFG0 Register bit definitions
1493 #define TIMER_MODEAB 0xC000 /* Watchdog, Second, and Select. Timer Ctrl. */
1494 #define PARITY_EN 0x2000 /* Enable SCSI Parity Error detection */
1495 #define EVEN_PARITY 0x1000 /* Select Even Parity */
1496 #define WD_LONG 0x0800 /* Watchdog Interval, 1: 57 min, 0: 13 sec */
1497 #define QUEUE_128 0x0400 /* Queue Size, 1: 128 byte, 0: 64 byte */
1498 #define PRIM_MODE 0x0100 /* Primitive SCSI mode */
1499 #define SCAM_EN 0x0080 /* Enable SCAM selection */
1500 #define SEL_TMO_LONG 0x0040 /* Sel/Resel Timeout, 1: 400 ms, 0: 1.6 ms */
1501 #define CFRM_ID 0x0020 /* SCAM id sel. confirm., 1: fast, 0: 6.4 ms */
1502 #define OUR_ID_EN 0x0010 /* Enable OUR_ID bits */
1503 #define OUR_ID 0x000F /* SCSI ID */
1506 * SCSI_CFG1 Register bit definitions
1508 #define BIG_ENDIAN 0x8000 /* Enable Big Endian Mode MIO:15, EEP:15 */
1509 #define TERM_POL 0x2000 /* Terminator Polarity Ctrl. MIO:13, EEP:13 */
1510 #define SLEW_RATE 0x1000 /* SCSI output buffer slew rate */
1511 #define FILTER_SEL 0x0C00 /* Filter Period Selection */
1512 #define FLTR_DISABLE 0x0000 /* Input Filtering Disabled */
1513 #define FLTR_11_TO_20NS 0x0800 /* Input Filtering 11ns to 20ns */
1514 #define FLTR_21_TO_39NS 0x0C00 /* Input Filtering 21ns to 39ns */
1515 #define ACTIVE_DBL 0x0200 /* Disable Active Negation */
1516 #define DIFF_MODE 0x0100 /* SCSI differential Mode (Read-Only) */
1517 #define DIFF_SENSE 0x0080 /* 1: No SE cables, 0: SE cable (Read-Only) */
1518 #define TERM_CTL_SEL 0x0040 /* Enable TERM_CTL_H and TERM_CTL_L */
1519 #define TERM_CTL 0x0030 /* External SCSI Termination Bits */
1520 #define TERM_CTL_H 0x0020 /* Enable External SCSI Upper Termination */
1521 #define TERM_CTL_L 0x0010 /* Enable External SCSI Lower Termination */
1522 #define CABLE_DETECT 0x000F /* External SCSI Cable Connection Status */
1525 * Addendum for ASC-38C0800 Chip
1527 * The ASC-38C1600 Chip uses the same definitions except that the
1528 * bus mode override bits [12:10] have been moved to byte register
1529 * offset 0xE (IOPB_SOFT_OVER_WR) bits [12:10]. The [12:10] bits in
1530 * SCSI_CFG1 are read-only and always available. Bit 14 (DIS_TERM_DRV)
1531 * is not needed. The [12:10] bits in IOPB_SOFT_OVER_WR are write-only.
1532 * Also each ASC-38C1600 function or channel uses only cable bits [5:4]
1533 * and [1:0]. Bits [14], [7:6], [3:2] are unused.
1535 #define DIS_TERM_DRV 0x4000 /* 1: Read c_det[3:0], 0: cannot read */
1536 #define HVD_LVD_SE 0x1C00 /* Device Detect Bits */
1537 #define HVD 0x1000 /* HVD Device Detect */
1538 #define LVD 0x0800 /* LVD Device Detect */
1539 #define SE 0x0400 /* SE Device Detect */
1540 #define TERM_LVD 0x00C0 /* LVD Termination Bits */
1541 #define TERM_LVD_HI 0x0080 /* Enable LVD Upper Termination */
1542 #define TERM_LVD_LO 0x0040 /* Enable LVD Lower Termination */
1543 #define TERM_SE 0x0030 /* SE Termination Bits */
1544 #define TERM_SE_HI 0x0020 /* Enable SE Upper Termination */
1545 #define TERM_SE_LO 0x0010 /* Enable SE Lower Termination */
1546 #define C_DET_LVD 0x000C /* LVD Cable Detect Bits */
1547 #define C_DET3 0x0008 /* Cable Detect for LVD External Wide */
1548 #define C_DET2 0x0004 /* Cable Detect for LVD Internal Wide */
1549 #define C_DET_SE 0x0003 /* SE Cable Detect Bits */
1550 #define C_DET1 0x0002 /* Cable Detect for SE Internal Wide */
1551 #define C_DET0 0x0001 /* Cable Detect for SE Internal Narrow */
1553 #define CABLE_ILLEGAL_A 0x7
1554 /* x 0 0 0 | on on | Illegal (all 3 connectors are used) */
1556 #define CABLE_ILLEGAL_B 0xB
1557 /* 0 x 0 0 | on on | Illegal (all 3 connectors are used) */
1560 * MEM_CFG Register bit definitions
1562 #define BIOS_EN 0x40 /* BIOS Enable MIO:14,EEP:14 */
1563 #define FAST_EE_CLK 0x20 /* Diagnostic Bit */
1564 #define RAM_SZ 0x1C /* Specify size of RAM to RISC */
1565 #define RAM_SZ_2KB 0x00 /* 2 KB */
1566 #define RAM_SZ_4KB 0x04 /* 4 KB */
1567 #define RAM_SZ_8KB 0x08 /* 8 KB */
1568 #define RAM_SZ_16KB 0x0C /* 16 KB */
1569 #define RAM_SZ_32KB 0x10 /* 32 KB */
1570 #define RAM_SZ_64KB 0x14 /* 64 KB */
1573 * DMA_CFG0 Register bit definitions
1575 * This register is only accessible to the host.
1577 #define BC_THRESH_ENB 0x80 /* PCI DMA Start Conditions */
1578 #define FIFO_THRESH 0x70 /* PCI DMA FIFO Threshold */
1579 #define FIFO_THRESH_16B 0x00 /* 16 bytes */
1580 #define FIFO_THRESH_32B 0x20 /* 32 bytes */
1581 #define FIFO_THRESH_48B 0x30 /* 48 bytes */
1582 #define FIFO_THRESH_64B 0x40 /* 64 bytes */
1583 #define FIFO_THRESH_80B 0x50 /* 80 bytes (default) */
1584 #define FIFO_THRESH_96B 0x60 /* 96 bytes */
1585 #define FIFO_THRESH_112B 0x70 /* 112 bytes */
1586 #define START_CTL 0x0C /* DMA start conditions */
1587 #define START_CTL_TH 0x00 /* Wait threshold level (default) */
1588 #define START_CTL_ID 0x04 /* Wait SDMA/SBUS idle */
1589 #define START_CTL_THID 0x08 /* Wait threshold and SDMA/SBUS idle */
1590 #define START_CTL_EMFU 0x0C /* Wait SDMA FIFO empty/full */
1591 #define READ_CMD 0x03 /* Memory Read Method */
1592 #define READ_CMD_MR 0x00 /* Memory Read */
1593 #define READ_CMD_MRL 0x02 /* Memory Read Long */
1594 #define READ_CMD_MRM 0x03 /* Memory Read Multiple (default) */
1597 * ASC-38C0800 RAM BIST Register bit definitions
1599 #define RAM_TEST_MODE 0x80
1600 #define PRE_TEST_MODE 0x40
1601 #define NORMAL_MODE 0x00
1602 #define RAM_TEST_DONE 0x10
1603 #define RAM_TEST_STATUS 0x0F
1604 #define RAM_TEST_HOST_ERROR 0x08
1605 #define RAM_TEST_INTRAM_ERROR 0x04
1606 #define RAM_TEST_RISC_ERROR 0x02
1607 #define RAM_TEST_SCSI_ERROR 0x01
1608 #define RAM_TEST_SUCCESS 0x00
1609 #define PRE_TEST_VALUE 0x05
1610 #define NORMAL_VALUE 0x00
1613 * ASC38C1600 Definitions
1615 * IOPB_PCI_INT_CFG Bit Field Definitions
1618 #define INTAB_LD 0x80 /* Value loaded from EEPROM Bit 11. */
1621 * Bit 1 can be set to change the interrupt for the Function to operate in
1622 * Totem Pole mode. By default Bit 1 is 0 and the interrupt operates in
1623 * Open Drain mode. Both functions of the ASC38C1600 must be set to the same
1624 * mode, otherwise the operating mode is undefined.
1626 #define TOTEMPOLE 0x02
1629 * Bit 0 can be used to change the Int Pin for the Function. The value is
1630 * 0 by default for both Functions with Function 0 using INT A and Function
1631 * B using INT B. For Function 0 if set, INT B is used. For Function 1 if set,
1634 * EEPROM Word 0 Bit 11 for each Function may change the initial Int Pin
1635 * value specified in the PCI Configuration Space.
1640 * Adv Library Status Definitions
1644 #define ADV_SUCCESS 1
1646 #define ADV_ERROR (-1)
1649 * ADV_DVC_VAR 'warn_code' values
1651 #define ASC_WARN_BUSRESET_ERROR 0x0001 /* SCSI Bus Reset error */
1652 #define ASC_WARN_EEPROM_CHKSUM 0x0002 /* EEP check sum error */
1653 #define ASC_WARN_EEPROM_TERMINATION 0x0004 /* EEP termination bad field */
1654 #define ASC_WARN_ERROR 0xFFFF /* ADV_ERROR return */
1656 #define ADV_MAX_TID 15 /* max. target identifier */
1657 #define ADV_MAX_LUN 7 /* max. logical unit number */
1660 * Fixed locations of microcode operating variables.
1662 #define ASC_MC_CODE_BEGIN_ADDR 0x0028 /* microcode start address */
1663 #define ASC_MC_CODE_END_ADDR 0x002A /* microcode end address */
1664 #define ASC_MC_CODE_CHK_SUM 0x002C /* microcode code checksum */
1665 #define ASC_MC_VERSION_DATE 0x0038 /* microcode version */
1666 #define ASC_MC_VERSION_NUM 0x003A /* microcode number */
1667 #define ASC_MC_BIOSMEM 0x0040 /* BIOS RISC Memory Start */
1668 #define ASC_MC_BIOSLEN 0x0050 /* BIOS RISC Memory Length */
1669 #define ASC_MC_BIOS_SIGNATURE 0x0058 /* BIOS Signature 0x55AA */
1670 #define ASC_MC_BIOS_VERSION 0x005A /* BIOS Version (2 bytes) */
1671 #define ASC_MC_SDTR_SPEED1 0x0090 /* SDTR Speed for TID 0-3 */
1672 #define ASC_MC_SDTR_SPEED2 0x0092 /* SDTR Speed for TID 4-7 */
1673 #define ASC_MC_SDTR_SPEED3 0x0094 /* SDTR Speed for TID 8-11 */
1674 #define ASC_MC_SDTR_SPEED4 0x0096 /* SDTR Speed for TID 12-15 */
1675 #define ASC_MC_CHIP_TYPE 0x009A
1676 #define ASC_MC_INTRB_CODE 0x009B
1677 #define ASC_MC_WDTR_ABLE 0x009C
1678 #define ASC_MC_SDTR_ABLE 0x009E
1679 #define ASC_MC_TAGQNG_ABLE 0x00A0
1680 #define ASC_MC_DISC_ENABLE 0x00A2
1681 #define ASC_MC_IDLE_CMD_STATUS 0x00A4
1682 #define ASC_MC_IDLE_CMD 0x00A6
1683 #define ASC_MC_IDLE_CMD_PARAMETER 0x00A8
1684 #define ASC_MC_DEFAULT_SCSI_CFG0 0x00AC
1685 #define ASC_MC_DEFAULT_SCSI_CFG1 0x00AE
1686 #define ASC_MC_DEFAULT_MEM_CFG 0x00B0
1687 #define ASC_MC_DEFAULT_SEL_MASK 0x00B2
1688 #define ASC_MC_SDTR_DONE 0x00B6
1689 #define ASC_MC_NUMBER_OF_QUEUED_CMD 0x00C0
1690 #define ASC_MC_NUMBER_OF_MAX_CMD 0x00D0
1691 #define ASC_MC_DEVICE_HSHK_CFG_TABLE 0x0100
1692 #define ASC_MC_CONTROL_FLAG 0x0122 /* Microcode control flag. */
1693 #define ASC_MC_WDTR_DONE 0x0124
1694 #define ASC_MC_CAM_MODE_MASK 0x015E /* CAM mode TID bitmask. */
1695 #define ASC_MC_ICQ 0x0160
1696 #define ASC_MC_IRQ 0x0164
1697 #define ASC_MC_PPR_ABLE 0x017A
1700 * BIOS LRAM variable absolute offsets.
1702 #define BIOS_CODESEG 0x54
1703 #define BIOS_CODELEN 0x56
1704 #define BIOS_SIGNATURE 0x58
1705 #define BIOS_VERSION 0x5A
1708 * Microcode Control Flags
1710 * Flags set by the Adv Library in RISC variable 'control_flag' (0x122)
1711 * and handled by the microcode.
1713 #define CONTROL_FLAG_IGNORE_PERR 0x0001 /* Ignore DMA Parity Errors */
1714 #define CONTROL_FLAG_ENABLE_AIPP 0x0002 /* Enabled AIPP checking. */
1717 * ASC_MC_DEVICE_HSHK_CFG_TABLE microcode table or HSHK_CFG register format
1719 #define HSHK_CFG_WIDE_XFR 0x8000
1720 #define HSHK_CFG_RATE 0x0F00
1721 #define HSHK_CFG_OFFSET 0x001F
1723 #define ASC_DEF_MAX_HOST_QNG 0xFD /* Max. number of host commands (253) */
1724 #define ASC_DEF_MIN_HOST_QNG 0x10 /* Min. number of host commands (16) */
1725 #define ASC_DEF_MAX_DVC_QNG 0x3F /* Max. number commands per device (63) */
1726 #define ASC_DEF_MIN_DVC_QNG 0x04 /* Min. number commands per device (4) */
1728 #define ASC_QC_DATA_CHECK 0x01 /* Require ASC_QC_DATA_OUT set or clear. */
1729 #define ASC_QC_DATA_OUT 0x02 /* Data out DMA transfer. */
1730 #define ASC_QC_START_MOTOR 0x04 /* Send auto-start motor before request. */
1731 #define ASC_QC_NO_OVERRUN 0x08 /* Don't report overrun. */
1732 #define ASC_QC_FREEZE_TIDQ 0x10 /* Freeze TID queue after request. XXX TBD */
1734 #define ASC_QSC_NO_DISC 0x01 /* Don't allow disconnect for request. */
1735 #define ASC_QSC_NO_TAGMSG 0x02 /* Don't allow tag queuing for request. */
1736 #define ASC_QSC_NO_SYNC 0x04 /* Don't use Synch. transfer on request. */
1737 #define ASC_QSC_NO_WIDE 0x08 /* Don't use Wide transfer on request. */
1738 #define ASC_QSC_REDO_DTR 0x10 /* Renegotiate WDTR/SDTR before request. */
1740 * Note: If a Tag Message is to be sent and neither ASC_QSC_HEAD_TAG or
1741 * ASC_QSC_ORDERED_TAG is set, then a Simple Tag Message (0x20) is used.
1743 #define ASC_QSC_HEAD_TAG 0x40 /* Use Head Tag Message (0x21). */
1744 #define ASC_QSC_ORDERED_TAG 0x80 /* Use Ordered Tag Message (0x22). */
1747 * All fields here are accessed by the board microcode and need to be
1750 typedef struct adv_carr_t
{
1751 ADV_VADDR carr_va
; /* Carrier Virtual Address */
1752 ADV_PADDR carr_pa
; /* Carrier Physical Address */
1753 ADV_VADDR areq_vpa
; /* ASC_SCSI_REQ_Q Virtual or Physical Address */
1755 * next_vpa [31:4] Carrier Virtual or Physical Next Pointer
1757 * next_vpa [3:1] Reserved Bits
1758 * next_vpa [0] Done Flag set in Response Queue.
1764 * Mask used to eliminate low 4 bits of carrier 'next_vpa' field.
1766 #define ASC_NEXT_VPA_MASK 0xFFFFFFF0
1768 #define ASC_RQ_DONE 0x00000001
1769 #define ASC_RQ_GOOD 0x00000002
1770 #define ASC_CQ_STOPPER 0x00000000
1772 #define ASC_GET_CARRP(carrp) ((carrp) & ASC_NEXT_VPA_MASK)
1774 #define ADV_CARRIER_NUM_PAGE_CROSSING \
1775 (((ADV_CARRIER_COUNT * sizeof(ADV_CARR_T)) + (PAGE_SIZE - 1))/PAGE_SIZE)
1777 #define ADV_CARRIER_BUFSIZE \
1778 ((ADV_CARRIER_COUNT + ADV_CARRIER_NUM_PAGE_CROSSING) * sizeof(ADV_CARR_T))
1781 * ASC_SCSI_REQ_Q 'a_flag' definitions
1783 * The Adv Library should limit use to the lower nibble (4 bits) of
1784 * a_flag. Drivers are free to use the upper nibble (4 bits) of a_flag.
1786 #define ADV_POLL_REQUEST 0x01 /* poll for request completion */
1787 #define ADV_SCSIQ_DONE 0x02 /* request done */
1788 #define ADV_DONT_RETRY 0x08 /* don't do retry */
1790 #define ADV_CHIP_ASC3550 0x01 /* Ultra-Wide IC */
1791 #define ADV_CHIP_ASC38C0800 0x02 /* Ultra2-Wide/LVD IC */
1792 #define ADV_CHIP_ASC38C1600 0x03 /* Ultra3-Wide/LVD2 IC */
1795 * Adapter temporary configuration structure
1797 * This structure can be discarded after initialization. Don't add
1798 * fields here needed after initialization.
1800 * Field naming convention:
1802 * *_enable indicates the field enables or disables a feature. The
1803 * value of the field is never reset.
1805 typedef struct adv_dvc_cfg
{
1806 ushort disc_enable
; /* enable disconnection */
1807 uchar chip_version
; /* chip version */
1808 uchar termination
; /* Term. Ctrl. bits 6-5 of SCSI_CFG1 register */
1809 ushort control_flag
; /* Microcode Control Flag */
1810 ushort mcode_date
; /* Microcode date */
1811 ushort mcode_version
; /* Microcode version */
1812 ushort serial1
; /* EEPROM serial number word 1 */
1813 ushort serial2
; /* EEPROM serial number word 2 */
1814 ushort serial3
; /* EEPROM serial number word 3 */
1818 struct adv_scsi_req_q
;
1820 typedef struct asc_sg_block
{
1824 uchar sg_cnt
; /* Valid entries in block. */
1825 ADV_PADDR sg_ptr
; /* Pointer to next sg block. */
1827 ADV_PADDR sg_addr
; /* SG element address. */
1828 ADV_DCNT sg_count
; /* SG element count. */
1829 } sg_list
[NO_OF_SG_PER_BLOCK
];
1833 * ADV_SCSI_REQ_Q - microcode request structure
1835 * All fields in this structure up to byte 60 are used by the microcode.
1836 * The microcode makes assumptions about the size and ordering of fields
1837 * in this structure. Do not change the structure definition here without
1838 * coordinating the change with the microcode.
1840 * All fields accessed by microcode must be maintained in little_endian
1843 typedef struct adv_scsi_req_q
{
1844 uchar cntl
; /* Ucode flags and state (ASC_MC_QC_*). */
1846 uchar target_id
; /* Device target identifier. */
1847 uchar target_lun
; /* Device target logical unit number. */
1848 ADV_PADDR data_addr
; /* Data buffer physical address. */
1849 ADV_DCNT data_cnt
; /* Data count. Ucode sets to residual. */
1850 ADV_PADDR sense_addr
;
1854 uchar cdb_len
; /* SCSI CDB length. Must <= 16 bytes. */
1856 uchar done_status
; /* Completion status. */
1857 uchar scsi_status
; /* SCSI status byte. */
1858 uchar host_status
; /* Ucode host status. */
1859 uchar sg_working_ix
;
1860 uchar cdb
[12]; /* SCSI CDB bytes 0-11. */
1861 ADV_PADDR sg_real_addr
; /* SG list physical address. */
1862 ADV_PADDR scsiq_rptr
;
1863 uchar cdb16
[4]; /* SCSI CDB bytes 12-15. */
1864 ADV_VADDR scsiq_ptr
;
1867 * End of microcode structure - 60 bytes. The rest of the structure
1868 * is used by the Adv Library and ignored by the microcode.
1871 ADV_SG_BLOCK
*sg_list_ptr
; /* SG list virtual address. */
1872 char *vdata_addr
; /* Data buffer virtual address. */
1874 uchar pad
[2]; /* Pad out to a word boundary. */
1878 * The following two structures are used to process Wide Board requests.
1880 * The ADV_SCSI_REQ_Q structure in adv_req_t is passed to the Adv Library
1881 * and microcode with the ADV_SCSI_REQ_Q field 'srb_ptr' pointing to the
1882 * adv_req_t. The adv_req_t structure 'cmndp' field in turn points to the
1883 * Mid-Level SCSI request structure.
1885 * Zero or more ADV_SG_BLOCK are used with each ADV_SCSI_REQ_Q. Each
1886 * ADV_SG_BLOCK structure holds 15 scatter-gather elements. Under Linux
1887 * up to 255 scatter-gather elements may be used per request or
1890 * Both structures must be 32 byte aligned.
1892 typedef struct adv_sgblk
{
1893 ADV_SG_BLOCK sg_block
; /* Sgblock structure. */
1894 uchar align
[32]; /* Sgblock structure padding. */
1895 struct adv_sgblk
*next_sgblkp
; /* Next scatter-gather structure. */
1898 typedef struct adv_req
{
1899 ADV_SCSI_REQ_Q scsi_req_q
; /* Adv Library request structure. */
1900 uchar align
[32]; /* Request structure padding. */
1901 struct scsi_cmnd
*cmndp
; /* Mid-Level SCSI command pointer. */
1902 adv_sgblk_t
*sgblkp
; /* Adv Library scatter-gather pointer. */
1903 struct adv_req
*next_reqp
; /* Next Request Structure. */
1907 * Adapter operation variable structure.
1909 * One structure is required per host adapter.
1911 * Field naming convention:
1913 * *_able indicates both whether a feature should be enabled or disabled
1914 * and whether a device isi capable of the feature. At initialization
1915 * this field may be set, but later if a device is found to be incapable
1916 * of the feature, the field is cleared.
1918 typedef struct adv_dvc_var
{
1919 AdvPortAddr iop_base
; /* I/O port address */
1920 ushort err_code
; /* fatal error code */
1921 ushort bios_ctrl
; /* BIOS control word, EEPROM word 12 */
1922 ushort wdtr_able
; /* try WDTR for a device */
1923 ushort sdtr_able
; /* try SDTR for a device */
1924 ushort ultra_able
; /* try SDTR Ultra speed for a device */
1925 ushort sdtr_speed1
; /* EEPROM SDTR Speed for TID 0-3 */
1926 ushort sdtr_speed2
; /* EEPROM SDTR Speed for TID 4-7 */
1927 ushort sdtr_speed3
; /* EEPROM SDTR Speed for TID 8-11 */
1928 ushort sdtr_speed4
; /* EEPROM SDTR Speed for TID 12-15 */
1929 ushort tagqng_able
; /* try tagged queuing with a device */
1930 ushort ppr_able
; /* PPR message capable per TID bitmask. */
1931 uchar max_dvc_qng
; /* maximum number of tagged commands per device */
1932 ushort start_motor
; /* start motor command allowed */
1933 uchar scsi_reset_wait
; /* delay in seconds after scsi bus reset */
1934 uchar chip_no
; /* should be assigned by caller */
1935 uchar max_host_qng
; /* maximum number of Q'ed command allowed */
1936 ushort no_scam
; /* scam_tolerant of EEPROM */
1937 struct asc_board
*drv_ptr
; /* driver pointer to private structure */
1938 uchar chip_scsi_id
; /* chip SCSI target ID */
1940 uchar bist_err_code
;
1941 ADV_CARR_T
*carrier_buf
;
1942 ADV_CARR_T
*carr_freelist
; /* Carrier free list. */
1943 ADV_CARR_T
*icq_sp
; /* Initiator command queue stopper pointer. */
1944 ADV_CARR_T
*irq_sp
; /* Initiator response queue stopper pointer. */
1945 ushort carr_pending_cnt
; /* Count of pending carriers. */
1946 struct adv_req
*orig_reqp
; /* adv_req_t memory block. */
1948 * Note: The following fields will not be used after initialization. The
1949 * driver may discard the buffer after initialization is done.
1951 ADV_DVC_CFG
*cfg
; /* temporary configuration structure */
1955 * Microcode idle loop commands
1957 #define IDLE_CMD_COMPLETED 0
1958 #define IDLE_CMD_STOP_CHIP 0x0001
1959 #define IDLE_CMD_STOP_CHIP_SEND_INT 0x0002
1960 #define IDLE_CMD_SEND_INT 0x0004
1961 #define IDLE_CMD_ABORT 0x0008
1962 #define IDLE_CMD_DEVICE_RESET 0x0010
1963 #define IDLE_CMD_SCSI_RESET_START 0x0020 /* Assert SCSI Bus Reset */
1964 #define IDLE_CMD_SCSI_RESET_END 0x0040 /* Deassert SCSI Bus Reset */
1965 #define IDLE_CMD_SCSIREQ 0x0080
1967 #define IDLE_CMD_STATUS_SUCCESS 0x0001
1968 #define IDLE_CMD_STATUS_FAILURE 0x0002
1971 * AdvSendIdleCmd() flag definitions.
1973 #define ADV_NOWAIT 0x01
1976 * Wait loop time out values.
1978 #define SCSI_WAIT_100_MSEC 100UL /* 100 milliseconds */
1979 #define SCSI_US_PER_MSEC 1000 /* microseconds per millisecond */
1980 #define SCSI_MAX_RETRY 10 /* retry count */
1982 #define ADV_ASYNC_RDMA_FAILURE 0x01 /* Fatal RDMA failure. */
1983 #define ADV_ASYNC_SCSI_BUS_RESET_DET 0x02 /* Detected SCSI Bus Reset. */
1984 #define ADV_ASYNC_CARRIER_READY_FAILURE 0x03 /* Carrier Ready failure. */
1985 #define ADV_RDMA_IN_CARR_AND_Q_INVALID 0x04 /* RDMAed-in data invalid. */
1987 #define ADV_HOST_SCSI_BUS_RESET 0x80 /* Host Initiated SCSI Bus Reset. */
1989 /* Read byte from a register. */
1990 #define AdvReadByteRegister(iop_base, reg_off) \
1991 (ADV_MEM_READB((iop_base) + (reg_off)))
1993 /* Write byte to a register. */
1994 #define AdvWriteByteRegister(iop_base, reg_off, byte) \
1995 (ADV_MEM_WRITEB((iop_base) + (reg_off), (byte)))
1997 /* Read word (2 bytes) from a register. */
1998 #define AdvReadWordRegister(iop_base, reg_off) \
1999 (ADV_MEM_READW((iop_base) + (reg_off)))
2001 /* Write word (2 bytes) to a register. */
2002 #define AdvWriteWordRegister(iop_base, reg_off, word) \
2003 (ADV_MEM_WRITEW((iop_base) + (reg_off), (word)))
2005 /* Write dword (4 bytes) to a register. */
2006 #define AdvWriteDWordRegister(iop_base, reg_off, dword) \
2007 (ADV_MEM_WRITEDW((iop_base) + (reg_off), (dword)))
2009 /* Read byte from LRAM. */
2010 #define AdvReadByteLram(iop_base, addr, byte) \
2012 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \
2013 (byte) = ADV_MEM_READB((iop_base) + IOPB_RAM_DATA); \
2016 /* Write byte to LRAM. */
2017 #define AdvWriteByteLram(iop_base, addr, byte) \
2018 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
2019 ADV_MEM_WRITEB((iop_base) + IOPB_RAM_DATA, (byte)))
2021 /* Read word (2 bytes) from LRAM. */
2022 #define AdvReadWordLram(iop_base, addr, word) \
2024 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \
2025 (word) = (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA)); \
2028 /* Write word (2 bytes) to LRAM. */
2029 #define AdvWriteWordLram(iop_base, addr, word) \
2030 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
2031 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word)))
2033 /* Write little-endian double word (4 bytes) to LRAM */
2034 /* Because of unspecified C language ordering don't use auto-increment. */
2035 #define AdvWriteDWordLramNoSwap(iop_base, addr, dword) \
2036 ((ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
2037 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \
2038 cpu_to_le16((ushort) ((dword) & 0xFFFF)))), \
2039 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr) + 2), \
2040 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \
2041 cpu_to_le16((ushort) ((dword >> 16) & 0xFFFF)))))
2043 /* Read word (2 bytes) from LRAM assuming that the address is already set. */
2044 #define AdvReadWordAutoIncLram(iop_base) \
2045 (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA))
2047 /* Write word (2 bytes) to LRAM assuming that the address is already set. */
2048 #define AdvWriteWordAutoIncLram(iop_base, word) \
2049 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word)))
2052 * Define macro to check for Condor signature.
2054 * Evaluate to ADV_TRUE if a Condor chip is found the specified port
2055 * address 'iop_base'. Otherwise evalue to ADV_FALSE.
2057 #define AdvFindSignature(iop_base) \
2058 (((AdvReadByteRegister((iop_base), IOPB_CHIP_ID_1) == \
2059 ADV_CHIP_ID_BYTE) && \
2060 (AdvReadWordRegister((iop_base), IOPW_CHIP_ID_0) == \
2061 ADV_CHIP_ID_WORD)) ? ADV_TRUE : ADV_FALSE)
2064 * Define macro to Return the version number of the chip at 'iop_base'.
2066 * The second parameter 'bus_type' is currently unused.
2068 #define AdvGetChipVersion(iop_base, bus_type) \
2069 AdvReadByteRegister((iop_base), IOPB_CHIP_TYPE_REV)
2072 * Abort an SRB in the chip's RISC Memory. The 'srb_ptr' argument must
2073 * match the ASC_SCSI_REQ_Q 'srb_ptr' field.
2075 * If the request has not yet been sent to the device it will simply be
2076 * aborted from RISC memory. If the request is disconnected it will be
2077 * aborted on reselection by sending an Abort Message to the target ID.
2080 * ADV_TRUE(1) - Queue was successfully aborted.
2081 * ADV_FALSE(0) - Queue was not found on the active queue list.
2083 #define AdvAbortQueue(asc_dvc, scsiq) \
2084 AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_ABORT, \
2088 * Send a Bus Device Reset Message to the specified target ID.
2090 * All outstanding commands will be purged if sending the
2091 * Bus Device Reset Message is successful.
2094 * ADV_TRUE(1) - All requests on the target are purged.
2095 * ADV_FALSE(0) - Couldn't issue Bus Device Reset Message; Requests
2098 #define AdvResetDevice(asc_dvc, target_id) \
2099 AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_DEVICE_RESET, \
2100 (ADV_DCNT) (target_id))
2103 * SCSI Wide Type definition.
2105 #define ADV_SCSI_BIT_ID_TYPE ushort
2108 * AdvInitScsiTarget() 'cntl_flag' options.
2110 #define ADV_SCAN_LUN 0x01
2111 #define ADV_CAPINFO_NOLUN 0x02
2114 * Convert target id to target id bit mask.
2116 #define ADV_TID_TO_TIDMASK(tid) (0x01 << ((tid) & ADV_MAX_TID))
2119 * ASC_SCSI_REQ_Q 'done_status' and 'host_status' return values.
2122 #define QD_NO_STATUS 0x00 /* Request not completed yet. */
2123 #define QD_NO_ERROR 0x01
2124 #define QD_ABORTED_BY_HOST 0x02
2125 #define QD_WITH_ERROR 0x04
2127 #define QHSTA_NO_ERROR 0x00
2128 #define QHSTA_M_SEL_TIMEOUT 0x11
2129 #define QHSTA_M_DATA_OVER_RUN 0x12
2130 #define QHSTA_M_UNEXPECTED_BUS_FREE 0x13
2131 #define QHSTA_M_QUEUE_ABORTED 0x15
2132 #define QHSTA_M_SXFR_SDMA_ERR 0x16 /* SXFR_STATUS SCSI DMA Error */
2133 #define QHSTA_M_SXFR_SXFR_PERR 0x17 /* SXFR_STATUS SCSI Bus Parity Error */
2134 #define QHSTA_M_RDMA_PERR 0x18 /* RISC PCI DMA parity error */
2135 #define QHSTA_M_SXFR_OFF_UFLW 0x19 /* SXFR_STATUS Offset Underflow */
2136 #define QHSTA_M_SXFR_OFF_OFLW 0x20 /* SXFR_STATUS Offset Overflow */
2137 #define QHSTA_M_SXFR_WD_TMO 0x21 /* SXFR_STATUS Watchdog Timeout */
2138 #define QHSTA_M_SXFR_DESELECTED 0x22 /* SXFR_STATUS Deselected */
2139 /* Note: QHSTA_M_SXFR_XFR_OFLW is identical to QHSTA_M_DATA_OVER_RUN. */
2140 #define QHSTA_M_SXFR_XFR_OFLW 0x12 /* SXFR_STATUS Transfer Overflow */
2141 #define QHSTA_M_SXFR_XFR_PH_ERR 0x24 /* SXFR_STATUS Transfer Phase Error */
2142 #define QHSTA_M_SXFR_UNKNOWN_ERROR 0x25 /* SXFR_STATUS Unknown Error */
2143 #define QHSTA_M_SCSI_BUS_RESET 0x30 /* Request aborted from SBR */
2144 #define QHSTA_M_SCSI_BUS_RESET_UNSOL 0x31 /* Request aborted from unsol. SBR */
2145 #define QHSTA_M_BUS_DEVICE_RESET 0x32 /* Request aborted from BDR */
2146 #define QHSTA_M_DIRECTION_ERR 0x35 /* Data Phase mismatch */
2147 #define QHSTA_M_DIRECTION_ERR_HUNG 0x36 /* Data Phase mismatch and bus hang */
2148 #define QHSTA_M_WTM_TIMEOUT 0x41
2149 #define QHSTA_M_BAD_CMPL_STATUS_IN 0x42
2150 #define QHSTA_M_NO_AUTO_REQ_SENSE 0x43
2151 #define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44
2152 #define QHSTA_M_INVALID_DEVICE 0x45 /* Bad target ID */
2153 #define QHSTA_M_FROZEN_TIDQ 0x46 /* TID Queue frozen. */
2154 #define QHSTA_M_SGBACKUP_ERROR 0x47 /* Scatter-Gather backup error */
2156 /* Return the address that is aligned at the next doubleword >= to 'addr'. */
2157 #define ADV_8BALIGN(addr) (((ulong) (addr) + 0x7) & ~0x7)
2158 #define ADV_16BALIGN(addr) (((ulong) (addr) + 0xF) & ~0xF)
2159 #define ADV_32BALIGN(addr) (((ulong) (addr) + 0x1F) & ~0x1F)
2162 * Total contiguous memory needed for driver SG blocks.
2164 * ADV_MAX_SG_LIST must be defined by a driver. It is the maximum
2165 * number of scatter-gather elements the driver supports in a
2169 #define ADV_SG_LIST_MAX_BYTE_SIZE \
2170 (sizeof(ADV_SG_BLOCK) * \
2171 ((ADV_MAX_SG_LIST + (NO_OF_SG_PER_BLOCK - 1))/NO_OF_SG_PER_BLOCK))
2173 /* struct asc_board flags */
2174 #define ASC_IS_WIDE_BOARD 0x04 /* AdvanSys Wide Board */
2176 #define ASC_NARROW_BOARD(boardp) (((boardp)->flags & ASC_IS_WIDE_BOARD) == 0)
2178 #define NO_ISA_DMA 0xff /* No ISA DMA Channel Used */
2180 #define ASC_INFO_SIZE 128 /* advansys_info() line size */
2182 #ifdef CONFIG_PROC_FS
2183 /* /proc/scsi/advansys/[0...] related definitions */
2184 #define ASC_PRTBUF_SIZE 2048
2185 #define ASC_PRTLINE_SIZE 160
2187 #define ASC_PRT_NEXT() \
2191 if (leftlen == 0) { \
2196 #endif /* CONFIG_PROC_FS */
2198 /* Asc Library return codes */
2201 #define ASC_NOERROR 1
2203 #define ASC_ERROR (-1)
2205 /* struct scsi_cmnd function return codes */
2206 #define STATUS_BYTE(byte) (byte)
2207 #define MSG_BYTE(byte) ((byte) << 8)
2208 #define HOST_BYTE(byte) ((byte) << 16)
2209 #define DRIVER_BYTE(byte) ((byte) << 24)
2211 #define ASC_STATS(shost, counter) ASC_STATS_ADD(shost, counter, 1)
2212 #ifndef ADVANSYS_STATS
2213 #define ASC_STATS_ADD(shost, counter, count)
2214 #else /* ADVANSYS_STATS */
2215 #define ASC_STATS_ADD(shost, counter, count) \
2216 (((struct asc_board *) shost_priv(shost))->asc_stats.counter += (count))
2217 #endif /* ADVANSYS_STATS */
2219 /* If the result wraps when calculating tenths, return 0. */
2220 #define ASC_TENTHS(num, den) \
2221 (((10 * ((num)/(den))) > (((num) * 10)/(den))) ? \
2222 0 : ((((num) * 10)/(den)) - (10 * ((num)/(den)))))
2225 * Display a message to the console.
2227 #define ASC_PRINT(s) \
2229 printk("advansys: "); \
2233 #define ASC_PRINT1(s, a1) \
2235 printk("advansys: "); \
2236 printk((s), (a1)); \
2239 #define ASC_PRINT2(s, a1, a2) \
2241 printk("advansys: "); \
2242 printk((s), (a1), (a2)); \
2245 #define ASC_PRINT3(s, a1, a2, a3) \
2247 printk("advansys: "); \
2248 printk((s), (a1), (a2), (a3)); \
2251 #define ASC_PRINT4(s, a1, a2, a3, a4) \
2253 printk("advansys: "); \
2254 printk((s), (a1), (a2), (a3), (a4)); \
2257 #ifndef ADVANSYS_DEBUG
2259 #define ASC_DBG(lvl, s...)
2260 #define ASC_DBG_PRT_SCSI_HOST(lvl, s)
2261 #define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp)
2262 #define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp)
2263 #define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone)
2264 #define ADV_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp)
2265 #define ASC_DBG_PRT_HEX(lvl, name, start, length)
2266 #define ASC_DBG_PRT_CDB(lvl, cdb, len)
2267 #define ASC_DBG_PRT_SENSE(lvl, sense, len)
2268 #define ASC_DBG_PRT_INQUIRY(lvl, inq, len)
2270 #else /* ADVANSYS_DEBUG */
2273 * Debugging Message Levels:
2275 * 1: High-Level Tracing
2276 * 2-N: Verbose Tracing
2279 #define ASC_DBG(lvl, format, arg...) { \
2280 if (asc_dbglvl >= (lvl)) \
2281 printk(KERN_DEBUG "%s: %s: " format, DRV_NAME, \
2282 __func__ , ## arg); \
2285 #define ASC_DBG_PRT_SCSI_HOST(lvl, s) \
2287 if (asc_dbglvl >= (lvl)) { \
2288 asc_prt_scsi_host(s); \
2292 #define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp) \
2294 if (asc_dbglvl >= (lvl)) { \
2295 asc_prt_asc_scsi_q(scsiqp); \
2299 #define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone) \
2301 if (asc_dbglvl >= (lvl)) { \
2302 asc_prt_asc_qdone_info(qdone); \
2306 #define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp) \
2308 if (asc_dbglvl >= (lvl)) { \
2309 asc_prt_adv_scsi_req_q(scsiqp); \
2313 #define ASC_DBG_PRT_HEX(lvl, name, start, length) \
2315 if (asc_dbglvl >= (lvl)) { \
2316 asc_prt_hex((name), (start), (length)); \
2320 #define ASC_DBG_PRT_CDB(lvl, cdb, len) \
2321 ASC_DBG_PRT_HEX((lvl), "CDB", (uchar *) (cdb), (len));
2323 #define ASC_DBG_PRT_SENSE(lvl, sense, len) \
2324 ASC_DBG_PRT_HEX((lvl), "SENSE", (uchar *) (sense), (len));
2326 #define ASC_DBG_PRT_INQUIRY(lvl, inq, len) \
2327 ASC_DBG_PRT_HEX((lvl), "INQUIRY", (uchar *) (inq), (len));
2328 #endif /* ADVANSYS_DEBUG */
2330 #ifdef ADVANSYS_STATS
2332 /* Per board statistics structure */
2334 /* Driver Entrypoint Statistics */
2335 ADV_DCNT queuecommand
; /* # calls to advansys_queuecommand() */
2336 ADV_DCNT reset
; /* # calls to advansys_eh_bus_reset() */
2337 ADV_DCNT biosparam
; /* # calls to advansys_biosparam() */
2338 ADV_DCNT interrupt
; /* # advansys_interrupt() calls */
2339 ADV_DCNT callback
; /* # calls to asc/adv_isr_callback() */
2340 ADV_DCNT done
; /* # calls to request's scsi_done function */
2341 ADV_DCNT build_error
; /* # asc/adv_build_req() ASC_ERROR returns. */
2342 ADV_DCNT adv_build_noreq
; /* # adv_build_req() adv_req_t alloc. fail. */
2343 ADV_DCNT adv_build_nosg
; /* # adv_build_req() adv_sgblk_t alloc. fail. */
2344 /* AscExeScsiQueue()/AdvExeScsiQueue() Statistics */
2345 ADV_DCNT exe_noerror
; /* # ASC_NOERROR returns. */
2346 ADV_DCNT exe_busy
; /* # ASC_BUSY returns. */
2347 ADV_DCNT exe_error
; /* # ASC_ERROR returns. */
2348 ADV_DCNT exe_unknown
; /* # unknown returns. */
2349 /* Data Transfer Statistics */
2350 ADV_DCNT xfer_cnt
; /* # I/O requests received */
2351 ADV_DCNT xfer_elem
; /* # scatter-gather elements */
2352 ADV_DCNT xfer_sect
; /* # 512-byte blocks */
2354 #endif /* ADVANSYS_STATS */
2357 * Structure allocated for each board.
2359 * This structure is allocated by scsi_host_alloc() at the end
2360 * of the 'Scsi_Host' structure starting at the 'hostdata'
2361 * field. It is guaranteed to be allocated from DMA-able memory.
2365 uint flags
; /* Board flags */
2368 ASC_DVC_VAR asc_dvc_var
; /* Narrow board */
2369 ADV_DVC_VAR adv_dvc_var
; /* Wide board */
2372 ASC_DVC_CFG asc_dvc_cfg
; /* Narrow board */
2373 ADV_DVC_CFG adv_dvc_cfg
; /* Wide board */
2375 ushort asc_n_io_port
; /* Number I/O ports. */
2376 ADV_SCSI_BIT_ID_TYPE init_tidmask
; /* Target init./valid mask */
2377 ushort reqcnt
[ADV_MAX_TID
+ 1]; /* Starvation request count */
2378 ADV_SCSI_BIT_ID_TYPE queue_full
; /* Queue full mask */
2379 ushort queue_full_cnt
[ADV_MAX_TID
+ 1]; /* Queue full count */
2381 ASCEEP_CONFIG asc_eep
; /* Narrow EEPROM config. */
2382 ADVEEP_3550_CONFIG adv_3550_eep
; /* 3550 EEPROM config. */
2383 ADVEEP_38C0800_CONFIG adv_38C0800_eep
; /* 38C0800 EEPROM config. */
2384 ADVEEP_38C1600_CONFIG adv_38C1600_eep
; /* 38C1600 EEPROM config. */
2386 ulong last_reset
; /* Saved last reset time */
2387 /* /proc/scsi/advansys/[0...] */
2388 char *prtbuf
; /* /proc print buffer */
2389 #ifdef ADVANSYS_STATS
2390 struct asc_stats asc_stats
; /* Board statistics */
2391 #endif /* ADVANSYS_STATS */
2393 * The following fields are used only for Narrow Boards.
2395 uchar sdtr_data
[ASC_MAX_TID
+ 1]; /* SDTR information */
2397 * The following fields are used only for Wide Boards.
2399 void __iomem
*ioremap_addr
; /* I/O Memory remap address. */
2400 ushort ioport
; /* I/O Port address. */
2401 adv_req_t
*adv_reqp
; /* Request structures. */
2402 adv_sgblk_t
*adv_sgblkp
; /* Scatter-gather structures. */
2403 ushort bios_signature
; /* BIOS Signature. */
2404 ushort bios_version
; /* BIOS Version. */
2405 ushort bios_codeseg
; /* BIOS Code Segment. */
2406 ushort bios_codelen
; /* BIOS Code Segment Length. */
2409 #define asc_dvc_to_board(asc_dvc) container_of(asc_dvc, struct asc_board, \
2410 dvc_var.asc_dvc_var)
2411 #define adv_dvc_to_board(adv_dvc) container_of(adv_dvc, struct asc_board, \
2412 dvc_var.adv_dvc_var)
2413 #define adv_dvc_to_pdev(adv_dvc) to_pci_dev(adv_dvc_to_board(adv_dvc)->dev)
2415 #ifdef ADVANSYS_DEBUG
2416 static int asc_dbglvl
= 3;
2419 * asc_prt_asc_dvc_var()
2421 static void asc_prt_asc_dvc_var(ASC_DVC_VAR
*h
)
2423 printk("ASC_DVC_VAR at addr 0x%lx\n", (ulong
)h
);
2425 printk(" iop_base 0x%x, err_code 0x%x, dvc_cntl 0x%x, bug_fix_cntl "
2426 "%d,\n", h
->iop_base
, h
->err_code
, h
->dvc_cntl
, h
->bug_fix_cntl
);
2428 printk(" bus_type %d, init_sdtr 0x%x,\n", h
->bus_type
,
2429 (unsigned)h
->init_sdtr
);
2431 printk(" sdtr_done 0x%x, use_tagged_qng 0x%x, unit_not_ready 0x%x, "
2432 "chip_no 0x%x,\n", (unsigned)h
->sdtr_done
,
2433 (unsigned)h
->use_tagged_qng
, (unsigned)h
->unit_not_ready
,
2434 (unsigned)h
->chip_no
);
2436 printk(" queue_full_or_busy 0x%x, start_motor 0x%x, scsi_reset_wait "
2437 "%u,\n", (unsigned)h
->queue_full_or_busy
,
2438 (unsigned)h
->start_motor
, (unsigned)h
->scsi_reset_wait
);
2440 printk(" is_in_int %u, max_total_qng %u, cur_total_qng %u, "
2441 "in_critical_cnt %u,\n", (unsigned)h
->is_in_int
,
2442 (unsigned)h
->max_total_qng
, (unsigned)h
->cur_total_qng
,
2443 (unsigned)h
->in_critical_cnt
);
2445 printk(" last_q_shortage %u, init_state 0x%x, no_scam 0x%x, "
2446 "pci_fix_asyn_xfer 0x%x,\n", (unsigned)h
->last_q_shortage
,
2447 (unsigned)h
->init_state
, (unsigned)h
->no_scam
,
2448 (unsigned)h
->pci_fix_asyn_xfer
);
2450 printk(" cfg 0x%lx\n", (ulong
)h
->cfg
);
2454 * asc_prt_asc_dvc_cfg()
2456 static void asc_prt_asc_dvc_cfg(ASC_DVC_CFG
*h
)
2458 printk("ASC_DVC_CFG at addr 0x%lx\n", (ulong
)h
);
2460 printk(" can_tagged_qng 0x%x, cmd_qng_enabled 0x%x,\n",
2461 h
->can_tagged_qng
, h
->cmd_qng_enabled
);
2462 printk(" disc_enable 0x%x, sdtr_enable 0x%x,\n",
2463 h
->disc_enable
, h
->sdtr_enable
);
2465 printk(" chip_scsi_id %d, isa_dma_speed %d, isa_dma_channel %d, "
2466 "chip_version %d,\n", h
->chip_scsi_id
, h
->isa_dma_speed
,
2467 h
->isa_dma_channel
, h
->chip_version
);
2469 printk(" mcode_date 0x%x, mcode_version %d\n",
2470 h
->mcode_date
, h
->mcode_version
);
2474 * asc_prt_adv_dvc_var()
2476 * Display an ADV_DVC_VAR structure.
2478 static void asc_prt_adv_dvc_var(ADV_DVC_VAR
*h
)
2480 printk(" ADV_DVC_VAR at addr 0x%lx\n", (ulong
)h
);
2482 printk(" iop_base 0x%lx, err_code 0x%x, ultra_able 0x%x\n",
2483 (ulong
)h
->iop_base
, h
->err_code
, (unsigned)h
->ultra_able
);
2485 printk(" sdtr_able 0x%x, wdtr_able 0x%x\n",
2486 (unsigned)h
->sdtr_able
, (unsigned)h
->wdtr_able
);
2488 printk(" start_motor 0x%x, scsi_reset_wait 0x%x\n",
2489 (unsigned)h
->start_motor
, (unsigned)h
->scsi_reset_wait
);
2491 printk(" max_host_qng %u, max_dvc_qng %u, carr_freelist 0x%lxn\n",
2492 (unsigned)h
->max_host_qng
, (unsigned)h
->max_dvc_qng
,
2493 (ulong
)h
->carr_freelist
);
2495 printk(" icq_sp 0x%lx, irq_sp 0x%lx\n",
2496 (ulong
)h
->icq_sp
, (ulong
)h
->irq_sp
);
2498 printk(" no_scam 0x%x, tagqng_able 0x%x\n",
2499 (unsigned)h
->no_scam
, (unsigned)h
->tagqng_able
);
2501 printk(" chip_scsi_id 0x%x, cfg 0x%lx\n",
2502 (unsigned)h
->chip_scsi_id
, (ulong
)h
->cfg
);
2506 * asc_prt_adv_dvc_cfg()
2508 * Display an ADV_DVC_CFG structure.
2510 static void asc_prt_adv_dvc_cfg(ADV_DVC_CFG
*h
)
2512 printk(" ADV_DVC_CFG at addr 0x%lx\n", (ulong
)h
);
2514 printk(" disc_enable 0x%x, termination 0x%x\n",
2515 h
->disc_enable
, h
->termination
);
2517 printk(" chip_version 0x%x, mcode_date 0x%x\n",
2518 h
->chip_version
, h
->mcode_date
);
2520 printk(" mcode_version 0x%x, control_flag 0x%x\n",
2521 h
->mcode_version
, h
->control_flag
);
2525 * asc_prt_scsi_host()
2527 static void asc_prt_scsi_host(struct Scsi_Host
*s
)
2529 struct asc_board
*boardp
= shost_priv(s
);
2531 printk("Scsi_Host at addr 0x%p, device %s\n", s
, dev_name(boardp
->dev
));
2532 printk(" host_busy %u, host_no %d, last_reset %d,\n",
2533 s
->host_busy
, s
->host_no
, (unsigned)s
->last_reset
);
2535 printk(" base 0x%lx, io_port 0x%lx, irq %d,\n",
2536 (ulong
)s
->base
, (ulong
)s
->io_port
, boardp
->irq
);
2538 printk(" dma_channel %d, this_id %d, can_queue %d,\n",
2539 s
->dma_channel
, s
->this_id
, s
->can_queue
);
2541 printk(" cmd_per_lun %d, sg_tablesize %d, unchecked_isa_dma %d\n",
2542 s
->cmd_per_lun
, s
->sg_tablesize
, s
->unchecked_isa_dma
);
2544 if (ASC_NARROW_BOARD(boardp
)) {
2545 asc_prt_asc_dvc_var(&boardp
->dvc_var
.asc_dvc_var
);
2546 asc_prt_asc_dvc_cfg(&boardp
->dvc_cfg
.asc_dvc_cfg
);
2548 asc_prt_adv_dvc_var(&boardp
->dvc_var
.adv_dvc_var
);
2549 asc_prt_adv_dvc_cfg(&boardp
->dvc_cfg
.adv_dvc_cfg
);
2556 * Print hexadecimal output in 4 byte groupings 32 bytes
2557 * or 8 double-words per line.
2559 static void asc_prt_hex(char *f
, uchar
*s
, int l
)
2566 printk("%s: (%d bytes)\n", f
, l
);
2568 for (i
= 0; i
< l
; i
+= 32) {
2570 /* Display a maximum of 8 double-words per line. */
2571 if ((k
= (l
- i
) / 4) >= 8) {
2578 for (j
= 0; j
< k
; j
++) {
2579 printk(" %2.2X%2.2X%2.2X%2.2X",
2580 (unsigned)s
[i
+ (j
* 4)],
2581 (unsigned)s
[i
+ (j
* 4) + 1],
2582 (unsigned)s
[i
+ (j
* 4) + 2],
2583 (unsigned)s
[i
+ (j
* 4) + 3]);
2591 printk(" %2.2X", (unsigned)s
[i
+ (j
* 4)]);
2594 printk(" %2.2X%2.2X",
2595 (unsigned)s
[i
+ (j
* 4)],
2596 (unsigned)s
[i
+ (j
* 4) + 1]);
2599 printk(" %2.2X%2.2X%2.2X",
2600 (unsigned)s
[i
+ (j
* 4) + 1],
2601 (unsigned)s
[i
+ (j
* 4) + 2],
2602 (unsigned)s
[i
+ (j
* 4) + 3]);
2611 * asc_prt_asc_scsi_q()
2613 static void asc_prt_asc_scsi_q(ASC_SCSI_Q
*q
)
2618 printk("ASC_SCSI_Q at addr 0x%lx\n", (ulong
)q
);
2621 (" target_ix 0x%x, target_lun %u, srb_ptr 0x%lx, tag_code 0x%x,\n",
2622 q
->q2
.target_ix
, q
->q1
.target_lun
, (ulong
)q
->q2
.srb_ptr
,
2626 (" data_addr 0x%lx, data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n",
2627 (ulong
)le32_to_cpu(q
->q1
.data_addr
),
2628 (ulong
)le32_to_cpu(q
->q1
.data_cnt
),
2629 (ulong
)le32_to_cpu(q
->q1
.sense_addr
), q
->q1
.sense_len
);
2631 printk(" cdbptr 0x%lx, cdb_len %u, sg_head 0x%lx, sg_queue_cnt %u\n",
2632 (ulong
)q
->cdbptr
, q
->q2
.cdb_len
,
2633 (ulong
)q
->sg_head
, q
->q1
.sg_queue_cnt
);
2637 printk("ASC_SG_HEAD at addr 0x%lx\n", (ulong
)sgp
);
2638 printk(" entry_cnt %u, queue_cnt %u\n", sgp
->entry_cnt
,
2640 for (i
= 0; i
< sgp
->entry_cnt
; i
++) {
2641 printk(" [%u]: addr 0x%lx, bytes %lu\n",
2642 i
, (ulong
)le32_to_cpu(sgp
->sg_list
[i
].addr
),
2643 (ulong
)le32_to_cpu(sgp
->sg_list
[i
].bytes
));
2650 * asc_prt_asc_qdone_info()
2652 static void asc_prt_asc_qdone_info(ASC_QDONE_INFO
*q
)
2654 printk("ASC_QDONE_INFO at addr 0x%lx\n", (ulong
)q
);
2655 printk(" srb_ptr 0x%lx, target_ix %u, cdb_len %u, tag_code %u,\n",
2656 (ulong
)q
->d2
.srb_ptr
, q
->d2
.target_ix
, q
->d2
.cdb_len
,
2659 (" done_stat 0x%x, host_stat 0x%x, scsi_stat 0x%x, scsi_msg 0x%x\n",
2660 q
->d3
.done_stat
, q
->d3
.host_stat
, q
->d3
.scsi_stat
, q
->d3
.scsi_msg
);
2664 * asc_prt_adv_sgblock()
2666 * Display an ADV_SG_BLOCK structure.
2668 static void asc_prt_adv_sgblock(int sgblockno
, ADV_SG_BLOCK
*b
)
2672 printk(" ASC_SG_BLOCK at addr 0x%lx (sgblockno %d)\n",
2673 (ulong
)b
, sgblockno
);
2674 printk(" sg_cnt %u, sg_ptr 0x%lx\n",
2675 b
->sg_cnt
, (ulong
)le32_to_cpu(b
->sg_ptr
));
2676 BUG_ON(b
->sg_cnt
> NO_OF_SG_PER_BLOCK
);
2678 BUG_ON(b
->sg_cnt
!= NO_OF_SG_PER_BLOCK
);
2679 for (i
= 0; i
< b
->sg_cnt
; i
++) {
2680 printk(" [%u]: sg_addr 0x%lx, sg_count 0x%lx\n",
2681 i
, (ulong
)b
->sg_list
[i
].sg_addr
,
2682 (ulong
)b
->sg_list
[i
].sg_count
);
2687 * asc_prt_adv_scsi_req_q()
2689 * Display an ADV_SCSI_REQ_Q structure.
2691 static void asc_prt_adv_scsi_req_q(ADV_SCSI_REQ_Q
*q
)
2694 struct asc_sg_block
*sg_ptr
;
2696 printk("ADV_SCSI_REQ_Q at addr 0x%lx\n", (ulong
)q
);
2698 printk(" target_id %u, target_lun %u, srb_ptr 0x%lx, a_flag 0x%x\n",
2699 q
->target_id
, q
->target_lun
, (ulong
)q
->srb_ptr
, q
->a_flag
);
2701 printk(" cntl 0x%x, data_addr 0x%lx, vdata_addr 0x%lx\n",
2702 q
->cntl
, (ulong
)le32_to_cpu(q
->data_addr
), (ulong
)q
->vdata_addr
);
2704 printk(" data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n",
2705 (ulong
)le32_to_cpu(q
->data_cnt
),
2706 (ulong
)le32_to_cpu(q
->sense_addr
), q
->sense_len
);
2709 (" cdb_len %u, done_status 0x%x, host_status 0x%x, scsi_status 0x%x\n",
2710 q
->cdb_len
, q
->done_status
, q
->host_status
, q
->scsi_status
);
2712 printk(" sg_working_ix 0x%x, target_cmd %u\n",
2713 q
->sg_working_ix
, q
->target_cmd
);
2715 printk(" scsiq_rptr 0x%lx, sg_real_addr 0x%lx, sg_list_ptr 0x%lx\n",
2716 (ulong
)le32_to_cpu(q
->scsiq_rptr
),
2717 (ulong
)le32_to_cpu(q
->sg_real_addr
), (ulong
)q
->sg_list_ptr
);
2719 /* Display the request's ADV_SG_BLOCK structures. */
2720 if (q
->sg_list_ptr
!= NULL
) {
2724 * 'sg_ptr' is a physical address. Convert it to a virtual
2725 * address by indexing 'sg_blk_cnt' into the virtual address
2726 * array 'sg_list_ptr'.
2728 * XXX - Assumes all SG physical blocks are virtually contiguous.
2731 &(((ADV_SG_BLOCK
*)(q
->sg_list_ptr
))[sg_blk_cnt
]);
2732 asc_prt_adv_sgblock(sg_blk_cnt
, sg_ptr
);
2733 if (sg_ptr
->sg_ptr
== 0) {
2740 #endif /* ADVANSYS_DEBUG */
2743 * The advansys chip/microcode contains a 32-bit identifier for each command
2744 * known as the 'srb'. I don't know what it stands for. The driver used
2745 * to encode the scsi_cmnd pointer by calling virt_to_bus and retrieve it
2746 * with bus_to_virt. Now the driver keeps a per-host map of integers to
2747 * pointers. It auto-expands when full, unless it can't allocate memory.
2748 * Note that an srb of 0 is treated specially by the chip/firmware, hence
2749 * the return of i+1 in this routine, and the corresponding subtraction in
2750 * the inverse routine.
2753 static u32
advansys_ptr_to_srb(struct asc_dvc_var
*asc_dvc
, void *ptr
)
2758 for (i
= 0; i
< asc_dvc
->ptr_map_count
; i
++) {
2759 if (!asc_dvc
->ptr_map
[i
])
2763 if (asc_dvc
->ptr_map_count
== 0)
2764 asc_dvc
->ptr_map_count
= 1;
2766 asc_dvc
->ptr_map_count
*= 2;
2768 new_ptr
= krealloc(asc_dvc
->ptr_map
,
2769 asc_dvc
->ptr_map_count
* sizeof(void *), GFP_ATOMIC
);
2772 asc_dvc
->ptr_map
= new_ptr
;
2774 ASC_DBG(3, "Putting ptr %p into array offset %d\n", ptr
, i
);
2775 asc_dvc
->ptr_map
[i
] = ptr
;
2779 static void * advansys_srb_to_ptr(struct asc_dvc_var
*asc_dvc
, u32 srb
)
2784 if (srb
>= asc_dvc
->ptr_map_count
) {
2785 printk("advansys: bad SRB %u, max %u\n", srb
,
2786 asc_dvc
->ptr_map_count
);
2789 ptr
= asc_dvc
->ptr_map
[srb
];
2790 asc_dvc
->ptr_map
[srb
] = NULL
;
2791 ASC_DBG(3, "Returning ptr %p from array offset %d\n", ptr
, srb
);
2798 * Return suitable for printing on the console with the argument
2799 * adapter's configuration information.
2801 * Note: The information line should not exceed ASC_INFO_SIZE bytes,
2802 * otherwise the static 'info' array will be overrun.
2804 static const char *advansys_info(struct Scsi_Host
*shost
)
2806 static char info
[ASC_INFO_SIZE
];
2807 struct asc_board
*boardp
= shost_priv(shost
);
2808 ASC_DVC_VAR
*asc_dvc_varp
;
2809 ADV_DVC_VAR
*adv_dvc_varp
;
2811 char *widename
= NULL
;
2813 if (ASC_NARROW_BOARD(boardp
)) {
2814 asc_dvc_varp
= &boardp
->dvc_var
.asc_dvc_var
;
2815 ASC_DBG(1, "begin\n");
2816 if (asc_dvc_varp
->bus_type
& ASC_IS_ISA
) {
2817 if ((asc_dvc_varp
->bus_type
& ASC_IS_ISAPNP
) ==
2819 busname
= "ISA PnP";
2824 "AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X, DMA 0x%X",
2825 ASC_VERSION
, busname
,
2826 (ulong
)shost
->io_port
,
2827 (ulong
)shost
->io_port
+ ASC_IOADR_GAP
- 1,
2828 boardp
->irq
, shost
->dma_channel
);
2830 if (asc_dvc_varp
->bus_type
& ASC_IS_VL
) {
2832 } else if (asc_dvc_varp
->bus_type
& ASC_IS_EISA
) {
2834 } else if (asc_dvc_varp
->bus_type
& ASC_IS_PCI
) {
2835 if ((asc_dvc_varp
->bus_type
& ASC_IS_PCI_ULTRA
)
2836 == ASC_IS_PCI_ULTRA
) {
2837 busname
= "PCI Ultra";
2843 shost_printk(KERN_ERR
, shost
, "unknown bus "
2844 "type %d\n", asc_dvc_varp
->bus_type
);
2847 "AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X",
2848 ASC_VERSION
, busname
, (ulong
)shost
->io_port
,
2849 (ulong
)shost
->io_port
+ ASC_IOADR_GAP
- 1,
2854 * Wide Adapter Information
2856 * Memory-mapped I/O is used instead of I/O space to access
2857 * the adapter, but display the I/O Port range. The Memory
2858 * I/O address is displayed through the driver /proc file.
2860 adv_dvc_varp
= &boardp
->dvc_var
.adv_dvc_var
;
2861 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
) {
2862 widename
= "Ultra-Wide";
2863 } else if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C0800
) {
2864 widename
= "Ultra2-Wide";
2866 widename
= "Ultra3-Wide";
2869 "AdvanSys SCSI %s: PCI %s: PCIMEM 0x%lX-0x%lX, IRQ 0x%X",
2870 ASC_VERSION
, widename
, (ulong
)adv_dvc_varp
->iop_base
,
2871 (ulong
)adv_dvc_varp
->iop_base
+ boardp
->asc_n_io_port
- 1, boardp
->irq
);
2873 BUG_ON(strlen(info
) >= ASC_INFO_SIZE
);
2874 ASC_DBG(1, "end\n");
2878 #ifdef CONFIG_PROC_FS
2882 * If 'cp' is NULL print to the console, otherwise print to a buffer.
2884 * Return 0 if printing to the console, otherwise return the number of
2885 * bytes written to the buffer.
2887 * Note: If any single line is greater than ASC_PRTLINE_SIZE bytes the stack
2888 * will be corrupted. 's[]' is defined to be ASC_PRTLINE_SIZE bytes.
2890 static int asc_prt_line(char *buf
, int buflen
, char *fmt
, ...)
2894 char s
[ASC_PRTLINE_SIZE
];
2896 va_start(args
, fmt
);
2897 ret
= vsprintf(s
, fmt
, args
);
2898 BUG_ON(ret
>= ASC_PRTLINE_SIZE
);
2903 ret
= min(buflen
, ret
);
2904 memcpy(buf
, s
, ret
);
2911 * asc_prt_board_devices()
2913 * Print driver information for devices attached to the board.
2915 * Note: no single line should be greater than ASC_PRTLINE_SIZE,
2916 * cf. asc_prt_line().
2918 * Return the number of characters copied into 'cp'. No more than
2919 * 'cplen' characters will be copied to 'cp'.
2921 static int asc_prt_board_devices(struct Scsi_Host
*shost
, char *cp
, int cplen
)
2923 struct asc_board
*boardp
= shost_priv(shost
);
2933 len
= asc_prt_line(cp
, leftlen
,
2934 "\nDevice Information for AdvanSys SCSI Host %d:\n",
2938 if (ASC_NARROW_BOARD(boardp
)) {
2939 chip_scsi_id
= boardp
->dvc_cfg
.asc_dvc_cfg
.chip_scsi_id
;
2941 chip_scsi_id
= boardp
->dvc_var
.adv_dvc_var
.chip_scsi_id
;
2944 len
= asc_prt_line(cp
, leftlen
, "Target IDs Detected:");
2946 for (i
= 0; i
<= ADV_MAX_TID
; i
++) {
2947 if (boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) {
2948 len
= asc_prt_line(cp
, leftlen
, " %X,", i
);
2952 len
= asc_prt_line(cp
, leftlen
, " (%X=Host Adapter)\n", chip_scsi_id
);
2959 * Display Wide Board BIOS Information.
2961 static int asc_prt_adv_bios(struct Scsi_Host
*shost
, char *cp
, int cplen
)
2963 struct asc_board
*boardp
= shost_priv(shost
);
2967 ushort major
, minor
, letter
;
2972 len
= asc_prt_line(cp
, leftlen
, "\nROM BIOS Version: ");
2976 * If the BIOS saved a valid signature, then fill in
2977 * the BIOS code segment base address.
2979 if (boardp
->bios_signature
!= 0x55AA) {
2980 len
= asc_prt_line(cp
, leftlen
, "Disabled or Pre-3.1\n");
2982 len
= asc_prt_line(cp
, leftlen
,
2983 "BIOS either disabled or Pre-3.1. If it is pre-3.1, then a newer version\n");
2985 len
= asc_prt_line(cp
, leftlen
,
2986 "can be found at the ConnectCom FTP site: ftp://ftp.connectcom.net/pub\n");
2989 major
= (boardp
->bios_version
>> 12) & 0xF;
2990 minor
= (boardp
->bios_version
>> 8) & 0xF;
2991 letter
= (boardp
->bios_version
& 0xFF);
2993 len
= asc_prt_line(cp
, leftlen
, "%d.%d%c\n",
2995 letter
>= 26 ? '?' : letter
+ 'A');
2999 * Current available ROM BIOS release is 3.1I for UW
3000 * and 3.2I for U2W. This code doesn't differentiate
3001 * UW and U2W boards.
3003 if (major
< 3 || (major
<= 3 && minor
< 1) ||
3004 (major
<= 3 && minor
<= 1 && letter
< ('I' - 'A'))) {
3005 len
= asc_prt_line(cp
, leftlen
,
3006 "Newer version of ROM BIOS is available at the ConnectCom FTP site:\n");
3008 len
= asc_prt_line(cp
, leftlen
,
3009 "ftp://ftp.connectcom.net/pub\n");
3018 * Add serial number to information bar if signature AAh
3019 * is found in at bit 15-9 (7 bits) of word 1.
3021 * Serial Number consists fo 12 alpha-numeric digits.
3023 * 1 - Product type (A,B,C,D..) Word0: 15-13 (3 bits)
3024 * 2 - MFG Location (A,B,C,D..) Word0: 12-10 (3 bits)
3025 * 3-4 - Product ID (0-99) Word0: 9-0 (10 bits)
3026 * 5 - Product revision (A-J) Word0: " "
3028 * Signature Word1: 15-9 (7 bits)
3029 * 6 - Year (0-9) Word1: 8-6 (3 bits) & Word2: 15 (1 bit)
3030 * 7-8 - Week of the year (1-52) Word1: 5-0 (6 bits)
3032 * 9-12 - Serial Number (A001-Z999) Word2: 14-0 (15 bits)
3034 * Note 1: Only production cards will have a serial number.
3036 * Note 2: Signature is most significant 7 bits (0xFE).
3038 * Returns ASC_TRUE if serial number found, otherwise returns ASC_FALSE.
3040 static int asc_get_eeprom_string(ushort
*serialnum
, uchar
*cp
)
3044 if ((serialnum
[1] & 0xFE00) != ((ushort
)0xAA << 8)) {
3048 * First word - 6 digits.
3052 /* Product type - 1st digit. */
3053 if ((*cp
= 'A' + ((w
& 0xE000) >> 13)) == 'H') {
3054 /* Product type is P=Prototype */
3059 /* Manufacturing location - 2nd digit. */
3060 *cp
++ = 'A' + ((w
& 0x1C00) >> 10);
3062 /* Product ID - 3rd, 4th digits. */
3064 *cp
++ = '0' + (num
/ 100);
3066 *cp
++ = '0' + (num
/ 10);
3068 /* Product revision - 5th digit. */
3069 *cp
++ = 'A' + (num
% 10);
3079 * If bit 15 of third word is set, then the
3080 * last digit of the year is greater than 7.
3082 if (serialnum
[2] & 0x8000) {
3083 *cp
++ = '8' + ((w
& 0x1C0) >> 6);
3085 *cp
++ = '0' + ((w
& 0x1C0) >> 6);
3088 /* Week of year - 7th, 8th digits. */
3090 *cp
++ = '0' + num
/ 10;
3097 w
= serialnum
[2] & 0x7FFF;
3099 /* Serial number - 9th digit. */
3100 *cp
++ = 'A' + (w
/ 1000);
3102 /* 10th, 11th, 12th digits. */
3104 *cp
++ = '0' + num
/ 100;
3106 *cp
++ = '0' + num
/ 10;
3110 *cp
= '\0'; /* Null Terminate the string. */
3116 * asc_prt_asc_board_eeprom()
3118 * Print board EEPROM configuration.
3120 * Note: no single line should be greater than ASC_PRTLINE_SIZE,
3121 * cf. asc_prt_line().
3123 * Return the number of characters copied into 'cp'. No more than
3124 * 'cplen' characters will be copied to 'cp'.
3126 static int asc_prt_asc_board_eeprom(struct Scsi_Host
*shost
, char *cp
, int cplen
)
3128 struct asc_board
*boardp
= shost_priv(shost
);
3129 ASC_DVC_VAR
*asc_dvc_varp
;
3136 int isa_dma_speed
[] = { 10, 8, 7, 6, 5, 4, 3, 2 };
3137 #endif /* CONFIG_ISA */
3138 uchar serialstr
[13];
3140 asc_dvc_varp
= &boardp
->dvc_var
.asc_dvc_var
;
3141 ep
= &boardp
->eep_config
.asc_eep
;
3146 len
= asc_prt_line(cp
, leftlen
,
3147 "\nEEPROM Settings for AdvanSys SCSI Host %d:\n",
3151 if (asc_get_eeprom_string((ushort
*)&ep
->adapter_info
[0], serialstr
)
3154 asc_prt_line(cp
, leftlen
, " Serial Number: %s\n",
3158 if (ep
->adapter_info
[5] == 0xBB) {
3159 len
= asc_prt_line(cp
, leftlen
,
3160 " Default Settings Used for EEPROM-less Adapter.\n");
3163 len
= asc_prt_line(cp
, leftlen
,
3164 " Serial Number Signature Not Present.\n");
3169 len
= asc_prt_line(cp
, leftlen
,
3170 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3171 ASC_EEP_GET_CHIP_ID(ep
), ep
->max_total_qng
,
3175 len
= asc_prt_line(cp
, leftlen
,
3176 " cntl 0x%x, no_scam 0x%x\n", ep
->cntl
, ep
->no_scam
);
3179 len
= asc_prt_line(cp
, leftlen
, " Target ID: ");
3181 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
3182 len
= asc_prt_line(cp
, leftlen
, " %d", i
);
3185 len
= asc_prt_line(cp
, leftlen
, "\n");
3188 len
= asc_prt_line(cp
, leftlen
, " Disconnects: ");
3190 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
3191 len
= asc_prt_line(cp
, leftlen
, " %c",
3193 disc_enable
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' :
3197 len
= asc_prt_line(cp
, leftlen
, "\n");
3200 len
= asc_prt_line(cp
, leftlen
, " Command Queuing: ");
3202 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
3203 len
= asc_prt_line(cp
, leftlen
, " %c",
3205 use_cmd_qng
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' :
3209 len
= asc_prt_line(cp
, leftlen
, "\n");
3212 len
= asc_prt_line(cp
, leftlen
, " Start Motor: ");
3214 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
3215 len
= asc_prt_line(cp
, leftlen
, " %c",
3217 start_motor
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' :
3221 len
= asc_prt_line(cp
, leftlen
, "\n");
3224 len
= asc_prt_line(cp
, leftlen
, " Synchronous Transfer:");
3226 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
3227 len
= asc_prt_line(cp
, leftlen
, " %c",
3229 init_sdtr
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' :
3233 len
= asc_prt_line(cp
, leftlen
, "\n");
3237 if (asc_dvc_varp
->bus_type
& ASC_IS_ISA
) {
3238 len
= asc_prt_line(cp
, leftlen
,
3239 " Host ISA DMA speed: %d MB/S\n",
3240 isa_dma_speed
[ASC_EEP_GET_DMA_SPD(ep
)]);
3243 #endif /* CONFIG_ISA */
3249 * asc_prt_adv_board_eeprom()
3251 * Print board EEPROM configuration.
3253 * Note: no single line should be greater than ASC_PRTLINE_SIZE,
3254 * cf. asc_prt_line().
3256 * Return the number of characters copied into 'cp'. No more than
3257 * 'cplen' characters will be copied to 'cp'.
3259 static int asc_prt_adv_board_eeprom(struct Scsi_Host
*shost
, char *cp
, int cplen
)
3261 struct asc_board
*boardp
= shost_priv(shost
);
3262 ADV_DVC_VAR
*adv_dvc_varp
;
3268 uchar serialstr
[13];
3269 ADVEEP_3550_CONFIG
*ep_3550
= NULL
;
3270 ADVEEP_38C0800_CONFIG
*ep_38C0800
= NULL
;
3271 ADVEEP_38C1600_CONFIG
*ep_38C1600
= NULL
;
3274 ushort sdtr_speed
= 0;
3276 adv_dvc_varp
= &boardp
->dvc_var
.adv_dvc_var
;
3277 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
) {
3278 ep_3550
= &boardp
->eep_config
.adv_3550_eep
;
3279 } else if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C0800
) {
3280 ep_38C0800
= &boardp
->eep_config
.adv_38C0800_eep
;
3282 ep_38C1600
= &boardp
->eep_config
.adv_38C1600_eep
;
3288 len
= asc_prt_line(cp
, leftlen
,
3289 "\nEEPROM Settings for AdvanSys SCSI Host %d:\n",
3293 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
) {
3294 wordp
= &ep_3550
->serial_number_word1
;
3295 } else if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C0800
) {
3296 wordp
= &ep_38C0800
->serial_number_word1
;
3298 wordp
= &ep_38C1600
->serial_number_word1
;
3301 if (asc_get_eeprom_string(wordp
, serialstr
) == ASC_TRUE
) {
3303 asc_prt_line(cp
, leftlen
, " Serial Number: %s\n",
3307 len
= asc_prt_line(cp
, leftlen
,
3308 " Serial Number Signature Not Present.\n");
3312 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
) {
3313 len
= asc_prt_line(cp
, leftlen
,
3314 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3315 ep_3550
->adapter_scsi_id
,
3316 ep_3550
->max_host_qng
, ep_3550
->max_dvc_qng
);
3318 } else if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C0800
) {
3319 len
= asc_prt_line(cp
, leftlen
,
3320 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3321 ep_38C0800
->adapter_scsi_id
,
3322 ep_38C0800
->max_host_qng
,
3323 ep_38C0800
->max_dvc_qng
);
3326 len
= asc_prt_line(cp
, leftlen
,
3327 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3328 ep_38C1600
->adapter_scsi_id
,
3329 ep_38C1600
->max_host_qng
,
3330 ep_38C1600
->max_dvc_qng
);
3333 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
) {
3334 word
= ep_3550
->termination
;
3335 } else if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C0800
) {
3336 word
= ep_38C0800
->termination_lvd
;
3338 word
= ep_38C1600
->termination_lvd
;
3342 termstr
= "Low Off/High Off";
3345 termstr
= "Low Off/High On";
3348 termstr
= "Low On/High On";
3352 termstr
= "Automatic";
3356 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
) {
3357 len
= asc_prt_line(cp
, leftlen
,
3358 " termination: %u (%s), bios_ctrl: 0x%x\n",
3359 ep_3550
->termination
, termstr
,
3360 ep_3550
->bios_ctrl
);
3362 } else if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C0800
) {
3363 len
= asc_prt_line(cp
, leftlen
,
3364 " termination: %u (%s), bios_ctrl: 0x%x\n",
3365 ep_38C0800
->termination_lvd
, termstr
,
3366 ep_38C0800
->bios_ctrl
);
3369 len
= asc_prt_line(cp
, leftlen
,
3370 " termination: %u (%s), bios_ctrl: 0x%x\n",
3371 ep_38C1600
->termination_lvd
, termstr
,
3372 ep_38C1600
->bios_ctrl
);
3376 len
= asc_prt_line(cp
, leftlen
, " Target ID: ");
3378 for (i
= 0; i
<= ADV_MAX_TID
; i
++) {
3379 len
= asc_prt_line(cp
, leftlen
, " %X", i
);
3382 len
= asc_prt_line(cp
, leftlen
, "\n");
3385 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
) {
3386 word
= ep_3550
->disc_enable
;
3387 } else if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C0800
) {
3388 word
= ep_38C0800
->disc_enable
;
3390 word
= ep_38C1600
->disc_enable
;
3392 len
= asc_prt_line(cp
, leftlen
, " Disconnects: ");
3394 for (i
= 0; i
<= ADV_MAX_TID
; i
++) {
3395 len
= asc_prt_line(cp
, leftlen
, " %c",
3396 (word
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' : 'N');
3399 len
= asc_prt_line(cp
, leftlen
, "\n");
3402 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
) {
3403 word
= ep_3550
->tagqng_able
;
3404 } else if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C0800
) {
3405 word
= ep_38C0800
->tagqng_able
;
3407 word
= ep_38C1600
->tagqng_able
;
3409 len
= asc_prt_line(cp
, leftlen
, " Command Queuing: ");
3411 for (i
= 0; i
<= ADV_MAX_TID
; i
++) {
3412 len
= asc_prt_line(cp
, leftlen
, " %c",
3413 (word
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' : 'N');
3416 len
= asc_prt_line(cp
, leftlen
, "\n");
3419 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
) {
3420 word
= ep_3550
->start_motor
;
3421 } else if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C0800
) {
3422 word
= ep_38C0800
->start_motor
;
3424 word
= ep_38C1600
->start_motor
;
3426 len
= asc_prt_line(cp
, leftlen
, " Start Motor: ");
3428 for (i
= 0; i
<= ADV_MAX_TID
; i
++) {
3429 len
= asc_prt_line(cp
, leftlen
, " %c",
3430 (word
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' : 'N');
3433 len
= asc_prt_line(cp
, leftlen
, "\n");
3436 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
) {
3437 len
= asc_prt_line(cp
, leftlen
, " Synchronous Transfer:");
3439 for (i
= 0; i
<= ADV_MAX_TID
; i
++) {
3440 len
= asc_prt_line(cp
, leftlen
, " %c",
3442 sdtr_able
& ADV_TID_TO_TIDMASK(i
)) ?
3446 len
= asc_prt_line(cp
, leftlen
, "\n");
3450 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
) {
3451 len
= asc_prt_line(cp
, leftlen
, " Ultra Transfer: ");
3453 for (i
= 0; i
<= ADV_MAX_TID
; i
++) {
3454 len
= asc_prt_line(cp
, leftlen
, " %c",
3456 ultra_able
& ADV_TID_TO_TIDMASK(i
))
3460 len
= asc_prt_line(cp
, leftlen
, "\n");
3464 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
) {
3465 word
= ep_3550
->wdtr_able
;
3466 } else if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C0800
) {
3467 word
= ep_38C0800
->wdtr_able
;
3469 word
= ep_38C1600
->wdtr_able
;
3471 len
= asc_prt_line(cp
, leftlen
, " Wide Transfer: ");
3473 for (i
= 0; i
<= ADV_MAX_TID
; i
++) {
3474 len
= asc_prt_line(cp
, leftlen
, " %c",
3475 (word
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' : 'N');
3478 len
= asc_prt_line(cp
, leftlen
, "\n");
3481 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C0800
||
3482 adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C1600
) {
3483 len
= asc_prt_line(cp
, leftlen
,
3484 " Synchronous Transfer Speed (Mhz):\n ");
3486 for (i
= 0; i
<= ADV_MAX_TID
; i
++) {
3490 sdtr_speed
= adv_dvc_varp
->sdtr_speed1
;
3491 } else if (i
== 4) {
3492 sdtr_speed
= adv_dvc_varp
->sdtr_speed2
;
3493 } else if (i
== 8) {
3494 sdtr_speed
= adv_dvc_varp
->sdtr_speed3
;
3495 } else if (i
== 12) {
3496 sdtr_speed
= adv_dvc_varp
->sdtr_speed4
;
3498 switch (sdtr_speed
& ADV_MAX_TID
) {
3521 len
= asc_prt_line(cp
, leftlen
, "%X:%s ", i
, speed_str
);
3524 len
= asc_prt_line(cp
, leftlen
, "\n ");
3529 len
= asc_prt_line(cp
, leftlen
, "\n");
3537 * asc_prt_driver_conf()
3539 * Note: no single line should be greater than ASC_PRTLINE_SIZE,
3540 * cf. asc_prt_line().
3542 * Return the number of characters copied into 'cp'. No more than
3543 * 'cplen' characters will be copied to 'cp'.
3545 static int asc_prt_driver_conf(struct Scsi_Host
*shost
, char *cp
, int cplen
)
3547 struct asc_board
*boardp
= shost_priv(shost
);
3556 len
= asc_prt_line(cp
, leftlen
,
3557 "\nLinux Driver Configuration and Information for AdvanSys SCSI Host %d:\n",
3561 len
= asc_prt_line(cp
, leftlen
,
3562 " host_busy %u, last_reset %u, max_id %u, max_lun %u, max_channel %u\n",
3563 shost
->host_busy
, shost
->last_reset
, shost
->max_id
,
3564 shost
->max_lun
, shost
->max_channel
);
3567 len
= asc_prt_line(cp
, leftlen
,
3568 " unique_id %d, can_queue %d, this_id %d, sg_tablesize %u, cmd_per_lun %u\n",
3569 shost
->unique_id
, shost
->can_queue
, shost
->this_id
,
3570 shost
->sg_tablesize
, shost
->cmd_per_lun
);
3573 len
= asc_prt_line(cp
, leftlen
,
3574 " unchecked_isa_dma %d, use_clustering %d\n",
3575 shost
->unchecked_isa_dma
, shost
->use_clustering
);
3578 len
= asc_prt_line(cp
, leftlen
,
3579 " flags 0x%x, last_reset 0x%x, jiffies 0x%x, asc_n_io_port 0x%x\n",
3580 boardp
->flags
, boardp
->last_reset
, jiffies
,
3581 boardp
->asc_n_io_port
);
3584 len
= asc_prt_line(cp
, leftlen
, " io_port 0x%x\n", shost
->io_port
);
3587 if (ASC_NARROW_BOARD(boardp
)) {
3588 chip_scsi_id
= boardp
->dvc_cfg
.asc_dvc_cfg
.chip_scsi_id
;
3590 chip_scsi_id
= boardp
->dvc_var
.adv_dvc_var
.chip_scsi_id
;
3597 * asc_prt_asc_board_info()
3599 * Print dynamic board configuration information.
3601 * Note: no single line should be greater than ASC_PRTLINE_SIZE,
3602 * cf. asc_prt_line().
3604 * Return the number of characters copied into 'cp'. No more than
3605 * 'cplen' characters will be copied to 'cp'.
3607 static int asc_prt_asc_board_info(struct Scsi_Host
*shost
, char *cp
, int cplen
)
3609 struct asc_board
*boardp
= shost_priv(shost
);
3617 int renegotiate
= 0;
3619 v
= &boardp
->dvc_var
.asc_dvc_var
;
3620 c
= &boardp
->dvc_cfg
.asc_dvc_cfg
;
3621 chip_scsi_id
= c
->chip_scsi_id
;
3626 len
= asc_prt_line(cp
, leftlen
,
3627 "\nAsc Library Configuration and Statistics for AdvanSys SCSI Host %d:\n",
3631 len
= asc_prt_line(cp
, leftlen
, " chip_version %u, mcode_date 0x%x, "
3632 "mcode_version 0x%x, err_code %u\n",
3633 c
->chip_version
, c
->mcode_date
, c
->mcode_version
,
3637 /* Current number of commands waiting for the host. */
3638 len
= asc_prt_line(cp
, leftlen
,
3639 " Total Command Pending: %d\n", v
->cur_total_qng
);
3642 len
= asc_prt_line(cp
, leftlen
, " Command Queuing:");
3644 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
3645 if ((chip_scsi_id
== i
) ||
3646 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3649 len
= asc_prt_line(cp
, leftlen
, " %X:%c",
3652 use_tagged_qng
& ADV_TID_TO_TIDMASK(i
)) ?
3656 len
= asc_prt_line(cp
, leftlen
, "\n");
3659 /* Current number of commands waiting for a device. */
3660 len
= asc_prt_line(cp
, leftlen
, " Command Queue Pending:");
3662 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
3663 if ((chip_scsi_id
== i
) ||
3664 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3667 len
= asc_prt_line(cp
, leftlen
, " %X:%u", i
, v
->cur_dvc_qng
[i
]);
3670 len
= asc_prt_line(cp
, leftlen
, "\n");
3673 /* Current limit on number of commands that can be sent to a device. */
3674 len
= asc_prt_line(cp
, leftlen
, " Command Queue Limit:");
3676 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
3677 if ((chip_scsi_id
== i
) ||
3678 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3681 len
= asc_prt_line(cp
, leftlen
, " %X:%u", i
, v
->max_dvc_qng
[i
]);
3684 len
= asc_prt_line(cp
, leftlen
, "\n");
3687 /* Indicate whether the device has returned queue full status. */
3688 len
= asc_prt_line(cp
, leftlen
, " Command Queue Full:");
3690 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
3691 if ((chip_scsi_id
== i
) ||
3692 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3695 if (boardp
->queue_full
& ADV_TID_TO_TIDMASK(i
)) {
3696 len
= asc_prt_line(cp
, leftlen
, " %X:Y-%d",
3697 i
, boardp
->queue_full_cnt
[i
]);
3699 len
= asc_prt_line(cp
, leftlen
, " %X:N", i
);
3703 len
= asc_prt_line(cp
, leftlen
, "\n");
3706 len
= asc_prt_line(cp
, leftlen
, " Synchronous Transfer:");
3708 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
3709 if ((chip_scsi_id
== i
) ||
3710 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3713 len
= asc_prt_line(cp
, leftlen
, " %X:%c",
3716 sdtr_done
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' :
3720 len
= asc_prt_line(cp
, leftlen
, "\n");
3723 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
3724 uchar syn_period_ix
;
3726 if ((chip_scsi_id
== i
) ||
3727 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0) ||
3728 ((v
->init_sdtr
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3732 len
= asc_prt_line(cp
, leftlen
, " %X:", i
);
3735 if ((boardp
->sdtr_data
[i
] & ASC_SYN_MAX_OFFSET
) == 0) {
3736 len
= asc_prt_line(cp
, leftlen
, " Asynchronous");
3740 (boardp
->sdtr_data
[i
] >> 4) & (v
->max_sdtr_index
-
3743 len
= asc_prt_line(cp
, leftlen
,
3744 " Transfer Period Factor: %d (%d.%d Mhz),",
3745 v
->sdtr_period_tbl
[syn_period_ix
],
3747 v
->sdtr_period_tbl
[syn_period_ix
],
3754 len
= asc_prt_line(cp
, leftlen
, " REQ/ACK Offset: %d",
3756 sdtr_data
[i
] & ASC_SYN_MAX_OFFSET
);
3760 if ((v
->sdtr_done
& ADV_TID_TO_TIDMASK(i
)) == 0) {
3761 len
= asc_prt_line(cp
, leftlen
, "*\n");
3764 len
= asc_prt_line(cp
, leftlen
, "\n");
3770 len
= asc_prt_line(cp
, leftlen
,
3771 " * = Re-negotiation pending before next command.\n");
3779 * asc_prt_adv_board_info()
3781 * Print dynamic board configuration information.
3783 * Note: no single line should be greater than ASC_PRTLINE_SIZE,
3784 * cf. asc_prt_line().
3786 * Return the number of characters copied into 'cp'. No more than
3787 * 'cplen' characters will be copied to 'cp'.
3789 static int asc_prt_adv_board_info(struct Scsi_Host
*shost
, char *cp
, int cplen
)
3791 struct asc_board
*boardp
= shost_priv(shost
);
3798 AdvPortAddr iop_base
;
3799 ushort chip_scsi_id
;
3803 ushort sdtr_able
, wdtr_able
;
3804 ushort wdtr_done
, sdtr_done
;
3806 int renegotiate
= 0;
3808 v
= &boardp
->dvc_var
.adv_dvc_var
;
3809 c
= &boardp
->dvc_cfg
.adv_dvc_cfg
;
3810 iop_base
= v
->iop_base
;
3811 chip_scsi_id
= v
->chip_scsi_id
;
3816 len
= asc_prt_line(cp
, leftlen
,
3817 "\nAdv Library Configuration and Statistics for AdvanSys SCSI Host %d:\n",
3821 len
= asc_prt_line(cp
, leftlen
,
3822 " iop_base 0x%lx, cable_detect: %X, err_code %u\n",
3824 AdvReadWordRegister(iop_base
,
3825 IOPW_SCSI_CFG1
) & CABLE_DETECT
,
3829 len
= asc_prt_line(cp
, leftlen
, " chip_version %u, mcode_date 0x%x, "
3830 "mcode_version 0x%x\n", c
->chip_version
,
3831 c
->mcode_date
, c
->mcode_version
);
3834 AdvReadWordLram(iop_base
, ASC_MC_TAGQNG_ABLE
, tagqng_able
);
3835 len
= asc_prt_line(cp
, leftlen
, " Queuing Enabled:");
3837 for (i
= 0; i
<= ADV_MAX_TID
; i
++) {
3838 if ((chip_scsi_id
== i
) ||
3839 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3843 len
= asc_prt_line(cp
, leftlen
, " %X:%c",
3845 (tagqng_able
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' :
3849 len
= asc_prt_line(cp
, leftlen
, "\n");
3852 len
= asc_prt_line(cp
, leftlen
, " Queue Limit:");
3854 for (i
= 0; i
<= ADV_MAX_TID
; i
++) {
3855 if ((chip_scsi_id
== i
) ||
3856 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3860 AdvReadByteLram(iop_base
, ASC_MC_NUMBER_OF_MAX_CMD
+ i
,
3863 len
= asc_prt_line(cp
, leftlen
, " %X:%d", i
, lrambyte
);
3866 len
= asc_prt_line(cp
, leftlen
, "\n");
3869 len
= asc_prt_line(cp
, leftlen
, " Command Pending:");
3871 for (i
= 0; i
<= ADV_MAX_TID
; i
++) {
3872 if ((chip_scsi_id
== i
) ||
3873 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3877 AdvReadByteLram(iop_base
, ASC_MC_NUMBER_OF_QUEUED_CMD
+ i
,
3880 len
= asc_prt_line(cp
, leftlen
, " %X:%d", i
, lrambyte
);
3883 len
= asc_prt_line(cp
, leftlen
, "\n");
3886 AdvReadWordLram(iop_base
, ASC_MC_WDTR_ABLE
, wdtr_able
);
3887 len
= asc_prt_line(cp
, leftlen
, " Wide Enabled:");
3889 for (i
= 0; i
<= ADV_MAX_TID
; i
++) {
3890 if ((chip_scsi_id
== i
) ||
3891 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3895 len
= asc_prt_line(cp
, leftlen
, " %X:%c",
3897 (wdtr_able
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' :
3901 len
= asc_prt_line(cp
, leftlen
, "\n");
3904 AdvReadWordLram(iop_base
, ASC_MC_WDTR_DONE
, wdtr_done
);
3905 len
= asc_prt_line(cp
, leftlen
, " Transfer Bit Width:");
3907 for (i
= 0; i
<= ADV_MAX_TID
; i
++) {
3908 if ((chip_scsi_id
== i
) ||
3909 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3913 AdvReadWordLram(iop_base
,
3914 ASC_MC_DEVICE_HSHK_CFG_TABLE
+ (2 * i
),
3917 len
= asc_prt_line(cp
, leftlen
, " %X:%d",
3918 i
, (lramword
& 0x8000) ? 16 : 8);
3921 if ((wdtr_able
& ADV_TID_TO_TIDMASK(i
)) &&
3922 (wdtr_done
& ADV_TID_TO_TIDMASK(i
)) == 0) {
3923 len
= asc_prt_line(cp
, leftlen
, "*");
3928 len
= asc_prt_line(cp
, leftlen
, "\n");
3931 AdvReadWordLram(iop_base
, ASC_MC_SDTR_ABLE
, sdtr_able
);
3932 len
= asc_prt_line(cp
, leftlen
, " Synchronous Enabled:");
3934 for (i
= 0; i
<= ADV_MAX_TID
; i
++) {
3935 if ((chip_scsi_id
== i
) ||
3936 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3940 len
= asc_prt_line(cp
, leftlen
, " %X:%c",
3942 (sdtr_able
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' :
3946 len
= asc_prt_line(cp
, leftlen
, "\n");
3949 AdvReadWordLram(iop_base
, ASC_MC_SDTR_DONE
, sdtr_done
);
3950 for (i
= 0; i
<= ADV_MAX_TID
; i
++) {
3952 AdvReadWordLram(iop_base
,
3953 ASC_MC_DEVICE_HSHK_CFG_TABLE
+ (2 * i
),
3955 lramword
&= ~0x8000;
3957 if ((chip_scsi_id
== i
) ||
3958 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0) ||
3959 ((sdtr_able
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3963 len
= asc_prt_line(cp
, leftlen
, " %X:", i
);
3966 if ((lramword
& 0x1F) == 0) { /* Check for REQ/ACK Offset 0. */
3967 len
= asc_prt_line(cp
, leftlen
, " Asynchronous");
3971 asc_prt_line(cp
, leftlen
,
3972 " Transfer Period Factor: ");
3975 if ((lramword
& 0x1F00) == 0x1100) { /* 80 Mhz */
3977 asc_prt_line(cp
, leftlen
, "9 (80.0 Mhz),");
3979 } else if ((lramword
& 0x1F00) == 0x1000) { /* 40 Mhz */
3981 asc_prt_line(cp
, leftlen
, "10 (40.0 Mhz),");
3983 } else { /* 20 Mhz or below. */
3985 period
= (((lramword
>> 8) * 25) + 50) / 4;
3987 if (period
== 0) { /* Should never happen. */
3989 asc_prt_line(cp
, leftlen
,
3993 len
= asc_prt_line(cp
, leftlen
,
3995 period
, 250 / period
,
4002 len
= asc_prt_line(cp
, leftlen
, " REQ/ACK Offset: %d",
4007 if ((sdtr_done
& ADV_TID_TO_TIDMASK(i
)) == 0) {
4008 len
= asc_prt_line(cp
, leftlen
, "*\n");
4011 len
= asc_prt_line(cp
, leftlen
, "\n");
4017 len
= asc_prt_line(cp
, leftlen
,
4018 " * = Re-negotiation pending before next command.\n");
4028 * Copy proc information to a read buffer taking into account the current
4029 * read offset in the file and the remaining space in the read buffer.
4032 asc_proc_copy(off_t advoffset
, off_t offset
, char *curbuf
, int leftlen
,
4033 char *cp
, int cplen
)
4037 ASC_DBG(2, "offset %d, advoffset %d, cplen %d\n",
4038 (unsigned)offset
, (unsigned)advoffset
, cplen
);
4039 if (offset
<= advoffset
) {
4040 /* Read offset below current offset, copy everything. */
4041 cnt
= min(cplen
, leftlen
);
4042 ASC_DBG(2, "curbuf 0x%lx, cp 0x%lx, cnt %d\n",
4043 (ulong
)curbuf
, (ulong
)cp
, cnt
);
4044 memcpy(curbuf
, cp
, cnt
);
4045 } else if (offset
< advoffset
+ cplen
) {
4046 /* Read offset within current range, partial copy. */
4047 cnt
= (advoffset
+ cplen
) - offset
;
4048 cp
= (cp
+ cplen
) - cnt
;
4049 cnt
= min(cnt
, leftlen
);
4050 ASC_DBG(2, "curbuf 0x%lx, cp 0x%lx, cnt %d\n",
4051 (ulong
)curbuf
, (ulong
)cp
, cnt
);
4052 memcpy(curbuf
, cp
, cnt
);
4057 #ifdef ADVANSYS_STATS
4059 * asc_prt_board_stats()
4061 * Note: no single line should be greater than ASC_PRTLINE_SIZE,
4062 * cf. asc_prt_line().
4064 * Return the number of characters copied into 'cp'. No more than
4065 * 'cplen' characters will be copied to 'cp'.
4067 static int asc_prt_board_stats(struct Scsi_Host
*shost
, char *cp
, int cplen
)
4069 struct asc_board
*boardp
= shost_priv(shost
);
4070 struct asc_stats
*s
= &boardp
->asc_stats
;
4072 int leftlen
= cplen
;
4073 int len
, totlen
= 0;
4075 len
= asc_prt_line(cp
, leftlen
,
4076 "\nLinux Driver Statistics for AdvanSys SCSI Host %d:\n",
4080 len
= asc_prt_line(cp
, leftlen
,
4081 " queuecommand %lu, reset %lu, biosparam %lu, interrupt %lu\n",
4082 s
->queuecommand
, s
->reset
, s
->biosparam
,
4086 len
= asc_prt_line(cp
, leftlen
,
4087 " callback %lu, done %lu, build_error %lu, build_noreq %lu, build_nosg %lu\n",
4088 s
->callback
, s
->done
, s
->build_error
,
4089 s
->adv_build_noreq
, s
->adv_build_nosg
);
4092 len
= asc_prt_line(cp
, leftlen
,
4093 " exe_noerror %lu, exe_busy %lu, exe_error %lu, exe_unknown %lu\n",
4094 s
->exe_noerror
, s
->exe_busy
, s
->exe_error
,
4099 * Display data transfer statistics.
4101 if (s
->xfer_cnt
> 0) {
4102 len
= asc_prt_line(cp
, leftlen
, " xfer_cnt %lu, xfer_elem %lu, ",
4103 s
->xfer_cnt
, s
->xfer_elem
);
4106 len
= asc_prt_line(cp
, leftlen
, "xfer_bytes %lu.%01lu kb\n",
4107 s
->xfer_sect
/ 2, ASC_TENTHS(s
->xfer_sect
, 2));
4110 /* Scatter gather transfer statistics */
4111 len
= asc_prt_line(cp
, leftlen
, " avg_num_elem %lu.%01lu, ",
4112 s
->xfer_elem
/ s
->xfer_cnt
,
4113 ASC_TENTHS(s
->xfer_elem
, s
->xfer_cnt
));
4116 len
= asc_prt_line(cp
, leftlen
, "avg_elem_size %lu.%01lu kb, ",
4117 (s
->xfer_sect
/ 2) / s
->xfer_elem
,
4118 ASC_TENTHS((s
->xfer_sect
/ 2), s
->xfer_elem
));
4121 len
= asc_prt_line(cp
, leftlen
, "avg_xfer_size %lu.%01lu kb\n",
4122 (s
->xfer_sect
/ 2) / s
->xfer_cnt
,
4123 ASC_TENTHS((s
->xfer_sect
/ 2), s
->xfer_cnt
));
4129 #endif /* ADVANSYS_STATS */
4132 * advansys_proc_info() - /proc/scsi/advansys/{0,1,2,3,...}
4134 * *buffer: I/O buffer
4135 * **start: if inout == FALSE pointer into buffer where user read should start
4136 * offset: current offset into a /proc/scsi/advansys/[0...] file
4137 * length: length of buffer
4138 * hostno: Scsi_Host host_no
4139 * inout: TRUE - user is writing; FALSE - user is reading
4141 * Return the number of bytes read from or written to a
4142 * /proc/scsi/advansys/[0...] file.
4144 * Note: This function uses the per board buffer 'prtbuf' which is
4145 * allocated when the board is initialized in advansys_detect(). The
4146 * buffer is ASC_PRTBUF_SIZE bytes. The function asc_proc_copy() is
4147 * used to write to the buffer. The way asc_proc_copy() is written
4148 * if 'prtbuf' is too small it will not be overwritten. Instead the
4149 * user just won't get all the available statistics.
4152 advansys_proc_info(struct Scsi_Host
*shost
, char *buffer
, char **start
,
4153 off_t offset
, int length
, int inout
)
4155 struct asc_board
*boardp
= shost_priv(shost
);
4164 ASC_DBG(1, "begin\n");
4167 * User write not supported.
4173 * User read of /proc/scsi/advansys/[0...] file.
4176 /* Copy read data starting at the beginning of the buffer. */
4184 * Get board configuration information.
4186 * advansys_info() returns the board string from its own static buffer.
4188 cp
= (char *)advansys_info(shost
);
4191 /* Copy board information. */
4192 cnt
= asc_proc_copy(advoffset
, offset
, curbuf
, leftlen
, cp
, cplen
);
4196 ASC_DBG(1, "totcnt %d\n", totcnt
);
4203 * Display Wide Board BIOS Information.
4205 if (!ASC_NARROW_BOARD(boardp
)) {
4206 cp
= boardp
->prtbuf
;
4207 cplen
= asc_prt_adv_bios(shost
, cp
, ASC_PRTBUF_SIZE
);
4208 BUG_ON(cplen
>= ASC_PRTBUF_SIZE
);
4209 cnt
= asc_proc_copy(advoffset
, offset
, curbuf
, leftlen
, cp
,
4214 ASC_DBG(1, "totcnt %d\n", totcnt
);
4222 * Display driver information for each device attached to the board.
4224 cp
= boardp
->prtbuf
;
4225 cplen
= asc_prt_board_devices(shost
, cp
, ASC_PRTBUF_SIZE
);
4226 BUG_ON(cplen
>= ASC_PRTBUF_SIZE
);
4227 cnt
= asc_proc_copy(advoffset
, offset
, curbuf
, leftlen
, cp
, cplen
);
4231 ASC_DBG(1, "totcnt %d\n", totcnt
);
4238 * Display EEPROM configuration for the board.
4240 cp
= boardp
->prtbuf
;
4241 if (ASC_NARROW_BOARD(boardp
)) {
4242 cplen
= asc_prt_asc_board_eeprom(shost
, cp
, ASC_PRTBUF_SIZE
);
4244 cplen
= asc_prt_adv_board_eeprom(shost
, cp
, ASC_PRTBUF_SIZE
);
4246 BUG_ON(cplen
>= ASC_PRTBUF_SIZE
);
4247 cnt
= asc_proc_copy(advoffset
, offset
, curbuf
, leftlen
, cp
, cplen
);
4251 ASC_DBG(1, "totcnt %d\n", totcnt
);
4258 * Display driver configuration and information for the board.
4260 cp
= boardp
->prtbuf
;
4261 cplen
= asc_prt_driver_conf(shost
, cp
, ASC_PRTBUF_SIZE
);
4262 BUG_ON(cplen
>= ASC_PRTBUF_SIZE
);
4263 cnt
= asc_proc_copy(advoffset
, offset
, curbuf
, leftlen
, cp
, cplen
);
4267 ASC_DBG(1, "totcnt %d\n", totcnt
);
4273 #ifdef ADVANSYS_STATS
4275 * Display driver statistics for the board.
4277 cp
= boardp
->prtbuf
;
4278 cplen
= asc_prt_board_stats(shost
, cp
, ASC_PRTBUF_SIZE
);
4279 BUG_ON(cplen
>= ASC_PRTBUF_SIZE
);
4280 cnt
= asc_proc_copy(advoffset
, offset
, curbuf
, leftlen
, cp
, cplen
);
4284 ASC_DBG(1, "totcnt %d\n", totcnt
);
4289 #endif /* ADVANSYS_STATS */
4292 * Display Asc Library dynamic configuration information
4295 cp
= boardp
->prtbuf
;
4296 if (ASC_NARROW_BOARD(boardp
)) {
4297 cplen
= asc_prt_asc_board_info(shost
, cp
, ASC_PRTBUF_SIZE
);
4299 cplen
= asc_prt_adv_board_info(shost
, cp
, ASC_PRTBUF_SIZE
);
4301 BUG_ON(cplen
>= ASC_PRTBUF_SIZE
);
4302 cnt
= asc_proc_copy(advoffset
, offset
, curbuf
, leftlen
, cp
, cplen
);
4306 ASC_DBG(1, "totcnt %d\n", totcnt
);
4312 ASC_DBG(1, "totcnt %d\n", totcnt
);
4316 #endif /* CONFIG_PROC_FS */
4318 static void asc_scsi_done(struct scsi_cmnd
*scp
)
4320 scsi_dma_unmap(scp
);
4321 ASC_STATS(scp
->device
->host
, done
);
4322 scp
->scsi_done(scp
);
4325 static void AscSetBank(PortAddr iop_base
, uchar bank
)
4329 val
= AscGetChipControl(iop_base
) &
4331 (CC_SINGLE_STEP
| CC_TEST
| CC_DIAG
| CC_SCSI_RESET
|
4335 } else if (bank
== 2) {
4336 val
|= CC_DIAG
| CC_BANK_ONE
;
4338 val
&= ~CC_BANK_ONE
;
4340 AscSetChipControl(iop_base
, val
);
4343 static void AscSetChipIH(PortAddr iop_base
, ushort ins_code
)
4345 AscSetBank(iop_base
, 1);
4346 AscWriteChipIH(iop_base
, ins_code
);
4347 AscSetBank(iop_base
, 0);
4350 static int AscStartChip(PortAddr iop_base
)
4352 AscSetChipControl(iop_base
, 0);
4353 if ((AscGetChipStatus(iop_base
) & CSW_HALTED
) != 0) {
4359 static int AscStopChip(PortAddr iop_base
)
4364 AscGetChipControl(iop_base
) &
4365 (~(CC_SINGLE_STEP
| CC_TEST
| CC_DIAG
));
4366 AscSetChipControl(iop_base
, (uchar
)(cc_val
| CC_HALT
));
4367 AscSetChipIH(iop_base
, INS_HALT
);
4368 AscSetChipIH(iop_base
, INS_RFLAG_WTM
);
4369 if ((AscGetChipStatus(iop_base
) & CSW_HALTED
) == 0) {
4375 static int AscIsChipHalted(PortAddr iop_base
)
4377 if ((AscGetChipStatus(iop_base
) & CSW_HALTED
) != 0) {
4378 if ((AscGetChipControl(iop_base
) & CC_HALT
) != 0) {
4385 static int AscResetChipAndScsiBus(ASC_DVC_VAR
*asc_dvc
)
4390 iop_base
= asc_dvc
->iop_base
;
4391 while ((AscGetChipStatus(iop_base
) & CSW_SCSI_RESET_ACTIVE
)
4395 AscStopChip(iop_base
);
4396 AscSetChipControl(iop_base
, CC_CHIP_RESET
| CC_SCSI_RESET
| CC_HALT
);
4398 AscSetChipIH(iop_base
, INS_RFLAG_WTM
);
4399 AscSetChipIH(iop_base
, INS_HALT
);
4400 AscSetChipControl(iop_base
, CC_CHIP_RESET
| CC_HALT
);
4401 AscSetChipControl(iop_base
, CC_HALT
);
4403 AscSetChipStatus(iop_base
, CIW_CLR_SCSI_RESET_INT
);
4404 AscSetChipStatus(iop_base
, 0);
4405 return (AscIsChipHalted(iop_base
));
4408 static int AscFindSignature(PortAddr iop_base
)
4412 ASC_DBG(1, "AscGetChipSignatureByte(0x%x) 0x%x\n",
4413 iop_base
, AscGetChipSignatureByte(iop_base
));
4414 if (AscGetChipSignatureByte(iop_base
) == (uchar
)ASC_1000_ID1B
) {
4415 ASC_DBG(1, "AscGetChipSignatureWord(0x%x) 0x%x\n",
4416 iop_base
, AscGetChipSignatureWord(iop_base
));
4417 sig_word
= AscGetChipSignatureWord(iop_base
);
4418 if ((sig_word
== (ushort
)ASC_1000_ID0W
) ||
4419 (sig_word
== (ushort
)ASC_1000_ID0W_FIX
)) {
4426 static void AscEnableInterrupt(PortAddr iop_base
)
4430 cfg
= AscGetChipCfgLsw(iop_base
);
4431 AscSetChipCfgLsw(iop_base
, cfg
| ASC_CFG0_HOST_INT_ON
);
4434 static void AscDisableInterrupt(PortAddr iop_base
)
4438 cfg
= AscGetChipCfgLsw(iop_base
);
4439 AscSetChipCfgLsw(iop_base
, cfg
& (~ASC_CFG0_HOST_INT_ON
));
4442 static uchar
AscReadLramByte(PortAddr iop_base
, ushort addr
)
4444 unsigned char byte_data
;
4445 unsigned short word_data
;
4447 if (isodd_word(addr
)) {
4448 AscSetChipLramAddr(iop_base
, addr
- 1);
4449 word_data
= AscGetChipLramData(iop_base
);
4450 byte_data
= (word_data
>> 8) & 0xFF;
4452 AscSetChipLramAddr(iop_base
, addr
);
4453 word_data
= AscGetChipLramData(iop_base
);
4454 byte_data
= word_data
& 0xFF;
4459 static ushort
AscReadLramWord(PortAddr iop_base
, ushort addr
)
4463 AscSetChipLramAddr(iop_base
, addr
);
4464 word_data
= AscGetChipLramData(iop_base
);
4468 #if CC_VERY_LONG_SG_LIST
4469 static ASC_DCNT
AscReadLramDWord(PortAddr iop_base
, ushort addr
)
4471 ushort val_low
, val_high
;
4472 ASC_DCNT dword_data
;
4474 AscSetChipLramAddr(iop_base
, addr
);
4475 val_low
= AscGetChipLramData(iop_base
);
4476 val_high
= AscGetChipLramData(iop_base
);
4477 dword_data
= ((ASC_DCNT
) val_high
<< 16) | (ASC_DCNT
) val_low
;
4478 return (dword_data
);
4480 #endif /* CC_VERY_LONG_SG_LIST */
4483 AscMemWordSetLram(PortAddr iop_base
, ushort s_addr
, ushort set_wval
, int words
)
4487 AscSetChipLramAddr(iop_base
, s_addr
);
4488 for (i
= 0; i
< words
; i
++) {
4489 AscSetChipLramData(iop_base
, set_wval
);
4493 static void AscWriteLramWord(PortAddr iop_base
, ushort addr
, ushort word_val
)
4495 AscSetChipLramAddr(iop_base
, addr
);
4496 AscSetChipLramData(iop_base
, word_val
);
4499 static void AscWriteLramByte(PortAddr iop_base
, ushort addr
, uchar byte_val
)
4503 if (isodd_word(addr
)) {
4505 word_data
= AscReadLramWord(iop_base
, addr
);
4506 word_data
&= 0x00FF;
4507 word_data
|= (((ushort
)byte_val
<< 8) & 0xFF00);
4509 word_data
= AscReadLramWord(iop_base
, addr
);
4510 word_data
&= 0xFF00;
4511 word_data
|= ((ushort
)byte_val
& 0x00FF);
4513 AscWriteLramWord(iop_base
, addr
, word_data
);
4517 * Copy 2 bytes to LRAM.
4519 * The source data is assumed to be in little-endian order in memory
4520 * and is maintained in little-endian order when written to LRAM.
4523 AscMemWordCopyPtrToLram(PortAddr iop_base
, ushort s_addr
,
4524 const uchar
*s_buffer
, int words
)
4528 AscSetChipLramAddr(iop_base
, s_addr
);
4529 for (i
= 0; i
< 2 * words
; i
+= 2) {
4531 * On a little-endian system the second argument below
4532 * produces a little-endian ushort which is written to
4533 * LRAM in little-endian order. On a big-endian system
4534 * the second argument produces a big-endian ushort which
4535 * is "transparently" byte-swapped by outpw() and written
4536 * in little-endian order to LRAM.
4538 outpw(iop_base
+ IOP_RAM_DATA
,
4539 ((ushort
)s_buffer
[i
+ 1] << 8) | s_buffer
[i
]);
4544 * Copy 4 bytes to LRAM.
4546 * The source data is assumed to be in little-endian order in memory
4547 * and is maintained in little-endian order when writen to LRAM.
4550 AscMemDWordCopyPtrToLram(PortAddr iop_base
,
4551 ushort s_addr
, uchar
*s_buffer
, int dwords
)
4555 AscSetChipLramAddr(iop_base
, s_addr
);
4556 for (i
= 0; i
< 4 * dwords
; i
+= 4) {
4557 outpw(iop_base
+ IOP_RAM_DATA
, ((ushort
)s_buffer
[i
+ 1] << 8) | s_buffer
[i
]); /* LSW */
4558 outpw(iop_base
+ IOP_RAM_DATA
, ((ushort
)s_buffer
[i
+ 3] << 8) | s_buffer
[i
+ 2]); /* MSW */
4563 * Copy 2 bytes from LRAM.
4565 * The source data is assumed to be in little-endian order in LRAM
4566 * and is maintained in little-endian order when written to memory.
4569 AscMemWordCopyPtrFromLram(PortAddr iop_base
,
4570 ushort s_addr
, uchar
*d_buffer
, int words
)
4575 AscSetChipLramAddr(iop_base
, s_addr
);
4576 for (i
= 0; i
< 2 * words
; i
+= 2) {
4577 word
= inpw(iop_base
+ IOP_RAM_DATA
);
4578 d_buffer
[i
] = word
& 0xff;
4579 d_buffer
[i
+ 1] = (word
>> 8) & 0xff;
4583 static ASC_DCNT
AscMemSumLramWord(PortAddr iop_base
, ushort s_addr
, int words
)
4589 for (i
= 0; i
< words
; i
++, s_addr
+= 2) {
4590 sum
+= AscReadLramWord(iop_base
, s_addr
);
4595 static ushort
AscInitLram(ASC_DVC_VAR
*asc_dvc
)
4602 iop_base
= asc_dvc
->iop_base
;
4604 AscMemWordSetLram(iop_base
, ASC_QADR_BEG
, 0,
4605 (ushort
)(((int)(asc_dvc
->max_total_qng
+ 2 + 1) *
4607 i
= ASC_MIN_ACTIVE_QNO
;
4608 s_addr
= ASC_QADR_BEG
+ ASC_QBLK_SIZE
;
4609 AscWriteLramByte(iop_base
, (ushort
)(s_addr
+ ASC_SCSIQ_B_FWD
),
4611 AscWriteLramByte(iop_base
, (ushort
)(s_addr
+ ASC_SCSIQ_B_BWD
),
4612 (uchar
)(asc_dvc
->max_total_qng
));
4613 AscWriteLramByte(iop_base
, (ushort
)(s_addr
+ ASC_SCSIQ_B_QNO
),
4616 s_addr
+= ASC_QBLK_SIZE
;
4617 for (; i
< asc_dvc
->max_total_qng
; i
++, s_addr
+= ASC_QBLK_SIZE
) {
4618 AscWriteLramByte(iop_base
, (ushort
)(s_addr
+ ASC_SCSIQ_B_FWD
),
4620 AscWriteLramByte(iop_base
, (ushort
)(s_addr
+ ASC_SCSIQ_B_BWD
),
4622 AscWriteLramByte(iop_base
, (ushort
)(s_addr
+ ASC_SCSIQ_B_QNO
),
4625 AscWriteLramByte(iop_base
, (ushort
)(s_addr
+ ASC_SCSIQ_B_FWD
),
4626 (uchar
)ASC_QLINK_END
);
4627 AscWriteLramByte(iop_base
, (ushort
)(s_addr
+ ASC_SCSIQ_B_BWD
),
4628 (uchar
)(asc_dvc
->max_total_qng
- 1));
4629 AscWriteLramByte(iop_base
, (ushort
)(s_addr
+ ASC_SCSIQ_B_QNO
),
4630 (uchar
)asc_dvc
->max_total_qng
);
4632 s_addr
+= ASC_QBLK_SIZE
;
4633 for (; i
<= (uchar
)(asc_dvc
->max_total_qng
+ 3);
4634 i
++, s_addr
+= ASC_QBLK_SIZE
) {
4635 AscWriteLramByte(iop_base
,
4636 (ushort
)(s_addr
+ (ushort
)ASC_SCSIQ_B_FWD
), i
);
4637 AscWriteLramByte(iop_base
,
4638 (ushort
)(s_addr
+ (ushort
)ASC_SCSIQ_B_BWD
), i
);
4639 AscWriteLramByte(iop_base
,
4640 (ushort
)(s_addr
+ (ushort
)ASC_SCSIQ_B_QNO
), i
);
4646 AscLoadMicroCode(PortAddr iop_base
, ushort s_addr
,
4647 const uchar
*mcode_buf
, ushort mcode_size
)
4650 ushort mcode_word_size
;
4651 ushort mcode_chksum
;
4653 /* Write the microcode buffer starting at LRAM address 0. */
4654 mcode_word_size
= (ushort
)(mcode_size
>> 1);
4655 AscMemWordSetLram(iop_base
, s_addr
, 0, mcode_word_size
);
4656 AscMemWordCopyPtrToLram(iop_base
, s_addr
, mcode_buf
, mcode_word_size
);
4658 chksum
= AscMemSumLramWord(iop_base
, s_addr
, mcode_word_size
);
4659 ASC_DBG(1, "chksum 0x%lx\n", (ulong
)chksum
);
4660 mcode_chksum
= (ushort
)AscMemSumLramWord(iop_base
,
4661 (ushort
)ASC_CODE_SEC_BEG
,
4662 (ushort
)((mcode_size
-
4666 ASC_DBG(1, "mcode_chksum 0x%lx\n", (ulong
)mcode_chksum
);
4667 AscWriteLramWord(iop_base
, ASCV_MCODE_CHKSUM_W
, mcode_chksum
);
4668 AscWriteLramWord(iop_base
, ASCV_MCODE_SIZE_W
, mcode_size
);
4672 static void AscInitQLinkVar(ASC_DVC_VAR
*asc_dvc
)
4678 iop_base
= asc_dvc
->iop_base
;
4679 AscPutRiscVarFreeQHead(iop_base
, 1);
4680 AscPutRiscVarDoneQTail(iop_base
, asc_dvc
->max_total_qng
);
4681 AscPutVarFreeQHead(iop_base
, 1);
4682 AscPutVarDoneQTail(iop_base
, asc_dvc
->max_total_qng
);
4683 AscWriteLramByte(iop_base
, ASCV_BUSY_QHEAD_B
,
4684 (uchar
)((int)asc_dvc
->max_total_qng
+ 1));
4685 AscWriteLramByte(iop_base
, ASCV_DISC1_QHEAD_B
,
4686 (uchar
)((int)asc_dvc
->max_total_qng
+ 2));
4687 AscWriteLramByte(iop_base
, (ushort
)ASCV_TOTAL_READY_Q_B
,
4688 asc_dvc
->max_total_qng
);
4689 AscWriteLramWord(iop_base
, ASCV_ASCDVC_ERR_CODE_W
, 0);
4690 AscWriteLramWord(iop_base
, ASCV_HALTCODE_W
, 0);
4691 AscWriteLramByte(iop_base
, ASCV_STOP_CODE_B
, 0);
4692 AscWriteLramByte(iop_base
, ASCV_SCSIBUSY_B
, 0);
4693 AscWriteLramByte(iop_base
, ASCV_WTM_FLAG_B
, 0);
4694 AscPutQDoneInProgress(iop_base
, 0);
4695 lram_addr
= ASC_QADR_BEG
;
4696 for (i
= 0; i
< 32; i
++, lram_addr
+= 2) {
4697 AscWriteLramWord(iop_base
, lram_addr
, 0);
4701 static ushort
AscInitMicroCodeVar(ASC_DVC_VAR
*asc_dvc
)
4708 struct asc_board
*board
= asc_dvc_to_board(asc_dvc
);
4710 iop_base
= asc_dvc
->iop_base
;
4712 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
4713 AscPutMCodeInitSDTRAtID(iop_base
, i
,
4714 asc_dvc
->cfg
->sdtr_period_offset
[i
]);
4717 AscInitQLinkVar(asc_dvc
);
4718 AscWriteLramByte(iop_base
, ASCV_DISC_ENABLE_B
,
4719 asc_dvc
->cfg
->disc_enable
);
4720 AscWriteLramByte(iop_base
, ASCV_HOSTSCSI_ID_B
,
4721 ASC_TID_TO_TARGET_ID(asc_dvc
->cfg
->chip_scsi_id
));
4723 /* Ensure overrun buffer is aligned on an 8 byte boundary. */
4724 BUG_ON((unsigned long)asc_dvc
->overrun_buf
& 7);
4725 asc_dvc
->overrun_dma
= dma_map_single(board
->dev
, asc_dvc
->overrun_buf
,
4726 ASC_OVERRUN_BSIZE
, DMA_FROM_DEVICE
);
4727 phy_addr
= cpu_to_le32(asc_dvc
->overrun_dma
);
4728 AscMemDWordCopyPtrToLram(iop_base
, ASCV_OVERRUN_PADDR_D
,
4729 (uchar
*)&phy_addr
, 1);
4730 phy_size
= cpu_to_le32(ASC_OVERRUN_BSIZE
);
4731 AscMemDWordCopyPtrToLram(iop_base
, ASCV_OVERRUN_BSIZE_D
,
4732 (uchar
*)&phy_size
, 1);
4734 asc_dvc
->cfg
->mcode_date
=
4735 AscReadLramWord(iop_base
, (ushort
)ASCV_MC_DATE_W
);
4736 asc_dvc
->cfg
->mcode_version
=
4737 AscReadLramWord(iop_base
, (ushort
)ASCV_MC_VER_W
);
4739 AscSetPCAddr(iop_base
, ASC_MCODE_START_ADDR
);
4740 if (AscGetPCAddr(iop_base
) != ASC_MCODE_START_ADDR
) {
4741 asc_dvc
->err_code
|= ASC_IERR_SET_PC_ADDR
;
4744 if (AscStartChip(iop_base
) != 1) {
4745 asc_dvc
->err_code
|= ASC_IERR_START_STOP_CHIP
;
4752 static ushort
AscInitAsc1000Driver(ASC_DVC_VAR
*asc_dvc
)
4754 const struct firmware
*fw
;
4755 const char fwname
[] = "advansys/mcode.bin";
4757 unsigned long chksum
;
4761 iop_base
= asc_dvc
->iop_base
;
4763 if ((asc_dvc
->dvc_cntl
& ASC_CNTL_RESET_SCSI
) &&
4764 !(asc_dvc
->init_state
& ASC_INIT_RESET_SCSI_DONE
)) {
4765 AscResetChipAndScsiBus(asc_dvc
);
4766 mdelay(asc_dvc
->scsi_reset_wait
* 1000); /* XXX: msleep? */
4768 asc_dvc
->init_state
|= ASC_INIT_STATE_BEG_LOAD_MC
;
4769 if (asc_dvc
->err_code
!= 0)
4771 if (!AscFindSignature(asc_dvc
->iop_base
)) {
4772 asc_dvc
->err_code
= ASC_IERR_BAD_SIGNATURE
;
4775 AscDisableInterrupt(iop_base
);
4776 warn_code
|= AscInitLram(asc_dvc
);
4777 if (asc_dvc
->err_code
!= 0)
4780 err
= request_firmware(&fw
, fwname
, asc_dvc
->drv_ptr
->dev
);
4782 printk(KERN_ERR
"Failed to load image \"%s\" err %d\n",
4787 printk(KERN_ERR
"Bogus length %zu in image \"%s\"\n",
4789 release_firmware(fw
);
4792 chksum
= (fw
->data
[3] << 24) | (fw
->data
[2] << 16) |
4793 (fw
->data
[1] << 8) | fw
->data
[0];
4794 ASC_DBG(1, "_asc_mcode_chksum 0x%lx\n", (ulong
)chksum
);
4795 if (AscLoadMicroCode(iop_base
, 0, &fw
->data
[4],
4796 fw
->size
- 4) != chksum
) {
4797 asc_dvc
->err_code
|= ASC_IERR_MCODE_CHKSUM
;
4798 release_firmware(fw
);
4801 release_firmware(fw
);
4802 warn_code
|= AscInitMicroCodeVar(asc_dvc
);
4803 asc_dvc
->init_state
|= ASC_INIT_STATE_END_LOAD_MC
;
4804 AscEnableInterrupt(iop_base
);
4809 * Load the Microcode
4811 * Write the microcode image to RISC memory starting at address 0.
4813 * The microcode is stored compressed in the following format:
4815 * 254 word (508 byte) table indexed by byte code followed
4816 * by the following byte codes:
4819 * 00: Emit word 0 in table.
4820 * 01: Emit word 1 in table.
4822 * FD: Emit word 253 in table.
4825 * FE WW WW: (3 byte code) Word to emit is the next word WW WW.
4826 * FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
4828 * Returns 0 or an error if the checksum doesn't match
4830 static int AdvLoadMicrocode(AdvPortAddr iop_base
, const unsigned char *buf
,
4831 int size
, int memsize
, int chksum
)
4833 int i
, j
, end
, len
= 0;
4836 AdvWriteWordRegister(iop_base
, IOPW_RAM_ADDR
, 0);
4838 for (i
= 253 * 2; i
< size
; i
++) {
4839 if (buf
[i
] == 0xff) {
4840 unsigned short word
= (buf
[i
+ 3] << 8) | buf
[i
+ 2];
4841 for (j
= 0; j
< buf
[i
+ 1]; j
++) {
4842 AdvWriteWordAutoIncLram(iop_base
, word
);
4846 } else if (buf
[i
] == 0xfe) {
4847 unsigned short word
= (buf
[i
+ 2] << 8) | buf
[i
+ 1];
4848 AdvWriteWordAutoIncLram(iop_base
, word
);
4852 unsigned int off
= buf
[i
] * 2;
4853 unsigned short word
= (buf
[off
+ 1] << 8) | buf
[off
];
4854 AdvWriteWordAutoIncLram(iop_base
, word
);
4861 while (len
< memsize
) {
4862 AdvWriteWordAutoIncLram(iop_base
, 0);
4866 /* Verify the microcode checksum. */
4868 AdvWriteWordRegister(iop_base
, IOPW_RAM_ADDR
, 0);
4870 for (len
= 0; len
< end
; len
+= 2) {
4871 sum
+= AdvReadWordAutoIncLram(iop_base
);
4875 return ASC_IERR_MCODE_CHKSUM
;
4880 static void AdvBuildCarrierFreelist(struct adv_dvc_var
*asc_dvc
)
4884 ADV_PADDR carr_paddr
;
4886 carrp
= (ADV_CARR_T
*) ADV_16BALIGN(asc_dvc
->carrier_buf
);
4887 asc_dvc
->carr_freelist
= NULL
;
4888 if (carrp
== asc_dvc
->carrier_buf
) {
4889 buf_size
= ADV_CARRIER_BUFSIZE
;
4891 buf_size
= ADV_CARRIER_BUFSIZE
- sizeof(ADV_CARR_T
);
4895 /* Get physical address of the carrier 'carrp'. */
4896 carr_paddr
= cpu_to_le32(virt_to_bus(carrp
));
4898 buf_size
-= sizeof(ADV_CARR_T
);
4900 carrp
->carr_pa
= carr_paddr
;
4901 carrp
->carr_va
= cpu_to_le32(ADV_VADDR_TO_U32(carrp
));
4904 * Insert the carrier at the beginning of the freelist.
4907 cpu_to_le32(ADV_VADDR_TO_U32(asc_dvc
->carr_freelist
));
4908 asc_dvc
->carr_freelist
= carrp
;
4911 } while (buf_size
> 0);
4915 * Send an idle command to the chip and wait for completion.
4917 * Command completion is polled for once per microsecond.
4919 * The function can be called from anywhere including an interrupt handler.
4920 * But the function is not re-entrant, so it uses the DvcEnter/LeaveCritical()
4921 * functions to prevent reentrancy.
4924 * ADV_TRUE - command completed successfully
4925 * ADV_FALSE - command failed
4926 * ADV_ERROR - command timed out
4929 AdvSendIdleCmd(ADV_DVC_VAR
*asc_dvc
,
4930 ushort idle_cmd
, ADV_DCNT idle_cmd_parameter
)
4934 AdvPortAddr iop_base
;
4936 iop_base
= asc_dvc
->iop_base
;
4939 * Clear the idle command status which is set by the microcode
4940 * to a non-zero value to indicate when the command is completed.
4941 * The non-zero result is one of the IDLE_CMD_STATUS_* values
4943 AdvWriteWordLram(iop_base
, ASC_MC_IDLE_CMD_STATUS
, (ushort
)0);
4946 * Write the idle command value after the idle command parameter
4947 * has been written to avoid a race condition. If the order is not
4948 * followed, the microcode may process the idle command before the
4949 * parameters have been written to LRAM.
4951 AdvWriteDWordLramNoSwap(iop_base
, ASC_MC_IDLE_CMD_PARAMETER
,
4952 cpu_to_le32(idle_cmd_parameter
));
4953 AdvWriteWordLram(iop_base
, ASC_MC_IDLE_CMD
, idle_cmd
);
4956 * Tickle the RISC to tell it to process the idle command.
4958 AdvWriteByteRegister(iop_base
, IOPB_TICKLE
, ADV_TICKLE_B
);
4959 if (asc_dvc
->chip_type
== ADV_CHIP_ASC3550
) {
4961 * Clear the tickle value. In the ASC-3550 the RISC flag
4962 * command 'clr_tickle_b' does not work unless the host
4965 AdvWriteByteRegister(iop_base
, IOPB_TICKLE
, ADV_TICKLE_NOP
);
4968 /* Wait for up to 100 millisecond for the idle command to timeout. */
4969 for (i
= 0; i
< SCSI_WAIT_100_MSEC
; i
++) {
4970 /* Poll once each microsecond for command completion. */
4971 for (j
= 0; j
< SCSI_US_PER_MSEC
; j
++) {
4972 AdvReadWordLram(iop_base
, ASC_MC_IDLE_CMD_STATUS
,
4980 BUG(); /* The idle command should never timeout. */
4985 * Reset SCSI Bus and purge all outstanding requests.
4988 * ADV_TRUE(1) - All requests are purged and SCSI Bus is reset.
4989 * ADV_FALSE(0) - Microcode command failed.
4990 * ADV_ERROR(-1) - Microcode command timed-out. Microcode or IC
4991 * may be hung which requires driver recovery.
4993 static int AdvResetSB(ADV_DVC_VAR
*asc_dvc
)
4998 * Send the SCSI Bus Reset idle start idle command which asserts
4999 * the SCSI Bus Reset signal.
5001 status
= AdvSendIdleCmd(asc_dvc
, (ushort
)IDLE_CMD_SCSI_RESET_START
, 0L);
5002 if (status
!= ADV_TRUE
) {
5007 * Delay for the specified SCSI Bus Reset hold time.
5009 * The hold time delay is done on the host because the RISC has no
5010 * microsecond accurate timer.
5012 udelay(ASC_SCSI_RESET_HOLD_TIME_US
);
5015 * Send the SCSI Bus Reset end idle command which de-asserts
5016 * the SCSI Bus Reset signal and purges any pending requests.
5018 status
= AdvSendIdleCmd(asc_dvc
, (ushort
)IDLE_CMD_SCSI_RESET_END
, 0L);
5019 if (status
!= ADV_TRUE
) {
5023 mdelay(asc_dvc
->scsi_reset_wait
* 1000); /* XXX: msleep? */
5029 * Initialize the ASC-3550.
5031 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
5033 * For a non-fatal error return a warning code. If there are no warnings
5034 * then 0 is returned.
5036 * Needed after initialization for error recovery.
5038 static int AdvInitAsc3550Driver(ADV_DVC_VAR
*asc_dvc
)
5040 const struct firmware
*fw
;
5041 const char fwname
[] = "advansys/3550.bin";
5042 AdvPortAddr iop_base
;
5050 unsigned long chksum
;
5053 ushort bios_mem
[ASC_MC_BIOSLEN
/ 2]; /* BIOS RISC Memory 0x40-0x8F. */
5054 ushort wdtr_able
= 0, sdtr_able
, tagqng_able
;
5055 uchar max_cmd
[ADV_MAX_TID
+ 1];
5057 /* If there is already an error, don't continue. */
5058 if (asc_dvc
->err_code
!= 0)
5062 * The caller must set 'chip_type' to ADV_CHIP_ASC3550.
5064 if (asc_dvc
->chip_type
!= ADV_CHIP_ASC3550
) {
5065 asc_dvc
->err_code
= ASC_IERR_BAD_CHIPTYPE
;
5070 iop_base
= asc_dvc
->iop_base
;
5073 * Save the RISC memory BIOS region before writing the microcode.
5074 * The BIOS may already be loaded and using its RISC LRAM region
5075 * so its region must be saved and restored.
5077 * Note: This code makes the assumption, which is currently true,
5078 * that a chip reset does not clear RISC LRAM.
5080 for (i
= 0; i
< ASC_MC_BIOSLEN
/ 2; i
++) {
5081 AdvReadWordLram(iop_base
, ASC_MC_BIOSMEM
+ (2 * i
),
5086 * Save current per TID negotiated values.
5088 if (bios_mem
[(ASC_MC_BIOS_SIGNATURE
- ASC_MC_BIOSMEM
) / 2] == 0x55AA) {
5089 ushort bios_version
, major
, minor
;
5092 bios_mem
[(ASC_MC_BIOS_VERSION
- ASC_MC_BIOSMEM
) / 2];
5093 major
= (bios_version
>> 12) & 0xF;
5094 minor
= (bios_version
>> 8) & 0xF;
5095 if (major
< 3 || (major
== 3 && minor
== 1)) {
5096 /* BIOS 3.1 and earlier location of 'wdtr_able' variable. */
5097 AdvReadWordLram(iop_base
, 0x120, wdtr_able
);
5099 AdvReadWordLram(iop_base
, ASC_MC_WDTR_ABLE
, wdtr_able
);
5102 AdvReadWordLram(iop_base
, ASC_MC_SDTR_ABLE
, sdtr_able
);
5103 AdvReadWordLram(iop_base
, ASC_MC_TAGQNG_ABLE
, tagqng_able
);
5104 for (tid
= 0; tid
<= ADV_MAX_TID
; tid
++) {
5105 AdvReadByteLram(iop_base
, ASC_MC_NUMBER_OF_MAX_CMD
+ tid
,
5109 err
= request_firmware(&fw
, fwname
, asc_dvc
->drv_ptr
->dev
);
5111 printk(KERN_ERR
"Failed to load image \"%s\" err %d\n",
5116 printk(KERN_ERR
"Bogus length %zu in image \"%s\"\n",
5118 release_firmware(fw
);
5121 chksum
= (fw
->data
[3] << 24) | (fw
->data
[2] << 16) |
5122 (fw
->data
[1] << 8) | fw
->data
[0];
5123 asc_dvc
->err_code
= AdvLoadMicrocode(iop_base
, &fw
->data
[4],
5124 fw
->size
- 4, ADV_3550_MEMSIZE
,
5126 release_firmware(fw
);
5127 if (asc_dvc
->err_code
)
5131 * Restore the RISC memory BIOS region.
5133 for (i
= 0; i
< ASC_MC_BIOSLEN
/ 2; i
++) {
5134 AdvWriteWordLram(iop_base
, ASC_MC_BIOSMEM
+ (2 * i
),
5139 * Calculate and write the microcode code checksum to the microcode
5140 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
5142 AdvReadWordLram(iop_base
, ASC_MC_CODE_BEGIN_ADDR
, begin_addr
);
5143 AdvReadWordLram(iop_base
, ASC_MC_CODE_END_ADDR
, end_addr
);
5145 AdvWriteWordRegister(iop_base
, IOPW_RAM_ADDR
, begin_addr
);
5146 for (word
= begin_addr
; word
< end_addr
; word
+= 2) {
5147 code_sum
+= AdvReadWordAutoIncLram(iop_base
);
5149 AdvWriteWordLram(iop_base
, ASC_MC_CODE_CHK_SUM
, code_sum
);
5152 * Read and save microcode version and date.
5154 AdvReadWordLram(iop_base
, ASC_MC_VERSION_DATE
,
5155 asc_dvc
->cfg
->mcode_date
);
5156 AdvReadWordLram(iop_base
, ASC_MC_VERSION_NUM
,
5157 asc_dvc
->cfg
->mcode_version
);
5160 * Set the chip type to indicate the ASC3550.
5162 AdvWriteWordLram(iop_base
, ASC_MC_CHIP_TYPE
, ADV_CHIP_ASC3550
);
5165 * If the PCI Configuration Command Register "Parity Error Response
5166 * Control" Bit was clear (0), then set the microcode variable
5167 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
5168 * to ignore DMA parity errors.
5170 if (asc_dvc
->cfg
->control_flag
& CONTROL_FLAG_IGNORE_PERR
) {
5171 AdvReadWordLram(iop_base
, ASC_MC_CONTROL_FLAG
, word
);
5172 word
|= CONTROL_FLAG_IGNORE_PERR
;
5173 AdvWriteWordLram(iop_base
, ASC_MC_CONTROL_FLAG
, word
);
5177 * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a FIFO
5178 * threshold of 128 bytes. This register is only accessible to the host.
5180 AdvWriteByteRegister(iop_base
, IOPB_DMA_CFG0
,
5181 START_CTL_EMFU
| READ_CMD_MRM
);
5184 * Microcode operating variables for WDTR, SDTR, and command tag
5185 * queuing will be set in slave_configure() based on what a
5186 * device reports it is capable of in Inquiry byte 7.
5188 * If SCSI Bus Resets have been disabled, then directly set
5189 * SDTR and WDTR from the EEPROM configuration. This will allow
5190 * the BIOS and warm boot to work without a SCSI bus hang on
5191 * the Inquiry caused by host and target mismatched DTR values.
5192 * Without the SCSI Bus Reset, before an Inquiry a device can't
5193 * be assumed to be in Asynchronous, Narrow mode.
5195 if ((asc_dvc
->bios_ctrl
& BIOS_CTRL_RESET_SCSI_BUS
) == 0) {
5196 AdvWriteWordLram(iop_base
, ASC_MC_WDTR_ABLE
,
5197 asc_dvc
->wdtr_able
);
5198 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_ABLE
,
5199 asc_dvc
->sdtr_able
);
5203 * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2,
5204 * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID
5205 * bitmask. These values determine the maximum SDTR speed negotiated
5208 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
5209 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
5210 * without determining here whether the device supports SDTR.
5212 * 4-bit speed SDTR speed name
5213 * =========== ===============
5214 * 0000b (0x0) SDTR disabled
5216 * 0010b (0x2) 10 Mhz
5217 * 0011b (0x3) 20 Mhz (Ultra)
5218 * 0100b (0x4) 40 Mhz (LVD/Ultra2)
5219 * 0101b (0x5) 80 Mhz (LVD2/Ultra3)
5220 * 0110b (0x6) Undefined
5222 * 1111b (0xF) Undefined
5225 for (tid
= 0; tid
<= ADV_MAX_TID
; tid
++) {
5226 if (ADV_TID_TO_TIDMASK(tid
) & asc_dvc
->ultra_able
) {
5227 /* Set Ultra speed for TID 'tid'. */
5228 word
|= (0x3 << (4 * (tid
% 4)));
5230 /* Set Fast speed for TID 'tid'. */
5231 word
|= (0x2 << (4 * (tid
% 4)));
5233 if (tid
== 3) { /* Check if done with sdtr_speed1. */
5234 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_SPEED1
, word
);
5236 } else if (tid
== 7) { /* Check if done with sdtr_speed2. */
5237 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_SPEED2
, word
);
5239 } else if (tid
== 11) { /* Check if done with sdtr_speed3. */
5240 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_SPEED3
, word
);
5242 } else if (tid
== 15) { /* Check if done with sdtr_speed4. */
5243 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_SPEED4
, word
);
5249 * Set microcode operating variable for the disconnect per TID bitmask.
5251 AdvWriteWordLram(iop_base
, ASC_MC_DISC_ENABLE
,
5252 asc_dvc
->cfg
->disc_enable
);
5255 * Set SCSI_CFG0 Microcode Default Value.
5257 * The microcode will set the SCSI_CFG0 register using this value
5258 * after it is started below.
5260 AdvWriteWordLram(iop_base
, ASC_MC_DEFAULT_SCSI_CFG0
,
5261 PARITY_EN
| QUEUE_128
| SEL_TMO_LONG
| OUR_ID_EN
|
5262 asc_dvc
->chip_scsi_id
);
5265 * Determine SCSI_CFG1 Microcode Default Value.
5267 * The microcode will set the SCSI_CFG1 register using this value
5268 * after it is started below.
5271 /* Read current SCSI_CFG1 Register value. */
5272 scsi_cfg1
= AdvReadWordRegister(iop_base
, IOPW_SCSI_CFG1
);
5275 * If all three connectors are in use, return an error.
5277 if ((scsi_cfg1
& CABLE_ILLEGAL_A
) == 0 ||
5278 (scsi_cfg1
& CABLE_ILLEGAL_B
) == 0) {
5279 asc_dvc
->err_code
|= ASC_IERR_ILLEGAL_CONNECTION
;
5284 * If the internal narrow cable is reversed all of the SCSI_CTRL
5285 * register signals will be set. Check for and return an error if
5286 * this condition is found.
5288 if ((AdvReadWordRegister(iop_base
, IOPW_SCSI_CTRL
) & 0x3F07) == 0x3F07) {
5289 asc_dvc
->err_code
|= ASC_IERR_REVERSED_CABLE
;
5294 * If this is a differential board and a single-ended device
5295 * is attached to one of the connectors, return an error.
5297 if ((scsi_cfg1
& DIFF_MODE
) && (scsi_cfg1
& DIFF_SENSE
) == 0) {
5298 asc_dvc
->err_code
|= ASC_IERR_SINGLE_END_DEVICE
;
5303 * If automatic termination control is enabled, then set the
5304 * termination value based on a table listed in a_condor.h.
5306 * If manual termination was specified with an EEPROM setting
5307 * then 'termination' was set-up in AdvInitFrom3550EEPROM() and
5308 * is ready to be 'ored' into SCSI_CFG1.
5310 if (asc_dvc
->cfg
->termination
== 0) {
5312 * The software always controls termination by setting TERM_CTL_SEL.
5313 * If TERM_CTL_SEL were set to 0, the hardware would set termination.
5315 asc_dvc
->cfg
->termination
|= TERM_CTL_SEL
;
5317 switch (scsi_cfg1
& CABLE_DETECT
) {
5318 /* TERM_CTL_H: on, TERM_CTL_L: on */
5325 asc_dvc
->cfg
->termination
|= (TERM_CTL_H
| TERM_CTL_L
);
5328 /* TERM_CTL_H: on, TERM_CTL_L: off */
5334 asc_dvc
->cfg
->termination
|= TERM_CTL_H
;
5337 /* TERM_CTL_H: off, TERM_CTL_L: off */
5345 * Clear any set TERM_CTL_H and TERM_CTL_L bits.
5347 scsi_cfg1
&= ~TERM_CTL
;
5350 * Invert the TERM_CTL_H and TERM_CTL_L bits and then
5351 * set 'scsi_cfg1'. The TERM_POL bit does not need to be
5352 * referenced, because the hardware internally inverts
5353 * the Termination High and Low bits if TERM_POL is set.
5355 scsi_cfg1
|= (TERM_CTL_SEL
| (~asc_dvc
->cfg
->termination
& TERM_CTL
));
5358 * Set SCSI_CFG1 Microcode Default Value
5360 * Set filter value and possibly modified termination control
5361 * bits in the Microcode SCSI_CFG1 Register Value.
5363 * The microcode will set the SCSI_CFG1 register using this value
5364 * after it is started below.
5366 AdvWriteWordLram(iop_base
, ASC_MC_DEFAULT_SCSI_CFG1
,
5367 FLTR_DISABLE
| scsi_cfg1
);
5370 * Set MEM_CFG Microcode Default Value
5372 * The microcode will set the MEM_CFG register using this value
5373 * after it is started below.
5375 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
5378 * ASC-3550 has 8KB internal memory.
5380 AdvWriteWordLram(iop_base
, ASC_MC_DEFAULT_MEM_CFG
,
5381 BIOS_EN
| RAM_SZ_8KB
);
5384 * Set SEL_MASK Microcode Default Value
5386 * The microcode will set the SEL_MASK register using this value
5387 * after it is started below.
5389 AdvWriteWordLram(iop_base
, ASC_MC_DEFAULT_SEL_MASK
,
5390 ADV_TID_TO_TIDMASK(asc_dvc
->chip_scsi_id
));
5392 AdvBuildCarrierFreelist(asc_dvc
);
5395 * Set-up the Host->RISC Initiator Command Queue (ICQ).
5398 if ((asc_dvc
->icq_sp
= asc_dvc
->carr_freelist
) == NULL
) {
5399 asc_dvc
->err_code
|= ASC_IERR_NO_CARRIER
;
5402 asc_dvc
->carr_freelist
= (ADV_CARR_T
*)
5403 ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc
->icq_sp
->next_vpa
));
5406 * The first command issued will be placed in the stopper carrier.
5408 asc_dvc
->icq_sp
->next_vpa
= cpu_to_le32(ASC_CQ_STOPPER
);
5411 * Set RISC ICQ physical address start value.
5413 AdvWriteDWordLramNoSwap(iop_base
, ASC_MC_ICQ
, asc_dvc
->icq_sp
->carr_pa
);
5416 * Set-up the RISC->Host Initiator Response Queue (IRQ).
5418 if ((asc_dvc
->irq_sp
= asc_dvc
->carr_freelist
) == NULL
) {
5419 asc_dvc
->err_code
|= ASC_IERR_NO_CARRIER
;
5422 asc_dvc
->carr_freelist
= (ADV_CARR_T
*)
5423 ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc
->irq_sp
->next_vpa
));
5426 * The first command completed by the RISC will be placed in
5429 * Note: Set 'next_vpa' to ASC_CQ_STOPPER. When the request is
5430 * completed the RISC will set the ASC_RQ_STOPPER bit.
5432 asc_dvc
->irq_sp
->next_vpa
= cpu_to_le32(ASC_CQ_STOPPER
);
5435 * Set RISC IRQ physical address start value.
5437 AdvWriteDWordLramNoSwap(iop_base
, ASC_MC_IRQ
, asc_dvc
->irq_sp
->carr_pa
);
5438 asc_dvc
->carr_pending_cnt
= 0;
5440 AdvWriteByteRegister(iop_base
, IOPB_INTR_ENABLES
,
5441 (ADV_INTR_ENABLE_HOST_INTR
|
5442 ADV_INTR_ENABLE_GLOBAL_INTR
));
5444 AdvReadWordLram(iop_base
, ASC_MC_CODE_BEGIN_ADDR
, word
);
5445 AdvWriteWordRegister(iop_base
, IOPW_PC
, word
);
5447 /* finally, finally, gentlemen, start your engine */
5448 AdvWriteWordRegister(iop_base
, IOPW_RISC_CSR
, ADV_RISC_CSR_RUN
);
5451 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
5452 * Resets should be performed. The RISC has to be running
5453 * to issue a SCSI Bus Reset.
5455 if (asc_dvc
->bios_ctrl
& BIOS_CTRL_RESET_SCSI_BUS
) {
5457 * If the BIOS Signature is present in memory, restore the
5458 * BIOS Handshake Configuration Table and do not perform
5461 if (bios_mem
[(ASC_MC_BIOS_SIGNATURE
- ASC_MC_BIOSMEM
) / 2] ==
5464 * Restore per TID negotiated values.
5466 AdvWriteWordLram(iop_base
, ASC_MC_WDTR_ABLE
, wdtr_able
);
5467 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_ABLE
, sdtr_able
);
5468 AdvWriteWordLram(iop_base
, ASC_MC_TAGQNG_ABLE
,
5470 for (tid
= 0; tid
<= ADV_MAX_TID
; tid
++) {
5471 AdvWriteByteLram(iop_base
,
5472 ASC_MC_NUMBER_OF_MAX_CMD
+ tid
,
5476 if (AdvResetSB(asc_dvc
) != ADV_TRUE
) {
5477 warn_code
= ASC_WARN_BUSRESET_ERROR
;
5486 * Initialize the ASC-38C0800.
5488 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
5490 * For a non-fatal error return a warning code. If there are no warnings
5491 * then 0 is returned.
5493 * Needed after initialization for error recovery.
5495 static int AdvInitAsc38C0800Driver(ADV_DVC_VAR
*asc_dvc
)
5497 const struct firmware
*fw
;
5498 const char fwname
[] = "advansys/38C0800.bin";
5499 AdvPortAddr iop_base
;
5507 unsigned long chksum
;
5511 ushort bios_mem
[ASC_MC_BIOSLEN
/ 2]; /* BIOS RISC Memory 0x40-0x8F. */
5512 ushort wdtr_able
, sdtr_able
, tagqng_able
;
5513 uchar max_cmd
[ADV_MAX_TID
+ 1];
5515 /* If there is already an error, don't continue. */
5516 if (asc_dvc
->err_code
!= 0)
5520 * The caller must set 'chip_type' to ADV_CHIP_ASC38C0800.
5522 if (asc_dvc
->chip_type
!= ADV_CHIP_ASC38C0800
) {
5523 asc_dvc
->err_code
= ASC_IERR_BAD_CHIPTYPE
;
5528 iop_base
= asc_dvc
->iop_base
;
5531 * Save the RISC memory BIOS region before writing the microcode.
5532 * The BIOS may already be loaded and using its RISC LRAM region
5533 * so its region must be saved and restored.
5535 * Note: This code makes the assumption, which is currently true,
5536 * that a chip reset does not clear RISC LRAM.
5538 for (i
= 0; i
< ASC_MC_BIOSLEN
/ 2; i
++) {
5539 AdvReadWordLram(iop_base
, ASC_MC_BIOSMEM
+ (2 * i
),
5544 * Save current per TID negotiated values.
5546 AdvReadWordLram(iop_base
, ASC_MC_WDTR_ABLE
, wdtr_able
);
5547 AdvReadWordLram(iop_base
, ASC_MC_SDTR_ABLE
, sdtr_able
);
5548 AdvReadWordLram(iop_base
, ASC_MC_TAGQNG_ABLE
, tagqng_able
);
5549 for (tid
= 0; tid
<= ADV_MAX_TID
; tid
++) {
5550 AdvReadByteLram(iop_base
, ASC_MC_NUMBER_OF_MAX_CMD
+ tid
,
5555 * RAM BIST (RAM Built-In Self Test)
5557 * Address : I/O base + offset 0x38h register (byte).
5558 * Function: Bit 7-6(RW) : RAM mode
5559 * Normal Mode : 0x00
5560 * Pre-test Mode : 0x40
5561 * RAM Test Mode : 0x80
5563 * Bit 4(RO) : Done bit
5564 * Bit 3-0(RO) : Status
5566 * Int_RAM Error : 0x04
5571 * Note: RAM BIST code should be put right here, before loading the
5572 * microcode and after saving the RISC memory BIOS region.
5578 * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
5579 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
5580 * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
5581 * to NORMAL_MODE, return an error too.
5583 for (i
= 0; i
< 2; i
++) {
5584 AdvWriteByteRegister(iop_base
, IOPB_RAM_BIST
, PRE_TEST_MODE
);
5585 mdelay(10); /* Wait for 10ms before reading back. */
5586 byte
= AdvReadByteRegister(iop_base
, IOPB_RAM_BIST
);
5587 if ((byte
& RAM_TEST_DONE
) == 0
5588 || (byte
& 0x0F) != PRE_TEST_VALUE
) {
5589 asc_dvc
->err_code
= ASC_IERR_BIST_PRE_TEST
;
5593 AdvWriteByteRegister(iop_base
, IOPB_RAM_BIST
, NORMAL_MODE
);
5594 mdelay(10); /* Wait for 10ms before reading back. */
5595 if (AdvReadByteRegister(iop_base
, IOPB_RAM_BIST
)
5597 asc_dvc
->err_code
= ASC_IERR_BIST_PRE_TEST
;
5603 * LRAM Test - It takes about 1.5 ms to run through the test.
5605 * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
5606 * If Done bit not set or Status not 0, save register byte, set the
5607 * err_code, and return an error.
5609 AdvWriteByteRegister(iop_base
, IOPB_RAM_BIST
, RAM_TEST_MODE
);
5610 mdelay(10); /* Wait for 10ms before checking status. */
5612 byte
= AdvReadByteRegister(iop_base
, IOPB_RAM_BIST
);
5613 if ((byte
& RAM_TEST_DONE
) == 0 || (byte
& RAM_TEST_STATUS
) != 0) {
5614 /* Get here if Done bit not set or Status not 0. */
5615 asc_dvc
->bist_err_code
= byte
; /* for BIOS display message */
5616 asc_dvc
->err_code
= ASC_IERR_BIST_RAM_TEST
;
5620 /* We need to reset back to normal mode after LRAM test passes. */
5621 AdvWriteByteRegister(iop_base
, IOPB_RAM_BIST
, NORMAL_MODE
);
5623 err
= request_firmware(&fw
, fwname
, asc_dvc
->drv_ptr
->dev
);
5625 printk(KERN_ERR
"Failed to load image \"%s\" err %d\n",
5630 printk(KERN_ERR
"Bogus length %zu in image \"%s\"\n",
5632 release_firmware(fw
);
5635 chksum
= (fw
->data
[3] << 24) | (fw
->data
[2] << 16) |
5636 (fw
->data
[1] << 8) | fw
->data
[0];
5637 asc_dvc
->err_code
= AdvLoadMicrocode(iop_base
, &fw
->data
[4],
5638 fw
->size
- 4, ADV_38C0800_MEMSIZE
,
5640 release_firmware(fw
);
5641 if (asc_dvc
->err_code
)
5645 * Restore the RISC memory BIOS region.
5647 for (i
= 0; i
< ASC_MC_BIOSLEN
/ 2; i
++) {
5648 AdvWriteWordLram(iop_base
, ASC_MC_BIOSMEM
+ (2 * i
),
5653 * Calculate and write the microcode code checksum to the microcode
5654 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
5656 AdvReadWordLram(iop_base
, ASC_MC_CODE_BEGIN_ADDR
, begin_addr
);
5657 AdvReadWordLram(iop_base
, ASC_MC_CODE_END_ADDR
, end_addr
);
5659 AdvWriteWordRegister(iop_base
, IOPW_RAM_ADDR
, begin_addr
);
5660 for (word
= begin_addr
; word
< end_addr
; word
+= 2) {
5661 code_sum
+= AdvReadWordAutoIncLram(iop_base
);
5663 AdvWriteWordLram(iop_base
, ASC_MC_CODE_CHK_SUM
, code_sum
);
5666 * Read microcode version and date.
5668 AdvReadWordLram(iop_base
, ASC_MC_VERSION_DATE
,
5669 asc_dvc
->cfg
->mcode_date
);
5670 AdvReadWordLram(iop_base
, ASC_MC_VERSION_NUM
,
5671 asc_dvc
->cfg
->mcode_version
);
5674 * Set the chip type to indicate the ASC38C0800.
5676 AdvWriteWordLram(iop_base
, ASC_MC_CHIP_TYPE
, ADV_CHIP_ASC38C0800
);
5679 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
5680 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
5681 * cable detection and then we are able to read C_DET[3:0].
5683 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
5684 * Microcode Default Value' section below.
5686 scsi_cfg1
= AdvReadWordRegister(iop_base
, IOPW_SCSI_CFG1
);
5687 AdvWriteWordRegister(iop_base
, IOPW_SCSI_CFG1
,
5688 scsi_cfg1
| DIS_TERM_DRV
);
5691 * If the PCI Configuration Command Register "Parity Error Response
5692 * Control" Bit was clear (0), then set the microcode variable
5693 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
5694 * to ignore DMA parity errors.
5696 if (asc_dvc
->cfg
->control_flag
& CONTROL_FLAG_IGNORE_PERR
) {
5697 AdvReadWordLram(iop_base
, ASC_MC_CONTROL_FLAG
, word
);
5698 word
|= CONTROL_FLAG_IGNORE_PERR
;
5699 AdvWriteWordLram(iop_base
, ASC_MC_CONTROL_FLAG
, word
);
5703 * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and START_CTL_TH [3:2]
5704 * bits for the default FIFO threshold.
5706 * Note: ASC-38C0800 FIFO threshold has been changed to 256 bytes.
5708 * For DMA Errata #4 set the BC_THRESH_ENB bit.
5710 AdvWriteByteRegister(iop_base
, IOPB_DMA_CFG0
,
5711 BC_THRESH_ENB
| FIFO_THRESH_80B
| START_CTL_TH
|
5715 * Microcode operating variables for WDTR, SDTR, and command tag
5716 * queuing will be set in slave_configure() based on what a
5717 * device reports it is capable of in Inquiry byte 7.
5719 * If SCSI Bus Resets have been disabled, then directly set
5720 * SDTR and WDTR from the EEPROM configuration. This will allow
5721 * the BIOS and warm boot to work without a SCSI bus hang on
5722 * the Inquiry caused by host and target mismatched DTR values.
5723 * Without the SCSI Bus Reset, before an Inquiry a device can't
5724 * be assumed to be in Asynchronous, Narrow mode.
5726 if ((asc_dvc
->bios_ctrl
& BIOS_CTRL_RESET_SCSI_BUS
) == 0) {
5727 AdvWriteWordLram(iop_base
, ASC_MC_WDTR_ABLE
,
5728 asc_dvc
->wdtr_able
);
5729 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_ABLE
,
5730 asc_dvc
->sdtr_able
);
5734 * Set microcode operating variables for DISC and SDTR_SPEED1,
5735 * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
5736 * configuration values.
5738 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
5739 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
5740 * without determining here whether the device supports SDTR.
5742 AdvWriteWordLram(iop_base
, ASC_MC_DISC_ENABLE
,
5743 asc_dvc
->cfg
->disc_enable
);
5744 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_SPEED1
, asc_dvc
->sdtr_speed1
);
5745 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_SPEED2
, asc_dvc
->sdtr_speed2
);
5746 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_SPEED3
, asc_dvc
->sdtr_speed3
);
5747 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_SPEED4
, asc_dvc
->sdtr_speed4
);
5750 * Set SCSI_CFG0 Microcode Default Value.
5752 * The microcode will set the SCSI_CFG0 register using this value
5753 * after it is started below.
5755 AdvWriteWordLram(iop_base
, ASC_MC_DEFAULT_SCSI_CFG0
,
5756 PARITY_EN
| QUEUE_128
| SEL_TMO_LONG
| OUR_ID_EN
|
5757 asc_dvc
->chip_scsi_id
);
5760 * Determine SCSI_CFG1 Microcode Default Value.
5762 * The microcode will set the SCSI_CFG1 register using this value
5763 * after it is started below.
5766 /* Read current SCSI_CFG1 Register value. */
5767 scsi_cfg1
= AdvReadWordRegister(iop_base
, IOPW_SCSI_CFG1
);
5770 * If the internal narrow cable is reversed all of the SCSI_CTRL
5771 * register signals will be set. Check for and return an error if
5772 * this condition is found.
5774 if ((AdvReadWordRegister(iop_base
, IOPW_SCSI_CTRL
) & 0x3F07) == 0x3F07) {
5775 asc_dvc
->err_code
|= ASC_IERR_REVERSED_CABLE
;
5780 * All kind of combinations of devices attached to one of four
5781 * connectors are acceptable except HVD device attached. For example,
5782 * LVD device can be attached to SE connector while SE device attached
5783 * to LVD connector. If LVD device attached to SE connector, it only
5784 * runs up to Ultra speed.
5786 * If an HVD device is attached to one of LVD connectors, return an
5787 * error. However, there is no way to detect HVD device attached to
5790 if (scsi_cfg1
& HVD
) {
5791 asc_dvc
->err_code
= ASC_IERR_HVD_DEVICE
;
5796 * If either SE or LVD automatic termination control is enabled, then
5797 * set the termination value based on a table listed in a_condor.h.
5799 * If manual termination was specified with an EEPROM setting then
5800 * 'termination' was set-up in AdvInitFrom38C0800EEPROM() and is ready
5801 * to be 'ored' into SCSI_CFG1.
5803 if ((asc_dvc
->cfg
->termination
& TERM_SE
) == 0) {
5804 /* SE automatic termination control is enabled. */
5805 switch (scsi_cfg1
& C_DET_SE
) {
5806 /* TERM_SE_HI: on, TERM_SE_LO: on */
5810 asc_dvc
->cfg
->termination
|= TERM_SE
;
5813 /* TERM_SE_HI: on, TERM_SE_LO: off */
5815 asc_dvc
->cfg
->termination
|= TERM_SE_HI
;
5820 if ((asc_dvc
->cfg
->termination
& TERM_LVD
) == 0) {
5821 /* LVD automatic termination control is enabled. */
5822 switch (scsi_cfg1
& C_DET_LVD
) {
5823 /* TERM_LVD_HI: on, TERM_LVD_LO: on */
5827 asc_dvc
->cfg
->termination
|= TERM_LVD
;
5830 /* TERM_LVD_HI: off, TERM_LVD_LO: off */
5837 * Clear any set TERM_SE and TERM_LVD bits.
5839 scsi_cfg1
&= (~TERM_SE
& ~TERM_LVD
);
5842 * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'.
5844 scsi_cfg1
|= (~asc_dvc
->cfg
->termination
& 0xF0);
5847 * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and HVD/LVD/SE
5848 * bits and set possibly modified termination control bits in the
5849 * Microcode SCSI_CFG1 Register Value.
5851 scsi_cfg1
&= (~BIG_ENDIAN
& ~DIS_TERM_DRV
& ~TERM_POL
& ~HVD_LVD_SE
);
5854 * Set SCSI_CFG1 Microcode Default Value
5856 * Set possibly modified termination control and reset DIS_TERM_DRV
5857 * bits in the Microcode SCSI_CFG1 Register Value.
5859 * The microcode will set the SCSI_CFG1 register using this value
5860 * after it is started below.
5862 AdvWriteWordLram(iop_base
, ASC_MC_DEFAULT_SCSI_CFG1
, scsi_cfg1
);
5865 * Set MEM_CFG Microcode Default Value
5867 * The microcode will set the MEM_CFG register using this value
5868 * after it is started below.
5870 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
5873 * ASC-38C0800 has 16KB internal memory.
5875 AdvWriteWordLram(iop_base
, ASC_MC_DEFAULT_MEM_CFG
,
5876 BIOS_EN
| RAM_SZ_16KB
);
5879 * Set SEL_MASK Microcode Default Value
5881 * The microcode will set the SEL_MASK register using this value
5882 * after it is started below.
5884 AdvWriteWordLram(iop_base
, ASC_MC_DEFAULT_SEL_MASK
,
5885 ADV_TID_TO_TIDMASK(asc_dvc
->chip_scsi_id
));
5887 AdvBuildCarrierFreelist(asc_dvc
);
5890 * Set-up the Host->RISC Initiator Command Queue (ICQ).
5893 if ((asc_dvc
->icq_sp
= asc_dvc
->carr_freelist
) == NULL
) {
5894 asc_dvc
->err_code
|= ASC_IERR_NO_CARRIER
;
5897 asc_dvc
->carr_freelist
= (ADV_CARR_T
*)
5898 ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc
->icq_sp
->next_vpa
));
5901 * The first command issued will be placed in the stopper carrier.
5903 asc_dvc
->icq_sp
->next_vpa
= cpu_to_le32(ASC_CQ_STOPPER
);
5906 * Set RISC ICQ physical address start value.
5907 * carr_pa is LE, must be native before write
5909 AdvWriteDWordLramNoSwap(iop_base
, ASC_MC_ICQ
, asc_dvc
->icq_sp
->carr_pa
);
5912 * Set-up the RISC->Host Initiator Response Queue (IRQ).
5914 if ((asc_dvc
->irq_sp
= asc_dvc
->carr_freelist
) == NULL
) {
5915 asc_dvc
->err_code
|= ASC_IERR_NO_CARRIER
;
5918 asc_dvc
->carr_freelist
= (ADV_CARR_T
*)
5919 ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc
->irq_sp
->next_vpa
));
5922 * The first command completed by the RISC will be placed in
5925 * Note: Set 'next_vpa' to ASC_CQ_STOPPER. When the request is
5926 * completed the RISC will set the ASC_RQ_STOPPER bit.
5928 asc_dvc
->irq_sp
->next_vpa
= cpu_to_le32(ASC_CQ_STOPPER
);
5931 * Set RISC IRQ physical address start value.
5933 * carr_pa is LE, must be native before write *
5935 AdvWriteDWordLramNoSwap(iop_base
, ASC_MC_IRQ
, asc_dvc
->irq_sp
->carr_pa
);
5936 asc_dvc
->carr_pending_cnt
= 0;
5938 AdvWriteByteRegister(iop_base
, IOPB_INTR_ENABLES
,
5939 (ADV_INTR_ENABLE_HOST_INTR
|
5940 ADV_INTR_ENABLE_GLOBAL_INTR
));
5942 AdvReadWordLram(iop_base
, ASC_MC_CODE_BEGIN_ADDR
, word
);
5943 AdvWriteWordRegister(iop_base
, IOPW_PC
, word
);
5945 /* finally, finally, gentlemen, start your engine */
5946 AdvWriteWordRegister(iop_base
, IOPW_RISC_CSR
, ADV_RISC_CSR_RUN
);
5949 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
5950 * Resets should be performed. The RISC has to be running
5951 * to issue a SCSI Bus Reset.
5953 if (asc_dvc
->bios_ctrl
& BIOS_CTRL_RESET_SCSI_BUS
) {
5955 * If the BIOS Signature is present in memory, restore the
5956 * BIOS Handshake Configuration Table and do not perform
5959 if (bios_mem
[(ASC_MC_BIOS_SIGNATURE
- ASC_MC_BIOSMEM
) / 2] ==
5962 * Restore per TID negotiated values.
5964 AdvWriteWordLram(iop_base
, ASC_MC_WDTR_ABLE
, wdtr_able
);
5965 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_ABLE
, sdtr_able
);
5966 AdvWriteWordLram(iop_base
, ASC_MC_TAGQNG_ABLE
,
5968 for (tid
= 0; tid
<= ADV_MAX_TID
; tid
++) {
5969 AdvWriteByteLram(iop_base
,
5970 ASC_MC_NUMBER_OF_MAX_CMD
+ tid
,
5974 if (AdvResetSB(asc_dvc
) != ADV_TRUE
) {
5975 warn_code
= ASC_WARN_BUSRESET_ERROR
;
5984 * Initialize the ASC-38C1600.
5986 * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
5988 * For a non-fatal error return a warning code. If there are no warnings
5989 * then 0 is returned.
5991 * Needed after initialization for error recovery.
5993 static int AdvInitAsc38C1600Driver(ADV_DVC_VAR
*asc_dvc
)
5995 const struct firmware
*fw
;
5996 const char fwname
[] = "advansys/38C1600.bin";
5997 AdvPortAddr iop_base
;
6005 unsigned long chksum
;
6009 ushort bios_mem
[ASC_MC_BIOSLEN
/ 2]; /* BIOS RISC Memory 0x40-0x8F. */
6010 ushort wdtr_able
, sdtr_able
, ppr_able
, tagqng_able
;
6011 uchar max_cmd
[ASC_MAX_TID
+ 1];
6013 /* If there is already an error, don't continue. */
6014 if (asc_dvc
->err_code
!= 0) {
6019 * The caller must set 'chip_type' to ADV_CHIP_ASC38C1600.
6021 if (asc_dvc
->chip_type
!= ADV_CHIP_ASC38C1600
) {
6022 asc_dvc
->err_code
= ASC_IERR_BAD_CHIPTYPE
;
6027 iop_base
= asc_dvc
->iop_base
;
6030 * Save the RISC memory BIOS region before writing the microcode.
6031 * The BIOS may already be loaded and using its RISC LRAM region
6032 * so its region must be saved and restored.
6034 * Note: This code makes the assumption, which is currently true,
6035 * that a chip reset does not clear RISC LRAM.
6037 for (i
= 0; i
< ASC_MC_BIOSLEN
/ 2; i
++) {
6038 AdvReadWordLram(iop_base
, ASC_MC_BIOSMEM
+ (2 * i
),
6043 * Save current per TID negotiated values.
6045 AdvReadWordLram(iop_base
, ASC_MC_WDTR_ABLE
, wdtr_able
);
6046 AdvReadWordLram(iop_base
, ASC_MC_SDTR_ABLE
, sdtr_able
);
6047 AdvReadWordLram(iop_base
, ASC_MC_PPR_ABLE
, ppr_able
);
6048 AdvReadWordLram(iop_base
, ASC_MC_TAGQNG_ABLE
, tagqng_able
);
6049 for (tid
= 0; tid
<= ASC_MAX_TID
; tid
++) {
6050 AdvReadByteLram(iop_base
, ASC_MC_NUMBER_OF_MAX_CMD
+ tid
,
6055 * RAM BIST (Built-In Self Test)
6057 * Address : I/O base + offset 0x38h register (byte).
6058 * Function: Bit 7-6(RW) : RAM mode
6059 * Normal Mode : 0x00
6060 * Pre-test Mode : 0x40
6061 * RAM Test Mode : 0x80
6063 * Bit 4(RO) : Done bit
6064 * Bit 3-0(RO) : Status
6066 * Int_RAM Error : 0x04
6071 * Note: RAM BIST code should be put right here, before loading the
6072 * microcode and after saving the RISC memory BIOS region.
6078 * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
6079 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
6080 * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
6081 * to NORMAL_MODE, return an error too.
6083 for (i
= 0; i
< 2; i
++) {
6084 AdvWriteByteRegister(iop_base
, IOPB_RAM_BIST
, PRE_TEST_MODE
);
6085 mdelay(10); /* Wait for 10ms before reading back. */
6086 byte
= AdvReadByteRegister(iop_base
, IOPB_RAM_BIST
);
6087 if ((byte
& RAM_TEST_DONE
) == 0
6088 || (byte
& 0x0F) != PRE_TEST_VALUE
) {
6089 asc_dvc
->err_code
= ASC_IERR_BIST_PRE_TEST
;
6093 AdvWriteByteRegister(iop_base
, IOPB_RAM_BIST
, NORMAL_MODE
);
6094 mdelay(10); /* Wait for 10ms before reading back. */
6095 if (AdvReadByteRegister(iop_base
, IOPB_RAM_BIST
)
6097 asc_dvc
->err_code
= ASC_IERR_BIST_PRE_TEST
;
6103 * LRAM Test - It takes about 1.5 ms to run through the test.
6105 * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
6106 * If Done bit not set or Status not 0, save register byte, set the
6107 * err_code, and return an error.
6109 AdvWriteByteRegister(iop_base
, IOPB_RAM_BIST
, RAM_TEST_MODE
);
6110 mdelay(10); /* Wait for 10ms before checking status. */
6112 byte
= AdvReadByteRegister(iop_base
, IOPB_RAM_BIST
);
6113 if ((byte
& RAM_TEST_DONE
) == 0 || (byte
& RAM_TEST_STATUS
) != 0) {
6114 /* Get here if Done bit not set or Status not 0. */
6115 asc_dvc
->bist_err_code
= byte
; /* for BIOS display message */
6116 asc_dvc
->err_code
= ASC_IERR_BIST_RAM_TEST
;
6120 /* We need to reset back to normal mode after LRAM test passes. */
6121 AdvWriteByteRegister(iop_base
, IOPB_RAM_BIST
, NORMAL_MODE
);
6123 err
= request_firmware(&fw
, fwname
, asc_dvc
->drv_ptr
->dev
);
6125 printk(KERN_ERR
"Failed to load image \"%s\" err %d\n",
6130 printk(KERN_ERR
"Bogus length %zu in image \"%s\"\n",
6132 release_firmware(fw
);
6135 chksum
= (fw
->data
[3] << 24) | (fw
->data
[2] << 16) |
6136 (fw
->data
[1] << 8) | fw
->data
[0];
6137 asc_dvc
->err_code
= AdvLoadMicrocode(iop_base
, &fw
->data
[4],
6138 fw
->size
- 4, ADV_38C1600_MEMSIZE
,
6140 release_firmware(fw
);
6141 if (asc_dvc
->err_code
)
6145 * Restore the RISC memory BIOS region.
6147 for (i
= 0; i
< ASC_MC_BIOSLEN
/ 2; i
++) {
6148 AdvWriteWordLram(iop_base
, ASC_MC_BIOSMEM
+ (2 * i
),
6153 * Calculate and write the microcode code checksum to the microcode
6154 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
6156 AdvReadWordLram(iop_base
, ASC_MC_CODE_BEGIN_ADDR
, begin_addr
);
6157 AdvReadWordLram(iop_base
, ASC_MC_CODE_END_ADDR
, end_addr
);
6159 AdvWriteWordRegister(iop_base
, IOPW_RAM_ADDR
, begin_addr
);
6160 for (word
= begin_addr
; word
< end_addr
; word
+= 2) {
6161 code_sum
+= AdvReadWordAutoIncLram(iop_base
);
6163 AdvWriteWordLram(iop_base
, ASC_MC_CODE_CHK_SUM
, code_sum
);
6166 * Read microcode version and date.
6168 AdvReadWordLram(iop_base
, ASC_MC_VERSION_DATE
,
6169 asc_dvc
->cfg
->mcode_date
);
6170 AdvReadWordLram(iop_base
, ASC_MC_VERSION_NUM
,
6171 asc_dvc
->cfg
->mcode_version
);
6174 * Set the chip type to indicate the ASC38C1600.
6176 AdvWriteWordLram(iop_base
, ASC_MC_CHIP_TYPE
, ADV_CHIP_ASC38C1600
);
6179 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
6180 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
6181 * cable detection and then we are able to read C_DET[3:0].
6183 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
6184 * Microcode Default Value' section below.
6186 scsi_cfg1
= AdvReadWordRegister(iop_base
, IOPW_SCSI_CFG1
);
6187 AdvWriteWordRegister(iop_base
, IOPW_SCSI_CFG1
,
6188 scsi_cfg1
| DIS_TERM_DRV
);
6191 * If the PCI Configuration Command Register "Parity Error Response
6192 * Control" Bit was clear (0), then set the microcode variable
6193 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
6194 * to ignore DMA parity errors.
6196 if (asc_dvc
->cfg
->control_flag
& CONTROL_FLAG_IGNORE_PERR
) {
6197 AdvReadWordLram(iop_base
, ASC_MC_CONTROL_FLAG
, word
);
6198 word
|= CONTROL_FLAG_IGNORE_PERR
;
6199 AdvWriteWordLram(iop_base
, ASC_MC_CONTROL_FLAG
, word
);
6203 * If the BIOS control flag AIPP (Asynchronous Information
6204 * Phase Protection) disable bit is not set, then set the firmware
6205 * 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to enable
6206 * AIPP checking and encoding.
6208 if ((asc_dvc
->bios_ctrl
& BIOS_CTRL_AIPP_DIS
) == 0) {
6209 AdvReadWordLram(iop_base
, ASC_MC_CONTROL_FLAG
, word
);
6210 word
|= CONTROL_FLAG_ENABLE_AIPP
;
6211 AdvWriteWordLram(iop_base
, ASC_MC_CONTROL_FLAG
, word
);
6215 * For ASC-38C1600 use DMA_CFG0 default values: FIFO_THRESH_80B [6:4],
6216 * and START_CTL_TH [3:2].
6218 AdvWriteByteRegister(iop_base
, IOPB_DMA_CFG0
,
6219 FIFO_THRESH_80B
| START_CTL_TH
| READ_CMD_MRM
);
6222 * Microcode operating variables for WDTR, SDTR, and command tag
6223 * queuing will be set in slave_configure() based on what a
6224 * device reports it is capable of in Inquiry byte 7.
6226 * If SCSI Bus Resets have been disabled, then directly set
6227 * SDTR and WDTR from the EEPROM configuration. This will allow
6228 * the BIOS and warm boot to work without a SCSI bus hang on
6229 * the Inquiry caused by host and target mismatched DTR values.
6230 * Without the SCSI Bus Reset, before an Inquiry a device can't
6231 * be assumed to be in Asynchronous, Narrow mode.
6233 if ((asc_dvc
->bios_ctrl
& BIOS_CTRL_RESET_SCSI_BUS
) == 0) {
6234 AdvWriteWordLram(iop_base
, ASC_MC_WDTR_ABLE
,
6235 asc_dvc
->wdtr_able
);
6236 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_ABLE
,
6237 asc_dvc
->sdtr_able
);
6241 * Set microcode operating variables for DISC and SDTR_SPEED1,
6242 * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
6243 * configuration values.
6245 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
6246 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
6247 * without determining here whether the device supports SDTR.
6249 AdvWriteWordLram(iop_base
, ASC_MC_DISC_ENABLE
,
6250 asc_dvc
->cfg
->disc_enable
);
6251 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_SPEED1
, asc_dvc
->sdtr_speed1
);
6252 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_SPEED2
, asc_dvc
->sdtr_speed2
);
6253 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_SPEED3
, asc_dvc
->sdtr_speed3
);
6254 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_SPEED4
, asc_dvc
->sdtr_speed4
);
6257 * Set SCSI_CFG0 Microcode Default Value.
6259 * The microcode will set the SCSI_CFG0 register using this value
6260 * after it is started below.
6262 AdvWriteWordLram(iop_base
, ASC_MC_DEFAULT_SCSI_CFG0
,
6263 PARITY_EN
| QUEUE_128
| SEL_TMO_LONG
| OUR_ID_EN
|
6264 asc_dvc
->chip_scsi_id
);
6267 * Calculate SCSI_CFG1 Microcode Default Value.
6269 * The microcode will set the SCSI_CFG1 register using this value
6270 * after it is started below.
6272 * Each ASC-38C1600 function has only two cable detect bits.
6273 * The bus mode override bits are in IOPB_SOFT_OVER_WR.
6275 scsi_cfg1
= AdvReadWordRegister(iop_base
, IOPW_SCSI_CFG1
);
6278 * If the cable is reversed all of the SCSI_CTRL register signals
6279 * will be set. Check for and return an error if this condition is
6282 if ((AdvReadWordRegister(iop_base
, IOPW_SCSI_CTRL
) & 0x3F07) == 0x3F07) {
6283 asc_dvc
->err_code
|= ASC_IERR_REVERSED_CABLE
;
6288 * Each ASC-38C1600 function has two connectors. Only an HVD device
6289 * can not be connected to either connector. An LVD device or SE device
6290 * may be connected to either connecor. If an SE device is connected,
6291 * then at most Ultra speed (20 Mhz) can be used on both connectors.
6293 * If an HVD device is attached, return an error.
6295 if (scsi_cfg1
& HVD
) {
6296 asc_dvc
->err_code
|= ASC_IERR_HVD_DEVICE
;
6301 * Each function in the ASC-38C1600 uses only the SE cable detect and
6302 * termination because there are two connectors for each function. Each
6303 * function may use either LVD or SE mode. Corresponding the SE automatic
6304 * termination control EEPROM bits are used for each function. Each
6305 * function has its own EEPROM. If SE automatic control is enabled for
6306 * the function, then set the termination value based on a table listed
6309 * If manual termination is specified in the EEPROM for the function,
6310 * then 'termination' was set-up in AscInitFrom38C1600EEPROM() and is
6311 * ready to be 'ored' into SCSI_CFG1.
6313 if ((asc_dvc
->cfg
->termination
& TERM_SE
) == 0) {
6314 struct pci_dev
*pdev
= adv_dvc_to_pdev(asc_dvc
);
6315 /* SE automatic termination control is enabled. */
6316 switch (scsi_cfg1
& C_DET_SE
) {
6317 /* TERM_SE_HI: on, TERM_SE_LO: on */
6321 asc_dvc
->cfg
->termination
|= TERM_SE
;
6325 if (PCI_FUNC(pdev
->devfn
) == 0) {
6326 /* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */
6328 /* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */
6329 asc_dvc
->cfg
->termination
|= TERM_SE_HI
;
6336 * Clear any set TERM_SE bits.
6338 scsi_cfg1
&= ~TERM_SE
;
6341 * Invert the TERM_SE bits and then set 'scsi_cfg1'.
6343 scsi_cfg1
|= (~asc_dvc
->cfg
->termination
& TERM_SE
);
6346 * Clear Big Endian and Terminator Polarity bits and set possibly
6347 * modified termination control bits in the Microcode SCSI_CFG1
6350 * Big Endian bit is not used even on big endian machines.
6352 scsi_cfg1
&= (~BIG_ENDIAN
& ~DIS_TERM_DRV
& ~TERM_POL
);
6355 * Set SCSI_CFG1 Microcode Default Value
6357 * Set possibly modified termination control bits in the Microcode
6358 * SCSI_CFG1 Register Value.
6360 * The microcode will set the SCSI_CFG1 register using this value
6361 * after it is started below.
6363 AdvWriteWordLram(iop_base
, ASC_MC_DEFAULT_SCSI_CFG1
, scsi_cfg1
);
6366 * Set MEM_CFG Microcode Default Value
6368 * The microcode will set the MEM_CFG register using this value
6369 * after it is started below.
6371 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
6374 * ASC-38C1600 has 32KB internal memory.
6376 * XXX - Since ASC38C1600 Rev.3 has a Local RAM failure issue, we come
6377 * out a special 16K Adv Library and Microcode version. After the issue
6378 * resolved, we should turn back to the 32K support. Both a_condor.h and
6379 * mcode.sas files also need to be updated.
6381 * AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
6382 * BIOS_EN | RAM_SZ_32KB);
6384 AdvWriteWordLram(iop_base
, ASC_MC_DEFAULT_MEM_CFG
,
6385 BIOS_EN
| RAM_SZ_16KB
);
6388 * Set SEL_MASK Microcode Default Value
6390 * The microcode will set the SEL_MASK register using this value
6391 * after it is started below.
6393 AdvWriteWordLram(iop_base
, ASC_MC_DEFAULT_SEL_MASK
,
6394 ADV_TID_TO_TIDMASK(asc_dvc
->chip_scsi_id
));
6396 AdvBuildCarrierFreelist(asc_dvc
);
6399 * Set-up the Host->RISC Initiator Command Queue (ICQ).
6401 if ((asc_dvc
->icq_sp
= asc_dvc
->carr_freelist
) == NULL
) {
6402 asc_dvc
->err_code
|= ASC_IERR_NO_CARRIER
;
6405 asc_dvc
->carr_freelist
= (ADV_CARR_T
*)
6406 ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc
->icq_sp
->next_vpa
));
6409 * The first command issued will be placed in the stopper carrier.
6411 asc_dvc
->icq_sp
->next_vpa
= cpu_to_le32(ASC_CQ_STOPPER
);
6414 * Set RISC ICQ physical address start value. Initialize the
6415 * COMMA register to the same value otherwise the RISC will
6416 * prematurely detect a command is available.
6418 AdvWriteDWordLramNoSwap(iop_base
, ASC_MC_ICQ
, asc_dvc
->icq_sp
->carr_pa
);
6419 AdvWriteDWordRegister(iop_base
, IOPDW_COMMA
,
6420 le32_to_cpu(asc_dvc
->icq_sp
->carr_pa
));
6423 * Set-up the RISC->Host Initiator Response Queue (IRQ).
6425 if ((asc_dvc
->irq_sp
= asc_dvc
->carr_freelist
) == NULL
) {
6426 asc_dvc
->err_code
|= ASC_IERR_NO_CARRIER
;
6429 asc_dvc
->carr_freelist
= (ADV_CARR_T
*)
6430 ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc
->irq_sp
->next_vpa
));
6433 * The first command completed by the RISC will be placed in
6436 * Note: Set 'next_vpa' to ASC_CQ_STOPPER. When the request is
6437 * completed the RISC will set the ASC_RQ_STOPPER bit.
6439 asc_dvc
->irq_sp
->next_vpa
= cpu_to_le32(ASC_CQ_STOPPER
);
6442 * Set RISC IRQ physical address start value.
6444 AdvWriteDWordLramNoSwap(iop_base
, ASC_MC_IRQ
, asc_dvc
->irq_sp
->carr_pa
);
6445 asc_dvc
->carr_pending_cnt
= 0;
6447 AdvWriteByteRegister(iop_base
, IOPB_INTR_ENABLES
,
6448 (ADV_INTR_ENABLE_HOST_INTR
|
6449 ADV_INTR_ENABLE_GLOBAL_INTR
));
6450 AdvReadWordLram(iop_base
, ASC_MC_CODE_BEGIN_ADDR
, word
);
6451 AdvWriteWordRegister(iop_base
, IOPW_PC
, word
);
6453 /* finally, finally, gentlemen, start your engine */
6454 AdvWriteWordRegister(iop_base
, IOPW_RISC_CSR
, ADV_RISC_CSR_RUN
);
6457 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
6458 * Resets should be performed. The RISC has to be running
6459 * to issue a SCSI Bus Reset.
6461 if (asc_dvc
->bios_ctrl
& BIOS_CTRL_RESET_SCSI_BUS
) {
6463 * If the BIOS Signature is present in memory, restore the
6464 * per TID microcode operating variables.
6466 if (bios_mem
[(ASC_MC_BIOS_SIGNATURE
- ASC_MC_BIOSMEM
) / 2] ==
6469 * Restore per TID negotiated values.
6471 AdvWriteWordLram(iop_base
, ASC_MC_WDTR_ABLE
, wdtr_able
);
6472 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_ABLE
, sdtr_able
);
6473 AdvWriteWordLram(iop_base
, ASC_MC_PPR_ABLE
, ppr_able
);
6474 AdvWriteWordLram(iop_base
, ASC_MC_TAGQNG_ABLE
,
6476 for (tid
= 0; tid
<= ASC_MAX_TID
; tid
++) {
6477 AdvWriteByteLram(iop_base
,
6478 ASC_MC_NUMBER_OF_MAX_CMD
+ tid
,
6482 if (AdvResetSB(asc_dvc
) != ADV_TRUE
) {
6483 warn_code
= ASC_WARN_BUSRESET_ERROR
;
6492 * Reset chip and SCSI Bus.
6495 * ADV_TRUE(1) - Chip re-initialization and SCSI Bus Reset successful.
6496 * ADV_FALSE(0) - Chip re-initialization and SCSI Bus Reset failure.
6498 static int AdvResetChipAndSB(ADV_DVC_VAR
*asc_dvc
)
6501 ushort wdtr_able
, sdtr_able
, tagqng_able
;
6502 ushort ppr_able
= 0;
6503 uchar tid
, max_cmd
[ADV_MAX_TID
+ 1];
6504 AdvPortAddr iop_base
;
6507 iop_base
= asc_dvc
->iop_base
;
6510 * Save current per TID negotiated values.
6512 AdvReadWordLram(iop_base
, ASC_MC_WDTR_ABLE
, wdtr_able
);
6513 AdvReadWordLram(iop_base
, ASC_MC_SDTR_ABLE
, sdtr_able
);
6514 if (asc_dvc
->chip_type
== ADV_CHIP_ASC38C1600
) {
6515 AdvReadWordLram(iop_base
, ASC_MC_PPR_ABLE
, ppr_able
);
6517 AdvReadWordLram(iop_base
, ASC_MC_TAGQNG_ABLE
, tagqng_able
);
6518 for (tid
= 0; tid
<= ADV_MAX_TID
; tid
++) {
6519 AdvReadByteLram(iop_base
, ASC_MC_NUMBER_OF_MAX_CMD
+ tid
,
6524 * Force the AdvInitAsc3550/38C0800Driver() function to
6525 * perform a SCSI Bus Reset by clearing the BIOS signature word.
6526 * The initialization functions assumes a SCSI Bus Reset is not
6527 * needed if the BIOS signature word is present.
6529 AdvReadWordLram(iop_base
, ASC_MC_BIOS_SIGNATURE
, bios_sig
);
6530 AdvWriteWordLram(iop_base
, ASC_MC_BIOS_SIGNATURE
, 0);
6533 * Stop chip and reset it.
6535 AdvWriteWordRegister(iop_base
, IOPW_RISC_CSR
, ADV_RISC_CSR_STOP
);
6536 AdvWriteWordRegister(iop_base
, IOPW_CTRL_REG
, ADV_CTRL_REG_CMD_RESET
);
6538 AdvWriteWordRegister(iop_base
, IOPW_CTRL_REG
,
6539 ADV_CTRL_REG_CMD_WR_IO_REG
);
6542 * Reset Adv Library error code, if any, and try
6543 * re-initializing the chip.
6545 asc_dvc
->err_code
= 0;
6546 if (asc_dvc
->chip_type
== ADV_CHIP_ASC38C1600
) {
6547 status
= AdvInitAsc38C1600Driver(asc_dvc
);
6548 } else if (asc_dvc
->chip_type
== ADV_CHIP_ASC38C0800
) {
6549 status
= AdvInitAsc38C0800Driver(asc_dvc
);
6551 status
= AdvInitAsc3550Driver(asc_dvc
);
6554 /* Translate initialization return value to status value. */
6562 * Restore the BIOS signature word.
6564 AdvWriteWordLram(iop_base
, ASC_MC_BIOS_SIGNATURE
, bios_sig
);
6567 * Restore per TID negotiated values.
6569 AdvWriteWordLram(iop_base
, ASC_MC_WDTR_ABLE
, wdtr_able
);
6570 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_ABLE
, sdtr_able
);
6571 if (asc_dvc
->chip_type
== ADV_CHIP_ASC38C1600
) {
6572 AdvWriteWordLram(iop_base
, ASC_MC_PPR_ABLE
, ppr_able
);
6574 AdvWriteWordLram(iop_base
, ASC_MC_TAGQNG_ABLE
, tagqng_able
);
6575 for (tid
= 0; tid
<= ADV_MAX_TID
; tid
++) {
6576 AdvWriteByteLram(iop_base
, ASC_MC_NUMBER_OF_MAX_CMD
+ tid
,
6584 * adv_async_callback() - Adv Library asynchronous event callback function.
6586 static void adv_async_callback(ADV_DVC_VAR
*adv_dvc_varp
, uchar code
)
6589 case ADV_ASYNC_SCSI_BUS_RESET_DET
:
6591 * The firmware detected a SCSI Bus reset.
6593 ASC_DBG(0, "ADV_ASYNC_SCSI_BUS_RESET_DET\n");
6596 case ADV_ASYNC_RDMA_FAILURE
:
6598 * Handle RDMA failure by resetting the SCSI Bus and
6599 * possibly the chip if it is unresponsive. Log the error
6600 * with a unique code.
6602 ASC_DBG(0, "ADV_ASYNC_RDMA_FAILURE\n");
6603 AdvResetChipAndSB(adv_dvc_varp
);
6606 case ADV_HOST_SCSI_BUS_RESET
:
6608 * Host generated SCSI bus reset occurred.
6610 ASC_DBG(0, "ADV_HOST_SCSI_BUS_RESET\n");
6614 ASC_DBG(0, "unknown code 0x%x\n", code
);
6620 * adv_isr_callback() - Second Level Interrupt Handler called by AdvISR().
6622 * Callback function for the Wide SCSI Adv Library.
6624 static void adv_isr_callback(ADV_DVC_VAR
*adv_dvc_varp
, ADV_SCSI_REQ_Q
*scsiqp
)
6626 struct asc_board
*boardp
;
6628 adv_sgblk_t
*sgblkp
;
6629 struct scsi_cmnd
*scp
;
6630 struct Scsi_Host
*shost
;
6633 ASC_DBG(1, "adv_dvc_varp 0x%lx, scsiqp 0x%lx\n",
6634 (ulong
)adv_dvc_varp
, (ulong
)scsiqp
);
6635 ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp
);
6638 * Get the adv_req_t structure for the command that has been
6639 * completed. The adv_req_t structure actually contains the
6640 * completed ADV_SCSI_REQ_Q structure.
6642 reqp
= (adv_req_t
*)ADV_U32_TO_VADDR(scsiqp
->srb_ptr
);
6643 ASC_DBG(1, "reqp 0x%lx\n", (ulong
)reqp
);
6645 ASC_PRINT("adv_isr_callback: reqp is NULL\n");
6650 * Get the struct scsi_cmnd structure and Scsi_Host structure for the
6651 * command that has been completed.
6653 * Note: The adv_req_t request structure and adv_sgblk_t structure,
6654 * if any, are dropped, because a board structure pointer can not be
6658 ASC_DBG(1, "scp 0x%p\n", scp
);
6661 ("adv_isr_callback: scp is NULL; adv_req_t dropped.\n");
6664 ASC_DBG_PRT_CDB(2, scp
->cmnd
, scp
->cmd_len
);
6666 shost
= scp
->device
->host
;
6667 ASC_STATS(shost
, callback
);
6668 ASC_DBG(1, "shost 0x%p\n", shost
);
6670 boardp
= shost_priv(shost
);
6671 BUG_ON(adv_dvc_varp
!= &boardp
->dvc_var
.adv_dvc_var
);
6674 * 'done_status' contains the command's ending status.
6676 switch (scsiqp
->done_status
) {
6678 ASC_DBG(2, "QD_NO_ERROR\n");
6682 * Check for an underrun condition.
6684 * If there was no error and an underrun condition, then
6685 * then return the number of underrun bytes.
6687 resid_cnt
= le32_to_cpu(scsiqp
->data_cnt
);
6688 if (scsi_bufflen(scp
) != 0 && resid_cnt
!= 0 &&
6689 resid_cnt
<= scsi_bufflen(scp
)) {
6690 ASC_DBG(1, "underrun condition %lu bytes\n",
6692 scsi_set_resid(scp
, resid_cnt
);
6697 ASC_DBG(2, "QD_WITH_ERROR\n");
6698 switch (scsiqp
->host_status
) {
6699 case QHSTA_NO_ERROR
:
6700 if (scsiqp
->scsi_status
== SAM_STAT_CHECK_CONDITION
) {
6701 ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n");
6702 ASC_DBG_PRT_SENSE(2, scp
->sense_buffer
,
6703 SCSI_SENSE_BUFFERSIZE
);
6705 * Note: The 'status_byte()' macro used by
6706 * target drivers defined in scsi.h shifts the
6707 * status byte returned by host drivers right
6708 * by 1 bit. This is why target drivers also
6709 * use right shifted status byte definitions.
6710 * For instance target drivers use
6711 * CHECK_CONDITION, defined to 0x1, instead of
6712 * the SCSI defined check condition value of
6713 * 0x2. Host drivers are supposed to return
6714 * the status byte as it is defined by SCSI.
6716 scp
->result
= DRIVER_BYTE(DRIVER_SENSE
) |
6717 STATUS_BYTE(scsiqp
->scsi_status
);
6719 scp
->result
= STATUS_BYTE(scsiqp
->scsi_status
);
6724 /* Some other QHSTA error occurred. */
6725 ASC_DBG(1, "host_status 0x%x\n", scsiqp
->host_status
);
6726 scp
->result
= HOST_BYTE(DID_BAD_TARGET
);
6731 case QD_ABORTED_BY_HOST
:
6732 ASC_DBG(1, "QD_ABORTED_BY_HOST\n");
6734 HOST_BYTE(DID_ABORT
) | STATUS_BYTE(scsiqp
->scsi_status
);
6738 ASC_DBG(1, "done_status 0x%x\n", scsiqp
->done_status
);
6740 HOST_BYTE(DID_ERROR
) | STATUS_BYTE(scsiqp
->scsi_status
);
6745 * If the 'init_tidmask' bit isn't already set for the target and the
6746 * current request finished normally, then set the bit for the target
6747 * to indicate that a device is present.
6749 if ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(scp
->device
->id
)) == 0 &&
6750 scsiqp
->done_status
== QD_NO_ERROR
&&
6751 scsiqp
->host_status
== QHSTA_NO_ERROR
) {
6752 boardp
->init_tidmask
|= ADV_TID_TO_TIDMASK(scp
->device
->id
);
6758 * Free all 'adv_sgblk_t' structures allocated for the request.
6760 while ((sgblkp
= reqp
->sgblkp
) != NULL
) {
6761 /* Remove 'sgblkp' from the request list. */
6762 reqp
->sgblkp
= sgblkp
->next_sgblkp
;
6764 /* Add 'sgblkp' to the board free list. */
6765 sgblkp
->next_sgblkp
= boardp
->adv_sgblkp
;
6766 boardp
->adv_sgblkp
= sgblkp
;
6770 * Free the adv_req_t structure used with the command by adding
6771 * it back to the board free list.
6773 reqp
->next_reqp
= boardp
->adv_reqp
;
6774 boardp
->adv_reqp
= reqp
;
6776 ASC_DBG(1, "done\n");
6780 * Adv Library Interrupt Service Routine
6782 * This function is called by a driver's interrupt service routine.
6783 * The function disables and re-enables interrupts.
6785 * When a microcode idle command is completed, the ADV_DVC_VAR
6786 * 'idle_cmd_done' field is set to ADV_TRUE.
6788 * Note: AdvISR() can be called when interrupts are disabled or even
6789 * when there is no hardware interrupt condition present. It will
6790 * always check for completed idle commands and microcode requests.
6791 * This is an important feature that shouldn't be changed because it
6792 * allows commands to be completed from polling mode loops.
6795 * ADV_TRUE(1) - interrupt was pending
6796 * ADV_FALSE(0) - no interrupt was pending
6798 static int AdvISR(ADV_DVC_VAR
*asc_dvc
)
6800 AdvPortAddr iop_base
;
6803 ADV_CARR_T
*free_carrp
;
6804 ADV_VADDR irq_next_vpa
;
6805 ADV_SCSI_REQ_Q
*scsiq
;
6807 iop_base
= asc_dvc
->iop_base
;
6809 /* Reading the register clears the interrupt. */
6810 int_stat
= AdvReadByteRegister(iop_base
, IOPB_INTR_STATUS_REG
);
6812 if ((int_stat
& (ADV_INTR_STATUS_INTRA
| ADV_INTR_STATUS_INTRB
|
6813 ADV_INTR_STATUS_INTRC
)) == 0) {
6818 * Notify the driver of an asynchronous microcode condition by
6819 * calling the adv_async_callback function. The function
6820 * is passed the microcode ASC_MC_INTRB_CODE byte value.
6822 if (int_stat
& ADV_INTR_STATUS_INTRB
) {
6825 AdvReadByteLram(iop_base
, ASC_MC_INTRB_CODE
, intrb_code
);
6827 if (asc_dvc
->chip_type
== ADV_CHIP_ASC3550
||
6828 asc_dvc
->chip_type
== ADV_CHIP_ASC38C0800
) {
6829 if (intrb_code
== ADV_ASYNC_CARRIER_READY_FAILURE
&&
6830 asc_dvc
->carr_pending_cnt
!= 0) {
6831 AdvWriteByteRegister(iop_base
, IOPB_TICKLE
,
6833 if (asc_dvc
->chip_type
== ADV_CHIP_ASC3550
) {
6834 AdvWriteByteRegister(iop_base
,
6841 adv_async_callback(asc_dvc
, intrb_code
);
6845 * Check if the IRQ stopper carrier contains a completed request.
6847 while (((irq_next_vpa
=
6848 le32_to_cpu(asc_dvc
->irq_sp
->next_vpa
)) & ASC_RQ_DONE
) != 0) {
6850 * Get a pointer to the newly completed ADV_SCSI_REQ_Q structure.
6851 * The RISC will have set 'areq_vpa' to a virtual address.
6853 * The firmware will have copied the ASC_SCSI_REQ_Q.scsiq_ptr
6854 * field to the carrier ADV_CARR_T.areq_vpa field. The conversion
6855 * below complements the conversion of ASC_SCSI_REQ_Q.scsiq_ptr'
6856 * in AdvExeScsiQueue().
6858 scsiq
= (ADV_SCSI_REQ_Q
*)
6859 ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc
->irq_sp
->areq_vpa
));
6862 * Request finished with good status and the queue was not
6863 * DMAed to host memory by the firmware. Set all status fields
6864 * to indicate good status.
6866 if ((irq_next_vpa
& ASC_RQ_GOOD
) != 0) {
6867 scsiq
->done_status
= QD_NO_ERROR
;
6868 scsiq
->host_status
= scsiq
->scsi_status
= 0;
6869 scsiq
->data_cnt
= 0L;
6873 * Advance the stopper pointer to the next carrier
6874 * ignoring the lower four bits. Free the previous
6877 free_carrp
= asc_dvc
->irq_sp
;
6878 asc_dvc
->irq_sp
= (ADV_CARR_T
*)
6879 ADV_U32_TO_VADDR(ASC_GET_CARRP(irq_next_vpa
));
6881 free_carrp
->next_vpa
=
6882 cpu_to_le32(ADV_VADDR_TO_U32(asc_dvc
->carr_freelist
));
6883 asc_dvc
->carr_freelist
= free_carrp
;
6884 asc_dvc
->carr_pending_cnt
--;
6886 target_bit
= ADV_TID_TO_TIDMASK(scsiq
->target_id
);
6889 * Clear request microcode control flag.
6894 * Notify the driver of the completed request by passing
6895 * the ADV_SCSI_REQ_Q pointer to its callback function.
6897 scsiq
->a_flag
|= ADV_SCSIQ_DONE
;
6898 adv_isr_callback(asc_dvc
, scsiq
);
6900 * Note: After the driver callback function is called, 'scsiq'
6901 * can no longer be referenced.
6903 * Fall through and continue processing other completed
6910 static int AscSetLibErrorCode(ASC_DVC_VAR
*asc_dvc
, ushort err_code
)
6912 if (asc_dvc
->err_code
== 0) {
6913 asc_dvc
->err_code
= err_code
;
6914 AscWriteLramWord(asc_dvc
->iop_base
, ASCV_ASCDVC_ERR_CODE_W
,
6920 static void AscAckInterrupt(PortAddr iop_base
)
6928 risc_flag
= AscReadLramByte(iop_base
, ASCV_RISC_FLAG_B
);
6929 if (loop
++ > 0x7FFF) {
6932 } while ((risc_flag
& ASC_RISC_FLAG_GEN_INT
) != 0);
6934 AscReadLramByte(iop_base
,
6935 ASCV_HOST_FLAG_B
) & (~ASC_HOST_FLAG_ACK_INT
);
6936 AscWriteLramByte(iop_base
, ASCV_HOST_FLAG_B
,
6937 (uchar
)(host_flag
| ASC_HOST_FLAG_ACK_INT
));
6938 AscSetChipStatus(iop_base
, CIW_INT_ACK
);
6940 while (AscGetChipStatus(iop_base
) & CSW_INT_PENDING
) {
6941 AscSetChipStatus(iop_base
, CIW_INT_ACK
);
6946 AscWriteLramByte(iop_base
, ASCV_HOST_FLAG_B
, host_flag
);
6949 static uchar
AscGetSynPeriodIndex(ASC_DVC_VAR
*asc_dvc
, uchar syn_time
)
6951 const uchar
*period_table
;
6956 period_table
= asc_dvc
->sdtr_period_tbl
;
6957 max_index
= (int)asc_dvc
->max_sdtr_index
;
6958 min_index
= (int)asc_dvc
->min_sdtr_index
;
6959 if ((syn_time
<= period_table
[max_index
])) {
6960 for (i
= min_index
; i
< (max_index
- 1); i
++) {
6961 if (syn_time
<= period_table
[i
]) {
6965 return (uchar
)max_index
;
6967 return (uchar
)(max_index
+ 1);
6972 AscMsgOutSDTR(ASC_DVC_VAR
*asc_dvc
, uchar sdtr_period
, uchar sdtr_offset
)
6975 uchar sdtr_period_index
;
6978 iop_base
= asc_dvc
->iop_base
;
6979 sdtr_buf
.msg_type
= EXTENDED_MESSAGE
;
6980 sdtr_buf
.msg_len
= MS_SDTR_LEN
;
6981 sdtr_buf
.msg_req
= EXTENDED_SDTR
;
6982 sdtr_buf
.xfer_period
= sdtr_period
;
6983 sdtr_offset
&= ASC_SYN_MAX_OFFSET
;
6984 sdtr_buf
.req_ack_offset
= sdtr_offset
;
6985 sdtr_period_index
= AscGetSynPeriodIndex(asc_dvc
, sdtr_period
);
6986 if (sdtr_period_index
<= asc_dvc
->max_sdtr_index
) {
6987 AscMemWordCopyPtrToLram(iop_base
, ASCV_MSGOUT_BEG
,
6989 sizeof(EXT_MSG
) >> 1);
6990 return ((sdtr_period_index
<< 4) | sdtr_offset
);
6992 sdtr_buf
.req_ack_offset
= 0;
6993 AscMemWordCopyPtrToLram(iop_base
, ASCV_MSGOUT_BEG
,
6995 sizeof(EXT_MSG
) >> 1);
7001 AscCalSDTRData(ASC_DVC_VAR
*asc_dvc
, uchar sdtr_period
, uchar syn_offset
)
7004 uchar sdtr_period_ix
;
7006 sdtr_period_ix
= AscGetSynPeriodIndex(asc_dvc
, sdtr_period
);
7007 if (sdtr_period_ix
> asc_dvc
->max_sdtr_index
)
7009 byte
= (sdtr_period_ix
<< 4) | (syn_offset
& ASC_SYN_MAX_OFFSET
);
7013 static int AscSetChipSynRegAtID(PortAddr iop_base
, uchar id
, uchar sdtr_data
)
7015 ASC_SCSI_BIT_ID_TYPE org_id
;
7019 AscSetBank(iop_base
, 1);
7020 org_id
= AscReadChipDvcID(iop_base
);
7021 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
7022 if (org_id
== (0x01 << i
))
7025 org_id
= (ASC_SCSI_BIT_ID_TYPE
) i
;
7026 AscWriteChipDvcID(iop_base
, id
);
7027 if (AscReadChipDvcID(iop_base
) == (0x01 << id
)) {
7028 AscSetBank(iop_base
, 0);
7029 AscSetChipSyn(iop_base
, sdtr_data
);
7030 if (AscGetChipSyn(iop_base
) != sdtr_data
) {
7036 AscSetBank(iop_base
, 1);
7037 AscWriteChipDvcID(iop_base
, org_id
);
7038 AscSetBank(iop_base
, 0);
7042 static void AscSetChipSDTR(PortAddr iop_base
, uchar sdtr_data
, uchar tid_no
)
7044 AscSetChipSynRegAtID(iop_base
, tid_no
, sdtr_data
);
7045 AscPutMCodeSDTRDoneAtID(iop_base
, tid_no
, sdtr_data
);
7048 static int AscIsrChipHalted(ASC_DVC_VAR
*asc_dvc
)
7054 ushort int_halt_code
;
7055 ASC_SCSI_BIT_ID_TYPE scsi_busy
;
7056 ASC_SCSI_BIT_ID_TYPE target_id
;
7063 uchar q_cntl
, tid_no
;
7067 struct asc_board
*boardp
;
7069 BUG_ON(!asc_dvc
->drv_ptr
);
7070 boardp
= asc_dvc
->drv_ptr
;
7072 iop_base
= asc_dvc
->iop_base
;
7073 int_halt_code
= AscReadLramWord(iop_base
, ASCV_HALTCODE_W
);
7075 halt_qp
= AscReadLramByte(iop_base
, ASCV_CURCDB_B
);
7076 halt_q_addr
= ASC_QNO_TO_QADDR(halt_qp
);
7077 target_ix
= AscReadLramByte(iop_base
,
7078 (ushort
)(halt_q_addr
+
7079 (ushort
)ASC_SCSIQ_B_TARGET_IX
));
7080 q_cntl
= AscReadLramByte(iop_base
,
7081 (ushort
)(halt_q_addr
+ (ushort
)ASC_SCSIQ_B_CNTL
));
7082 tid_no
= ASC_TIX_TO_TID(target_ix
);
7083 target_id
= (uchar
)ASC_TID_TO_TARGET_ID(tid_no
);
7084 if (asc_dvc
->pci_fix_asyn_xfer
& target_id
) {
7085 asyn_sdtr
= ASYN_SDTR_DATA_FIX_PCI_REV_AB
;
7089 if (int_halt_code
== ASC_HALT_DISABLE_ASYN_USE_SYN_FIX
) {
7090 if (asc_dvc
->pci_fix_asyn_xfer
& target_id
) {
7091 AscSetChipSDTR(iop_base
, 0, tid_no
);
7092 boardp
->sdtr_data
[tid_no
] = 0;
7094 AscWriteLramWord(iop_base
, ASCV_HALTCODE_W
, 0);
7096 } else if (int_halt_code
== ASC_HALT_ENABLE_ASYN_USE_SYN_FIX
) {
7097 if (asc_dvc
->pci_fix_asyn_xfer
& target_id
) {
7098 AscSetChipSDTR(iop_base
, asyn_sdtr
, tid_no
);
7099 boardp
->sdtr_data
[tid_no
] = asyn_sdtr
;
7101 AscWriteLramWord(iop_base
, ASCV_HALTCODE_W
, 0);
7103 } else if (int_halt_code
== ASC_HALT_EXTMSG_IN
) {
7104 AscMemWordCopyPtrFromLram(iop_base
,
7107 sizeof(EXT_MSG
) >> 1);
7109 if (ext_msg
.msg_type
== EXTENDED_MESSAGE
&&
7110 ext_msg
.msg_req
== EXTENDED_SDTR
&&
7111 ext_msg
.msg_len
== MS_SDTR_LEN
) {
7113 if ((ext_msg
.req_ack_offset
> ASC_SYN_MAX_OFFSET
)) {
7115 sdtr_accept
= FALSE
;
7116 ext_msg
.req_ack_offset
= ASC_SYN_MAX_OFFSET
;
7118 if ((ext_msg
.xfer_period
<
7119 asc_dvc
->sdtr_period_tbl
[asc_dvc
->min_sdtr_index
])
7120 || (ext_msg
.xfer_period
>
7121 asc_dvc
->sdtr_period_tbl
[asc_dvc
->
7123 sdtr_accept
= FALSE
;
7124 ext_msg
.xfer_period
=
7125 asc_dvc
->sdtr_period_tbl
[asc_dvc
->
7130 AscCalSDTRData(asc_dvc
, ext_msg
.xfer_period
,
7131 ext_msg
.req_ack_offset
);
7132 if ((sdtr_data
== 0xFF)) {
7134 q_cntl
|= QC_MSG_OUT
;
7135 asc_dvc
->init_sdtr
&= ~target_id
;
7136 asc_dvc
->sdtr_done
&= ~target_id
;
7137 AscSetChipSDTR(iop_base
, asyn_sdtr
,
7139 boardp
->sdtr_data
[tid_no
] = asyn_sdtr
;
7142 if (ext_msg
.req_ack_offset
== 0) {
7144 q_cntl
&= ~QC_MSG_OUT
;
7145 asc_dvc
->init_sdtr
&= ~target_id
;
7146 asc_dvc
->sdtr_done
&= ~target_id
;
7147 AscSetChipSDTR(iop_base
, asyn_sdtr
, tid_no
);
7149 if (sdtr_accept
&& (q_cntl
& QC_MSG_OUT
)) {
7150 q_cntl
&= ~QC_MSG_OUT
;
7151 asc_dvc
->sdtr_done
|= target_id
;
7152 asc_dvc
->init_sdtr
|= target_id
;
7153 asc_dvc
->pci_fix_asyn_xfer
&=
7156 AscCalSDTRData(asc_dvc
,
7157 ext_msg
.xfer_period
,
7160 AscSetChipSDTR(iop_base
, sdtr_data
,
7162 boardp
->sdtr_data
[tid_no
] = sdtr_data
;
7164 q_cntl
|= QC_MSG_OUT
;
7165 AscMsgOutSDTR(asc_dvc
,
7166 ext_msg
.xfer_period
,
7167 ext_msg
.req_ack_offset
);
7168 asc_dvc
->pci_fix_asyn_xfer
&=
7171 AscCalSDTRData(asc_dvc
,
7172 ext_msg
.xfer_period
,
7175 AscSetChipSDTR(iop_base
, sdtr_data
,
7177 boardp
->sdtr_data
[tid_no
] = sdtr_data
;
7178 asc_dvc
->sdtr_done
|= target_id
;
7179 asc_dvc
->init_sdtr
|= target_id
;
7183 AscWriteLramByte(iop_base
,
7184 (ushort
)(halt_q_addr
+
7185 (ushort
)ASC_SCSIQ_B_CNTL
),
7187 AscWriteLramWord(iop_base
, ASCV_HALTCODE_W
, 0);
7189 } else if (ext_msg
.msg_type
== EXTENDED_MESSAGE
&&
7190 ext_msg
.msg_req
== EXTENDED_WDTR
&&
7191 ext_msg
.msg_len
== MS_WDTR_LEN
) {
7193 ext_msg
.wdtr_width
= 0;
7194 AscMemWordCopyPtrToLram(iop_base
,
7197 sizeof(EXT_MSG
) >> 1);
7198 q_cntl
|= QC_MSG_OUT
;
7199 AscWriteLramByte(iop_base
,
7200 (ushort
)(halt_q_addr
+
7201 (ushort
)ASC_SCSIQ_B_CNTL
),
7203 AscWriteLramWord(iop_base
, ASCV_HALTCODE_W
, 0);
7207 ext_msg
.msg_type
= MESSAGE_REJECT
;
7208 AscMemWordCopyPtrToLram(iop_base
,
7211 sizeof(EXT_MSG
) >> 1);
7212 q_cntl
|= QC_MSG_OUT
;
7213 AscWriteLramByte(iop_base
,
7214 (ushort
)(halt_q_addr
+
7215 (ushort
)ASC_SCSIQ_B_CNTL
),
7217 AscWriteLramWord(iop_base
, ASCV_HALTCODE_W
, 0);
7220 } else if (int_halt_code
== ASC_HALT_CHK_CONDITION
) {
7222 q_cntl
|= QC_REQ_SENSE
;
7224 if ((asc_dvc
->init_sdtr
& target_id
) != 0) {
7226 asc_dvc
->sdtr_done
&= ~target_id
;
7228 sdtr_data
= AscGetMCodeInitSDTRAtID(iop_base
, tid_no
);
7229 q_cntl
|= QC_MSG_OUT
;
7230 AscMsgOutSDTR(asc_dvc
,
7232 sdtr_period_tbl
[(sdtr_data
>> 4) &
7236 (uchar
)(sdtr_data
& (uchar
)
7237 ASC_SYN_MAX_OFFSET
));
7240 AscWriteLramByte(iop_base
,
7241 (ushort
)(halt_q_addr
+
7242 (ushort
)ASC_SCSIQ_B_CNTL
), q_cntl
);
7244 tag_code
= AscReadLramByte(iop_base
,
7245 (ushort
)(halt_q_addr
+ (ushort
)
7246 ASC_SCSIQ_B_TAG_CODE
));
7248 if ((asc_dvc
->pci_fix_asyn_xfer
& target_id
)
7249 && !(asc_dvc
->pci_fix_asyn_xfer_always
& target_id
)
7252 tag_code
|= (ASC_TAG_FLAG_DISABLE_DISCONNECT
7253 | ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX
);
7256 AscWriteLramByte(iop_base
,
7257 (ushort
)(halt_q_addr
+
7258 (ushort
)ASC_SCSIQ_B_TAG_CODE
),
7261 q_status
= AscReadLramByte(iop_base
,
7262 (ushort
)(halt_q_addr
+ (ushort
)
7263 ASC_SCSIQ_B_STATUS
));
7264 q_status
|= (QS_READY
| QS_BUSY
);
7265 AscWriteLramByte(iop_base
,
7266 (ushort
)(halt_q_addr
+
7267 (ushort
)ASC_SCSIQ_B_STATUS
),
7270 scsi_busy
= AscReadLramByte(iop_base
, (ushort
)ASCV_SCSIBUSY_B
);
7271 scsi_busy
&= ~target_id
;
7272 AscWriteLramByte(iop_base
, (ushort
)ASCV_SCSIBUSY_B
, scsi_busy
);
7274 AscWriteLramWord(iop_base
, ASCV_HALTCODE_W
, 0);
7276 } else if (int_halt_code
== ASC_HALT_SDTR_REJECTED
) {
7278 AscMemWordCopyPtrFromLram(iop_base
,
7281 sizeof(EXT_MSG
) >> 1);
7283 if ((out_msg
.msg_type
== EXTENDED_MESSAGE
) &&
7284 (out_msg
.msg_len
== MS_SDTR_LEN
) &&
7285 (out_msg
.msg_req
== EXTENDED_SDTR
)) {
7287 asc_dvc
->init_sdtr
&= ~target_id
;
7288 asc_dvc
->sdtr_done
&= ~target_id
;
7289 AscSetChipSDTR(iop_base
, asyn_sdtr
, tid_no
);
7290 boardp
->sdtr_data
[tid_no
] = asyn_sdtr
;
7292 q_cntl
&= ~QC_MSG_OUT
;
7293 AscWriteLramByte(iop_base
,
7294 (ushort
)(halt_q_addr
+
7295 (ushort
)ASC_SCSIQ_B_CNTL
), q_cntl
);
7296 AscWriteLramWord(iop_base
, ASCV_HALTCODE_W
, 0);
7298 } else if (int_halt_code
== ASC_HALT_SS_QUEUE_FULL
) {
7300 scsi_status
= AscReadLramByte(iop_base
,
7301 (ushort
)((ushort
)halt_q_addr
+
7303 ASC_SCSIQ_SCSI_STATUS
));
7305 AscReadLramByte(iop_base
,
7306 (ushort
)((ushort
)ASC_QADR_BEG
+
7307 (ushort
)target_ix
));
7308 if ((cur_dvc_qng
> 0) && (asc_dvc
->cur_dvc_qng
[tid_no
] > 0)) {
7310 scsi_busy
= AscReadLramByte(iop_base
,
7311 (ushort
)ASCV_SCSIBUSY_B
);
7312 scsi_busy
|= target_id
;
7313 AscWriteLramByte(iop_base
,
7314 (ushort
)ASCV_SCSIBUSY_B
, scsi_busy
);
7315 asc_dvc
->queue_full_or_busy
|= target_id
;
7317 if (scsi_status
== SAM_STAT_TASK_SET_FULL
) {
7318 if (cur_dvc_qng
> ASC_MIN_TAGGED_CMD
) {
7320 asc_dvc
->max_dvc_qng
[tid_no
] =
7323 AscWriteLramByte(iop_base
,
7325 ASCV_MAX_DVC_QNG_BEG
7331 * Set the device queue depth to the
7332 * number of active requests when the
7333 * QUEUE FULL condition was encountered.
7335 boardp
->queue_full
|= target_id
;
7336 boardp
->queue_full_cnt
[tid_no
] =
7341 AscWriteLramWord(iop_base
, ASCV_HALTCODE_W
, 0);
7344 #if CC_VERY_LONG_SG_LIST
7345 else if (int_halt_code
== ASC_HALT_HOST_COPY_SG_LIST_TO_RISC
) {
7349 uchar first_sg_wk_q_no
;
7350 ASC_SCSI_Q
*scsiq
; /* Ptr to driver request. */
7351 ASC_SG_HEAD
*sg_head
; /* Ptr to driver SG request. */
7352 ASC_SG_LIST_Q scsi_sg_q
; /* Structure written to queue. */
7353 ushort sg_list_dwords
;
7354 ushort sg_entry_cnt
;
7358 q_no
= AscReadLramByte(iop_base
, (ushort
)ASCV_REQ_SG_LIST_QP
);
7359 if (q_no
== ASC_QLINK_END
)
7362 q_addr
= ASC_QNO_TO_QADDR(q_no
);
7365 * Convert the request's SRB pointer to a host ASC_SCSI_REQ
7366 * structure pointer using a macro provided by the driver.
7367 * The ASC_SCSI_REQ pointer provides a pointer to the
7368 * host ASC_SG_HEAD structure.
7370 /* Read request's SRB pointer. */
7371 scsiq
= (ASC_SCSI_Q
*)
7372 ASC_SRB2SCSIQ(ASC_U32_TO_VADDR(AscReadLramDWord(iop_base
,
7375 ASC_SCSIQ_D_SRBPTR
))));
7378 * Get request's first and working SG queue.
7380 sg_wk_q_no
= AscReadLramByte(iop_base
,
7382 ASC_SCSIQ_B_SG_WK_QP
));
7384 first_sg_wk_q_no
= AscReadLramByte(iop_base
,
7386 ASC_SCSIQ_B_FIRST_SG_WK_QP
));
7389 * Reset request's working SG queue back to the
7392 AscWriteLramByte(iop_base
,
7394 (ushort
)ASC_SCSIQ_B_SG_WK_QP
),
7397 sg_head
= scsiq
->sg_head
;
7400 * Set sg_entry_cnt to the number of SG elements
7401 * that will be completed on this interrupt.
7403 * Note: The allocated SG queues contain ASC_MAX_SG_LIST - 1
7404 * SG elements. The data_cnt and data_addr fields which
7405 * add 1 to the SG element capacity are not used when
7406 * restarting SG handling after a halt.
7408 if (scsiq
->remain_sg_entry_cnt
> (ASC_MAX_SG_LIST
- 1)) {
7409 sg_entry_cnt
= ASC_MAX_SG_LIST
- 1;
7412 * Keep track of remaining number of SG elements that
7413 * will need to be handled on the next interrupt.
7415 scsiq
->remain_sg_entry_cnt
-= (ASC_MAX_SG_LIST
- 1);
7417 sg_entry_cnt
= scsiq
->remain_sg_entry_cnt
;
7418 scsiq
->remain_sg_entry_cnt
= 0;
7422 * Copy SG elements into the list of allocated SG queues.
7424 * Last index completed is saved in scsiq->next_sg_index.
7426 next_qp
= first_sg_wk_q_no
;
7427 q_addr
= ASC_QNO_TO_QADDR(next_qp
);
7428 scsi_sg_q
.sg_head_qp
= q_no
;
7429 scsi_sg_q
.cntl
= QCSG_SG_XFER_LIST
;
7430 for (i
= 0; i
< sg_head
->queue_cnt
; i
++) {
7431 scsi_sg_q
.seq_no
= i
+ 1;
7432 if (sg_entry_cnt
> ASC_SG_LIST_PER_Q
) {
7433 sg_list_dwords
= (uchar
)(ASC_SG_LIST_PER_Q
* 2);
7434 sg_entry_cnt
-= ASC_SG_LIST_PER_Q
;
7436 * After very first SG queue RISC FW uses next
7437 * SG queue first element then checks sg_list_cnt
7438 * against zero and then decrements, so set
7439 * sg_list_cnt 1 less than number of SG elements
7442 scsi_sg_q
.sg_list_cnt
= ASC_SG_LIST_PER_Q
- 1;
7443 scsi_sg_q
.sg_cur_list_cnt
=
7444 ASC_SG_LIST_PER_Q
- 1;
7447 * This is the last SG queue in the list of
7448 * allocated SG queues. If there are more
7449 * SG elements than will fit in the allocated
7450 * queues, then set the QCSG_SG_XFER_MORE flag.
7452 if (scsiq
->remain_sg_entry_cnt
!= 0) {
7453 scsi_sg_q
.cntl
|= QCSG_SG_XFER_MORE
;
7455 scsi_sg_q
.cntl
|= QCSG_SG_XFER_END
;
7457 /* equals sg_entry_cnt * 2 */
7458 sg_list_dwords
= sg_entry_cnt
<< 1;
7459 scsi_sg_q
.sg_list_cnt
= sg_entry_cnt
- 1;
7460 scsi_sg_q
.sg_cur_list_cnt
= sg_entry_cnt
- 1;
7464 scsi_sg_q
.q_no
= next_qp
;
7465 AscMemWordCopyPtrToLram(iop_base
,
7466 q_addr
+ ASC_SCSIQ_SGHD_CPY_BEG
,
7467 (uchar
*)&scsi_sg_q
,
7468 sizeof(ASC_SG_LIST_Q
) >> 1);
7470 AscMemDWordCopyPtrToLram(iop_base
,
7471 q_addr
+ ASC_SGQ_LIST_BEG
,
7473 sg_list
[scsiq
->next_sg_index
],
7476 scsiq
->next_sg_index
+= ASC_SG_LIST_PER_Q
;
7479 * If the just completed SG queue contained the
7480 * last SG element, then no more SG queues need
7483 if (scsi_sg_q
.cntl
& QCSG_SG_XFER_END
) {
7487 next_qp
= AscReadLramByte(iop_base
,
7490 q_addr
= ASC_QNO_TO_QADDR(next_qp
);
7494 * Clear the halt condition so the RISC will be restarted
7497 AscWriteLramWord(iop_base
, ASCV_HALTCODE_W
, 0);
7500 #endif /* CC_VERY_LONG_SG_LIST */
7506 * DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words)
7508 * Calling/Exit State:
7512 * Input an ASC_QDONE_INFO structure from the chip
7515 DvcGetQinfo(PortAddr iop_base
, ushort s_addr
, uchar
*inbuf
, int words
)
7520 AscSetChipLramAddr(iop_base
, s_addr
);
7521 for (i
= 0; i
< 2 * words
; i
+= 2) {
7525 word
= inpw(iop_base
+ IOP_RAM_DATA
);
7526 inbuf
[i
] = word
& 0xff;
7527 inbuf
[i
+ 1] = (word
>> 8) & 0xff;
7529 ASC_DBG_PRT_HEX(2, "DvcGetQinfo", inbuf
, 2 * words
);
7533 _AscCopyLramScsiDoneQ(PortAddr iop_base
,
7535 ASC_QDONE_INFO
*scsiq
, ASC_DCNT max_dma_count
)
7540 DvcGetQinfo(iop_base
,
7541 q_addr
+ ASC_SCSIQ_DONE_INFO_BEG
,
7543 (sizeof(ASC_SCSIQ_2
) + sizeof(ASC_SCSIQ_3
)) / 2);
7545 _val
= AscReadLramWord(iop_base
,
7546 (ushort
)(q_addr
+ (ushort
)ASC_SCSIQ_B_STATUS
));
7547 scsiq
->q_status
= (uchar
)_val
;
7548 scsiq
->q_no
= (uchar
)(_val
>> 8);
7549 _val
= AscReadLramWord(iop_base
,
7550 (ushort
)(q_addr
+ (ushort
)ASC_SCSIQ_B_CNTL
));
7551 scsiq
->cntl
= (uchar
)_val
;
7552 sg_queue_cnt
= (uchar
)(_val
>> 8);
7553 _val
= AscReadLramWord(iop_base
,
7555 (ushort
)ASC_SCSIQ_B_SENSE_LEN
));
7556 scsiq
->sense_len
= (uchar
)_val
;
7557 scsiq
->extra_bytes
= (uchar
)(_val
>> 8);
7560 * Read high word of remain bytes from alternate location.
7562 scsiq
->remain_bytes
= (((ADV_DCNT
)AscReadLramWord(iop_base
,
7565 ASC_SCSIQ_W_ALT_DC1
)))
7568 * Read low word of remain bytes from original location.
7570 scsiq
->remain_bytes
+= AscReadLramWord(iop_base
,
7571 (ushort
)(q_addr
+ (ushort
)
7572 ASC_SCSIQ_DW_REMAIN_XFER_CNT
));
7574 scsiq
->remain_bytes
&= max_dma_count
;
7575 return sg_queue_cnt
;
7579 * asc_isr_callback() - Second Level Interrupt Handler called by AscISR().
7581 * Interrupt callback function for the Narrow SCSI Asc Library.
7583 static void asc_isr_callback(ASC_DVC_VAR
*asc_dvc_varp
, ASC_QDONE_INFO
*qdonep
)
7585 struct asc_board
*boardp
;
7586 struct scsi_cmnd
*scp
;
7587 struct Scsi_Host
*shost
;
7589 ASC_DBG(1, "asc_dvc_varp 0x%p, qdonep 0x%p\n", asc_dvc_varp
, qdonep
);
7590 ASC_DBG_PRT_ASC_QDONE_INFO(2, qdonep
);
7592 scp
= advansys_srb_to_ptr(asc_dvc_varp
, qdonep
->d2
.srb_ptr
);
7596 ASC_DBG_PRT_CDB(2, scp
->cmnd
, scp
->cmd_len
);
7598 shost
= scp
->device
->host
;
7599 ASC_STATS(shost
, callback
);
7600 ASC_DBG(1, "shost 0x%p\n", shost
);
7602 boardp
= shost_priv(shost
);
7603 BUG_ON(asc_dvc_varp
!= &boardp
->dvc_var
.asc_dvc_var
);
7605 dma_unmap_single(boardp
->dev
, scp
->SCp
.dma_handle
,
7606 SCSI_SENSE_BUFFERSIZE
, DMA_FROM_DEVICE
);
7608 * 'qdonep' contains the command's ending status.
7610 switch (qdonep
->d3
.done_stat
) {
7612 ASC_DBG(2, "QD_NO_ERROR\n");
7616 * Check for an underrun condition.
7618 * If there was no error and an underrun condition, then
7619 * return the number of underrun bytes.
7621 if (scsi_bufflen(scp
) != 0 && qdonep
->remain_bytes
!= 0 &&
7622 qdonep
->remain_bytes
<= scsi_bufflen(scp
)) {
7623 ASC_DBG(1, "underrun condition %u bytes\n",
7624 (unsigned)qdonep
->remain_bytes
);
7625 scsi_set_resid(scp
, qdonep
->remain_bytes
);
7630 ASC_DBG(2, "QD_WITH_ERROR\n");
7631 switch (qdonep
->d3
.host_stat
) {
7632 case QHSTA_NO_ERROR
:
7633 if (qdonep
->d3
.scsi_stat
== SAM_STAT_CHECK_CONDITION
) {
7634 ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n");
7635 ASC_DBG_PRT_SENSE(2, scp
->sense_buffer
,
7636 SCSI_SENSE_BUFFERSIZE
);
7638 * Note: The 'status_byte()' macro used by
7639 * target drivers defined in scsi.h shifts the
7640 * status byte returned by host drivers right
7641 * by 1 bit. This is why target drivers also
7642 * use right shifted status byte definitions.
7643 * For instance target drivers use
7644 * CHECK_CONDITION, defined to 0x1, instead of
7645 * the SCSI defined check condition value of
7646 * 0x2. Host drivers are supposed to return
7647 * the status byte as it is defined by SCSI.
7649 scp
->result
= DRIVER_BYTE(DRIVER_SENSE
) |
7650 STATUS_BYTE(qdonep
->d3
.scsi_stat
);
7652 scp
->result
= STATUS_BYTE(qdonep
->d3
.scsi_stat
);
7657 /* QHSTA error occurred */
7658 ASC_DBG(1, "host_stat 0x%x\n", qdonep
->d3
.host_stat
);
7659 scp
->result
= HOST_BYTE(DID_BAD_TARGET
);
7664 case QD_ABORTED_BY_HOST
:
7665 ASC_DBG(1, "QD_ABORTED_BY_HOST\n");
7667 HOST_BYTE(DID_ABORT
) | MSG_BYTE(qdonep
->d3
.
7669 STATUS_BYTE(qdonep
->d3
.scsi_stat
);
7673 ASC_DBG(1, "done_stat 0x%x\n", qdonep
->d3
.done_stat
);
7675 HOST_BYTE(DID_ERROR
) | MSG_BYTE(qdonep
->d3
.
7677 STATUS_BYTE(qdonep
->d3
.scsi_stat
);
7682 * If the 'init_tidmask' bit isn't already set for the target and the
7683 * current request finished normally, then set the bit for the target
7684 * to indicate that a device is present.
7686 if ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(scp
->device
->id
)) == 0 &&
7687 qdonep
->d3
.done_stat
== QD_NO_ERROR
&&
7688 qdonep
->d3
.host_stat
== QHSTA_NO_ERROR
) {
7689 boardp
->init_tidmask
|= ADV_TID_TO_TIDMASK(scp
->device
->id
);
7695 static int AscIsrQDone(ASC_DVC_VAR
*asc_dvc
)
7704 ASC_SCSI_BIT_ID_TYPE scsi_busy
;
7705 ASC_SCSI_BIT_ID_TYPE target_id
;
7709 uchar cur_target_qng
;
7710 ASC_QDONE_INFO scsiq_buf
;
7711 ASC_QDONE_INFO
*scsiq
;
7714 iop_base
= asc_dvc
->iop_base
;
7716 scsiq
= (ASC_QDONE_INFO
*)&scsiq_buf
;
7717 done_q_tail
= (uchar
)AscGetVarDoneQTail(iop_base
);
7718 q_addr
= ASC_QNO_TO_QADDR(done_q_tail
);
7719 next_qp
= AscReadLramByte(iop_base
,
7720 (ushort
)(q_addr
+ (ushort
)ASC_SCSIQ_B_FWD
));
7721 if (next_qp
!= ASC_QLINK_END
) {
7722 AscPutVarDoneQTail(iop_base
, next_qp
);
7723 q_addr
= ASC_QNO_TO_QADDR(next_qp
);
7724 sg_queue_cnt
= _AscCopyLramScsiDoneQ(iop_base
, q_addr
, scsiq
,
7725 asc_dvc
->max_dma_count
);
7726 AscWriteLramByte(iop_base
,
7728 (ushort
)ASC_SCSIQ_B_STATUS
),
7730 q_status
& (uchar
)~(QS_READY
|
7732 tid_no
= ASC_TIX_TO_TID(scsiq
->d2
.target_ix
);
7733 target_id
= ASC_TIX_TO_TARGET_ID(scsiq
->d2
.target_ix
);
7734 if ((scsiq
->cntl
& QC_SG_HEAD
) != 0) {
7736 sg_list_qp
= next_qp
;
7737 for (q_cnt
= 0; q_cnt
< sg_queue_cnt
; q_cnt
++) {
7738 sg_list_qp
= AscReadLramByte(iop_base
,
7742 sg_q_addr
= ASC_QNO_TO_QADDR(sg_list_qp
);
7743 if (sg_list_qp
== ASC_QLINK_END
) {
7744 AscSetLibErrorCode(asc_dvc
,
7745 ASCQ_ERR_SG_Q_LINKS
);
7746 scsiq
->d3
.done_stat
= QD_WITH_ERROR
;
7747 scsiq
->d3
.host_stat
=
7748 QHSTA_D_QDONE_SG_LIST_CORRUPTED
;
7749 goto FATAL_ERR_QDONE
;
7751 AscWriteLramByte(iop_base
,
7752 (ushort
)(sg_q_addr
+ (ushort
)
7753 ASC_SCSIQ_B_STATUS
),
7756 n_q_used
= sg_queue_cnt
+ 1;
7757 AscPutVarDoneQTail(iop_base
, sg_list_qp
);
7759 if (asc_dvc
->queue_full_or_busy
& target_id
) {
7760 cur_target_qng
= AscReadLramByte(iop_base
,
7766 if (cur_target_qng
< asc_dvc
->max_dvc_qng
[tid_no
]) {
7767 scsi_busy
= AscReadLramByte(iop_base
, (ushort
)
7769 scsi_busy
&= ~target_id
;
7770 AscWriteLramByte(iop_base
,
7771 (ushort
)ASCV_SCSIBUSY_B
,
7773 asc_dvc
->queue_full_or_busy
&= ~target_id
;
7776 if (asc_dvc
->cur_total_qng
>= n_q_used
) {
7777 asc_dvc
->cur_total_qng
-= n_q_used
;
7778 if (asc_dvc
->cur_dvc_qng
[tid_no
] != 0) {
7779 asc_dvc
->cur_dvc_qng
[tid_no
]--;
7782 AscSetLibErrorCode(asc_dvc
, ASCQ_ERR_CUR_QNG
);
7783 scsiq
->d3
.done_stat
= QD_WITH_ERROR
;
7784 goto FATAL_ERR_QDONE
;
7786 if ((scsiq
->d2
.srb_ptr
== 0UL) ||
7787 ((scsiq
->q_status
& QS_ABORTED
) != 0)) {
7789 } else if (scsiq
->q_status
== QS_DONE
) {
7790 false_overrun
= FALSE
;
7791 if (scsiq
->extra_bytes
!= 0) {
7792 scsiq
->remain_bytes
+=
7793 (ADV_DCNT
)scsiq
->extra_bytes
;
7795 if (scsiq
->d3
.done_stat
== QD_WITH_ERROR
) {
7796 if (scsiq
->d3
.host_stat
==
7797 QHSTA_M_DATA_OVER_RUN
) {
7799 cntl
& (QC_DATA_IN
| QC_DATA_OUT
))
7801 scsiq
->d3
.done_stat
=
7803 scsiq
->d3
.host_stat
=
7805 } else if (false_overrun
) {
7806 scsiq
->d3
.done_stat
=
7808 scsiq
->d3
.host_stat
=
7811 } else if (scsiq
->d3
.host_stat
==
7812 QHSTA_M_HUNG_REQ_SCSI_BUS_RESET
) {
7813 AscStopChip(iop_base
);
7814 AscSetChipControl(iop_base
,
7815 (uchar
)(CC_SCSI_RESET
7818 AscSetChipControl(iop_base
, CC_HALT
);
7819 AscSetChipStatus(iop_base
,
7820 CIW_CLR_SCSI_RESET_INT
);
7821 AscSetChipStatus(iop_base
, 0);
7822 AscSetChipControl(iop_base
, 0);
7825 if ((scsiq
->cntl
& QC_NO_CALLBACK
) == 0) {
7826 asc_isr_callback(asc_dvc
, scsiq
);
7828 if ((AscReadLramByte(iop_base
,
7829 (ushort
)(q_addr
+ (ushort
)
7832 asc_dvc
->unit_not_ready
&= ~target_id
;
7833 if (scsiq
->d3
.done_stat
!= QD_NO_ERROR
) {
7834 asc_dvc
->start_motor
&=
7841 AscSetLibErrorCode(asc_dvc
, ASCQ_ERR_Q_STATUS
);
7843 if ((scsiq
->cntl
& QC_NO_CALLBACK
) == 0) {
7844 asc_isr_callback(asc_dvc
, scsiq
);
7852 static int AscISR(ASC_DVC_VAR
*asc_dvc
)
7854 ASC_CS_TYPE chipstat
;
7856 ushort saved_ram_addr
;
7858 uchar saved_ctrl_reg
;
7863 iop_base
= asc_dvc
->iop_base
;
7864 int_pending
= FALSE
;
7866 if (AscIsIntPending(iop_base
) == 0)
7869 if ((asc_dvc
->init_state
& ASC_INIT_STATE_END_LOAD_MC
) == 0) {
7872 if (asc_dvc
->in_critical_cnt
!= 0) {
7873 AscSetLibErrorCode(asc_dvc
, ASCQ_ERR_ISR_ON_CRITICAL
);
7876 if (asc_dvc
->is_in_int
) {
7877 AscSetLibErrorCode(asc_dvc
, ASCQ_ERR_ISR_RE_ENTRY
);
7880 asc_dvc
->is_in_int
= TRUE
;
7881 ctrl_reg
= AscGetChipControl(iop_base
);
7882 saved_ctrl_reg
= ctrl_reg
& (~(CC_SCSI_RESET
| CC_CHIP_RESET
|
7883 CC_SINGLE_STEP
| CC_DIAG
| CC_TEST
));
7884 chipstat
= AscGetChipStatus(iop_base
);
7885 if (chipstat
& CSW_SCSI_RESET_LATCH
) {
7886 if (!(asc_dvc
->bus_type
& (ASC_IS_VL
| ASC_IS_EISA
))) {
7889 asc_dvc
->sdtr_done
= 0;
7890 saved_ctrl_reg
&= (uchar
)(~CC_HALT
);
7891 while ((AscGetChipStatus(iop_base
) &
7892 CSW_SCSI_RESET_ACTIVE
) && (i
-- > 0)) {
7895 AscSetChipControl(iop_base
, (CC_CHIP_RESET
| CC_HALT
));
7896 AscSetChipControl(iop_base
, CC_HALT
);
7897 AscSetChipStatus(iop_base
, CIW_CLR_SCSI_RESET_INT
);
7898 AscSetChipStatus(iop_base
, 0);
7899 chipstat
= AscGetChipStatus(iop_base
);
7902 saved_ram_addr
= AscGetChipLramAddr(iop_base
);
7903 host_flag
= AscReadLramByte(iop_base
,
7905 (uchar
)(~ASC_HOST_FLAG_IN_ISR
);
7906 AscWriteLramByte(iop_base
, ASCV_HOST_FLAG_B
,
7907 (uchar
)(host_flag
| (uchar
)ASC_HOST_FLAG_IN_ISR
));
7908 if ((chipstat
& CSW_INT_PENDING
) || (int_pending
)) {
7909 AscAckInterrupt(iop_base
);
7911 if ((chipstat
& CSW_HALTED
) && (ctrl_reg
& CC_SINGLE_STEP
)) {
7912 if (AscIsrChipHalted(asc_dvc
) == ERR
) {
7913 goto ISR_REPORT_QDONE_FATAL_ERROR
;
7915 saved_ctrl_reg
&= (uchar
)(~CC_HALT
);
7918 ISR_REPORT_QDONE_FATAL_ERROR
:
7919 if ((asc_dvc
->dvc_cntl
& ASC_CNTL_INT_MULTI_Q
) != 0) {
7921 AscIsrQDone(asc_dvc
)) & 0x01) != 0) {
7926 AscIsrQDone(asc_dvc
)) == 1) {
7929 } while (status
== 0x11);
7931 if ((status
& 0x80) != 0)
7935 AscWriteLramByte(iop_base
, ASCV_HOST_FLAG_B
, host_flag
);
7936 AscSetChipLramAddr(iop_base
, saved_ram_addr
);
7937 AscSetChipControl(iop_base
, saved_ctrl_reg
);
7938 asc_dvc
->is_in_int
= FALSE
;
7945 * Reset the bus associated with the command 'scp'.
7947 * This function runs its own thread. Interrupts must be blocked but
7948 * sleeping is allowed and no locking other than for host structures is
7949 * required. Returns SUCCESS or FAILED.
7951 static int advansys_reset(struct scsi_cmnd
*scp
)
7953 struct Scsi_Host
*shost
= scp
->device
->host
;
7954 struct asc_board
*boardp
= shost_priv(shost
);
7955 unsigned long flags
;
7959 ASC_DBG(1, "0x%p\n", scp
);
7961 ASC_STATS(shost
, reset
);
7963 scmd_printk(KERN_INFO
, scp
, "SCSI bus reset started...\n");
7965 if (ASC_NARROW_BOARD(boardp
)) {
7966 ASC_DVC_VAR
*asc_dvc
= &boardp
->dvc_var
.asc_dvc_var
;
7968 /* Reset the chip and SCSI bus. */
7969 ASC_DBG(1, "before AscInitAsc1000Driver()\n");
7970 status
= AscInitAsc1000Driver(asc_dvc
);
7972 /* Refer to ASC_IERR_* definitions for meaning of 'err_code'. */
7973 if (asc_dvc
->err_code
) {
7974 scmd_printk(KERN_INFO
, scp
, "SCSI bus reset error: "
7975 "0x%x\n", asc_dvc
->err_code
);
7977 } else if (status
) {
7978 scmd_printk(KERN_INFO
, scp
, "SCSI bus reset warning: "
7981 scmd_printk(KERN_INFO
, scp
, "SCSI bus reset "
7985 ASC_DBG(1, "after AscInitAsc1000Driver()\n");
7986 spin_lock_irqsave(shost
->host_lock
, flags
);
7989 * If the suggest reset bus flags are set, then reset the bus.
7990 * Otherwise only reset the device.
7992 ADV_DVC_VAR
*adv_dvc
= &boardp
->dvc_var
.adv_dvc_var
;
7995 * Reset the target's SCSI bus.
7997 ASC_DBG(1, "before AdvResetChipAndSB()\n");
7998 switch (AdvResetChipAndSB(adv_dvc
)) {
8000 scmd_printk(KERN_INFO
, scp
, "SCSI bus reset "
8005 scmd_printk(KERN_INFO
, scp
, "SCSI bus reset error\n");
8009 spin_lock_irqsave(shost
->host_lock
, flags
);
8013 /* Save the time of the most recently completed reset. */
8014 boardp
->last_reset
= jiffies
;
8015 spin_unlock_irqrestore(shost
->host_lock
, flags
);
8017 ASC_DBG(1, "ret %d\n", ret
);
8023 * advansys_biosparam()
8025 * Translate disk drive geometry if the "BIOS greater than 1 GB"
8026 * support is enabled for a drive.
8028 * ip (information pointer) is an int array with the following definition:
8034 advansys_biosparam(struct scsi_device
*sdev
, struct block_device
*bdev
,
8035 sector_t capacity
, int ip
[])
8037 struct asc_board
*boardp
= shost_priv(sdev
->host
);
8039 ASC_DBG(1, "begin\n");
8040 ASC_STATS(sdev
->host
, biosparam
);
8041 if (ASC_NARROW_BOARD(boardp
)) {
8042 if ((boardp
->dvc_var
.asc_dvc_var
.dvc_cntl
&
8043 ASC_CNTL_BIOS_GT_1GB
) && capacity
> 0x200000) {
8051 if ((boardp
->dvc_var
.adv_dvc_var
.bios_ctrl
&
8052 BIOS_CTRL_EXTENDED_XLAT
) && capacity
> 0x200000) {
8060 ip
[2] = (unsigned long)capacity
/ (ip
[0] * ip
[1]);
8061 ASC_DBG(1, "end\n");
8066 * First-level interrupt handler.
8068 * 'dev_id' is a pointer to the interrupting adapter's Scsi_Host.
8070 static irqreturn_t
advansys_interrupt(int irq
, void *dev_id
)
8072 struct Scsi_Host
*shost
= dev_id
;
8073 struct asc_board
*boardp
= shost_priv(shost
);
8074 irqreturn_t result
= IRQ_NONE
;
8076 ASC_DBG(2, "boardp 0x%p\n", boardp
);
8077 spin_lock(shost
->host_lock
);
8078 if (ASC_NARROW_BOARD(boardp
)) {
8079 if (AscIsIntPending(shost
->io_port
)) {
8080 result
= IRQ_HANDLED
;
8081 ASC_STATS(shost
, interrupt
);
8082 ASC_DBG(1, "before AscISR()\n");
8083 AscISR(&boardp
->dvc_var
.asc_dvc_var
);
8086 ASC_DBG(1, "before AdvISR()\n");
8087 if (AdvISR(&boardp
->dvc_var
.adv_dvc_var
)) {
8088 result
= IRQ_HANDLED
;
8089 ASC_STATS(shost
, interrupt
);
8092 spin_unlock(shost
->host_lock
);
8094 ASC_DBG(1, "end\n");
8098 static int AscHostReqRiscHalt(PortAddr iop_base
)
8102 uchar saved_stop_code
;
8104 if (AscIsChipHalted(iop_base
))
8106 saved_stop_code
= AscReadLramByte(iop_base
, ASCV_STOP_CODE_B
);
8107 AscWriteLramByte(iop_base
, ASCV_STOP_CODE_B
,
8108 ASC_STOP_HOST_REQ_RISC_HALT
| ASC_STOP_REQ_RISC_STOP
);
8110 if (AscIsChipHalted(iop_base
)) {
8115 } while (count
++ < 20);
8116 AscWriteLramByte(iop_base
, ASCV_STOP_CODE_B
, saved_stop_code
);
8121 AscSetRunChipSynRegAtID(PortAddr iop_base
, uchar tid_no
, uchar sdtr_data
)
8125 if (AscHostReqRiscHalt(iop_base
)) {
8126 sta
= AscSetChipSynRegAtID(iop_base
, tid_no
, sdtr_data
);
8127 AscStartChip(iop_base
);
8132 static void AscAsyncFix(ASC_DVC_VAR
*asc_dvc
, struct scsi_device
*sdev
)
8134 char type
= sdev
->type
;
8135 ASC_SCSI_BIT_ID_TYPE tid_bits
= 1 << sdev
->id
;
8137 if (!(asc_dvc
->bug_fix_cntl
& ASC_BUG_FIX_ASYN_USE_SYN
))
8139 if (asc_dvc
->init_sdtr
& tid_bits
)
8142 if ((type
== TYPE_ROM
) && (strncmp(sdev
->vendor
, "HP ", 3) == 0))
8143 asc_dvc
->pci_fix_asyn_xfer_always
|= tid_bits
;
8145 asc_dvc
->pci_fix_asyn_xfer
|= tid_bits
;
8146 if ((type
== TYPE_PROCESSOR
) || (type
== TYPE_SCANNER
) ||
8147 (type
== TYPE_ROM
) || (type
== TYPE_TAPE
))
8148 asc_dvc
->pci_fix_asyn_xfer
&= ~tid_bits
;
8150 if (asc_dvc
->pci_fix_asyn_xfer
& tid_bits
)
8151 AscSetRunChipSynRegAtID(asc_dvc
->iop_base
, sdev
->id
,
8152 ASYN_SDTR_DATA_FIX_PCI_REV_AB
);
8156 advansys_narrow_slave_configure(struct scsi_device
*sdev
, ASC_DVC_VAR
*asc_dvc
)
8158 ASC_SCSI_BIT_ID_TYPE tid_bit
= 1 << sdev
->id
;
8159 ASC_SCSI_BIT_ID_TYPE orig_use_tagged_qng
= asc_dvc
->use_tagged_qng
;
8161 if (sdev
->lun
== 0) {
8162 ASC_SCSI_BIT_ID_TYPE orig_init_sdtr
= asc_dvc
->init_sdtr
;
8163 if ((asc_dvc
->cfg
->sdtr_enable
& tid_bit
) && sdev
->sdtr
) {
8164 asc_dvc
->init_sdtr
|= tid_bit
;
8166 asc_dvc
->init_sdtr
&= ~tid_bit
;
8169 if (orig_init_sdtr
!= asc_dvc
->init_sdtr
)
8170 AscAsyncFix(asc_dvc
, sdev
);
8173 if (sdev
->tagged_supported
) {
8174 if (asc_dvc
->cfg
->cmd_qng_enabled
& tid_bit
) {
8175 if (sdev
->lun
== 0) {
8176 asc_dvc
->cfg
->can_tagged_qng
|= tid_bit
;
8177 asc_dvc
->use_tagged_qng
|= tid_bit
;
8179 scsi_adjust_queue_depth(sdev
, MSG_ORDERED_TAG
,
8180 asc_dvc
->max_dvc_qng
[sdev
->id
]);
8183 if (sdev
->lun
== 0) {
8184 asc_dvc
->cfg
->can_tagged_qng
&= ~tid_bit
;
8185 asc_dvc
->use_tagged_qng
&= ~tid_bit
;
8187 scsi_adjust_queue_depth(sdev
, 0, sdev
->host
->cmd_per_lun
);
8190 if ((sdev
->lun
== 0) &&
8191 (orig_use_tagged_qng
!= asc_dvc
->use_tagged_qng
)) {
8192 AscWriteLramByte(asc_dvc
->iop_base
, ASCV_DISC_ENABLE_B
,
8193 asc_dvc
->cfg
->disc_enable
);
8194 AscWriteLramByte(asc_dvc
->iop_base
, ASCV_USE_TAGGED_QNG_B
,
8195 asc_dvc
->use_tagged_qng
);
8196 AscWriteLramByte(asc_dvc
->iop_base
, ASCV_CAN_TAGGED_QNG_B
,
8197 asc_dvc
->cfg
->can_tagged_qng
);
8199 asc_dvc
->max_dvc_qng
[sdev
->id
] =
8200 asc_dvc
->cfg
->max_tag_qng
[sdev
->id
];
8201 AscWriteLramByte(asc_dvc
->iop_base
,
8202 (ushort
)(ASCV_MAX_DVC_QNG_BEG
+ sdev
->id
),
8203 asc_dvc
->max_dvc_qng
[sdev
->id
]);
8210 * If the EEPROM enabled WDTR for the device and the device supports wide
8211 * bus (16 bit) transfers, then turn on the device's 'wdtr_able' bit and
8212 * write the new value to the microcode.
8215 advansys_wide_enable_wdtr(AdvPortAddr iop_base
, unsigned short tidmask
)
8217 unsigned short cfg_word
;
8218 AdvReadWordLram(iop_base
, ASC_MC_WDTR_ABLE
, cfg_word
);
8219 if ((cfg_word
& tidmask
) != 0)
8222 cfg_word
|= tidmask
;
8223 AdvWriteWordLram(iop_base
, ASC_MC_WDTR_ABLE
, cfg_word
);
8226 * Clear the microcode SDTR and WDTR negotiation done indicators for
8227 * the target to cause it to negotiate with the new setting set above.
8228 * WDTR when accepted causes the target to enter asynchronous mode, so
8229 * SDTR must be negotiated.
8231 AdvReadWordLram(iop_base
, ASC_MC_SDTR_DONE
, cfg_word
);
8232 cfg_word
&= ~tidmask
;
8233 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_DONE
, cfg_word
);
8234 AdvReadWordLram(iop_base
, ASC_MC_WDTR_DONE
, cfg_word
);
8235 cfg_word
&= ~tidmask
;
8236 AdvWriteWordLram(iop_base
, ASC_MC_WDTR_DONE
, cfg_word
);
8240 * Synchronous Transfers
8242 * If the EEPROM enabled SDTR for the device and the device
8243 * supports synchronous transfers, then turn on the device's
8244 * 'sdtr_able' bit. Write the new value to the microcode.
8247 advansys_wide_enable_sdtr(AdvPortAddr iop_base
, unsigned short tidmask
)
8249 unsigned short cfg_word
;
8250 AdvReadWordLram(iop_base
, ASC_MC_SDTR_ABLE
, cfg_word
);
8251 if ((cfg_word
& tidmask
) != 0)
8254 cfg_word
|= tidmask
;
8255 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_ABLE
, cfg_word
);
8258 * Clear the microcode "SDTR negotiation" done indicator for the
8259 * target to cause it to negotiate with the new setting set above.
8261 AdvReadWordLram(iop_base
, ASC_MC_SDTR_DONE
, cfg_word
);
8262 cfg_word
&= ~tidmask
;
8263 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_DONE
, cfg_word
);
8267 * PPR (Parallel Protocol Request) Capable
8269 * If the device supports DT mode, then it must be PPR capable.
8270 * The PPR message will be used in place of the SDTR and WDTR
8271 * messages to negotiate synchronous speed and offset, transfer
8272 * width, and protocol options.
8274 static void advansys_wide_enable_ppr(ADV_DVC_VAR
*adv_dvc
,
8275 AdvPortAddr iop_base
, unsigned short tidmask
)
8277 AdvReadWordLram(iop_base
, ASC_MC_PPR_ABLE
, adv_dvc
->ppr_able
);
8278 adv_dvc
->ppr_able
|= tidmask
;
8279 AdvWriteWordLram(iop_base
, ASC_MC_PPR_ABLE
, adv_dvc
->ppr_able
);
8283 advansys_wide_slave_configure(struct scsi_device
*sdev
, ADV_DVC_VAR
*adv_dvc
)
8285 AdvPortAddr iop_base
= adv_dvc
->iop_base
;
8286 unsigned short tidmask
= 1 << sdev
->id
;
8288 if (sdev
->lun
== 0) {
8290 * Handle WDTR, SDTR, and Tag Queuing. If the feature
8291 * is enabled in the EEPROM and the device supports the
8292 * feature, then enable it in the microcode.
8295 if ((adv_dvc
->wdtr_able
& tidmask
) && sdev
->wdtr
)
8296 advansys_wide_enable_wdtr(iop_base
, tidmask
);
8297 if ((adv_dvc
->sdtr_able
& tidmask
) && sdev
->sdtr
)
8298 advansys_wide_enable_sdtr(iop_base
, tidmask
);
8299 if (adv_dvc
->chip_type
== ADV_CHIP_ASC38C1600
&& sdev
->ppr
)
8300 advansys_wide_enable_ppr(adv_dvc
, iop_base
, tidmask
);
8303 * Tag Queuing is disabled for the BIOS which runs in polled
8304 * mode and would see no benefit from Tag Queuing. Also by
8305 * disabling Tag Queuing in the BIOS devices with Tag Queuing
8306 * bugs will at least work with the BIOS.
8308 if ((adv_dvc
->tagqng_able
& tidmask
) &&
8309 sdev
->tagged_supported
) {
8310 unsigned short cfg_word
;
8311 AdvReadWordLram(iop_base
, ASC_MC_TAGQNG_ABLE
, cfg_word
);
8312 cfg_word
|= tidmask
;
8313 AdvWriteWordLram(iop_base
, ASC_MC_TAGQNG_ABLE
,
8315 AdvWriteByteLram(iop_base
,
8316 ASC_MC_NUMBER_OF_MAX_CMD
+ sdev
->id
,
8317 adv_dvc
->max_dvc_qng
);
8321 if ((adv_dvc
->tagqng_able
& tidmask
) && sdev
->tagged_supported
) {
8322 scsi_adjust_queue_depth(sdev
, MSG_ORDERED_TAG
,
8323 adv_dvc
->max_dvc_qng
);
8325 scsi_adjust_queue_depth(sdev
, 0, sdev
->host
->cmd_per_lun
);
8330 * Set the number of commands to queue per device for the
8331 * specified host adapter.
8333 static int advansys_slave_configure(struct scsi_device
*sdev
)
8335 struct asc_board
*boardp
= shost_priv(sdev
->host
);
8337 if (ASC_NARROW_BOARD(boardp
))
8338 advansys_narrow_slave_configure(sdev
,
8339 &boardp
->dvc_var
.asc_dvc_var
);
8341 advansys_wide_slave_configure(sdev
,
8342 &boardp
->dvc_var
.adv_dvc_var
);
8347 static __le32
advansys_get_sense_buffer_dma(struct scsi_cmnd
*scp
)
8349 struct asc_board
*board
= shost_priv(scp
->device
->host
);
8350 scp
->SCp
.dma_handle
= dma_map_single(board
->dev
, scp
->sense_buffer
,
8351 SCSI_SENSE_BUFFERSIZE
, DMA_FROM_DEVICE
);
8352 dma_cache_sync(board
->dev
, scp
->sense_buffer
,
8353 SCSI_SENSE_BUFFERSIZE
, DMA_FROM_DEVICE
);
8354 return cpu_to_le32(scp
->SCp
.dma_handle
);
8357 static int asc_build_req(struct asc_board
*boardp
, struct scsi_cmnd
*scp
,
8358 struct asc_scsi_q
*asc_scsi_q
)
8360 struct asc_dvc_var
*asc_dvc
= &boardp
->dvc_var
.asc_dvc_var
;
8363 memset(asc_scsi_q
, 0, sizeof(*asc_scsi_q
));
8366 * Point the ASC_SCSI_Q to the 'struct scsi_cmnd'.
8368 asc_scsi_q
->q2
.srb_ptr
= advansys_ptr_to_srb(asc_dvc
, scp
);
8369 if (asc_scsi_q
->q2
.srb_ptr
== BAD_SRB
) {
8370 scp
->result
= HOST_BYTE(DID_SOFT_ERROR
);
8375 * Build the ASC_SCSI_Q request.
8377 asc_scsi_q
->cdbptr
= &scp
->cmnd
[0];
8378 asc_scsi_q
->q2
.cdb_len
= scp
->cmd_len
;
8379 asc_scsi_q
->q1
.target_id
= ASC_TID_TO_TARGET_ID(scp
->device
->id
);
8380 asc_scsi_q
->q1
.target_lun
= scp
->device
->lun
;
8381 asc_scsi_q
->q2
.target_ix
=
8382 ASC_TIDLUN_TO_IX(scp
->device
->id
, scp
->device
->lun
);
8383 asc_scsi_q
->q1
.sense_addr
= advansys_get_sense_buffer_dma(scp
);
8384 asc_scsi_q
->q1
.sense_len
= SCSI_SENSE_BUFFERSIZE
;
8387 * If there are any outstanding requests for the current target,
8388 * then every 255th request send an ORDERED request. This heuristic
8389 * tries to retain the benefit of request sorting while preventing
8390 * request starvation. 255 is the max number of tags or pending commands
8391 * a device may have outstanding.
8393 * The request count is incremented below for every successfully
8397 if ((asc_dvc
->cur_dvc_qng
[scp
->device
->id
] > 0) &&
8398 (boardp
->reqcnt
[scp
->device
->id
] % 255) == 0) {
8399 asc_scsi_q
->q2
.tag_code
= MSG_ORDERED_TAG
;
8401 asc_scsi_q
->q2
.tag_code
= MSG_SIMPLE_TAG
;
8404 /* Build ASC_SCSI_Q */
8405 use_sg
= scsi_dma_map(scp
);
8408 struct scatterlist
*slp
;
8409 struct asc_sg_head
*asc_sg_head
;
8411 if (use_sg
> scp
->device
->host
->sg_tablesize
) {
8412 scmd_printk(KERN_ERR
, scp
, "use_sg %d > "
8413 "sg_tablesize %d\n", use_sg
,
8414 scp
->device
->host
->sg_tablesize
);
8415 scsi_dma_unmap(scp
);
8416 scp
->result
= HOST_BYTE(DID_ERROR
);
8420 asc_sg_head
= kzalloc(sizeof(asc_scsi_q
->sg_head
) +
8421 use_sg
* sizeof(struct asc_sg_list
), GFP_ATOMIC
);
8423 scsi_dma_unmap(scp
);
8424 scp
->result
= HOST_BYTE(DID_SOFT_ERROR
);
8428 asc_scsi_q
->q1
.cntl
|= QC_SG_HEAD
;
8429 asc_scsi_q
->sg_head
= asc_sg_head
;
8430 asc_scsi_q
->q1
.data_cnt
= 0;
8431 asc_scsi_q
->q1
.data_addr
= 0;
8432 /* This is a byte value, otherwise it would need to be swapped. */
8433 asc_sg_head
->entry_cnt
= asc_scsi_q
->q1
.sg_queue_cnt
= use_sg
;
8434 ASC_STATS_ADD(scp
->device
->host
, xfer_elem
,
8435 asc_sg_head
->entry_cnt
);
8438 * Convert scatter-gather list into ASC_SG_HEAD list.
8440 scsi_for_each_sg(scp
, slp
, use_sg
, sgcnt
) {
8441 asc_sg_head
->sg_list
[sgcnt
].addr
=
8442 cpu_to_le32(sg_dma_address(slp
));
8443 asc_sg_head
->sg_list
[sgcnt
].bytes
=
8444 cpu_to_le32(sg_dma_len(slp
));
8445 ASC_STATS_ADD(scp
->device
->host
, xfer_sect
,
8446 DIV_ROUND_UP(sg_dma_len(slp
), 512));
8450 ASC_STATS(scp
->device
->host
, xfer_cnt
);
8452 ASC_DBG_PRT_ASC_SCSI_Q(2, asc_scsi_q
);
8453 ASC_DBG_PRT_CDB(1, scp
->cmnd
, scp
->cmd_len
);
8459 * Build scatter-gather list for Adv Library (Wide Board).
8461 * Additional ADV_SG_BLOCK structures will need to be allocated
8462 * if the total number of scatter-gather elements exceeds
8463 * NO_OF_SG_PER_BLOCK (15). The ADV_SG_BLOCK structures are
8464 * assumed to be physically contiguous.
8467 * ADV_SUCCESS(1) - SG List successfully created
8468 * ADV_ERROR(-1) - SG List creation failed
8471 adv_get_sglist(struct asc_board
*boardp
, adv_req_t
*reqp
, struct scsi_cmnd
*scp
,
8474 adv_sgblk_t
*sgblkp
;
8475 ADV_SCSI_REQ_Q
*scsiqp
;
8476 struct scatterlist
*slp
;
8478 ADV_SG_BLOCK
*sg_block
, *prev_sg_block
;
8479 ADV_PADDR sg_block_paddr
;
8482 scsiqp
= (ADV_SCSI_REQ_Q
*)ADV_32BALIGN(&reqp
->scsi_req_q
);
8483 slp
= scsi_sglist(scp
);
8484 sg_elem_cnt
= use_sg
;
8485 prev_sg_block
= NULL
;
8486 reqp
->sgblkp
= NULL
;
8490 * Allocate a 'adv_sgblk_t' structure from the board free
8491 * list. One 'adv_sgblk_t' structure holds NO_OF_SG_PER_BLOCK
8492 * (15) scatter-gather elements.
8494 if ((sgblkp
= boardp
->adv_sgblkp
) == NULL
) {
8495 ASC_DBG(1, "no free adv_sgblk_t\n");
8496 ASC_STATS(scp
->device
->host
, adv_build_nosg
);
8499 * Allocation failed. Free 'adv_sgblk_t' structures
8500 * already allocated for the request.
8502 while ((sgblkp
= reqp
->sgblkp
) != NULL
) {
8503 /* Remove 'sgblkp' from the request list. */
8504 reqp
->sgblkp
= sgblkp
->next_sgblkp
;
8506 /* Add 'sgblkp' to the board free list. */
8507 sgblkp
->next_sgblkp
= boardp
->adv_sgblkp
;
8508 boardp
->adv_sgblkp
= sgblkp
;
8513 /* Complete 'adv_sgblk_t' board allocation. */
8514 boardp
->adv_sgblkp
= sgblkp
->next_sgblkp
;
8515 sgblkp
->next_sgblkp
= NULL
;
8518 * Get 8 byte aligned virtual and physical addresses
8519 * for the allocated ADV_SG_BLOCK structure.
8521 sg_block
= (ADV_SG_BLOCK
*)ADV_8BALIGN(&sgblkp
->sg_block
);
8522 sg_block_paddr
= virt_to_bus(sg_block
);
8525 * Check if this is the first 'adv_sgblk_t' for the
8528 if (reqp
->sgblkp
== NULL
) {
8529 /* Request's first scatter-gather block. */
8530 reqp
->sgblkp
= sgblkp
;
8533 * Set ADV_SCSI_REQ_T ADV_SG_BLOCK virtual and physical
8536 scsiqp
->sg_list_ptr
= sg_block
;
8537 scsiqp
->sg_real_addr
= cpu_to_le32(sg_block_paddr
);
8539 /* Request's second or later scatter-gather block. */
8540 sgblkp
->next_sgblkp
= reqp
->sgblkp
;
8541 reqp
->sgblkp
= sgblkp
;
8544 * Point the previous ADV_SG_BLOCK structure to
8545 * the newly allocated ADV_SG_BLOCK structure.
8547 prev_sg_block
->sg_ptr
= cpu_to_le32(sg_block_paddr
);
8550 for (i
= 0; i
< NO_OF_SG_PER_BLOCK
; i
++) {
8551 sg_block
->sg_list
[i
].sg_addr
=
8552 cpu_to_le32(sg_dma_address(slp
));
8553 sg_block
->sg_list
[i
].sg_count
=
8554 cpu_to_le32(sg_dma_len(slp
));
8555 ASC_STATS_ADD(scp
->device
->host
, xfer_sect
,
8556 DIV_ROUND_UP(sg_dma_len(slp
), 512));
8558 if (--sg_elem_cnt
== 0) { /* Last ADV_SG_BLOCK and scatter-gather entry. */
8559 sg_block
->sg_cnt
= i
+ 1;
8560 sg_block
->sg_ptr
= 0L; /* Last ADV_SG_BLOCK in list. */
8565 sg_block
->sg_cnt
= NO_OF_SG_PER_BLOCK
;
8566 prev_sg_block
= sg_block
;
8571 * Build a request structure for the Adv Library (Wide Board).
8573 * If an adv_req_t can not be allocated to issue the request,
8574 * then return ASC_BUSY. If an error occurs, then return ASC_ERROR.
8576 * Multi-byte fields in the ASC_SCSI_REQ_Q that are used by the
8577 * microcode for DMA addresses or math operations are byte swapped
8578 * to little-endian order.
8581 adv_build_req(struct asc_board
*boardp
, struct scsi_cmnd
*scp
,
8582 ADV_SCSI_REQ_Q
**adv_scsiqpp
)
8585 ADV_SCSI_REQ_Q
*scsiqp
;
8591 * Allocate an adv_req_t structure from the board to execute
8594 if (boardp
->adv_reqp
== NULL
) {
8595 ASC_DBG(1, "no free adv_req_t\n");
8596 ASC_STATS(scp
->device
->host
, adv_build_noreq
);
8599 reqp
= boardp
->adv_reqp
;
8600 boardp
->adv_reqp
= reqp
->next_reqp
;
8601 reqp
->next_reqp
= NULL
;
8605 * Get 32-byte aligned ADV_SCSI_REQ_Q and ADV_SG_BLOCK pointers.
8607 scsiqp
= (ADV_SCSI_REQ_Q
*)ADV_32BALIGN(&reqp
->scsi_req_q
);
8610 * Initialize the structure.
8612 scsiqp
->cntl
= scsiqp
->scsi_cntl
= scsiqp
->done_status
= 0;
8615 * Set the ADV_SCSI_REQ_Q 'srb_ptr' to point to the adv_req_t structure.
8617 scsiqp
->srb_ptr
= ADV_VADDR_TO_U32(reqp
);
8620 * Set the adv_req_t 'cmndp' to point to the struct scsi_cmnd structure.
8625 * Build the ADV_SCSI_REQ_Q request.
8628 /* Set CDB length and copy it to the request structure. */
8629 scsiqp
->cdb_len
= scp
->cmd_len
;
8630 /* Copy first 12 CDB bytes to cdb[]. */
8631 for (i
= 0; i
< scp
->cmd_len
&& i
< 12; i
++) {
8632 scsiqp
->cdb
[i
] = scp
->cmnd
[i
];
8634 /* Copy last 4 CDB bytes, if present, to cdb16[]. */
8635 for (; i
< scp
->cmd_len
; i
++) {
8636 scsiqp
->cdb16
[i
- 12] = scp
->cmnd
[i
];
8639 scsiqp
->target_id
= scp
->device
->id
;
8640 scsiqp
->target_lun
= scp
->device
->lun
;
8642 scsiqp
->sense_addr
= cpu_to_le32(virt_to_bus(&scp
->sense_buffer
[0]));
8643 scsiqp
->sense_len
= SCSI_SENSE_BUFFERSIZE
;
8645 /* Build ADV_SCSI_REQ_Q */
8647 use_sg
= scsi_dma_map(scp
);
8649 /* Zero-length transfer */
8650 reqp
->sgblkp
= NULL
;
8651 scsiqp
->data_cnt
= 0;
8652 scsiqp
->vdata_addr
= NULL
;
8654 scsiqp
->data_addr
= 0;
8655 scsiqp
->sg_list_ptr
= NULL
;
8656 scsiqp
->sg_real_addr
= 0;
8658 if (use_sg
> ADV_MAX_SG_LIST
) {
8659 scmd_printk(KERN_ERR
, scp
, "use_sg %d > "
8660 "ADV_MAX_SG_LIST %d\n", use_sg
,
8661 scp
->device
->host
->sg_tablesize
);
8662 scsi_dma_unmap(scp
);
8663 scp
->result
= HOST_BYTE(DID_ERROR
);
8666 * Free the 'adv_req_t' structure by adding it back
8667 * to the board free list.
8669 reqp
->next_reqp
= boardp
->adv_reqp
;
8670 boardp
->adv_reqp
= reqp
;
8675 scsiqp
->data_cnt
= cpu_to_le32(scsi_bufflen(scp
));
8677 ret
= adv_get_sglist(boardp
, reqp
, scp
, use_sg
);
8678 if (ret
!= ADV_SUCCESS
) {
8680 * Free the adv_req_t structure by adding it back to
8681 * the board free list.
8683 reqp
->next_reqp
= boardp
->adv_reqp
;
8684 boardp
->adv_reqp
= reqp
;
8689 ASC_STATS_ADD(scp
->device
->host
, xfer_elem
, use_sg
);
8692 ASC_STATS(scp
->device
->host
, xfer_cnt
);
8694 ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp
);
8695 ASC_DBG_PRT_CDB(1, scp
->cmnd
, scp
->cmd_len
);
8697 *adv_scsiqpp
= scsiqp
;
8702 static int AscSgListToQueue(int sg_list
)
8706 n_sg_list_qs
= ((sg_list
- 1) / ASC_SG_LIST_PER_Q
);
8707 if (((sg_list
- 1) % ASC_SG_LIST_PER_Q
) != 0)
8709 return n_sg_list_qs
+ 1;
8713 AscGetNumOfFreeQueue(ASC_DVC_VAR
*asc_dvc
, uchar target_ix
, uchar n_qs
)
8717 ASC_SCSI_BIT_ID_TYPE target_id
;
8720 target_id
= ASC_TIX_TO_TARGET_ID(target_ix
);
8721 tid_no
= ASC_TIX_TO_TID(target_ix
);
8722 if ((asc_dvc
->unit_not_ready
& target_id
) ||
8723 (asc_dvc
->queue_full_or_busy
& target_id
)) {
8727 cur_used_qs
= (uint
) asc_dvc
->cur_total_qng
+
8728 (uint
) asc_dvc
->last_q_shortage
+ (uint
) ASC_MIN_FREE_Q
;
8730 cur_used_qs
= (uint
) asc_dvc
->cur_total_qng
+
8731 (uint
) ASC_MIN_FREE_Q
;
8733 if ((uint
) (cur_used_qs
+ n_qs
) <= (uint
) asc_dvc
->max_total_qng
) {
8734 cur_free_qs
= (uint
) asc_dvc
->max_total_qng
- cur_used_qs
;
8735 if (asc_dvc
->cur_dvc_qng
[tid_no
] >=
8736 asc_dvc
->max_dvc_qng
[tid_no
]) {
8742 if ((n_qs
> asc_dvc
->last_q_shortage
)
8743 && (n_qs
<= (asc_dvc
->max_total_qng
- ASC_MIN_FREE_Q
))) {
8744 asc_dvc
->last_q_shortage
= n_qs
;
8750 static uchar
AscAllocFreeQueue(PortAddr iop_base
, uchar free_q_head
)
8756 q_addr
= ASC_QNO_TO_QADDR(free_q_head
);
8757 q_status
= (uchar
)AscReadLramByte(iop_base
,
8759 ASC_SCSIQ_B_STATUS
));
8760 next_qp
= AscReadLramByte(iop_base
, (ushort
)(q_addr
+ ASC_SCSIQ_B_FWD
));
8761 if (((q_status
& QS_READY
) == 0) && (next_qp
!= ASC_QLINK_END
))
8763 return ASC_QLINK_END
;
8767 AscAllocMultipleFreeQueue(PortAddr iop_base
, uchar free_q_head
, uchar n_free_q
)
8771 for (i
= 0; i
< n_free_q
; i
++) {
8772 free_q_head
= AscAllocFreeQueue(iop_base
, free_q_head
);
8773 if (free_q_head
== ASC_QLINK_END
)
8781 * DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words)
8783 * Calling/Exit State:
8787 * Output an ASC_SCSI_Q structure to the chip
8790 DvcPutScsiQ(PortAddr iop_base
, ushort s_addr
, uchar
*outbuf
, int words
)
8794 ASC_DBG_PRT_HEX(2, "DvcPutScsiQ", outbuf
, 2 * words
);
8795 AscSetChipLramAddr(iop_base
, s_addr
);
8796 for (i
= 0; i
< 2 * words
; i
+= 2) {
8797 if (i
== 4 || i
== 20) {
8800 outpw(iop_base
+ IOP_RAM_DATA
,
8801 ((ushort
)outbuf
[i
+ 1] << 8) | outbuf
[i
]);
8805 static int AscPutReadyQueue(ASC_DVC_VAR
*asc_dvc
, ASC_SCSI_Q
*scsiq
, uchar q_no
)
8810 uchar syn_period_ix
;
8814 iop_base
= asc_dvc
->iop_base
;
8815 if (((asc_dvc
->init_sdtr
& scsiq
->q1
.target_id
) != 0) &&
8816 ((asc_dvc
->sdtr_done
& scsiq
->q1
.target_id
) == 0)) {
8817 tid_no
= ASC_TIX_TO_TID(scsiq
->q2
.target_ix
);
8818 sdtr_data
= AscGetMCodeInitSDTRAtID(iop_base
, tid_no
);
8820 (sdtr_data
>> 4) & (asc_dvc
->max_sdtr_index
- 1);
8821 syn_offset
= sdtr_data
& ASC_SYN_MAX_OFFSET
;
8822 AscMsgOutSDTR(asc_dvc
,
8823 asc_dvc
->sdtr_period_tbl
[syn_period_ix
],
8825 scsiq
->q1
.cntl
|= QC_MSG_OUT
;
8827 q_addr
= ASC_QNO_TO_QADDR(q_no
);
8828 if ((scsiq
->q1
.target_id
& asc_dvc
->use_tagged_qng
) == 0) {
8829 scsiq
->q2
.tag_code
&= ~MSG_SIMPLE_TAG
;
8831 scsiq
->q1
.status
= QS_FREE
;
8832 AscMemWordCopyPtrToLram(iop_base
,
8833 q_addr
+ ASC_SCSIQ_CDB_BEG
,
8834 (uchar
*)scsiq
->cdbptr
, scsiq
->q2
.cdb_len
>> 1);
8836 DvcPutScsiQ(iop_base
,
8837 q_addr
+ ASC_SCSIQ_CPY_BEG
,
8838 (uchar
*)&scsiq
->q1
.cntl
,
8839 ((sizeof(ASC_SCSIQ_1
) + sizeof(ASC_SCSIQ_2
)) / 2) - 1);
8840 AscWriteLramWord(iop_base
,
8841 (ushort
)(q_addr
+ (ushort
)ASC_SCSIQ_B_STATUS
),
8842 (ushort
)(((ushort
)scsiq
->q1
.
8843 q_no
<< 8) | (ushort
)QS_READY
));
8848 AscPutReadySgListQueue(ASC_DVC_VAR
*asc_dvc
, ASC_SCSI_Q
*scsiq
, uchar q_no
)
8852 ASC_SG_HEAD
*sg_head
;
8853 ASC_SG_LIST_Q scsi_sg_q
;
8854 ASC_DCNT saved_data_addr
;
8855 ASC_DCNT saved_data_cnt
;
8857 ushort sg_list_dwords
;
8859 ushort sg_entry_cnt
;
8863 iop_base
= asc_dvc
->iop_base
;
8864 sg_head
= scsiq
->sg_head
;
8865 saved_data_addr
= scsiq
->q1
.data_addr
;
8866 saved_data_cnt
= scsiq
->q1
.data_cnt
;
8867 scsiq
->q1
.data_addr
= (ASC_PADDR
) sg_head
->sg_list
[0].addr
;
8868 scsiq
->q1
.data_cnt
= (ASC_DCNT
) sg_head
->sg_list
[0].bytes
;
8869 #if CC_VERY_LONG_SG_LIST
8871 * If sg_head->entry_cnt is greater than ASC_MAX_SG_LIST
8872 * then not all SG elements will fit in the allocated queues.
8873 * The rest of the SG elements will be copied when the RISC
8874 * completes the SG elements that fit and halts.
8876 if (sg_head
->entry_cnt
> ASC_MAX_SG_LIST
) {
8878 * Set sg_entry_cnt to be the number of SG elements that
8879 * will fit in the allocated SG queues. It is minus 1, because
8880 * the first SG element is handled above. ASC_MAX_SG_LIST is
8881 * already inflated by 1 to account for this. For example it
8882 * may be 50 which is 1 + 7 queues * 7 SG elements.
8884 sg_entry_cnt
= ASC_MAX_SG_LIST
- 1;
8887 * Keep track of remaining number of SG elements that will
8888 * need to be handled from a_isr.c.
8890 scsiq
->remain_sg_entry_cnt
=
8891 sg_head
->entry_cnt
- ASC_MAX_SG_LIST
;
8893 #endif /* CC_VERY_LONG_SG_LIST */
8895 * Set sg_entry_cnt to be the number of SG elements that
8896 * will fit in the allocated SG queues. It is minus 1, because
8897 * the first SG element is handled above.
8899 sg_entry_cnt
= sg_head
->entry_cnt
- 1;
8900 #if CC_VERY_LONG_SG_LIST
8902 #endif /* CC_VERY_LONG_SG_LIST */
8903 if (sg_entry_cnt
!= 0) {
8904 scsiq
->q1
.cntl
|= QC_SG_HEAD
;
8905 q_addr
= ASC_QNO_TO_QADDR(q_no
);
8907 scsiq
->q1
.sg_queue_cnt
= sg_head
->queue_cnt
;
8908 scsi_sg_q
.sg_head_qp
= q_no
;
8909 scsi_sg_q
.cntl
= QCSG_SG_XFER_LIST
;
8910 for (i
= 0; i
< sg_head
->queue_cnt
; i
++) {
8911 scsi_sg_q
.seq_no
= i
+ 1;
8912 if (sg_entry_cnt
> ASC_SG_LIST_PER_Q
) {
8913 sg_list_dwords
= (uchar
)(ASC_SG_LIST_PER_Q
* 2);
8914 sg_entry_cnt
-= ASC_SG_LIST_PER_Q
;
8916 scsi_sg_q
.sg_list_cnt
=
8918 scsi_sg_q
.sg_cur_list_cnt
=
8921 scsi_sg_q
.sg_list_cnt
=
8922 ASC_SG_LIST_PER_Q
- 1;
8923 scsi_sg_q
.sg_cur_list_cnt
=
8924 ASC_SG_LIST_PER_Q
- 1;
8927 #if CC_VERY_LONG_SG_LIST
8929 * This is the last SG queue in the list of
8930 * allocated SG queues. If there are more
8931 * SG elements than will fit in the allocated
8932 * queues, then set the QCSG_SG_XFER_MORE flag.
8934 if (sg_head
->entry_cnt
> ASC_MAX_SG_LIST
) {
8935 scsi_sg_q
.cntl
|= QCSG_SG_XFER_MORE
;
8937 #endif /* CC_VERY_LONG_SG_LIST */
8938 scsi_sg_q
.cntl
|= QCSG_SG_XFER_END
;
8939 #if CC_VERY_LONG_SG_LIST
8941 #endif /* CC_VERY_LONG_SG_LIST */
8942 sg_list_dwords
= sg_entry_cnt
<< 1;
8944 scsi_sg_q
.sg_list_cnt
= sg_entry_cnt
;
8945 scsi_sg_q
.sg_cur_list_cnt
=
8948 scsi_sg_q
.sg_list_cnt
=
8950 scsi_sg_q
.sg_cur_list_cnt
=
8955 next_qp
= AscReadLramByte(iop_base
,
8958 scsi_sg_q
.q_no
= next_qp
;
8959 q_addr
= ASC_QNO_TO_QADDR(next_qp
);
8960 AscMemWordCopyPtrToLram(iop_base
,
8961 q_addr
+ ASC_SCSIQ_SGHD_CPY_BEG
,
8962 (uchar
*)&scsi_sg_q
,
8963 sizeof(ASC_SG_LIST_Q
) >> 1);
8964 AscMemDWordCopyPtrToLram(iop_base
,
8965 q_addr
+ ASC_SGQ_LIST_BEG
,
8969 sg_index
+= ASC_SG_LIST_PER_Q
;
8970 scsiq
->next_sg_index
= sg_index
;
8973 scsiq
->q1
.cntl
&= ~QC_SG_HEAD
;
8975 sta
= AscPutReadyQueue(asc_dvc
, scsiq
, q_no
);
8976 scsiq
->q1
.data_addr
= saved_data_addr
;
8977 scsiq
->q1
.data_cnt
= saved_data_cnt
;
8982 AscSendScsiQueue(ASC_DVC_VAR
*asc_dvc
, ASC_SCSI_Q
*scsiq
, uchar n_q_required
)
8991 iop_base
= asc_dvc
->iop_base
;
8992 target_ix
= scsiq
->q2
.target_ix
;
8993 tid_no
= ASC_TIX_TO_TID(target_ix
);
8995 free_q_head
= (uchar
)AscGetVarFreeQHead(iop_base
);
8996 if (n_q_required
> 1) {
8997 next_qp
= AscAllocMultipleFreeQueue(iop_base
, free_q_head
,
8998 (uchar
)n_q_required
);
8999 if (next_qp
!= ASC_QLINK_END
) {
9000 asc_dvc
->last_q_shortage
= 0;
9001 scsiq
->sg_head
->queue_cnt
= n_q_required
- 1;
9002 scsiq
->q1
.q_no
= free_q_head
;
9003 sta
= AscPutReadySgListQueue(asc_dvc
, scsiq
,
9006 } else if (n_q_required
== 1) {
9007 next_qp
= AscAllocFreeQueue(iop_base
, free_q_head
);
9008 if (next_qp
!= ASC_QLINK_END
) {
9009 scsiq
->q1
.q_no
= free_q_head
;
9010 sta
= AscPutReadyQueue(asc_dvc
, scsiq
, free_q_head
);
9014 AscPutVarFreeQHead(iop_base
, next_qp
);
9015 asc_dvc
->cur_total_qng
+= n_q_required
;
9016 asc_dvc
->cur_dvc_qng
[tid_no
]++;
9021 #define ASC_SYN_OFFSET_ONE_DISABLE_LIST 16
9022 static uchar _syn_offset_one_disable_cmd
[ASC_SYN_OFFSET_ONE_DISABLE_LIST
] = {
9041 static int AscExeScsiQueue(ASC_DVC_VAR
*asc_dvc
, ASC_SCSI_Q
*scsiq
)
9046 int disable_syn_offset_one_fix
;
9049 ushort sg_entry_cnt
= 0;
9050 ushort sg_entry_cnt_minus_one
= 0;
9057 ASC_SG_HEAD
*sg_head
;
9060 iop_base
= asc_dvc
->iop_base
;
9061 sg_head
= scsiq
->sg_head
;
9062 if (asc_dvc
->err_code
!= 0)
9065 if ((scsiq
->q2
.tag_code
& ASC_TAG_FLAG_EXTRA_BYTES
) == 0) {
9066 scsiq
->q1
.extra_bytes
= 0;
9069 target_ix
= scsiq
->q2
.target_ix
;
9070 tid_no
= ASC_TIX_TO_TID(target_ix
);
9072 if (scsiq
->cdbptr
[0] == REQUEST_SENSE
) {
9073 if ((asc_dvc
->init_sdtr
& scsiq
->q1
.target_id
) != 0) {
9074 asc_dvc
->sdtr_done
&= ~scsiq
->q1
.target_id
;
9075 sdtr_data
= AscGetMCodeInitSDTRAtID(iop_base
, tid_no
);
9076 AscMsgOutSDTR(asc_dvc
,
9078 sdtr_period_tbl
[(sdtr_data
>> 4) &
9082 (uchar
)(sdtr_data
& (uchar
)
9083 ASC_SYN_MAX_OFFSET
));
9084 scsiq
->q1
.cntl
|= (QC_MSG_OUT
| QC_URGENT
);
9087 if (asc_dvc
->in_critical_cnt
!= 0) {
9088 AscSetLibErrorCode(asc_dvc
, ASCQ_ERR_CRITICAL_RE_ENTRY
);
9091 asc_dvc
->in_critical_cnt
++;
9092 if ((scsiq
->q1
.cntl
& QC_SG_HEAD
) != 0) {
9093 if ((sg_entry_cnt
= sg_head
->entry_cnt
) == 0) {
9094 asc_dvc
->in_critical_cnt
--;
9097 #if !CC_VERY_LONG_SG_LIST
9098 if (sg_entry_cnt
> ASC_MAX_SG_LIST
) {
9099 asc_dvc
->in_critical_cnt
--;
9102 #endif /* !CC_VERY_LONG_SG_LIST */
9103 if (sg_entry_cnt
== 1) {
9104 scsiq
->q1
.data_addr
=
9105 (ADV_PADDR
)sg_head
->sg_list
[0].addr
;
9106 scsiq
->q1
.data_cnt
=
9107 (ADV_DCNT
)sg_head
->sg_list
[0].bytes
;
9108 scsiq
->q1
.cntl
&= ~(QC_SG_HEAD
| QC_SG_SWAP_QUEUE
);
9110 sg_entry_cnt_minus_one
= sg_entry_cnt
- 1;
9112 scsi_cmd
= scsiq
->cdbptr
[0];
9113 disable_syn_offset_one_fix
= FALSE
;
9114 if ((asc_dvc
->pci_fix_asyn_xfer
& scsiq
->q1
.target_id
) &&
9115 !(asc_dvc
->pci_fix_asyn_xfer_always
& scsiq
->q1
.target_id
)) {
9116 if (scsiq
->q1
.cntl
& QC_SG_HEAD
) {
9118 for (i
= 0; i
< sg_entry_cnt
; i
++) {
9120 (ADV_DCNT
)le32_to_cpu(sg_head
->sg_list
[i
].
9124 data_cnt
= le32_to_cpu(scsiq
->q1
.data_cnt
);
9126 if (data_cnt
!= 0UL) {
9127 if (data_cnt
< 512UL) {
9128 disable_syn_offset_one_fix
= TRUE
;
9130 for (i
= 0; i
< ASC_SYN_OFFSET_ONE_DISABLE_LIST
;
9133 _syn_offset_one_disable_cmd
[i
];
9134 if (disable_cmd
== 0xFF) {
9137 if (scsi_cmd
== disable_cmd
) {
9138 disable_syn_offset_one_fix
=
9146 if (disable_syn_offset_one_fix
) {
9147 scsiq
->q2
.tag_code
&= ~MSG_SIMPLE_TAG
;
9148 scsiq
->q2
.tag_code
|= (ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX
|
9149 ASC_TAG_FLAG_DISABLE_DISCONNECT
);
9151 scsiq
->q2
.tag_code
&= 0x27;
9153 if ((scsiq
->q1
.cntl
& QC_SG_HEAD
) != 0) {
9154 if (asc_dvc
->bug_fix_cntl
) {
9155 if (asc_dvc
->bug_fix_cntl
& ASC_BUG_FIX_IF_NOT_DWB
) {
9156 if ((scsi_cmd
== READ_6
) ||
9157 (scsi_cmd
== READ_10
)) {
9159 (ADV_PADDR
)le32_to_cpu(sg_head
->
9161 [sg_entry_cnt_minus_one
].
9163 (ADV_DCNT
)le32_to_cpu(sg_head
->
9165 [sg_entry_cnt_minus_one
].
9168 (uchar
)((ushort
)addr
& 0x0003);
9169 if ((extra_bytes
!= 0)
9173 ASC_TAG_FLAG_EXTRA_BYTES
)
9175 scsiq
->q2
.tag_code
|=
9176 ASC_TAG_FLAG_EXTRA_BYTES
;
9177 scsiq
->q1
.extra_bytes
=
9180 le32_to_cpu(sg_head
->
9182 [sg_entry_cnt_minus_one
].
9185 (ASC_DCNT
) extra_bytes
;
9188 [sg_entry_cnt_minus_one
].
9190 cpu_to_le32(data_cnt
);
9195 sg_head
->entry_to_copy
= sg_head
->entry_cnt
;
9196 #if CC_VERY_LONG_SG_LIST
9198 * Set the sg_entry_cnt to the maximum possible. The rest of
9199 * the SG elements will be copied when the RISC completes the
9200 * SG elements that fit and halts.
9202 if (sg_entry_cnt
> ASC_MAX_SG_LIST
) {
9203 sg_entry_cnt
= ASC_MAX_SG_LIST
;
9205 #endif /* CC_VERY_LONG_SG_LIST */
9206 n_q_required
= AscSgListToQueue(sg_entry_cnt
);
9207 if ((AscGetNumOfFreeQueue(asc_dvc
, target_ix
, n_q_required
) >=
9208 (uint
) n_q_required
)
9209 || ((scsiq
->q1
.cntl
& QC_URGENT
) != 0)) {
9211 AscSendScsiQueue(asc_dvc
, scsiq
,
9212 n_q_required
)) == 1) {
9213 asc_dvc
->in_critical_cnt
--;
9218 if (asc_dvc
->bug_fix_cntl
) {
9219 if (asc_dvc
->bug_fix_cntl
& ASC_BUG_FIX_IF_NOT_DWB
) {
9220 if ((scsi_cmd
== READ_6
) ||
9221 (scsi_cmd
== READ_10
)) {
9223 le32_to_cpu(scsiq
->q1
.data_addr
) +
9224 le32_to_cpu(scsiq
->q1
.data_cnt
);
9226 (uchar
)((ushort
)addr
& 0x0003);
9227 if ((extra_bytes
!= 0)
9231 ASC_TAG_FLAG_EXTRA_BYTES
)
9234 le32_to_cpu(scsiq
->q1
.
9236 if (((ushort
)data_cnt
& 0x01FF)
9238 scsiq
->q2
.tag_code
|=
9239 ASC_TAG_FLAG_EXTRA_BYTES
;
9240 data_cnt
-= (ASC_DCNT
)
9242 scsiq
->q1
.data_cnt
=
9245 scsiq
->q1
.extra_bytes
=
9253 if ((AscGetNumOfFreeQueue(asc_dvc
, target_ix
, 1) >= 1) ||
9254 ((scsiq
->q1
.cntl
& QC_URGENT
) != 0)) {
9255 if ((sta
= AscSendScsiQueue(asc_dvc
, scsiq
,
9256 n_q_required
)) == 1) {
9257 asc_dvc
->in_critical_cnt
--;
9262 asc_dvc
->in_critical_cnt
--;
9267 * AdvExeScsiQueue() - Send a request to the RISC microcode program.
9269 * Allocate a carrier structure, point the carrier to the ADV_SCSI_REQ_Q,
9270 * add the carrier to the ICQ (Initiator Command Queue), and tickle the
9271 * RISC to notify it a new command is ready to be executed.
9273 * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be
9274 * set to SCSI_MAX_RETRY.
9276 * Multi-byte fields in the ASC_SCSI_REQ_Q that are used by the microcode
9277 * for DMA addresses or math operations are byte swapped to little-endian
9281 * ADV_SUCCESS(1) - The request was successfully queued.
9282 * ADV_BUSY(0) - Resource unavailable; Retry again after pending
9283 * request completes.
9284 * ADV_ERROR(-1) - Invalid ADV_SCSI_REQ_Q request structure
9287 static int AdvExeScsiQueue(ADV_DVC_VAR
*asc_dvc
, ADV_SCSI_REQ_Q
*scsiq
)
9289 AdvPortAddr iop_base
;
9290 ADV_PADDR req_paddr
;
9291 ADV_CARR_T
*new_carrp
;
9294 * The ADV_SCSI_REQ_Q 'target_id' field should never exceed ADV_MAX_TID.
9296 if (scsiq
->target_id
> ADV_MAX_TID
) {
9297 scsiq
->host_status
= QHSTA_M_INVALID_DEVICE
;
9298 scsiq
->done_status
= QD_WITH_ERROR
;
9302 iop_base
= asc_dvc
->iop_base
;
9305 * Allocate a carrier ensuring at least one carrier always
9306 * remains on the freelist and initialize fields.
9308 if ((new_carrp
= asc_dvc
->carr_freelist
) == NULL
) {
9311 asc_dvc
->carr_freelist
= (ADV_CARR_T
*)
9312 ADV_U32_TO_VADDR(le32_to_cpu(new_carrp
->next_vpa
));
9313 asc_dvc
->carr_pending_cnt
++;
9316 * Set the carrier to be a stopper by setting 'next_vpa'
9317 * to the stopper value. The current stopper will be changed
9318 * below to point to the new stopper.
9320 new_carrp
->next_vpa
= cpu_to_le32(ASC_CQ_STOPPER
);
9323 * Clear the ADV_SCSI_REQ_Q done flag.
9325 scsiq
->a_flag
&= ~ADV_SCSIQ_DONE
;
9327 req_paddr
= virt_to_bus(scsiq
);
9328 BUG_ON(req_paddr
& 31);
9329 /* Wait for assertion before making little-endian */
9330 req_paddr
= cpu_to_le32(req_paddr
);
9332 /* Save virtual and physical address of ADV_SCSI_REQ_Q and carrier. */
9333 scsiq
->scsiq_ptr
= cpu_to_le32(ADV_VADDR_TO_U32(scsiq
));
9334 scsiq
->scsiq_rptr
= req_paddr
;
9336 scsiq
->carr_va
= cpu_to_le32(ADV_VADDR_TO_U32(asc_dvc
->icq_sp
));
9338 * Every ADV_CARR_T.carr_pa is byte swapped to little-endian
9339 * order during initialization.
9341 scsiq
->carr_pa
= asc_dvc
->icq_sp
->carr_pa
;
9344 * Use the current stopper to send the ADV_SCSI_REQ_Q command to
9345 * the microcode. The newly allocated stopper will become the new
9348 asc_dvc
->icq_sp
->areq_vpa
= req_paddr
;
9351 * Set the 'next_vpa' pointer for the old stopper to be the
9352 * physical address of the new stopper. The RISC can only
9353 * follow physical addresses.
9355 asc_dvc
->icq_sp
->next_vpa
= new_carrp
->carr_pa
;
9358 * Set the host adapter stopper pointer to point to the new carrier.
9360 asc_dvc
->icq_sp
= new_carrp
;
9362 if (asc_dvc
->chip_type
== ADV_CHIP_ASC3550
||
9363 asc_dvc
->chip_type
== ADV_CHIP_ASC38C0800
) {
9365 * Tickle the RISC to tell it to read its Command Queue Head pointer.
9367 AdvWriteByteRegister(iop_base
, IOPB_TICKLE
, ADV_TICKLE_A
);
9368 if (asc_dvc
->chip_type
== ADV_CHIP_ASC3550
) {
9370 * Clear the tickle value. In the ASC-3550 the RISC flag
9371 * command 'clr_tickle_a' does not work unless the host
9374 AdvWriteByteRegister(iop_base
, IOPB_TICKLE
,
9377 } else if (asc_dvc
->chip_type
== ADV_CHIP_ASC38C1600
) {
9379 * Notify the RISC a carrier is ready by writing the physical
9380 * address of the new carrier stopper to the COMMA register.
9382 AdvWriteDWordRegister(iop_base
, IOPDW_COMMA
,
9383 le32_to_cpu(new_carrp
->carr_pa
));
9390 * Execute a single 'Scsi_Cmnd'.
9392 static int asc_execute_scsi_cmnd(struct scsi_cmnd
*scp
)
9395 struct asc_board
*boardp
= shost_priv(scp
->device
->host
);
9397 ASC_DBG(1, "scp 0x%p\n", scp
);
9399 if (ASC_NARROW_BOARD(boardp
)) {
9400 ASC_DVC_VAR
*asc_dvc
= &boardp
->dvc_var
.asc_dvc_var
;
9401 struct asc_scsi_q asc_scsi_q
;
9403 /* asc_build_req() can not return ASC_BUSY. */
9404 ret
= asc_build_req(boardp
, scp
, &asc_scsi_q
);
9405 if (ret
== ASC_ERROR
) {
9406 ASC_STATS(scp
->device
->host
, build_error
);
9410 ret
= AscExeScsiQueue(asc_dvc
, &asc_scsi_q
);
9411 kfree(asc_scsi_q
.sg_head
);
9412 err_code
= asc_dvc
->err_code
;
9414 ADV_DVC_VAR
*adv_dvc
= &boardp
->dvc_var
.adv_dvc_var
;
9415 ADV_SCSI_REQ_Q
*adv_scsiqp
;
9417 switch (adv_build_req(boardp
, scp
, &adv_scsiqp
)) {
9419 ASC_DBG(3, "adv_build_req ASC_NOERROR\n");
9422 ASC_DBG(1, "adv_build_req ASC_BUSY\n");
9424 * The asc_stats fields 'adv_build_noreq' and
9425 * 'adv_build_nosg' count wide board busy conditions.
9426 * They are updated in adv_build_req and
9427 * adv_get_sglist, respectively.
9432 ASC_DBG(1, "adv_build_req ASC_ERROR\n");
9433 ASC_STATS(scp
->device
->host
, build_error
);
9437 ret
= AdvExeScsiQueue(adv_dvc
, adv_scsiqp
);
9438 err_code
= adv_dvc
->err_code
;
9443 ASC_STATS(scp
->device
->host
, exe_noerror
);
9445 * Increment monotonically increasing per device
9446 * successful request counter. Wrapping doesn't matter.
9448 boardp
->reqcnt
[scp
->device
->id
]++;
9449 ASC_DBG(1, "ExeScsiQueue() ASC_NOERROR\n");
9452 ASC_STATS(scp
->device
->host
, exe_busy
);
9455 scmd_printk(KERN_ERR
, scp
, "ExeScsiQueue() ASC_ERROR, "
9456 "err_code 0x%x\n", err_code
);
9457 ASC_STATS(scp
->device
->host
, exe_error
);
9458 scp
->result
= HOST_BYTE(DID_ERROR
);
9461 scmd_printk(KERN_ERR
, scp
, "ExeScsiQueue() unknown, "
9462 "err_code 0x%x\n", err_code
);
9463 ASC_STATS(scp
->device
->host
, exe_unknown
);
9464 scp
->result
= HOST_BYTE(DID_ERROR
);
9468 ASC_DBG(1, "end\n");
9473 * advansys_queuecommand() - interrupt-driven I/O entrypoint.
9475 * This function always returns 0. Command return status is saved
9476 * in the 'scp' result field.
9479 advansys_queuecommand(struct scsi_cmnd
*scp
, void (*done
)(struct scsi_cmnd
*))
9481 struct Scsi_Host
*shost
= scp
->device
->host
;
9482 int asc_res
, result
= 0;
9484 ASC_STATS(shost
, queuecommand
);
9485 scp
->scsi_done
= done
;
9487 asc_res
= asc_execute_scsi_cmnd(scp
);
9493 result
= SCSI_MLQUEUE_HOST_BUSY
;
9504 static ushort __devinit
AscGetEisaChipCfg(PortAddr iop_base
)
9506 PortAddr eisa_cfg_iop
= (PortAddr
) ASC_GET_EISA_SLOT(iop_base
) |
9507 (PortAddr
) (ASC_EISA_CFG_IOP_MASK
);
9508 return inpw(eisa_cfg_iop
);
9512 * Return the BIOS address of the adapter at the specified
9513 * I/O port and with the specified bus type.
9515 static unsigned short __devinit
9516 AscGetChipBiosAddress(PortAddr iop_base
, unsigned short bus_type
)
9518 unsigned short cfg_lsw
;
9519 unsigned short bios_addr
;
9522 * The PCI BIOS is re-located by the motherboard BIOS. Because
9523 * of this the driver can not determine where a PCI BIOS is
9524 * loaded and executes.
9526 if (bus_type
& ASC_IS_PCI
)
9529 if ((bus_type
& ASC_IS_EISA
) != 0) {
9530 cfg_lsw
= AscGetEisaChipCfg(iop_base
);
9532 bios_addr
= ASC_BIOS_MIN_ADDR
+ cfg_lsw
* ASC_BIOS_BANK_SIZE
;
9536 cfg_lsw
= AscGetChipCfgLsw(iop_base
);
9539 * ISA PnP uses the top bit as the 32K BIOS flag
9541 if (bus_type
== ASC_IS_ISAPNP
)
9543 bios_addr
= ASC_BIOS_MIN_ADDR
+ (cfg_lsw
>> 12) * ASC_BIOS_BANK_SIZE
;
9547 static uchar __devinit
AscSetChipScsiID(PortAddr iop_base
, uchar new_host_id
)
9551 if (AscGetChipScsiID(iop_base
) == new_host_id
) {
9552 return (new_host_id
);
9554 cfg_lsw
= AscGetChipCfgLsw(iop_base
);
9556 cfg_lsw
|= (ushort
)((new_host_id
& ASC_MAX_TID
) << 8);
9557 AscSetChipCfgLsw(iop_base
, cfg_lsw
);
9558 return (AscGetChipScsiID(iop_base
));
9561 static unsigned char __devinit
AscGetChipScsiCtrl(PortAddr iop_base
)
9565 AscSetBank(iop_base
, 1);
9566 sc
= inp(iop_base
+ IOP_REG_SC
);
9567 AscSetBank(iop_base
, 0);
9571 static unsigned char __devinit
9572 AscGetChipVersion(PortAddr iop_base
, unsigned short bus_type
)
9574 if (bus_type
& ASC_IS_EISA
) {
9576 unsigned char revision
;
9577 eisa_iop
= (PortAddr
) ASC_GET_EISA_SLOT(iop_base
) |
9578 (PortAddr
) ASC_EISA_REV_IOP_MASK
;
9579 revision
= inp(eisa_iop
);
9580 return ASC_CHIP_MIN_VER_EISA
- 1 + revision
;
9582 return AscGetChipVerNo(iop_base
);
9586 static void __devinit
AscEnableIsaDma(uchar dma_channel
)
9588 if (dma_channel
< 4) {
9589 outp(0x000B, (ushort
)(0xC0 | dma_channel
));
9590 outp(0x000A, dma_channel
);
9591 } else if (dma_channel
< 8) {
9592 outp(0x00D6, (ushort
)(0xC0 | (dma_channel
- 4)));
9593 outp(0x00D4, (ushort
)(dma_channel
- 4));
9596 #endif /* CONFIG_ISA */
9598 static int AscStopQueueExe(PortAddr iop_base
)
9602 if (AscReadLramByte(iop_base
, ASCV_STOP_CODE_B
) == 0) {
9603 AscWriteLramByte(iop_base
, ASCV_STOP_CODE_B
,
9604 ASC_STOP_REQ_RISC_STOP
);
9606 if (AscReadLramByte(iop_base
, ASCV_STOP_CODE_B
) &
9607 ASC_STOP_ACK_RISC_STOP
) {
9611 } while (count
++ < 20);
9616 static ASC_DCNT __devinit
AscGetMaxDmaCount(ushort bus_type
)
9618 if (bus_type
& ASC_IS_ISA
)
9619 return ASC_MAX_ISA_DMA_COUNT
;
9620 else if (bus_type
& (ASC_IS_EISA
| ASC_IS_VL
))
9621 return ASC_MAX_VL_DMA_COUNT
;
9622 return ASC_MAX_PCI_DMA_COUNT
;
9626 static ushort __devinit
AscGetIsaDmaChannel(PortAddr iop_base
)
9630 channel
= AscGetChipCfgLsw(iop_base
) & 0x0003;
9631 if (channel
== 0x03)
9633 else if (channel
== 0x00)
9635 return (channel
+ 4);
9638 static ushort __devinit
AscSetIsaDmaChannel(PortAddr iop_base
, ushort dma_channel
)
9643 if ((dma_channel
>= 5) && (dma_channel
<= 7)) {
9644 if (dma_channel
== 7)
9647 value
= dma_channel
- 4;
9648 cfg_lsw
= AscGetChipCfgLsw(iop_base
) & 0xFFFC;
9650 AscSetChipCfgLsw(iop_base
, cfg_lsw
);
9651 return (AscGetIsaDmaChannel(iop_base
));
9656 static uchar __devinit
AscGetIsaDmaSpeed(PortAddr iop_base
)
9660 AscSetBank(iop_base
, 1);
9661 speed_value
= AscReadChipDmaSpeed(iop_base
);
9662 speed_value
&= 0x07;
9663 AscSetBank(iop_base
, 0);
9667 static uchar __devinit
AscSetIsaDmaSpeed(PortAddr iop_base
, uchar speed_value
)
9669 speed_value
&= 0x07;
9670 AscSetBank(iop_base
, 1);
9671 AscWriteChipDmaSpeed(iop_base
, speed_value
);
9672 AscSetBank(iop_base
, 0);
9673 return AscGetIsaDmaSpeed(iop_base
);
9675 #endif /* CONFIG_ISA */
9677 static ushort __devinit
AscInitAscDvcVar(ASC_DVC_VAR
*asc_dvc
)
9684 iop_base
= asc_dvc
->iop_base
;
9686 asc_dvc
->err_code
= 0;
9687 if ((asc_dvc
->bus_type
&
9688 (ASC_IS_ISA
| ASC_IS_PCI
| ASC_IS_EISA
| ASC_IS_VL
)) == 0) {
9689 asc_dvc
->err_code
|= ASC_IERR_NO_BUS_TYPE
;
9691 AscSetChipControl(iop_base
, CC_HALT
);
9692 AscSetChipStatus(iop_base
, 0);
9693 asc_dvc
->bug_fix_cntl
= 0;
9694 asc_dvc
->pci_fix_asyn_xfer
= 0;
9695 asc_dvc
->pci_fix_asyn_xfer_always
= 0;
9696 /* asc_dvc->init_state initalized in AscInitGetConfig(). */
9697 asc_dvc
->sdtr_done
= 0;
9698 asc_dvc
->cur_total_qng
= 0;
9699 asc_dvc
->is_in_int
= 0;
9700 asc_dvc
->in_critical_cnt
= 0;
9701 asc_dvc
->last_q_shortage
= 0;
9702 asc_dvc
->use_tagged_qng
= 0;
9703 asc_dvc
->no_scam
= 0;
9704 asc_dvc
->unit_not_ready
= 0;
9705 asc_dvc
->queue_full_or_busy
= 0;
9706 asc_dvc
->redo_scam
= 0;
9708 asc_dvc
->min_sdtr_index
= 0;
9709 asc_dvc
->cfg
->can_tagged_qng
= 0;
9710 asc_dvc
->cfg
->cmd_qng_enabled
= 0;
9711 asc_dvc
->dvc_cntl
= ASC_DEF_DVC_CNTL
;
9712 asc_dvc
->init_sdtr
= 0;
9713 asc_dvc
->max_total_qng
= ASC_DEF_MAX_TOTAL_QNG
;
9714 asc_dvc
->scsi_reset_wait
= 3;
9715 asc_dvc
->start_motor
= ASC_SCSI_WIDTH_BIT_SET
;
9716 asc_dvc
->max_dma_count
= AscGetMaxDmaCount(asc_dvc
->bus_type
);
9717 asc_dvc
->cfg
->sdtr_enable
= ASC_SCSI_WIDTH_BIT_SET
;
9718 asc_dvc
->cfg
->disc_enable
= ASC_SCSI_WIDTH_BIT_SET
;
9719 asc_dvc
->cfg
->chip_scsi_id
= ASC_DEF_CHIP_SCSI_ID
;
9720 chip_version
= AscGetChipVersion(iop_base
, asc_dvc
->bus_type
);
9721 asc_dvc
->cfg
->chip_version
= chip_version
;
9722 asc_dvc
->sdtr_period_tbl
= asc_syn_xfer_period
;
9723 asc_dvc
->max_sdtr_index
= 7;
9724 if ((asc_dvc
->bus_type
& ASC_IS_PCI
) &&
9725 (chip_version
>= ASC_CHIP_VER_PCI_ULTRA_3150
)) {
9726 asc_dvc
->bus_type
= ASC_IS_PCI_ULTRA
;
9727 asc_dvc
->sdtr_period_tbl
= asc_syn_ultra_xfer_period
;
9728 asc_dvc
->max_sdtr_index
= 15;
9729 if (chip_version
== ASC_CHIP_VER_PCI_ULTRA_3150
) {
9730 AscSetExtraControl(iop_base
,
9731 (SEC_ACTIVE_NEGATE
| SEC_SLEW_RATE
));
9732 } else if (chip_version
>= ASC_CHIP_VER_PCI_ULTRA_3050
) {
9733 AscSetExtraControl(iop_base
,
9734 (SEC_ACTIVE_NEGATE
|
9735 SEC_ENABLE_FILTER
));
9738 if (asc_dvc
->bus_type
== ASC_IS_PCI
) {
9739 AscSetExtraControl(iop_base
,
9740 (SEC_ACTIVE_NEGATE
| SEC_SLEW_RATE
));
9743 asc_dvc
->cfg
->isa_dma_speed
= ASC_DEF_ISA_DMA_SPEED
;
9745 if ((asc_dvc
->bus_type
& ASC_IS_ISA
) != 0) {
9746 if (chip_version
>= ASC_CHIP_MIN_VER_ISA_PNP
) {
9747 AscSetChipIFC(iop_base
, IFC_INIT_DEFAULT
);
9748 asc_dvc
->bus_type
= ASC_IS_ISAPNP
;
9750 asc_dvc
->cfg
->isa_dma_channel
=
9751 (uchar
)AscGetIsaDmaChannel(iop_base
);
9753 #endif /* CONFIG_ISA */
9754 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
9755 asc_dvc
->cur_dvc_qng
[i
] = 0;
9756 asc_dvc
->max_dvc_qng
[i
] = ASC_MAX_SCSI1_QNG
;
9757 asc_dvc
->scsiq_busy_head
[i
] = (ASC_SCSI_Q
*)0L;
9758 asc_dvc
->scsiq_busy_tail
[i
] = (ASC_SCSI_Q
*)0L;
9759 asc_dvc
->cfg
->max_tag_qng
[i
] = ASC_MAX_INRAM_TAG_QNG
;
9764 static int __devinit
AscWriteEEPCmdReg(PortAddr iop_base
, uchar cmd_reg
)
9768 for (retry
= 0; retry
< ASC_EEP_MAX_RETRY
; retry
++) {
9769 unsigned char read_back
;
9770 AscSetChipEEPCmd(iop_base
, cmd_reg
);
9772 read_back
= AscGetChipEEPCmd(iop_base
);
9773 if (read_back
== cmd_reg
)
9779 static void __devinit
AscWaitEEPRead(void)
9784 static ushort __devinit
AscReadEEPWord(PortAddr iop_base
, uchar addr
)
9789 AscWriteEEPCmdReg(iop_base
, ASC_EEP_CMD_WRITE_DISABLE
);
9791 cmd_reg
= addr
| ASC_EEP_CMD_READ
;
9792 AscWriteEEPCmdReg(iop_base
, cmd_reg
);
9794 read_wval
= AscGetChipEEPData(iop_base
);
9799 static ushort __devinit
9800 AscGetEEPConfig(PortAddr iop_base
, ASCEEP_CONFIG
*cfg_buf
, ushort bus_type
)
9807 int uchar_end_in_config
= ASC_EEP_MAX_DVC_ADDR
- 2;
9810 wbuf
= (ushort
*)cfg_buf
;
9812 /* Read two config words; Byte-swapping done by AscReadEEPWord(). */
9813 for (s_addr
= 0; s_addr
< 2; s_addr
++, wbuf
++) {
9814 *wbuf
= AscReadEEPWord(iop_base
, (uchar
)s_addr
);
9817 if (bus_type
& ASC_IS_VL
) {
9818 cfg_beg
= ASC_EEP_DVC_CFG_BEG_VL
;
9819 cfg_end
= ASC_EEP_MAX_DVC_ADDR_VL
;
9821 cfg_beg
= ASC_EEP_DVC_CFG_BEG
;
9822 cfg_end
= ASC_EEP_MAX_DVC_ADDR
;
9824 for (s_addr
= cfg_beg
; s_addr
<= (cfg_end
- 1); s_addr
++, wbuf
++) {
9825 wval
= AscReadEEPWord(iop_base
, (uchar
)s_addr
);
9826 if (s_addr
<= uchar_end_in_config
) {
9828 * Swap all char fields - must unswap bytes already swapped
9829 * by AscReadEEPWord().
9831 *wbuf
= le16_to_cpu(wval
);
9833 /* Don't swap word field at the end - cntl field. */
9836 sum
+= wval
; /* Checksum treats all EEPROM data as words. */
9839 * Read the checksum word which will be compared against 'sum'
9840 * by the caller. Word field already swapped.
9842 *wbuf
= AscReadEEPWord(iop_base
, (uchar
)s_addr
);
9846 static int __devinit
AscTestExternalLram(ASC_DVC_VAR
*asc_dvc
)
9853 iop_base
= asc_dvc
->iop_base
;
9855 q_addr
= ASC_QNO_TO_QADDR(241);
9856 saved_word
= AscReadLramWord(iop_base
, q_addr
);
9857 AscSetChipLramAddr(iop_base
, q_addr
);
9858 AscSetChipLramData(iop_base
, 0x55AA);
9860 AscSetChipLramAddr(iop_base
, q_addr
);
9861 if (AscGetChipLramData(iop_base
) == 0x55AA) {
9863 AscWriteLramWord(iop_base
, q_addr
, saved_word
);
9868 static void __devinit
AscWaitEEPWrite(void)
9873 static int __devinit
AscWriteEEPDataReg(PortAddr iop_base
, ushort data_reg
)
9880 AscSetChipEEPData(iop_base
, data_reg
);
9882 read_back
= AscGetChipEEPData(iop_base
);
9883 if (read_back
== data_reg
) {
9886 if (retry
++ > ASC_EEP_MAX_RETRY
) {
9892 static ushort __devinit
9893 AscWriteEEPWord(PortAddr iop_base
, uchar addr
, ushort word_val
)
9897 read_wval
= AscReadEEPWord(iop_base
, addr
);
9898 if (read_wval
!= word_val
) {
9899 AscWriteEEPCmdReg(iop_base
, ASC_EEP_CMD_WRITE_ABLE
);
9901 AscWriteEEPDataReg(iop_base
, word_val
);
9903 AscWriteEEPCmdReg(iop_base
,
9904 (uchar
)((uchar
)ASC_EEP_CMD_WRITE
| addr
));
9906 AscWriteEEPCmdReg(iop_base
, ASC_EEP_CMD_WRITE_DISABLE
);
9908 return (AscReadEEPWord(iop_base
, addr
));
9913 static int __devinit
9914 AscSetEEPConfigOnce(PortAddr iop_base
, ASCEEP_CONFIG
*cfg_buf
, ushort bus_type
)
9923 int uchar_end_in_config
= ASC_EEP_MAX_DVC_ADDR
- 2;
9925 wbuf
= (ushort
*)cfg_buf
;
9928 /* Write two config words; AscWriteEEPWord() will swap bytes. */
9929 for (s_addr
= 0; s_addr
< 2; s_addr
++, wbuf
++) {
9931 if (*wbuf
!= AscWriteEEPWord(iop_base
, (uchar
)s_addr
, *wbuf
)) {
9935 if (bus_type
& ASC_IS_VL
) {
9936 cfg_beg
= ASC_EEP_DVC_CFG_BEG_VL
;
9937 cfg_end
= ASC_EEP_MAX_DVC_ADDR_VL
;
9939 cfg_beg
= ASC_EEP_DVC_CFG_BEG
;
9940 cfg_end
= ASC_EEP_MAX_DVC_ADDR
;
9942 for (s_addr
= cfg_beg
; s_addr
<= (cfg_end
- 1); s_addr
++, wbuf
++) {
9943 if (s_addr
<= uchar_end_in_config
) {
9945 * This is a char field. Swap char fields before they are
9946 * swapped again by AscWriteEEPWord().
9948 word
= cpu_to_le16(*wbuf
);
9950 AscWriteEEPWord(iop_base
, (uchar
)s_addr
, word
)) {
9954 /* Don't swap word field at the end - cntl field. */
9956 AscWriteEEPWord(iop_base
, (uchar
)s_addr
, *wbuf
)) {
9960 sum
+= *wbuf
; /* Checksum calculated from word values. */
9962 /* Write checksum word. It will be swapped by AscWriteEEPWord(). */
9964 if (sum
!= AscWriteEEPWord(iop_base
, (uchar
)s_addr
, sum
)) {
9968 /* Read EEPROM back again. */
9969 wbuf
= (ushort
*)cfg_buf
;
9971 * Read two config words; Byte-swapping done by AscReadEEPWord().
9973 for (s_addr
= 0; s_addr
< 2; s_addr
++, wbuf
++) {
9974 if (*wbuf
!= AscReadEEPWord(iop_base
, (uchar
)s_addr
)) {
9978 if (bus_type
& ASC_IS_VL
) {
9979 cfg_beg
= ASC_EEP_DVC_CFG_BEG_VL
;
9980 cfg_end
= ASC_EEP_MAX_DVC_ADDR_VL
;
9982 cfg_beg
= ASC_EEP_DVC_CFG_BEG
;
9983 cfg_end
= ASC_EEP_MAX_DVC_ADDR
;
9985 for (s_addr
= cfg_beg
; s_addr
<= (cfg_end
- 1); s_addr
++, wbuf
++) {
9986 if (s_addr
<= uchar_end_in_config
) {
9988 * Swap all char fields. Must unswap bytes already swapped
9989 * by AscReadEEPWord().
9992 le16_to_cpu(AscReadEEPWord
9993 (iop_base
, (uchar
)s_addr
));
9995 /* Don't swap word field at the end - cntl field. */
9996 word
= AscReadEEPWord(iop_base
, (uchar
)s_addr
);
9998 if (*wbuf
!= word
) {
10002 /* Read checksum; Byte swapping not needed. */
10003 if (AscReadEEPWord(iop_base
, (uchar
)s_addr
) != sum
) {
10009 static int __devinit
10010 AscSetEEPConfig(PortAddr iop_base
, ASCEEP_CONFIG
*cfg_buf
, ushort bus_type
)
10017 if ((n_error
= AscSetEEPConfigOnce(iop_base
, cfg_buf
,
10021 if (++retry
> ASC_EEP_MAX_RETRY
) {
10028 static ushort __devinit
AscInitFromEEP(ASC_DVC_VAR
*asc_dvc
)
10030 ASCEEP_CONFIG eep_config_buf
;
10031 ASCEEP_CONFIG
*eep_config
;
10035 ushort cfg_msw
, cfg_lsw
;
10039 iop_base
= asc_dvc
->iop_base
;
10041 AscWriteLramWord(iop_base
, ASCV_HALTCODE_W
, 0x00FE);
10042 AscStopQueueExe(iop_base
);
10043 if ((AscStopChip(iop_base
) == FALSE
) ||
10044 (AscGetChipScsiCtrl(iop_base
) != 0)) {
10045 asc_dvc
->init_state
|= ASC_INIT_RESET_SCSI_DONE
;
10046 AscResetChipAndScsiBus(asc_dvc
);
10047 mdelay(asc_dvc
->scsi_reset_wait
* 1000); /* XXX: msleep? */
10049 if (AscIsChipHalted(iop_base
) == FALSE
) {
10050 asc_dvc
->err_code
|= ASC_IERR_START_STOP_CHIP
;
10051 return (warn_code
);
10053 AscSetPCAddr(iop_base
, ASC_MCODE_START_ADDR
);
10054 if (AscGetPCAddr(iop_base
) != ASC_MCODE_START_ADDR
) {
10055 asc_dvc
->err_code
|= ASC_IERR_SET_PC_ADDR
;
10056 return (warn_code
);
10058 eep_config
= (ASCEEP_CONFIG
*)&eep_config_buf
;
10059 cfg_msw
= AscGetChipCfgMsw(iop_base
);
10060 cfg_lsw
= AscGetChipCfgLsw(iop_base
);
10061 if ((cfg_msw
& ASC_CFG_MSW_CLR_MASK
) != 0) {
10062 cfg_msw
&= ~ASC_CFG_MSW_CLR_MASK
;
10063 warn_code
|= ASC_WARN_CFG_MSW_RECOVER
;
10064 AscSetChipCfgMsw(iop_base
, cfg_msw
);
10066 chksum
= AscGetEEPConfig(iop_base
, eep_config
, asc_dvc
->bus_type
);
10067 ASC_DBG(1, "chksum 0x%x\n", chksum
);
10071 if (AscGetChipStatus(iop_base
) & CSW_AUTO_CONFIG
) {
10072 warn_code
|= ASC_WARN_AUTO_CONFIG
;
10073 if (asc_dvc
->cfg
->chip_version
== 3) {
10074 if (eep_config
->cfg_lsw
!= cfg_lsw
) {
10075 warn_code
|= ASC_WARN_EEPROM_RECOVER
;
10076 eep_config
->cfg_lsw
=
10077 AscGetChipCfgLsw(iop_base
);
10079 if (eep_config
->cfg_msw
!= cfg_msw
) {
10080 warn_code
|= ASC_WARN_EEPROM_RECOVER
;
10081 eep_config
->cfg_msw
=
10082 AscGetChipCfgMsw(iop_base
);
10086 eep_config
->cfg_msw
&= ~ASC_CFG_MSW_CLR_MASK
;
10087 eep_config
->cfg_lsw
|= ASC_CFG0_HOST_INT_ON
;
10088 ASC_DBG(1, "eep_config->chksum 0x%x\n", eep_config
->chksum
);
10089 if (chksum
!= eep_config
->chksum
) {
10090 if (AscGetChipVersion(iop_base
, asc_dvc
->bus_type
) ==
10091 ASC_CHIP_VER_PCI_ULTRA_3050
) {
10092 ASC_DBG(1, "chksum error ignored; EEPROM-less board\n");
10093 eep_config
->init_sdtr
= 0xFF;
10094 eep_config
->disc_enable
= 0xFF;
10095 eep_config
->start_motor
= 0xFF;
10096 eep_config
->use_cmd_qng
= 0;
10097 eep_config
->max_total_qng
= 0xF0;
10098 eep_config
->max_tag_qng
= 0x20;
10099 eep_config
->cntl
= 0xBFFF;
10100 ASC_EEP_SET_CHIP_ID(eep_config
, 7);
10101 eep_config
->no_scam
= 0;
10102 eep_config
->adapter_info
[0] = 0;
10103 eep_config
->adapter_info
[1] = 0;
10104 eep_config
->adapter_info
[2] = 0;
10105 eep_config
->adapter_info
[3] = 0;
10106 eep_config
->adapter_info
[4] = 0;
10107 /* Indicate EEPROM-less board. */
10108 eep_config
->adapter_info
[5] = 0xBB;
10111 ("AscInitFromEEP: EEPROM checksum error; Will try to re-write EEPROM.\n");
10113 warn_code
|= ASC_WARN_EEPROM_CHKSUM
;
10116 asc_dvc
->cfg
->sdtr_enable
= eep_config
->init_sdtr
;
10117 asc_dvc
->cfg
->disc_enable
= eep_config
->disc_enable
;
10118 asc_dvc
->cfg
->cmd_qng_enabled
= eep_config
->use_cmd_qng
;
10119 asc_dvc
->cfg
->isa_dma_speed
= ASC_EEP_GET_DMA_SPD(eep_config
);
10120 asc_dvc
->start_motor
= eep_config
->start_motor
;
10121 asc_dvc
->dvc_cntl
= eep_config
->cntl
;
10122 asc_dvc
->no_scam
= eep_config
->no_scam
;
10123 asc_dvc
->cfg
->adapter_info
[0] = eep_config
->adapter_info
[0];
10124 asc_dvc
->cfg
->adapter_info
[1] = eep_config
->adapter_info
[1];
10125 asc_dvc
->cfg
->adapter_info
[2] = eep_config
->adapter_info
[2];
10126 asc_dvc
->cfg
->adapter_info
[3] = eep_config
->adapter_info
[3];
10127 asc_dvc
->cfg
->adapter_info
[4] = eep_config
->adapter_info
[4];
10128 asc_dvc
->cfg
->adapter_info
[5] = eep_config
->adapter_info
[5];
10129 if (!AscTestExternalLram(asc_dvc
)) {
10130 if (((asc_dvc
->bus_type
& ASC_IS_PCI_ULTRA
) ==
10131 ASC_IS_PCI_ULTRA
)) {
10132 eep_config
->max_total_qng
=
10133 ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG
;
10134 eep_config
->max_tag_qng
=
10135 ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG
;
10137 eep_config
->cfg_msw
|= 0x0800;
10139 AscSetChipCfgMsw(iop_base
, cfg_msw
);
10140 eep_config
->max_total_qng
= ASC_MAX_PCI_INRAM_TOTAL_QNG
;
10141 eep_config
->max_tag_qng
= ASC_MAX_INRAM_TAG_QNG
;
10145 if (eep_config
->max_total_qng
< ASC_MIN_TOTAL_QNG
) {
10146 eep_config
->max_total_qng
= ASC_MIN_TOTAL_QNG
;
10148 if (eep_config
->max_total_qng
> ASC_MAX_TOTAL_QNG
) {
10149 eep_config
->max_total_qng
= ASC_MAX_TOTAL_QNG
;
10151 if (eep_config
->max_tag_qng
> eep_config
->max_total_qng
) {
10152 eep_config
->max_tag_qng
= eep_config
->max_total_qng
;
10154 if (eep_config
->max_tag_qng
< ASC_MIN_TAG_Q_PER_DVC
) {
10155 eep_config
->max_tag_qng
= ASC_MIN_TAG_Q_PER_DVC
;
10157 asc_dvc
->max_total_qng
= eep_config
->max_total_qng
;
10158 if ((eep_config
->use_cmd_qng
& eep_config
->disc_enable
) !=
10159 eep_config
->use_cmd_qng
) {
10160 eep_config
->disc_enable
= eep_config
->use_cmd_qng
;
10161 warn_code
|= ASC_WARN_CMD_QNG_CONFLICT
;
10163 ASC_EEP_SET_CHIP_ID(eep_config
,
10164 ASC_EEP_GET_CHIP_ID(eep_config
) & ASC_MAX_TID
);
10165 asc_dvc
->cfg
->chip_scsi_id
= ASC_EEP_GET_CHIP_ID(eep_config
);
10166 if (((asc_dvc
->bus_type
& ASC_IS_PCI_ULTRA
) == ASC_IS_PCI_ULTRA
) &&
10167 !(asc_dvc
->dvc_cntl
& ASC_CNTL_SDTR_ENABLE_ULTRA
)) {
10168 asc_dvc
->min_sdtr_index
= ASC_SDTR_ULTRA_PCI_10MB_INDEX
;
10171 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
10172 asc_dvc
->dos_int13_table
[i
] = eep_config
->dos_int13_table
[i
];
10173 asc_dvc
->cfg
->max_tag_qng
[i
] = eep_config
->max_tag_qng
;
10174 asc_dvc
->cfg
->sdtr_period_offset
[i
] =
10175 (uchar
)(ASC_DEF_SDTR_OFFSET
|
10176 (asc_dvc
->min_sdtr_index
<< 4));
10178 eep_config
->cfg_msw
= AscGetChipCfgMsw(iop_base
);
10180 if ((i
= AscSetEEPConfig(iop_base
, eep_config
,
10181 asc_dvc
->bus_type
)) != 0) {
10183 ("AscInitFromEEP: Failed to re-write EEPROM with %d errors.\n",
10187 ("AscInitFromEEP: Successfully re-wrote EEPROM.\n");
10190 return (warn_code
);
10193 static int __devinit
AscInitGetConfig(struct Scsi_Host
*shost
)
10195 struct asc_board
*board
= shost_priv(shost
);
10196 ASC_DVC_VAR
*asc_dvc
= &board
->dvc_var
.asc_dvc_var
;
10197 unsigned short warn_code
= 0;
10199 asc_dvc
->init_state
= ASC_INIT_STATE_BEG_GET_CFG
;
10200 if (asc_dvc
->err_code
!= 0)
10201 return asc_dvc
->err_code
;
10203 if (AscFindSignature(asc_dvc
->iop_base
)) {
10204 warn_code
|= AscInitAscDvcVar(asc_dvc
);
10205 warn_code
|= AscInitFromEEP(asc_dvc
);
10206 asc_dvc
->init_state
|= ASC_INIT_STATE_END_GET_CFG
;
10207 if (asc_dvc
->scsi_reset_wait
> ASC_MAX_SCSI_RESET_WAIT
)
10208 asc_dvc
->scsi_reset_wait
= ASC_MAX_SCSI_RESET_WAIT
;
10210 asc_dvc
->err_code
= ASC_IERR_BAD_SIGNATURE
;
10213 switch (warn_code
) {
10214 case 0: /* No error */
10216 case ASC_WARN_IO_PORT_ROTATE
:
10217 shost_printk(KERN_WARNING
, shost
, "I/O port address "
10220 case ASC_WARN_AUTO_CONFIG
:
10221 shost_printk(KERN_WARNING
, shost
, "I/O port increment switch "
10224 case ASC_WARN_EEPROM_CHKSUM
:
10225 shost_printk(KERN_WARNING
, shost
, "EEPROM checksum error\n");
10227 case ASC_WARN_IRQ_MODIFIED
:
10228 shost_printk(KERN_WARNING
, shost
, "IRQ modified\n");
10230 case ASC_WARN_CMD_QNG_CONFLICT
:
10231 shost_printk(KERN_WARNING
, shost
, "tag queuing enabled w/o "
10235 shost_printk(KERN_WARNING
, shost
, "unknown warning: 0x%x\n",
10240 if (asc_dvc
->err_code
!= 0)
10241 shost_printk(KERN_ERR
, shost
, "error 0x%x at init_state "
10242 "0x%x\n", asc_dvc
->err_code
, asc_dvc
->init_state
);
10244 return asc_dvc
->err_code
;
10247 static int __devinit
AscInitSetConfig(struct pci_dev
*pdev
, struct Scsi_Host
*shost
)
10249 struct asc_board
*board
= shost_priv(shost
);
10250 ASC_DVC_VAR
*asc_dvc
= &board
->dvc_var
.asc_dvc_var
;
10251 PortAddr iop_base
= asc_dvc
->iop_base
;
10252 unsigned short cfg_msw
;
10253 unsigned short warn_code
= 0;
10255 asc_dvc
->init_state
|= ASC_INIT_STATE_BEG_SET_CFG
;
10256 if (asc_dvc
->err_code
!= 0)
10257 return asc_dvc
->err_code
;
10258 if (!AscFindSignature(asc_dvc
->iop_base
)) {
10259 asc_dvc
->err_code
= ASC_IERR_BAD_SIGNATURE
;
10260 return asc_dvc
->err_code
;
10263 cfg_msw
= AscGetChipCfgMsw(iop_base
);
10264 if ((cfg_msw
& ASC_CFG_MSW_CLR_MASK
) != 0) {
10265 cfg_msw
&= ~ASC_CFG_MSW_CLR_MASK
;
10266 warn_code
|= ASC_WARN_CFG_MSW_RECOVER
;
10267 AscSetChipCfgMsw(iop_base
, cfg_msw
);
10269 if ((asc_dvc
->cfg
->cmd_qng_enabled
& asc_dvc
->cfg
->disc_enable
) !=
10270 asc_dvc
->cfg
->cmd_qng_enabled
) {
10271 asc_dvc
->cfg
->disc_enable
= asc_dvc
->cfg
->cmd_qng_enabled
;
10272 warn_code
|= ASC_WARN_CMD_QNG_CONFLICT
;
10274 if (AscGetChipStatus(iop_base
) & CSW_AUTO_CONFIG
) {
10275 warn_code
|= ASC_WARN_AUTO_CONFIG
;
10278 if (asc_dvc
->bus_type
& ASC_IS_PCI
) {
10280 AscSetChipCfgMsw(iop_base
, cfg_msw
);
10281 if ((asc_dvc
->bus_type
& ASC_IS_PCI_ULTRA
) == ASC_IS_PCI_ULTRA
) {
10283 if ((pdev
->device
== PCI_DEVICE_ID_ASP_1200A
) ||
10284 (pdev
->device
== PCI_DEVICE_ID_ASP_ABP940
)) {
10285 asc_dvc
->bug_fix_cntl
|= ASC_BUG_FIX_IF_NOT_DWB
;
10286 asc_dvc
->bug_fix_cntl
|=
10287 ASC_BUG_FIX_ASYN_USE_SYN
;
10291 #endif /* CONFIG_PCI */
10292 if (asc_dvc
->bus_type
== ASC_IS_ISAPNP
) {
10293 if (AscGetChipVersion(iop_base
, asc_dvc
->bus_type
)
10294 == ASC_CHIP_VER_ASYN_BUG
) {
10295 asc_dvc
->bug_fix_cntl
|= ASC_BUG_FIX_ASYN_USE_SYN
;
10298 if (AscSetChipScsiID(iop_base
, asc_dvc
->cfg
->chip_scsi_id
) !=
10299 asc_dvc
->cfg
->chip_scsi_id
) {
10300 asc_dvc
->err_code
|= ASC_IERR_SET_SCSI_ID
;
10303 if (asc_dvc
->bus_type
& ASC_IS_ISA
) {
10304 AscSetIsaDmaChannel(iop_base
, asc_dvc
->cfg
->isa_dma_channel
);
10305 AscSetIsaDmaSpeed(iop_base
, asc_dvc
->cfg
->isa_dma_speed
);
10307 #endif /* CONFIG_ISA */
10309 asc_dvc
->init_state
|= ASC_INIT_STATE_END_SET_CFG
;
10311 switch (warn_code
) {
10312 case 0: /* No error. */
10314 case ASC_WARN_IO_PORT_ROTATE
:
10315 shost_printk(KERN_WARNING
, shost
, "I/O port address "
10318 case ASC_WARN_AUTO_CONFIG
:
10319 shost_printk(KERN_WARNING
, shost
, "I/O port increment switch "
10322 case ASC_WARN_EEPROM_CHKSUM
:
10323 shost_printk(KERN_WARNING
, shost
, "EEPROM checksum error\n");
10325 case ASC_WARN_IRQ_MODIFIED
:
10326 shost_printk(KERN_WARNING
, shost
, "IRQ modified\n");
10328 case ASC_WARN_CMD_QNG_CONFLICT
:
10329 shost_printk(KERN_WARNING
, shost
, "tag queuing w/o "
10333 shost_printk(KERN_WARNING
, shost
, "unknown warning: 0x%x\n",
10338 if (asc_dvc
->err_code
!= 0)
10339 shost_printk(KERN_ERR
, shost
, "error 0x%x at init_state "
10340 "0x%x\n", asc_dvc
->err_code
, asc_dvc
->init_state
);
10342 return asc_dvc
->err_code
;
10346 * EEPROM Configuration.
10348 * All drivers should use this structure to set the default EEPROM
10349 * configuration. The BIOS now uses this structure when it is built.
10350 * Additional structure information can be found in a_condor.h where
10351 * the structure is defined.
10353 * The *_Field_IsChar structs are needed to correct for endianness.
10354 * These values are read from the board 16 bits at a time directly
10355 * into the structs. Because some fields are char, the values will be
10356 * in the wrong order. The *_Field_IsChar tells when to flip the
10357 * bytes. Data read and written to PCI memory is automatically swapped
10358 * on big-endian platforms so char fields read as words are actually being
10359 * unswapped on big-endian platforms.
10361 static ADVEEP_3550_CONFIG Default_3550_EEPROM_Config __devinitdata
= {
10362 ADV_EEPROM_BIOS_ENABLE
, /* cfg_lsw */
10363 0x0000, /* cfg_msw */
10364 0xFFFF, /* disc_enable */
10365 0xFFFF, /* wdtr_able */
10366 0xFFFF, /* sdtr_able */
10367 0xFFFF, /* start_motor */
10368 0xFFFF, /* tagqng_able */
10369 0xFFFF, /* bios_scan */
10370 0, /* scam_tolerant */
10371 7, /* adapter_scsi_id */
10372 0, /* bios_boot_delay */
10373 3, /* scsi_reset_delay */
10374 0, /* bios_id_lun */
10375 0, /* termination */
10377 0xFFE7, /* bios_ctrl */
10378 0xFFFF, /* ultra_able */
10380 ASC_DEF_MAX_HOST_QNG
, /* max_host_qng */
10381 ASC_DEF_MAX_DVC_QNG
, /* max_dvc_qng */
10384 0, /* serial_number_word1 */
10385 0, /* serial_number_word2 */
10386 0, /* serial_number_word3 */
10388 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
10389 , /* oem_name[16] */
10390 0, /* dvc_err_code */
10391 0, /* adv_err_code */
10392 0, /* adv_err_addr */
10393 0, /* saved_dvc_err_code */
10394 0, /* saved_adv_err_code */
10395 0, /* saved_adv_err_addr */
10399 static ADVEEP_3550_CONFIG ADVEEP_3550_Config_Field_IsChar __devinitdata
= {
10402 0, /* -disc_enable */
10405 0, /* start_motor */
10406 0, /* tagqng_able */
10408 0, /* scam_tolerant */
10409 1, /* adapter_scsi_id */
10410 1, /* bios_boot_delay */
10411 1, /* scsi_reset_delay */
10412 1, /* bios_id_lun */
10413 1, /* termination */
10416 0, /* ultra_able */
10418 1, /* max_host_qng */
10419 1, /* max_dvc_qng */
10422 0, /* serial_number_word1 */
10423 0, /* serial_number_word2 */
10424 0, /* serial_number_word3 */
10426 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
10427 , /* oem_name[16] */
10428 0, /* dvc_err_code */
10429 0, /* adv_err_code */
10430 0, /* adv_err_addr */
10431 0, /* saved_dvc_err_code */
10432 0, /* saved_adv_err_code */
10433 0, /* saved_adv_err_addr */
10437 static ADVEEP_38C0800_CONFIG Default_38C0800_EEPROM_Config __devinitdata
= {
10438 ADV_EEPROM_BIOS_ENABLE
, /* 00 cfg_lsw */
10439 0x0000, /* 01 cfg_msw */
10440 0xFFFF, /* 02 disc_enable */
10441 0xFFFF, /* 03 wdtr_able */
10442 0x4444, /* 04 sdtr_speed1 */
10443 0xFFFF, /* 05 start_motor */
10444 0xFFFF, /* 06 tagqng_able */
10445 0xFFFF, /* 07 bios_scan */
10446 0, /* 08 scam_tolerant */
10447 7, /* 09 adapter_scsi_id */
10448 0, /* bios_boot_delay */
10449 3, /* 10 scsi_reset_delay */
10450 0, /* bios_id_lun */
10451 0, /* 11 termination_se */
10452 0, /* termination_lvd */
10453 0xFFE7, /* 12 bios_ctrl */
10454 0x4444, /* 13 sdtr_speed2 */
10455 0x4444, /* 14 sdtr_speed3 */
10456 ASC_DEF_MAX_HOST_QNG
, /* 15 max_host_qng */
10457 ASC_DEF_MAX_DVC_QNG
, /* max_dvc_qng */
10458 0, /* 16 dvc_cntl */
10459 0x4444, /* 17 sdtr_speed4 */
10460 0, /* 18 serial_number_word1 */
10461 0, /* 19 serial_number_word2 */
10462 0, /* 20 serial_number_word3 */
10463 0, /* 21 check_sum */
10464 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
10465 , /* 22-29 oem_name[16] */
10466 0, /* 30 dvc_err_code */
10467 0, /* 31 adv_err_code */
10468 0, /* 32 adv_err_addr */
10469 0, /* 33 saved_dvc_err_code */
10470 0, /* 34 saved_adv_err_code */
10471 0, /* 35 saved_adv_err_addr */
10472 0, /* 36 reserved */
10473 0, /* 37 reserved */
10474 0, /* 38 reserved */
10475 0, /* 39 reserved */
10476 0, /* 40 reserved */
10477 0, /* 41 reserved */
10478 0, /* 42 reserved */
10479 0, /* 43 reserved */
10480 0, /* 44 reserved */
10481 0, /* 45 reserved */
10482 0, /* 46 reserved */
10483 0, /* 47 reserved */
10484 0, /* 48 reserved */
10485 0, /* 49 reserved */
10486 0, /* 50 reserved */
10487 0, /* 51 reserved */
10488 0, /* 52 reserved */
10489 0, /* 53 reserved */
10490 0, /* 54 reserved */
10491 0, /* 55 reserved */
10492 0, /* 56 cisptr_lsw */
10493 0, /* 57 cisprt_msw */
10494 PCI_VENDOR_ID_ASP
, /* 58 subsysvid */
10495 PCI_DEVICE_ID_38C0800_REV1
, /* 59 subsysid */
10496 0, /* 60 reserved */
10497 0, /* 61 reserved */
10498 0, /* 62 reserved */
10499 0 /* 63 reserved */
10502 static ADVEEP_38C0800_CONFIG ADVEEP_38C0800_Config_Field_IsChar __devinitdata
= {
10503 0, /* 00 cfg_lsw */
10504 0, /* 01 cfg_msw */
10505 0, /* 02 disc_enable */
10506 0, /* 03 wdtr_able */
10507 0, /* 04 sdtr_speed1 */
10508 0, /* 05 start_motor */
10509 0, /* 06 tagqng_able */
10510 0, /* 07 bios_scan */
10511 0, /* 08 scam_tolerant */
10512 1, /* 09 adapter_scsi_id */
10513 1, /* bios_boot_delay */
10514 1, /* 10 scsi_reset_delay */
10515 1, /* bios_id_lun */
10516 1, /* 11 termination_se */
10517 1, /* termination_lvd */
10518 0, /* 12 bios_ctrl */
10519 0, /* 13 sdtr_speed2 */
10520 0, /* 14 sdtr_speed3 */
10521 1, /* 15 max_host_qng */
10522 1, /* max_dvc_qng */
10523 0, /* 16 dvc_cntl */
10524 0, /* 17 sdtr_speed4 */
10525 0, /* 18 serial_number_word1 */
10526 0, /* 19 serial_number_word2 */
10527 0, /* 20 serial_number_word3 */
10528 0, /* 21 check_sum */
10529 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
10530 , /* 22-29 oem_name[16] */
10531 0, /* 30 dvc_err_code */
10532 0, /* 31 adv_err_code */
10533 0, /* 32 adv_err_addr */
10534 0, /* 33 saved_dvc_err_code */
10535 0, /* 34 saved_adv_err_code */
10536 0, /* 35 saved_adv_err_addr */
10537 0, /* 36 reserved */
10538 0, /* 37 reserved */
10539 0, /* 38 reserved */
10540 0, /* 39 reserved */
10541 0, /* 40 reserved */
10542 0, /* 41 reserved */
10543 0, /* 42 reserved */
10544 0, /* 43 reserved */
10545 0, /* 44 reserved */
10546 0, /* 45 reserved */
10547 0, /* 46 reserved */
10548 0, /* 47 reserved */
10549 0, /* 48 reserved */
10550 0, /* 49 reserved */
10551 0, /* 50 reserved */
10552 0, /* 51 reserved */
10553 0, /* 52 reserved */
10554 0, /* 53 reserved */
10555 0, /* 54 reserved */
10556 0, /* 55 reserved */
10557 0, /* 56 cisptr_lsw */
10558 0, /* 57 cisprt_msw */
10559 0, /* 58 subsysvid */
10560 0, /* 59 subsysid */
10561 0, /* 60 reserved */
10562 0, /* 61 reserved */
10563 0, /* 62 reserved */
10564 0 /* 63 reserved */
10567 static ADVEEP_38C1600_CONFIG Default_38C1600_EEPROM_Config __devinitdata
= {
10568 ADV_EEPROM_BIOS_ENABLE
, /* 00 cfg_lsw */
10569 0x0000, /* 01 cfg_msw */
10570 0xFFFF, /* 02 disc_enable */
10571 0xFFFF, /* 03 wdtr_able */
10572 0x5555, /* 04 sdtr_speed1 */
10573 0xFFFF, /* 05 start_motor */
10574 0xFFFF, /* 06 tagqng_able */
10575 0xFFFF, /* 07 bios_scan */
10576 0, /* 08 scam_tolerant */
10577 7, /* 09 adapter_scsi_id */
10578 0, /* bios_boot_delay */
10579 3, /* 10 scsi_reset_delay */
10580 0, /* bios_id_lun */
10581 0, /* 11 termination_se */
10582 0, /* termination_lvd */
10583 0xFFE7, /* 12 bios_ctrl */
10584 0x5555, /* 13 sdtr_speed2 */
10585 0x5555, /* 14 sdtr_speed3 */
10586 ASC_DEF_MAX_HOST_QNG
, /* 15 max_host_qng */
10587 ASC_DEF_MAX_DVC_QNG
, /* max_dvc_qng */
10588 0, /* 16 dvc_cntl */
10589 0x5555, /* 17 sdtr_speed4 */
10590 0, /* 18 serial_number_word1 */
10591 0, /* 19 serial_number_word2 */
10592 0, /* 20 serial_number_word3 */
10593 0, /* 21 check_sum */
10594 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
10595 , /* 22-29 oem_name[16] */
10596 0, /* 30 dvc_err_code */
10597 0, /* 31 adv_err_code */
10598 0, /* 32 adv_err_addr */
10599 0, /* 33 saved_dvc_err_code */
10600 0, /* 34 saved_adv_err_code */
10601 0, /* 35 saved_adv_err_addr */
10602 0, /* 36 reserved */
10603 0, /* 37 reserved */
10604 0, /* 38 reserved */
10605 0, /* 39 reserved */
10606 0, /* 40 reserved */
10607 0, /* 41 reserved */
10608 0, /* 42 reserved */
10609 0, /* 43 reserved */
10610 0, /* 44 reserved */
10611 0, /* 45 reserved */
10612 0, /* 46 reserved */
10613 0, /* 47 reserved */
10614 0, /* 48 reserved */
10615 0, /* 49 reserved */
10616 0, /* 50 reserved */
10617 0, /* 51 reserved */
10618 0, /* 52 reserved */
10619 0, /* 53 reserved */
10620 0, /* 54 reserved */
10621 0, /* 55 reserved */
10622 0, /* 56 cisptr_lsw */
10623 0, /* 57 cisprt_msw */
10624 PCI_VENDOR_ID_ASP
, /* 58 subsysvid */
10625 PCI_DEVICE_ID_38C1600_REV1
, /* 59 subsysid */
10626 0, /* 60 reserved */
10627 0, /* 61 reserved */
10628 0, /* 62 reserved */
10629 0 /* 63 reserved */
10632 static ADVEEP_38C1600_CONFIG ADVEEP_38C1600_Config_Field_IsChar __devinitdata
= {
10633 0, /* 00 cfg_lsw */
10634 0, /* 01 cfg_msw */
10635 0, /* 02 disc_enable */
10636 0, /* 03 wdtr_able */
10637 0, /* 04 sdtr_speed1 */
10638 0, /* 05 start_motor */
10639 0, /* 06 tagqng_able */
10640 0, /* 07 bios_scan */
10641 0, /* 08 scam_tolerant */
10642 1, /* 09 adapter_scsi_id */
10643 1, /* bios_boot_delay */
10644 1, /* 10 scsi_reset_delay */
10645 1, /* bios_id_lun */
10646 1, /* 11 termination_se */
10647 1, /* termination_lvd */
10648 0, /* 12 bios_ctrl */
10649 0, /* 13 sdtr_speed2 */
10650 0, /* 14 sdtr_speed3 */
10651 1, /* 15 max_host_qng */
10652 1, /* max_dvc_qng */
10653 0, /* 16 dvc_cntl */
10654 0, /* 17 sdtr_speed4 */
10655 0, /* 18 serial_number_word1 */
10656 0, /* 19 serial_number_word2 */
10657 0, /* 20 serial_number_word3 */
10658 0, /* 21 check_sum */
10659 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
10660 , /* 22-29 oem_name[16] */
10661 0, /* 30 dvc_err_code */
10662 0, /* 31 adv_err_code */
10663 0, /* 32 adv_err_addr */
10664 0, /* 33 saved_dvc_err_code */
10665 0, /* 34 saved_adv_err_code */
10666 0, /* 35 saved_adv_err_addr */
10667 0, /* 36 reserved */
10668 0, /* 37 reserved */
10669 0, /* 38 reserved */
10670 0, /* 39 reserved */
10671 0, /* 40 reserved */
10672 0, /* 41 reserved */
10673 0, /* 42 reserved */
10674 0, /* 43 reserved */
10675 0, /* 44 reserved */
10676 0, /* 45 reserved */
10677 0, /* 46 reserved */
10678 0, /* 47 reserved */
10679 0, /* 48 reserved */
10680 0, /* 49 reserved */
10681 0, /* 50 reserved */
10682 0, /* 51 reserved */
10683 0, /* 52 reserved */
10684 0, /* 53 reserved */
10685 0, /* 54 reserved */
10686 0, /* 55 reserved */
10687 0, /* 56 cisptr_lsw */
10688 0, /* 57 cisprt_msw */
10689 0, /* 58 subsysvid */
10690 0, /* 59 subsysid */
10691 0, /* 60 reserved */
10692 0, /* 61 reserved */
10693 0, /* 62 reserved */
10694 0 /* 63 reserved */
10699 * Wait for EEPROM command to complete
10701 static void __devinit
AdvWaitEEPCmd(AdvPortAddr iop_base
)
10705 for (eep_delay_ms
= 0; eep_delay_ms
< ADV_EEP_DELAY_MS
; eep_delay_ms
++) {
10706 if (AdvReadWordRegister(iop_base
, IOPW_EE_CMD
) &
10707 ASC_EEP_CMD_DONE
) {
10712 if ((AdvReadWordRegister(iop_base
, IOPW_EE_CMD
) & ASC_EEP_CMD_DONE
) ==
10718 * Read the EEPROM from specified location
10720 static ushort __devinit
AdvReadEEPWord(AdvPortAddr iop_base
, int eep_word_addr
)
10722 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
,
10723 ASC_EEP_CMD_READ
| eep_word_addr
);
10724 AdvWaitEEPCmd(iop_base
);
10725 return AdvReadWordRegister(iop_base
, IOPW_EE_DATA
);
10729 * Write the EEPROM from 'cfg_buf'.
10731 static void __devinit
10732 AdvSet3550EEPConfig(AdvPortAddr iop_base
, ADVEEP_3550_CONFIG
*cfg_buf
)
10735 ushort addr
, chksum
;
10736 ushort
*charfields
;
10738 wbuf
= (ushort
*)cfg_buf
;
10739 charfields
= (ushort
*)&ADVEEP_3550_Config_Field_IsChar
;
10742 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
, ASC_EEP_CMD_WRITE_ABLE
);
10743 AdvWaitEEPCmd(iop_base
);
10746 * Write EEPROM from word 0 to word 20.
10748 for (addr
= ADV_EEP_DVC_CFG_BEGIN
;
10749 addr
< ADV_EEP_DVC_CFG_END
; addr
++, wbuf
++) {
10752 if (*charfields
++) {
10753 word
= cpu_to_le16(*wbuf
);
10757 chksum
+= *wbuf
; /* Checksum is calculated from word values. */
10758 AdvWriteWordRegister(iop_base
, IOPW_EE_DATA
, word
);
10759 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
,
10760 ASC_EEP_CMD_WRITE
| addr
);
10761 AdvWaitEEPCmd(iop_base
);
10762 mdelay(ADV_EEP_DELAY_MS
);
10766 * Write EEPROM checksum at word 21.
10768 AdvWriteWordRegister(iop_base
, IOPW_EE_DATA
, chksum
);
10769 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
, ASC_EEP_CMD_WRITE
| addr
);
10770 AdvWaitEEPCmd(iop_base
);
10775 * Write EEPROM OEM name at words 22 to 29.
10777 for (addr
= ADV_EEP_DVC_CTL_BEGIN
;
10778 addr
< ADV_EEP_MAX_WORD_ADDR
; addr
++, wbuf
++) {
10781 if (*charfields
++) {
10782 word
= cpu_to_le16(*wbuf
);
10786 AdvWriteWordRegister(iop_base
, IOPW_EE_DATA
, word
);
10787 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
,
10788 ASC_EEP_CMD_WRITE
| addr
);
10789 AdvWaitEEPCmd(iop_base
);
10791 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
, ASC_EEP_CMD_WRITE_DISABLE
);
10792 AdvWaitEEPCmd(iop_base
);
10796 * Write the EEPROM from 'cfg_buf'.
10798 static void __devinit
10799 AdvSet38C0800EEPConfig(AdvPortAddr iop_base
, ADVEEP_38C0800_CONFIG
*cfg_buf
)
10802 ushort
*charfields
;
10803 ushort addr
, chksum
;
10805 wbuf
= (ushort
*)cfg_buf
;
10806 charfields
= (ushort
*)&ADVEEP_38C0800_Config_Field_IsChar
;
10809 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
, ASC_EEP_CMD_WRITE_ABLE
);
10810 AdvWaitEEPCmd(iop_base
);
10813 * Write EEPROM from word 0 to word 20.
10815 for (addr
= ADV_EEP_DVC_CFG_BEGIN
;
10816 addr
< ADV_EEP_DVC_CFG_END
; addr
++, wbuf
++) {
10819 if (*charfields
++) {
10820 word
= cpu_to_le16(*wbuf
);
10824 chksum
+= *wbuf
; /* Checksum is calculated from word values. */
10825 AdvWriteWordRegister(iop_base
, IOPW_EE_DATA
, word
);
10826 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
,
10827 ASC_EEP_CMD_WRITE
| addr
);
10828 AdvWaitEEPCmd(iop_base
);
10829 mdelay(ADV_EEP_DELAY_MS
);
10833 * Write EEPROM checksum at word 21.
10835 AdvWriteWordRegister(iop_base
, IOPW_EE_DATA
, chksum
);
10836 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
, ASC_EEP_CMD_WRITE
| addr
);
10837 AdvWaitEEPCmd(iop_base
);
10842 * Write EEPROM OEM name at words 22 to 29.
10844 for (addr
= ADV_EEP_DVC_CTL_BEGIN
;
10845 addr
< ADV_EEP_MAX_WORD_ADDR
; addr
++, wbuf
++) {
10848 if (*charfields
++) {
10849 word
= cpu_to_le16(*wbuf
);
10853 AdvWriteWordRegister(iop_base
, IOPW_EE_DATA
, word
);
10854 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
,
10855 ASC_EEP_CMD_WRITE
| addr
);
10856 AdvWaitEEPCmd(iop_base
);
10858 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
, ASC_EEP_CMD_WRITE_DISABLE
);
10859 AdvWaitEEPCmd(iop_base
);
10863 * Write the EEPROM from 'cfg_buf'.
10865 static void __devinit
10866 AdvSet38C1600EEPConfig(AdvPortAddr iop_base
, ADVEEP_38C1600_CONFIG
*cfg_buf
)
10869 ushort
*charfields
;
10870 ushort addr
, chksum
;
10872 wbuf
= (ushort
*)cfg_buf
;
10873 charfields
= (ushort
*)&ADVEEP_38C1600_Config_Field_IsChar
;
10876 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
, ASC_EEP_CMD_WRITE_ABLE
);
10877 AdvWaitEEPCmd(iop_base
);
10880 * Write EEPROM from word 0 to word 20.
10882 for (addr
= ADV_EEP_DVC_CFG_BEGIN
;
10883 addr
< ADV_EEP_DVC_CFG_END
; addr
++, wbuf
++) {
10886 if (*charfields
++) {
10887 word
= cpu_to_le16(*wbuf
);
10891 chksum
+= *wbuf
; /* Checksum is calculated from word values. */
10892 AdvWriteWordRegister(iop_base
, IOPW_EE_DATA
, word
);
10893 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
,
10894 ASC_EEP_CMD_WRITE
| addr
);
10895 AdvWaitEEPCmd(iop_base
);
10896 mdelay(ADV_EEP_DELAY_MS
);
10900 * Write EEPROM checksum at word 21.
10902 AdvWriteWordRegister(iop_base
, IOPW_EE_DATA
, chksum
);
10903 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
, ASC_EEP_CMD_WRITE
| addr
);
10904 AdvWaitEEPCmd(iop_base
);
10909 * Write EEPROM OEM name at words 22 to 29.
10911 for (addr
= ADV_EEP_DVC_CTL_BEGIN
;
10912 addr
< ADV_EEP_MAX_WORD_ADDR
; addr
++, wbuf
++) {
10915 if (*charfields
++) {
10916 word
= cpu_to_le16(*wbuf
);
10920 AdvWriteWordRegister(iop_base
, IOPW_EE_DATA
, word
);
10921 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
,
10922 ASC_EEP_CMD_WRITE
| addr
);
10923 AdvWaitEEPCmd(iop_base
);
10925 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
, ASC_EEP_CMD_WRITE_DISABLE
);
10926 AdvWaitEEPCmd(iop_base
);
10930 * Read EEPROM configuration into the specified buffer.
10932 * Return a checksum based on the EEPROM configuration read.
10934 static ushort __devinit
10935 AdvGet3550EEPConfig(AdvPortAddr iop_base
, ADVEEP_3550_CONFIG
*cfg_buf
)
10937 ushort wval
, chksum
;
10940 ushort
*charfields
;
10942 charfields
= (ushort
*)&ADVEEP_3550_Config_Field_IsChar
;
10943 wbuf
= (ushort
*)cfg_buf
;
10946 for (eep_addr
= ADV_EEP_DVC_CFG_BEGIN
;
10947 eep_addr
< ADV_EEP_DVC_CFG_END
; eep_addr
++, wbuf
++) {
10948 wval
= AdvReadEEPWord(iop_base
, eep_addr
);
10949 chksum
+= wval
; /* Checksum is calculated from word values. */
10950 if (*charfields
++) {
10951 *wbuf
= le16_to_cpu(wval
);
10956 /* Read checksum word. */
10957 *wbuf
= AdvReadEEPWord(iop_base
, eep_addr
);
10961 /* Read rest of EEPROM not covered by the checksum. */
10962 for (eep_addr
= ADV_EEP_DVC_CTL_BEGIN
;
10963 eep_addr
< ADV_EEP_MAX_WORD_ADDR
; eep_addr
++, wbuf
++) {
10964 *wbuf
= AdvReadEEPWord(iop_base
, eep_addr
);
10965 if (*charfields
++) {
10966 *wbuf
= le16_to_cpu(*wbuf
);
10973 * Read EEPROM configuration into the specified buffer.
10975 * Return a checksum based on the EEPROM configuration read.
10977 static ushort __devinit
10978 AdvGet38C0800EEPConfig(AdvPortAddr iop_base
, ADVEEP_38C0800_CONFIG
*cfg_buf
)
10980 ushort wval
, chksum
;
10983 ushort
*charfields
;
10985 charfields
= (ushort
*)&ADVEEP_38C0800_Config_Field_IsChar
;
10986 wbuf
= (ushort
*)cfg_buf
;
10989 for (eep_addr
= ADV_EEP_DVC_CFG_BEGIN
;
10990 eep_addr
< ADV_EEP_DVC_CFG_END
; eep_addr
++, wbuf
++) {
10991 wval
= AdvReadEEPWord(iop_base
, eep_addr
);
10992 chksum
+= wval
; /* Checksum is calculated from word values. */
10993 if (*charfields
++) {
10994 *wbuf
= le16_to_cpu(wval
);
10999 /* Read checksum word. */
11000 *wbuf
= AdvReadEEPWord(iop_base
, eep_addr
);
11004 /* Read rest of EEPROM not covered by the checksum. */
11005 for (eep_addr
= ADV_EEP_DVC_CTL_BEGIN
;
11006 eep_addr
< ADV_EEP_MAX_WORD_ADDR
; eep_addr
++, wbuf
++) {
11007 *wbuf
= AdvReadEEPWord(iop_base
, eep_addr
);
11008 if (*charfields
++) {
11009 *wbuf
= le16_to_cpu(*wbuf
);
11016 * Read EEPROM configuration into the specified buffer.
11018 * Return a checksum based on the EEPROM configuration read.
11020 static ushort __devinit
11021 AdvGet38C1600EEPConfig(AdvPortAddr iop_base
, ADVEEP_38C1600_CONFIG
*cfg_buf
)
11023 ushort wval
, chksum
;
11026 ushort
*charfields
;
11028 charfields
= (ushort
*)&ADVEEP_38C1600_Config_Field_IsChar
;
11029 wbuf
= (ushort
*)cfg_buf
;
11032 for (eep_addr
= ADV_EEP_DVC_CFG_BEGIN
;
11033 eep_addr
< ADV_EEP_DVC_CFG_END
; eep_addr
++, wbuf
++) {
11034 wval
= AdvReadEEPWord(iop_base
, eep_addr
);
11035 chksum
+= wval
; /* Checksum is calculated from word values. */
11036 if (*charfields
++) {
11037 *wbuf
= le16_to_cpu(wval
);
11042 /* Read checksum word. */
11043 *wbuf
= AdvReadEEPWord(iop_base
, eep_addr
);
11047 /* Read rest of EEPROM not covered by the checksum. */
11048 for (eep_addr
= ADV_EEP_DVC_CTL_BEGIN
;
11049 eep_addr
< ADV_EEP_MAX_WORD_ADDR
; eep_addr
++, wbuf
++) {
11050 *wbuf
= AdvReadEEPWord(iop_base
, eep_addr
);
11051 if (*charfields
++) {
11052 *wbuf
= le16_to_cpu(*wbuf
);
11059 * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
11060 * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
11061 * all of this is done.
11063 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
11065 * For a non-fatal error return a warning code. If there are no warnings
11066 * then 0 is returned.
11068 * Note: Chip is stopped on entry.
11070 static int __devinit
AdvInitFrom3550EEP(ADV_DVC_VAR
*asc_dvc
)
11072 AdvPortAddr iop_base
;
11074 ADVEEP_3550_CONFIG eep_config
;
11076 iop_base
= asc_dvc
->iop_base
;
11081 * Read the board's EEPROM configuration.
11083 * Set default values if a bad checksum is found.
11085 if (AdvGet3550EEPConfig(iop_base
, &eep_config
) != eep_config
.check_sum
) {
11086 warn_code
|= ASC_WARN_EEPROM_CHKSUM
;
11089 * Set EEPROM default values.
11091 memcpy(&eep_config
, &Default_3550_EEPROM_Config
,
11092 sizeof(ADVEEP_3550_CONFIG
));
11095 * Assume the 6 byte board serial number that was read from
11096 * EEPROM is correct even if the EEPROM checksum failed.
11098 eep_config
.serial_number_word3
=
11099 AdvReadEEPWord(iop_base
, ADV_EEP_DVC_CFG_END
- 1);
11101 eep_config
.serial_number_word2
=
11102 AdvReadEEPWord(iop_base
, ADV_EEP_DVC_CFG_END
- 2);
11104 eep_config
.serial_number_word1
=
11105 AdvReadEEPWord(iop_base
, ADV_EEP_DVC_CFG_END
- 3);
11107 AdvSet3550EEPConfig(iop_base
, &eep_config
);
11110 * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the
11111 * EEPROM configuration that was read.
11113 * This is the mapping of EEPROM fields to Adv Library fields.
11115 asc_dvc
->wdtr_able
= eep_config
.wdtr_able
;
11116 asc_dvc
->sdtr_able
= eep_config
.sdtr_able
;
11117 asc_dvc
->ultra_able
= eep_config
.ultra_able
;
11118 asc_dvc
->tagqng_able
= eep_config
.tagqng_able
;
11119 asc_dvc
->cfg
->disc_enable
= eep_config
.disc_enable
;
11120 asc_dvc
->max_host_qng
= eep_config
.max_host_qng
;
11121 asc_dvc
->max_dvc_qng
= eep_config
.max_dvc_qng
;
11122 asc_dvc
->chip_scsi_id
= (eep_config
.adapter_scsi_id
& ADV_MAX_TID
);
11123 asc_dvc
->start_motor
= eep_config
.start_motor
;
11124 asc_dvc
->scsi_reset_wait
= eep_config
.scsi_reset_delay
;
11125 asc_dvc
->bios_ctrl
= eep_config
.bios_ctrl
;
11126 asc_dvc
->no_scam
= eep_config
.scam_tolerant
;
11127 asc_dvc
->cfg
->serial1
= eep_config
.serial_number_word1
;
11128 asc_dvc
->cfg
->serial2
= eep_config
.serial_number_word2
;
11129 asc_dvc
->cfg
->serial3
= eep_config
.serial_number_word3
;
11132 * Set the host maximum queuing (max. 253, min. 16) and the per device
11133 * maximum queuing (max. 63, min. 4).
11135 if (eep_config
.max_host_qng
> ASC_DEF_MAX_HOST_QNG
) {
11136 eep_config
.max_host_qng
= ASC_DEF_MAX_HOST_QNG
;
11137 } else if (eep_config
.max_host_qng
< ASC_DEF_MIN_HOST_QNG
) {
11138 /* If the value is zero, assume it is uninitialized. */
11139 if (eep_config
.max_host_qng
== 0) {
11140 eep_config
.max_host_qng
= ASC_DEF_MAX_HOST_QNG
;
11142 eep_config
.max_host_qng
= ASC_DEF_MIN_HOST_QNG
;
11146 if (eep_config
.max_dvc_qng
> ASC_DEF_MAX_DVC_QNG
) {
11147 eep_config
.max_dvc_qng
= ASC_DEF_MAX_DVC_QNG
;
11148 } else if (eep_config
.max_dvc_qng
< ASC_DEF_MIN_DVC_QNG
) {
11149 /* If the value is zero, assume it is uninitialized. */
11150 if (eep_config
.max_dvc_qng
== 0) {
11151 eep_config
.max_dvc_qng
= ASC_DEF_MAX_DVC_QNG
;
11153 eep_config
.max_dvc_qng
= ASC_DEF_MIN_DVC_QNG
;
11158 * If 'max_dvc_qng' is greater than 'max_host_qng', then
11159 * set 'max_dvc_qng' to 'max_host_qng'.
11161 if (eep_config
.max_dvc_qng
> eep_config
.max_host_qng
) {
11162 eep_config
.max_dvc_qng
= eep_config
.max_host_qng
;
11166 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
11167 * values based on possibly adjusted EEPROM values.
11169 asc_dvc
->max_host_qng
= eep_config
.max_host_qng
;
11170 asc_dvc
->max_dvc_qng
= eep_config
.max_dvc_qng
;
11173 * If the EEPROM 'termination' field is set to automatic (0), then set
11174 * the ADV_DVC_CFG 'termination' field to automatic also.
11176 * If the termination is specified with a non-zero 'termination'
11177 * value check that a legal value is set and set the ADV_DVC_CFG
11178 * 'termination' field appropriately.
11180 if (eep_config
.termination
== 0) {
11181 asc_dvc
->cfg
->termination
= 0; /* auto termination */
11183 /* Enable manual control with low off / high off. */
11184 if (eep_config
.termination
== 1) {
11185 asc_dvc
->cfg
->termination
= TERM_CTL_SEL
;
11187 /* Enable manual control with low off / high on. */
11188 } else if (eep_config
.termination
== 2) {
11189 asc_dvc
->cfg
->termination
= TERM_CTL_SEL
| TERM_CTL_H
;
11191 /* Enable manual control with low on / high on. */
11192 } else if (eep_config
.termination
== 3) {
11193 asc_dvc
->cfg
->termination
=
11194 TERM_CTL_SEL
| TERM_CTL_H
| TERM_CTL_L
;
11197 * The EEPROM 'termination' field contains a bad value. Use
11198 * automatic termination instead.
11200 asc_dvc
->cfg
->termination
= 0;
11201 warn_code
|= ASC_WARN_EEPROM_TERMINATION
;
11209 * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
11210 * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
11211 * all of this is done.
11213 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
11215 * For a non-fatal error return a warning code. If there are no warnings
11216 * then 0 is returned.
11218 * Note: Chip is stopped on entry.
11220 static int __devinit
AdvInitFrom38C0800EEP(ADV_DVC_VAR
*asc_dvc
)
11222 AdvPortAddr iop_base
;
11224 ADVEEP_38C0800_CONFIG eep_config
;
11225 uchar tid
, termination
;
11226 ushort sdtr_speed
= 0;
11228 iop_base
= asc_dvc
->iop_base
;
11233 * Read the board's EEPROM configuration.
11235 * Set default values if a bad checksum is found.
11237 if (AdvGet38C0800EEPConfig(iop_base
, &eep_config
) !=
11238 eep_config
.check_sum
) {
11239 warn_code
|= ASC_WARN_EEPROM_CHKSUM
;
11242 * Set EEPROM default values.
11244 memcpy(&eep_config
, &Default_38C0800_EEPROM_Config
,
11245 sizeof(ADVEEP_38C0800_CONFIG
));
11248 * Assume the 6 byte board serial number that was read from
11249 * EEPROM is correct even if the EEPROM checksum failed.
11251 eep_config
.serial_number_word3
=
11252 AdvReadEEPWord(iop_base
, ADV_EEP_DVC_CFG_END
- 1);
11254 eep_config
.serial_number_word2
=
11255 AdvReadEEPWord(iop_base
, ADV_EEP_DVC_CFG_END
- 2);
11257 eep_config
.serial_number_word1
=
11258 AdvReadEEPWord(iop_base
, ADV_EEP_DVC_CFG_END
- 3);
11260 AdvSet38C0800EEPConfig(iop_base
, &eep_config
);
11263 * Set ADV_DVC_VAR and ADV_DVC_CFG variables from the
11264 * EEPROM configuration that was read.
11266 * This is the mapping of EEPROM fields to Adv Library fields.
11268 asc_dvc
->wdtr_able
= eep_config
.wdtr_able
;
11269 asc_dvc
->sdtr_speed1
= eep_config
.sdtr_speed1
;
11270 asc_dvc
->sdtr_speed2
= eep_config
.sdtr_speed2
;
11271 asc_dvc
->sdtr_speed3
= eep_config
.sdtr_speed3
;
11272 asc_dvc
->sdtr_speed4
= eep_config
.sdtr_speed4
;
11273 asc_dvc
->tagqng_able
= eep_config
.tagqng_able
;
11274 asc_dvc
->cfg
->disc_enable
= eep_config
.disc_enable
;
11275 asc_dvc
->max_host_qng
= eep_config
.max_host_qng
;
11276 asc_dvc
->max_dvc_qng
= eep_config
.max_dvc_qng
;
11277 asc_dvc
->chip_scsi_id
= (eep_config
.adapter_scsi_id
& ADV_MAX_TID
);
11278 asc_dvc
->start_motor
= eep_config
.start_motor
;
11279 asc_dvc
->scsi_reset_wait
= eep_config
.scsi_reset_delay
;
11280 asc_dvc
->bios_ctrl
= eep_config
.bios_ctrl
;
11281 asc_dvc
->no_scam
= eep_config
.scam_tolerant
;
11282 asc_dvc
->cfg
->serial1
= eep_config
.serial_number_word1
;
11283 asc_dvc
->cfg
->serial2
= eep_config
.serial_number_word2
;
11284 asc_dvc
->cfg
->serial3
= eep_config
.serial_number_word3
;
11287 * For every Target ID if any of its 'sdtr_speed[1234]' bits
11288 * are set, then set an 'sdtr_able' bit for it.
11290 asc_dvc
->sdtr_able
= 0;
11291 for (tid
= 0; tid
<= ADV_MAX_TID
; tid
++) {
11293 sdtr_speed
= asc_dvc
->sdtr_speed1
;
11294 } else if (tid
== 4) {
11295 sdtr_speed
= asc_dvc
->sdtr_speed2
;
11296 } else if (tid
== 8) {
11297 sdtr_speed
= asc_dvc
->sdtr_speed3
;
11298 } else if (tid
== 12) {
11299 sdtr_speed
= asc_dvc
->sdtr_speed4
;
11301 if (sdtr_speed
& ADV_MAX_TID
) {
11302 asc_dvc
->sdtr_able
|= (1 << tid
);
11308 * Set the host maximum queuing (max. 253, min. 16) and the per device
11309 * maximum queuing (max. 63, min. 4).
11311 if (eep_config
.max_host_qng
> ASC_DEF_MAX_HOST_QNG
) {
11312 eep_config
.max_host_qng
= ASC_DEF_MAX_HOST_QNG
;
11313 } else if (eep_config
.max_host_qng
< ASC_DEF_MIN_HOST_QNG
) {
11314 /* If the value is zero, assume it is uninitialized. */
11315 if (eep_config
.max_host_qng
== 0) {
11316 eep_config
.max_host_qng
= ASC_DEF_MAX_HOST_QNG
;
11318 eep_config
.max_host_qng
= ASC_DEF_MIN_HOST_QNG
;
11322 if (eep_config
.max_dvc_qng
> ASC_DEF_MAX_DVC_QNG
) {
11323 eep_config
.max_dvc_qng
= ASC_DEF_MAX_DVC_QNG
;
11324 } else if (eep_config
.max_dvc_qng
< ASC_DEF_MIN_DVC_QNG
) {
11325 /* If the value is zero, assume it is uninitialized. */
11326 if (eep_config
.max_dvc_qng
== 0) {
11327 eep_config
.max_dvc_qng
= ASC_DEF_MAX_DVC_QNG
;
11329 eep_config
.max_dvc_qng
= ASC_DEF_MIN_DVC_QNG
;
11334 * If 'max_dvc_qng' is greater than 'max_host_qng', then
11335 * set 'max_dvc_qng' to 'max_host_qng'.
11337 if (eep_config
.max_dvc_qng
> eep_config
.max_host_qng
) {
11338 eep_config
.max_dvc_qng
= eep_config
.max_host_qng
;
11342 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
11343 * values based on possibly adjusted EEPROM values.
11345 asc_dvc
->max_host_qng
= eep_config
.max_host_qng
;
11346 asc_dvc
->max_dvc_qng
= eep_config
.max_dvc_qng
;
11349 * If the EEPROM 'termination' field is set to automatic (0), then set
11350 * the ADV_DVC_CFG 'termination' field to automatic also.
11352 * If the termination is specified with a non-zero 'termination'
11353 * value check that a legal value is set and set the ADV_DVC_CFG
11354 * 'termination' field appropriately.
11356 if (eep_config
.termination_se
== 0) {
11357 termination
= 0; /* auto termination for SE */
11359 /* Enable manual control with low off / high off. */
11360 if (eep_config
.termination_se
== 1) {
11363 /* Enable manual control with low off / high on. */
11364 } else if (eep_config
.termination_se
== 2) {
11365 termination
= TERM_SE_HI
;
11367 /* Enable manual control with low on / high on. */
11368 } else if (eep_config
.termination_se
== 3) {
11369 termination
= TERM_SE
;
11372 * The EEPROM 'termination_se' field contains a bad value.
11373 * Use automatic termination instead.
11376 warn_code
|= ASC_WARN_EEPROM_TERMINATION
;
11380 if (eep_config
.termination_lvd
== 0) {
11381 asc_dvc
->cfg
->termination
= termination
; /* auto termination for LVD */
11383 /* Enable manual control with low off / high off. */
11384 if (eep_config
.termination_lvd
== 1) {
11385 asc_dvc
->cfg
->termination
= termination
;
11387 /* Enable manual control with low off / high on. */
11388 } else if (eep_config
.termination_lvd
== 2) {
11389 asc_dvc
->cfg
->termination
= termination
| TERM_LVD_HI
;
11391 /* Enable manual control with low on / high on. */
11392 } else if (eep_config
.termination_lvd
== 3) {
11393 asc_dvc
->cfg
->termination
= termination
| TERM_LVD
;
11396 * The EEPROM 'termination_lvd' field contains a bad value.
11397 * Use automatic termination instead.
11399 asc_dvc
->cfg
->termination
= termination
;
11400 warn_code
|= ASC_WARN_EEPROM_TERMINATION
;
11408 * Read the board's EEPROM configuration. Set fields in ASC_DVC_VAR and
11409 * ASC_DVC_CFG based on the EEPROM settings. The chip is stopped while
11410 * all of this is done.
11412 * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
11414 * For a non-fatal error return a warning code. If there are no warnings
11415 * then 0 is returned.
11417 * Note: Chip is stopped on entry.
11419 static int __devinit
AdvInitFrom38C1600EEP(ADV_DVC_VAR
*asc_dvc
)
11421 AdvPortAddr iop_base
;
11423 ADVEEP_38C1600_CONFIG eep_config
;
11424 uchar tid
, termination
;
11425 ushort sdtr_speed
= 0;
11427 iop_base
= asc_dvc
->iop_base
;
11432 * Read the board's EEPROM configuration.
11434 * Set default values if a bad checksum is found.
11436 if (AdvGet38C1600EEPConfig(iop_base
, &eep_config
) !=
11437 eep_config
.check_sum
) {
11438 struct pci_dev
*pdev
= adv_dvc_to_pdev(asc_dvc
);
11439 warn_code
|= ASC_WARN_EEPROM_CHKSUM
;
11442 * Set EEPROM default values.
11444 memcpy(&eep_config
, &Default_38C1600_EEPROM_Config
,
11445 sizeof(ADVEEP_38C1600_CONFIG
));
11447 if (PCI_FUNC(pdev
->devfn
) != 0) {
11450 * Disable Bit 14 (BIOS_ENABLE) to fix SPARC Ultra 60
11451 * and old Mac system booting problem. The Expansion
11452 * ROM must be disabled in Function 1 for these systems
11454 eep_config
.cfg_lsw
&= ~ADV_EEPROM_BIOS_ENABLE
;
11456 * Clear the INTAB (bit 11) if the GPIO 0 input
11457 * indicates the Function 1 interrupt line is wired
11460 * Set/Clear Bit 11 (INTAB) from the GPIO bit 0 input:
11461 * 1 - Function 1 interrupt line wired to INT A.
11462 * 0 - Function 1 interrupt line wired to INT B.
11464 * Note: Function 0 is always wired to INTA.
11465 * Put all 5 GPIO bits in input mode and then read
11466 * their input values.
11468 AdvWriteByteRegister(iop_base
, IOPB_GPIO_CNTL
, 0);
11469 ints
= AdvReadByteRegister(iop_base
, IOPB_GPIO_DATA
);
11470 if ((ints
& 0x01) == 0)
11471 eep_config
.cfg_lsw
&= ~ADV_EEPROM_INTAB
;
11475 * Assume the 6 byte board serial number that was read from
11476 * EEPROM is correct even if the EEPROM checksum failed.
11478 eep_config
.serial_number_word3
=
11479 AdvReadEEPWord(iop_base
, ADV_EEP_DVC_CFG_END
- 1);
11480 eep_config
.serial_number_word2
=
11481 AdvReadEEPWord(iop_base
, ADV_EEP_DVC_CFG_END
- 2);
11482 eep_config
.serial_number_word1
=
11483 AdvReadEEPWord(iop_base
, ADV_EEP_DVC_CFG_END
- 3);
11485 AdvSet38C1600EEPConfig(iop_base
, &eep_config
);
11489 * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the
11490 * EEPROM configuration that was read.
11492 * This is the mapping of EEPROM fields to Adv Library fields.
11494 asc_dvc
->wdtr_able
= eep_config
.wdtr_able
;
11495 asc_dvc
->sdtr_speed1
= eep_config
.sdtr_speed1
;
11496 asc_dvc
->sdtr_speed2
= eep_config
.sdtr_speed2
;
11497 asc_dvc
->sdtr_speed3
= eep_config
.sdtr_speed3
;
11498 asc_dvc
->sdtr_speed4
= eep_config
.sdtr_speed4
;
11499 asc_dvc
->ppr_able
= 0;
11500 asc_dvc
->tagqng_able
= eep_config
.tagqng_able
;
11501 asc_dvc
->cfg
->disc_enable
= eep_config
.disc_enable
;
11502 asc_dvc
->max_host_qng
= eep_config
.max_host_qng
;
11503 asc_dvc
->max_dvc_qng
= eep_config
.max_dvc_qng
;
11504 asc_dvc
->chip_scsi_id
= (eep_config
.adapter_scsi_id
& ASC_MAX_TID
);
11505 asc_dvc
->start_motor
= eep_config
.start_motor
;
11506 asc_dvc
->scsi_reset_wait
= eep_config
.scsi_reset_delay
;
11507 asc_dvc
->bios_ctrl
= eep_config
.bios_ctrl
;
11508 asc_dvc
->no_scam
= eep_config
.scam_tolerant
;
11511 * For every Target ID if any of its 'sdtr_speed[1234]' bits
11512 * are set, then set an 'sdtr_able' bit for it.
11514 asc_dvc
->sdtr_able
= 0;
11515 for (tid
= 0; tid
<= ASC_MAX_TID
; tid
++) {
11517 sdtr_speed
= asc_dvc
->sdtr_speed1
;
11518 } else if (tid
== 4) {
11519 sdtr_speed
= asc_dvc
->sdtr_speed2
;
11520 } else if (tid
== 8) {
11521 sdtr_speed
= asc_dvc
->sdtr_speed3
;
11522 } else if (tid
== 12) {
11523 sdtr_speed
= asc_dvc
->sdtr_speed4
;
11525 if (sdtr_speed
& ASC_MAX_TID
) {
11526 asc_dvc
->sdtr_able
|= (1 << tid
);
11532 * Set the host maximum queuing (max. 253, min. 16) and the per device
11533 * maximum queuing (max. 63, min. 4).
11535 if (eep_config
.max_host_qng
> ASC_DEF_MAX_HOST_QNG
) {
11536 eep_config
.max_host_qng
= ASC_DEF_MAX_HOST_QNG
;
11537 } else if (eep_config
.max_host_qng
< ASC_DEF_MIN_HOST_QNG
) {
11538 /* If the value is zero, assume it is uninitialized. */
11539 if (eep_config
.max_host_qng
== 0) {
11540 eep_config
.max_host_qng
= ASC_DEF_MAX_HOST_QNG
;
11542 eep_config
.max_host_qng
= ASC_DEF_MIN_HOST_QNG
;
11546 if (eep_config
.max_dvc_qng
> ASC_DEF_MAX_DVC_QNG
) {
11547 eep_config
.max_dvc_qng
= ASC_DEF_MAX_DVC_QNG
;
11548 } else if (eep_config
.max_dvc_qng
< ASC_DEF_MIN_DVC_QNG
) {
11549 /* If the value is zero, assume it is uninitialized. */
11550 if (eep_config
.max_dvc_qng
== 0) {
11551 eep_config
.max_dvc_qng
= ASC_DEF_MAX_DVC_QNG
;
11553 eep_config
.max_dvc_qng
= ASC_DEF_MIN_DVC_QNG
;
11558 * If 'max_dvc_qng' is greater than 'max_host_qng', then
11559 * set 'max_dvc_qng' to 'max_host_qng'.
11561 if (eep_config
.max_dvc_qng
> eep_config
.max_host_qng
) {
11562 eep_config
.max_dvc_qng
= eep_config
.max_host_qng
;
11566 * Set ASC_DVC_VAR 'max_host_qng' and ASC_DVC_VAR 'max_dvc_qng'
11567 * values based on possibly adjusted EEPROM values.
11569 asc_dvc
->max_host_qng
= eep_config
.max_host_qng
;
11570 asc_dvc
->max_dvc_qng
= eep_config
.max_dvc_qng
;
11573 * If the EEPROM 'termination' field is set to automatic (0), then set
11574 * the ASC_DVC_CFG 'termination' field to automatic also.
11576 * If the termination is specified with a non-zero 'termination'
11577 * value check that a legal value is set and set the ASC_DVC_CFG
11578 * 'termination' field appropriately.
11580 if (eep_config
.termination_se
== 0) {
11581 termination
= 0; /* auto termination for SE */
11583 /* Enable manual control with low off / high off. */
11584 if (eep_config
.termination_se
== 1) {
11587 /* Enable manual control with low off / high on. */
11588 } else if (eep_config
.termination_se
== 2) {
11589 termination
= TERM_SE_HI
;
11591 /* Enable manual control with low on / high on. */
11592 } else if (eep_config
.termination_se
== 3) {
11593 termination
= TERM_SE
;
11596 * The EEPROM 'termination_se' field contains a bad value.
11597 * Use automatic termination instead.
11600 warn_code
|= ASC_WARN_EEPROM_TERMINATION
;
11604 if (eep_config
.termination_lvd
== 0) {
11605 asc_dvc
->cfg
->termination
= termination
; /* auto termination for LVD */
11607 /* Enable manual control with low off / high off. */
11608 if (eep_config
.termination_lvd
== 1) {
11609 asc_dvc
->cfg
->termination
= termination
;
11611 /* Enable manual control with low off / high on. */
11612 } else if (eep_config
.termination_lvd
== 2) {
11613 asc_dvc
->cfg
->termination
= termination
| TERM_LVD_HI
;
11615 /* Enable manual control with low on / high on. */
11616 } else if (eep_config
.termination_lvd
== 3) {
11617 asc_dvc
->cfg
->termination
= termination
| TERM_LVD
;
11620 * The EEPROM 'termination_lvd' field contains a bad value.
11621 * Use automatic termination instead.
11623 asc_dvc
->cfg
->termination
= termination
;
11624 warn_code
|= ASC_WARN_EEPROM_TERMINATION
;
11632 * Initialize the ADV_DVC_VAR structure.
11634 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
11636 * For a non-fatal error return a warning code. If there are no warnings
11637 * then 0 is returned.
11639 static int __devinit
11640 AdvInitGetConfig(struct pci_dev
*pdev
, struct Scsi_Host
*shost
)
11642 struct asc_board
*board
= shost_priv(shost
);
11643 ADV_DVC_VAR
*asc_dvc
= &board
->dvc_var
.adv_dvc_var
;
11644 unsigned short warn_code
= 0;
11645 AdvPortAddr iop_base
= asc_dvc
->iop_base
;
11649 asc_dvc
->err_code
= 0;
11652 * Save the state of the PCI Configuration Command Register
11653 * "Parity Error Response Control" Bit. If the bit is clear (0),
11654 * in AdvInitAsc3550/38C0800Driver() tell the microcode to ignore
11655 * DMA parity errors.
11657 asc_dvc
->cfg
->control_flag
= 0;
11658 pci_read_config_word(pdev
, PCI_COMMAND
, &cmd
);
11659 if ((cmd
& PCI_COMMAND_PARITY
) == 0)
11660 asc_dvc
->cfg
->control_flag
|= CONTROL_FLAG_IGNORE_PERR
;
11662 asc_dvc
->cfg
->chip_version
=
11663 AdvGetChipVersion(iop_base
, asc_dvc
->bus_type
);
11665 ASC_DBG(1, "iopb_chip_id_1: 0x%x 0x%x\n",
11666 (ushort
)AdvReadByteRegister(iop_base
, IOPB_CHIP_ID_1
),
11667 (ushort
)ADV_CHIP_ID_BYTE
);
11669 ASC_DBG(1, "iopw_chip_id_0: 0x%x 0x%x\n",
11670 (ushort
)AdvReadWordRegister(iop_base
, IOPW_CHIP_ID_0
),
11671 (ushort
)ADV_CHIP_ID_WORD
);
11674 * Reset the chip to start and allow register writes.
11676 if (AdvFindSignature(iop_base
) == 0) {
11677 asc_dvc
->err_code
= ASC_IERR_BAD_SIGNATURE
;
11681 * The caller must set 'chip_type' to a valid setting.
11683 if (asc_dvc
->chip_type
!= ADV_CHIP_ASC3550
&&
11684 asc_dvc
->chip_type
!= ADV_CHIP_ASC38C0800
&&
11685 asc_dvc
->chip_type
!= ADV_CHIP_ASC38C1600
) {
11686 asc_dvc
->err_code
|= ASC_IERR_BAD_CHIPTYPE
;
11693 AdvWriteWordRegister(iop_base
, IOPW_CTRL_REG
,
11694 ADV_CTRL_REG_CMD_RESET
);
11696 AdvWriteWordRegister(iop_base
, IOPW_CTRL_REG
,
11697 ADV_CTRL_REG_CMD_WR_IO_REG
);
11699 if (asc_dvc
->chip_type
== ADV_CHIP_ASC38C1600
) {
11700 status
= AdvInitFrom38C1600EEP(asc_dvc
);
11701 } else if (asc_dvc
->chip_type
== ADV_CHIP_ASC38C0800
) {
11702 status
= AdvInitFrom38C0800EEP(asc_dvc
);
11704 status
= AdvInitFrom3550EEP(asc_dvc
);
11706 warn_code
|= status
;
11709 if (warn_code
!= 0)
11710 shost_printk(KERN_WARNING
, shost
, "warning: 0x%x\n", warn_code
);
11712 if (asc_dvc
->err_code
)
11713 shost_printk(KERN_ERR
, shost
, "error code 0x%x\n",
11714 asc_dvc
->err_code
);
11716 return asc_dvc
->err_code
;
11720 static struct scsi_host_template advansys_template
= {
11721 .proc_name
= DRV_NAME
,
11722 #ifdef CONFIG_PROC_FS
11723 .proc_info
= advansys_proc_info
,
11726 .info
= advansys_info
,
11727 .queuecommand
= advansys_queuecommand
,
11728 .eh_bus_reset_handler
= advansys_reset
,
11729 .bios_param
= advansys_biosparam
,
11730 .slave_configure
= advansys_slave_configure
,
11732 * Because the driver may control an ISA adapter 'unchecked_isa_dma'
11733 * must be set. The flag will be cleared in advansys_board_found
11734 * for non-ISA adapters.
11736 .unchecked_isa_dma
= 1,
11738 * All adapters controlled by this driver are capable of large
11739 * scatter-gather lists. According to the mid-level SCSI documentation
11740 * this obviates any performance gain provided by setting
11741 * 'use_clustering'. But empirically while CPU utilization is increased
11742 * by enabling clustering, I/O throughput increases as well.
11744 .use_clustering
= ENABLE_CLUSTERING
,
11747 static int __devinit
advansys_wide_init_chip(struct Scsi_Host
*shost
)
11749 struct asc_board
*board
= shost_priv(shost
);
11750 struct adv_dvc_var
*adv_dvc
= &board
->dvc_var
.adv_dvc_var
;
11752 adv_req_t
*reqp
= NULL
;
11755 int warn_code
, err_code
;
11758 * Allocate buffer carrier structures. The total size
11759 * is about 4 KB, so allocate all at once.
11761 adv_dvc
->carrier_buf
= kmalloc(ADV_CARRIER_BUFSIZE
, GFP_KERNEL
);
11762 ASC_DBG(1, "carrier_buf 0x%p\n", adv_dvc
->carrier_buf
);
11764 if (!adv_dvc
->carrier_buf
)
11765 goto kmalloc_failed
;
11768 * Allocate up to 'max_host_qng' request structures for the Wide
11769 * board. The total size is about 16 KB, so allocate all at once.
11770 * If the allocation fails decrement and try again.
11772 for (req_cnt
= adv_dvc
->max_host_qng
; req_cnt
> 0; req_cnt
--) {
11773 reqp
= kmalloc(sizeof(adv_req_t
) * req_cnt
, GFP_KERNEL
);
11775 ASC_DBG(1, "reqp 0x%p, req_cnt %d, bytes %lu\n", reqp
, req_cnt
,
11776 (ulong
)sizeof(adv_req_t
) * req_cnt
);
11783 goto kmalloc_failed
;
11785 adv_dvc
->orig_reqp
= reqp
;
11788 * Allocate up to ADV_TOT_SG_BLOCK request structures for
11789 * the Wide board. Each structure is about 136 bytes.
11791 board
->adv_sgblkp
= NULL
;
11792 for (sg_cnt
= 0; sg_cnt
< ADV_TOT_SG_BLOCK
; sg_cnt
++) {
11793 sgp
= kmalloc(sizeof(adv_sgblk_t
), GFP_KERNEL
);
11798 sgp
->next_sgblkp
= board
->adv_sgblkp
;
11799 board
->adv_sgblkp
= sgp
;
11803 ASC_DBG(1, "sg_cnt %d * %lu = %lu bytes\n", sg_cnt
, sizeof(adv_sgblk_t
),
11804 sizeof(adv_sgblk_t
) * sg_cnt
);
11806 if (!board
->adv_sgblkp
)
11807 goto kmalloc_failed
;
11810 * Point 'adv_reqp' to the request structures and
11811 * link them together.
11814 reqp
[req_cnt
].next_reqp
= NULL
;
11815 for (; req_cnt
> 0; req_cnt
--) {
11816 reqp
[req_cnt
- 1].next_reqp
= &reqp
[req_cnt
];
11818 board
->adv_reqp
= &reqp
[0];
11820 if (adv_dvc
->chip_type
== ADV_CHIP_ASC3550
) {
11821 ASC_DBG(2, "AdvInitAsc3550Driver()\n");
11822 warn_code
= AdvInitAsc3550Driver(adv_dvc
);
11823 } else if (adv_dvc
->chip_type
== ADV_CHIP_ASC38C0800
) {
11824 ASC_DBG(2, "AdvInitAsc38C0800Driver()\n");
11825 warn_code
= AdvInitAsc38C0800Driver(adv_dvc
);
11827 ASC_DBG(2, "AdvInitAsc38C1600Driver()\n");
11828 warn_code
= AdvInitAsc38C1600Driver(adv_dvc
);
11830 err_code
= adv_dvc
->err_code
;
11832 if (warn_code
|| err_code
) {
11833 shost_printk(KERN_WARNING
, shost
, "error: warn 0x%x, error "
11834 "0x%x\n", warn_code
, err_code
);
11840 shost_printk(KERN_ERR
, shost
, "error: kmalloc() failed\n");
11841 err_code
= ADV_ERROR
;
11846 static void advansys_wide_free_mem(struct asc_board
*board
)
11848 struct adv_dvc_var
*adv_dvc
= &board
->dvc_var
.adv_dvc_var
;
11849 kfree(adv_dvc
->carrier_buf
);
11850 adv_dvc
->carrier_buf
= NULL
;
11851 kfree(adv_dvc
->orig_reqp
);
11852 adv_dvc
->orig_reqp
= board
->adv_reqp
= NULL
;
11853 while (board
->adv_sgblkp
) {
11854 adv_sgblk_t
*sgp
= board
->adv_sgblkp
;
11855 board
->adv_sgblkp
= sgp
->next_sgblkp
;
11860 static int __devinit
advansys_board_found(struct Scsi_Host
*shost
,
11861 unsigned int iop
, int bus_type
)
11863 struct pci_dev
*pdev
;
11864 struct asc_board
*boardp
= shost_priv(shost
);
11865 ASC_DVC_VAR
*asc_dvc_varp
= NULL
;
11866 ADV_DVC_VAR
*adv_dvc_varp
= NULL
;
11867 int share_irq
, warn_code
, ret
;
11869 pdev
= (bus_type
== ASC_IS_PCI
) ? to_pci_dev(boardp
->dev
) : NULL
;
11871 if (ASC_NARROW_BOARD(boardp
)) {
11872 ASC_DBG(1, "narrow board\n");
11873 asc_dvc_varp
= &boardp
->dvc_var
.asc_dvc_var
;
11874 asc_dvc_varp
->bus_type
= bus_type
;
11875 asc_dvc_varp
->drv_ptr
= boardp
;
11876 asc_dvc_varp
->cfg
= &boardp
->dvc_cfg
.asc_dvc_cfg
;
11877 asc_dvc_varp
->iop_base
= iop
;
11880 adv_dvc_varp
= &boardp
->dvc_var
.adv_dvc_var
;
11881 adv_dvc_varp
->drv_ptr
= boardp
;
11882 adv_dvc_varp
->cfg
= &boardp
->dvc_cfg
.adv_dvc_cfg
;
11883 if (pdev
->device
== PCI_DEVICE_ID_ASP_ABP940UW
) {
11884 ASC_DBG(1, "wide board ASC-3550\n");
11885 adv_dvc_varp
->chip_type
= ADV_CHIP_ASC3550
;
11886 } else if (pdev
->device
== PCI_DEVICE_ID_38C0800_REV1
) {
11887 ASC_DBG(1, "wide board ASC-38C0800\n");
11888 adv_dvc_varp
->chip_type
= ADV_CHIP_ASC38C0800
;
11890 ASC_DBG(1, "wide board ASC-38C1600\n");
11891 adv_dvc_varp
->chip_type
= ADV_CHIP_ASC38C1600
;
11894 boardp
->asc_n_io_port
= pci_resource_len(pdev
, 1);
11895 boardp
->ioremap_addr
= pci_ioremap_bar(pdev
, 1);
11896 if (!boardp
->ioremap_addr
) {
11897 shost_printk(KERN_ERR
, shost
, "ioremap(%lx, %d) "
11899 (long)pci_resource_start(pdev
, 1),
11900 boardp
->asc_n_io_port
);
11904 adv_dvc_varp
->iop_base
= (AdvPortAddr
)boardp
->ioremap_addr
;
11905 ASC_DBG(1, "iop_base: 0x%p\n", adv_dvc_varp
->iop_base
);
11908 * Even though it isn't used to access wide boards, other
11909 * than for the debug line below, save I/O Port address so
11910 * that it can be reported.
11912 boardp
->ioport
= iop
;
11914 ASC_DBG(1, "iopb_chip_id_1 0x%x, iopw_chip_id_0 0x%x\n",
11915 (ushort
)inp(iop
+ 1), (ushort
)inpw(iop
));
11916 #endif /* CONFIG_PCI */
11919 #ifdef CONFIG_PROC_FS
11921 * Allocate buffer for printing information from
11922 * /proc/scsi/advansys/[0...].
11924 boardp
->prtbuf
= kmalloc(ASC_PRTBUF_SIZE
, GFP_KERNEL
);
11925 if (!boardp
->prtbuf
) {
11926 shost_printk(KERN_ERR
, shost
, "kmalloc(%d) returned NULL\n",
11931 #endif /* CONFIG_PROC_FS */
11933 if (ASC_NARROW_BOARD(boardp
)) {
11935 * Set the board bus type and PCI IRQ before
11936 * calling AscInitGetConfig().
11938 switch (asc_dvc_varp
->bus_type
) {
11941 shost
->unchecked_isa_dma
= TRUE
;
11945 shost
->unchecked_isa_dma
= FALSE
;
11949 shost
->unchecked_isa_dma
= FALSE
;
11950 share_irq
= IRQF_SHARED
;
11952 #endif /* CONFIG_ISA */
11955 shost
->unchecked_isa_dma
= FALSE
;
11956 share_irq
= IRQF_SHARED
;
11958 #endif /* CONFIG_PCI */
11960 shost_printk(KERN_ERR
, shost
, "unknown adapter type: "
11961 "%d\n", asc_dvc_varp
->bus_type
);
11962 shost
->unchecked_isa_dma
= TRUE
;
11968 * NOTE: AscInitGetConfig() may change the board's
11969 * bus_type value. The bus_type value should no
11970 * longer be used. If the bus_type field must be
11971 * referenced only use the bit-wise AND operator "&".
11973 ASC_DBG(2, "AscInitGetConfig()\n");
11974 ret
= AscInitGetConfig(shost
) ? -ENODEV
: 0;
11978 * For Wide boards set PCI information before calling
11979 * AdvInitGetConfig().
11981 shost
->unchecked_isa_dma
= FALSE
;
11982 share_irq
= IRQF_SHARED
;
11983 ASC_DBG(2, "AdvInitGetConfig()\n");
11985 ret
= AdvInitGetConfig(pdev
, shost
) ? -ENODEV
: 0;
11986 #endif /* CONFIG_PCI */
11990 goto err_free_proc
;
11993 * Save the EEPROM configuration so that it can be displayed
11994 * from /proc/scsi/advansys/[0...].
11996 if (ASC_NARROW_BOARD(boardp
)) {
12001 * Set the adapter's target id bit in the 'init_tidmask' field.
12003 boardp
->init_tidmask
|=
12004 ADV_TID_TO_TIDMASK(asc_dvc_varp
->cfg
->chip_scsi_id
);
12007 * Save EEPROM settings for the board.
12009 ep
= &boardp
->eep_config
.asc_eep
;
12011 ep
->init_sdtr
= asc_dvc_varp
->cfg
->sdtr_enable
;
12012 ep
->disc_enable
= asc_dvc_varp
->cfg
->disc_enable
;
12013 ep
->use_cmd_qng
= asc_dvc_varp
->cfg
->cmd_qng_enabled
;
12014 ASC_EEP_SET_DMA_SPD(ep
, asc_dvc_varp
->cfg
->isa_dma_speed
);
12015 ep
->start_motor
= asc_dvc_varp
->start_motor
;
12016 ep
->cntl
= asc_dvc_varp
->dvc_cntl
;
12017 ep
->no_scam
= asc_dvc_varp
->no_scam
;
12018 ep
->max_total_qng
= asc_dvc_varp
->max_total_qng
;
12019 ASC_EEP_SET_CHIP_ID(ep
, asc_dvc_varp
->cfg
->chip_scsi_id
);
12020 /* 'max_tag_qng' is set to the same value for every device. */
12021 ep
->max_tag_qng
= asc_dvc_varp
->cfg
->max_tag_qng
[0];
12022 ep
->adapter_info
[0] = asc_dvc_varp
->cfg
->adapter_info
[0];
12023 ep
->adapter_info
[1] = asc_dvc_varp
->cfg
->adapter_info
[1];
12024 ep
->adapter_info
[2] = asc_dvc_varp
->cfg
->adapter_info
[2];
12025 ep
->adapter_info
[3] = asc_dvc_varp
->cfg
->adapter_info
[3];
12026 ep
->adapter_info
[4] = asc_dvc_varp
->cfg
->adapter_info
[4];
12027 ep
->adapter_info
[5] = asc_dvc_varp
->cfg
->adapter_info
[5];
12030 * Modify board configuration.
12032 ASC_DBG(2, "AscInitSetConfig()\n");
12033 ret
= AscInitSetConfig(pdev
, shost
) ? -ENODEV
: 0;
12035 goto err_free_proc
;
12037 ADVEEP_3550_CONFIG
*ep_3550
;
12038 ADVEEP_38C0800_CONFIG
*ep_38C0800
;
12039 ADVEEP_38C1600_CONFIG
*ep_38C1600
;
12042 * Save Wide EEP Configuration Information.
12044 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
) {
12045 ep_3550
= &boardp
->eep_config
.adv_3550_eep
;
12047 ep_3550
->adapter_scsi_id
= adv_dvc_varp
->chip_scsi_id
;
12048 ep_3550
->max_host_qng
= adv_dvc_varp
->max_host_qng
;
12049 ep_3550
->max_dvc_qng
= adv_dvc_varp
->max_dvc_qng
;
12050 ep_3550
->termination
= adv_dvc_varp
->cfg
->termination
;
12051 ep_3550
->disc_enable
= adv_dvc_varp
->cfg
->disc_enable
;
12052 ep_3550
->bios_ctrl
= adv_dvc_varp
->bios_ctrl
;
12053 ep_3550
->wdtr_able
= adv_dvc_varp
->wdtr_able
;
12054 ep_3550
->sdtr_able
= adv_dvc_varp
->sdtr_able
;
12055 ep_3550
->ultra_able
= adv_dvc_varp
->ultra_able
;
12056 ep_3550
->tagqng_able
= adv_dvc_varp
->tagqng_able
;
12057 ep_3550
->start_motor
= adv_dvc_varp
->start_motor
;
12058 ep_3550
->scsi_reset_delay
=
12059 adv_dvc_varp
->scsi_reset_wait
;
12060 ep_3550
->serial_number_word1
=
12061 adv_dvc_varp
->cfg
->serial1
;
12062 ep_3550
->serial_number_word2
=
12063 adv_dvc_varp
->cfg
->serial2
;
12064 ep_3550
->serial_number_word3
=
12065 adv_dvc_varp
->cfg
->serial3
;
12066 } else if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C0800
) {
12067 ep_38C0800
= &boardp
->eep_config
.adv_38C0800_eep
;
12069 ep_38C0800
->adapter_scsi_id
=
12070 adv_dvc_varp
->chip_scsi_id
;
12071 ep_38C0800
->max_host_qng
= adv_dvc_varp
->max_host_qng
;
12072 ep_38C0800
->max_dvc_qng
= adv_dvc_varp
->max_dvc_qng
;
12073 ep_38C0800
->termination_lvd
=
12074 adv_dvc_varp
->cfg
->termination
;
12075 ep_38C0800
->disc_enable
=
12076 adv_dvc_varp
->cfg
->disc_enable
;
12077 ep_38C0800
->bios_ctrl
= adv_dvc_varp
->bios_ctrl
;
12078 ep_38C0800
->wdtr_able
= adv_dvc_varp
->wdtr_able
;
12079 ep_38C0800
->tagqng_able
= adv_dvc_varp
->tagqng_able
;
12080 ep_38C0800
->sdtr_speed1
= adv_dvc_varp
->sdtr_speed1
;
12081 ep_38C0800
->sdtr_speed2
= adv_dvc_varp
->sdtr_speed2
;
12082 ep_38C0800
->sdtr_speed3
= adv_dvc_varp
->sdtr_speed3
;
12083 ep_38C0800
->sdtr_speed4
= adv_dvc_varp
->sdtr_speed4
;
12084 ep_38C0800
->tagqng_able
= adv_dvc_varp
->tagqng_able
;
12085 ep_38C0800
->start_motor
= adv_dvc_varp
->start_motor
;
12086 ep_38C0800
->scsi_reset_delay
=
12087 adv_dvc_varp
->scsi_reset_wait
;
12088 ep_38C0800
->serial_number_word1
=
12089 adv_dvc_varp
->cfg
->serial1
;
12090 ep_38C0800
->serial_number_word2
=
12091 adv_dvc_varp
->cfg
->serial2
;
12092 ep_38C0800
->serial_number_word3
=
12093 adv_dvc_varp
->cfg
->serial3
;
12095 ep_38C1600
= &boardp
->eep_config
.adv_38C1600_eep
;
12097 ep_38C1600
->adapter_scsi_id
=
12098 adv_dvc_varp
->chip_scsi_id
;
12099 ep_38C1600
->max_host_qng
= adv_dvc_varp
->max_host_qng
;
12100 ep_38C1600
->max_dvc_qng
= adv_dvc_varp
->max_dvc_qng
;
12101 ep_38C1600
->termination_lvd
=
12102 adv_dvc_varp
->cfg
->termination
;
12103 ep_38C1600
->disc_enable
=
12104 adv_dvc_varp
->cfg
->disc_enable
;
12105 ep_38C1600
->bios_ctrl
= adv_dvc_varp
->bios_ctrl
;
12106 ep_38C1600
->wdtr_able
= adv_dvc_varp
->wdtr_able
;
12107 ep_38C1600
->tagqng_able
= adv_dvc_varp
->tagqng_able
;
12108 ep_38C1600
->sdtr_speed1
= adv_dvc_varp
->sdtr_speed1
;
12109 ep_38C1600
->sdtr_speed2
= adv_dvc_varp
->sdtr_speed2
;
12110 ep_38C1600
->sdtr_speed3
= adv_dvc_varp
->sdtr_speed3
;
12111 ep_38C1600
->sdtr_speed4
= adv_dvc_varp
->sdtr_speed4
;
12112 ep_38C1600
->tagqng_able
= adv_dvc_varp
->tagqng_able
;
12113 ep_38C1600
->start_motor
= adv_dvc_varp
->start_motor
;
12114 ep_38C1600
->scsi_reset_delay
=
12115 adv_dvc_varp
->scsi_reset_wait
;
12116 ep_38C1600
->serial_number_word1
=
12117 adv_dvc_varp
->cfg
->serial1
;
12118 ep_38C1600
->serial_number_word2
=
12119 adv_dvc_varp
->cfg
->serial2
;
12120 ep_38C1600
->serial_number_word3
=
12121 adv_dvc_varp
->cfg
->serial3
;
12125 * Set the adapter's target id bit in the 'init_tidmask' field.
12127 boardp
->init_tidmask
|=
12128 ADV_TID_TO_TIDMASK(adv_dvc_varp
->chip_scsi_id
);
12132 * Channels are numbered beginning with 0. For AdvanSys one host
12133 * structure supports one channel. Multi-channel boards have a
12134 * separate host structure for each channel.
12136 shost
->max_channel
= 0;
12137 if (ASC_NARROW_BOARD(boardp
)) {
12138 shost
->max_id
= ASC_MAX_TID
+ 1;
12139 shost
->max_lun
= ASC_MAX_LUN
+ 1;
12140 shost
->max_cmd_len
= ASC_MAX_CDB_LEN
;
12142 shost
->io_port
= asc_dvc_varp
->iop_base
;
12143 boardp
->asc_n_io_port
= ASC_IOADR_GAP
;
12144 shost
->this_id
= asc_dvc_varp
->cfg
->chip_scsi_id
;
12146 /* Set maximum number of queues the adapter can handle. */
12147 shost
->can_queue
= asc_dvc_varp
->max_total_qng
;
12149 shost
->max_id
= ADV_MAX_TID
+ 1;
12150 shost
->max_lun
= ADV_MAX_LUN
+ 1;
12151 shost
->max_cmd_len
= ADV_MAX_CDB_LEN
;
12154 * Save the I/O Port address and length even though
12155 * I/O ports are not used to access Wide boards.
12156 * Instead the Wide boards are accessed with
12157 * PCI Memory Mapped I/O.
12159 shost
->io_port
= iop
;
12161 shost
->this_id
= adv_dvc_varp
->chip_scsi_id
;
12163 /* Set maximum number of queues the adapter can handle. */
12164 shost
->can_queue
= adv_dvc_varp
->max_host_qng
;
12168 * Following v1.3.89, 'cmd_per_lun' is no longer needed
12169 * and should be set to zero.
12171 * But because of a bug introduced in v1.3.89 if the driver is
12172 * compiled as a module and 'cmd_per_lun' is zero, the Mid-Level
12173 * SCSI function 'allocate_device' will panic. To allow the driver
12174 * to work as a module in these kernels set 'cmd_per_lun' to 1.
12176 * Note: This is wrong. cmd_per_lun should be set to the depth
12177 * you want on untagged devices always.
12180 shost
->cmd_per_lun
= 1;
12182 shost->cmd_per_lun = 0;
12186 * Set the maximum number of scatter-gather elements the
12187 * adapter can handle.
12189 if (ASC_NARROW_BOARD(boardp
)) {
12191 * Allow two commands with 'sg_tablesize' scatter-gather
12192 * elements to be executed simultaneously. This value is
12193 * the theoretical hardware limit. It may be decreased
12196 shost
->sg_tablesize
=
12197 (((asc_dvc_varp
->max_total_qng
- 2) / 2) *
12198 ASC_SG_LIST_PER_Q
) + 1;
12200 shost
->sg_tablesize
= ADV_MAX_SG_LIST
;
12204 * The value of 'sg_tablesize' can not exceed the SCSI
12205 * mid-level driver definition of SG_ALL. SG_ALL also
12206 * must not be exceeded, because it is used to define the
12207 * size of the scatter-gather table in 'struct asc_sg_head'.
12209 if (shost
->sg_tablesize
> SG_ALL
) {
12210 shost
->sg_tablesize
= SG_ALL
;
12213 ASC_DBG(1, "sg_tablesize: %d\n", shost
->sg_tablesize
);
12215 /* BIOS start address. */
12216 if (ASC_NARROW_BOARD(boardp
)) {
12217 shost
->base
= AscGetChipBiosAddress(asc_dvc_varp
->iop_base
,
12218 asc_dvc_varp
->bus_type
);
12221 * Fill-in BIOS board variables. The Wide BIOS saves
12222 * information in LRAM that is used by the driver.
12224 AdvReadWordLram(adv_dvc_varp
->iop_base
,
12225 BIOS_SIGNATURE
, boardp
->bios_signature
);
12226 AdvReadWordLram(adv_dvc_varp
->iop_base
,
12227 BIOS_VERSION
, boardp
->bios_version
);
12228 AdvReadWordLram(adv_dvc_varp
->iop_base
,
12229 BIOS_CODESEG
, boardp
->bios_codeseg
);
12230 AdvReadWordLram(adv_dvc_varp
->iop_base
,
12231 BIOS_CODELEN
, boardp
->bios_codelen
);
12233 ASC_DBG(1, "bios_signature 0x%x, bios_version 0x%x\n",
12234 boardp
->bios_signature
, boardp
->bios_version
);
12236 ASC_DBG(1, "bios_codeseg 0x%x, bios_codelen 0x%x\n",
12237 boardp
->bios_codeseg
, boardp
->bios_codelen
);
12240 * If the BIOS saved a valid signature, then fill in
12241 * the BIOS code segment base address.
12243 if (boardp
->bios_signature
== 0x55AA) {
12245 * Convert x86 realmode code segment to a linear
12246 * address by shifting left 4.
12248 shost
->base
= ((ulong
)boardp
->bios_codeseg
<< 4);
12255 * Register Board Resources - I/O Port, DMA, IRQ
12258 /* Register DMA Channel for Narrow boards. */
12259 shost
->dma_channel
= NO_ISA_DMA
; /* Default to no ISA DMA. */
12261 if (ASC_NARROW_BOARD(boardp
)) {
12262 /* Register DMA channel for ISA bus. */
12263 if (asc_dvc_varp
->bus_type
& ASC_IS_ISA
) {
12264 shost
->dma_channel
= asc_dvc_varp
->cfg
->isa_dma_channel
;
12265 ret
= request_dma(shost
->dma_channel
, DRV_NAME
);
12267 shost_printk(KERN_ERR
, shost
, "request_dma() "
12269 shost
->dma_channel
, ret
);
12270 goto err_free_proc
;
12272 AscEnableIsaDma(shost
->dma_channel
);
12275 #endif /* CONFIG_ISA */
12277 /* Register IRQ Number. */
12278 ASC_DBG(2, "request_irq(%d, %p)\n", boardp
->irq
, shost
);
12280 ret
= request_irq(boardp
->irq
, advansys_interrupt
, share_irq
,
12284 if (ret
== -EBUSY
) {
12285 shost_printk(KERN_ERR
, shost
, "request_irq(): IRQ 0x%x "
12286 "already in use\n", boardp
->irq
);
12287 } else if (ret
== -EINVAL
) {
12288 shost_printk(KERN_ERR
, shost
, "request_irq(): IRQ 0x%x "
12289 "not valid\n", boardp
->irq
);
12291 shost_printk(KERN_ERR
, shost
, "request_irq(): IRQ 0x%x "
12292 "failed with %d\n", boardp
->irq
, ret
);
12298 * Initialize board RISC chip and enable interrupts.
12300 if (ASC_NARROW_BOARD(boardp
)) {
12301 ASC_DBG(2, "AscInitAsc1000Driver()\n");
12303 asc_dvc_varp
->overrun_buf
= kzalloc(ASC_OVERRUN_BSIZE
, GFP_KERNEL
);
12304 if (!asc_dvc_varp
->overrun_buf
) {
12306 goto err_free_wide_mem
;
12308 warn_code
= AscInitAsc1000Driver(asc_dvc_varp
);
12310 if (warn_code
|| asc_dvc_varp
->err_code
) {
12311 shost_printk(KERN_ERR
, shost
, "error: init_state 0x%x, "
12312 "warn 0x%x, error 0x%x\n",
12313 asc_dvc_varp
->init_state
, warn_code
,
12314 asc_dvc_varp
->err_code
);
12315 if (asc_dvc_varp
->err_code
) {
12317 kfree(asc_dvc_varp
->overrun_buf
);
12321 if (advansys_wide_init_chip(shost
))
12326 goto err_free_wide_mem
;
12328 ASC_DBG_PRT_SCSI_HOST(2, shost
);
12330 ret
= scsi_add_host(shost
, boardp
->dev
);
12332 goto err_free_wide_mem
;
12334 scsi_scan_host(shost
);
12338 advansys_wide_free_mem(boardp
);
12339 free_irq(boardp
->irq
, shost
);
12342 if (shost
->dma_channel
!= NO_ISA_DMA
)
12343 free_dma(shost
->dma_channel
);
12346 kfree(boardp
->prtbuf
);
12348 if (boardp
->ioremap_addr
)
12349 iounmap(boardp
->ioremap_addr
);
12355 * advansys_release()
12357 * Release resources allocated for a single AdvanSys adapter.
12359 static int advansys_release(struct Scsi_Host
*shost
)
12361 struct asc_board
*board
= shost_priv(shost
);
12362 ASC_DBG(1, "begin\n");
12363 scsi_remove_host(shost
);
12364 free_irq(board
->irq
, shost
);
12366 if (shost
->dma_channel
!= NO_ISA_DMA
) {
12367 ASC_DBG(1, "free_dma()\n");
12368 free_dma(shost
->dma_channel
);
12371 if (ASC_NARROW_BOARD(board
)) {
12372 dma_unmap_single(board
->dev
,
12373 board
->dvc_var
.asc_dvc_var
.overrun_dma
,
12374 ASC_OVERRUN_BSIZE
, DMA_FROM_DEVICE
);
12375 kfree(board
->dvc_var
.asc_dvc_var
.overrun_buf
);
12377 iounmap(board
->ioremap_addr
);
12378 advansys_wide_free_mem(board
);
12380 kfree(board
->prtbuf
);
12381 scsi_host_put(shost
);
12382 ASC_DBG(1, "end\n");
12386 #define ASC_IOADR_TABLE_MAX_IX 11
12388 static PortAddr _asc_def_iop_base
[ASC_IOADR_TABLE_MAX_IX
] = {
12389 0x100, 0x0110, 0x120, 0x0130, 0x140, 0x0150, 0x0190,
12390 0x0210, 0x0230, 0x0250, 0x0330
12394 * The ISA IRQ number is found in bits 2 and 3 of the CfgLsw. It decodes as:
12400 static unsigned int __devinit
advansys_isa_irq_no(PortAddr iop_base
)
12402 unsigned short cfg_lsw
= AscGetChipCfgLsw(iop_base
);
12403 unsigned int chip_irq
= ((cfg_lsw
>> 2) & 0x03) + 10;
12404 if (chip_irq
== 13)
12409 static int __devinit
advansys_isa_probe(struct device
*dev
, unsigned int id
)
12412 PortAddr iop_base
= _asc_def_iop_base
[id
];
12413 struct Scsi_Host
*shost
;
12414 struct asc_board
*board
;
12416 if (!request_region(iop_base
, ASC_IOADR_GAP
, DRV_NAME
)) {
12417 ASC_DBG(1, "I/O port 0x%x busy\n", iop_base
);
12420 ASC_DBG(1, "probing I/O port 0x%x\n", iop_base
);
12421 if (!AscFindSignature(iop_base
))
12422 goto release_region
;
12423 if (!(AscGetChipVersion(iop_base
, ASC_IS_ISA
) & ASC_CHIP_VER_ISA_BIT
))
12424 goto release_region
;
12427 shost
= scsi_host_alloc(&advansys_template
, sizeof(*board
));
12429 goto release_region
;
12431 board
= shost_priv(shost
);
12432 board
->irq
= advansys_isa_irq_no(iop_base
);
12435 err
= advansys_board_found(shost
, iop_base
, ASC_IS_ISA
);
12439 dev_set_drvdata(dev
, shost
);
12443 scsi_host_put(shost
);
12445 release_region(iop_base
, ASC_IOADR_GAP
);
12449 static int __devexit
advansys_isa_remove(struct device
*dev
, unsigned int id
)
12451 int ioport
= _asc_def_iop_base
[id
];
12452 advansys_release(dev_get_drvdata(dev
));
12453 release_region(ioport
, ASC_IOADR_GAP
);
12457 static struct isa_driver advansys_isa_driver
= {
12458 .probe
= advansys_isa_probe
,
12459 .remove
= __devexit_p(advansys_isa_remove
),
12461 .owner
= THIS_MODULE
,
12467 * The VLB IRQ number is found in bits 2 to 4 of the CfgLsw. It decodes as:
12477 static unsigned int __devinit
advansys_vlb_irq_no(PortAddr iop_base
)
12479 unsigned short cfg_lsw
= AscGetChipCfgLsw(iop_base
);
12480 unsigned int chip_irq
= ((cfg_lsw
>> 2) & 0x07) + 9;
12481 if ((chip_irq
< 10) || (chip_irq
== 13) || (chip_irq
> 15))
12486 static int __devinit
advansys_vlb_probe(struct device
*dev
, unsigned int id
)
12489 PortAddr iop_base
= _asc_def_iop_base
[id
];
12490 struct Scsi_Host
*shost
;
12491 struct asc_board
*board
;
12493 if (!request_region(iop_base
, ASC_IOADR_GAP
, DRV_NAME
)) {
12494 ASC_DBG(1, "I/O port 0x%x busy\n", iop_base
);
12497 ASC_DBG(1, "probing I/O port 0x%x\n", iop_base
);
12498 if (!AscFindSignature(iop_base
))
12499 goto release_region
;
12501 * I don't think this condition can actually happen, but the old
12502 * driver did it, and the chances of finding a VLB setup in 2007
12503 * to do testing with is slight to none.
12505 if (AscGetChipVersion(iop_base
, ASC_IS_VL
) > ASC_CHIP_MAX_VER_VL
)
12506 goto release_region
;
12509 shost
= scsi_host_alloc(&advansys_template
, sizeof(*board
));
12511 goto release_region
;
12513 board
= shost_priv(shost
);
12514 board
->irq
= advansys_vlb_irq_no(iop_base
);
12517 err
= advansys_board_found(shost
, iop_base
, ASC_IS_VL
);
12521 dev_set_drvdata(dev
, shost
);
12525 scsi_host_put(shost
);
12527 release_region(iop_base
, ASC_IOADR_GAP
);
12531 static struct isa_driver advansys_vlb_driver
= {
12532 .probe
= advansys_vlb_probe
,
12533 .remove
= __devexit_p(advansys_isa_remove
),
12535 .owner
= THIS_MODULE
,
12536 .name
= "advansys_vlb",
12540 static struct eisa_device_id advansys_eisa_table
[] __devinitdata
= {
12546 MODULE_DEVICE_TABLE(eisa
, advansys_eisa_table
);
12549 * EISA is a little more tricky than PCI; each EISA device may have two
12550 * channels, and this driver is written to make each channel its own Scsi_Host
12552 struct eisa_scsi_data
{
12553 struct Scsi_Host
*host
[2];
12557 * The EISA IRQ number is found in bits 8 to 10 of the CfgLsw. It decodes as:
12567 static unsigned int __devinit
advansys_eisa_irq_no(struct eisa_device
*edev
)
12569 unsigned short cfg_lsw
= inw(edev
->base_addr
+ 0xc86);
12570 unsigned int chip_irq
= ((cfg_lsw
>> 8) & 0x07) + 10;
12571 if ((chip_irq
== 13) || (chip_irq
> 15))
12576 static int __devinit
advansys_eisa_probe(struct device
*dev
)
12578 int i
, ioport
, irq
= 0;
12580 struct eisa_device
*edev
= to_eisa_device(dev
);
12581 struct eisa_scsi_data
*data
;
12584 data
= kzalloc(sizeof(*data
), GFP_KERNEL
);
12587 ioport
= edev
->base_addr
+ 0xc30;
12590 for (i
= 0; i
< 2; i
++, ioport
+= 0x20) {
12591 struct asc_board
*board
;
12592 struct Scsi_Host
*shost
;
12593 if (!request_region(ioport
, ASC_IOADR_GAP
, DRV_NAME
)) {
12594 printk(KERN_WARNING
"Region %x-%x busy\n", ioport
,
12595 ioport
+ ASC_IOADR_GAP
- 1);
12598 if (!AscFindSignature(ioport
)) {
12599 release_region(ioport
, ASC_IOADR_GAP
);
12604 * I don't know why we need to do this for EISA chips, but
12605 * not for any others. It looks to be equivalent to
12606 * AscGetChipCfgMsw, but I may have overlooked something,
12607 * so I'm not converting it until I get an EISA board to
12613 irq
= advansys_eisa_irq_no(edev
);
12616 shost
= scsi_host_alloc(&advansys_template
, sizeof(*board
));
12618 goto release_region
;
12620 board
= shost_priv(shost
);
12624 err
= advansys_board_found(shost
, ioport
, ASC_IS_EISA
);
12626 data
->host
[i
] = shost
;
12630 scsi_host_put(shost
);
12632 release_region(ioport
, ASC_IOADR_GAP
);
12638 dev_set_drvdata(dev
, data
);
12642 kfree(data
->host
[0]);
12643 kfree(data
->host
[1]);
12649 static __devexit
int advansys_eisa_remove(struct device
*dev
)
12652 struct eisa_scsi_data
*data
= dev_get_drvdata(dev
);
12654 for (i
= 0; i
< 2; i
++) {
12656 struct Scsi_Host
*shost
= data
->host
[i
];
12659 ioport
= shost
->io_port
;
12660 advansys_release(shost
);
12661 release_region(ioport
, ASC_IOADR_GAP
);
12668 static struct eisa_driver advansys_eisa_driver
= {
12669 .id_table
= advansys_eisa_table
,
12672 .probe
= advansys_eisa_probe
,
12673 .remove
= __devexit_p(advansys_eisa_remove
),
12677 /* PCI Devices supported by this driver */
12678 static struct pci_device_id advansys_pci_tbl
[] __devinitdata
= {
12679 {PCI_VENDOR_ID_ASP
, PCI_DEVICE_ID_ASP_1200A
,
12680 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0},
12681 {PCI_VENDOR_ID_ASP
, PCI_DEVICE_ID_ASP_ABP940
,
12682 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0},
12683 {PCI_VENDOR_ID_ASP
, PCI_DEVICE_ID_ASP_ABP940U
,
12684 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0},
12685 {PCI_VENDOR_ID_ASP
, PCI_DEVICE_ID_ASP_ABP940UW
,
12686 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0},
12687 {PCI_VENDOR_ID_ASP
, PCI_DEVICE_ID_38C0800_REV1
,
12688 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0},
12689 {PCI_VENDOR_ID_ASP
, PCI_DEVICE_ID_38C1600_REV1
,
12690 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0},
12694 MODULE_DEVICE_TABLE(pci
, advansys_pci_tbl
);
12696 static void __devinit
advansys_set_latency(struct pci_dev
*pdev
)
12698 if ((pdev
->device
== PCI_DEVICE_ID_ASP_1200A
) ||
12699 (pdev
->device
== PCI_DEVICE_ID_ASP_ABP940
)) {
12700 pci_write_config_byte(pdev
, PCI_LATENCY_TIMER
, 0);
12703 pci_read_config_byte(pdev
, PCI_LATENCY_TIMER
, &latency
);
12704 if (latency
< 0x20)
12705 pci_write_config_byte(pdev
, PCI_LATENCY_TIMER
, 0x20);
12709 static int __devinit
12710 advansys_pci_probe(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
12713 struct Scsi_Host
*shost
;
12714 struct asc_board
*board
;
12716 err
= pci_enable_device(pdev
);
12719 err
= pci_request_regions(pdev
, DRV_NAME
);
12721 goto disable_device
;
12722 pci_set_master(pdev
);
12723 advansys_set_latency(pdev
);
12726 if (pci_resource_len(pdev
, 0) == 0)
12727 goto release_region
;
12729 ioport
= pci_resource_start(pdev
, 0);
12732 shost
= scsi_host_alloc(&advansys_template
, sizeof(*board
));
12734 goto release_region
;
12736 board
= shost_priv(shost
);
12737 board
->irq
= pdev
->irq
;
12738 board
->dev
= &pdev
->dev
;
12740 if (pdev
->device
== PCI_DEVICE_ID_ASP_ABP940UW
||
12741 pdev
->device
== PCI_DEVICE_ID_38C0800_REV1
||
12742 pdev
->device
== PCI_DEVICE_ID_38C1600_REV1
) {
12743 board
->flags
|= ASC_IS_WIDE_BOARD
;
12746 err
= advansys_board_found(shost
, ioport
, ASC_IS_PCI
);
12750 pci_set_drvdata(pdev
, shost
);
12754 scsi_host_put(shost
);
12756 pci_release_regions(pdev
);
12758 pci_disable_device(pdev
);
12763 static void __devexit
advansys_pci_remove(struct pci_dev
*pdev
)
12765 advansys_release(pci_get_drvdata(pdev
));
12766 pci_release_regions(pdev
);
12767 pci_disable_device(pdev
);
12770 static struct pci_driver advansys_pci_driver
= {
12772 .id_table
= advansys_pci_tbl
,
12773 .probe
= advansys_pci_probe
,
12774 .remove
= __devexit_p(advansys_pci_remove
),
12777 static int __init
advansys_init(void)
12781 error
= isa_register_driver(&advansys_isa_driver
,
12782 ASC_IOADR_TABLE_MAX_IX
);
12786 error
= isa_register_driver(&advansys_vlb_driver
,
12787 ASC_IOADR_TABLE_MAX_IX
);
12789 goto unregister_isa
;
12791 error
= eisa_driver_register(&advansys_eisa_driver
);
12793 goto unregister_vlb
;
12795 error
= pci_register_driver(&advansys_pci_driver
);
12797 goto unregister_eisa
;
12802 eisa_driver_unregister(&advansys_eisa_driver
);
12804 isa_unregister_driver(&advansys_vlb_driver
);
12806 isa_unregister_driver(&advansys_isa_driver
);
12811 static void __exit
advansys_exit(void)
12813 pci_unregister_driver(&advansys_pci_driver
);
12814 eisa_driver_unregister(&advansys_eisa_driver
);
12815 isa_unregister_driver(&advansys_vlb_driver
);
12816 isa_unregister_driver(&advansys_isa_driver
);
12819 module_init(advansys_init
);
12820 module_exit(advansys_exit
);
12822 MODULE_LICENSE("GPL");
12823 MODULE_FIRMWARE("advansys/mcode.bin");
12824 MODULE_FIRMWARE("advansys/3550.bin");
12825 MODULE_FIRMWARE("advansys/38C0800.bin");
12826 MODULE_FIRMWARE("advansys/38C1600.bin");