Introduce ARCH_NO_SYSDEV_OPS config option (v2)
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / hwmon / asb100.c
blobc02a052d3085de76664b699c3f565a2968e8156e
1 /*
2 asb100.c - Part of lm_sensors, Linux kernel modules for hardware
3 monitoring
5 Copyright (C) 2004 Mark M. Hoffman <mhoffman@lightlink.com>
7 (derived from w83781d.c)
9 Copyright (C) 1998 - 2003 Frodo Looijaard <frodol@dds.nl>,
10 Philip Edelbrock <phil@netroedge.com>, and
11 Mark Studebaker <mdsxyz123@yahoo.com>
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2 of the License, or
16 (at your option) any later version.
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
29 This driver supports the hardware sensor chips: Asus ASB100 and
30 ASB100-A "BACH".
32 ASB100-A supports pwm1, while plain ASB100 does not. There is no known
33 way for the driver to tell which one is there.
35 Chip #vin #fanin #pwm #temp wchipid vendid i2c ISA
36 asb100 7 3 1 4 0x31 0x0694 yes no
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41 #include <linux/module.h>
42 #include <linux/slab.h>
43 #include <linux/i2c.h>
44 #include <linux/hwmon.h>
45 #include <linux/hwmon-sysfs.h>
46 #include <linux/hwmon-vid.h>
47 #include <linux/err.h>
48 #include <linux/init.h>
49 #include <linux/jiffies.h>
50 #include <linux/mutex.h>
51 #include "lm75.h"
53 /* I2C addresses to scan */
54 static const unsigned short normal_i2c[] = { 0x2d, I2C_CLIENT_END };
56 static unsigned short force_subclients[4];
57 module_param_array(force_subclients, short, NULL, 0);
58 MODULE_PARM_DESC(force_subclients, "List of subclient addresses: "
59 "{bus, clientaddr, subclientaddr1, subclientaddr2}");
61 /* Voltage IN registers 0-6 */
62 #define ASB100_REG_IN(nr) (0x20 + (nr))
63 #define ASB100_REG_IN_MAX(nr) (0x2b + (nr * 2))
64 #define ASB100_REG_IN_MIN(nr) (0x2c + (nr * 2))
66 /* FAN IN registers 1-3 */
67 #define ASB100_REG_FAN(nr) (0x28 + (nr))
68 #define ASB100_REG_FAN_MIN(nr) (0x3b + (nr))
70 /* TEMPERATURE registers 1-4 */
71 static const u16 asb100_reg_temp[] = {0, 0x27, 0x150, 0x250, 0x17};
72 static const u16 asb100_reg_temp_max[] = {0, 0x39, 0x155, 0x255, 0x18};
73 static const u16 asb100_reg_temp_hyst[] = {0, 0x3a, 0x153, 0x253, 0x19};
75 #define ASB100_REG_TEMP(nr) (asb100_reg_temp[nr])
76 #define ASB100_REG_TEMP_MAX(nr) (asb100_reg_temp_max[nr])
77 #define ASB100_REG_TEMP_HYST(nr) (asb100_reg_temp_hyst[nr])
79 #define ASB100_REG_TEMP2_CONFIG 0x0152
80 #define ASB100_REG_TEMP3_CONFIG 0x0252
83 #define ASB100_REG_CONFIG 0x40
84 #define ASB100_REG_ALARM1 0x41
85 #define ASB100_REG_ALARM2 0x42
86 #define ASB100_REG_SMIM1 0x43
87 #define ASB100_REG_SMIM2 0x44
88 #define ASB100_REG_VID_FANDIV 0x47
89 #define ASB100_REG_I2C_ADDR 0x48
90 #define ASB100_REG_CHIPID 0x49
91 #define ASB100_REG_I2C_SUBADDR 0x4a
92 #define ASB100_REG_PIN 0x4b
93 #define ASB100_REG_IRQ 0x4c
94 #define ASB100_REG_BANK 0x4e
95 #define ASB100_REG_CHIPMAN 0x4f
97 #define ASB100_REG_WCHIPID 0x58
99 /* bit 7 -> enable, bits 0-3 -> duty cycle */
100 #define ASB100_REG_PWM1 0x59
102 /* CONVERSIONS
103 Rounding and limit checking is only done on the TO_REG variants. */
105 /* These constants are a guess, consistent w/ w83781d */
106 #define ASB100_IN_MIN ( 0)
107 #define ASB100_IN_MAX (4080)
109 /* IN: 1/1000 V (0V to 4.08V)
110 REG: 16mV/bit */
111 static u8 IN_TO_REG(unsigned val)
113 unsigned nval = SENSORS_LIMIT(val, ASB100_IN_MIN, ASB100_IN_MAX);
114 return (nval + 8) / 16;
117 static unsigned IN_FROM_REG(u8 reg)
119 return reg * 16;
122 static u8 FAN_TO_REG(long rpm, int div)
124 if (rpm == -1)
125 return 0;
126 if (rpm == 0)
127 return 255;
128 rpm = SENSORS_LIMIT(rpm, 1, 1000000);
129 return SENSORS_LIMIT((1350000 + rpm * div / 2) / (rpm * div), 1, 254);
132 static int FAN_FROM_REG(u8 val, int div)
134 return val==0 ? -1 : val==255 ? 0 : 1350000/(val*div);
137 /* These constants are a guess, consistent w/ w83781d */
138 #define ASB100_TEMP_MIN (-128000)
139 #define ASB100_TEMP_MAX ( 127000)
141 /* TEMP: 0.001C/bit (-128C to +127C)
142 REG: 1C/bit, two's complement */
143 static u8 TEMP_TO_REG(long temp)
145 int ntemp = SENSORS_LIMIT(temp, ASB100_TEMP_MIN, ASB100_TEMP_MAX);
146 ntemp += (ntemp<0 ? -500 : 500);
147 return (u8)(ntemp / 1000);
150 static int TEMP_FROM_REG(u8 reg)
152 return (s8)reg * 1000;
155 /* PWM: 0 - 255 per sensors documentation
156 REG: (6.25% duty cycle per bit) */
157 static u8 ASB100_PWM_TO_REG(int pwm)
159 pwm = SENSORS_LIMIT(pwm, 0, 255);
160 return (u8)(pwm / 16);
163 static int ASB100_PWM_FROM_REG(u8 reg)
165 return reg * 16;
168 #define DIV_FROM_REG(val) (1 << (val))
170 /* FAN DIV: 1, 2, 4, or 8 (defaults to 2)
171 REG: 0, 1, 2, or 3 (respectively) (defaults to 1) */
172 static u8 DIV_TO_REG(long val)
174 return val==8 ? 3 : val==4 ? 2 : val==1 ? 0 : 1;
177 /* For each registered client, we need to keep some data in memory. That
178 data is pointed to by client->data. The structure itself is
179 dynamically allocated, at the same time the client itself is allocated. */
180 struct asb100_data {
181 struct device *hwmon_dev;
182 struct mutex lock;
184 struct mutex update_lock;
185 unsigned long last_updated; /* In jiffies */
187 /* array of 2 pointers to subclients */
188 struct i2c_client *lm75[2];
190 char valid; /* !=0 if following fields are valid */
191 u8 in[7]; /* Register value */
192 u8 in_max[7]; /* Register value */
193 u8 in_min[7]; /* Register value */
194 u8 fan[3]; /* Register value */
195 u8 fan_min[3]; /* Register value */
196 u16 temp[4]; /* Register value (0 and 3 are u8 only) */
197 u16 temp_max[4]; /* Register value (0 and 3 are u8 only) */
198 u16 temp_hyst[4]; /* Register value (0 and 3 are u8 only) */
199 u8 fan_div[3]; /* Register encoding, right justified */
200 u8 pwm; /* Register encoding */
201 u8 vid; /* Register encoding, combined */
202 u32 alarms; /* Register encoding, combined */
203 u8 vrm;
206 static int asb100_read_value(struct i2c_client *client, u16 reg);
207 static void asb100_write_value(struct i2c_client *client, u16 reg, u16 val);
209 static int asb100_probe(struct i2c_client *client,
210 const struct i2c_device_id *id);
211 static int asb100_detect(struct i2c_client *client,
212 struct i2c_board_info *info);
213 static int asb100_remove(struct i2c_client *client);
214 static struct asb100_data *asb100_update_device(struct device *dev);
215 static void asb100_init_client(struct i2c_client *client);
217 static const struct i2c_device_id asb100_id[] = {
218 { "asb100", 0 },
221 MODULE_DEVICE_TABLE(i2c, asb100_id);
223 static struct i2c_driver asb100_driver = {
224 .class = I2C_CLASS_HWMON,
225 .driver = {
226 .name = "asb100",
228 .probe = asb100_probe,
229 .remove = asb100_remove,
230 .id_table = asb100_id,
231 .detect = asb100_detect,
232 .address_list = normal_i2c,
235 /* 7 Voltages */
236 #define show_in_reg(reg) \
237 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
238 char *buf) \
240 int nr = to_sensor_dev_attr(attr)->index; \
241 struct asb100_data *data = asb100_update_device(dev); \
242 return sprintf(buf, "%d\n", IN_FROM_REG(data->reg[nr])); \
245 show_in_reg(in)
246 show_in_reg(in_min)
247 show_in_reg(in_max)
249 #define set_in_reg(REG, reg) \
250 static ssize_t set_in_##reg(struct device *dev, struct device_attribute *attr, \
251 const char *buf, size_t count) \
253 int nr = to_sensor_dev_attr(attr)->index; \
254 struct i2c_client *client = to_i2c_client(dev); \
255 struct asb100_data *data = i2c_get_clientdata(client); \
256 unsigned long val = simple_strtoul(buf, NULL, 10); \
258 mutex_lock(&data->update_lock); \
259 data->in_##reg[nr] = IN_TO_REG(val); \
260 asb100_write_value(client, ASB100_REG_IN_##REG(nr), \
261 data->in_##reg[nr]); \
262 mutex_unlock(&data->update_lock); \
263 return count; \
266 set_in_reg(MIN, min)
267 set_in_reg(MAX, max)
269 #define sysfs_in(offset) \
270 static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO, \
271 show_in, NULL, offset); \
272 static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR, \
273 show_in_min, set_in_min, offset); \
274 static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR, \
275 show_in_max, set_in_max, offset)
277 sysfs_in(0);
278 sysfs_in(1);
279 sysfs_in(2);
280 sysfs_in(3);
281 sysfs_in(4);
282 sysfs_in(5);
283 sysfs_in(6);
285 /* 3 Fans */
286 static ssize_t show_fan(struct device *dev, struct device_attribute *attr,
287 char *buf)
289 int nr = to_sensor_dev_attr(attr)->index;
290 struct asb100_data *data = asb100_update_device(dev);
291 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr],
292 DIV_FROM_REG(data->fan_div[nr])));
295 static ssize_t show_fan_min(struct device *dev, struct device_attribute *attr,
296 char *buf)
298 int nr = to_sensor_dev_attr(attr)->index;
299 struct asb100_data *data = asb100_update_device(dev);
300 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr],
301 DIV_FROM_REG(data->fan_div[nr])));
304 static ssize_t show_fan_div(struct device *dev, struct device_attribute *attr,
305 char *buf)
307 int nr = to_sensor_dev_attr(attr)->index;
308 struct asb100_data *data = asb100_update_device(dev);
309 return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[nr]));
312 static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
313 const char *buf, size_t count)
315 int nr = to_sensor_dev_attr(attr)->index;
316 struct i2c_client *client = to_i2c_client(dev);
317 struct asb100_data *data = i2c_get_clientdata(client);
318 u32 val = simple_strtoul(buf, NULL, 10);
320 mutex_lock(&data->update_lock);
321 data->fan_min[nr] = FAN_TO_REG(val, DIV_FROM_REG(data->fan_div[nr]));
322 asb100_write_value(client, ASB100_REG_FAN_MIN(nr), data->fan_min[nr]);
323 mutex_unlock(&data->update_lock);
324 return count;
327 /* Note: we save and restore the fan minimum here, because its value is
328 determined in part by the fan divisor. This follows the principle of
329 least surprise; the user doesn't expect the fan minimum to change just
330 because the divisor changed. */
331 static ssize_t set_fan_div(struct device *dev, struct device_attribute *attr,
332 const char *buf, size_t count)
334 int nr = to_sensor_dev_attr(attr)->index;
335 struct i2c_client *client = to_i2c_client(dev);
336 struct asb100_data *data = i2c_get_clientdata(client);
337 unsigned long min;
338 unsigned long val = simple_strtoul(buf, NULL, 10);
339 int reg;
341 mutex_lock(&data->update_lock);
343 min = FAN_FROM_REG(data->fan_min[nr],
344 DIV_FROM_REG(data->fan_div[nr]));
345 data->fan_div[nr] = DIV_TO_REG(val);
347 switch (nr) {
348 case 0: /* fan 1 */
349 reg = asb100_read_value(client, ASB100_REG_VID_FANDIV);
350 reg = (reg & 0xcf) | (data->fan_div[0] << 4);
351 asb100_write_value(client, ASB100_REG_VID_FANDIV, reg);
352 break;
354 case 1: /* fan 2 */
355 reg = asb100_read_value(client, ASB100_REG_VID_FANDIV);
356 reg = (reg & 0x3f) | (data->fan_div[1] << 6);
357 asb100_write_value(client, ASB100_REG_VID_FANDIV, reg);
358 break;
360 case 2: /* fan 3 */
361 reg = asb100_read_value(client, ASB100_REG_PIN);
362 reg = (reg & 0x3f) | (data->fan_div[2] << 6);
363 asb100_write_value(client, ASB100_REG_PIN, reg);
364 break;
367 data->fan_min[nr] =
368 FAN_TO_REG(min, DIV_FROM_REG(data->fan_div[nr]));
369 asb100_write_value(client, ASB100_REG_FAN_MIN(nr), data->fan_min[nr]);
371 mutex_unlock(&data->update_lock);
373 return count;
376 #define sysfs_fan(offset) \
377 static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO, \
378 show_fan, NULL, offset - 1); \
379 static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \
380 show_fan_min, set_fan_min, offset - 1); \
381 static SENSOR_DEVICE_ATTR(fan##offset##_div, S_IRUGO | S_IWUSR, \
382 show_fan_div, set_fan_div, offset - 1)
384 sysfs_fan(1);
385 sysfs_fan(2);
386 sysfs_fan(3);
388 /* 4 Temp. Sensors */
389 static int sprintf_temp_from_reg(u16 reg, char *buf, int nr)
391 int ret = 0;
393 switch (nr) {
394 case 1: case 2:
395 ret = sprintf(buf, "%d\n", LM75_TEMP_FROM_REG(reg));
396 break;
397 case 0: case 3: default:
398 ret = sprintf(buf, "%d\n", TEMP_FROM_REG(reg));
399 break;
401 return ret;
404 #define show_temp_reg(reg) \
405 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
406 char *buf) \
408 int nr = to_sensor_dev_attr(attr)->index; \
409 struct asb100_data *data = asb100_update_device(dev); \
410 return sprintf_temp_from_reg(data->reg[nr], buf, nr); \
413 show_temp_reg(temp);
414 show_temp_reg(temp_max);
415 show_temp_reg(temp_hyst);
417 #define set_temp_reg(REG, reg) \
418 static ssize_t set_##reg(struct device *dev, struct device_attribute *attr, \
419 const char *buf, size_t count) \
421 int nr = to_sensor_dev_attr(attr)->index; \
422 struct i2c_client *client = to_i2c_client(dev); \
423 struct asb100_data *data = i2c_get_clientdata(client); \
424 long val = simple_strtol(buf, NULL, 10); \
426 mutex_lock(&data->update_lock); \
427 switch (nr) { \
428 case 1: case 2: \
429 data->reg[nr] = LM75_TEMP_TO_REG(val); \
430 break; \
431 case 0: case 3: default: \
432 data->reg[nr] = TEMP_TO_REG(val); \
433 break; \
435 asb100_write_value(client, ASB100_REG_TEMP_##REG(nr+1), \
436 data->reg[nr]); \
437 mutex_unlock(&data->update_lock); \
438 return count; \
441 set_temp_reg(MAX, temp_max);
442 set_temp_reg(HYST, temp_hyst);
444 #define sysfs_temp(num) \
445 static SENSOR_DEVICE_ATTR(temp##num##_input, S_IRUGO, \
446 show_temp, NULL, num - 1); \
447 static SENSOR_DEVICE_ATTR(temp##num##_max, S_IRUGO | S_IWUSR, \
448 show_temp_max, set_temp_max, num - 1); \
449 static SENSOR_DEVICE_ATTR(temp##num##_max_hyst, S_IRUGO | S_IWUSR, \
450 show_temp_hyst, set_temp_hyst, num - 1)
452 sysfs_temp(1);
453 sysfs_temp(2);
454 sysfs_temp(3);
455 sysfs_temp(4);
457 /* VID */
458 static ssize_t show_vid(struct device *dev, struct device_attribute *attr,
459 char *buf)
461 struct asb100_data *data = asb100_update_device(dev);
462 return sprintf(buf, "%d\n", vid_from_reg(data->vid, data->vrm));
465 static DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid, NULL);
467 /* VRM */
468 static ssize_t show_vrm(struct device *dev, struct device_attribute *attr,
469 char *buf)
471 struct asb100_data *data = dev_get_drvdata(dev);
472 return sprintf(buf, "%d\n", data->vrm);
475 static ssize_t set_vrm(struct device *dev, struct device_attribute *attr,
476 const char *buf, size_t count)
478 struct asb100_data *data = dev_get_drvdata(dev);
479 data->vrm = simple_strtoul(buf, NULL, 10);
480 return count;
483 /* Alarms */
484 static DEVICE_ATTR(vrm, S_IRUGO | S_IWUSR, show_vrm, set_vrm);
486 static ssize_t show_alarms(struct device *dev, struct device_attribute *attr,
487 char *buf)
489 struct asb100_data *data = asb100_update_device(dev);
490 return sprintf(buf, "%u\n", data->alarms);
493 static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL);
495 static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
496 char *buf)
498 int bitnr = to_sensor_dev_attr(attr)->index;
499 struct asb100_data *data = asb100_update_device(dev);
500 return sprintf(buf, "%u\n", (data->alarms >> bitnr) & 1);
502 static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0);
503 static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1);
504 static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2);
505 static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3);
506 static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8);
507 static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 6);
508 static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 7);
509 static SENSOR_DEVICE_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 11);
510 static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4);
511 static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5);
512 static SENSOR_DEVICE_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 13);
514 /* 1 PWM */
515 static ssize_t show_pwm1(struct device *dev, struct device_attribute *attr,
516 char *buf)
518 struct asb100_data *data = asb100_update_device(dev);
519 return sprintf(buf, "%d\n", ASB100_PWM_FROM_REG(data->pwm & 0x0f));
522 static ssize_t set_pwm1(struct device *dev, struct device_attribute *attr,
523 const char *buf, size_t count)
525 struct i2c_client *client = to_i2c_client(dev);
526 struct asb100_data *data = i2c_get_clientdata(client);
527 unsigned long val = simple_strtoul(buf, NULL, 10);
529 mutex_lock(&data->update_lock);
530 data->pwm &= 0x80; /* keep the enable bit */
531 data->pwm |= (0x0f & ASB100_PWM_TO_REG(val));
532 asb100_write_value(client, ASB100_REG_PWM1, data->pwm);
533 mutex_unlock(&data->update_lock);
534 return count;
537 static ssize_t show_pwm_enable1(struct device *dev,
538 struct device_attribute *attr, char *buf)
540 struct asb100_data *data = asb100_update_device(dev);
541 return sprintf(buf, "%d\n", (data->pwm & 0x80) ? 1 : 0);
544 static ssize_t set_pwm_enable1(struct device *dev,
545 struct device_attribute *attr, const char *buf, size_t count)
547 struct i2c_client *client = to_i2c_client(dev);
548 struct asb100_data *data = i2c_get_clientdata(client);
549 unsigned long val = simple_strtoul(buf, NULL, 10);
551 mutex_lock(&data->update_lock);
552 data->pwm &= 0x0f; /* keep the duty cycle bits */
553 data->pwm |= (val ? 0x80 : 0x00);
554 asb100_write_value(client, ASB100_REG_PWM1, data->pwm);
555 mutex_unlock(&data->update_lock);
556 return count;
559 static DEVICE_ATTR(pwm1, S_IRUGO | S_IWUSR, show_pwm1, set_pwm1);
560 static DEVICE_ATTR(pwm1_enable, S_IRUGO | S_IWUSR,
561 show_pwm_enable1, set_pwm_enable1);
563 static struct attribute *asb100_attributes[] = {
564 &sensor_dev_attr_in0_input.dev_attr.attr,
565 &sensor_dev_attr_in0_min.dev_attr.attr,
566 &sensor_dev_attr_in0_max.dev_attr.attr,
567 &sensor_dev_attr_in1_input.dev_attr.attr,
568 &sensor_dev_attr_in1_min.dev_attr.attr,
569 &sensor_dev_attr_in1_max.dev_attr.attr,
570 &sensor_dev_attr_in2_input.dev_attr.attr,
571 &sensor_dev_attr_in2_min.dev_attr.attr,
572 &sensor_dev_attr_in2_max.dev_attr.attr,
573 &sensor_dev_attr_in3_input.dev_attr.attr,
574 &sensor_dev_attr_in3_min.dev_attr.attr,
575 &sensor_dev_attr_in3_max.dev_attr.attr,
576 &sensor_dev_attr_in4_input.dev_attr.attr,
577 &sensor_dev_attr_in4_min.dev_attr.attr,
578 &sensor_dev_attr_in4_max.dev_attr.attr,
579 &sensor_dev_attr_in5_input.dev_attr.attr,
580 &sensor_dev_attr_in5_min.dev_attr.attr,
581 &sensor_dev_attr_in5_max.dev_attr.attr,
582 &sensor_dev_attr_in6_input.dev_attr.attr,
583 &sensor_dev_attr_in6_min.dev_attr.attr,
584 &sensor_dev_attr_in6_max.dev_attr.attr,
586 &sensor_dev_attr_fan1_input.dev_attr.attr,
587 &sensor_dev_attr_fan1_min.dev_attr.attr,
588 &sensor_dev_attr_fan1_div.dev_attr.attr,
589 &sensor_dev_attr_fan2_input.dev_attr.attr,
590 &sensor_dev_attr_fan2_min.dev_attr.attr,
591 &sensor_dev_attr_fan2_div.dev_attr.attr,
592 &sensor_dev_attr_fan3_input.dev_attr.attr,
593 &sensor_dev_attr_fan3_min.dev_attr.attr,
594 &sensor_dev_attr_fan3_div.dev_attr.attr,
596 &sensor_dev_attr_temp1_input.dev_attr.attr,
597 &sensor_dev_attr_temp1_max.dev_attr.attr,
598 &sensor_dev_attr_temp1_max_hyst.dev_attr.attr,
599 &sensor_dev_attr_temp2_input.dev_attr.attr,
600 &sensor_dev_attr_temp2_max.dev_attr.attr,
601 &sensor_dev_attr_temp2_max_hyst.dev_attr.attr,
602 &sensor_dev_attr_temp3_input.dev_attr.attr,
603 &sensor_dev_attr_temp3_max.dev_attr.attr,
604 &sensor_dev_attr_temp3_max_hyst.dev_attr.attr,
605 &sensor_dev_attr_temp4_input.dev_attr.attr,
606 &sensor_dev_attr_temp4_max.dev_attr.attr,
607 &sensor_dev_attr_temp4_max_hyst.dev_attr.attr,
609 &sensor_dev_attr_in0_alarm.dev_attr.attr,
610 &sensor_dev_attr_in1_alarm.dev_attr.attr,
611 &sensor_dev_attr_in2_alarm.dev_attr.attr,
612 &sensor_dev_attr_in3_alarm.dev_attr.attr,
613 &sensor_dev_attr_in4_alarm.dev_attr.attr,
614 &sensor_dev_attr_fan1_alarm.dev_attr.attr,
615 &sensor_dev_attr_fan2_alarm.dev_attr.attr,
616 &sensor_dev_attr_fan3_alarm.dev_attr.attr,
617 &sensor_dev_attr_temp1_alarm.dev_attr.attr,
618 &sensor_dev_attr_temp2_alarm.dev_attr.attr,
619 &sensor_dev_attr_temp3_alarm.dev_attr.attr,
621 &dev_attr_cpu0_vid.attr,
622 &dev_attr_vrm.attr,
623 &dev_attr_alarms.attr,
624 &dev_attr_pwm1.attr,
625 &dev_attr_pwm1_enable.attr,
627 NULL
630 static const struct attribute_group asb100_group = {
631 .attrs = asb100_attributes,
634 static int asb100_detect_subclients(struct i2c_client *client)
636 int i, id, err;
637 int address = client->addr;
638 unsigned short sc_addr[2];
639 struct asb100_data *data = i2c_get_clientdata(client);
640 struct i2c_adapter *adapter = client->adapter;
642 id = i2c_adapter_id(adapter);
644 if (force_subclients[0] == id && force_subclients[1] == address) {
645 for (i = 2; i <= 3; i++) {
646 if (force_subclients[i] < 0x48 ||
647 force_subclients[i] > 0x4f) {
648 dev_err(&client->dev, "invalid subclient "
649 "address %d; must be 0x48-0x4f\n",
650 force_subclients[i]);
651 err = -ENODEV;
652 goto ERROR_SC_2;
655 asb100_write_value(client, ASB100_REG_I2C_SUBADDR,
656 (force_subclients[2] & 0x07) |
657 ((force_subclients[3] & 0x07) << 4));
658 sc_addr[0] = force_subclients[2];
659 sc_addr[1] = force_subclients[3];
660 } else {
661 int val = asb100_read_value(client, ASB100_REG_I2C_SUBADDR);
662 sc_addr[0] = 0x48 + (val & 0x07);
663 sc_addr[1] = 0x48 + ((val >> 4) & 0x07);
666 if (sc_addr[0] == sc_addr[1]) {
667 dev_err(&client->dev, "duplicate addresses 0x%x "
668 "for subclients\n", sc_addr[0]);
669 err = -ENODEV;
670 goto ERROR_SC_2;
673 data->lm75[0] = i2c_new_dummy(adapter, sc_addr[0]);
674 if (!data->lm75[0]) {
675 dev_err(&client->dev, "subclient %d registration "
676 "at address 0x%x failed.\n", 1, sc_addr[0]);
677 err = -ENOMEM;
678 goto ERROR_SC_2;
681 data->lm75[1] = i2c_new_dummy(adapter, sc_addr[1]);
682 if (!data->lm75[1]) {
683 dev_err(&client->dev, "subclient %d registration "
684 "at address 0x%x failed.\n", 2, sc_addr[1]);
685 err = -ENOMEM;
686 goto ERROR_SC_3;
689 return 0;
691 /* Undo inits in case of errors */
692 ERROR_SC_3:
693 i2c_unregister_device(data->lm75[0]);
694 ERROR_SC_2:
695 return err;
698 /* Return 0 if detection is successful, -ENODEV otherwise */
699 static int asb100_detect(struct i2c_client *client,
700 struct i2c_board_info *info)
702 struct i2c_adapter *adapter = client->adapter;
703 int val1, val2;
705 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
706 pr_debug("detect failed, smbus byte data not supported!\n");
707 return -ENODEV;
710 val1 = i2c_smbus_read_byte_data(client, ASB100_REG_BANK);
711 val2 = i2c_smbus_read_byte_data(client, ASB100_REG_CHIPMAN);
713 /* If we're in bank 0 */
714 if ((!(val1 & 0x07)) &&
715 /* Check for ASB100 ID (low byte) */
716 (((!(val1 & 0x80)) && (val2 != 0x94)) ||
717 /* Check for ASB100 ID (high byte ) */
718 ((val1 & 0x80) && (val2 != 0x06)))) {
719 pr_debug("detect failed, bad chip id 0x%02x!\n", val2);
720 return -ENODEV;
723 /* Put it now into bank 0 and Vendor ID High Byte */
724 i2c_smbus_write_byte_data(client, ASB100_REG_BANK,
725 (i2c_smbus_read_byte_data(client, ASB100_REG_BANK) & 0x78)
726 | 0x80);
728 /* Determine the chip type. */
729 val1 = i2c_smbus_read_byte_data(client, ASB100_REG_WCHIPID);
730 val2 = i2c_smbus_read_byte_data(client, ASB100_REG_CHIPMAN);
732 if (val1 != 0x31 || val2 != 0x06)
733 return -ENODEV;
735 strlcpy(info->type, "asb100", I2C_NAME_SIZE);
737 return 0;
740 static int asb100_probe(struct i2c_client *client,
741 const struct i2c_device_id *id)
743 int err;
744 struct asb100_data *data;
746 data = kzalloc(sizeof(struct asb100_data), GFP_KERNEL);
747 if (!data) {
748 pr_debug("probe failed, kzalloc failed!\n");
749 err = -ENOMEM;
750 goto ERROR0;
753 i2c_set_clientdata(client, data);
754 mutex_init(&data->lock);
755 mutex_init(&data->update_lock);
757 /* Attach secondary lm75 clients */
758 err = asb100_detect_subclients(client);
759 if (err)
760 goto ERROR1;
762 /* Initialize the chip */
763 asb100_init_client(client);
765 /* A few vars need to be filled upon startup */
766 data->fan_min[0] = asb100_read_value(client, ASB100_REG_FAN_MIN(0));
767 data->fan_min[1] = asb100_read_value(client, ASB100_REG_FAN_MIN(1));
768 data->fan_min[2] = asb100_read_value(client, ASB100_REG_FAN_MIN(2));
770 /* Register sysfs hooks */
771 if ((err = sysfs_create_group(&client->dev.kobj, &asb100_group)))
772 goto ERROR3;
774 data->hwmon_dev = hwmon_device_register(&client->dev);
775 if (IS_ERR(data->hwmon_dev)) {
776 err = PTR_ERR(data->hwmon_dev);
777 goto ERROR4;
780 return 0;
782 ERROR4:
783 sysfs_remove_group(&client->dev.kobj, &asb100_group);
784 ERROR3:
785 i2c_unregister_device(data->lm75[1]);
786 i2c_unregister_device(data->lm75[0]);
787 ERROR1:
788 kfree(data);
789 ERROR0:
790 return err;
793 static int asb100_remove(struct i2c_client *client)
795 struct asb100_data *data = i2c_get_clientdata(client);
797 hwmon_device_unregister(data->hwmon_dev);
798 sysfs_remove_group(&client->dev.kobj, &asb100_group);
800 i2c_unregister_device(data->lm75[1]);
801 i2c_unregister_device(data->lm75[0]);
803 kfree(data);
805 return 0;
808 /* The SMBus locks itself, usually, but nothing may access the chip between
809 bank switches. */
810 static int asb100_read_value(struct i2c_client *client, u16 reg)
812 struct asb100_data *data = i2c_get_clientdata(client);
813 struct i2c_client *cl;
814 int res, bank;
816 mutex_lock(&data->lock);
818 bank = (reg >> 8) & 0x0f;
819 if (bank > 2)
820 /* switch banks */
821 i2c_smbus_write_byte_data(client, ASB100_REG_BANK, bank);
823 if (bank == 0 || bank > 2) {
824 res = i2c_smbus_read_byte_data(client, reg & 0xff);
825 } else {
826 /* switch to subclient */
827 cl = data->lm75[bank - 1];
829 /* convert from ISA to LM75 I2C addresses */
830 switch (reg & 0xff) {
831 case 0x50: /* TEMP */
832 res = swab16(i2c_smbus_read_word_data(cl, 0));
833 break;
834 case 0x52: /* CONFIG */
835 res = i2c_smbus_read_byte_data(cl, 1);
836 break;
837 case 0x53: /* HYST */
838 res = swab16(i2c_smbus_read_word_data(cl, 2));
839 break;
840 case 0x55: /* MAX */
841 default:
842 res = swab16(i2c_smbus_read_word_data(cl, 3));
843 break;
847 if (bank > 2)
848 i2c_smbus_write_byte_data(client, ASB100_REG_BANK, 0);
850 mutex_unlock(&data->lock);
852 return res;
855 static void asb100_write_value(struct i2c_client *client, u16 reg, u16 value)
857 struct asb100_data *data = i2c_get_clientdata(client);
858 struct i2c_client *cl;
859 int bank;
861 mutex_lock(&data->lock);
863 bank = (reg >> 8) & 0x0f;
864 if (bank > 2)
865 /* switch banks */
866 i2c_smbus_write_byte_data(client, ASB100_REG_BANK, bank);
868 if (bank == 0 || bank > 2) {
869 i2c_smbus_write_byte_data(client, reg & 0xff, value & 0xff);
870 } else {
871 /* switch to subclient */
872 cl = data->lm75[bank - 1];
874 /* convert from ISA to LM75 I2C addresses */
875 switch (reg & 0xff) {
876 case 0x52: /* CONFIG */
877 i2c_smbus_write_byte_data(cl, 1, value & 0xff);
878 break;
879 case 0x53: /* HYST */
880 i2c_smbus_write_word_data(cl, 2, swab16(value));
881 break;
882 case 0x55: /* MAX */
883 i2c_smbus_write_word_data(cl, 3, swab16(value));
884 break;
888 if (bank > 2)
889 i2c_smbus_write_byte_data(client, ASB100_REG_BANK, 0);
891 mutex_unlock(&data->lock);
894 static void asb100_init_client(struct i2c_client *client)
896 struct asb100_data *data = i2c_get_clientdata(client);
898 data->vrm = vid_which_vrm();
900 /* Start monitoring */
901 asb100_write_value(client, ASB100_REG_CONFIG,
902 (asb100_read_value(client, ASB100_REG_CONFIG) & 0xf7) | 0x01);
905 static struct asb100_data *asb100_update_device(struct device *dev)
907 struct i2c_client *client = to_i2c_client(dev);
908 struct asb100_data *data = i2c_get_clientdata(client);
909 int i;
911 mutex_lock(&data->update_lock);
913 if (time_after(jiffies, data->last_updated + HZ + HZ / 2)
914 || !data->valid) {
916 dev_dbg(&client->dev, "starting device update...\n");
918 /* 7 voltage inputs */
919 for (i = 0; i < 7; i++) {
920 data->in[i] = asb100_read_value(client,
921 ASB100_REG_IN(i));
922 data->in_min[i] = asb100_read_value(client,
923 ASB100_REG_IN_MIN(i));
924 data->in_max[i] = asb100_read_value(client,
925 ASB100_REG_IN_MAX(i));
928 /* 3 fan inputs */
929 for (i = 0; i < 3; i++) {
930 data->fan[i] = asb100_read_value(client,
931 ASB100_REG_FAN(i));
932 data->fan_min[i] = asb100_read_value(client,
933 ASB100_REG_FAN_MIN(i));
936 /* 4 temperature inputs */
937 for (i = 1; i <= 4; i++) {
938 data->temp[i-1] = asb100_read_value(client,
939 ASB100_REG_TEMP(i));
940 data->temp_max[i-1] = asb100_read_value(client,
941 ASB100_REG_TEMP_MAX(i));
942 data->temp_hyst[i-1] = asb100_read_value(client,
943 ASB100_REG_TEMP_HYST(i));
946 /* VID and fan divisors */
947 i = asb100_read_value(client, ASB100_REG_VID_FANDIV);
948 data->vid = i & 0x0f;
949 data->vid |= (asb100_read_value(client,
950 ASB100_REG_CHIPID) & 0x01) << 4;
951 data->fan_div[0] = (i >> 4) & 0x03;
952 data->fan_div[1] = (i >> 6) & 0x03;
953 data->fan_div[2] = (asb100_read_value(client,
954 ASB100_REG_PIN) >> 6) & 0x03;
956 /* PWM */
957 data->pwm = asb100_read_value(client, ASB100_REG_PWM1);
959 /* alarms */
960 data->alarms = asb100_read_value(client, ASB100_REG_ALARM1) +
961 (asb100_read_value(client, ASB100_REG_ALARM2) << 8);
963 data->last_updated = jiffies;
964 data->valid = 1;
966 dev_dbg(&client->dev, "... device update complete\n");
969 mutex_unlock(&data->update_lock);
971 return data;
974 static int __init asb100_init(void)
976 return i2c_add_driver(&asb100_driver);
979 static void __exit asb100_exit(void)
981 i2c_del_driver(&asb100_driver);
984 MODULE_AUTHOR("Mark M. Hoffman <mhoffman@lightlink.com>");
985 MODULE_DESCRIPTION("ASB100 Bach driver");
986 MODULE_LICENSE("GPL");
988 module_init(asb100_init);
989 module_exit(asb100_exit);