rpc: fix garbage in printk in svc_tcp_accept()
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / splice.c
blobe263d3b361456cf669a0782e84e8b3c61772f936
1 /*
2 * "splice": joining two ropes together by interweaving their strands.
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/pipe_fs_i.h>
24 #include <linux/mm_inline.h>
25 #include <linux/swap.h>
26 #include <linux/writeback.h>
27 #include <linux/buffer_head.h>
28 #include <linux/module.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
32 struct partial_page {
33 unsigned int offset;
34 unsigned int len;
38 * Passed to splice_to_pipe
40 struct splice_pipe_desc {
41 struct page **pages; /* page map */
42 struct partial_page *partial; /* pages[] may not be contig */
43 int nr_pages; /* number of pages in map */
44 unsigned int flags; /* splice flags */
45 const struct pipe_buf_operations *ops;/* ops associated with output pipe */
49 * Attempt to steal a page from a pipe buffer. This should perhaps go into
50 * a vm helper function, it's already simplified quite a bit by the
51 * addition of remove_mapping(). If success is returned, the caller may
52 * attempt to reuse this page for another destination.
54 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
55 struct pipe_buffer *buf)
57 struct page *page = buf->page;
58 struct address_space *mapping;
60 lock_page(page);
62 mapping = page_mapping(page);
63 if (mapping) {
64 WARN_ON(!PageUptodate(page));
67 * At least for ext2 with nobh option, we need to wait on
68 * writeback completing on this page, since we'll remove it
69 * from the pagecache. Otherwise truncate wont wait on the
70 * page, allowing the disk blocks to be reused by someone else
71 * before we actually wrote our data to them. fs corruption
72 * ensues.
74 wait_on_page_writeback(page);
76 if (PagePrivate(page))
77 try_to_release_page(page, GFP_KERNEL);
80 * If we succeeded in removing the mapping, set LRU flag
81 * and return good.
83 if (remove_mapping(mapping, page)) {
84 buf->flags |= PIPE_BUF_FLAG_LRU;
85 return 0;
90 * Raced with truncate or failed to remove page from current
91 * address space, unlock and return failure.
93 unlock_page(page);
94 return 1;
97 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
98 struct pipe_buffer *buf)
100 page_cache_release(buf->page);
101 buf->flags &= ~PIPE_BUF_FLAG_LRU;
104 static int page_cache_pipe_buf_pin(struct pipe_inode_info *pipe,
105 struct pipe_buffer *buf)
107 struct page *page = buf->page;
108 int err;
110 if (!PageUptodate(page)) {
111 lock_page(page);
114 * Page got truncated/unhashed. This will cause a 0-byte
115 * splice, if this is the first page.
117 if (!page->mapping) {
118 err = -ENODATA;
119 goto error;
123 * Uh oh, read-error from disk.
125 if (!PageUptodate(page)) {
126 err = -EIO;
127 goto error;
131 * Page is ok afterall, we are done.
133 unlock_page(page);
136 return 0;
137 error:
138 unlock_page(page);
139 return err;
142 static const struct pipe_buf_operations page_cache_pipe_buf_ops = {
143 .can_merge = 0,
144 .map = generic_pipe_buf_map,
145 .unmap = generic_pipe_buf_unmap,
146 .pin = page_cache_pipe_buf_pin,
147 .release = page_cache_pipe_buf_release,
148 .steal = page_cache_pipe_buf_steal,
149 .get = generic_pipe_buf_get,
152 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
153 struct pipe_buffer *buf)
155 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
156 return 1;
158 buf->flags |= PIPE_BUF_FLAG_LRU;
159 return generic_pipe_buf_steal(pipe, buf);
162 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
163 .can_merge = 0,
164 .map = generic_pipe_buf_map,
165 .unmap = generic_pipe_buf_unmap,
166 .pin = generic_pipe_buf_pin,
167 .release = page_cache_pipe_buf_release,
168 .steal = user_page_pipe_buf_steal,
169 .get = generic_pipe_buf_get,
173 * Pipe output worker. This sets up our pipe format with the page cache
174 * pipe buffer operations. Otherwise very similar to the regular pipe_writev().
176 static ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
177 struct splice_pipe_desc *spd)
179 unsigned int spd_pages = spd->nr_pages;
180 int ret, do_wakeup, page_nr;
182 ret = 0;
183 do_wakeup = 0;
184 page_nr = 0;
186 if (pipe->inode)
187 mutex_lock(&pipe->inode->i_mutex);
189 for (;;) {
190 if (!pipe->readers) {
191 send_sig(SIGPIPE, current, 0);
192 if (!ret)
193 ret = -EPIPE;
194 break;
197 if (pipe->nrbufs < PIPE_BUFFERS) {
198 int newbuf = (pipe->curbuf + pipe->nrbufs) & (PIPE_BUFFERS - 1);
199 struct pipe_buffer *buf = pipe->bufs + newbuf;
201 buf->page = spd->pages[page_nr];
202 buf->offset = spd->partial[page_nr].offset;
203 buf->len = spd->partial[page_nr].len;
204 buf->ops = spd->ops;
205 if (spd->flags & SPLICE_F_GIFT)
206 buf->flags |= PIPE_BUF_FLAG_GIFT;
208 pipe->nrbufs++;
209 page_nr++;
210 ret += buf->len;
212 if (pipe->inode)
213 do_wakeup = 1;
215 if (!--spd->nr_pages)
216 break;
217 if (pipe->nrbufs < PIPE_BUFFERS)
218 continue;
220 break;
223 if (spd->flags & SPLICE_F_NONBLOCK) {
224 if (!ret)
225 ret = -EAGAIN;
226 break;
229 if (signal_pending(current)) {
230 if (!ret)
231 ret = -ERESTARTSYS;
232 break;
235 if (do_wakeup) {
236 smp_mb();
237 if (waitqueue_active(&pipe->wait))
238 wake_up_interruptible_sync(&pipe->wait);
239 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
240 do_wakeup = 0;
243 pipe->waiting_writers++;
244 pipe_wait(pipe);
245 pipe->waiting_writers--;
248 if (pipe->inode) {
249 mutex_unlock(&pipe->inode->i_mutex);
251 if (do_wakeup) {
252 smp_mb();
253 if (waitqueue_active(&pipe->wait))
254 wake_up_interruptible(&pipe->wait);
255 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
259 while (page_nr < spd_pages)
260 page_cache_release(spd->pages[page_nr++]);
262 return ret;
265 static int
266 __generic_file_splice_read(struct file *in, loff_t *ppos,
267 struct pipe_inode_info *pipe, size_t len,
268 unsigned int flags)
270 struct address_space *mapping = in->f_mapping;
271 unsigned int loff, nr_pages;
272 struct page *pages[PIPE_BUFFERS];
273 struct partial_page partial[PIPE_BUFFERS];
274 struct page *page;
275 pgoff_t index, end_index;
276 loff_t isize;
277 int error, page_nr;
278 struct splice_pipe_desc spd = {
279 .pages = pages,
280 .partial = partial,
281 .flags = flags,
282 .ops = &page_cache_pipe_buf_ops,
285 index = *ppos >> PAGE_CACHE_SHIFT;
286 loff = *ppos & ~PAGE_CACHE_MASK;
287 nr_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
289 if (nr_pages > PIPE_BUFFERS)
290 nr_pages = PIPE_BUFFERS;
293 * Don't try to 2nd guess the read-ahead logic, call into
294 * page_cache_readahead() like the page cache reads would do.
296 page_cache_readahead(mapping, &in->f_ra, in, index, nr_pages);
299 * Now fill in the holes:
301 error = 0;
304 * Lookup the (hopefully) full range of pages we need.
306 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, pages);
309 * If find_get_pages_contig() returned fewer pages than we needed,
310 * allocate the rest.
312 index += spd.nr_pages;
313 while (spd.nr_pages < nr_pages) {
315 * Page could be there, find_get_pages_contig() breaks on
316 * the first hole.
318 page = find_get_page(mapping, index);
319 if (!page) {
321 * Make sure the read-ahead engine is notified
322 * about this failure.
324 handle_ra_miss(mapping, &in->f_ra, index);
327 * page didn't exist, allocate one.
329 page = page_cache_alloc_cold(mapping);
330 if (!page)
331 break;
333 error = add_to_page_cache_lru(page, mapping, index,
334 GFP_KERNEL);
335 if (unlikely(error)) {
336 page_cache_release(page);
337 if (error == -EEXIST)
338 continue;
339 break;
342 * add_to_page_cache() locks the page, unlock it
343 * to avoid convoluting the logic below even more.
345 unlock_page(page);
348 pages[spd.nr_pages++] = page;
349 index++;
353 * Now loop over the map and see if we need to start IO on any
354 * pages, fill in the partial map, etc.
356 index = *ppos >> PAGE_CACHE_SHIFT;
357 nr_pages = spd.nr_pages;
358 spd.nr_pages = 0;
359 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
360 unsigned int this_len;
362 if (!len)
363 break;
366 * this_len is the max we'll use from this page
368 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
369 page = pages[page_nr];
372 * If the page isn't uptodate, we may need to start io on it
374 if (!PageUptodate(page)) {
376 * If in nonblock mode then dont block on waiting
377 * for an in-flight io page
379 if (flags & SPLICE_F_NONBLOCK) {
380 if (TestSetPageLocked(page))
381 break;
382 } else
383 lock_page(page);
386 * page was truncated, stop here. if this isn't the
387 * first page, we'll just complete what we already
388 * added
390 if (!page->mapping) {
391 unlock_page(page);
392 break;
395 * page was already under io and is now done, great
397 if (PageUptodate(page)) {
398 unlock_page(page);
399 goto fill_it;
403 * need to read in the page
405 error = mapping->a_ops->readpage(in, page);
406 if (unlikely(error)) {
408 * We really should re-lookup the page here,
409 * but it complicates things a lot. Instead
410 * lets just do what we already stored, and
411 * we'll get it the next time we are called.
413 if (error == AOP_TRUNCATED_PAGE)
414 error = 0;
416 break;
419 fill_it:
421 * i_size must be checked after PageUptodate.
423 isize = i_size_read(mapping->host);
424 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
425 if (unlikely(!isize || index > end_index))
426 break;
429 * if this is the last page, see if we need to shrink
430 * the length and stop
432 if (end_index == index) {
433 unsigned int plen;
436 * max good bytes in this page
438 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
439 if (plen <= loff)
440 break;
443 * force quit after adding this page
445 this_len = min(this_len, plen - loff);
446 len = this_len;
449 partial[page_nr].offset = loff;
450 partial[page_nr].len = this_len;
451 len -= this_len;
452 loff = 0;
453 spd.nr_pages++;
454 index++;
458 * Release any pages at the end, if we quit early. 'page_nr' is how far
459 * we got, 'nr_pages' is how many pages are in the map.
461 while (page_nr < nr_pages)
462 page_cache_release(pages[page_nr++]);
464 if (spd.nr_pages)
465 return splice_to_pipe(pipe, &spd);
467 return error;
471 * generic_file_splice_read - splice data from file to a pipe
472 * @in: file to splice from
473 * @pipe: pipe to splice to
474 * @len: number of bytes to splice
475 * @flags: splice modifier flags
477 * Will read pages from given file and fill them into a pipe.
479 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
480 struct pipe_inode_info *pipe, size_t len,
481 unsigned int flags)
483 ssize_t spliced;
484 int ret;
485 loff_t isize, left;
487 isize = i_size_read(in->f_mapping->host);
488 if (unlikely(*ppos >= isize))
489 return 0;
491 left = isize - *ppos;
492 if (unlikely(left < len))
493 len = left;
495 ret = 0;
496 spliced = 0;
497 while (len) {
498 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
500 if (ret < 0)
501 break;
502 else if (!ret) {
503 if (spliced)
504 break;
505 if (flags & SPLICE_F_NONBLOCK) {
506 ret = -EAGAIN;
507 break;
511 *ppos += ret;
512 len -= ret;
513 spliced += ret;
516 if (spliced)
517 return spliced;
519 return ret;
522 EXPORT_SYMBOL(generic_file_splice_read);
525 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
526 * using sendpage(). Return the number of bytes sent.
528 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
529 struct pipe_buffer *buf, struct splice_desc *sd)
531 struct file *file = sd->file;
532 loff_t pos = sd->pos;
533 int ret, more;
535 ret = buf->ops->pin(pipe, buf);
536 if (!ret) {
537 more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
539 ret = file->f_op->sendpage(file, buf->page, buf->offset,
540 sd->len, &pos, more);
543 return ret;
547 * This is a little more tricky than the file -> pipe splicing. There are
548 * basically three cases:
550 * - Destination page already exists in the address space and there
551 * are users of it. For that case we have no other option that
552 * copying the data. Tough luck.
553 * - Destination page already exists in the address space, but there
554 * are no users of it. Make sure it's uptodate, then drop it. Fall
555 * through to last case.
556 * - Destination page does not exist, we can add the pipe page to
557 * the page cache and avoid the copy.
559 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
560 * sd->flags), we attempt to migrate pages from the pipe to the output
561 * file address space page cache. This is possible if no one else has
562 * the pipe page referenced outside of the pipe and page cache. If
563 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
564 * a new page in the output file page cache and fill/dirty that.
566 static int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
567 struct splice_desc *sd)
569 struct file *file = sd->file;
570 struct address_space *mapping = file->f_mapping;
571 unsigned int offset, this_len;
572 struct page *page;
573 pgoff_t index;
574 int ret;
577 * make sure the data in this buffer is uptodate
579 ret = buf->ops->pin(pipe, buf);
580 if (unlikely(ret))
581 return ret;
583 index = sd->pos >> PAGE_CACHE_SHIFT;
584 offset = sd->pos & ~PAGE_CACHE_MASK;
586 this_len = sd->len;
587 if (this_len + offset > PAGE_CACHE_SIZE)
588 this_len = PAGE_CACHE_SIZE - offset;
590 find_page:
591 page = find_lock_page(mapping, index);
592 if (!page) {
593 ret = -ENOMEM;
594 page = page_cache_alloc_cold(mapping);
595 if (unlikely(!page))
596 goto out_ret;
599 * This will also lock the page
601 ret = add_to_page_cache_lru(page, mapping, index,
602 GFP_KERNEL);
603 if (unlikely(ret))
604 goto out_release;
607 ret = mapping->a_ops->prepare_write(file, page, offset, offset+this_len);
608 if (unlikely(ret)) {
609 loff_t isize = i_size_read(mapping->host);
611 if (ret != AOP_TRUNCATED_PAGE)
612 unlock_page(page);
613 page_cache_release(page);
614 if (ret == AOP_TRUNCATED_PAGE)
615 goto find_page;
618 * prepare_write() may have instantiated a few blocks
619 * outside i_size. Trim these off again.
621 if (sd->pos + this_len > isize)
622 vmtruncate(mapping->host, isize);
624 goto out_ret;
627 if (buf->page != page) {
629 * Careful, ->map() uses KM_USER0!
631 char *src = buf->ops->map(pipe, buf, 1);
632 char *dst = kmap_atomic(page, KM_USER1);
634 memcpy(dst + offset, src + buf->offset, this_len);
635 flush_dcache_page(page);
636 kunmap_atomic(dst, KM_USER1);
637 buf->ops->unmap(pipe, buf, src);
640 ret = mapping->a_ops->commit_write(file, page, offset, offset+this_len);
641 if (ret) {
642 if (ret == AOP_TRUNCATED_PAGE) {
643 page_cache_release(page);
644 goto find_page;
646 if (ret < 0)
647 goto out;
649 * Partial write has happened, so 'ret' already initialized by
650 * number of bytes written, Where is nothing we have to do here.
652 } else
653 ret = this_len;
655 * Return the number of bytes written and mark page as
656 * accessed, we are now done!
658 mark_page_accessed(page);
659 out:
660 unlock_page(page);
661 out_release:
662 page_cache_release(page);
663 out_ret:
664 return ret;
668 * Pipe input worker. Most of this logic works like a regular pipe, the
669 * key here is the 'actor' worker passed in that actually moves the data
670 * to the wanted destination. See pipe_to_file/pipe_to_sendpage above.
672 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe,
673 struct file *out, loff_t *ppos, size_t len,
674 unsigned int flags, splice_actor *actor)
676 int ret, do_wakeup, err;
677 struct splice_desc sd;
679 ret = 0;
680 do_wakeup = 0;
682 sd.total_len = len;
683 sd.flags = flags;
684 sd.file = out;
685 sd.pos = *ppos;
687 for (;;) {
688 if (pipe->nrbufs) {
689 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
690 const struct pipe_buf_operations *ops = buf->ops;
692 sd.len = buf->len;
693 if (sd.len > sd.total_len)
694 sd.len = sd.total_len;
696 err = actor(pipe, buf, &sd);
697 if (err <= 0) {
698 if (!ret && err != -ENODATA)
699 ret = err;
701 break;
704 ret += err;
705 buf->offset += err;
706 buf->len -= err;
708 sd.len -= err;
709 sd.pos += err;
710 sd.total_len -= err;
711 if (sd.len)
712 continue;
714 if (!buf->len) {
715 buf->ops = NULL;
716 ops->release(pipe, buf);
717 pipe->curbuf = (pipe->curbuf + 1) & (PIPE_BUFFERS - 1);
718 pipe->nrbufs--;
719 if (pipe->inode)
720 do_wakeup = 1;
723 if (!sd.total_len)
724 break;
727 if (pipe->nrbufs)
728 continue;
729 if (!pipe->writers)
730 break;
731 if (!pipe->waiting_writers) {
732 if (ret)
733 break;
736 if (flags & SPLICE_F_NONBLOCK) {
737 if (!ret)
738 ret = -EAGAIN;
739 break;
742 if (signal_pending(current)) {
743 if (!ret)
744 ret = -ERESTARTSYS;
745 break;
748 if (do_wakeup) {
749 smp_mb();
750 if (waitqueue_active(&pipe->wait))
751 wake_up_interruptible_sync(&pipe->wait);
752 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
753 do_wakeup = 0;
756 pipe_wait(pipe);
759 if (do_wakeup) {
760 smp_mb();
761 if (waitqueue_active(&pipe->wait))
762 wake_up_interruptible(&pipe->wait);
763 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
766 return ret;
768 EXPORT_SYMBOL(__splice_from_pipe);
770 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
771 loff_t *ppos, size_t len, unsigned int flags,
772 splice_actor *actor)
774 ssize_t ret;
775 struct inode *inode = out->f_mapping->host;
778 * The actor worker might be calling ->prepare_write and
779 * ->commit_write. Most of the time, these expect i_mutex to
780 * be held. Since this may result in an ABBA deadlock with
781 * pipe->inode, we have to order lock acquiry here.
783 inode_double_lock(inode, pipe->inode);
784 ret = __splice_from_pipe(pipe, out, ppos, len, flags, actor);
785 inode_double_unlock(inode, pipe->inode);
787 return ret;
791 * generic_file_splice_write_nolock - generic_file_splice_write without mutexes
792 * @pipe: pipe info
793 * @out: file to write to
794 * @len: number of bytes to splice
795 * @flags: splice modifier flags
797 * Will either move or copy pages (determined by @flags options) from
798 * the given pipe inode to the given file. The caller is responsible
799 * for acquiring i_mutex on both inodes.
802 ssize_t
803 generic_file_splice_write_nolock(struct pipe_inode_info *pipe, struct file *out,
804 loff_t *ppos, size_t len, unsigned int flags)
806 struct address_space *mapping = out->f_mapping;
807 struct inode *inode = mapping->host;
808 ssize_t ret;
809 int err;
811 err = remove_suid(out->f_path.dentry);
812 if (unlikely(err))
813 return err;
815 ret = __splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_file);
816 if (ret > 0) {
817 unsigned long nr_pages;
819 *ppos += ret;
820 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
823 * If file or inode is SYNC and we actually wrote some data,
824 * sync it.
826 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
827 err = generic_osync_inode(inode, mapping,
828 OSYNC_METADATA|OSYNC_DATA);
830 if (err)
831 ret = err;
833 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
836 return ret;
839 EXPORT_SYMBOL(generic_file_splice_write_nolock);
842 * generic_file_splice_write - splice data from a pipe to a file
843 * @pipe: pipe info
844 * @out: file to write to
845 * @len: number of bytes to splice
846 * @flags: splice modifier flags
848 * Will either move or copy pages (determined by @flags options) from
849 * the given pipe inode to the given file.
852 ssize_t
853 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
854 loff_t *ppos, size_t len, unsigned int flags)
856 struct address_space *mapping = out->f_mapping;
857 struct inode *inode = mapping->host;
858 ssize_t ret;
859 int err;
861 err = should_remove_suid(out->f_path.dentry);
862 if (unlikely(err)) {
863 mutex_lock(&inode->i_mutex);
864 err = __remove_suid(out->f_path.dentry, err);
865 mutex_unlock(&inode->i_mutex);
866 if (err)
867 return err;
870 ret = splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_file);
871 if (ret > 0) {
872 unsigned long nr_pages;
874 *ppos += ret;
875 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
878 * If file or inode is SYNC and we actually wrote some data,
879 * sync it.
881 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
882 mutex_lock(&inode->i_mutex);
883 err = generic_osync_inode(inode, mapping,
884 OSYNC_METADATA|OSYNC_DATA);
885 mutex_unlock(&inode->i_mutex);
887 if (err)
888 ret = err;
890 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
893 return ret;
896 EXPORT_SYMBOL(generic_file_splice_write);
899 * generic_splice_sendpage - splice data from a pipe to a socket
900 * @inode: pipe inode
901 * @out: socket to write to
902 * @len: number of bytes to splice
903 * @flags: splice modifier flags
905 * Will send @len bytes from the pipe to a network socket. No data copying
906 * is involved.
909 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
910 loff_t *ppos, size_t len, unsigned int flags)
912 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
915 EXPORT_SYMBOL(generic_splice_sendpage);
918 * Attempt to initiate a splice from pipe to file.
920 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
921 loff_t *ppos, size_t len, unsigned int flags)
923 int ret;
925 if (unlikely(!out->f_op || !out->f_op->splice_write))
926 return -EINVAL;
928 if (unlikely(!(out->f_mode & FMODE_WRITE)))
929 return -EBADF;
931 ret = rw_verify_area(WRITE, out, ppos, len);
932 if (unlikely(ret < 0))
933 return ret;
935 return out->f_op->splice_write(pipe, out, ppos, len, flags);
939 * Attempt to initiate a splice from a file to a pipe.
941 static long do_splice_to(struct file *in, loff_t *ppos,
942 struct pipe_inode_info *pipe, size_t len,
943 unsigned int flags)
945 int ret;
947 if (unlikely(!in->f_op || !in->f_op->splice_read))
948 return -EINVAL;
950 if (unlikely(!(in->f_mode & FMODE_READ)))
951 return -EBADF;
953 ret = rw_verify_area(READ, in, ppos, len);
954 if (unlikely(ret < 0))
955 return ret;
957 return in->f_op->splice_read(in, ppos, pipe, len, flags);
960 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
961 size_t len, unsigned int flags)
963 struct pipe_inode_info *pipe;
964 long ret, bytes;
965 loff_t out_off;
966 umode_t i_mode;
967 int i;
970 * We require the input being a regular file, as we don't want to
971 * randomly drop data for eg socket -> socket splicing. Use the
972 * piped splicing for that!
974 i_mode = in->f_path.dentry->d_inode->i_mode;
975 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
976 return -EINVAL;
979 * neither in nor out is a pipe, setup an internal pipe attached to
980 * 'out' and transfer the wanted data from 'in' to 'out' through that
982 pipe = current->splice_pipe;
983 if (unlikely(!pipe)) {
984 pipe = alloc_pipe_info(NULL);
985 if (!pipe)
986 return -ENOMEM;
989 * We don't have an immediate reader, but we'll read the stuff
990 * out of the pipe right after the splice_to_pipe(). So set
991 * PIPE_READERS appropriately.
993 pipe->readers = 1;
995 current->splice_pipe = pipe;
999 * Do the splice.
1001 ret = 0;
1002 bytes = 0;
1003 out_off = 0;
1005 while (len) {
1006 size_t read_len, max_read_len;
1009 * Do at most PIPE_BUFFERS pages worth of transfer:
1011 max_read_len = min(len, (size_t)(PIPE_BUFFERS*PAGE_SIZE));
1013 ret = do_splice_to(in, ppos, pipe, max_read_len, flags);
1014 if (unlikely(ret <= 0))
1015 goto out_release;
1017 read_len = ret;
1020 * NOTE: nonblocking mode only applies to the input. We
1021 * must not do the output in nonblocking mode as then we
1022 * could get stuck data in the internal pipe:
1024 ret = do_splice_from(pipe, out, &out_off, read_len,
1025 flags & ~SPLICE_F_NONBLOCK);
1026 if (unlikely(ret <= 0))
1027 goto out_release;
1029 bytes += ret;
1030 len -= ret;
1033 * In nonblocking mode, if we got back a short read then
1034 * that was due to either an IO error or due to the
1035 * pagecache entry not being there. In the IO error case
1036 * the _next_ splice attempt will produce a clean IO error
1037 * return value (not a short read), so in both cases it's
1038 * correct to break out of the loop here:
1040 if ((flags & SPLICE_F_NONBLOCK) && (read_len < max_read_len))
1041 break;
1044 pipe->nrbufs = pipe->curbuf = 0;
1046 return bytes;
1048 out_release:
1050 * If we did an incomplete transfer we must release
1051 * the pipe buffers in question:
1053 for (i = 0; i < PIPE_BUFFERS; i++) {
1054 struct pipe_buffer *buf = pipe->bufs + i;
1056 if (buf->ops) {
1057 buf->ops->release(pipe, buf);
1058 buf->ops = NULL;
1061 pipe->nrbufs = pipe->curbuf = 0;
1064 * If we transferred some data, return the number of bytes:
1066 if (bytes > 0)
1067 return bytes;
1069 return ret;
1073 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1074 * location, so checking ->i_pipe is not enough to verify that this is a
1075 * pipe.
1077 static inline struct pipe_inode_info *pipe_info(struct inode *inode)
1079 if (S_ISFIFO(inode->i_mode))
1080 return inode->i_pipe;
1082 return NULL;
1086 * Determine where to splice to/from.
1088 static long do_splice(struct file *in, loff_t __user *off_in,
1089 struct file *out, loff_t __user *off_out,
1090 size_t len, unsigned int flags)
1092 struct pipe_inode_info *pipe;
1093 loff_t offset, *off;
1094 long ret;
1096 pipe = pipe_info(in->f_path.dentry->d_inode);
1097 if (pipe) {
1098 if (off_in)
1099 return -ESPIPE;
1100 if (off_out) {
1101 if (out->f_op->llseek == no_llseek)
1102 return -EINVAL;
1103 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1104 return -EFAULT;
1105 off = &offset;
1106 } else
1107 off = &out->f_pos;
1109 ret = do_splice_from(pipe, out, off, len, flags);
1111 if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1112 ret = -EFAULT;
1114 return ret;
1117 pipe = pipe_info(out->f_path.dentry->d_inode);
1118 if (pipe) {
1119 if (off_out)
1120 return -ESPIPE;
1121 if (off_in) {
1122 if (in->f_op->llseek == no_llseek)
1123 return -EINVAL;
1124 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1125 return -EFAULT;
1126 off = &offset;
1127 } else
1128 off = &in->f_pos;
1130 ret = do_splice_to(in, off, pipe, len, flags);
1132 if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1133 ret = -EFAULT;
1135 return ret;
1138 return -EINVAL;
1142 * Map an iov into an array of pages and offset/length tupples. With the
1143 * partial_page structure, we can map several non-contiguous ranges into
1144 * our ones pages[] map instead of splitting that operation into pieces.
1145 * Could easily be exported as a generic helper for other users, in which
1146 * case one would probably want to add a 'max_nr_pages' parameter as well.
1148 static int get_iovec_page_array(const struct iovec __user *iov,
1149 unsigned int nr_vecs, struct page **pages,
1150 struct partial_page *partial, int aligned)
1152 int buffers = 0, error = 0;
1155 * It's ok to take the mmap_sem for reading, even
1156 * across a "get_user()".
1158 down_read(&current->mm->mmap_sem);
1160 while (nr_vecs) {
1161 unsigned long off, npages;
1162 void __user *base;
1163 size_t len;
1164 int i;
1167 * Get user address base and length for this iovec.
1169 error = get_user(base, &iov->iov_base);
1170 if (unlikely(error))
1171 break;
1172 error = get_user(len, &iov->iov_len);
1173 if (unlikely(error))
1174 break;
1177 * Sanity check this iovec. 0 read succeeds.
1179 if (unlikely(!len))
1180 break;
1181 error = -EFAULT;
1182 if (unlikely(!base))
1183 break;
1186 * Get this base offset and number of pages, then map
1187 * in the user pages.
1189 off = (unsigned long) base & ~PAGE_MASK;
1192 * If asked for alignment, the offset must be zero and the
1193 * length a multiple of the PAGE_SIZE.
1195 error = -EINVAL;
1196 if (aligned && (off || len & ~PAGE_MASK))
1197 break;
1199 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1200 if (npages > PIPE_BUFFERS - buffers)
1201 npages = PIPE_BUFFERS - buffers;
1203 error = get_user_pages(current, current->mm,
1204 (unsigned long) base, npages, 0, 0,
1205 &pages[buffers], NULL);
1207 if (unlikely(error <= 0))
1208 break;
1211 * Fill this contiguous range into the partial page map.
1213 for (i = 0; i < error; i++) {
1214 const int plen = min_t(size_t, len, PAGE_SIZE - off);
1216 partial[buffers].offset = off;
1217 partial[buffers].len = plen;
1219 off = 0;
1220 len -= plen;
1221 buffers++;
1225 * We didn't complete this iov, stop here since it probably
1226 * means we have to move some of this into a pipe to
1227 * be able to continue.
1229 if (len)
1230 break;
1233 * Don't continue if we mapped fewer pages than we asked for,
1234 * or if we mapped the max number of pages that we have
1235 * room for.
1237 if (error < npages || buffers == PIPE_BUFFERS)
1238 break;
1240 nr_vecs--;
1241 iov++;
1244 up_read(&current->mm->mmap_sem);
1246 if (buffers)
1247 return buffers;
1249 return error;
1253 * vmsplice splices a user address range into a pipe. It can be thought of
1254 * as splice-from-memory, where the regular splice is splice-from-file (or
1255 * to file). In both cases the output is a pipe, naturally.
1257 * Note that vmsplice only supports splicing _from_ user memory to a pipe,
1258 * not the other way around. Splicing from user memory is a simple operation
1259 * that can be supported without any funky alignment restrictions or nasty
1260 * vm tricks. We simply map in the user memory and fill them into a pipe.
1261 * The reverse isn't quite as easy, though. There are two possible solutions
1262 * for that:
1264 * - memcpy() the data internally, at which point we might as well just
1265 * do a regular read() on the buffer anyway.
1266 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1267 * has restriction limitations on both ends of the pipe).
1269 * Alas, it isn't here.
1272 static long do_vmsplice(struct file *file, const struct iovec __user *iov,
1273 unsigned long nr_segs, unsigned int flags)
1275 struct pipe_inode_info *pipe;
1276 struct page *pages[PIPE_BUFFERS];
1277 struct partial_page partial[PIPE_BUFFERS];
1278 struct splice_pipe_desc spd = {
1279 .pages = pages,
1280 .partial = partial,
1281 .flags = flags,
1282 .ops = &user_page_pipe_buf_ops,
1285 pipe = pipe_info(file->f_path.dentry->d_inode);
1286 if (!pipe)
1287 return -EBADF;
1288 if (unlikely(nr_segs > UIO_MAXIOV))
1289 return -EINVAL;
1290 else if (unlikely(!nr_segs))
1291 return 0;
1293 spd.nr_pages = get_iovec_page_array(iov, nr_segs, pages, partial,
1294 flags & SPLICE_F_GIFT);
1295 if (spd.nr_pages <= 0)
1296 return spd.nr_pages;
1298 return splice_to_pipe(pipe, &spd);
1301 asmlinkage long sys_vmsplice(int fd, const struct iovec __user *iov,
1302 unsigned long nr_segs, unsigned int flags)
1304 struct file *file;
1305 long error;
1306 int fput;
1308 error = -EBADF;
1309 file = fget_light(fd, &fput);
1310 if (file) {
1311 if (file->f_mode & FMODE_WRITE)
1312 error = do_vmsplice(file, iov, nr_segs, flags);
1314 fput_light(file, fput);
1317 return error;
1320 asmlinkage long sys_splice(int fd_in, loff_t __user *off_in,
1321 int fd_out, loff_t __user *off_out,
1322 size_t len, unsigned int flags)
1324 long error;
1325 struct file *in, *out;
1326 int fput_in, fput_out;
1328 if (unlikely(!len))
1329 return 0;
1331 error = -EBADF;
1332 in = fget_light(fd_in, &fput_in);
1333 if (in) {
1334 if (in->f_mode & FMODE_READ) {
1335 out = fget_light(fd_out, &fput_out);
1336 if (out) {
1337 if (out->f_mode & FMODE_WRITE)
1338 error = do_splice(in, off_in,
1339 out, off_out,
1340 len, flags);
1341 fput_light(out, fput_out);
1345 fput_light(in, fput_in);
1348 return error;
1352 * Make sure there's data to read. Wait for input if we can, otherwise
1353 * return an appropriate error.
1355 static int link_ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1357 int ret;
1360 * Check ->nrbufs without the inode lock first. This function
1361 * is speculative anyways, so missing one is ok.
1363 if (pipe->nrbufs)
1364 return 0;
1366 ret = 0;
1367 mutex_lock(&pipe->inode->i_mutex);
1369 while (!pipe->nrbufs) {
1370 if (signal_pending(current)) {
1371 ret = -ERESTARTSYS;
1372 break;
1374 if (!pipe->writers)
1375 break;
1376 if (!pipe->waiting_writers) {
1377 if (flags & SPLICE_F_NONBLOCK) {
1378 ret = -EAGAIN;
1379 break;
1382 pipe_wait(pipe);
1385 mutex_unlock(&pipe->inode->i_mutex);
1386 return ret;
1390 * Make sure there's writeable room. Wait for room if we can, otherwise
1391 * return an appropriate error.
1393 static int link_opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1395 int ret;
1398 * Check ->nrbufs without the inode lock first. This function
1399 * is speculative anyways, so missing one is ok.
1401 if (pipe->nrbufs < PIPE_BUFFERS)
1402 return 0;
1404 ret = 0;
1405 mutex_lock(&pipe->inode->i_mutex);
1407 while (pipe->nrbufs >= PIPE_BUFFERS) {
1408 if (!pipe->readers) {
1409 send_sig(SIGPIPE, current, 0);
1410 ret = -EPIPE;
1411 break;
1413 if (flags & SPLICE_F_NONBLOCK) {
1414 ret = -EAGAIN;
1415 break;
1417 if (signal_pending(current)) {
1418 ret = -ERESTARTSYS;
1419 break;
1421 pipe->waiting_writers++;
1422 pipe_wait(pipe);
1423 pipe->waiting_writers--;
1426 mutex_unlock(&pipe->inode->i_mutex);
1427 return ret;
1431 * Link contents of ipipe to opipe.
1433 static int link_pipe(struct pipe_inode_info *ipipe,
1434 struct pipe_inode_info *opipe,
1435 size_t len, unsigned int flags)
1437 struct pipe_buffer *ibuf, *obuf;
1438 int ret = 0, i = 0, nbuf;
1441 * Potential ABBA deadlock, work around it by ordering lock
1442 * grabbing by inode address. Otherwise two different processes
1443 * could deadlock (one doing tee from A -> B, the other from B -> A).
1445 inode_double_lock(ipipe->inode, opipe->inode);
1447 do {
1448 if (!opipe->readers) {
1449 send_sig(SIGPIPE, current, 0);
1450 if (!ret)
1451 ret = -EPIPE;
1452 break;
1456 * If we have iterated all input buffers or ran out of
1457 * output room, break.
1459 if (i >= ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS)
1460 break;
1462 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (PIPE_BUFFERS - 1));
1463 nbuf = (opipe->curbuf + opipe->nrbufs) & (PIPE_BUFFERS - 1);
1466 * Get a reference to this pipe buffer,
1467 * so we can copy the contents over.
1469 ibuf->ops->get(ipipe, ibuf);
1471 obuf = opipe->bufs + nbuf;
1472 *obuf = *ibuf;
1475 * Don't inherit the gift flag, we need to
1476 * prevent multiple steals of this page.
1478 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1480 if (obuf->len > len)
1481 obuf->len = len;
1483 opipe->nrbufs++;
1484 ret += obuf->len;
1485 len -= obuf->len;
1486 i++;
1487 } while (len);
1489 inode_double_unlock(ipipe->inode, opipe->inode);
1492 * If we put data in the output pipe, wakeup any potential readers.
1494 if (ret > 0) {
1495 smp_mb();
1496 if (waitqueue_active(&opipe->wait))
1497 wake_up_interruptible(&opipe->wait);
1498 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1501 return ret;
1505 * This is a tee(1) implementation that works on pipes. It doesn't copy
1506 * any data, it simply references the 'in' pages on the 'out' pipe.
1507 * The 'flags' used are the SPLICE_F_* variants, currently the only
1508 * applicable one is SPLICE_F_NONBLOCK.
1510 static long do_tee(struct file *in, struct file *out, size_t len,
1511 unsigned int flags)
1513 struct pipe_inode_info *ipipe = pipe_info(in->f_path.dentry->d_inode);
1514 struct pipe_inode_info *opipe = pipe_info(out->f_path.dentry->d_inode);
1515 int ret = -EINVAL;
1518 * Duplicate the contents of ipipe to opipe without actually
1519 * copying the data.
1521 if (ipipe && opipe && ipipe != opipe) {
1523 * Keep going, unless we encounter an error. The ipipe/opipe
1524 * ordering doesn't really matter.
1526 ret = link_ipipe_prep(ipipe, flags);
1527 if (!ret) {
1528 ret = link_opipe_prep(opipe, flags);
1529 if (!ret) {
1530 ret = link_pipe(ipipe, opipe, len, flags);
1531 if (!ret && (flags & SPLICE_F_NONBLOCK))
1532 ret = -EAGAIN;
1537 return ret;
1540 asmlinkage long sys_tee(int fdin, int fdout, size_t len, unsigned int flags)
1542 struct file *in;
1543 int error, fput_in;
1545 if (unlikely(!len))
1546 return 0;
1548 error = -EBADF;
1549 in = fget_light(fdin, &fput_in);
1550 if (in) {
1551 if (in->f_mode & FMODE_READ) {
1552 int fput_out;
1553 struct file *out = fget_light(fdout, &fput_out);
1555 if (out) {
1556 if (out->f_mode & FMODE_WRITE)
1557 error = do_tee(in, out, len, flags);
1558 fput_light(out, fput_out);
1561 fput_light(in, fput_in);
1564 return error;