2 * drivers/spi/spi_imx.c
4 * Copyright (C) 2006 SWAPP
5 * Andrea Paterniani <a.paterniani@swapp-eng.it>
7 * Initial version inspired by:
8 * linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
21 #include <linux/init.h>
22 #include <linux/module.h>
23 #include <linux/device.h>
24 #include <linux/ioport.h>
25 #include <linux/errno.h>
26 #include <linux/interrupt.h>
27 #include <linux/platform_device.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/spi/spi.h>
30 #include <linux/workqueue.h>
31 #include <linux/delay.h>
35 #include <asm/hardware.h>
36 #include <asm/delay.h>
38 #include <asm/arch/hardware.h>
39 #include <asm/arch/imx-dma.h>
40 #include <asm/arch/spi_imx.h>
42 /*-------------------------------------------------------------------------*/
43 /* SPI Registers offsets from peripheral base address */
44 #define SPI_RXDATA (0x00)
45 #define SPI_TXDATA (0x04)
46 #define SPI_CONTROL (0x08)
47 #define SPI_INT_STATUS (0x0C)
48 #define SPI_TEST (0x10)
49 #define SPI_PERIOD (0x14)
50 #define SPI_DMA (0x18)
51 #define SPI_RESET (0x1C)
53 /* SPI Control Register Bit Fields & Masks */
54 #define SPI_CONTROL_BITCOUNT_MASK (0xF) /* Bit Count Mask */
55 #define SPI_CONTROL_BITCOUNT(n) (((n) - 1) & SPI_CONTROL_BITCOUNT_MASK)
56 #define SPI_CONTROL_POL (0x1 << 4) /* Clock Polarity Mask */
57 #define SPI_CONTROL_POL_ACT_HIGH (0x0 << 4) /* Active high pol. (0=idle) */
58 #define SPI_CONTROL_POL_ACT_LOW (0x1 << 4) /* Active low pol. (1=idle) */
59 #define SPI_CONTROL_PHA (0x1 << 5) /* Clock Phase Mask */
60 #define SPI_CONTROL_PHA_0 (0x0 << 5) /* Clock Phase 0 */
61 #define SPI_CONTROL_PHA_1 (0x1 << 5) /* Clock Phase 1 */
62 #define SPI_CONTROL_SSCTL (0x1 << 6) /* /SS Waveform Select Mask */
63 #define SPI_CONTROL_SSCTL_0 (0x0 << 6) /* Master: /SS stays low between SPI burst
64 Slave: RXFIFO advanced by BIT_COUNT */
65 #define SPI_CONTROL_SSCTL_1 (0x1 << 6) /* Master: /SS insert pulse between SPI burst
66 Slave: RXFIFO advanced by /SS rising edge */
67 #define SPI_CONTROL_SSPOL (0x1 << 7) /* /SS Polarity Select Mask */
68 #define SPI_CONTROL_SSPOL_ACT_LOW (0x0 << 7) /* /SS Active low */
69 #define SPI_CONTROL_SSPOL_ACT_HIGH (0x1 << 7) /* /SS Active high */
70 #define SPI_CONTROL_XCH (0x1 << 8) /* Exchange */
71 #define SPI_CONTROL_SPIEN (0x1 << 9) /* SPI Module Enable */
72 #define SPI_CONTROL_MODE (0x1 << 10) /* SPI Mode Select Mask */
73 #define SPI_CONTROL_MODE_SLAVE (0x0 << 10) /* SPI Mode Slave */
74 #define SPI_CONTROL_MODE_MASTER (0x1 << 10) /* SPI Mode Master */
75 #define SPI_CONTROL_DRCTL (0x3 << 11) /* /SPI_RDY Control Mask */
76 #define SPI_CONTROL_DRCTL_0 (0x0 << 11) /* Ignore /SPI_RDY */
77 #define SPI_CONTROL_DRCTL_1 (0x1 << 11) /* /SPI_RDY falling edge triggers input */
78 #define SPI_CONTROL_DRCTL_2 (0x2 << 11) /* /SPI_RDY active low level triggers input */
79 #define SPI_CONTROL_DATARATE (0x7 << 13) /* Data Rate Mask */
80 #define SPI_PERCLK2_DIV_MIN (0) /* PERCLK2:4 */
81 #define SPI_PERCLK2_DIV_MAX (7) /* PERCLK2:512 */
82 #define SPI_CONTROL_DATARATE_MIN (SPI_PERCLK2_DIV_MAX << 13)
83 #define SPI_CONTROL_DATARATE_MAX (SPI_PERCLK2_DIV_MIN << 13)
84 #define SPI_CONTROL_DATARATE_BAD (SPI_CONTROL_DATARATE_MIN + 1)
86 /* SPI Interrupt/Status Register Bit Fields & Masks */
87 #define SPI_STATUS_TE (0x1 << 0) /* TXFIFO Empty Status */
88 #define SPI_STATUS_TH (0x1 << 1) /* TXFIFO Half Status */
89 #define SPI_STATUS_TF (0x1 << 2) /* TXFIFO Full Status */
90 #define SPI_STATUS_RR (0x1 << 3) /* RXFIFO Data Ready Status */
91 #define SPI_STATUS_RH (0x1 << 4) /* RXFIFO Half Status */
92 #define SPI_STATUS_RF (0x1 << 5) /* RXFIFO Full Status */
93 #define SPI_STATUS_RO (0x1 << 6) /* RXFIFO Overflow */
94 #define SPI_STATUS_BO (0x1 << 7) /* Bit Count Overflow */
95 #define SPI_STATUS (0xFF) /* SPI Status Mask */
96 #define SPI_INTEN_TE (0x1 << 8) /* TXFIFO Empty Interrupt Enable */
97 #define SPI_INTEN_TH (0x1 << 9) /* TXFIFO Half Interrupt Enable */
98 #define SPI_INTEN_TF (0x1 << 10) /* TXFIFO Full Interrupt Enable */
99 #define SPI_INTEN_RE (0x1 << 11) /* RXFIFO Data Ready Interrupt Enable */
100 #define SPI_INTEN_RH (0x1 << 12) /* RXFIFO Half Interrupt Enable */
101 #define SPI_INTEN_RF (0x1 << 13) /* RXFIFO Full Interrupt Enable */
102 #define SPI_INTEN_RO (0x1 << 14) /* RXFIFO Overflow Interrupt Enable */
103 #define SPI_INTEN_BO (0x1 << 15) /* Bit Count Overflow Interrupt Enable */
104 #define SPI_INTEN (0xFF << 8) /* SPI Interrupt Enable Mask */
106 /* SPI Test Register Bit Fields & Masks */
107 #define SPI_TEST_TXCNT (0xF << 0) /* TXFIFO Counter */
108 #define SPI_TEST_RXCNT_LSB (4) /* RXFIFO Counter LSB */
109 #define SPI_TEST_RXCNT (0xF << 4) /* RXFIFO Counter */
110 #define SPI_TEST_SSTATUS (0xF << 8) /* State Machine Status */
111 #define SPI_TEST_LBC (0x1 << 14) /* Loop Back Control */
113 /* SPI Period Register Bit Fields & Masks */
114 #define SPI_PERIOD_WAIT (0x7FFF << 0) /* Wait Between Transactions */
115 #define SPI_PERIOD_MAX_WAIT (0x7FFF) /* Max Wait Between
117 #define SPI_PERIOD_CSRC (0x1 << 15) /* Period Clock Source Mask */
118 #define SPI_PERIOD_CSRC_BCLK (0x0 << 15) /* Period Clock Source is
120 #define SPI_PERIOD_CSRC_32768 (0x1 << 15) /* Period Clock Source is
123 /* SPI DMA Register Bit Fields & Masks */
124 #define SPI_DMA_RHDMA (0x1 << 4) /* RXFIFO Half Status */
125 #define SPI_DMA_RFDMA (0x1 << 5) /* RXFIFO Full Status */
126 #define SPI_DMA_TEDMA (0x1 << 6) /* TXFIFO Empty Status */
127 #define SPI_DMA_THDMA (0x1 << 7) /* TXFIFO Half Status */
128 #define SPI_DMA_RHDEN (0x1 << 12) /* RXFIFO Half DMA Request Enable */
129 #define SPI_DMA_RFDEN (0x1 << 13) /* RXFIFO Full DMA Request Enable */
130 #define SPI_DMA_TEDEN (0x1 << 14) /* TXFIFO Empty DMA Request Enable */
131 #define SPI_DMA_THDEN (0x1 << 15) /* TXFIFO Half DMA Request Enable */
133 /* SPI Soft Reset Register Bit Fields & Masks */
134 #define SPI_RESET_START (0x1) /* Start */
136 /* Default SPI configuration values */
137 #define SPI_DEFAULT_CONTROL \
139 SPI_CONTROL_BITCOUNT(16) | \
140 SPI_CONTROL_POL_ACT_HIGH | \
141 SPI_CONTROL_PHA_0 | \
142 SPI_CONTROL_SPIEN | \
143 SPI_CONTROL_SSCTL_1 | \
144 SPI_CONTROL_MODE_MASTER | \
145 SPI_CONTROL_DRCTL_0 | \
146 SPI_CONTROL_DATARATE_MIN \
148 #define SPI_DEFAULT_ENABLE_LOOPBACK (0)
149 #define SPI_DEFAULT_ENABLE_DMA (0)
150 #define SPI_DEFAULT_PERIOD_WAIT (8)
151 /*-------------------------------------------------------------------------*/
154 /*-------------------------------------------------------------------------*/
155 /* TX/RX SPI FIFO size */
156 #define SPI_FIFO_DEPTH (8)
157 #define SPI_FIFO_BYTE_WIDTH (2)
158 #define SPI_FIFO_OVERFLOW_MARGIN (2)
160 /* DMA burst lenght for half full/empty request trigger */
161 #define SPI_DMA_BLR (SPI_FIFO_DEPTH * SPI_FIFO_BYTE_WIDTH / 2)
163 /* Dummy char output to achieve reads.
164 Choosing something different from all zeroes may help pattern recogition
165 for oscilloscope analysis, but may break some drivers. */
166 #define SPI_DUMMY_u8 0
167 #define SPI_DUMMY_u16 ((SPI_DUMMY_u8 << 8) | SPI_DUMMY_u8)
168 #define SPI_DUMMY_u32 ((SPI_DUMMY_u16 << 16) | SPI_DUMMY_u16)
171 * Macro to change a u32 field:
172 * @r : register to edit
174 * @v : new value for the field correctly bit-alligned
176 #define u32_EDIT(r, m, v) r = (r & ~(m)) | (v)
179 #define START_STATE ((void*)0)
180 #define RUNNING_STATE ((void*)1)
181 #define DONE_STATE ((void*)2)
182 #define ERROR_STATE ((void*)-1)
185 #define QUEUE_RUNNING (0)
186 #define QUEUE_STOPPED (1)
188 #define IS_DMA_ALIGNED(x) (((u32)(x) & 0x03) == 0)
189 /*-------------------------------------------------------------------------*/
192 /*-------------------------------------------------------------------------*/
193 /* Driver data structs */
197 /* Driver model hookup */
198 struct platform_device
*pdev
;
200 /* SPI framework hookup */
201 struct spi_master
*master
;
204 struct spi_imx_master
*master_info
;
206 /* Memory resources and SPI regs virtual address */
207 struct resource
*ioarea
;
210 /* SPI RX_DATA physical address */
211 dma_addr_t rd_data_phys
;
213 /* Driver message queue */
214 struct workqueue_struct
*workqueue
;
215 struct work_struct work
;
217 struct list_head queue
;
221 /* Message Transfer pump */
222 struct tasklet_struct pump_transfers
;
224 /* Current message, transfer and state */
225 struct spi_message
*cur_msg
;
226 struct spi_transfer
*cur_transfer
;
227 struct chip_data
*cur_chip
;
229 /* Rd / Wr buffers pointers */
240 /* Function pointers */
241 irqreturn_t (*transfer_handler
)(struct driver_data
*drv_data
);
242 void (*cs_control
)(u32 command
);
249 int rx_dma_needs_unmap
;
250 int tx_dma_needs_unmap
;
252 u32 dummy_dma_buf ____cacheline_aligned
;
266 void (*cs_control
)(u32 command
);
268 /*-------------------------------------------------------------------------*/
271 static void pump_messages(struct work_struct
*work
);
273 static int flush(struct driver_data
*drv_data
)
275 unsigned long limit
= loops_per_jiffy
<< 1;
276 void __iomem
*regs
= drv_data
->regs
;
279 dev_dbg(&drv_data
->pdev
->dev
, "flush\n");
281 while (readl(regs
+ SPI_INT_STATUS
) & SPI_STATUS_RR
)
282 d
= readl(regs
+ SPI_RXDATA
);
283 } while ((readl(regs
+ SPI_CONTROL
) & SPI_CONTROL_XCH
) && limit
--);
288 static void restore_state(struct driver_data
*drv_data
)
290 void __iomem
*regs
= drv_data
->regs
;
291 struct chip_data
*chip
= drv_data
->cur_chip
;
293 /* Load chip registers */
294 dev_dbg(&drv_data
->pdev
->dev
,
297 " control = 0x%08X\n",
300 writel(chip
->test
, regs
+ SPI_TEST
);
301 writel(chip
->period
, regs
+ SPI_PERIOD
);
302 writel(0, regs
+ SPI_INT_STATUS
);
303 writel(chip
->control
, regs
+ SPI_CONTROL
);
306 static void null_cs_control(u32 command
)
310 static inline u32
data_to_write(struct driver_data
*drv_data
)
312 return ((u32
)(drv_data
->tx_end
- drv_data
->tx
)) / drv_data
->n_bytes
;
315 static inline u32
data_to_read(struct driver_data
*drv_data
)
317 return ((u32
)(drv_data
->rx_end
- drv_data
->rx
)) / drv_data
->n_bytes
;
320 static int write(struct driver_data
*drv_data
)
322 void __iomem
*regs
= drv_data
->regs
;
323 void *tx
= drv_data
->tx
;
324 void *tx_end
= drv_data
->tx_end
;
325 u8 n_bytes
= drv_data
->n_bytes
;
326 u32 remaining_writes
;
327 u32 fifo_avail_space
;
331 /* Compute how many fifo writes to do */
332 remaining_writes
= (u32
)(tx_end
- tx
) / n_bytes
;
333 fifo_avail_space
= SPI_FIFO_DEPTH
-
334 (readl(regs
+ SPI_TEST
) & SPI_TEST_TXCNT
);
335 if (drv_data
->rx
&& (fifo_avail_space
> SPI_FIFO_OVERFLOW_MARGIN
))
336 /* Fix misunderstood receive overflow */
337 fifo_avail_space
-= SPI_FIFO_OVERFLOW_MARGIN
;
338 n
= min(remaining_writes
, fifo_avail_space
);
340 dev_dbg(&drv_data
->pdev
->dev
,
342 " remaining writes = %d\n"
343 " fifo avail space = %d\n"
344 " fifo writes = %d\n",
345 (n_bytes
== 1) ? "u8" : "u16",
351 /* Fill SPI TXFIFO */
352 if (drv_data
->rd_only
) {
355 writel(SPI_DUMMY_u16
, regs
+ SPI_TXDATA
);
360 writel(d
, regs
+ SPI_TXDATA
);
366 writel(d
, regs
+ SPI_TXDATA
);
372 /* Trigger transfer */
373 writel(readl(regs
+ SPI_CONTROL
) | SPI_CONTROL_XCH
,
376 /* Update tx pointer */
380 return (tx
>= tx_end
);
383 static int read(struct driver_data
*drv_data
)
385 void __iomem
*regs
= drv_data
->regs
;
386 void *rx
= drv_data
->rx
;
387 void *rx_end
= drv_data
->rx_end
;
388 u8 n_bytes
= drv_data
->n_bytes
;
394 /* Compute how many fifo reads to do */
395 remaining_reads
= (u32
)(rx_end
- rx
) / n_bytes
;
396 fifo_rxcnt
= (readl(regs
+ SPI_TEST
) & SPI_TEST_RXCNT
) >>
398 n
= min(remaining_reads
, fifo_rxcnt
);
400 dev_dbg(&drv_data
->pdev
->dev
,
402 " remaining reads = %d\n"
403 " fifo rx count = %d\n"
404 " fifo reads = %d\n",
405 (n_bytes
== 1) ? "u8" : "u16",
411 /* Read SPI RXFIFO */
414 d
= readl(regs
+ SPI_RXDATA
);
420 d
= readl(regs
+ SPI_RXDATA
);
426 /* Update rx pointer */
430 return (rx
>= rx_end
);
433 static void *next_transfer(struct driver_data
*drv_data
)
435 struct spi_message
*msg
= drv_data
->cur_msg
;
436 struct spi_transfer
*trans
= drv_data
->cur_transfer
;
438 /* Move to next transfer */
439 if (trans
->transfer_list
.next
!= &msg
->transfers
) {
440 drv_data
->cur_transfer
=
441 list_entry(trans
->transfer_list
.next
,
444 return RUNNING_STATE
;
450 static int map_dma_buffers(struct driver_data
*drv_data
)
452 struct spi_message
*msg
;
456 drv_data
->rx_dma_needs_unmap
= 0;
457 drv_data
->tx_dma_needs_unmap
= 0;
459 if (!drv_data
->master_info
->enable_dma
||
460 !drv_data
->cur_chip
->enable_dma
)
463 msg
= drv_data
->cur_msg
;
464 dev
= &msg
->spi
->dev
;
465 if (msg
->is_dma_mapped
) {
466 if (drv_data
->tx_dma
)
467 /* The caller provided at least dma and cpu virtual
468 address for write; pump_transfers() will consider the
469 transfer as write only if cpu rx virtual address is
473 if (drv_data
->rx_dma
) {
474 /* The caller provided dma and cpu virtual address to
475 performe read only transfer -->
476 use drv_data->dummy_dma_buf for dummy writes to
478 buf
= &drv_data
->dummy_dma_buf
;
479 drv_data
->tx_map_len
= sizeof(drv_data
->dummy_dma_buf
);
480 drv_data
->tx_dma
= dma_map_single(dev
,
482 drv_data
->tx_map_len
,
484 if (dma_mapping_error(drv_data
->tx_dma
))
487 drv_data
->tx_dma_needs_unmap
= 1;
489 /* Flags transfer as rd_only for pump_transfers() DMA
490 regs programming (should be redundant) */
497 if (!IS_DMA_ALIGNED(drv_data
->rx
) || !IS_DMA_ALIGNED(drv_data
->tx
))
500 /* NULL rx means write-only transfer and no map needed
501 since rx DMA will not be used */
504 drv_data
->rx_dma
= dma_map_single(
509 if (dma_mapping_error(drv_data
->rx_dma
))
511 drv_data
->rx_dma_needs_unmap
= 1;
514 if (drv_data
->tx
== NULL
) {
515 /* Read only message --> use drv_data->dummy_dma_buf for dummy
516 writes to achive reads */
517 buf
= &drv_data
->dummy_dma_buf
;
518 drv_data
->tx_map_len
= sizeof(drv_data
->dummy_dma_buf
);
521 drv_data
->tx_map_len
= drv_data
->len
;
523 drv_data
->tx_dma
= dma_map_single(dev
,
525 drv_data
->tx_map_len
,
527 if (dma_mapping_error(drv_data
->tx_dma
)) {
528 if (drv_data
->rx_dma
) {
529 dma_unmap_single(dev
,
533 drv_data
->rx_dma_needs_unmap
= 0;
537 drv_data
->tx_dma_needs_unmap
= 1;
542 static void unmap_dma_buffers(struct driver_data
*drv_data
)
544 struct spi_message
*msg
= drv_data
->cur_msg
;
545 struct device
*dev
= &msg
->spi
->dev
;
547 if (drv_data
->rx_dma_needs_unmap
) {
548 dma_unmap_single(dev
,
552 drv_data
->rx_dma_needs_unmap
= 0;
554 if (drv_data
->tx_dma_needs_unmap
) {
555 dma_unmap_single(dev
,
557 drv_data
->tx_map_len
,
559 drv_data
->tx_dma_needs_unmap
= 0;
563 /* Caller already set message->status (dma is already blocked) */
564 static void giveback(struct spi_message
*message
, struct driver_data
*drv_data
)
566 void __iomem
*regs
= drv_data
->regs
;
568 /* Bring SPI to sleep; restore_state() and pump_transfer()
570 writel(0, regs
+ SPI_INT_STATUS
);
571 writel(0, regs
+ SPI_DMA
);
573 drv_data
->cs_control(SPI_CS_DEASSERT
);
575 message
->state
= NULL
;
576 if (message
->complete
)
577 message
->complete(message
->context
);
579 drv_data
->cur_msg
= NULL
;
580 drv_data
->cur_transfer
= NULL
;
581 drv_data
->cur_chip
= NULL
;
582 queue_work(drv_data
->workqueue
, &drv_data
->work
);
585 static void dma_err_handler(int channel
, void *data
, int errcode
)
587 struct driver_data
*drv_data
= data
;
588 struct spi_message
*msg
= drv_data
->cur_msg
;
590 dev_dbg(&drv_data
->pdev
->dev
, "dma_err_handler\n");
592 /* Disable both rx and tx dma channels */
593 imx_dma_disable(drv_data
->rx_channel
);
594 imx_dma_disable(drv_data
->tx_channel
);
596 if (flush(drv_data
) == 0)
597 dev_err(&drv_data
->pdev
->dev
,
598 "dma_err_handler - flush failed\n");
600 unmap_dma_buffers(drv_data
);
602 msg
->state
= ERROR_STATE
;
603 tasklet_schedule(&drv_data
->pump_transfers
);
606 static void dma_tx_handler(int channel
, void *data
)
608 struct driver_data
*drv_data
= data
;
610 dev_dbg(&drv_data
->pdev
->dev
, "dma_tx_handler\n");
612 imx_dma_disable(channel
);
614 /* Now waits for TX FIFO empty */
615 writel(readl(drv_data
->regs
+ SPI_INT_STATUS
) | SPI_INTEN_TE
,
616 drv_data
->regs
+ SPI_INT_STATUS
);
619 static irqreturn_t
dma_transfer(struct driver_data
*drv_data
)
622 struct spi_message
*msg
= drv_data
->cur_msg
;
623 void __iomem
*regs
= drv_data
->regs
;
626 status
= readl(regs
+ SPI_INT_STATUS
);
628 if ((status
& SPI_INTEN_RO
) && (status
& SPI_STATUS_RO
)) {
629 writel(status
& ~SPI_INTEN
, regs
+ SPI_INT_STATUS
);
631 imx_dma_disable(drv_data
->rx_channel
);
632 unmap_dma_buffers(drv_data
);
634 if (flush(drv_data
) == 0)
635 dev_err(&drv_data
->pdev
->dev
,
636 "dma_transfer - flush failed\n");
638 dev_warn(&drv_data
->pdev
->dev
,
639 "dma_transfer - fifo overun\n");
641 msg
->state
= ERROR_STATE
;
642 tasklet_schedule(&drv_data
->pump_transfers
);
647 if (status
& SPI_STATUS_TE
) {
648 writel(status
& ~SPI_INTEN_TE
, regs
+ SPI_INT_STATUS
);
651 /* Wait end of transfer before read trailing data */
652 limit
= loops_per_jiffy
<< 1;
653 while ((readl(regs
+ SPI_CONTROL
) & SPI_CONTROL_XCH
) &&
657 dev_err(&drv_data
->pdev
->dev
,
658 "dma_transfer - end of tx failed\n");
660 dev_dbg(&drv_data
->pdev
->dev
,
661 "dma_transfer - end of tx\n");
663 imx_dma_disable(drv_data
->rx_channel
);
664 unmap_dma_buffers(drv_data
);
666 /* Calculate number of trailing data and read them */
667 dev_dbg(&drv_data
->pdev
->dev
,
668 "dma_transfer - test = 0x%08X\n",
669 readl(regs
+ SPI_TEST
));
670 drv_data
->rx
= drv_data
->rx_end
-
671 ((readl(regs
+ SPI_TEST
) &
673 SPI_TEST_RXCNT_LSB
)*drv_data
->n_bytes
;
676 /* Write only transfer */
677 unmap_dma_buffers(drv_data
);
679 if (flush(drv_data
) == 0)
680 dev_err(&drv_data
->pdev
->dev
,
681 "dma_transfer - flush failed\n");
684 /* End of transfer, update total byte transfered */
685 msg
->actual_length
+= drv_data
->len
;
687 /* Release chip select if requested, transfer delays are
688 handled in pump_transfers() */
689 if (drv_data
->cs_change
)
690 drv_data
->cs_control(SPI_CS_DEASSERT
);
692 /* Move to next transfer */
693 msg
->state
= next_transfer(drv_data
);
695 /* Schedule transfer tasklet */
696 tasklet_schedule(&drv_data
->pump_transfers
);
701 /* Opps problem detected */
705 static irqreturn_t
interrupt_wronly_transfer(struct driver_data
*drv_data
)
707 struct spi_message
*msg
= drv_data
->cur_msg
;
708 void __iomem
*regs
= drv_data
->regs
;
710 irqreturn_t handled
= IRQ_NONE
;
712 status
= readl(regs
+ SPI_INT_STATUS
);
714 while (status
& SPI_STATUS_TH
) {
715 dev_dbg(&drv_data
->pdev
->dev
,
716 "interrupt_wronly_transfer - status = 0x%08X\n", status
);
719 if (write(drv_data
)) {
720 writel(readl(regs
+ SPI_INT_STATUS
) & ~SPI_INTEN
,
721 regs
+ SPI_INT_STATUS
);
723 dev_dbg(&drv_data
->pdev
->dev
,
724 "interrupt_wronly_transfer - end of tx\n");
726 if (flush(drv_data
) == 0)
727 dev_err(&drv_data
->pdev
->dev
,
728 "interrupt_wronly_transfer - "
731 /* End of transfer, update total byte transfered */
732 msg
->actual_length
+= drv_data
->len
;
734 /* Release chip select if requested, transfer delays are
735 handled in pump_transfers */
736 if (drv_data
->cs_change
)
737 drv_data
->cs_control(SPI_CS_DEASSERT
);
739 /* Move to next transfer */
740 msg
->state
= next_transfer(drv_data
);
742 /* Schedule transfer tasklet */
743 tasklet_schedule(&drv_data
->pump_transfers
);
748 status
= readl(regs
+ SPI_INT_STATUS
);
750 /* We did something */
751 handled
= IRQ_HANDLED
;
757 static irqreturn_t
interrupt_transfer(struct driver_data
*drv_data
)
759 struct spi_message
*msg
= drv_data
->cur_msg
;
760 void __iomem
*regs
= drv_data
->regs
;
762 irqreturn_t handled
= IRQ_NONE
;
765 status
= readl(regs
+ SPI_INT_STATUS
);
767 while (status
& (SPI_STATUS_TH
| SPI_STATUS_RO
)) {
768 dev_dbg(&drv_data
->pdev
->dev
,
769 "interrupt_transfer - status = 0x%08X\n", status
);
771 if (status
& SPI_STATUS_RO
) {
772 writel(readl(regs
+ SPI_INT_STATUS
) & ~SPI_INTEN
,
773 regs
+ SPI_INT_STATUS
);
775 dev_warn(&drv_data
->pdev
->dev
,
776 "interrupt_transfer - fifo overun\n"
777 " data not yet written = %d\n"
778 " data not yet read = %d\n",
779 data_to_write(drv_data
),
780 data_to_read(drv_data
));
782 if (flush(drv_data
) == 0)
783 dev_err(&drv_data
->pdev
->dev
,
784 "interrupt_transfer - flush failed\n");
786 msg
->state
= ERROR_STATE
;
787 tasklet_schedule(&drv_data
->pump_transfers
);
794 if (write(drv_data
)) {
795 writel(readl(regs
+ SPI_INT_STATUS
) & ~SPI_INTEN
,
796 regs
+ SPI_INT_STATUS
);
798 dev_dbg(&drv_data
->pdev
->dev
,
799 "interrupt_transfer - end of tx\n");
801 /* Read trailing bytes */
802 limit
= loops_per_jiffy
<< 1;
803 while ((read(drv_data
) == 0) && limit
--);
806 dev_err(&drv_data
->pdev
->dev
,
807 "interrupt_transfer - "
808 "trailing byte read failed\n");
810 dev_dbg(&drv_data
->pdev
->dev
,
811 "interrupt_transfer - end of rx\n");
813 /* End of transfer, update total byte transfered */
814 msg
->actual_length
+= drv_data
->len
;
816 /* Release chip select if requested, transfer delays are
817 handled in pump_transfers */
818 if (drv_data
->cs_change
)
819 drv_data
->cs_control(SPI_CS_DEASSERT
);
821 /* Move to next transfer */
822 msg
->state
= next_transfer(drv_data
);
824 /* Schedule transfer tasklet */
825 tasklet_schedule(&drv_data
->pump_transfers
);
830 status
= readl(regs
+ SPI_INT_STATUS
);
832 /* We did something */
833 handled
= IRQ_HANDLED
;
839 static irqreturn_t
spi_int(int irq
, void *dev_id
)
841 struct driver_data
*drv_data
= (struct driver_data
*)dev_id
;
843 if (!drv_data
->cur_msg
) {
844 dev_err(&drv_data
->pdev
->dev
,
845 "spi_int - bad message state\n");
850 return drv_data
->transfer_handler(drv_data
);
853 static inline u32
spi_speed_hz(u32 data_rate
)
855 return imx_get_perclk2() / (4 << ((data_rate
) >> 13));
858 static u32
spi_data_rate(u32 speed_hz
)
861 u32 quantized_hz
= imx_get_perclk2() >> 2;
863 for (div
= SPI_PERCLK2_DIV_MIN
;
864 div
<= SPI_PERCLK2_DIV_MAX
;
865 div
++, quantized_hz
>>= 1) {
866 if (quantized_hz
<= speed_hz
)
867 /* Max available speed LEQ required speed */
870 return SPI_CONTROL_DATARATE_BAD
;
873 static void pump_transfers(unsigned long data
)
875 struct driver_data
*drv_data
= (struct driver_data
*)data
;
876 struct spi_message
*message
;
877 struct spi_transfer
*transfer
, *previous
;
878 struct chip_data
*chip
;
882 dev_dbg(&drv_data
->pdev
->dev
, "pump_transfer\n");
884 message
= drv_data
->cur_msg
;
886 /* Handle for abort */
887 if (message
->state
== ERROR_STATE
) {
888 message
->status
= -EIO
;
889 giveback(message
, drv_data
);
893 /* Handle end of message */
894 if (message
->state
== DONE_STATE
) {
896 giveback(message
, drv_data
);
900 chip
= drv_data
->cur_chip
;
902 /* Delay if requested at end of transfer*/
903 transfer
= drv_data
->cur_transfer
;
904 if (message
->state
== RUNNING_STATE
) {
905 previous
= list_entry(transfer
->transfer_list
.prev
,
908 if (previous
->delay_usecs
)
909 udelay(previous
->delay_usecs
);
912 message
->state
= RUNNING_STATE
;
913 drv_data
->cs_control
= chip
->cs_control
;
916 transfer
= drv_data
->cur_transfer
;
917 drv_data
->tx
= (void *)transfer
->tx_buf
;
918 drv_data
->tx_end
= drv_data
->tx
+ transfer
->len
;
919 drv_data
->rx
= transfer
->rx_buf
;
920 drv_data
->rx_end
= drv_data
->rx
+ transfer
->len
;
921 drv_data
->rx_dma
= transfer
->rx_dma
;
922 drv_data
->tx_dma
= transfer
->tx_dma
;
923 drv_data
->len
= transfer
->len
;
924 drv_data
->cs_change
= transfer
->cs_change
;
925 drv_data
->rd_only
= (drv_data
->tx
== NULL
);
927 regs
= drv_data
->regs
;
928 control
= readl(regs
+ SPI_CONTROL
);
930 /* Bits per word setup */
931 tmp
= transfer
->bits_per_word
;
933 /* Use device setup */
934 tmp
= chip
->bits_per_word
;
935 drv_data
->n_bytes
= chip
->n_bytes
;
937 /* Use per-transfer setup */
938 drv_data
->n_bytes
= (tmp
<= 8) ? 1 : 2;
939 u32_EDIT(control
, SPI_CONTROL_BITCOUNT_MASK
, tmp
- 1);
941 /* Speed setup (surely valid because already checked) */
942 tmp
= transfer
->speed_hz
;
944 tmp
= chip
->max_speed_hz
;
945 tmp
= spi_data_rate(tmp
);
946 u32_EDIT(control
, SPI_CONTROL_DATARATE
, tmp
);
948 writel(control
, regs
+ SPI_CONTROL
);
950 /* Assert device chip-select */
951 drv_data
->cs_control(SPI_CS_ASSERT
);
953 /* DMA cannot read/write SPI FIFOs other than 16 bits at a time; hence
954 if bits_per_word is less or equal 8 PIO transfers are performed.
955 Moreover DMA is convinient for transfer length bigger than FIFOs
957 if ((drv_data
->n_bytes
== 2) &&
958 (drv_data
->len
> SPI_FIFO_DEPTH
*SPI_FIFO_BYTE_WIDTH
) &&
959 (map_dma_buffers(drv_data
) == 0)) {
960 dev_dbg(&drv_data
->pdev
->dev
,
961 "pump dma transfer\n"
968 (unsigned int)drv_data
->tx_dma
,
970 (unsigned int)drv_data
->rx_dma
,
973 /* Ensure we have the correct interrupt handler */
974 drv_data
->transfer_handler
= dma_transfer
;
976 /* Trigger transfer */
977 writel(readl(regs
+ SPI_CONTROL
) | SPI_CONTROL_XCH
,
982 /* Linear source address */
983 CCR(drv_data
->tx_channel
) =
986 CCR_SSIZ_32
| CCR_DSIZ_16
|
989 /* Read only transfer -> fixed source address for
990 dummy write to achive read */
991 CCR(drv_data
->tx_channel
) =
994 CCR_SSIZ_32
| CCR_DSIZ_16
|
997 imx_dma_setup_single(
998 drv_data
->tx_channel
,
1001 drv_data
->rd_data_phys
+ 4,
1005 /* Setup rx DMA for linear destination address */
1006 CCR(drv_data
->rx_channel
) =
1009 CCR_DSIZ_32
| CCR_SSIZ_16
|
1011 imx_dma_setup_single(
1012 drv_data
->rx_channel
,
1015 drv_data
->rd_data_phys
,
1017 imx_dma_enable(drv_data
->rx_channel
);
1019 /* Enable SPI interrupt */
1020 writel(SPI_INTEN_RO
, regs
+ SPI_INT_STATUS
);
1022 /* Set SPI to request DMA service on both
1023 Rx and Tx half fifo watermark */
1024 writel(SPI_DMA_RHDEN
| SPI_DMA_THDEN
, regs
+ SPI_DMA
);
1026 /* Write only access -> set SPI to request DMA
1027 service on Tx half fifo watermark */
1028 writel(SPI_DMA_THDEN
, regs
+ SPI_DMA
);
1030 imx_dma_enable(drv_data
->tx_channel
);
1032 dev_dbg(&drv_data
->pdev
->dev
,
1033 "pump pio transfer\n"
1041 /* Ensure we have the correct interrupt handler */
1043 drv_data
->transfer_handler
= interrupt_transfer
;
1045 drv_data
->transfer_handler
= interrupt_wronly_transfer
;
1047 /* Enable SPI interrupt */
1049 writel(SPI_INTEN_TH
| SPI_INTEN_RO
,
1050 regs
+ SPI_INT_STATUS
);
1052 writel(SPI_INTEN_TH
, regs
+ SPI_INT_STATUS
);
1056 static void pump_messages(struct work_struct
*work
)
1058 struct driver_data
*drv_data
=
1059 container_of(work
, struct driver_data
, work
);
1060 unsigned long flags
;
1062 /* Lock queue and check for queue work */
1063 spin_lock_irqsave(&drv_data
->lock
, flags
);
1064 if (list_empty(&drv_data
->queue
) || drv_data
->run
== QUEUE_STOPPED
) {
1066 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1070 /* Make sure we are not already running a message */
1071 if (drv_data
->cur_msg
) {
1072 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1076 /* Extract head of queue */
1077 drv_data
->cur_msg
= list_entry(drv_data
->queue
.next
,
1078 struct spi_message
, queue
);
1079 list_del_init(&drv_data
->cur_msg
->queue
);
1081 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1083 /* Initial message state */
1084 drv_data
->cur_msg
->state
= START_STATE
;
1085 drv_data
->cur_transfer
= list_entry(drv_data
->cur_msg
->transfers
.next
,
1086 struct spi_transfer
,
1089 /* Setup the SPI using the per chip configuration */
1090 drv_data
->cur_chip
= spi_get_ctldata(drv_data
->cur_msg
->spi
);
1091 restore_state(drv_data
);
1093 /* Mark as busy and launch transfers */
1094 tasklet_schedule(&drv_data
->pump_transfers
);
1097 static int transfer(struct spi_device
*spi
, struct spi_message
*msg
)
1099 struct driver_data
*drv_data
= spi_master_get_devdata(spi
->master
);
1100 u32 min_speed_hz
, max_speed_hz
, tmp
;
1101 struct spi_transfer
*trans
;
1102 unsigned long flags
;
1104 msg
->actual_length
= 0;
1106 /* Per transfer setup check */
1107 min_speed_hz
= spi_speed_hz(SPI_CONTROL_DATARATE_MIN
);
1108 max_speed_hz
= spi
->max_speed_hz
;
1109 list_for_each_entry(trans
, &msg
->transfers
, transfer_list
) {
1110 tmp
= trans
->bits_per_word
;
1112 dev_err(&drv_data
->pdev
->dev
,
1113 "message rejected : "
1114 "invalid transfer bits_per_word (%d bits)\n",
1118 tmp
= trans
->speed_hz
;
1120 if (tmp
< min_speed_hz
) {
1121 dev_err(&drv_data
->pdev
->dev
,
1122 "message rejected : "
1123 "device min speed (%d Hz) exceeds "
1124 "required transfer speed (%d Hz)\n",
1128 } else if (tmp
> max_speed_hz
) {
1129 dev_err(&drv_data
->pdev
->dev
,
1130 "message rejected : "
1131 "transfer speed (%d Hz) exceeds "
1132 "device max speed (%d Hz)\n",
1140 /* Message accepted */
1141 msg
->status
= -EINPROGRESS
;
1142 msg
->state
= START_STATE
;
1144 spin_lock_irqsave(&drv_data
->lock
, flags
);
1145 if (drv_data
->run
== QUEUE_STOPPED
) {
1146 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1150 list_add_tail(&msg
->queue
, &drv_data
->queue
);
1151 if (drv_data
->run
== QUEUE_RUNNING
&& !drv_data
->busy
)
1152 queue_work(drv_data
->workqueue
, &drv_data
->work
);
1154 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1158 /* Message rejected and not queued */
1159 msg
->status
= -EINVAL
;
1160 msg
->state
= ERROR_STATE
;
1162 msg
->complete(msg
->context
);
1166 /* On first setup bad values must free chip_data memory since will cause
1167 spi_new_device to fail. Bad value setup from protocol driver are simply not
1168 applied and notified to the calling driver. */
1169 static int setup(struct spi_device
*spi
)
1171 struct spi_imx_chip
*chip_info
;
1172 struct chip_data
*chip
;
1173 int first_setup
= 0;
1177 /* Get controller data */
1178 chip_info
= spi
->controller_data
;
1180 /* Get controller_state */
1181 chip
= spi_get_ctldata(spi
);
1185 chip
= kzalloc(sizeof(struct chip_data
), GFP_KERNEL
);
1188 "setup - cannot allocate controller state");
1191 chip
->control
= SPI_DEFAULT_CONTROL
;
1193 if (chip_info
== NULL
) {
1194 /* spi_board_info.controller_data not is supplied */
1195 chip_info
= kzalloc(sizeof(struct spi_imx_chip
),
1200 "cannot allocate controller data");
1202 goto err_first_setup
;
1204 /* Set controller data default value */
1205 chip_info
->enable_loopback
=
1206 SPI_DEFAULT_ENABLE_LOOPBACK
;
1207 chip_info
->enable_dma
= SPI_DEFAULT_ENABLE_DMA
;
1208 chip_info
->ins_ss_pulse
= 1;
1209 chip_info
->bclk_wait
= SPI_DEFAULT_PERIOD_WAIT
;
1210 chip_info
->cs_control
= null_cs_control
;
1214 /* Now set controller state based on controller data */
1218 if (chip_info
->enable_loopback
)
1219 chip
->test
= SPI_TEST_LBC
;
1223 /* SPI dma driven */
1224 chip
->enable_dma
= chip_info
->enable_dma
;
1226 /* SPI /SS pulse between spi burst */
1227 if (chip_info
->ins_ss_pulse
)
1228 u32_EDIT(chip
->control
,
1229 SPI_CONTROL_SSCTL
, SPI_CONTROL_SSCTL_1
);
1231 u32_EDIT(chip
->control
,
1232 SPI_CONTROL_SSCTL
, SPI_CONTROL_SSCTL_0
);
1234 /* SPI bclk waits between each bits_per_word spi burst */
1235 if (chip_info
->bclk_wait
> SPI_PERIOD_MAX_WAIT
) {
1238 "bclk_wait exceeds max allowed (%d)\n",
1239 SPI_PERIOD_MAX_WAIT
);
1240 goto err_first_setup
;
1242 chip
->period
= SPI_PERIOD_CSRC_BCLK
|
1243 (chip_info
->bclk_wait
& SPI_PERIOD_WAIT
);
1248 if (tmp
& SPI_LSB_FIRST
) {
1253 "HW doesn't support LSB first transfer\n");
1254 goto err_first_setup
;
1258 "HW doesn't support LSB first transfer, "
1259 "default to MSB first\n");
1260 spi
->mode
&= ~SPI_LSB_FIRST
;
1263 if (tmp
& SPI_CS_HIGH
) {
1264 u32_EDIT(chip
->control
,
1265 SPI_CONTROL_SSPOL
, SPI_CONTROL_SSPOL_ACT_HIGH
);
1267 switch (tmp
& SPI_MODE_3
) {
1272 tmp
= SPI_CONTROL_PHA_1
;
1275 tmp
= SPI_CONTROL_POL_ACT_LOW
;
1279 tmp
= SPI_CONTROL_PHA_1
| SPI_CONTROL_POL_ACT_LOW
;
1282 u32_EDIT(chip
->control
, SPI_CONTROL_POL
| SPI_CONTROL_PHA
, tmp
);
1284 /* SPI word width */
1285 tmp
= spi
->bits_per_word
;
1288 spi
->bits_per_word
= 8;
1289 } else if (tmp
> 16) {
1293 "invalid bits_per_word (%d)\n",
1296 goto err_first_setup
;
1298 /* Undo setup using chip as backup copy */
1299 tmp
= chip
->bits_per_word
;
1300 spi
->bits_per_word
= tmp
;
1303 chip
->bits_per_word
= tmp
;
1304 u32_EDIT(chip
->control
, SPI_CONTROL_BITCOUNT_MASK
, tmp
- 1);
1305 chip
->n_bytes
= (tmp
<= 8) ? 1 : 2;
1308 tmp
= spi_data_rate(spi
->max_speed_hz
);
1309 if (tmp
== SPI_CONTROL_DATARATE_BAD
) {
1313 "HW min speed (%d Hz) exceeds required "
1314 "max speed (%d Hz)\n",
1315 spi_speed_hz(SPI_CONTROL_DATARATE_MIN
),
1318 goto err_first_setup
;
1320 /* Undo setup using chip as backup copy */
1321 spi
->max_speed_hz
= chip
->max_speed_hz
;
1323 u32_EDIT(chip
->control
, SPI_CONTROL_DATARATE
, tmp
);
1324 /* Actual rounded max_speed_hz */
1325 tmp
= spi_speed_hz(tmp
);
1326 spi
->max_speed_hz
= tmp
;
1327 chip
->max_speed_hz
= tmp
;
1330 /* SPI chip-select management */
1331 if (chip_info
->cs_control
)
1332 chip
->cs_control
= chip_info
->cs_control
;
1334 chip
->cs_control
= null_cs_control
;
1336 /* Save controller_state */
1337 spi_set_ctldata(spi
, chip
);
1342 " loopback enable = %s\n"
1343 " dma enable = %s\n"
1344 " insert /ss pulse = %s\n"
1345 " period wait = %d\n"
1347 " bits per word = %d\n"
1348 " min speed = %d Hz\n"
1349 " rounded max speed = %d Hz\n",
1350 chip
->test
& SPI_TEST_LBC
? "Yes" : "No",
1351 chip
->enable_dma
? "Yes" : "No",
1352 chip
->control
& SPI_CONTROL_SSCTL
? "Yes" : "No",
1353 chip
->period
& SPI_PERIOD_WAIT
,
1356 spi_speed_hz(SPI_CONTROL_DATARATE_MIN
),
1365 static void cleanup(struct spi_device
*spi
)
1367 kfree(spi_get_ctldata(spi
));
1370 static int init_queue(struct driver_data
*drv_data
)
1372 INIT_LIST_HEAD(&drv_data
->queue
);
1373 spin_lock_init(&drv_data
->lock
);
1375 drv_data
->run
= QUEUE_STOPPED
;
1378 tasklet_init(&drv_data
->pump_transfers
,
1379 pump_transfers
, (unsigned long)drv_data
);
1381 INIT_WORK(&drv_data
->work
, pump_messages
);
1382 drv_data
->workqueue
= create_singlethread_workqueue(
1383 drv_data
->master
->cdev
.dev
->bus_id
);
1384 if (drv_data
->workqueue
== NULL
)
1390 static int start_queue(struct driver_data
*drv_data
)
1392 unsigned long flags
;
1394 spin_lock_irqsave(&drv_data
->lock
, flags
);
1396 if (drv_data
->run
== QUEUE_RUNNING
|| drv_data
->busy
) {
1397 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1401 drv_data
->run
= QUEUE_RUNNING
;
1402 drv_data
->cur_msg
= NULL
;
1403 drv_data
->cur_transfer
= NULL
;
1404 drv_data
->cur_chip
= NULL
;
1405 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1407 queue_work(drv_data
->workqueue
, &drv_data
->work
);
1412 static int stop_queue(struct driver_data
*drv_data
)
1414 unsigned long flags
;
1415 unsigned limit
= 500;
1418 spin_lock_irqsave(&drv_data
->lock
, flags
);
1420 /* This is a bit lame, but is optimized for the common execution path.
1421 * A wait_queue on the drv_data->busy could be used, but then the common
1422 * execution path (pump_messages) would be required to call wake_up or
1423 * friends on every SPI message. Do this instead */
1424 drv_data
->run
= QUEUE_STOPPED
;
1425 while (!list_empty(&drv_data
->queue
) && drv_data
->busy
&& limit
--) {
1426 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1428 spin_lock_irqsave(&drv_data
->lock
, flags
);
1431 if (!list_empty(&drv_data
->queue
) || drv_data
->busy
)
1434 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1439 static int destroy_queue(struct driver_data
*drv_data
)
1443 status
= stop_queue(drv_data
);
1447 if (drv_data
->workqueue
)
1448 destroy_workqueue(drv_data
->workqueue
);
1453 static int spi_imx_probe(struct platform_device
*pdev
)
1455 struct device
*dev
= &pdev
->dev
;
1456 struct spi_imx_master
*platform_info
;
1457 struct spi_master
*master
;
1458 struct driver_data
*drv_data
= NULL
;
1459 struct resource
*res
;
1460 int irq
, status
= 0;
1462 platform_info
= dev
->platform_data
;
1463 if (platform_info
== NULL
) {
1464 dev_err(&pdev
->dev
, "probe - no platform data supplied\n");
1469 /* Allocate master with space for drv_data */
1470 master
= spi_alloc_master(dev
, sizeof(struct driver_data
));
1472 dev_err(&pdev
->dev
, "probe - cannot alloc spi_master\n");
1476 drv_data
= spi_master_get_devdata(master
);
1477 drv_data
->master
= master
;
1478 drv_data
->master_info
= platform_info
;
1479 drv_data
->pdev
= pdev
;
1481 master
->bus_num
= pdev
->id
;
1482 master
->num_chipselect
= platform_info
->num_chipselect
;
1483 master
->cleanup
= cleanup
;
1484 master
->setup
= setup
;
1485 master
->transfer
= transfer
;
1487 drv_data
->dummy_dma_buf
= SPI_DUMMY_u32
;
1489 /* Find and map resources */
1490 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1492 dev_err(&pdev
->dev
, "probe - MEM resources not defined\n");
1496 drv_data
->ioarea
= request_mem_region(res
->start
,
1497 res
->end
- res
->start
+ 1,
1499 if (drv_data
->ioarea
== NULL
) {
1500 dev_err(&pdev
->dev
, "probe - cannot reserve region\n");
1504 drv_data
->regs
= ioremap(res
->start
, res
->end
- res
->start
+ 1);
1505 if (drv_data
->regs
== NULL
) {
1506 dev_err(&pdev
->dev
, "probe - cannot map IO\n");
1510 drv_data
->rd_data_phys
= (dma_addr_t
)res
->start
;
1513 irq
= platform_get_irq(pdev
, 0);
1515 dev_err(&pdev
->dev
, "probe - IRQ resource not defined\n");
1519 status
= request_irq(irq
, spi_int
, IRQF_DISABLED
, dev
->bus_id
, drv_data
);
1521 dev_err(&pdev
->dev
, "probe - cannot get IRQ (%d)\n", status
);
1525 /* Setup DMA if requested */
1526 drv_data
->tx_channel
= -1;
1527 drv_data
->rx_channel
= -1;
1528 if (platform_info
->enable_dma
) {
1529 /* Get rx DMA channel */
1530 status
= imx_dma_request_by_prio(&drv_data
->rx_channel
,
1531 "spi_imx_rx", DMA_PRIO_HIGH
);
1534 "probe - problem (%d) requesting rx channel\n",
1538 imx_dma_setup_handlers(drv_data
->rx_channel
, NULL
,
1539 dma_err_handler
, drv_data
);
1541 /* Get tx DMA channel */
1542 status
= imx_dma_request_by_prio(&drv_data
->tx_channel
,
1543 "spi_imx_tx", DMA_PRIO_MEDIUM
);
1546 "probe - problem (%d) requesting tx channel\n",
1548 imx_dma_free(drv_data
->rx_channel
);
1551 imx_dma_setup_handlers(drv_data
->tx_channel
,
1552 dma_tx_handler
, dma_err_handler
,
1555 /* Set request source and burst length for allocated channels */
1556 switch (drv_data
->pdev
->id
) {
1559 RSSR(drv_data
->rx_channel
) = DMA_REQ_SPI1_R
;
1560 RSSR(drv_data
->tx_channel
) = DMA_REQ_SPI1_T
;
1564 RSSR(drv_data
->rx_channel
) = DMA_REQ_SPI2_R
;
1565 RSSR(drv_data
->tx_channel
) = DMA_REQ_SPI2_T
;
1568 dev_err(dev
, "probe - bad SPI Id\n");
1569 imx_dma_free(drv_data
->rx_channel
);
1570 imx_dma_free(drv_data
->tx_channel
);
1574 BLR(drv_data
->rx_channel
) = SPI_DMA_BLR
;
1575 BLR(drv_data
->tx_channel
) = SPI_DMA_BLR
;
1578 /* Load default SPI configuration */
1579 writel(SPI_RESET_START
, drv_data
->regs
+ SPI_RESET
);
1580 writel(0, drv_data
->regs
+ SPI_RESET
);
1581 writel(SPI_DEFAULT_CONTROL
, drv_data
->regs
+ SPI_CONTROL
);
1583 /* Initial and start queue */
1584 status
= init_queue(drv_data
);
1586 dev_err(&pdev
->dev
, "probe - problem initializing queue\n");
1587 goto err_init_queue
;
1589 status
= start_queue(drv_data
);
1591 dev_err(&pdev
->dev
, "probe - problem starting queue\n");
1592 goto err_start_queue
;
1595 /* Register with the SPI framework */
1596 platform_set_drvdata(pdev
, drv_data
);
1597 status
= spi_register_master(master
);
1599 dev_err(&pdev
->dev
, "probe - problem registering spi master\n");
1600 goto err_spi_register
;
1603 dev_dbg(dev
, "probe succeded\n");
1609 destroy_queue(drv_data
);
1614 free_irq(irq
, drv_data
);
1617 iounmap(drv_data
->regs
);
1620 release_resource(drv_data
->ioarea
);
1621 kfree(drv_data
->ioarea
);
1624 spi_master_put(master
);
1631 static int __devexit
spi_imx_remove(struct platform_device
*pdev
)
1633 struct driver_data
*drv_data
= platform_get_drvdata(pdev
);
1640 tasklet_kill(&drv_data
->pump_transfers
);
1642 /* Remove the queue */
1643 status
= destroy_queue(drv_data
);
1645 dev_err(&pdev
->dev
, "queue remove failed (%d)\n", status
);
1650 writel(SPI_RESET_START
, drv_data
->regs
+ SPI_RESET
);
1651 writel(0, drv_data
->regs
+ SPI_RESET
);
1654 if (drv_data
->master_info
->enable_dma
) {
1655 RSSR(drv_data
->rx_channel
) = 0;
1656 RSSR(drv_data
->tx_channel
) = 0;
1657 imx_dma_free(drv_data
->tx_channel
);
1658 imx_dma_free(drv_data
->rx_channel
);
1662 irq
= platform_get_irq(pdev
, 0);
1664 free_irq(irq
, drv_data
);
1666 /* Release map resources */
1667 iounmap(drv_data
->regs
);
1668 release_resource(drv_data
->ioarea
);
1669 kfree(drv_data
->ioarea
);
1671 /* Disconnect from the SPI framework */
1672 spi_unregister_master(drv_data
->master
);
1673 spi_master_put(drv_data
->master
);
1675 /* Prevent double remove */
1676 platform_set_drvdata(pdev
, NULL
);
1678 dev_dbg(&pdev
->dev
, "remove succeded\n");
1683 static void spi_imx_shutdown(struct platform_device
*pdev
)
1685 struct driver_data
*drv_data
= platform_get_drvdata(pdev
);
1688 writel(SPI_RESET_START
, drv_data
->regs
+ SPI_RESET
);
1689 writel(0, drv_data
->regs
+ SPI_RESET
);
1691 dev_dbg(&pdev
->dev
, "shutdown succeded\n");
1695 static int suspend_devices(struct device
*dev
, void *pm_message
)
1697 pm_message_t
*state
= pm_message
;
1699 if (dev
->power
.power_state
.event
!= state
->event
) {
1700 dev_warn(dev
, "pm state does not match request\n");
1707 static int spi_imx_suspend(struct platform_device
*pdev
, pm_message_t state
)
1709 struct driver_data
*drv_data
= platform_get_drvdata(pdev
);
1712 status
= stop_queue(drv_data
);
1714 dev_warn(&pdev
->dev
, "suspend cannot stop queue\n");
1718 dev_dbg(&pdev
->dev
, "suspended\n");
1723 static int spi_imx_resume(struct platform_device
*pdev
)
1725 struct driver_data
*drv_data
= platform_get_drvdata(pdev
);
1728 /* Start the queue running */
1729 status
= start_queue(drv_data
);
1731 dev_err(&pdev
->dev
, "problem starting queue (%d)\n", status
);
1733 dev_dbg(&pdev
->dev
, "resumed\n");
1738 #define spi_imx_suspend NULL
1739 #define spi_imx_resume NULL
1740 #endif /* CONFIG_PM */
1742 static struct platform_driver driver
= {
1745 .bus
= &platform_bus_type
,
1746 .owner
= THIS_MODULE
,
1748 .probe
= spi_imx_probe
,
1749 .remove
= __devexit_p(spi_imx_remove
),
1750 .shutdown
= spi_imx_shutdown
,
1751 .suspend
= spi_imx_suspend
,
1752 .resume
= spi_imx_resume
,
1755 static int __init
spi_imx_init(void)
1757 return platform_driver_register(&driver
);
1759 module_init(spi_imx_init
);
1761 static void __exit
spi_imx_exit(void)
1763 platform_driver_unregister(&driver
);
1765 module_exit(spi_imx_exit
);
1767 MODULE_AUTHOR("Andrea Paterniani, <a.paterniani@swapp-eng.it>");
1768 MODULE_DESCRIPTION("iMX SPI Contoller Driver");
1769 MODULE_LICENSE("GPL");